33rd Annual FAA Aviation Forecast Conference Airports/Infrastructure Panel Multiple Airport Demand Allocation and Intermodal Issues

Airport Demand Allocation Models

Geoffrey D. Gosling

Aviation System Consulting, LLC Berkeley, California

FAA Aviation Forecast Conference Airports/Infrastructure Panel

Outline

Modeling airport demand allocation

- Principles of airport choice models
- Issues in modeling airport demand allocation
- Some recent airport choice models
- Overview of selected models
- Conclusions

Modeling Airport Demand Allocation

- Yey issue in airport system planning in regions served by multiple airports
 - Large metropolitan regions
 - Statewide and multi-state planning
- Increasing role of secondary airports
 - Capacity constraints at primary airports
 - Use by low-fare airlines
- Intermodal considerations
 - Airport access, short-haul travel

Activity Allocation in Airport Systems

- Central issue in system planning
 - Increasing importance of multiple airport systems
 - Need to allocate regional demand to airports
 - Reflect market realities, not wishful thinking
 - Determines infrastructure requirements, environmental impacts and system performance
 - Typically highly politically charged
 Need for dispassionate technical analysis

Activity Allocation in Airport Systems

- Distribution of activity only indirectly influenced by planning decisions
 - Result of interplay of market forces
 - "Build it, but will they come?"
 - Need to identify and analyze policy levers
 - Model the market response to different policy decisions and actions

Positive Feedback Effect

Airline decisions depend on traveler choice
 Traveler behavior depends on air service

Principles of Airport Choice Models

Disaggregate behavioral models

Choice depends on traveler characteristics

Ground origin, travel destination, trip purpose

- Factors affecting airport choice
 - Air service at alternative airports

Air fare, flight frequency, nonstop/connecting, airline preference

- Accessibility of alternative airports
 - Access times, parking rates
 - Role of public transportation

Current State of Practice

- → Multinomial logit choice models
 Disaggregate behavioral choice
 P(i) = exp(U_i) / Σ_j exp(U_j)
 where U_j = f(access, air service)
 → Nested logit models
 Two or more levels of decisions
 - Ground access mode choice
 - Airline choice

More Advanced Models

Cross-nested logit models Accounts for correlation between airline, access mode and airport choice

Mixed logit models

- Variable error terms (taste variation)
- Other techniques
 - Box-Cox logit
 - Neural networks

Issues in Modeling Demand Allocation

Yiability of air service at secondary airports

- Introduction of service
- Airline competition
- Accounting for fare differences
 - Yield management affects fare availability
 - Survey data vs. prediction
- Policy instruments to encourage use of secondary airports
 - Ground access, support for new air service

Some Recent Airport Choice Models

Airport system planning studies

- Southern California (RADAM)
- New England Regional Airport System Plan
- UK SERAS (London Region) Study
- Academic studies
 - Pels, Nijkamp & Rietveld (SF Bay Area)
 - Hess & Polak (SF Bay Area; London Region)
 - Pathomsiri, Mahmassani & Haghani (Baltimore-Washington Region)

Overview of Selected Models

Study	Model	Region
Harvey, 1988	NL	SF Bay Area
Furuichi & Koppelman, 1994	NL	Japan
Windle & Dresner, 1995	MNL	Washington/Baltimore
Bondzio, 1996	NL	Southern Germany
Pels, Nijkamp & Rietveld, 1998	NL	SF Bay Area
Mandel, 1999	BCL	Western Germany
Halcrow Group Ltd., 2002	MNL	Southeast England
Pathomsiri, <i>et al.</i> , 2004	MNL	Washington/Baltimore
Hess & Polak, 2004	NL	SF Bay Area
MNL = Multinomial Logit NL = Nested Logit BCL = Box-Cox Logit		

Overview of Selected Models (cont.)

Study	Air Service Variables
narvey, 1900	Frequency
Furuichi & Koppelman, 1994	Relative Frequency; Flight time; Fare
Windle & Dresner, 1995	Frequency
Bondzio,1996	Frequency
Pels, Nijkamp & Rietveld, 1998	Frequency; Average Fare
Mandel, 1999	Frequency; Travel time; Trip cost; Stops
Halcrow Group Ltd., 2002	Flight time; Frequency; Fare premium
Pathomsiri <i>et al.</i> , 2004	Frequency; Fare
Hess & Polak, 2004	Frequency; Use of turboprop

Overview of Selected Models (cont.)

Study	Ground Access Variables
Harvev 1988	Travel time: Waiting time: Cost + 7 others
Furuichi & Koppelman 1994	Travel time: Cost
Windle & Dresner, 1995	Highway travel time
Bondzio, 1996	Travel time; Cost; Income; Luggage
Pels, Nijkamp & Rietveld, 1998	Travel time
Mandel, 1999	Distance; Logsum: Travel time; Cost; others
Halcrow Group Ltd., 2002	Logsum: Travel time; Cost; Interchanges
Pathomsiri, <i>et al.</i> , 2004	Total access time; Prior use of airports
Hess & Polak, 2004	In-vehicle time; Out-of-vehicle time; Cost

Conclusions

- Airport demand allocation models form a key component of airport system planning
 - However, models are technically complex
- Many critical aspects not well understood
 - Need for more research into issues
- Lack of readily available and accepted modeling tools
 - Some proprietary models (e.g. RADAM)
 - Many models custom-built for specific studies