TABLE A17.—Incidence of new coronary heart disease by smoking category and behavior type for men 39-49 years of age (Numbers in parentheses are number of CHD cases in each subgroup) | | | Smoking group | | | | | | | |---|---------|----------------------|----------------------------------|--------|---------------------|-------------|----------|--| | Behavior
type | Never | Former | Current and | | Cigarettes | | Total | | | | smoked | cigarette
smokers | former pipe ——
and eigar only | 1-15 | 16-25 | 26 and over | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 15.3(5) | 13.8 (7) | 1.3(1) | 1.6(1) | 15.8 (15) | 14.9(16) | 9.3 (45) | | | | 1.3(2) | 5.1 (3) | 2.2(2) | 7.3(4) | 3.1 (3) | 4.9 (4) | 3.3(18) | | | Total | 2.9(7) | 9.1(10) | 1.8(3) | 4.9(5) | 9.3(18) | 10.4(20) | 6.2 (63) | | | | | | | A | nalysis of variance | table | | | | | | 71114 | ty sip of Total acc two ic | | | | |--------------------------|----------------|-------|----------------------------|--------|-------|--| | Source | Sum of squares | d.f. | Mean square | F | P | | | Within cells | 59.471 | 2,245 | 0,026 | | | | | Regression on age | 0.458 | 1 | 0.458 | 17.296 | 0.001 | | | Between smoking groups: | 0.504 | 5 | 0.101 | 3.81 | 0.002 | | | Between behavior types 2 | 0.329 | 1 | 0.329 | 12.43 | 0,001 | | | Interaction | | 5 | 0.079 | 2.99 | 0.011 | | ¹ Rates are age-adjusted annual incidence per 1,000 men. effect but ignoring interaction, thus yielding an estimate of each main effect unconfounded by other significant main effects. Source: Jenkins, C. D. et al. (90). ³ Mean squares for "between smoking groups" and "between behavior types" are each computed eliminating the general mean and the other main TABLE A18.—Incidence of new coronary heart disease by smoking category and behavior type for men 50-59 years of age (Numbers in parentheses are number of CHD cases in each subgroup) | | | | | Smokir | d a a conb | | | |------------------------|----------------|----------------------|-------------------------------|---------|----------------------|-------------|----------| | Behavior | Never | Former | Current and | | | | | | type | amoked | cigarette
amokers | former pipe
and cigar only | 1-15 | 16-25 | 26 and over | Total | | A | 112.4 (5) | 18.6(8) | 21.8 (8) | 16.4(5) | 21.5 (9) | 30.0(14) | 20,4(49) | | В , | 10.0(4) | 5.1(1) | 8.4 (3) | 4.7(1) | 21.1 (7) | 19.1 (5) | 12.0(21) | | Total | 11.1(9) | 14.2(9) | 14.9(11) | 11.5(6) | 21.3(16) | 26.0(19) | 16.8(70) | | Source | | | | | Analysis of variance | e table | | | Source | | | Sum of squares | d.f. | Mean square | F | P | | Within cells | | | 63.527 | 911 | 0.070 | | | | Regression on age | | | 0.177 | 1 | 0.177 | 2.54 | 0,111 | | Between smoking group | | | | Б | 0.104 | 1.496 | 0.188 | | Between behavior types | 8 ² | | 0.296 | 1 | 0.296 | 4.24 | 0.040 | 0.129 Interaction 0.37 0.870 0,026 ¹ Rates are age-adjusted annual incidence per 1,000 men. ^{&#}x27;Mean squares for "between smoking groups" and "between behavior types" are each computed eliminating the general mean and the other main effect but ignoring interaction, thus yielding an estimate of each main effect unconfounded by other significant main effects. Source: Jenkins, C. D. et al. (90). Table A20.—Experiments concerning the effects of smoking and nicotine on animal cardiovascular function | Author,
year,
country,
reference | Number and
type of
population | Smoking
procedure | Heart
rate | Blood
pressure | Cardiae
output | Coronary
blood
flow | Comments | |--|--|---|-------------------------------------|-----------------------|-------------------|---------------------------|--| | Bellet
et al.,
1941,
U.S.A. | 39 experiments
on dogs which
had undergone
coronary | Inhalation of tobacco smoke in chamber. | Definite increase. | Definite
increase. | | | Coronary artery ligation increased the frequency of nicotine-induced severe arrhythmias; these became less evident with increasing time since ligation. | | (21), | artery liga-
tion up to
45 days before. | Nicotine
intravenous
0.2-1.2
mg./kg, | Definite
increase, | Definite
increase, | | | | | Burn and
Rand,
1958,
England
(35). | 10 rabbits, 5 experimental, 5 control, isolated atria. | Experimental animals pre-
treated with intraperitoncal nicotine and the atria of both groups excised and perfused with nicotine. | | | | | Isointed atrial specimen showed increased rate and increased amplitude of contractions with administration of nicotine proportional to pretreat ment. These reactions were blocked by reacrpine, and the authors consider nicotine effects to be mediated by catecholamine release from chromaffin store in myocardium. | | West et al.,
1958,
U.S.A.
