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ART & EQUATIONS ARE LINKED

Time series of species abundance from 
fishery-independent surveys, such as 
bottom trawl or acoustic surveys, are 
important in monitoring temporal 
change in the abundance of marine 
populations. For commercially impor-
tant species, catch and effort data 
from the commercial fishery may be 
available, allowing estimation of tem-
poral trends of the stock population 
by means of stock assessment models 
(e.g., virtual population analysis). 
However, such records are not avail-
able for many species, especially those 
with little commercial (but perhaps 
significant ecological) value. Fishery-
independent surveys may thus con-
stitute the only source of information 
for assessing temporal changes in the 
abundance of these species (Penning-
ton, 1985; Helser and Hayes, 1995). 

Annual estimates of abundance de-
rived from fisheries-independent sur-
veys are typically regarded as provid-
ing a relative measure of population 
abundance (i.e., they are indices of 
abundance, not true estimates of to-
tal population size) (Grosslein, 1969; 
Clark, 1979). Thus, the expected 
value of the abundance index (e.g., 
mean catch-per-tow for trawl surveys) 
is regarded as proportional to the size 
of the actual population, although the 
constant of proportionality (the catch-
ability) is unknown. As such, rela-
tive changes in an abundance index 
should reflect similar relative changes 
in the actual population, and trends 
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Abstract—Abundance indices derived 
from fishery-independent surveys 
typically exhibit much higher inter-
annual variability than is consistent 
with the within-survey variance or 
the life history of a species. This extra 
variability is essentially observation 
noise (i.e. measurement error); it prob-
ably ref lects environmentally driven 
factors that affect catchability over 
time. Unfortunately, high observa-
tion noise reduces the ability to detect 
important changes in the underlying 
population abundance. In our study, a 
noise-reduction technique for uncor-
related observation noise that is based 
on autoregressive integrated moving 
average (ARIMA) time series mod-
eling is investigated. The approach 
is applied to 18 time series of fin-
fish abundance, which were derived 
from trawl survey data from the U.S. 
northeast continental shelf. Although 
the a priori assumption of a random-
walk-plus-uncorrelated-noise model 
generally yielded a smoothed result 
that is pleasing to the eye, we rec-
ommend that the most appropriate 
ARIMA model be identified for the 
observed time series if the smoothed 
time series will be used for further 
analysis of the population dynamics 
of a species.

in the time series of such an index 
should reflect similar trends in the 
corresponding population.

Unfortunately, abundance indices 
derived from large-scale fishery-in-
dependent surveys typically exhibit 
interannual variability much higher 
than one would expect from within-
survey variance (Byrne et al., 1981; 
Pennington, 1985). Part of the vari-
ability in such indices is presumably 
due to the variability in the underly-
ing population—a variability that is 
caused by population-dynamic pro-
cesses such as recruitment. However, 
part of the variability is due to ob-
servation noise that arises from both 
within-survey sampling variability 
because of the heterogeneous distri-
bution of many fish stocks (Byrne et 
al., 1981), and because of environmen-
tally driven factors that affect catch-
ability over time (Byrne et al., 1981; 
Collie and Sissenwine, 1983). Low 
signal-to-noise ratios in abundance 
indices that are due to high observa-
tion noise reduce chances of detecting 
important changes or trends in actual 
population abundance. Variability due 
to within-survey sampling can be re-
duced (before the fact) by adding more 
stations to a survey, but additional 
stations will not reduce variability 
caused by changes in catchability. 

Time series modeling using autore-
gressive integrated moving average 
(ARIMA; Box and Jenkins, 1976) 
models provides an approach to re-
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PREFLIGHT GOOD TO GO

moving observation noise from abundance estimates. 
ARIMA models are frequently used in economic fore-
casting (Enders, 2004) and are becoming more common 
in fisheries research. Recent applications of ARIMA 
models to other fisheries problems include forecasting 
monthly landings in the Mediterranean (Lloret et al., 
2000), testing theories of population dynamics (Becerra-
Munoz et al., 1999), and modeling nutrient dynamics in 
an upwelling system (Nogueira et al., 1998). 

In the context of reducing the influence of observa-
tional noise in time series data, Cleveland and Tiao 
(1976) first developed a noise-reduction and smoothing 
algorithm for processes that could be described by an 
ARIMA time series model. Their approach requires 
that the ARIMA model for the unobserved, underlying 
process be known. This known model, in turn, uniquely 
determines the ARIMA model for the observed time se-
ries contaminated by observation noise and allows one 
to estimate the variance of the observation noise. Unfor-
tunately, although the ARIMA model for an unobserved, 
underlying process may be known in some instances 
(from theory, perhaps), in many cases the model for the 
unobserved process will be unknown. 

Box et al. (1978) extended Cleveland and Tiao’s (1976) 
ideas and developed a noise-reduction algorithm based 
on the ARIMA model for the observed time series. How-
ever, the ARIMA model for the observed time series 
merely constrains, but does not determine, the model 
for the unobserved, underlying process; it provides only 
an upper bound for the observation error variance. Con-
sequently, this approach generally requires an external 
estimate of the observation error variance to determine 
the appropriate level of noise reduction.

Pennington (1985) first applied these ARIMA-based 
time series modeling techniques to smoothing abun-
dance indices derived from trawl survey data. He as-
sumed that an observed abundance time series reflected 
a combination of the underlying population abundance 
and independent, uncorrelated, and multiplicative ob-
servation noise (the latter arising perhaps from envi-
ronmentally driven changes in catchability). He further 
assumed that both the (log-transformed) observed time 
series and unobserved population process could be rep-
resented by ARIMA models. Pennington (1985) then 
developed an alternative algorithm to that of Box et al. 
(1978); his derivation allowed particular simplification 
in the case where the underlying population process 
could be modeled as a random walk. In this simple case, 
the resulting noise reduction filter is an exponentially-
weighted average of the observed time series for the 
endpoint of the time series (Pennington, 1985). More 
importantly, the observation error variance can be eas-
ily estimated from the ARIMA model parameters and 
an external estimate is unnecessary. Thus, for the case 
where a random walk model for the underlying process 
is valid, the appropriate level of smoothing is objectively 
determined.

