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Abstract.—Some combinations of
trawler, trawl, and crew catch fish bet-
ter than others. Systematic error en-
ters catch per unit of effort (CPUE) data
from trawl surveys through such rela-
tive differences in efficiency among
sampling instruments. Correcting rela-
tive fishing power differences can re-
move bias due to systematic error but
may also increase the variance of the
mean CPUE estimate. As a result, the
overall error of the estimate may actu-
ally become worse. even when the fish-
ing power difference is statistically sig-
nificant. A decision rule specified by the
mean square error (MSE) of the mean
CPUE estimate avoids this mistake:
namely a correction that reduces the
error in the mean CPUE estimate
would be applied, a correction that in-
creases the error would not be applied.
I describe and demonstrate an algo-
rithm, based on minimizing the MSE,
for deciding to correct a fishing power
difference. The strategy requires that
a probability density function exist that
models the CPUE data reasonably well.
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Trawl surveys are often used to col-
lect data on catch observations stan-
dardized by fishing effort (the catch
per unit of effort [CPUE]), and the
mean CPUE is often interpreted as
an index of abundance. Ideally, fish-
ing power, or fish catching effi-
ciency, must be held constant in
trawl surveys lest altered catch
rates be confounded with changes
in abundance of fish or inverte-
brates. Unfortunately, the sampling
instrument is a complex system
that includes the vessel, vessel op-
erators, and fishing gear, all of
which may vary from survey to sur-
vey, introducing changes in fishing
power (Gulland, 1956). Correcting
fishing power differences seems
necessary for proper interpretation
of mean CPUE. However, methods
have not been established for deter-
mining if an improved estimate of
mean CPUE actually results from
such correction.

Relative differences in fishing
power make standardization in
trawl surveys difficult. Technologi-
cal changes in fishing gear, as well
as replacement of older research
vessels, may affect fishing power
(Azarowitz, 1981; Byrne et al.,,
1991). Fishing power differences are
an inherent part of multiple vessel
surveys. Examples of this type of
survey are annual and triennial

surveys in several regions of the
north Pacific Ocean and Bering Sea
conducted by the Alaska Fisheries
Science Center (AFSC) of the Na-
tional Marine Fisheries Service
(NMFS) (Harrison, 1992; Weinberg
et al., 1994; Munro and Hoff, 1995;
Goddard and Zimmermann'!) and
the International Young Fish Sur-
vey in the North Sea (Anonymous?).
Koeller and Smith (1983) reported
change in a single vessel’s ability to
measure speed over a 3-year period
and hypothesized that this may
have altered its fishing power from
year to year. Operator effects have
also been shown to account for fish-
ing power differences among vessels
{(Munro and Hoff, 1995) and thus
may be inferred for change in op-
erators of a single vessel. (In what

! Goddard,P.,and M. Zimmermann. 1993.
Distribution, abundance, and biological
characteristics of groundfish in the east-
ern Bering Sea based on results of the U.S.
bottom trawl survey during June—Septem-
ber 1991. U.S. Dep. Commer., NOAA,
Natl. Mar. Fish. Serv., Alaska Fish. Sci.
Cent.. 7600 Sand Point Way NE, Seattle,
WA 98115-0070, Proc. Rep. 93-15, 324 p.

2 Anonymous. 1986. Manual for the In-
ternational Young Fish Surveys in the
North Sea, Skagerrak, and Kattegat. In-
ternational Council for the Exploration of
the Sea, Palaegade 2-4, DK-1261, Copen-
hagen K, Denmark. ICES Council Meet-
ing 1986/H:2.
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follows, “vessel” refers to the entire system that com-
prises the sampling instrument, from the bow of the
fishing vessel to the codend.)

A fishing power difference forces a choice between
two estimators of mean CPUE, one that incorporates
a fishing power correction and one that does not.
Correcting a fishing power difference amounts to
changing an observation to an estimate. The follow-
ing model is used to estimate what a standard ves-
sel would have caught had it executed exactly the
same tow as was done by a nonstandard vessel:

JEL- =yiFISC,

where x; = estimated CPUE at station i by the stan-
dard vessel;

y; = observed CPUE at station i by the non-
N standard vessel; and
FPC = estimated fishing power correction factor.