(203) | 33 normal
ndult mongrel
dogs. | Coronary intra- arterial nicotine: 1. 0.2-2.2 µg./kg. II. 0.04-1 µg./kg. | Definite
increase
(systolic). | | | | I. Myocardial contractility increased 40-90 percent in 16/15 animals tested accompanied by ST segment depression and T-wave inversion and blocked by tetracthylammonium chloride. II. Curonary blood flow increased 19 percent upon left circumflex artery injection; coronary blood flow showed no change upon left anterior descending artery injection, 64 observations on 10 dogs. (Tetracthylammonium chloride blocked CDF increase.) The authors found no evidence of coronary vasoconstriction in these healthy animals. | Table A20.—Experiments concerning the effects of smoking and nicotine on animal cardiovascular function (cont.) | Author,
year,
country,
reference | Number and
type of
population | Smoking
procedure | Heart
rate | Blood
pressure | Cardiac
output | Coronary
blood
flow | Comments | |---|--|---|---------------|--|-----------------------|---|--| | Forte
et al.,
1960,
U.S.A.
(65). | 27 observa-
tions on 8
dogs. | Intravenous nicotine up to 21.5 mg. given as 5-15 µg./kg./ minute. | | Definite initial increase then decrease. | | No change. | No significant change in either left ventricular work or myocardial oxygen extraction. | | Kien and
Sherrod,
1960,
U.S.A.
(112). | 21 adult dogs | Cigarette smoke under positive pressure via tracheostomy. Nicotine 20 µg./kg. intra- venously. Epinephrine 5 µg./kg. intra- venously. | | Definite
increase. | Definite
increase. | Increase following increase in blood pressure and cardine output. | Effects of cigarette smoke were duplicated by intravenous nicotine and epinephrine. During cigarette smoke inhalation, it was noted that without blood pressure or output changes, coronary blood flow did not increase and that while adverse EKG changes were noted they correlated more closely with decreased cardiac oxygen utilization than with actual cardiac work. | | Travell
et al.,
1960,
U.S.A.
(189). | 14 normal
rabbits and
16 rabbits
with severe
cholesterol-
induced athero-
sclerosis. | Intravenous
nicotine
0.01-0,1 mg. | | | | Definite
increase
in normals. | Nicotine-induced coronary blood flow and heart rate increase in the atherosclerotic animals required 10 times and 2 times, respectively, the amounts required in the normal animals. | TABLE A20.—Experiments concerning the effects of smoking and nicotine on animal cardiovascular function (cont.) | Author,
year,
coutry,
reference | Number an
type of
population | | Smoking
procedure | | | Comments | |--|---|---|-----------------------|-----------------------|--|---| | Bellet et al., 1962, U.S.A. (22). | I. 10 normal dogs II. 9 dogs at varying in- tervals fol- lowing coro- nary artery ligation. III. 7 dogs with varying grades of artificially- induced coro-
nary artery narrowing. | Intravenous nicotine, 20 µg./kg./ minute for 15-20 minutes. | | | I. 125 percent increase II. 82.5 percent increase III. 83.3 percent increase | The authors noted that: 1. The response of coronary blood flow to nicotine resembled that of anoxemia in the presence of coronary insufficiency. 2. The greater the induced coronary impairment the smaller the increment in coronary blood flow. | | Leaders
and
Long.
1962,
U.S.A.
(125). | 16 sdult
mongrel
dogs. | Left anterior descending intracoronary injection of nicotine or norepinephrine. | | | | Nicotine and norepinephrine both increased coro-
nary vascular resistance and myocardial contrac-
tile force (the former measured by a constant
volume variable-pressure system). The action of
nicotine was blocked by pretreatment with hex
amethonium, pentolinium, reserpine, or guane
thiding. | | Larson
et al.,
1965,
U.S.A.
(124). | 13 adult
mongrei
dogs. | Intravenous
nicotine,
0.02 mg./kg./
minute for
10-12 minutes. | Definite
increase, | Definite
increuse. | | Systemic vascular resistance and pulmonary arter, and left atrial pressures showed biphasic re sponses of increase followed by decrease. | Table A20.—Experiments concerning the effects of smoking and nicotine on animal cardiovascular function (cont.) | Author,
year,
country,
reference | Number and
type of
population | Smoking
procedure | Comments | | | | | | |--|---|---|---|--|--|--|--|--| | Folle
et al.,
1966,
U.S.A.
(64). | 7 dogs of 30 investigated
(Remainder experienced
catheterization failures). | I. Cigarette smoke inhalation to isolated left lower lobe and then blood perfused coronary arteries. II. Cigarette smoke to rest of lung and then blood passed to general circulation. III. Nicotine perfused directly into left coronary artery. | No change in coronary vascular resistance. 5/6 showed increase in coronary vascular resistance due, according the author, to general sympathetic nervous system stimulation. 4/5 showed increase in coronary vascular resistance. The authors co clude that the cardiac effects of tobacco arise almost entirely from the extracardiac actions of smoking instead of the direct response of the heart. | | | | | | | Nadeau and
James,
1967,
U.S.A.
(142). | 26 dogs | Nicotine 0.01-10.0 μg, into sinus node artery. | Heart rate showed initial slowing (due probably to vagal stimulation) followed by acceleration (due probably to vagal paralysis and catecholumine release). No systemic blood pressure changes noted, | | | | | | | Romero and
Talesnik,
1967,
U.S.A.
(156). | 16 experiments
on isolated
cat heart. | Nicotine in varying doses in perfusate of coronary arteries. | Over 5 µg, of nicotine was found to produce an initial bradycardia associated with increased coronary flow, followed by prolonged tachycardia with an initial decrease in coronary blood flow followed by a prolonged increase. Pretreatment with hexamethonium or rescrpine prevented both the myocardial stimulation and the increase in coronary blood flow. The authors consider the action of nicotine to be a combination of a direct vasoconstrictive effect and an indirect catecholamine-releasing vasodilating effect. | | | | | | | Puri
et al.,
1968,
U.S.A.
