Uranium Immobilization via Phosphate Injection into the Subsurface at the Hanford 300 Area

April 18, 2007

Dawn Wellman (PI) Vince Vermeul (TL) John Fruchter (PM)

Project History

EMSP (2002 - 2004) – "Phosphate Barriers for Immobilization of Uranium Plumes"

- Demonstrate the control provided by polyphosphates over the precipitation kinetics of insoluble phosphate minerals for subsurface remediation
- Autunite stability
- EM-22 (2006 present) "300 Area Treatability Test: In Situ Treatment of Uranium Contaminated Groundwater by Polyphosphate Injection"
 - Site specific evaluation and optimization for the efficacy of using polyphosphate technology
- ERSP (new start) "An Integrated Approach to Quantifying the Coupled Biotic and Abiotic Mechanism, Rates and Long-Term Performance of Phosphate Barriers for In Situ Immobilization of Uranium"
 - Determine the affect of dominant microbial metabolites on the long-term durability of autunite and apatite
 - Incorporate fundamental data quantifying the effect of microbial activity on the durability of autunite and apatite into a kinetic rate equation allowing reactive transport codes to model the long-term fate of phosphate amendments for the in situ immobilization of uranium

Hanford 300 Area in 1962

- North & South Process Pond Inventory 37,000 – 65,000 kg of uranium
 - 1944 1954: Effluents from REDOX and PUREX process development
 - 1978 1986: Nreactor fuels fabrication wastes
 - Enriched, natural, and depleted uranium

The Problem: Persistent Elevated Uranium in 300 Area Groundwater

300 Area Uranium Plume Exceeding Current Drinking Water Standard 1994 & 2004

Uranium-Phosphate (Autunite) Minerals

Very low solubility.

- Formation does NOT depend on changing the redox conditions of the aquifer.
- Not subject to reversible processes such as reoxidation or desorption.

Challenges to Phosphate Amendments: Rapid Precipitation Kinetics

- Injection of monophosphate molecules results in rapid flocculation and precipitation of phosphate phases
- Sharp decrease in hydraulic conductivity.

- Polyphosphate precludes rapid precipitation
- No measurable decrease in hydraulic conductivity

Pacific Northwest National Laboratory U.S. Department of Energy 6

Solution to Deployment Challenges: Use of Long-Chain Polyphosphates

- Slow reaction with water to yield orthophosphate
- Rate of hydrolysis is related to chain length
 - Time release Controllable kinetics based on to polymer length
- Rate of phosphate mineral formation is directly related to the rate of polyphosphate hydrolysis.
 - Direct treatment of uranium
 - Provides immediate and long-term control of aqueous uranium

Polyphosphate amendment can be tailored to delay formation of autunite and apatite.

Uranium Immobilization via Tripolyphosphate Application

- Column tests with U-contaminated sediments (300 Area)
 - Sustained release of uranium with groundwater
 - Rapid decrease of aqueous uranium concentrations (near drinking water limits) in presence of polyphosphate

Pacific Northwest National Laboratory U.S. Department of Energy 8

Single-Pass Flow-Through (SPFT) System

- Establishes steady-state conditions between the mineral and the aqueous solution
 - Constant chemical affinity
 - Minimizes reaction products
 - Ensures constant pH
 - Invariant concentration with respect to time
- Allow investigation over a range of experimental conditions
- Directly measured the dissolution rates

Pacific Northwest National Laboratory U.S. Department of Energy 9

Autunite Minerals

- One of the most stable uranyl minerals
 - Natural ore deposits
 - Contaminated sites
- Thermodynamically, most likely uranyl phosphates to precipitate
 (M^{1 or 2+})[(UO₂)(PO₄)]₁₋₂ · x H₂O
- Structure is similar to micas
 - Polyhedra forming sheets
 - uranyl (yellow)
 - phosphate (blue)

Not redox sensitive

Adapted from Locock and Burns, 2003 Pacific Northwest National Laboratory U.S. Department of Energy 10

Autunite Dissolution Kinetics

- Linear pH-dependence, $\eta = 1.13$
- Uranium release rates from sodium and calcium autunite minerals are within experimental error (Wellman et al., 2006)
- The additional bond provide by the incorporation of a divalent cation (Ca²⁺), relevant to a monovalent cation (Na⁺), affords little increase in the overall structural stability of autunite minerals
- Uranium release from autunite ~ 6 orders of magnitude less than from UO₂ under similar conditions (*Pierce et al. 2005*)

Baffelle (Wellman et al., 2006)

Deployment of Phosphate Amendment for In-Situ Immobilization of Uranium

- Injection of soluble polyphosphate
- Lateral plume treatment
- Uranyl phosphate mineral (autunite) formation
 - Immediate sequestration
- Apatite formation
 - Sorbent for uranium
 - Conversion to autunite
- Battelle Enhancement of MNA

Uranium Stabilization through Polyphosphate Injection: Field Studies

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

Seasonal Dynamics of 300 A Uranium Plume

Pacific Northwest National Laboratory U.S. Department of Energy 14

Pacific Northwest National Laboratory U.S. Department of Energy 16

Local-Scale Geologic Cross Section

300 Area Tracer Injection Test

NaBr tracer test on Dec. 13, 2006

- Injection Well: 399-1-23
- Targeted 60 ft diam. treatment volume
- Injected Volume: 143,000 gallons
- 200 gpm for 11.9 hrs
- Inline tracer mixing with water from Well 399-1-7 (620 ft DG)
- Br⁻ conc. measured in injection stream and surrounding monitoring wells
 - Samples analyzed on site with ISE
 - Archive samples → verification by IC
 - Downhole ISE probes installed in all monitoring wells

