Maraviroc in Treatment Experienced Patients Infected with CCR5 - Tropic HIV-1

> FDA Advisory Committee Silver Spring, MD 24th April 2007

Agenda and Speakers

- Introductions, Background and Overview of Maraviroc Michael Dunne MD, Therapeutic Area Head, Development, Infectious Diseases
- Clinical Efficacy
 Howard Mayer MD, Global Clinical Leader, Pfizer
- Safety and Toleration Steve Felstead MB ChB, Maraviroc Team Leader, Pfizer
- In vitro and in vivo Tropism and Resistance Evaluation Mike Westby PhD, Virology Team Leader, Pfizer
- Medical Need and Place in HIV Armamentarium Dan Kuritzkes MD, Brigham and Women's Hospital, Harvard Medical School, Boston
- Conclusions
 Michael Dunne MD

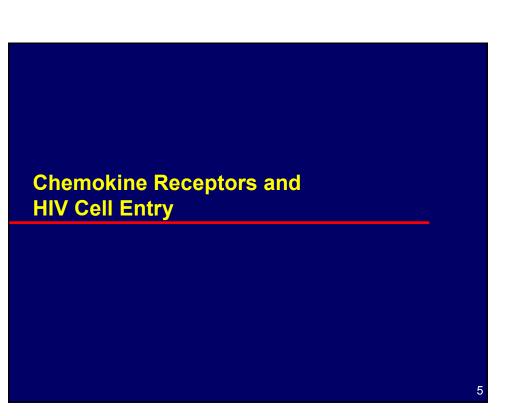
Combined Deck

1

2

Proposed Indication

Maraviroc, in combination with other antiretroviral agents, is indicated for treatment-experienced adult patients infected with CCR5-tropic HIV-1


Maraviroc

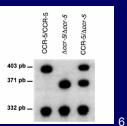
This data review has some important characteristics:

- The chemotype is from a novel chemical class
- The antiviral target is a human receptor
- The receptor engages immune mediators
- Successful inhibition of the underlying HIV infection will also effect the immune system
- Inherent tropism of the virus potentially selects for a second pathway of resistance, with virus that may behave differently

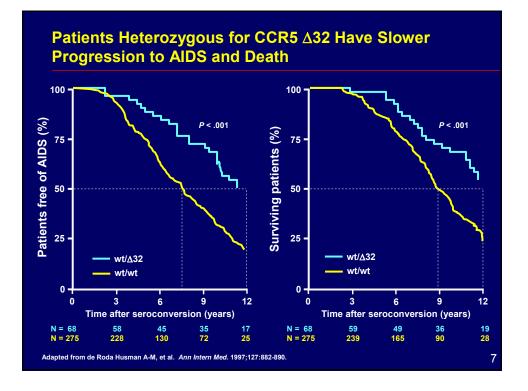
The most integrated basis upon which to generate a risk / benefit assessment will be derived from human data collected from trials in the target population