(152). | 22 mongrel dogs | I. (14) Intravenous nicotine 50 μg./kg./minute for 3-4 minutes II. (8) Propranoiol pretreatment, then 50 μg./kg./minute nicotine for 3-4 minutes | I. Nicotine produced a definite increase in the force and velocity of left ventricular contraction. II. Pretreatment with propranolol produced (relative to results of Group I): (a) A further increase in left ventricular systolic pressure. (b) A decrease in velocity of shortening. (c) A significant increase in left ventricular end-diastolic pressure. The authors conclude that propranolol probably impairs the norepinephrine-like effects of nicotine on the myocardium while enhancing its peripheral vasopressor effects. | | | | | | TABLE A20.—Experiments concerning the effects of smoking and nicotine on animal cardiovascular function (cont.) | Author,
year,
country,
reference | Number and type of population | Smoking
procedure | Comments | |--|--|--|--| | Balaza
et al.,
1969,
U.S.A.
(16), | Beagle dogs with lesions
induced in myocardium by
either: (1) Isoproterenol
pretreatment, or (2)
ligation of the anterior
descending coronary artery. | I. Normals (3-6 per experiment); (a) 4 µg./kg. intravenous nicotine, (b) 40 µg./kg. intravenous nicotine. II. Experimental (3), 4 µg./kg. intravenous nicotine | I. (a) No evidence of arrhythmias; (b) A single or a few ectopic beats in 2/3 normal dogs. II. Extrasystoles noted in 2/3 animals during the first day after cessation of the arrhythmia induced by the legion alone, but not thereafter. These and nicotine-induced arrhythmias were of a short duration. | | Greenspan
et al.,
1969,
U.S.A.
(74). | Cardiac muscle isolated from
the right ventricle of 10
adult dogs. | Nicotine 2-100 µg./cc. in
Tyrode's solution perfusate. | Nicotine perfusion produced: (1) An increase in myocardial contractile force apparently independent of adrenergic innervation. (2) An increased automaticity of the Purkinje fiber system apparently due to release of catecholamines from chromafin tissue stores. (3) A decrease in conduction velocity. The authors conclude that the latter two effects probably predispose to arrhythmia formation. | | Saphir and
Rapaport,
1969,
U.S.A.
(166). | 88 mongrei cats | Nicotine 5-12 µg./kg. injected
intraarterially to mesenteric
circulation. | I. Mesenteric injection of nicotine was followed with 1-2 seconds by: (a) Increased left ventricular systolic pressure (LVSP). (b) Increased systemic resistance. (c) Enhanced myocardial performance. II. Left ventricular injection of nicotine was followed by: (a) Increased LVSP. (b) Bradycardia. (c) Enhanced myocardial performance greater than that seen in mesenteric-injected group. III. Pretreatment with phenoxybenzamine diminished the increase in LVSP while propranolol pretreatment diminished the enhancement of myocardial performance while LVSP still showed a significant increase. IV. Mesenteric sympathetic nerve section led to a diminished response. The authors conclude that the cardiovascular responses to nicotine may be neurogenic in nature with receptors distributed in certain abdominal arteries. | TABLE A20.—Experiments concerning the effects of smoking and nicotine on animal cardiovascular function (cont.) | Author, year, country, reference | Number and
type of
population | Smoking
procedure | Comments | | | | | | |---|--|---|--|--|--|--|--|--| | Leb et al.,
1970,
U.S.A.
(126). | 12 mongrel dogs and
CBF measured with use of
Rb** and digital counter. | Nicotine 100
μg./kg. for 2 minute intravenously. | Effective Coronary Flow (ECF) is that part of the total coronary (TCF) which is "effectively" involved in nutrient exchange. Nicotine injection was followed by: (1) 96,6 percent increase in TCF. (2) 51.1 percent increase in ECF. (3) 73.1 percent increase in myocardial oxygen consumption and anarevealed that capillary flow increased almost proportionately to ocardial oxygen consumption whereas the increase in TCF was in excess. (4) Definite increases in cardiac output, heart rate, left ventricular wand nortic pressure. | | | | | | | Ross and
Bless,
1970,
U.S.A.
(160). | 10 dogs undergolng
Instantaneous coronary
arterial flow measurement, | Nicotine 10–100 µg. intra-
coronary injection. | Nicotine injection was followed by: (1) Increased contractile force. (2) Decreased myocardial contraction time. (3) Decreased time necessary to reach peak tension. (4) Decreased total stroke systolic CBF. (5) Increased total stroke disatolic CBF. (6) Increased total stroke CBF. (7) Changes similar to intraarterial epinephrine. (8) Changes blocked by pentolinium pretreatment, (9) No change in heart rate or blood pressure. The authors conclude that catecholemines released from the ventricular myocardium mediated these responses to nicotine. | | | | | | Table A21.—Experiments concerning the effects of smoking and nicotine on the cardiovascular system of humans | Author,
year,
country,
reference | Number and type of population | Smoking
procedure | Heart
rate | Blood
pressure | Electrocardiogram
ballistocardiogram | Stroke
volume | Cardiac
output | Coronary
blood
flow | Comments | |---|--|--|----------------------------|-------------------|---|------------------|-------------------|---------------------------|---| | Russek
et al.,
1955,
U.S.A.
