Presentation to:
FAA Forecast Conference
March 11, 2008

Effect of Delay on Mode Choice

- Airport delays and congestion have increased
\square Well documented
\square Have many causes
- Delay and congestion reduce short-haul demand
\square Short-haul market case study
\square Generalization to NY market
- Economics of short-haul travel
\square Trip costs by modes
\square Time savings
- Opportunities for the future

Example Short-Haul Flight: PIT/EWR

Block time has steadily increased while airborne time has not

Aircraft Trip Time	1999	2005	2007	
Scheduled Time	83	89	101	minutes
Actual Time	89	95	99	minutes
Actual Airborne Time	59	58	57	minutes
Actual Ground Time	30	37	42	minutes
Percent on-time	69\%	66\%	69\%	
Percent cancelled	5\%	6\%	5\%	

PIT Air travel time is more variable EWR 2000: Scheduled for 74-91 Minutes 2007: Scheduled for 87-125 Minutes

Air Travel is Not Just the Flight

Economy Drives Mode Choice

	2000		2005		2007	
Cost to Drive	\$	102	\$	123	\$	158
Average One-Way Fare Paid	\$	216	\$	211	\$	117
Net Cost of Flight	\$	114	\$	88	\$	(41)
Hourly Cost of Time Saved	\$	54	\$	59	\$	(29)
3rd Quarter Passengers Carried		48,320		42,420		46,340

PIT 2000: Passenger Paid $\$ 54$ per Hour Saved EWR 2005: Passenger Paid $\$ 59$ per Hour Saved 2007: Fares Fell: Flying Became Cheaper

2000: Driving Competed Favorably on Trips up to 750 Miles

 2000 Travel Cost SavingsIncluding Passenger Time

Passenger Time Valued at NY/NJ Minimum Wage of $\$ 7.15$ per Hour

2007: Declining Fares Have Improved Economics of Flying 500-1,000 miles

2007 Travel Cost Savings I ncluding Passenger Time

Passenger Time Valued at NY/NJ Minimum Wage of $\$ 7.15$ per Hour

Short Flights Have Lost More Than Half Their Value - Traffic Declined

	250 Mile Trip			Hours
		2000	2007	
Driving Time		4.2	4.2	
Flying Time		2.9	3.6	Hours
Time Saved		1.3	0.6	Hours
Average Air Fare	\$	127	\$ 135	
Cost per Hour Saved	\$	98	\$ 214	
3rd Quarter Passengers		1,427,840	936,700	34\% Decline

- Passenger time in the airport and airfield congestion have reduced value of short-haul service
- Short-haul aircraft operating costs have increased
- Short-haul service levels have declined
- Airlines have shifted remaining service towards feeding connecting gateway hubs
- Weaker product

Airlines Have Improved Value of Medium-Haul Flights by Cutting Fares

	500 Mile Trip				Hours
		2000		2007	
Driving Time		8.0		8.0	
Flying Time		3.4		4.1	Hours
Time Saved		4.6		3.9	Hours
Average Air Fare	\$	155	\$	107	
Cost per Hour Saved	\$	34	\$	27	
3rd Quarter Passengers		1,116,200		1,562,320	40\% Increase

- Increases in passenger volume have not fully offset lost revenue
- Time will tell whether airlines can sustain this air service model

Longer-Haul Air Travel Relatively Unaffected

	1,000 Mile Trip			Hours
		2000	2007	
Driving Time		15.7	15.7	
Flying Time		4.4	5.1	Hours
Time Saved		11.3	10.6	Hours
Average Air Fare	\$	141	\$ 135	
Cost per Hour Saved	\$	12	\$ 13	
3rd Quarter Passengers		1,962,500	2,199,840	12\% Increase

- Fares have declined slightly
- Flying still delivers strong travel value
- Passenger volumes increased in line with economic growth

Very short-haul air travel remains down while all other travel increased

Longer-haul fares have increased Shorter-haul fares have continued declining

Percent Change in 3rd Quarter Fares (EWR+LGA+J FK)

Total Revenue at 2000 levels Shorter-haul revenue still down

Change in 3rd Quarter Total Revenue

Flight Distance

If we do nothing:

- Higher gasoline prices will move inter-city passengers from cars to bus, rail, and air
- Air will remain mode of choice for travel greater than 500 miles despite high levels of airport congestion and delay
- Air travel for destinations less than 250 miles will continue to decline
- Air travel for destinations from 250 to 500 miles will decline if travel times or fares increase

Airlines have small market share of Northeast Corridor inter-city travel
 Aviation Planning at the Leading Edge

Mode	2006	2007	\% Chan
Passengers			
Acela Rail	2,668,000	3,191,000	20\%
Regional Rail	6,755,000	6,837,000	1\%
Air Travel	1,690,000	1,649,000	-2\%

On-Time Performance

Acela Rail	85%	88%	4%
Regional Rail	78%	78%	0%
Air Travel	74%	73%	-1%

Revenue per Passenger

Acela Rail	$\$ 123$	$\$ 126$	3%
Regional Rail	$\$ 59$	$\$ 62$	6%
Air Travel	$\$ 114$	$\$ 128$	12%

Lessons learned from the Northeast Corridor

- Rail provides a real alternative to driving or flying
\square Should match driving speeds (including stops)
\square Intermediate stops reduce attractiveness of rail and air
\square Can charge premium price at higher than driving speeds
- Rail viable in high-density markets
\square Demand substantially less in thin markets
\square Commuter rail provides greatest airport feed at JFK and EWR
- Most Acela growth comes from I-95
- Air travel losing market share to Acela

More activist approaches:

- Improve large-hub airport capacity to reduce air system travel times
\square Restore short-haul air travel efficiency
\square Improve schedule consistency
- Improve ground transportation infrastructure to increase speed of short-haul travel
\square Diversion of demand improves efficiency of airports for long-haul travel (air's natural modal monopoly)
- Improving connectivity between all modes will reduce need for connecting short-haul flights at congested airports