Each original observation, y;, has no error beyond
measurement error. Every x; has error due to the
variance of the estimate of FPC. Consequently the
mean CPUE estimated from the x; has at least two
components of variation, one stemming from the
usual sampling variance in the observations (y;), the
other due to uncertainty in the estimate of FPC. This
added component of estimation error has been rec-
ognized as the cost of correcting systematic error in
the observations, but only in passing, (Sissenwine
and Bowman, 1978; Byrne et al., 1981; Koeller and
Smith, 1983; Fanning, 1984).

Estimators are often chosen on the basis of their
relative error, yet most researchers have ignored this
in deciding whether or not to correct a fishing power
difference. Investigations have been focused on esti-
mating the difference but have not evaluated it in
terms of estimating mean CPUE. Very few decision
rules have been explicitly stated, most having been
implied by testing the statistical significance of the
fishing power difference itself. Early CPUE calibra-
tions (Gulland, 1956; Robson, 1966) were based on
multiplicative models of different sources of variabil-
ity in CPUE data, including vessel effects. Log trans-
formation of the data produced linear models with
coefficients that could be estimated with regressions
and for which classical hypotheses could be formu-
lated and tested. Sissenwine and Bowman (1978),
Kimura (1981), and Gavaris (1980) have followed this
strategy in their decisions to apply FPCs. Gavaris
(1980) estimated the FPC using the method of Bradu
and Mundlak (1970) and reported approximate con-
fidence intervals, without explicitly stating a deci-
sion rule. Fanning (1984) proposed an explicit deci-
sion rule using a beta-distributed index for the fish-

ing power difference in paired observations. If the
confidence interval included the value that repre-
sented identical fishing power, he recommended that
the estimated FPC not be applied. Byrne and Fogarty
(1985) tested the significance of fishing power differ-
ences using Hotelling's t-squared test when several
species were considered simultaneously, or the nen-
parametric Friedman’s test for a single species. They
offered no interpretation of a significant fishing
power difference, in particular, whether or not it
should be corrected. The ¢-test was used by Byrne et
al. (1991) to determine the significance of a fishing
power difference. In response to a significant differ-
ence, they estimated an FPC using the method of
Bradu and Mundlak (1970). They then produced con-
fidence intervals for that estimate using a bootstrap
approximation. However, they did not state an ex-
plicit decision rule based on those intervals.

Correcting a fishing power difference would be
worthwhile only when it reduces the error in the es-
timate of mean CPUE. Statistical significance of a
fishing power difference is not a compelling justifi-
cation because the cost of the added uncertainty may
out weigh the benefit of removing bias that entered
through systematic error in CPUE data. If the esti-
mate of a correction factor has a lot of uncertainty,
then the error of the estimate of mean CPUE could
actually become worse by correcting data, even for a
statistically significant fishing power difference. A
decision rule for correcting a fishing power differ-
ence must avoid this mistake by accounting for the
cost of correcting as well as the benefit. Such a rule
would permit choosing the estimate of mean CPUE
that yields the lower total error.

Methods

The notion of the mean square error (MSE) lends a
useful structure for defining such a decision rule. The
MSE is a widely recognized measure of error between
an estimator and its parameter (Mood et al., 1974).
The MSE is defined as

MSE [C]=E|(C-C7?),
which is the expectation of the squared difference
between the estimator of mean CPUE, C, and the

parameter being estimated, true CPUE or, C. The
MSE can be rewritten as

MSE [€] = Var[€)+ b2[C),

or the sum of the variance and the squared bias of
the estimator. By defining the following estimators,
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é(w) = estimator as a function of uncorrected
R data
Clivppc) = estimator as a function of data cor-
rected with an estimated FPC,

where w = (%, X9, - - -, Xn,, Y12 Yo - - Ly

= a mixed vector of CPUE observations
from two vessels

and

Wrpe = (X, %5 -+ x,,_,,ylFﬁC,yzFIE’C, -

¥, FPC)