(184), | I. 28 healthy male smokers 21-60 years of age (average 42). II. 37 male patients with overt clinical CHD 42-70 years of age (average 54), 6 were nonsmokers. | | I. Increase. II. Increase. | Increase. | EKG: 1. 16/28 showed significant changes. II. No significant changes. BCG: II II. 18/37 showed significant change. | | | | Denicotinized ciga-
rettes evoked changes
of a lesser degree
in normals and CHD
subjects, but in the
latter group there
was no significant
difference between
these changes. | | Bargeron
et al.,
1957,
U.S.A.
(17). | 14 of 30 healthy adult male vol- unteer smokers and nonsmokers who underwent successful catheterization 18-53 years of age. | 1 cigarette
inhaled at
intervals of
20 seconds. | Insignificant
increase. | Increase. | | | | Definite
increase. | Coronary vascular resistance fell significantly. Myocardial 0 gusage underwent no significant change. Pyruvate extraction fell slightly. Authors consider lack of increase in heart rate as due to baseline apprehensivischycardia. | TABLE A21.—Experiments concerning the effects of smoking and nicotine on the cardiovascular system of humans (cont.) | Author,
year,
country,
reference | Number and
type of
population | Smoking
procedure | Heart
rate | Blood
pressure | Electrocardiogram
ballistocardiogram | | Cardiae
output | Coronary
blood
flow | Commenta | |--|--|---|-----------------------|-----------------------|---|-----------------------|----------------------|---------------------------|--| | Regan
et al.,
1960,
U.S.A.
(154). | 7 males with bistory of EKG-proven myocardial infarction undergoing cardiac catheterization. | 2 standard
cigarettes in
25 minutes
inbaled at
minute
intervals. | Definite
increase. | Definite
increase. | | | Increase. | No significant change. | Myocardial 02 consumption rose slightly in 3 out of 7. The author considers that the EKG changes noted on smoking are probably due less to decreased coronary, blood flow than to increased workload (oxygen need) where oxygen supply does not increase. Noted no evidence of myocardial ischemia during smoking. | | Thomas and
Murphy,
1960,
U.S.A.
(186), | 113 clinically
healthy young
males. | One standard
cigarette
smoked at
own pace. | Definite
increase. | Definite
increase. | | Definite
increase. | Definite
increase | | Pulse pressure showed a decrease. Smokers responded slightly but signi- ficantly more actively than non- smokers. BCG changes were increasingly common with increasing age, weight, and serum cholesterol. | TABLE A21.—Experiments concerning the effects of smoking and nicotine on the cardiovascular system of humans (cont.) | Author,
year,
country,
reference | Number and
type of
population | Smoking
procedure | Heart
rate | Blood
pressure | Electrocardiogram
ballistocardiogram | | Cardiac
output | Coronary
blood
flow | Comments | |--|--|--|-------------------------------------|-----------------------|---|---|-------------------|---------------------------|--| | Von Abn,
1960,
Sweden
(202). | The author reviews a series of experiments performed between 1944-1954. | Cigarette
smoking. | Increase. | | EKG: Slight ST
segment
depression
and T-wave
flattening | | | | EKG changes more prominent in young, clinically healthy subjects than in older, habitual smokers. Intravenous nicotine and amoking showed identical cardiovascular effects. Smoking elicited angina pectoris in a number of CHD patients. | | Irving and
Yumamoto,
1963,
England
(89). | 5 normal males,
15 patients with
diseases not de-
fined, 19-66 years
of age, all mod-
erate-heavy
cigarette smokers, | (a) Sham smoking. (b) Non-inhalation amoking. (c) 2 standard cigarettes in 10 minutes. (d) Nicotine 0.6 | change.
(c) Definite
increase | No change.
Widened | | (a) No change.(b) No change.(c) Definite increase.(d) Definite | _ | | Cardiac output measured by dye dilution technique. | TABLE A21.—Experiments concerning the effects of smoking and nicotine on the cardiovascular system of humans (cont.) | Author,
year,
country,
reference | Number and
type of
population | Smoking
procedure | Heart
rate | Blood
pressure | Electrocardiogram
ballistocardiogram | | Cardiac
output | Coronary
blood
flow | Comments | |---|--|--|--|---|---|--|---|---------------------------|--| | Pentecost
and
Shilling-
ford,
1964, | I. 14 volunteers
with clinical
CHD, 13/14
smokers,
average age | Single cigarette
smoked at own
rate in 6-7
minutes. | Definite increase in all groups, | Definite
increase
in all
groups. | | I. 10
percent
increase, | 27 percent increase. | | | | U.S.A.