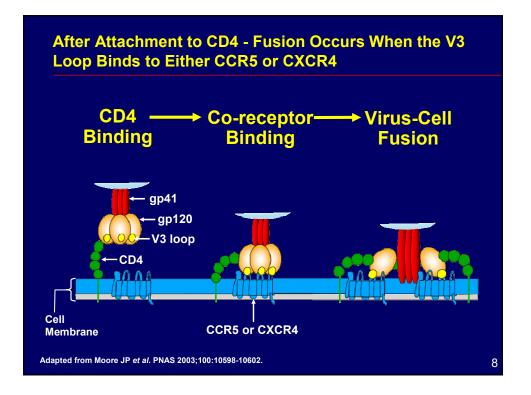
4

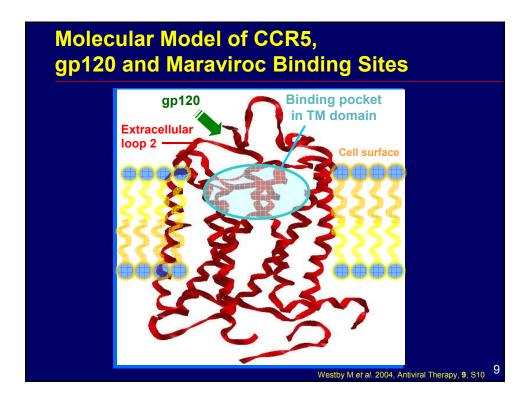

Discovery of CCR5 and Impact on HIV Pathogenesis

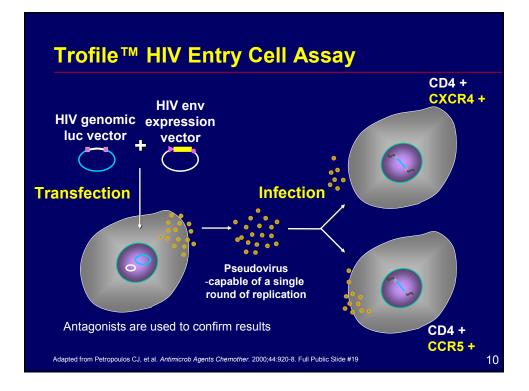

HIV-1 Entry Cofactor: Functional cDNA Cloning of a Seven-Transmembrane, G Protein-Coupled Receptor

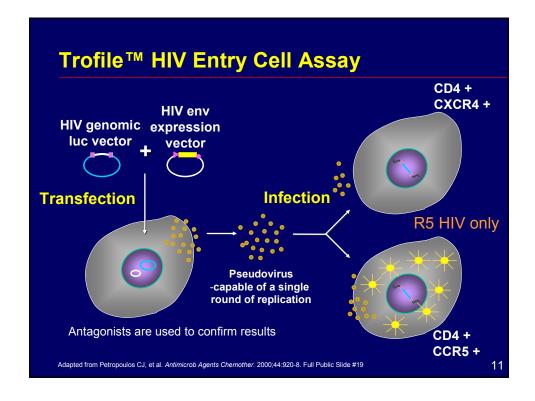
Yu Feng, et al. Science 1996; 272; 872-877.

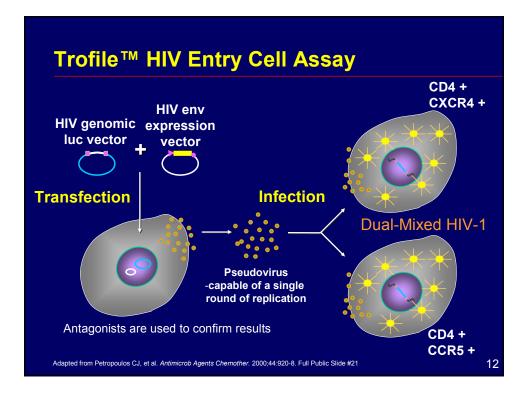

Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene


Samson, et al. Nature 1996; 382: 722 – 725.



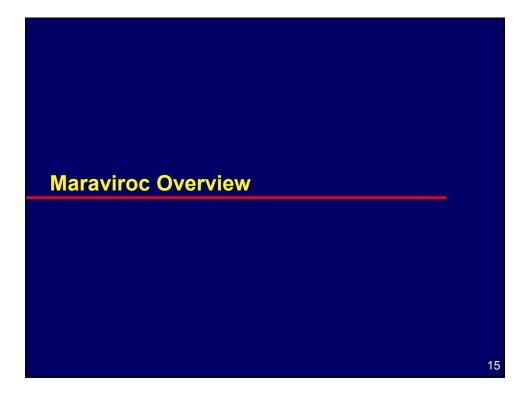


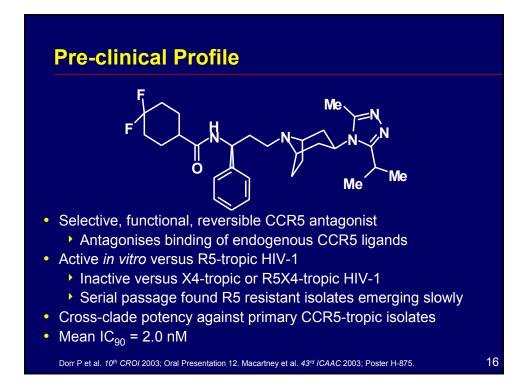

4/23/2007



Tropism	Definition
R5-tropic	Only CCR5-tropic virus detected in the assay
X4-tropic	Only CXCR4-tropic virus detected in the assay
D/M (dual/mixed) tropic	Both CCR5-tropic and/or CXCR4- tropic and/or Dual Tropic virus detected in the assay