a mixed vector of CPUE observations
and estimates,

a model for the decision rule can be stated as: Apply
the FPC if

MSE|Cuw| > MSE[Clib e )
and do not apply the FPC if
MSE|Cw)| < MSE|Clérgic )|

(Note, this explication of the MSE of mean CPUE
has been framed in terms of a single survey with
two vessels. But the notion of MSE lends itself
equally well to any situation in which data must be
“corrected,” including the common case of a single,
nonstandard vessel conducting a standard survey.)
This decision rule is unattainable because it re-
quires that the true value of the fishing power dif-
ference and CPUE sampling distributions be known.
However, simulations can be used to estimate the
mean square error. One such simulation strategy
takes the following form: Assume a probability dis-
tribution for CPUE. Generate realizations of this dis-
tribution to represent a survey in which a fishing
power difference is suspected. Impose an assumed
fishing power difference on the simulated survey.
Estimate the fishing power difference and apply the
estimate to correct the assumed fishing power dif-
ference. (Estimating the fishing power difference may
require further distributional assumptions and simu-
lations, depending on the estimator and the kind of
data it requires, especially if fishing power differ-
ence is to be estimated from experiments conducted
independently of the survey.) The MSEs of the esti-
mated mean CPUE are then calculated from the re-
alizations with and with out the fishing power cor-
rections. This procedure is repeated for a range of
selected fishing power differences. Whether the ob-
served fishing power difference (estimated from real
data) falls within the range of the fishing power dif-

ference for which correcting reduces the MSE of the
estimated mean CPUE can then be determined.
This general strategy is illustrated by construct-
ing an algorithm to apply it to a real problem. Any
algorithm for implementing this decision rule will
depend on specific circumstances. In this case the
particulars are defined by a fishing power problem
in an annual survey of the eastern Bering Sea, con-
ducted by the AFSC (Wakabayashi et al., 1985;
Goddard and Zimmermann!). Two vessels system-
atically sample all strata, following interleaved sta-
tion patterns that produce approximately equal num-
bers of CPUE observations. From these two sets of
unpaired data a fishing power difference between two
vessels is estimated for each of a number of species.
The question is “Should this estimated FPC be used
to correct CPUEs of one vessel to the fishing effi-
ciency of the other?” This general MSE decision rule
takes the following form (the specifics of the Bering
Sea survey being addressed within this framework):

1 Simulate surveys from an appropriate sampling
distribution for data collected by a “standard”
vessel.

2 Impose a known fishing power difference on the
CPUE data in each simulated survey. (In these
examples half the data were altered to emulate a
two-vessel survey.)

8 For each simulated survey, estimate an FPC to
correct the fishing power difference that was im-
posed in the previous step. (FPCs may be esti-
mated from simulation from independent experi-
mental data or, as in these examples, estimated
from the simulated survey itself. The important
aspect is that the error structure of the FPC esti-
mator be incorporated in the simulation process.)

4 Estimate the mean CPUE for each simulated sur-
vey with and without correcting for the fishing
power difference.

5 Repeat steps 2 through 4 for a range of fishing
power differences.

6 Compute MSEs for estimated mean CPUE for
each level of fishing power difference.

7 Plot the estimated MSEs against the fishing
power differences imposed in Step 2 (Fig. 1).

8 Determine the range of fishing power difference
where the MSE for corrected data is lower than
the MSE for uncorrected data (Fig. 1).

The region of increased error is centered around the
value 1.0, which represents equal fishing powers, and is
sandwiched between regions of reduced error (Fig. 1).
The smaller the true fishing power difference the
more likely that correcting it will lead to increased
error in mean CPUE, and the greater the fishing
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power difference the more likely that correct-
ing it will improve error in mean CPUE. For
the range of the relative fishing power differ-
ence for which correction increases (becomes
worse), the MSE will be called the “noncor-
rection region.” The two ranges of the relative
fishing power difference for which correcting
reduces (improves) the MSE will be referred to
collectively as the “correction region.”

