OhASIS HOME | Biosafety Information | Safety Manuals ||| BMBL Contents | BMBL References

SECTION II


Principles of Biosafety

The term "containment" is used in describing safe methods for managing infectious agents in the laboratory environment where they are being handled or maintained. The purpose of containment is to reduce or eliminate exposure of laboratory workers, other persons, and the outside environment to potentially hazardous agents.

Primary containment, the protection of personnel and the immediate laboratory environment from exposure to infectious agents, is provided by both good microbiological technique and the use of appropriate safety equipment. The use of vaccines may provide an increased level of personal protection. Secondary containment, the protection of the environment external to the laboratory from exposure to infectious materials, is provided by a combination of facility design and operational practices. Therefore, the three elements of containment include laboratory practice and technique, safety equipment, and facility design. The risk assessment of the work to be done with a specific agent will determine the appropriate combination of these elements.

LABORATORY PRACTICE AND TECHNIQUE. The most important element of containment is strict adherence to standard microbiological practices and techniques. Persons working with infectious agents or potentially infected materials must be aware of potential hazards, and must be trained and proficient in the practices and techniques required for handling such material safely. The director or person in charge of the laboratory is responsible for providing or arranging for appropriate training of personnel.

Each laboratory should develop or adopt a biosafety or operations manual which identifies the hazards that will or may be encountered, and which specifies practices and procedures designed to minimize or eliminate risks. Personnel should be advised of special hazards and should be required to read and to follow the required practices and procedures. A scientist trained and knowledgeable in appropriate laboratory techniques, safety procedures, and hazards associated with handling infectious agents must direct laboratory activities.

When standard laboratory practices are not sufficient to control the hazard associated with a particular agent or laboratory procedure, additional measures may be needed. The laboratory director is responsible for selecting additional safety practices, which must be in keeping with the hazard associated with the agent or procedure.

Laboratory personnel, safety practices, and techniques must be supplemented by appropriate facility design and engineering features, safety equipment, and management practices.

SAFETY EQUIPMENT (PRIMARY BARRIERS).Safety equipment includes biological safety cabinets (BSCs), enclosed containers, and other engineering controls designed to remove or minimize exposures to hazardous biological materials. The biological safety cabinet (BSC) is the principal device used to provide containment of infectious splashes or aerosols generated by many microbiological procedures. Three types of biological safety cabinets (Class I, II, III) used in microbiological laboratories are described and illustrated in Appendix A. Open-fronted Class I and Class II biological safety cabinets are primary barriers which offer significant levels of protection to laboratory personnel and to the environment when used with good microbiological techniques. The Class II biological safety cabinet also provides protection from external contamination of the materials (e.g., cell cultures, microbiological stocks) being manipulated inside the cabinet. The gas-tight Class III biological safety cabinet provides the highest attainable level of protection to personnel and the environment.

An example of another primary barrier is the safety centrifuge cup, an enclosed container designed to prevent aerosols from being released during centrifugation. To minimize this hazard, containment controls such as BSCs or centrifuge cups must be used for handling infectious agents that can be transmitted through the aerosol route of exposure.

Safety equipment also may include items for personal protection such as gloves, coats, gowns, shoe covers, boots, respirators, face shields, safety glasses, or goggles. Personal protective equipment is often used in combination with biological safety cabinets and other devices which contain the agents, animals, or materials being worked with. In some situations in which it is impractical to work in biological safety cabinets, personal protective equipment may form the primary barrier between personnel and the infectious materials. Examples include certain animal studies, animal necropsy, agent production activities, and activities relating to maintenance, service, or support of the laboratory facility.

FACILITY DESIGN (SECONDARY BARRIERS).The design of the facility is important in providing a barrier to protect persons working inside and outside of the laboratory within the facility, and to protect persons or animals in the community from infectious agents which may be accidentally released from the laboratory. Laboratory management is responsible for providing facilities commensurate with the laboratory's function and the recommended biosafety level for the agents being manipulated.

The recommended secondary barrier(s) will depend on the risk of transmission of specific agents. For example, the exposure risks for most laboratory work in Biosafety Level 1 and 2 facilities will be direct contact with the agents, or inadvertent contact exposures through contaminated work environments. Secondary barriers in these laboratories may include separation of the laboratory work area from public access, availability of a decontamination facility (e.g., autoclave), and handwashing facilities.