As a demonstration, Pennington (1985) applied his 
noise reduction algorithm to groundfish trawl survey 
data for haddock (Melanogrammus aeglefinus) from the 

northeastern Atlantic coast of the United States. He 
found that the variances of the smoothed indices were 
“considerably lower” than those of the originals. How-
ever, this demonstration used an ARIMA model derived 
from a much longer time series that had been generated 
from a stock assessment based on commercial catch 
data. Pennington (1985) assumed that this model rep-
resented the underlying population and therefore did 
not develop models based on the observed time series. 
Although this assumption was perfectly reasonable, 
given that such alternative data (the stock assessment) 
were available, it cannot be applied to situations when 
only survey data are available to fishery analysts. 

The ARIMA model Pennington (1985) derived from 
stock assessment results was a random walk model; 
therefore the appropriate level of noise reduction for the 
corresponding survey data could be objectively deter-
mined from the model parameters. Pennington’s (1985) 
method was later used to apply random walk mod-
els to survey data (Fogarty et al.1; Pennington, 1986; 
Anonymous, 1988, 1993). Pennington (1986) found that 
random walk models were appropriate for the survey 
time series considered in his study. However, random 
walk models were assumed a priori in the remaining 
three references (Fogarty et al.1; Anonymous, 1988, 
1993) to generate smoothed abundance trajectories; 
because less than 25 observations for each time series 
were considered in these references, reliable identifica-
tion of the model structure for each time series was 
considered problematic and random walk models were 
used as “null” models.

When it is an appropriate description of the underly-
ing process, a random walk model yields an objective 
determination of the degree of noise reduction appro-
priate to an observed time series. However, an a priori 
adoption of this model should be viewed with some skep-
ticism. Additionally, if a random walk model is not an 
appropriate description of the underlying process, the 
resulting smoothed time series may seem reasonable, 
but the result no longer has support as the unobserved, 
underlying process. In this circumstance, we regard the 
effect of the ARIMA algorithm as merely smoothing, 
and not necessarily as noise reducing.

As such, we feel that the utility of ARIMA-based 
approaches to noise reduction for abundance indices 
derived from survey data has not been adequately ex-
plored to date. In addition, substantially longer time 
series (e.g., 40 observations) are now available with 
which to test this concept. In our study, we test the 
utility of the ARIMA time series noise reduction ap-
proach propounded by Pennington (1985), using time 
series of abundance indices from fishery-independent 
trawl survey data for nine finfish species (Table 1) 
during two seasons on Georges Bank. We first review 
the original methods developed by Cleveland and Tiao 

1 Fogarty, M. J., J. S. Idoine, F. P. Almeida, and M. Pen-
nington. 1986. Modeling trends in abundance based on 
research vessel surveys. ICES CM (council meeting) 1986/G, 
p. 92. ICES, Copenhagen, Denmark.
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Table 1
Time series of abundance indices for the following finfish species on Georges Bank were derived from a fisheries-independent 
trawl survey and used to test the ARIMA-based smoothing algorithm.

Common name Scientific name Type

Winter skate Leucoraja ocellata Elasmobranch
Little skate Leucoraja erinacea Elasmobranch
Silver hake Merluccius bilinearis Groundfish
Atlantic cod Gadus morhua Groundfish
Haddock Melanogrammus aeglefinus Groundfish
Winter flounder Pseudopleurenectes americanus Flatfish
Yellowtail flounder Limanda ferruginea Flatfish
Atlantic herring Clupea harengus Pelagic schooling fish
Atlantic mackerel Scomber scombrus Pelagic schooling fish

(1976) and Box et al. (1978). Framing the problem in 
terms of power spectra, we also offer some additional 
new insights into this noise reduction approach. Next, 
we apply the ARIMA-based noise reduction approach 
to the time series data and present the results. We 
have implemented Box et al.’s (1978) algorithm, not 
Pennington’s (1985). Finally, we discuss our perceptions 
of the utility of this approach in light of our results and 
overall experience with it.

Materials and methods 

General characteristics of ARIMA models

In this section, we first briefly review ARIMA models 
for stochastic processes. Then we review the approach 
of Box et al. (1978) for obtaining maximum likelihood 
estimates for an underlying ARIMA time series from a 
time series of observations with independent and identi-
cally distributed (IID) observation noise. 

ARIMA models are parsimonious models that can 
adequately represent many stochastic time series (Box 
and Jenkins, 1976). Stochastic time series that can be 
represented by ARIMA models are essentially the out-
put of a linear filter applied to an input time series of 
white noise (Box and Jenkins, 1976). We will refer to 
such time series as ARIMA processes.

For a zero-mean stochastic time series {zt} that can 
be expressed as an ARIMA model, we denote the model 
(using the notation of Box and Jenkins, 1976) as

 ϕ α( ) ( ) ,B z B at t=  (1)

where zt = the value of the time series at time t;
 ϕ(B) = the generalized autoregressive (AR) opera-

tor;
 α(B) = the moving average (MA) operator;
 B = the backward shift operator; and 
 at = IID normally distributed random variables 

with mean zero and variance σa
2. 

The backward shift operator B has the property that 
B zt = zt–1; hence Bm zt = zt–m. The operators ϕ(B) and 
α(B) are polynomials in B of order p+d and q (respec-
tively) such that
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Furthermore, ϕ (B) can be factored such that ϕ (B)= 
φ(B)(1–B)d, where the (ordinary) AR operator φ(B) has 
a form similar to ϕ(B) but is of order p. The operator 
(1−B)d represents d sequential applications of the back-
ward difference operator 1−B such that the original time 
series {zt} is self-differenced d times before application 
of the AR operator φ(B).

