Coupled Flow and Multicomponent Biogeochemical Reactive Transport Modeling: In Situ Biostimulation at the Rifle Site

> Steve Yabusaki Yilin Fang Phil Long

Pacific Northwest National Laboratory

April 17, 2007

2007 ERSP PI Meeting Lansdowne, Virginia, USA

Field-Scale Modeling: Understand, Predict, and Control

- Engineering bioremediation for site-specific conditions will require a *quantitatively predictive understanding* of the dominant processes and properties controlling contaminant behavior
- Complex natural environments make the reliable prediction of field scale behavior a scientific challenge
 - Many field-scale issues are difficult to address at the lab scale
 - Many processes and properties are difficult to monitor in the field
 - Need to develop a quantitatively mechanistic understanding of fieldscale behaviors by addressing the relevant range of scales and multiple interacting processes
- In the context of temporally and spatially variable conditions at the site, use modeling to develop understanding of the interplay between the dominant flow, transport, and biogeochemical processes

Observations from Old Rifle Biostimulation Experiments

Proof of Principle

- Acetate stimulated growth of microbial populations that reduced aqueous U(VI) to U(IV), effectively removing uranium from groundwater through the precipitation of U(IV) mineral
- Initial bioreduction of aqueous U(VI) was 75 to 85 percent efficient and attributed to iron reducing bacteria (Geobacter sp.)
- Subsequent onset of sulfate reduction, coincided with less efficient U(VI) removal from groundwater

Modeling Approach

- Use mechanistic coupled process simulators as a systematic framework to
 - gain insight on the dominant processes and properties responsible for observed behaviors in the field
 - identify knowledge gaps that need to be addressed
- Philosophy
 - Start simple to isolate major behaviors
 - Systematically add process complexity and detail
- Field-scale flow and biogeochemical reactive transport simulation of biostimulation experiments
 - consistent gradient direction and magnitude: 1-D steady flow
 - iron and sulfate reducers: Fe(III), U(VI), and sulfate TEAPS
 - 2002 field experiment data set: calibrate flow, transport, and biogeochemical reaction parameters
 - 2003 field experiment: strict application of 2002 calibrated parameters
 Pacific Northwest National Laboratory U.S. Department of Energy 6

Flow and Transport Modeling

Summary of Results

Observations during 2002 & 2003 biostimulation experiments are consistent with:

- 2 dominant microbial populations: iron reducers (i.e., Geobacter) and sulfate reducers
- 3 TEAPs: Fe(III) mineral, U(VI), sulfate
- Iron reducers concomitantly responsible for U(VI) reduction
- Onset of sulfate reduction triggered by consumption of threshold amount of Fe(III) mineral by iron reducers
- Lower U(VI) removal rate during sulfate reduction due to competition for acetate

2002 Simulation: Day 38, 52

SOLID PHASE

AQUEOUS PHASE

Principal Knowledge Gaps: Processes and Properties

- Large gap ("THE GAP") between fundamental research in geochemistry, microbial ecology and molecular biology, and field-scale reactive transport modeling
 - Need development of detailed biogeochemical reaction network models
 - Need to link new knowledge of cell reactions/metabolism to kinetics and constraints of enzymatic processes
- Need for 3-D characterization of spatially-variable model parameters
 - controls flow paths, sediment reactivity, rate-limited mass transfer between pore domains, gas entrapment during water table fluctuation
 - simulation will play a key role in characterizing spatially variable parameters
 - testing and linking process models
 - accommodating a variety of data types from different scales
 - joint inverse modeling approaches

Biogeochemical Issues

- Are there other microorganisms consuming acetate?
- What factors control the stoichiometry and rates for TEAP reactions?
 - nutrient limitations
 - water chemistry
 - mineral form
- What factors control the onset of sulfate reduction?
 - "bioavailable" iron (e.g., poorly crystalline iron)
 - redox potential
 - metabolic lag
- What is the role of biomass in controlling U mobility?
 - production/consumption/decay
 - attachment/detachment
 - contribution to microbial reaction rates
 - effect on reactivity of mineral surfaces
 - sorption effects
- What is the role of U surface complexation before, during, and after biostimulation?

Preferential Flow and Transport Paths

- Considerable variability in bromide concentrations in the same row
- Row 2 has highest concentrations and maximum variability
 - Some wells bypassed
 - Issues
 - Heterogeneous sediments
 - Nonuniform metering of injectate to gallery wells Old Rifle Test Plot

Spatially & Temporally Variable Uranium

Spatially variable pre-biostimulation aqueous concentrations in 2002

- U ranged from 0.3 to 1.5 uM
- Fe(II) ranged from 18 to 250 uM

Initial uranium distribution in G-28 sediments is strongly depth dependent

Density-Dependent Transport

Acetate – bromide injectate is denser than GW

Multilevel samplers show effect in 2003

3D modeling of individual gallery wells is necessary to accurately represent phenomenon

Modeling identifies sensitivity to anisotropy

Stratified Water Chemistry

Depth-dependent U(VI) and DO

Highest DO and U(VI) near the water table

Issues

- Oxygen diffusion through water table
- Background utilization of DO
- Screened interval of wells

How do seasonal and episodic hydrologic events affect uranium behavior?

Seasonal and eventdriven changes

- Velocity field
- Oxidation of zones affected by water table fluctuations

Issues

- Rapid oxidation of zones affected by water table fluctuations
- Highest U concentrations bypassing treatment zones

Pacific Northwest National Laboratory U.S. Department of Energy 18

Oxygen Entrapment during Water Table Fluctuation

- 2-phase flow model of aquifer-vadose zone system
- Hysteretic saturation function calculates entrapped gas during 2003 transient
- Oxygen entrapped during water table rise dissolves into GW
- Water table recession moves enhanced DO deeper in the aquifer

Coupling the Processes

Acetate Concentrations (M)

2002 Field Experiment

- 2-phase 3D flow simulation
- Oxygen entrapment during water table transients
- Transient influent water chemistry
- Transient acetate injection
- Density effects
- Biogeochemical reactions

Pacific Northwest National Laboratory U.S. Department of Energy 21