(149). | 39.5. II. 5 patients with angina pectoris, all smokers, ave- rage age 43.4. | | | | | II. Inter-
mediate
change. | Interme-
diate
change. | | | | | rage age 43.4. III. 14 patients with history of definite myo- cardial infare- tion, all smok- ers average age 54.1. | | | | | III. 8 per-
cent
decrease | 1 percent
increase. | | | | Frank) et al., 1965, U.S.A. (\$7). | 5 male and 3 female patients with healed myocardial infarction 48-69 years of age 2/8 non-smokers. | 2 standard
cigarettes in
10 minutes at
rest and under
graded exercise. | Definite
increase
at rest
and at
exercise. | | | No signifi-
cant changes
at
rest or
during
exercise. | No signifi-
cant
changes
at rest or
during
exercise. | | The author contrasts this response with that seen among healthy young individuals. | TABLE ATI.—Experiments concerning the effects of smoking and nicotine on the cardiovascular system of humans (cont.) | Author,
year,
country,
reference | Number and
type of
population | Smoking
procedure | Heart
rate | Blood
pressure | Electrocardiogram
ballistocardiogram | Stroke
volume | Cardiae
output | Coron ary
blood
flow | Comments | |---|--|--|--|--|--|------------------|---|-----------------------------------|---| | Sen Gupta
and Ghosh,
1967,
India
(171). | 6 healthy male nonsmokers. 8 healthy male smokers. 6 patients with CHD, nonsmokers putients with CHD, smokers. 36-64 years of age. | cigarette in
5-7 minutes. | Increase
in all
groups. | Increase
in all
groups, | No change. 6/8 showed ST changes. All showed ST and T-wave changes. All showed ST and T-wave changes. | | | | | | Aronow et sl., 1968, U.S.A. (5). | 10 male patients with classical angina pectoris. 32-59 years of age | 1 standard high
nicotine ciga-
rette in 5
minutes. | Definite
increase. | Definite
increase. | | | | | Product of systolic blood pressure and heart rate showed a significant increase on smoking while le ventricular ejection time values did not. All patients developed angina more rapidly under a constant exercise loud if they had smoked before exercising. | | Kerrigan
et al.,
1968,
U.S.A.
(102). | 24 male and 1 female healthy smokers, average sge, 45. 8 male and 2 female healthy nonamokers, average age 33. | 2 filtered cigurettes in 16 minutes with measures taken at rest and during exercise. | Definite
Increase
under
rest and
exercise
conditions. | Definite
increase
under rest
and exercls
conditions. | e | | Curdine Index. Definite increuse under reand exercise condition | | The increase in cardiac index, heard rate, and blood pressure during exercise with smoki was the sum of such increases seen with smoking or exercise separately. Neither group showed increases in peripheral vascular resistance. | Table A21.—Experiments concerning the effects of smoking and nicotine on the cardiovascular system of humans (cont.) | Author,
year,
country,
reference | Number and
type of
population | Smoking
procedure | Heart
rate | Blood
pressure | Electrocardiogram
ballistocardiogram | Stroke
volume | Cardiac
output | Coronary
blood
flow | Comments | |---|--|---|----------------------------|----------------------------|---|---------------------------------------|--|---------------------------|---| | Allison and Roth, 1969, U.S.A. (5). | 30 healthy male
subjects.
19-59 years of
age. | 2 standard ciga-
rettes smoked
in 12-16 minute
period. | Definite increase. | Increase. | | | Increase fol-
lowed by
decrease
within 20
minutes. | | Definite decrease in pulmonary blood wolume as indicated by impedance methods of thoracic pulse volume. | | Aronow and
Swanson,
1969,
U.S.A.
(7) | 10 male patients with classical angina pectoris. 32-59 years of age. | 1 low nicotine cigarette in 8 minutes. | Definite
increase. | Definite
increase. | | | | | All patients developed
angina sooner if
they amoked before
exercising. | | Aronow and
Swanson,
1969,
U.S.A.
(6). | 10 male patients
with classical
angina pectoris.
32-59 years of
age. | 1 non-nicotine
cigarette in
5 minutes. | No change. | No change. | | · · · · · · · · · · · · · · · · · · · | | | No difference noted
in time or onset
of exercise-induced
angina between
amoking and non-
amoking procedures. | | Marshall
et al.,
1969,
U.S.A.
(129). | 42 normotensive healthy male prisoners 18-50 years of age. 13 nonsmokers. 16 moderate amokers. 13 heavy smokers. | 3/4 of one standard cigarette. | Insignificant
increase. | Insignificani
increase. | • | | | | Blood pressure response to cold pressor test noted to be greater in heavy smokers. Presyncopal reactions to 40 degree head-up tilt more frequent in smokers. | TABLE A22.—Experiments concerning the effect of nicotine or smoking on catecholamine levels | Author, year,
country,
reference | Number and
type of
aubject | Procedure | Results | |---|--|--|---| | Walts,
1960,
U.S.A.
(203). | 11 dogs | 0.02-0.60 mg/kg.
nicotine intravenously. | Nicotine administration was associated with significant increases in peripheral arterial epinephrine levels. Ganglionic blocking agents provented this effect. | | Westfall
and Watts,
1963,
U.S.A.
(210), | 22 mongrel doga | Cigarette smoking via
tracheal cannula;
1 cigarette/8 minutes
for 35 minutes, | Regular cigarette smoke evoked a statistically significant increase in adrenal vein, vena cava, and femoral artery levels of epinephrine. Cornsilk cigarette smoke evoked no change. | | Westfall
and Watts,
1964,
U.S.A.
(211). | 21 male volunteers
approximately 25
years of age;
11 nonsmokers,
10 smokers. | 3 cigarettes smoked in
30 minutes. | Smoking at rate noted for 2½ hours evoked a significant increase in urinary epine-
phrine, but not norepinephrine levels. | | Westfall et al.,
1966,
U.S.A.
(209). | Mongrrel dogs | Standard cigarette smoke exposure via endotracheal tube. Smoke inhalation every third inspiration for 3 minutes. | Smoke inhalation evoked a rise in cardiac output, stroke volume, blood pressure, and plasma catecholamine levels. Pretreatment with propranolol diminished the cardiac output and stroke volume responses but increased the blood pressure response—the latter effect due to the release of alpha-receptor activity by beta-blockade. | TABLE A23 .- Experiments concerning the atherogenic effect of nicotine administration | Author, year,
country,
reference | Number and type
of animal | Procedure | Results | | | | | | |--|------------------------------|---|---|--|--|--|--|--| | Adler et al.,
1906,
U.S.A.