As a shorthand, an ARIMA model that consists of an 
AR operator of order p, d backward difference opera-
tions, and a MA operator of order q is abbreviated as 
(p,d,q). A (p,0,0) model is referred to as an AR model of 
order p, or AR(p) in shorthand notation, and a (0,0,q) 
model is referred to as a MA model of order q (MA(q) in 
shorthand). A (p,0,q) model is referred to as an autore-
gressive-moving average model (ARMA(p,q) in short-
hand) and a (0,d,q) model is referred to as an integrated 
moving average model (IMA(d,q) in shorthand). Finally, 
a random walk model is (0,1,0), while a random-walk-
plus-uncorrelated-observation noise (RWPUN) model 
is (0,1,1).

In general, ARIMA models represent nonstationary 
time series. However, the time series that results from 
applying the backward difference operator d times to 
a (p,d,q) ARIMA process is a stationary ARMA(p,q) 
process. Typical constraints imposed on ARIMA models 
are that, when B is regarded as a complex variable, 
the polynomial in B representing the generalized au-
toregressive operator has zeros on or outside the unit 
circle (|B|=1), whereas the polynomials representing 
the ordinary autoregressive operator and the moving 
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average operator have zeros outside the unit circle. Ad-
ditionally, the white noise variance, σ2

a, must be finite. 
These constraints ensure that a model is invertible and 
stationary (or, if not stationary, that at least it is of a 
suitable form).

One final property of ARIMA models is of interest 
here. The power spectrum for an ARMA (p,q) process 
represented by equation 1 is given by

 
p f

e

e

B
z a

i f

i f
a( )

( )

( )

( ) (= =
−

−

1
2

2
2

2

1
2

2

2

2σ
α

ϕ
σ α α

π

π

FF
B F

B e fi f

)
( ) ( )

; ,

ϕ ϕ

πwhere = ≤ ≤− 2 1
20

 (3)

and the forward shift operator, F=B–1, has the opposite 
effect to B (i.e., Fm zt = zt+m).

ARIMA models of time series with observation noise

Suppose, then, that y1, y2, . . . , yT represent a time series 
of observations at times t = 1,2, . . . T such that 

 y z et t t= + ,  (4)

where the zt’s represent the unobserved, underlying 
process and the et’s are IID normal variables with vari-
ance σe

2 (i.e., e~N(0,σe
2)) that are also independent of the 

zt’s (i.e., < ej zk>=0 for all j,k). The goal is to estimate 
the unobserved time series {zt} by using the observed 
time series {yt}. For the analysis of fishery-independent 
time series, it seems reasonable to assume that only 
the ARIMA model for the observed time series {yt} is 
known (it can be estimated using standard techniques). 
In particular, this assumption means that the model 
for {zt} is unknown within constraints implied by the 
observation equation. However, to develop the approach 
used here it is helpful to start as though the model for 
the unobserved process {zt} were known. 

Thus, we assume that the time series {zt} can be rep-
resented by an ARIMA (p,d,q) process:

 ϕ α( ) ( ) ,B z B ct t=  (5)

where the ct’s are IID and ct ~N(0,σ2
c). Substituting in 

yt–et for zt and rearranging, one obtains 

 ϕ α ϕ( ) ( ) ( ) ,B y B c B et t t= +  (6)

which can be expressed as an ARIMA model for {yt} of 
the form

 ϕ η( ) ( ) ,B y B dt t=  (7)

where the dt’s are IID, dt~N(0,σ2
d) and the MA opera-

tor is η(B). Thus, the generalized AR operator for the 
observed {yt} is identical to that for the unobserved 
{zt}. Furthermore, because α(B) has order q and ϕ(B) 

has order p+d, η(B) must be of order max(p+d,q). This 
requirement for η(B) constrains the order of potential 
ARIMA models that could describe the observed process: 
if p+d≤q then the observed process is also a (p,d,q) pro-
cess, otherwise it is a (p,d,p+d) process. 

In the more realistic situation where {yt} is observed, 
we can determine the generalized AR operator ϕ (B) 
and MA operator η(B) for the observed process. Its 
ARIMA model will be order (P,D,Q), say, where the 
minimum possible value for Q is P+D. The model for 
the corresponding unobserved, underlying process {zt} 
will have order (p=P, d=D, q≤max(P+D,Q)) and its as-
sociated generalized AR operator will also be ϕ (B). 
Furthermore, recognizing that ct and et are indepen-
dently distributed, it can be shown that the moving 
average operator for the unobserved process, α(B), is 
additionally constrained by the ARIMA model for the 
observed process such that the following relationship 
must be satisfied:

 σ α α σ η η σ ϕ ϕc d eB F B F B F2 2 2( ) ( ) ( ) ( ) ( ) ( ).= −  (8)

In this equation, σe
2, η(B),and ϕ(B) are known from the 

ARIMA model for the observed process, whereas σe
2, σc

2, 
and α(B) are unknown. 

In general, many combinations of σe
2, σc

2, and α(B) 
will satisfy the equality. Defining an “acceptable model” 
for the unobserved process as one that, given the model 
for the observed process, α (B) satisfies the previous 
equation and its zeros are on or outside the unit circle, 
Box et al. (1978) show that 1) for every given model 
of an observed process, at least one acceptable model 
for the unobserved process exists; 2) for a given model 
of an observed process, the possible values of σe

2 are 
bounded; and 3) for a given model, every σe

2 between 
0 and the upper bound (K*, say) determines a unique 
acceptable model. The upper bound on the observation 
error variance, K*, is determined from the constraint 
that, for a model of the unobserved process to be accept-
able, σc

2α(B)α(F)≥0 everywhere on the unit circle (i.e., 
the power spectrum of the corresponding MA process 
is non-negative definite). Then, from equation 8, K* is 
given by

 K
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and is completely determined by the ARIMA model for 
the observed process. When σe

2 = K*, the variance of the 
added white noise is maximal, as will be the smoothing 
of the observed time series.