This procedure has four critical elements:
simulating the CPUE data, the estimator of
FPC, the estimator of mean CPUE, and the
sample size in each simulation. The CPUE data
(kilograms per hectare) were simulated with the
A-distribution. The A-distribution has been pro-
posed as an appropriate distribution for data
that include the value 0.0 and that are heavily
skewed to the right (Pennington, 1983; McCon-
naughey and Conquest, 1992). The probability
density function for the A-distribution has pa-
rameters p, the probability of an observation
with the value 0.0, and y and o, the conven-
tional defining parameters of the lognormal dis-
tribution, which are the population mean and
standard deviation of the log-transformed ele-
ments, respectively (Aitchison and Brown,
1957). The parameters for this distribution were
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Figure 1

The noncorrection region that emerges from plotting mean square
error of mean CPUE against the fishing power difference imposed
on the simulated data. “Uncorrected data” refers to the scenario
where mean CPUE was estimated without correcting the fishing
power difference. “Corrected data” refers to the scenario where
mean CPUE was estimated after correcting the fishing power
difference.

calculated with CPUE data for flathead sole
(Hippoglossoides elassodon) and walleye pollock

(Theragra chalcogramma) collected in the 1992
eastern Bering Sea survey (Table 1; Fig. 2).
These two species were chosen to illustrate
cases of moderate and extreme skewness to the
right. The mechanism for imposing a fishing
power difference is also part of simulating each
survey. In these examples the relative differ-
ence was applied by multiplying each CPUE
from the nonstandard vessel by a ratio that rep-
resented the true mean nonstandard CPUE
over the true mean standard CPUE. Two-hun-
dred surveys were simulated at each of twenty
preselected fishing power differences (Table 2).
In each simulated survey, half of the data were
selected to represent the standard vessel and
the fishing power difference was imposed on the
other half of the data, representing the non-
standard vessel. The sample sizes in two of the

simulations were based on the number of ob-

Table 1

The A-distribution parameters and fishing power correction fac-
tors estimated from the 1992 Bering Sea survey data. Sample
sizes are different because different vessels represented the “stan-
dard” vessel for each species.

Walleye pollock Flathead sole
(Theragra (Hippoglossoides
chalcogramma) elassodon)
A-distribution parameters
p (fraction of zeros) 0.0336 0.1042
1 (mean of log nonzeros) 3.3590 1.5859
6 (SD of log nonzeros) 2.1194 1.4985
Number of observed
CPUEs used to compute
parameters 149 144
Estimated fishing power
correction (FPC) factor 1.32 0.76

servations used to calculate the parameters of

the A-distribution: 149 per vessel for pollock and

144 per vessel for flathead sole. The third simulation
was based on 50 observations per vessel for flathead
gole. The smaller sample size is similar to the number
of tows made in the larger strata of the annual Bering
Sea survey (Goddard and Zimmermann!).

The Kappenman estimator of the ratio of scale
parameters (Kappenman, 1992) was used to estimate
the FPC in each simulated survey. Inordinately large,
rare observations are typical of trawl survey CPUE
data (Koeller and Smith, 1983; Weinberg et al., 1994;
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Table 2
Fishing power differences imposed on the simulated data.
Catch ratio: Catch ratio:
nonstandard larger to
to standard smaller
0.50 Nonstandard vessel is 2.00
0.57 half as efficient 1.75
0.67 1.50
0.71 1.40
0.77 1.30
0.80 1.25
0.83 1.20
0.87 1.15
0.91 1.10
0.95 1.05
1.00 Identical fishing power 1.00
1.05 1.05
1.10 1.10
1.15 1.15
1.20 1.20
1.25 1.25
1.30 1.30
1.40 1.40
1.50 1.50
1.75 1.75
2.00 Nonstandard vessel is 2.00
twice as efficient