Percentage of HIV Co-receptor Usage


Study/Source	Population	Ν	R5	X4	R5/X4
Homer cohort ¹	Naïve	979	82%	<1%	18%
C & W cohort ²	Naïve	402	81%	<1%	19%
Demarest ³	Naïve	299	88%	0%	12%
TORO 1/24	Experienced	612	50%	4%	46%
Monogram ⁵	Experienced	>2000	48%	2%	50%
ACTG 52116	Experienced	391	49%	4%	47%


* This table may not include all available reported data. Majority of data are generated in the developed world (subtype B)

¹Brumme ZL, et al. *J Infect Dis.* 2005;192:466-474. ²Moyle GJ, et al. *J Infect Dis.* 2005;191:866-872. ³Demarest J, et al. *ICAAC* 2004. Abstract H-1136. ⁴Melby *J Infect Dis.* 2006;194:238-46. ⁶previously Virologic; Paxinos EE, et al. *ICAAC* 2002. Abstract 2040. ⁶Wilkin T, *et al.* Clinical Infectious Diseases 2007; 44:591–5.

14

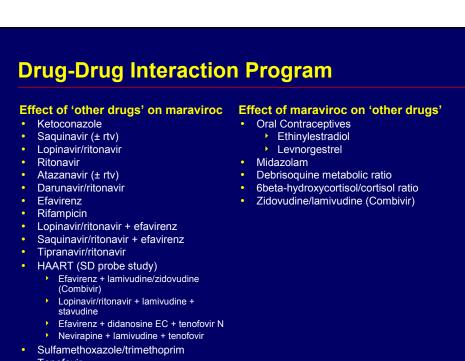
4/23/2007

4/23/2007

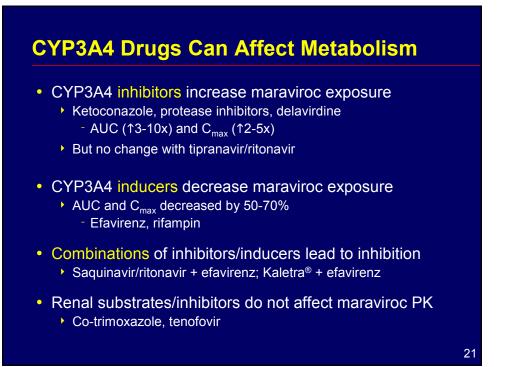
Absorption and Distribution

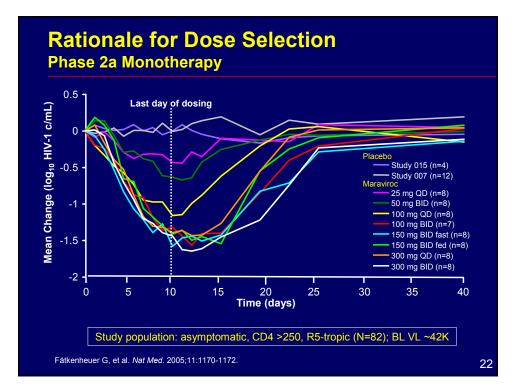
- Absorption is non-linear at doses <100 mg
 - Increasingly linear thereafter
- Distribution is widespread
 - High concentrations in lymph nodes
 - CSF concentration is 10% of plasma (rat)