It is instructive to interpret Equations 8 and 9 in 
terms of constraints on the power spectra of {zt}, {yt}, 
and {et}, although this interpretation is strictly correct 
only when {zt} and {yt} are stationary. Let pz(f), py(f), 
pe(f ) denote the power spectra for {zt}, {yt}, and {et}, 
respectively. Recalling the definition of the power spec-
trum (Eq. 3), Equation 8 on the unit circle can be easily 
recast (multiply both sides by 2/{ϕ(B)ϕ(F)}) as



92 Fishery Bulletin 105(1)

 p f p f p fz y e( ) ( ) ( )= −  (10)

because the power spectrum for white noise is constant 
with frequency: pe(F)=2σe

2. Because power spectra are 
nonnegative definite and pe(f) does not depend on f, the 
maximum possible observation noise variance K* corre-
sponds to the minimum of py(f) over f (see Fig. 1). Thus, 
Equation 9 can be recast as

 K p f
f y

*

/
min ( ) / .= { }
≤ ≤0 1 2

2  (11)

Note also that Equation 10 can be recast again as
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where ω*(f) represents the term in parentheses. It will 
be seen below that ω*(f) is identical to the polynomial of 
smoothing weights (Eq. 14) on the unit circle.

Returning to the estimation problem now, knowledge 
of σe

2, then, together with the ARIMA model for the ob-
served process, is sufficient to estimate {zt} (Box et al., 
1978). When t is not close to the endpoints of the time 
series, the smoothed (maximum likelihood) estimate of 

Figure 1
Example power spectra illustrating relationships between py(f ) (the 
power spectrum of the observed time series), pe(f ) (the power spectrum 
of the white observational noise, a constant), and pz(f ) (the power 
spectrum of the unobserved, underlying time series). In this example, 
pe(f) = 0.25 so that pz(f) has the same basic shape as py(f), but is shifted 
downwards at all frequencies by 0.25. p*e(f ) represents the maximum 
possible level, consistent with py(f ) (and the ARIMA model for the 
observed time series {yt}), for the power spectrum of the assumed 
observational noise. Note that in this case, maximal smoothing (i.e., 
taking pe(f )= p*e(f )) eliminates all high frequency energy and would 
result in over-smoothing.
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zt, which we denote as E(zt|y), is a symmetric moving 
average filter of {yt} (Cleveland and Tiao, 1976; Box et 
al., 1978):

 E z y B yt t( ) ( ) ,= ω  (13)

such that
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where the second equality follows from equation 8. Note 
that ω(B) is identical to ω*(f) (Eq. 12) on the unit circle 
(B=e–i2πf)), so that Equations 13 and 14 are also inter-
pretable in terms of relations among power spectra. 
Equation 13 is equivalent to Equation 2 in Pennington 
(1985). It turns out (Cleveland and Tiao, 1976) that equa-
tion 14 is also valid for t near the endpoints of the time 
series; thus, one merely uses the ARIMA model for the 
observed time series to hindcast or forecast additional 
“observations” as needed. Box et al. (1978) describe a 
method for calculating the coefficients of ω(B); because 
this reference may be difficult to obtain, we repeat their 
description in the Appendix.

In the case where the model for the underlying pro-
cess is (0,1,0) (i.e., a random walk model), the model 

for the observed process is (0,1,1) (i.e., a 
RWPUN, model). For this case, Penning-
ton (1985) noted that the value of the MA 
parameter η1 of the observed process (θ in 
his notation) is

 η
σ
σ1

2

2= e

d

,  (15)

so that Equation 14 is completely deter-
mined by the ARIMA model for the 
observed process and the observation error 
variance, σe

2, can be estimated.

Application of the noise reduction 
algorithm to bottom trawl survey data

We applied Box et al.’s (1978) noise reduc-
tion algorithm to 18 time series of abun-
dance indices for finfish (nine species×two 
seasons; species are listed in Table 1) on 
Georges Bank in the northwest Atlantic. 
Time series for the fall survey spanned 40 
years (1963−2002), and the spring time 
series spanned 36 years (1968–2003).

Stratified random bottom trawl sur-
veys have been conducted annually on 
the northeastern continental shelf of the 
United States from Cape Hatteras to the 
Gulf of Maine in the fall since 1963 and 
in the spring since 1968 by the National 
Marine Fisheries Service (NMFS), North-
east Fisheries Science Center (NEFSC) 
(Azarovitz, 1981; Anonymous, 1988; Reid 
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et al., 1999). We derived annual time series of estimated 
total abundance during the spring and fall seasons for 
nine finfish species from trawl survey catch records for 
the Georges Bank area. Reported catches (biomass) from 
strata encompassing Georges Bank were expanded on a 
per-tow basis by using species and length-specific cor-
rections for catchability and coefficients from Edwards 
(1968) and Harley and Myers (2001). Annual stratified 
mean (expanded) catch-per-tow was then calculated for 
each species for both seasonal surveys. Finally, annual 
total population abundance was calculated by applying 
a swept area factor to the stratified mean catch-per-
tow. Abundance indices corresponding to fall surveys 
spanned 1963−2002, and those corresponding to spring 
surveys spanned 1968−2003. Following Pennington 
(1985), we assumed that changes in catchability induced 
a lognormal error structure on the observed time series. 
However, because some time series (notably those for 
the schooling pelagic fish herring and mackerel) includ-
ed zeroes, a ln(x) transformation was not applicable to 
all series. Thus, before further analysis, all time series 
were ln(x+1) transformed.

For each resulting time series, we used SAS (vers. 8, 
SAS Institute, Cary, NC) to identify candidate ARIMA 
models, to estimate parameters for these models, and to 
extend the time series by using forecasts and hindcasts 
before applying the smoothing algorithm. Candidate 
model structures for each time series were based on ex-
amination of empirical autocorrelation, partial autocor-
relation, and inverse autocorrelation functions for the 
series (Box and Jenkins, 1976). When these functions 
indicated that the series was nonstationary, we applied 
the backward difference operator (1–B) to the series 
and examined the correlation functions for the new 
(differenced) series. In addition, because of its special 
significance in terms of interpretation, we always tried 
a RWUPN model as a candidate. Once candidate models 
were identified, we estimated coefficients for each model 
and calculated the associated Akaike information cri-
terion (AIC; Akaike, 1973). AIC provides an objective 
criterion based on information theory for selecting the 
“best” approximating model from among a group of good 
candidate models (i.e., the criterion selects the model 
with the minimum AIC).