(2). | Rabbits | Nicotine 1.5 mg. intravenously in 5 percent solution 6 of 7 days per week for more than 4 months. | The authors noted an arterionecrosis of the aorta, affecting mainly the inner muscular layers. Macroscopically, early changes consisted contained areas of calcareous ridging and aneurysmal dilatation without notable fatty degeneration or intimal discontinuity. Microscopically carly changes appeared in the muscle cells of the media, and "chalky deposits were noted between the elastic fibers. | | | | | | | Hueper,
1943,
U.S.A.
(86). | I. 6 mongrel dogs. | Nicotine subcutaneously. Increasing dosage up up to 2.5 cc. of 3 percent solution for 1 month. | 1. 4/6 animals died of infection and showed marked edema and for hyalinization of the media of the aorta and large clastic arterion of the animals were sacrificed and showed thickening and hyalinization of the walls of the coronary arteries and edema of the medias well as endothelial proliferation of other arteries. | | | | | | | | II. 60 rats. | Increasing doses up to 1 cc. of 1 percent solution for 1 month. | II. Much less aortic involvement than that found in the dogs; infrequent arteriolar changes consisting of fibrosis and thickening of the media. | | | | | | | Maslova,
1956,
USSR | Rabbits | (10) Nicotine subcutaneously 1 percent
solution 0.2 cc. daily for 115 days. | I. Aortic wall-acute swelling of
elastic fibers with focal fragmenta-
tion and partial disintegration—no intimal fat deposits seen.
Coronary ressels—thickening of the ressel wall—no fat deposits. | | | | | | | (150). | | (14) Nicotine plus 0.2 grams cholesterol
per day. | II. Aorta—"massive" deposits of "cholesterol" in the intima and vasa vasorum with "loosening" of the aortic wall. Coronary vessels—the larger vessels showed moderate fat deposition and the smaller vessels showed swelling of the elastica. | | | | | | | | | III. (10) Cholesterol only. | III. Aorta—isolated lipid deposition in the arch and ascending portions
only. Coronary vessels—no fat deposition. | | | | | | | Czochra-
Lysanowicz | Rabbita | I, (10) 1.0 g, cholesterol/day for 100 days. | Index of mortic lesion density (cholesterol infiltration): I. 2.5. | | | | | | | et al.,
1959, | | (10) Cholesterol plus 0.0015 g. nicotine/
day intravenously. | II. 3.4. | | | | | | | U.S.A, | | III. (4) Nicotine only. | III. No nortic lesions noted. | | | | | | TABLE A23.-- Experiments concerning the atherogenic effect of nicotine administration (cont.) | Author, year,
country,
reference | Number and type of animal | Procedure | Results | |---|---------------------------|---|---| | Wenzel et al.,
1959,
U.S.A.
(127), | Rabbits | (12) Control untreated. (12) Control diet plus 1 percent cholesterol and 5 percent cottonseed oil added. (12) Control diet plus oral nicotine 2.28 mg./kg./day. (12) Regimen II plus oral nicotine 2.28 mg./kg./day. (12) Regimen II plus oral nicotine 1.42 mg./kg./day. (12) Regimen II plus oral nicotine 1.42 mg./kg./day. (12) Regimen II plus oral nicotine 0.57 mg./kg./day. | General findings: Marked aortic pathologic involvement was noted in all cholesterol-trented groups; however, no difference was noted between Group II. and Groups IV., V., and VI. Cardiac histopathology: I. No change. II. Advanced atherosclerotic changes in the subendocardial vessels. III. Thickening and fibrosis of coronary artery small branches. IVVI. More severe changes with greater fatty metamorphosis and actual early myocardial necrosis, but no dose-dependent effects observed. | | Thienes
1960,
U.S.A.
(184). | Newborn rats and mice. | Nicotine subcutancously up to 5 mg./kg.
twice daily by the end of 1 month.
Animals autopsied at 1 year. | No arterial pathology noted. Medial degeneration seen more frequently in controls. Suggests that older animals be used. | | Grosgogeat et al., 1965, France (75). | Male rabbits | I. (10) Nicotine subcutaneously 0.75 mg./day. (10) Controls—saline injected. Sacrificed at from 20-120 days. II. (27) Same as Group I. (27) Controls—saline injected. Sacrificed at 90 days. III. (66) Nicotine subcutaneously 0.3-1.5 mg./day. Sacrificed at 30 days. IV. (24) Nicotine subcutaneously 0.75 mg./day. (24) Controls—saline injected. One-half of each group ate cholesterolenriched diet (0.5-1.0 percent cholesterol added). Sacrificed at 60 days. | Significant differences in aortic subendothelial fibrosis between control and experimental groups noted only in II and IV. In group IV, the nicotine-treated group showed more severe changes. | Table A23.—Experiments concerning the atherogenic effect of nicotine administration (cont.) | Author, year,
country,
reference | Number and type of animal | Procedure | Resulta | |---|---------------------------|--|--| | Hass et al.,
1966,
U.S.A.