As the risk for aerosol transmission increases, higher levels of primary containment and multiple secondary barriers may become necessary to prevent infectious agents from escaping into the environment. Such design features could include specialized ventilation systems to assure directional air flow, air treatment systems to decontaminate or remove agents from exhaust air, controlled access zones, airlocks as laboratory entrances, or separate buildings or modules for isolation of the laboratory. Design engineers for laboratories may refer to specific ventilation recommendations as found in the Applications Handbook for Heating, Ventilation, and Air-Conditioning (HVAC) published by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) (2).

BIOSAFETY LEVELS. Four biosafety levels (BSLs) are described which consist of combinations of laboratory practices and techniques, safety equipment, and laboratory facilities. Each combination is specifically appropriate for the operations performed, the documented or suspected routes of transmission of the infectious agents, and for the laboratory function or activity.

The recommended biosafety level(s) for the organisms in Section VII (Agent Summary Statements) represent those conditions under which the agent can ordinarily be safely handled. The laboratory director is specifically and primarily responsible for assessing risks and for appropriately applying the recommended biosafety levels. Generally, work with known agents should be conducted at the biosafety level recommended in Section VII. When specific information is available to suggest that virulence, pathogenicity, antibiotic resistance patterns, vaccine and treatment availability, or other factors are significantly altered, more (or less) stringent practices may be specified.

ANIMAL FACILITIES. Four biosafety levels are also described for activities involving infectious disease work with experimental mammals. These four combinations of practices, safety equipment, and facilities are designated Animal Biosafety Levels 1, 2, 3, and 4, and provide increasing levels of protection to personnel and the environment.

CLINICAL LABORATORIES. Clinical laboratories, especially those in health care facilities, receive clinical specimens with requests for a variety of diagnostic and clinical support services. Typically, the infectious nature of clinical material is unknown, and specimens are often submitted with a broad request for microbiological examination for multiple agents (e.g., sputa submitted for "routine," acid-fast, and fungal cultures). It is the responsibility of the laboratory director to establish standard procedures in the laboratory which realistically address the issue of the infective hazard of clinical specimens.

Except in extraordinary circumstances (e.g., suspected hemorrhagic fever), the initial processing of clinical specimens and identification of isolates can be done safely at Biosafety Level 2, the recommended level for work with bloodborne pathogens such as hepatitis B virus and HIV. The containment elements described in Biosafety Level 2 are consistent with the Occupational Exposure to Bloodborne Pathogens Standard (187) from the Occupational Safety and Health Administration (OSHA), that requires the use of specific precautions with all clinical specimens of blood or other potentially infectious material (Universal Precautions) (43). Additionally, other recommendations specific for clinical laboratories may be obtained from the National Committee for Clinical Laboratory Standards (134).

Biosafety Level 2 recommendations and OSHA requirements focus on the prevention of percutaneous and mucous membrane exposures to clinical material. Primary barriers such as biological safety cabinets (Class I or II) should be used when performing procedures that might cause splashing, spraying, or splattering of droplets. Biological safety cabinets should also be used for the initial processing of clinical specimens when the nature of the test requested or other information is suggestive that an agent readily transmissible by infectious aerosols is likely to be present (e.g., M. tuberculosis), or when the use of a biological safety cabinet (Class II) is indicated to protect the integrity of the specimen.

The segregation of clinical laboratory functions and limiting or restricting access to such areas is the responsibility of the laboratory director. It is also the director's responsibility to establish standard, written procedures that address the potential hazards and the required precautions to be implemented.

IMPORTATION AND INTERSTATE SHIPMENT OF CERTAIN BIOMEDICAL MATERIALS. The importation of etiologic agents and vectors of human diseases is subject to the requirements of the Public Health Service Foreign Quarantine regulations. Companion regulations of the Public Health Service and the Department of Transportation specify packaging, labeling, and shipping requirements for etiologic agents and diagnostic specimens shipped in interstate commerce (see Appendix D).

The U. S. Department of Agriculture regulates the importation and interstate shipment of animal pathogens and prohibits the importation, possession, or use of certain exotic animal disease agents which pose a serious disease threat to domestic livestock and poultry (see Appendix E).


Office of Health and Safety, Centers for Disease Control and Prevention,
1600 Clifton Road N.E., Mail Stop F05 Atlanta, Georgia 30333, USA
Last Modified: 1/2/97
OhASIS Home CDC Homepage
Send us your Comments.