We examined the residuals and the empirical au-
tocorrelation, inverse autocorrelation, and partial au-
tocorrelation functions of the residual time series for 
significant deviation from white noise. When significant 
deviation was indicated, we dropped the model from fur-
ther consideration. We also dropped models with orders 
(P,D,Q) that were inconsistent with the assumption of 
additive (after log transformation) observation noise 
(Q≥P+D). Following this screening procedure, we were 
left with a group of “good” alternative models. We then 
selected the ARIMA model with the smallest AIC from 
among the remaining candidates as the “best” model to 
smooth the data. 

We developed a MATLAB (vers. 6.5, The Mathworks 
Inc., Natick, MA) program to perform the noise reduc-
tion for each time series based on an extended version 

of the series and its associated ARIMA model. To allow 
smoothed estimates to be calculated near the ends of 
each time series, we extended each time series before 
smoothing to 40 years before its start by hindcasting 
with the selected ARIMA model and to 40 years past its 
end by forecasting with the model. Using the MATLAB 
program, we then calculated K*, the maximal smooth-
ing weights ω (B) corresponding to σe

2= K*, and the 
smoothed estimates E(zt|y), following the approach of 
Box et al. (1978) outlined previously.

Results

The abundance indices we derived from fishery-indepen-
dent bottom trawl surveys for nine finfish species during 
two seasons displayed a wide variety of trends, as well 
as a high degree of apparent interannual variability. 
This variability may be associated with environmentally 
driven, high-frequency changes in catchability, but we 
regarded it here as observation noise (Figs. 2 and 3). For 
example, springtime winter skate (Leucoraja ocellata) 
biomass appeared to increase by a factor of six during 
the early 1980s from a lower (but highly variable) mean 
level of ~140,000 t, to which it subsequently returned in 
the early 1990s (Fig. 2A). Yellowtail flounder (Limanda 
ferruginea), in contrast, declined by a factor of 10 during 
the 1970s and early 1980s from a high at the beginning 
of the time series and then began to rebound in the latter 
1980s (Fig. 2G). Most recently, yellowtail flounder appear 
close to regaining their earlier peak abundance.

The 18 ARIMA models corresponding to the ln(x+1)-
transformed abundance indices formed a diverse set 
(Tables 2 and 3). Half the time series were found to be 
nonstationary; however, one application of backward 
differencing (d=1) sufficed to achieve stationarity in all 
nine instances. Interestingly, the ARIMA models for all 
nine of these time series were consistent with RWPUN 
models (i.e., [0,1,1] models). For all the models, autore-
gressive orders (p) ranged between 0 and 3, and mov-
ing average orders (q) ranged from 1 to 5. The spring 
and fall models for little skate (L. erinacea) had the 
highest AR order, and the spring model for silver hake 
(Merluccius bilinearis) had the highest MA order. Only 
the models for little skate, Atlantic herring (Clupea 
harengus), and yellowtail flounder exhibited the same 
ARIMA order for both the spring and fall. And although 
none of the models reflected pure AR processes (q=0, 
an impossibility given the observation noise assump-
tion), two were found to be pure MA processes (winter 
flounder and Atlantic mackerel [Scomber scombrus], 
both in spring). All nine IMA processes were RWPUN 
processes (i.e., (0,1,1)).

The effect of ARIMA-based noise reduction on these 
18 sets of indices was fairly variable in outcome (Figs. 2 
and 3). Little or no smoothing occurred for little skate 
(spring, Fig. 2B), silver hake (spring, Fig. 2D), and 
haddock (Melanogrammus aeglefinus) (fall, Fig. 3F). 
Moderate smoothing occurred for winter skate (spring, 
Fig. 2A; fall, Fig. 3A), little skate (fall, Fig. 3B),  
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Figure 2
Comparison of original time series of estimated total biomass on Georges Bank from the spring bottom trawl survey (filled 
circles) and inverse-transformed, ARIMA-smoothed time series (open triangles) for nine finfish species.
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Atlantic herring (fall, Fig. 3C), haddock (spring, Fig. 
2F), yellowtail flounder (spring, Fig. 2G; fall, Fig. 3G), 
winter flounder (Pseudopleuronectes americanus) (fall, 
Fig. 3H), and Atlantic mackerel (spring, Fig. 2I). A 
high degree of smoothing occurred for Atlantic herring 
(spring, Fig. 2C), silver hake (fall, Fig. 3D), Atlantic 
cod (Gadus morhua) (spring, Fig. 2E; fall, Fig. 3E), 
winter flounder (spring, Fig. 2H), and Atlantic mack-
erel (fall, Fig. 3I). 

Impressions obtained from visually comparing the 
original and smoothed time series were consistent with 
the fraction of innovation variance (K*/σd

2, Tables 2 and 
3) in the observed time series ascribed to observation 
error. Recall that we chose to perform the maximal 
amount of smoothing possible (i.e., taking σd

2=K*in Eq. 
13). Our visual classifications fell fairly neatly into the 
following categories based on K*/σd

2: 1) a low degree of 
smoothing corresponded to K*/σd

2<0.25, 2) a moderate 
degree of smoothing corresponded to 0.25< K*/σd

2<0.60, 

and 3) a high degree of smoothing corresponded to 
0.60≥K*/σd

2.
In addition, it appeared that the degree of smoothing 

varied inversely with the order of the moving average 
component of the ARIMA model for the observed time 
series. When the order of the moving average component 
was greater than 2, the degree of overall smoothing was 
typically small. Substantially more smoothing was evi-
dent when the order of the moving average component 
was 1, because of the equivalence with an exponentially 
weighted smoother. 

