Integrating the Molecular Machines of Mercury Detoxification into Host Cell Biology

University of Georgia Anne O. Summers **Bijal Patel** Lyn Olliff Lingyun Song Caran Cagle John Brewer **Cory Momany Rob Phillips Bob Scott Quincy Teng**

Univ. of California-San Francisco Susan M. Miller, UCSF Xiaohua Feng Ian Harwood **Rachel Nauss Richard Ledwidge** Andrew Sandstrom **Robert Stroud**

DOE-ERSP Annual PI Meeting 17 April 2007 (Poster Weds 18 April, Session C)

By John L. Sznopek and Thomas G. Goonan

U.S. Geological Survey Circular 1197

The Biotic Hg Cycle

All forms of Hg are biologically available.

Н H₃N CH₂ SH

Cysteine (Cys, C)

Potential Human Targets for Interaction with Hg(II)

<u>System</u>	Protein/Process	Molecular Target
Signal transduction		
	P r o t e i n tyrosine phosphatase	In variant Cys215
	Z i nc Finger Proteins	M ultiple Cysteines
	L I M proteins	Multiple Cys-His domains
Metal Homeostasis		
	Metallothione i n	M ultiple Cysteines
	Menkes Disease (Cu) "	
	W i l s o n's Disease (Cu) "	
Renal transport	C H IP28 Water Channel	C ys 189
Growth Factors	Trefoil, EGF-like, Cystine Knot	Three clustered cystine bridges
CNS	Membrane Cysteine String Proteins (synaptic vesicles and termini)	Cysteine rich proteins
Cardiovascular	a p o l ipoprotein(a)	C ys 4057 - important for assembly
Virus e s	H IV Tat protein	C ysteine-rich protein
Oncogenes	RAS	Thioether farnesyl linkage

Why study Hg resistance?

Only naturally occurring system that biotransform a toxic metal in bulk

Handles inorganic and organic Hg(II)

Widely found in eubacteria and archaea that are the major Hg transformers in highly contaminated settings.

Transposable and laterally transferrable in proteobacteria.

Highly conserved mecahnistically - I.e pump Hg(II) in and reduce to volatile Hg(0)

Illuminates some basic biology of enzymology, gene regulation, redox metabolism

Employed in paradigm example of engineered metallophytoremediation

Transgenic *merA* tobacco plants survive transplantation to contaminated soils and detoxify Hg(II) to less toxic Hg(0)

GA Piedmont 2% organic

GA Coastal 2% organic

Heaton et al. (1998) Hort. Sci., Meagher (2000) Cur Op Plant Sci

Poster, Weds night

The Bacterial Mercury Resistance Locus

The Bacterial Mercury Resistance Locus

MerR's "muscular" transcriptional control

Heltzel et al, Biochem, 1990, Frantz et al, Biochem. 1989, Lee, Livrelli, JBC 1993

MerR and MBD bind metals other than Hg in vitro and in vivo, possibly with differing specificities

MerR binds other thiophilic metals in vivo and in vitro so its specificity as a transcriptional activator must lie in more than just metal binding....

Possibilities:

Other metals do not provoke DNA distortion YES, Chuan He, U. Chicago, JACS 2004 Other metals don't bind MerR when it is bound to DNA NO, Song et al., JMB 2007, *in press*

Does Hg(II) provoke a conformational change distinct from that of non-inducers?

¹⁹F NMR: Watching MerR's Tyrosines

В

MENNLENL <u>TIGVFAKAA</u>GVN<u>VETIRF</u>YQRKGLLRE PDKPYGSIRRYGEAD<u>VVRVKFVKSAQRL</u>GFSLDE $\alpha 4$ $\alpha 5$ IAELLRLDDGTHCEEASSLAEHKLKDVREKMADL $\alpha 5$ $\alpha 6$ ARMETVLSELVCACHARKGNVSCPLIASLQGEA

A Candidate Allosteric Signalling Pathway in MerR

GLARSAMP

Metal-specific changes occur at Y27 and Y46 when MerR is bound to MerOP

В

MENNLENL <u>TIGVFAKAA</u>GVN<u>VETIRF</u>YQRKGLLRE PDKPYGSIRRYGEAD<u>VVRVKFVKSAQRL</u>GFSLDE $\alpha 4$ $\alpha 5$ IAELLRLDDGTHCEEASSLAEHKLKDVREKMADL $\alpha 5$ $\alpha 6$ ARMETVLSELVCACHARKGNVSCPLIASLQGEA

A Candidate Allosteric Signalling Pathway in MerR

GLARSAMP

Typical Structural Components of MerA

C-terminal CC Remove High Affinity RS⁻ Ligands

Potential Modes of MerB/MerA Interactions

• Cys-S(H) • Hg(II)

NmerA Facilitates Transfer from Hg-MerB

*activity only 2-fold above background oxidase rate

Consistent with Models B &/or C

Bacterial cell contents to scale.

© David S. Goodsell 1999

University of Missouri-Columbia

Judy Wall, Desulfovibrio

Tom DiChristina, Shewanella