Goddard and Zimmermann!). If the rare, large ob-
servations typical of survey CPUEs are chance oc-
currences rather than the consequence of a fishing
power difference, then a preferred estimator would
be insensitive to them. The nonparametric Kappen-
man estimator has this property. Wilderbuer (1988)
compared five FPC estimators (the ratio of means,
the simple multiplicative model [Robson, 1966], the
additive nested ANOVA, the multiplicative nested
ANOVA, and the beta distributed index [Fanning,
1984]) and found all to have wide variability about
the estimate of fishing power, indicating a sensitiv-
ity to rare large CPUEs. Wilderbuer et al. (1998) have
extended this work to include the Kappenman esti-
mator and have found it to have an estimation error
equal to or lower than the others. For the A-distribu-
tion, s determines heaviness of the right tail of the
distribution. When the A-distribution is more sym-
metric in appearance and less heavy-tailed, all of the
estimators reviewed by Wilderbuer (1988) may be
reasonably well-behaved. When the A-distribution
becomes skewed to the right and the magnitude of
the rare, large observations becomes quite high, the
insensitivity of the Kappenman estimator results in
lower estimation error.

The arithmetic mean was used as the estimator
for mean CPUE because it is unbiased. Any biases
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Figure 2

Histograms of catch-per-unit-of-effort (CPUE) data
for flathead sole and walleye pollock overlayed by
the probability density function for the A-distri-
bution. The histograms are expressed as densities
rather than as frequencies. The parameters speci-
fying the A-distribution were estimated from the
data in the histograms. The walleye pollock dis-
tribution is truncated to show reasonable detail.
Not shown are the two most extreme values.
1,118.5 kg/ha and 2,906.8 kg/ha.

observed in the means estimated in the simulations
would then be due to systematic error in the data
caused by fishing power differences. Also, the arith-
metic mean has been argued to be the best estima-
tor of mean CPUE (Myers and Pepin, 1990; Smith,
1990) and is commonly used (e.g., Harrison, 1992;
Weinberg, et al. 1994; Goddard and Zimmermann?).

The issue of design-based versus model-based es-
timation (Smith, 1990) is raised in the choosing of
the arithmetic mean to estimate mean CPUE even
though the data are simulated with a probability
model that has known optimal estimators. Design-
based estimation is followed here because that is the
strategy employed in the analysis of the Bering Sea
trawl surveys. A probability model is assumed in
these examples solely to provide a parameter value
for estimating the MSE. In a similar vein, it would
seem that the question of relative efficiency could be
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answered analytically rather than through a simu-
lation, given a known probability model. Such a so-
lution would be difficult or impossible because of the
complicating factor of the estimated FPC. Even if a
model-based estimation strategy were acceptable for
estimating mean CPUE from uncorrected data, the
appropriate probability model for the corrected data
is not clear, especially if, as in these examples, the
FPC estimator has an unknown distribution.

In this example, the two sets of simulated CPUE
(standard and nonstandard prior to imposing the
assumed fishing power difference) are independent
and identically distributed random variables. This
simulation ignored the possibility for spatial corre-
lation among observations in a real survey. Because
each station in the standard Bering Sea survey is 20
n mi from its nearest neighbor, I assumed that spa-
tial correlation was negligible and did not attempt
to build it into the simulations. This is consistent
with current treatment of data collected on these
surveys. A more complex procedure would be needed
to simulate surveys with spatial correlation among
observations.

Results

For flathead sole, with a sample size of 144 per ves-
sel, a clear region of increased error, the noncor-
rection region, appeared between approximately 0.77
and 1.14 in plots of MSE against the fishing power
difference (Fig. 3A). The lowest MSE occurred with
uncorrected data when there was identical fishing
power (the value 1.0 on the x-axis). The FPC esti-
mated for the original data, 0.76 (Table 1), fell just
outside this region.

With a sample size of 50 per vessel, a clear
noncorrection region appeared between approxi-
mately 0.56 and 1.19 for flathead sole (Fig. 3B). The
FPC for the original data fell within this region. The
minimum MSE occurred with uncorrected data. This
minimum occurred, however, when the nonstandard
vessel had a CPUE of about 23% less than that of
the standard vessel rather than when the vessels had
identical efficiencies (fishing power difference ratios
of 0.87 and 1.0, respectively). The noncorrection re-
gion was also clearly asymmetric to the left with re-
spect to a fishing power difference ratio of 1.0.