The nine time series found to be RWPUN processes 
provided a means to check whether our choice to per-
form the maximal amount of smoothing was reasonable. 
For such time series, the value of the moving average 
coefficient, η1, is equal to the ratio of the observation 
noise variance, σe

2, to the innovation variance σd
2. Con-

sequently, σd
2⋅η1=σe

2. For eight of the nine series, the 
ratio of σe

2 to K* was greater than 80% (Table 4). 
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Figure 3
Comparison of original time series of estimated total biomass on Georges Bank from the fall bottom trawl survey (filled 
circles) and inverse-transformed, ARIMA-smoothed time series open triangles) for nine finfish species.

Discussion

Abundance indices derived from large-scale fishery-inde-
pendent surveys typically exhibit interannual variability 
much higher than one would expect from within-survey 
variance (Pennington, 1985). Although true variability 
in the underlying population due to population-dynamic 
processes is reflected in the variability of an index, so too 
is observational noise arising both from within-survey 
sampling variability as well as from environmentally 
driven factors that affect catchability. Low signal-to-
noise ratios in abundance indices due to high obser-
vational noise reduce one’s ability to detect important 
changes or trends in actual population abundance. 

To reduce the impact of white observation noise on 
time series data, Cleveland and Tiao (1976) developed 
an approach to noise reduction and smoothing that 
was based on their knowledge of the ARIMA model 
(Box and Jenkins, 1976) for an associated unobserved 

but underlying stochastic process. Box et al. (1978) 
extended this approach to address the situation where 
the ARIMA model for the underlying process was un-
known, relying instead on an ARIMA model associated 
with the observed time series. In general, and certainly 
in regard to fishery-independent survey data, a model 
structure for the unobserved, underlying process will 
not be available. Hence, Box et al.’s (1978) approach 
will be the norm.

In the situation where the observed time series is 
stationary, we found that a frequency domain inter-
pretation of Box et al.’s (1978) algorithm is particu-
larly enlightening. When the times series is station-
ary, observation noise increases the power spectral 
density (PSD) of the observed process over that of the 
unobserved process by a fixed amount at all frequen-
cies (Fig. 1). Consequently, the PSD of the unobserved 
process has the same shape as the PSD of the ob-
served process, but with a fixed amount removed at 
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Table 2
ARIMA smoothing results for ln(x+1) transformed time series based on spring surveys.  Here, σd

2 is the innovation variance for 
the transformed time series and κ* is the maximum consistent observation noise variance, scaled to σd

2 (i.e., K*/σd
2).  The degree 

of smoothing is based on a visual comparison of the original and smoothed time series.

Species ARIMA model (p,d,q) σd
2 κ* Degree of smoothing

Winter skate (0,1,1) 0.33 0.52 medium

Little skate (3,0,4) 0.30 0.14 low

Atlantic herring (0,1,1) 4.90 0.59 high

Silver hake (0,0,5) 0.85 0.02 low

Atlantic cod (0,1,1) 0.47 0.71 high

Haddock (1,0,3) 0.42 0.29 medium

Yellowtail flounder (0,1,1) 0.45 0.49 medium

Winter flounder (0,0,1) 0.33 0.89 high

Atlantic mackerel (0,0,2) 16.9 0.34 medium

Table 3
ARIMA smoothing results for ln(x+1) transformed time series based on fall surveys. Here, σd

2 is the innovation variance for the 
transformed time series and κ* is the maximum consistent observation noise variance, scaled to σd

2 (i.e., K*/σd
2). The degree of 

smoothing is based on a visual comparison of the original and smoothed time series.

Species ARIMA model (p,d,q) σd
2 κ* Degree of smoothing

Winter skate (2,0,3) 0.17 0.31 medium

Little skate (3,0,4) 0.12 0.38 medium

Atlantic herring (0,1,1) 4.75 0.48 medium

Silver hake (0,1,1) 0.22 0.61 high

Atlantic cod (1,0,1) 0.55 0.77 high

Haddock (2,0,3) 0.75 <0.01 low

Yellowtail flounder (0,1,1) 0.40 0.45 medium

Winter flounder (0,1,1) 0.40 0.50 medium

Atlantic mackerel (0,1,1) 7.00 0.84 high

Table 4
For time series consistent with random-walk-plus-uncorrelated-noise models, the table provides a comparison between the esti-
mated observation noise variance (σe

2) and the maximum noise variance (K*). The latter was used to smooth all time series.

Season Species η1=σ2
e/σ

2
d σ2

d K* σ2
e/K*

Fall Atlantic herring 0.392 4.75 2.28 0.82

 Silver hake 0.566 0.22 0.13 0.93

 Yellowtail flounder 0.342 0.40 0.18 0.76

 Winter flounder 0.420 0.40 0.20 0.84

 Atlantic mackerel 0.832 7.00 5.88 0.99

Spring Winter skate 0.438 0.33 0.17 0.84

 Atlantic herring 0.541 4.90 2.89 0.92

 Atlantic cod 0.680 0.47 0.33 0.96

 Yellowtail flounder 0.399 0.45 0.22 0.81
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all frequencies. Because the unobserved PSD must 
be nonnegative, the maximum observation noise (and 
thus the maximum noise reduction and smoothing that 
may occur) consistent with additive white noise corre-
sponds to the minimum value of the observed process’s 
PSD. Presumed higher values for the observation noise 
would require that the PSD for the unobserved pro-
cess be negative over some frequency range. Box et 
al.’s (1978) algorithm computes the maximum possible 
observation noise and uses a time domain formula to 
calculate a smoothed, “unobserved” time series consis-
tent with additive white noise for any noise level up to 
the maximum.

The ARIMA-based noise reduction approach was first 
applied to fisheries trawl survey data by Pennington 
(1985), who developed an alternative algorithm to that 
of Box et al. (1978) for estimating the smoothed time 
series. This algorithm was subsequently used in several 
studies (Pennington, 1985; Fogarty et al.1; Pennington, 
1986; Anonymous, 1988, 1993) to smooth time series 
of abundance indices derived from trawl survey data 
for the northeast coast of the United States. Of these 
studies, perhaps only Pennington (1986) constitutes a 
convincing demonstration of the utility of the ARIMA-
based approach to time series noise reduction when the 
ARIMA model for the underlying process is unknown. 
Pennington’s (1985) demonstration relied on an ARIMA 
model developed for the (usually unobserved) underlying 
population that was based on stock assessment results 
for the particular species considered. In contrast, RW-
PUN models were assumed a priori in Fogarty et al.1 

and Anonymous (1988, 1993) because the short time 
series (<25 observations per series) considered made 
identification of the underlying ARIMA models prob-
lematic. Only in Pennington (1986) was a model used 
that was fitted to trawl survey data and tested for ap-
propriateness. 