Tracer Test Results within Targeted Treatment Volume

- Consistent with LFI porosity estimates based on physical property analysis

Pacific Northwest National Laboratory U.S. Department of Energy 19

Tracer Results for Downgradient Wells 399 1-32 and 399-1-7

Uranium Stabilization through Polyphosphate Injection: Bench Scale Testing

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

Laboratory Testing Strategy

- ³¹P NMR Hydrolysis Experiments
 - Quantified the degradation of polyphosphates in groundwater and heterogeneous systems
 - Homogeneous degradation
 - Aqueous HCO³⁻, Ca²⁺, Na⁺, Al³⁺, Fe³⁺, and Mg²⁺, pH = 6.5 8.0 at 23°C
 - Heterogeneous degradation
- Batch Tests
 - Amendment Optimization
 - Down selected potential polyphosphate compounds
 - Uranium Sequestration
 - Kinetics of uranium sorption on apatite as a function of pH
 - Loading density of uranium per mass of apatite as a function of pH
 - Kinetics and stability of sorbed uranium
- Column Tests
 - Emplacement Efficiency
 - Amendment Transport
 - Autunite/Apatite Formation

Possible Amendment Components

AmendmentSource	Formula	Solubility, gg/Lcotdd H20
Socian Orthopphasphate	Na3PO4 • 12H 20	40.2
Sterling Psyspabopathete	Na ₄ P ₂ O ₇ • 10H ₂ O	34 .1
SentiumTripplyphppphate	$Na_5P_3O_{10}$	145.0
Sociem Trincetaphosphate	(NaPO3)3 + 6H 30	Soluble
Society Hexametaphosphate	(NaPO3)6: #120	Very Soluble
Calcium Dihydrogen Plosmatete	Ca(H2PO1); • H30	18
Calcium Hydrogen Phosphate	Catter 21 - 20	0.32
Calcium Pyrophosphate	Ca2B207 + 5H 20	Stightly Solutive
Calcium Hypophosphite	Ea(H2BO3)3	154
Calcium Chloride	Eacil ₂	743

Site Relevant Speciation

Jenkins et al., 1971

Pacific Northwest National Laboratory U.S. Department of Energy 24

Phosphate Relationships

Phosphate

- Tripolyphosphate
 - Sorbs to sedimentary material (calcite, Fe and Al oxide, clay)
 - Forms fine ppt. w/ Ca
- Orthophosphate
 - Sorbs to sediment bound tripolyphosphate complexes increasing rate and degree of precipitation
- Pyrophosphate
 - Forms heavy, fast settling ppt. w/ Ca

Column Testing

Test Parameters

- [P]_{ortho/pyro/tripoly}
- Calcium/phosphorus ratio
- [Ca]_{total} & [P]_{total}
- pH of amendment solution
- Column Length = 1 ft
- Cross Sectional Area = 0.005 ft²
- Porosity = 0.25
- Flow Rate = 1.5 L/day
- ▶ [U]_{aq} = 1000 µg/L

Uranium Column Testing

Total $[P]_{aq} = 1.05 \times 10^{-2} \text{ M}$ Pyro $[P]_{aq} = 2.63 \times 10^{-3} \text{ M}$ $[Ca]_{aq} = 2.32 \times 10^{-2} \text{ M}$ Tripoly $[P]_{aq} = 3.94 \times 10^{-3} \text{ M}$ Ortho $[P]_{aq} = 3.94 \times 10^{-3} \text{ M}$ pH adj. to 7

> Pacific Northwest National Laboratory U.S. Department of Energy 27

Total [P]_{aq} = 5.26 x 10⁻² M Pyro [P]_{aq} = 6.58 x 10⁻³ M

Tripoly [P]_{aq} = 8.77 x 10⁻³ M Ortho [P]_{ag} = 1.32 x 10⁻² M [Ca]_{aq} = 9.98 x 10⁻² M pH = 7 RT = 56 min PV = 52 mL PV = 1 Ca/ 1P

> **Pacific Northwest National Laboratory** U.S. Department of Energy 28

Post-Test Preliminary Analysis

Aqueous Uranium During Treatment

Pacific Northwest National Laboratory U.S. Department of Energy 30

Rate of Uranium Sequestration with Apatite

Pacific Northwest National Laboratory U.S. Department of Energy 31

Stability of Uranium Sequestered with Apatite

Pacific Northwest National Laboratory U.S. Department of Energy 32

Ongoing Injection Design Activities

Intermediate scale column test (i.d. = 4", L = 10')

Develop hydraulic property zonation in the vicinity of the test site

- Lithologic descriptions
- Hydraulic test data
- Changes in hydraulic gradient
- EBF testing (vertical distribution of K_h)
- Tracer arrival data
- Perform predictive simulations to evaluate transport under high river stage conditions
- Polyphosphate injection planned for June 07 (high water table conditions)

Acknowledgements

Funding for this project was provided by the U.S. Department of Energy, Office of Environmental Management, EM-20 Environmental Cleanup and Acceleration.