For walleye pollock, with a sample size of 149 per
vessel, the noncorrection region was not as clearly
defined because the lower bound occurred at some
value less than 0.50; the upper bound was approxi-
mately 1.05 (Fig. 3C). The FPC estimated for the
original data, 1.32 (Table 1), fell outside this region.
The minimum MSE occurred with uncorrected data
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Figure 3

Simulation results: square root of the mean square er-
ror {MSE) of mean catch per unit of effort (CPUE) plot-
ted against the true fishing power difference. The fish-
ing power difference is expressed as the ratio of the
true CPUE for the standard vessel over the true CPUE
of the nonstandard vessel. “Corrected data” refers to
MSEs computed from data in which the fishing power
difference had been corrected. “Uncorrected data” re-
fers to MSEs computed from data in which the fishing
power difference had not been corrected. Sample size,
n, refers to the number of stations realized for each
vessel in each simulation. To illustrate general trends
these results were smoothed with a scatterplot smoother
called “lowess” in the statistical software package
S-Plus (Becker et al., 1988).

at a fishing power difference ratio near 0.67, where
the nonstandard vessel caught 33% less than the
standard. The noncorrection region was extremely
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asymmetric to the left with respect to a fishing power
difference ratio of 1.0.

Discussion

It is a well-established ideal to choose among esti-
mators on the basis of their relative errors. These
examples demonstrate that the approach can be func-
tional in practice as well as in the abstract when
deciding whether or not to apply an FPC. It is im-
portant to distinguish between the broader notion of
a decision rule based on the MSE and the specifics
given here as illustrations. These examples show that
regions of increased and reduced MSE can be esti-
mated. They demonstrate common features of the
regions as well as ways the regions can vary. They
show that the MSE strategy is functional but also
underscore problems that can arise from inappropri-
ate choices of estimators or simulation mechanisms.
In all three cases a region of increased estimation
error was successfully identified and each included
the value 1.0, which represents identical fishing
power. However, the breadth of the noncorrection
region differed depending on sample and population
variance. The three noncorrection regions also dif-
fered in their symmetry about the value 1.0, which
was due to an interaction between the mechanism
for imposing the fishing power difference on the simu-
lated data and the sensitivity of the arithmetic mean
to rare extreme observations.

CPUE variance broadened the noncorrection re-
gion. The flathead sole simulations demonstrated the
effect of the sample variance, with the smaller sample
size producing the broader region (Fig. 3, plots A and
B). The pollock example produced a very broad re-
gion of increased error because the population vari-
ance was quite high (Table 1; Fig. 3C). These ex-
amples confirm the truism of the MSE: the greater
the variance, the less important the systematic er-
ror due to a fishing power difference. The role of vari-
ance was clearly shown in the two flathead sole simu-
lations where the FPC observed in the original sur-
vey fell within the noncorrection region for the higher
variance case, and outside the noncorrection region
for the lower variance case (Fig. 3, plots A and B).

Asymmetry in the noncorrection regions was a
function of the simulation mechanism. However, the
problem serves to reinforce the idea that high vari-
ance tends to reduce the relative importance of bias
or systematic error and reduces the benefit of cor-
recting it. Fishing power was assumed to be a simple
multiplicative effect in these simulations. The vari-
ance was altered, as well as the bias, when the fish-
ing power difference was multiplied against A-dis-
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Components of the mean square error of the estimated
mean catch per unit of effort (CPUE) of walleye pol-
lock. “Corrected data” refers to variances and biases
computed from data in which the fishing power differ-
ence had been corrected. “Uncorrected data™ refers to
variances and biases computed from data in which the
fishing power difference had not been corrected. To il-
lustrate general trends these results were smoothed
with a scatterplot smoother called “lowess” in the sta-
tistical software package S-Plus (Becker et al., 1988).