(80). | Male rabbits | Nicotine Diet Vitamin D I. (8) Control Control Control II. (7) Control Cholesterol Control III. (14) Nicotine Control Control IV. (15) Nicotine Cholesterol Control V. (9) Control Cholesterol Vitamin D VI. (14) Nicotine Cholesterol Vitamin D (Sacrificed at various times) Control—no treatment. Nicotine—subcutaneous injections in oil— increasing amounts 2 times per week. Vitamin D—subcutaneous injections up to 6-8 x 10 ⁵ IU. Cholesterol—250-500 mg. cholesterol added per 100 g. diet. | I. Infrequent medial calcific disease without lipid localization. II. No medial calcific disease but frequent intimal atheroma formation. III. Rare calcific medial degeneration; no intimal atheromatous disease. IV. The largest number of atheromatous lesions. V. No medial calcific disease. VI. Consistent medial calcific disease. | | Choi,
1967,
Korea
(42). | Albino rabbits | I. Nicotine 1-5 mg./kg./day intraperi- toneally. Cholesterol 1 g./day (in varying combinations with controls). II. Nicotine alone. III. Cholesterol alone. (Sacrificed at 60 days) | I. Increasing nicotine dosages were associated with decreased atheromy formation (findings not statistically significant). II. Nicotine alone produced no atheroma formation but was associated with the presence of aortic medial calcification and endothelia hyperplasia. III. Cholesterol alone was associated with a definite increase in atheromy formation. | | Stefanovich
et al.,
1969,
U.S.A.
(178), | Female albino
rabbits. | ···· | In both stock and cholesterol-fed animals, nicotine was also noted to increase aortic triglyceride content and to decrease aortic free cho lesterol content. | TABLE A25.—Experiments concerning the effect of smoking and nicotine upon blood lipids (Human Studies) | Author,
year,
country,
reference | Number and
type of
population | Smoking
procedure | Plasma free fatty acids | Serum
cholesterol | Serum
triglycerides | Other | Commenta | |---|--|---|--|----------------------|------------------------|--|---| | Page et al., 1959, U.S.A. (147). | 13 male and
7 female
laboratory
workers
17-51 years
of age. | 2 nonfiltered
cigarettes
in 10 minutes
and blood
levels
measured
over 30-
minute
period. | | No change. | | Scrum lipoproteins
No change (10 subjects). | | | Kershbaum
et al.,
1961,
U.S.A.
(104). | 31 male patients or staff 16-72 years of age, 7 normals, 7 CHD, 17 other medical diagnoses. | I. 17 subjects smoked 2 non-filter eignrettes in 10 minutes. II. 9 controls. III. 5 subjects smoked 6 eignrettes in 40 minutes. | Mean rise
I, 351 μΕq./L.
II, 9.8 μΕq./L.
III, 272-2,304
μΕq./L. | No change. | No change. | | The authors consider the increase among controls to be due to fasting. | | Kershbaum
et al.,
1962,
U.S.A.
(103), | I. 17 male patients with heal myocardit infurction II. 16 non-CHE patients. III. 10 normals. | al 10 minutes.
is. IV. No smoking. | Mean risc
I. 858 μEq./L,
11. 320 μEq./L,
111. 292 μEq./L,
IV. 20 μEq./L. | | | | No difference found between re-
sults following inhalation or
noninhalation. Statistically mignificant difference
found between increases in
Groups II and III and
Group I. | | Author,
year,
country,
reference | Number and
type of
population | Smoking
procedure | Plasma free
fatty acids | Serum
cholesterol | Serum
triglycerides | Other | Comments | |---|--|---|---|----------------------------------|--
---|---| | Kershbaum
et al.,
1963,
U.S.A.
(109). | 11 normal
patients, | 9 standard
cigarettes
in 3 hours.
Samples at
10, 20, and
40 minutes
of smoking
period. | Definite increase
at start of
smoking period, | | | 3 patients with trime-
thaphan cumphor-
sulfonate (Arfonad)
pretreatment and 8
formerly adrenalecto-
mized patients showed
either minimal or no
elevation. | Both free and total urinary catecholamines increased with smoking and the author considers them as mediators of the FFA increase. | | Konttinen
and
Rajasalmi
1963,
Finland
(120). | 40 healthy
moderate
smokers
19-20 years
of age, | Fed at fat meal and then 20 were allowed to smoke cigarettes of known-nicotine content over 6 hour period (approximately 23 cigarettes consumed). | NS-definite increase at 6 hours. SM-definite increase at 6 hours. | No change
in either
group, | NS-definite
increase
at 2 hours.
SM-slight
increase
at 2 hours. | | | | Kedra
et al.,
1965,
Poland
(101). | 37 male and
5 female
medical
students
22-23 years
of age. | 3 cignrettes
smoked in
rapid succession
and samples
taken at 10
and 30
minutes. | No change. | No change, | | Beta-lipoproteins defi-
nite incrense. | | TABLE A25.—Experiments concerning the effect of smoking and nicotine upon blood lipids (cont.) (Human Studies) | Author,
year,
country,
reference | Number and
type of
population | Smoking
procedure | Plasma free
fatty acids | Serum
cholesterol | Serum
triglycerides | Other | Comments | |---|---|---|---|----------------------|------------------------|-------|---| | Frankl
et nl.,
1966,
U.S.A.
(66). | 5 male and 1
female
healthy
smokers
24-29
years of age. | 2 standard
eigarettes
inhaled in
10 minutes. | No change. | | | | Subjects were in nonfasting,
nonbasal state. | | Kershbaum
et al.,
1966,
U.S.A.
