Biogeochemical Process Heterogeneity Impacting Contaminant Dynamics in Subsurface Environments

11111

CONTRIBUTORS

- Celine Pallud, Stanford University
- Peter Nico, LBNL
- Brandy Stewart, Stanford University
- Matt Ginder-Vogel, University of Delaware
- Jim Neiss, San Francisco State University
- Shawn Benner, Boise State University
- Colleen Hansel, Harvard University
- Thomas Borch, Colorado State University
- Kristin Revill, RHE
- Bruce Wielinga, MFG Incorp.

COLLABORATORS

- Alice Dohnalkova, Ravi Kukaddapu PNNL
- Phil Jardine ORNL

Uranium Redox Cycle

Reduction of Uranium

Uranium Reduction

Geochemical Complexity: Impact of Iron

Geochemical Complexity: U Speciation

Brooks et al., 2003

Uranium Speciation: Transport

Uraninite Deposition

Redox Reactions of Uranium

Fe(III)-Oxide + UO₂ + H⁺ + HCO₃⁻ + Ca²⁺ \blacklozenge Fe²⁺_(aq) + Soluble U(VI) + H₂O

U(VI) Reduction

Fe(III) mineral type [Fe(II)] [CO₃²⁻] pH [Ca] U(IV) Oxidation

Favorability of UO₂ Oxidation by Ferrihydrite: pH Effects

Iron(III) Oxidation of UO₂

Fe(II) > 50 μ M Ca²⁺ < 1 mM HCO₃⁻ < 3 mM

Increased Favorability of UO₂ Oxidation

Decreased Favorability of UO₂ Oxidation

Favorability of UO₂ oxidation by ferric (hydr)oxides is highly variable

• May limit uranium sequestration under mildly reducing conditions

Physical-Biogeochemical Linkage

Biogeochemical Heterogeneity

Iron Biomineralization

Flow Control on Solid-phase Distribution

Aggregates Solute Domains

Synthetic Aggregates

Transport Controls on Product Distribution

DOC

after Tokunaga et al., 2005

Projected Uraninite Deposition

Biomineralization within Physically Complex Media

Pore-scale Heterogeneity in Uranium Dynamics

- Biomineralization of ferric hydroxide, a ubiquitous and reactive aerobic iron phase, results dominantly in goethite and magnetite
- Biomineralization occurs via a coupled, biotic-abiotic process that results in solids with constrained size and morphology
- Physical complexity will result in biomineralization
 heterogeneity
- Iron transformations in natural systems will impact contaminant dynamics and Fe availability
 - alter magnitude and retention strength of contaminants
 - impart reductive capacity

Localized Biogeochemical Processes