However, substantially longer time series are now 
available to test the ARIMA-based noise reduction con-
cept. Consequently, to revisit the utility of the ARI-
MA-based approach for smoothing time series data 
derived from fisheries-independent trawl survey data, 
we applied Box et al.’s (1978) approach to smoothing to 
time series of annual abundance indices derived from 
the NMFS/NEFSC fisheries-independent bottom trawl 
survey of nine finfish species during two seasons on 
Georges Bank. Time series for the fall spanned 40 years 
(1963−2002), and the spring time series spanned 36 
years (1968−2003). The species, comprising two elasmo-
branchs, three groundfish, two flatfish, and two pelagic 
schooling species, presented a broad range of life his-
tory characteristics (Table 1). 

The noise reduction results we obtained varied among 
species and between seasons. Despite smoothing at the 
maximum level of noise reduction consistent with each 
model, very little smoothing was obtained for haddock 
(fall), little skate (spring), and silver hake (spring). The 
models for these time series had among the highest 
moving average orders (3−5). Examination of the PSD 
for each model in the frequency domain revealed very 

small minima, indicating no scope for noise reduction. 
Typically, models that had a MA order >2 exhibited 
substantially less smoothing than models with a MA 
order ≤2. Models that were of MA order 1 generally 
resulted in the greatest smoothing. Models that were 
of MA order 0 did not (and could not) occur.

Of the 18 time series we considered (Tables 2 and 3, 
Figs. 2 and 3), only half were adequately represented 
as random-walk-plus-uncorrelated-noise (RWPUN) 
models. The ARIMA models we developed were varied 
in structure, ranging from a simple MA(1) model to 
rather complicated models with multiple parameters. 
Thus, our results provide evidence against the appro-
priateness of assuming a particular model structure a 
priori when the objective of the analysis is to identify 
the underlying dynamic structure of the population. 
This evidence is further strengthened by the results 
of Becerra-Munoz et al. (1999), who found only 9 of 
52 abundance time series for finfish species from the 
NMFS/NEFSC bottom trawl survey that corresponded 
to random walk models. 

As an exercise, we also attempted to smooth the nine 
data sets that were not adequately described as RW-
PUN models, using this model structure as an a priori 
assumption, even though our analysis indicated that 
other models were more appropriate. We were not able 
to estimate convergent models for three species: At-
lantic cod (fall), winter flounder (spring), and Atlantic 
mackerel (spring). For the remaining six time series, 
the smoothed results appeared to be quite reasonable 
(Fig. 4), although we obtained little noise reduction 
when we employed the “correct” ARIMA model. The 
RWPUN-smoothed time series for haddock (Fig. 4, C 
and F) were similar to that for spawning biomass de-
rived from virtual population analysis (see Brodziak 
et al.2), but the smoothed time series for silver hake 
(Fig. 4E) exhibited higher frequency variability than 
that found for total biomass with a production model 
(see Brodziak et al.3). From the standpoint of estimat-
ing the unobserved underlying process, these smoothed 
results should be viewed with some skepticism: the 
use of the RWPUN model is rather arbitrary in this 
situation and it may impose artificial structure on the 
smoothed results. However, it may be that these time 
series do not meet one of the key assumptions of the 
noise reduction method: namely that the observation 
noise is uncorrelated. The ARIMA models for all six 
time series had MA orders ≥3, and one effect of cor-
related observation noise could be to increase the MA 

2 Brodziak, J., M. Traver and L. Col. 2005. Georges Bank 
haddock. In Assessment of 19 northeast groundfish stocks 
through 2004 (R. K. Mayo, and M. Terceiro, eds.), section 
2, p. 30−80. 2005 groundfish assessment review meeting. 
Northeast Fisheries Science Center, Woods Hole, Massachu-
setts; 15−19 August 2005. NEFSC Ref. Doc. 05-13. NEFSC, 
166 Water Street, Woods Hole, MA 02543.

3 Brodziak, J. K. T., E. M. Holmes, K. A. Sosebee, and R. K. 
Mayo. 2001. Assessment of the silver hake resource in the 
Northwest Atlantic in 2000, 134 p. NEFSC Ref. Doc. 01-
03. NEFSC, 166 Water Street, Woods Hole, MA 02543.
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Figure 4
Comparison of original time series of estimated total biomass on Georges 
Bank from the fall (left column) and spring (right column) bottom trawl survey 
(filled circles) and inverse-transformed, ARIMA-smoothed time series (open 
triangles). For these time series, an ARIMA (0,1,1) model (i.e., a random-walk-
plus-uncorrelated-noise model) was used, although this was not the model 
selected in our time series analysis. 
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order of the observed time series beyond that expected 
for uncorrelated noise.

Of the nine species considered, only three (little skate, 
Atlantic herring, and flounder) had models that exhib-
ited the same ARIMA order for both the fall and spring 
surveys. Taken at face value, this would indicate that 
the other six species exhibited substantially different 
dynamical processes during the fall and spring that 
influenced abundance on Georges Bank. One potential 
mechanism for this could be differential seasonal migra-
tion patterns that result in changes in catchability that 
have different autocorrelation structures. For example, 
cod are distributed across the bank during the spring 
survey, but are found only in deeper waters on the pe-
riphery of the bank during the fall where they may be 
less available to the survey. Assuming that all Georges 

Bank cod are available to the spring survey, if the frac-
tion of cod available to the survey in the fall is density 
dependent or is driven by autocorrelated environmental 
conditions, then the fall survey abundance will exhibit 
dynamical behavior different from that of the spring 
survey abundance (note: if this were the case, it would 
be inappropriate to smooth the fall time series for cod 
with the ARIMA noise reduction approach applied in 
our study because, as noted previously, one of the basic 
assumptions with this approach is that the observation 
noise is uncorrelated). Other plausible mechanisms can 
be developed, as well. However, we feel it more likely 
that the inconsistency in ARIMA order between spring 
and fall surveys for the same species is an estimation 
problem and indicates that even a 40-year time series 
may not be long enough to reduce the variability inher-
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ent in ARIMA model estimation to reasonable levels for 
most species.