tributed data, an undesirable consequence. Because
the arithmetic mean is sensitive, the rare, inordi-
nately large CPUEs exert high leverage on it. This
leverage itself was altered with a multiplicative fish-
ing power difference. For the highly skewed pollock
data, the change in variance was much greater than
the change in bias (Fig. 4). When the standard ves-
sel was less efficient, the uncorrected data produced
a lower MSE because the fishing power difference
reduced the leverage of the rare large tows, reduc-
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ing the variance of the mean CPUE (Fig. 4A). The
noncorrection region of data thus extended far to the
left (Fig. 3C). When the nonstandard vessel was more
efficient, the imposed fishing power difference had
the opposite effect, increasing the variance of the
mean calculated from uncorrected data (Fig. 4A).
Correcting even moderate fishing power differences
reduced the MSE (Fig 3C), but by reducing variance,
not by correcting systematic error. This problem is
purely a consequence of the fishing power mechan-
ism in the simulations. An improved mechanism is
needed to render the MSE-based decision rule a
clearer tool. In this case, with highly skewed CPUE
distributions, there may be a cut-off point beyond
which a fishing power difference would not be im-
posed, because the rare, large tows are more likely
to be chance occurrences than indicators of fishing
power. Note that the bias did behave as expected:
the uncorrected data produced a minimum when the
fishing powers were identical, and corrected data pro-
duced a constant bias that was always lower than
that of the uncorrected data (Fig. 4B). The pollock ex-
ample illustrates how an MSE-based decision rule can
be deceiving under an improperly specified model.

The noncorrection region itself is an estimate, with
error around the upper and lower bounds of the
range. The observed fishing power difference or cor-
rection factor will also be an estimate with its own
error. Between these two sources of uncertainty, the
upper and lower bounds of the noncorrection region
are not as clear as they might appear in an applica-
tion. Thus, a conservative approach would be to de-
cide against using an FPC even when the observed
value falls a little outside the noncorrection region.
For this reason, and because improved precision gen-
erally increases certainty, it would pay to narrow the
noncorrection region as much as possible through
estimators with less sensitivity to the rare, large
observations that characterize much CPUE data and
through careful modeling of the process leading to
the fishing power difference.

This decision strategy can also be used to re-evalu-
ate old or changing fishing power problems. The con-
cept of minimizing the MSE can accommodate
changes in state-of-the-art estimation and allow the
consequence of change to be examined. The decision
rule remains valid regardless of improvements in
simulation strategies, estimators, or understanding
of processes leading to fishing power differences. The
strategy can also be used to decide if experiments
are warranted to calibrate the fishing power of re-
search vessels. Such experiments tend to be very
expensive yet limited in scope. Will it be possible to
attain a sample size great enough to produce mean-
ingfully narrow noncorrection regions?

A decision not to apply an FPC by these methods
does not in any way imply that the fishing power
difference is trivial or unimportant. For instance, if
one of two vessels in a survey had a catch rate 30%
lower than the other, and both vessels had equal
numbers of observations, then the estimated mean
CPUE could be in error by as much as 15%. An error
of this magnitude could have a profound influence
on a heavily exploited, closely managed stock. Yet
such a fishing power difference may go uncorrected
because, to correct it, would involve a risk of error of
even greater magnitude. A decision against correct-
ing is only a conclusion about the feasibility of ap-
plying an FPC, not the cost of having the systematic
error in the data. Once a fishing power difference
occurs in survey data, an irrevocable mistake has
been made. The final estimate will have increased
error, whether it is due to bias added by systematic
error or due to variance added by estimating and
correcting for the bias. This example illustrates the
importance of maintaining standard survey tech-
niques by illustrating the cost, in terms of precision,
of correcting fishing power differences.

The decision to apply an estimated FPC is diffi-
cult. Statistical significance of a fishing power dif-
ference does not necessarily permit inference regard-
ing the consequence of applying a correction factor
when estimating mean CPUE. These three examples
demonstrate the usefulness of this decision procedure.
Even under difficult circumstances, high variance and
an estimator sensitive to rare, large observations, the
noncorrection regions are easy to defend because they
arebased on a clear goal—that of minimizing the error
of the estimate of mean CPUE.
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