Metabolism and Excretion


- Maraviroc is extensively metabolised via CYP3A4
 - No effect on other cytochrome p450 enzyme pathways
 - No CYP3A4 induction/inhibition
 - No effect of maraviroc on other drugs
 midazolam, β-OH-cortisol/cortisol
- Maraviroc is a p-glycoprotein substrate
- Excretion is primarily fecal
 - 23% of drug related material excreted in the urine
- Metabolites have no activity/affinity at/for any receptor at relevant concentrations

18


17


Human Pharmacokinetics

- Rapid absorption with T_{max} 0.5 4.0 hours
- Modelled terminal $T_{1/2}$ of 17 hours
- PK similar across gender, race, patients/volunteers
- Limited accumulation on multiple dosing (<20%)
- High fat meal reduces exposure with blunting of C_{max} (\downarrow 33%)
 - C_{min} and AUC correlate best with efficacy

19

Rationale for Dose Selection and Adjustment

- Maraviroc was very well tolerated to 300 mg BID
 - Postural hypotension observed at 600 mg, related to C_{max}
- 300 mg QD and BID at plateau of antiviral effect
- Drugs which affect CYP3A4 can influence maraviroc concentrations
 - Dose adjustment to 150 mg for CYP3A4 inhibitors is, overall, most clinically appropriate
 - Corrects for C_{max}; under corrects for AUC
 - Dose adjustment to 600 mg for CYP3A4 inducers corrects for both C_{max} and AUC

23

Phase 2b/3 Program

	ARV-naïve	4	RV-experien	ced
	R5 Patients	R5 Pa	itients	Non R5 Patients
Study	1026	1027	1028	1029
Phase	2b→3	2b/3	2b/3	2b
Design	MVC vs. EFV +CBV	OBT add-on		
Randomization	1:1:1	2:2:1	2:2:1	1:1:1
Primary Endpoint	%<400/<50 wk 48/96	Δ VL at wk 24/48		
Enrollment	917	601	475	190
Received Maraviroc		467	373	124

BT - optimized background therapy, CBV - Combivir

24

	ARV-naïve	A	RV-experien	ced
	R5 Patients	R5 Pa	tients	Non R5 Patients
Study	1026	1027	1028	1029
Phase	2b→3	2b/3	2b/3	2b
Design	MVC vs. EFV +CBV	OBT add-on		
Randomization	1:1:1	2:2:1	2:2:1	1:1:1
Primary Endpoint	%<400/<50 wk 48/96	∆ VL at wk 24/48		
Enrollment	917	601	475	190
Received Maraviroc		467	373	124

ARV – antiretroviral, EFV - efavirenz (Sustiva), VL - viral load OBT - optimized background therapy, CBV - Combivir

25

Summary of Patient Exposure

	Maraviroc	Comparator
Phase 1		
Single dose	299	
Multiple dose	333	-
Phase 2a	66	16
otal Short Term Studies	698	16
Phase 2b/3		
Freatment Experienced R5 patients 1027 & 1028)	840	209
Freatment Experienced nonR5 patients 1029)	124	62
Total Treatment Experienced patients	964	271
Open Label from placebo (1027 & 1028)	74	
laïve, QD regimen (1026)	174	
Fotal	1910	287

Issues to Be Addressed Regarding Virology

- Switch to CXCR4 virus predominance
 - A consequence of selection or mutation?
 - V3 alignment and phylogenetic analyses
- R5 viral resistance to maraviroc
 - Phenotypic and genotypic markers
 - Identification of associated point mutations

Agenda and Speakers

- Introductions, Background and Overview of Maraviroc Michael Dunne MD, Therapeutic Area Head, Development, Infectious Diseases
- Clinical Efficacy
 Howard Mayer MD, Global Clinical Leader, Pfizer
- Safety and Toleration Steve Felstead MB ChB, Maraviroc Team Leader, Pfizer
- In vitro and in vivo Tropism and Resistance Evaluation Mike Westby PhD, Virology Team Leader, Pfizer
- Medical Need and Place in HIV Armamentarium Dan Kuritzkes MD, Brigham and Women's Hospital, Harvard Medical School, Boston
- Conclusions
 Michael Dunne MD

28