Alternative methods, such as locally weighted scat-
terplot smoothing (LOESS), moving average filters, 
exponential smoothing filters, Kalman filters, and fre-
quency-domain approaches can be applied to time series 
to achieve smoother results (e.g., Cleveland and Grosse, 
1991; Hamilton, 1994). These approaches typically em-
ploy at least one user-determined parameter that can 
be used to change the amount of smoothing that an 
algorithm achieves. Generally, one “fiddles” with the 
adjustable parameters until a “nice,” smoothed fit is 
achieved. However, we think it important to distinguish 
between these smoothing algorithms and the ARIMA-
based noise reduction algorithms. It is quite possible to 
smooth out real fluctuations in the underlying popula-
tion process. The principal advantage that we see for 
the ARIMA-based noise reduction algorithms (used 
with an appropriate model) over alternative methods 
is that the former provide a more objective approach 
to determining an appropriate level of smoothing. As 
noted previously, Pennington (1985) showed that when 
a RWPUN model is appropriate, the ARIMA smoothing 
approach is completely determined by the ARIMA model 
for the observed time series because it is possible to de-
termine the observation noise variance from the model 
parameters. In the more general case, Box et al.’s (1978) 
algorithm at least yields a maximum value for the vari-
ance of the observational noise and thus sets an upper 
limit to the amount of noise reduction and smoothing 
that can be achieved. For trawl survey data, our results 
from nine time series where RWPUN models were ap-
propriate (and we can consequently estimate the actual 
observation noise variance) indicate that smoothing at 
~90% of the maximum possible noise reduction level is 
not an unreasonable default percentage (Table 4).

One drawback to the greater application of ARIMA-
based noise reduction methods to time series data is 
the lack of an integrated software package that allows 
a user 1) to quickly evaluate an appropriate ARIMA 
model for a given time series, and 2) to calculate the 
smoothed time series. We used SAS for the first step 
and MATLAB for the second, but we found this ar-
rangement rather awkward and burdensome. However, 
econometrically oriented software packages such as 
ForecastPro4 or AutoBox5 that automate model selection 
may substantially simplify the first step even if they 
don’t address the second step.

On the whole, ARIMA-based time series models ap-
pear to provide the basis for a more objective approach 
to reducing observation noise in time series data, in-
cluding time series of fishery abundance indices derived 
from trawl survey data, than do more conventional 

4 Business Forecast Systems, Inc. 2006. Website: http://www.
forecastpro.com /products/fpfamily/index.html (accessed on 
29 March 2006).

5 Automatic Forecasting Systems. 2003. Website: http://
www.autobox.com/autoboxdesc.htm (accessed on 29 March 
29 2006).

smoothing approaches. In the absence of additional 
information regarding the level of observation noise, 
we recommend smoothing trawl survey data at 90% of 
the maximum possible noise reduction level. We also 
suggest that development of an integrated software 
package for implementing ARIMA-based noise reduction 
will facilitate future use of this method. 

Finally, if a smoothed time series is desired (e.g., for 
graphical presentation only), then use of a RWPUN 
model in lieu of a model-fitting exercise will generally 
yield a curve pleasing to the eye. Alternatively, other 
methods such as LOESS could be employed to generate 
the smoothed results. However, if the resulting time 
series is to be used for further analysis of the dynami-
cal behavior of the fish stock, we strongly recommend 
that a model-fitting approach be used to identify the 
most appropriate ARIMA model for the observed time 
series, from which the time series for the unobserved, 
underlying process can be computed. Otherwise, real 
f luctuations in the underlying process may be over-
smoothed, resulting in an apparent dynamical behavior 
that displays little variability. This oversmoothing, in 
turn, may lead to erroneous conclusions being drawn 
regarding, for example, the resiliency of a stock to ex-
ploitation or environmental change, and to perhaps 
concomitant errors being propagated in advice provided 
to fishery managers. 
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Appendix

For the convenience of the reader, we summarize here 
Box et al.’s (1978) algorithm to calculate the coefficients 
of the smoothing polynomial ω(B). Recall from Equation 
14 that
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where ϕ(B) is a polynomial of order P+D and η(B) is a 
polynomial of order Q. Because Q ≥ P+D, one can write
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where ϕj = 0 for j>P+D.
First, define
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One can solve for the coefficients of C using an iterative 
process by recognizing that the coefficients of each power 
of B in the following expression must be zero:

0 = −ϕ η( ) ( ) ( ).B B C B

Consequently, one obtains
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and higher order coefficients of C (i.e., for j>Q) can be 
computed recursively using the relation
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Next, define
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From this definition, one obtains

 X B F F C B F( , ) ( ) ( ) ( ).η ϕ≡  (A.7)
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The largest degree of F on the righthand side of this 
equation is Q. By matching coefficients of Fj on both sides 
of the equation, Box et al. (1978) found, for j=0,1,…Q, 
that

 ηη ϕϕX C= ,  (A.8)

where X, ϕ are Q+1 column vectors XT=(X0, X1,…, XQ), 
ϕT=(1, –ϕ1,…, –ϕQ) and η, C are (Q+1)x(Q+1) matrices 
such that
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Thus, Equations A.8 and A.9 define a set of Q+1 equa-
tions in Q+1 unknowns (X0, X1,…, XQ) which can be 
solved for by matrix inversion such that

 X C== ηη ϕϕ–1 . (A.10)

For j>Q, the Xj ’s are computed recursively by using the 
relation
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Finally, the coefficients of ω(B) are given by
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