(106), | 43 normal male
heavy cigarette
or cigar
smokers,
21-46 years
of age. | I. Terminal segment of cigar in 20 minutes—15 subjects. II. 3 cigarettes in 20 minutes 15 subjects (including 6 from group I). III. Cigarette inhalation or noninhalation 6 subjects. | I. Indefinite increase. II. Definite increase. III. Increase with inhalation greater than with non-inhalation in every subject. | | | | Cigar smoking in 11 subjects showed an intermediate increase in the exerction of urinary catecholamines as compared to that with eignrette smoking. | | Klensch,
1966,
Germany
(118). | 56 observations
on student
smokers 20-24
years of age, | l standard
cigarette
in 4 minutes.
FFA measured at
16-25 minutes. | Definite
increase. | | | | Indefinite increase in venous epinephrine levels. | Table A25.—Experiments concerning the effect of smoking and nicotine upon blood lipids (cont.) (Human Studies) | Author,
year,
country,
reference | Number and
type of
population | Smokin g
procedure | Plasma free
fatty acids | Serum
cholesterol | Serum
triglycerides | Other | Comments | |--|---|---|--|----------------------|------------------------|-------|--| | Murchison
and
Fyfe,
1966,
Scotland
(139). | 8 male and 4
female mod-
erate smokers
with various
diseases 37-
67 years of
age. | 2 cigarettes
in 15 minutes.
I. Lit-ciga-
rettes.
II. Unlit-ciga-
rettes. | I. Definite
increase.
II. No change. | No change. | No change, | | Both regular and sham smokers showed significant increases in concentration of serum oleic acid and significant decreases in concentration of serum palmitic acid. | | Kershbaum
et al.,
1967,
U.S.A.
(105). | 6 normal
heavy
cigarette
smokers
28-45 years
of age. | Various types
of cigarettes
of known
nicotine
content. | Regular cigarettes, filter cigarettes, charcoal-filter cigarettes, pipe tobacco plus cigarettes all showed similar increase in FFA. Lettuce leaf cigarettes had negligible effect. | | | | Both catecholamine and nicotine exerction rates showed responses to the various eigniettes similar to that of the FFA response. | TABLE A25a.—Experiments concerning the effect of smoking and nicotine upon blood lipids (Animal Studies) | | | | ANIMAL AND IN VITE | O STUDIES | | | | |--|--|---|--|----------------------|-------------------------------|--|--| | Author,
year,
country,
reference | Number
and
type of
population | Smoking
procedure | Plasma free
fatty acids | Serum
cholesterol | Serum
triglyceride | s Other | Comments | | Wenzel and
Bookloff,
1958,
U.S.A.
(205). | 48 male
New
Zealand
white
rabbits, | I. Untreated control— 12 subjects. II. Regular diet plus 0.1 percent cholesterol— 12 subjects. III. Regular diet plus 2.28 mg./kg./duy nkcotine in water—12 subjects. IV. Diet plus— (a) 0.1 percent cholesterol (b) 2.28 mg./kg./day nicotine in water— 12 subjects. | , | | | Group II and IV showed an immediate increase in plasma cholesterel and phospholipids with a level-with a leveling of response at 4 weeks. Group IV showed a further increase at 8-12 week period. | The authors consider an elevated cholesterol/ phospholipid ratio to be a notable indication of atherogenic ausceptibility. The concomitant increase in phospholipids with the cholesterol may negate the importance of nicotine-induced hypercholesterolemia as an atherogenic stimulus. | | Kershbaum
ct al.,
1961,
U.S.A.
(104). | 6 mongrel
dogs. | Intravenous infusion of 20 mg./kg. nicotine in 20 minutes. | Definite increase in
13/15 observations, | | | | | | Kershbaum
et al.,
1965,
U.S.A.
(107). | 20 adult
mongrel
dogu. | I. 9 received IM nicotine daily for 6 weeks; up to 1 mg./kg. II. 5 placebo injection. III. 6 control. | J. Significant increase in 8/9 dogs.H. No change.H. No change. | | No change
in any
group. | | | TABLE A 25a.—Experiments concerning the effect of smoking and nicotine upon blood lipids (cont.) (Animal Studies) | ANIMAL AND IN VITRO STUDIES | | | | | | | | | |---|---|-----------------------------------|------------------------|----------------------------|----------------------|-------|--|--| | Author,
year,
country,
reference | Number
and
type of
population | Smoking
procedure | Serum
triglycerides | Plasma free
fatty acids | Serum
cholesterol | Other | Comments | | | Kershbaum
et al.,
1966,
U.S.A.
(108). | 28 adult
mongrel
dogs. | Intravenous infusion of nicotine. | | No change. | | | The authors report on the results of the use of nethalide (a Beta-adrenergic blocker), phenoxybenzamine, and chlorpromazine to block the FFA response to nicotine. Only nethalide was successful and this constitutes an indication that nicotine stimulates Beta-adrenergic receptors to release catecholamines which, in turn, stimulate the release of FFA. | | | Kershbaum
et al.,
1957,
U.S.A.
(110). | Sprague-
Dawley
rat
fat-pad
tissue. |
Nicotine perfusion. | | , | | | Although nicotine perfusion was not associated with FFA release from fat tissue, epinephrine did produce a significant increase in FFA release. The authors conclude that the sympathetic nervous system mediates the FFA response to nicotine in the intact animal. | | TABLE A26.—Experiments concerning the effect of carbon monoxide exposure upon blood lipids | Author,
year,
country,
reference | Number and
type of
population | Smoking procedure | Results | |---|--|--|--| | Kjeldsen
and -
Damgaard
1968,
Denmark
(115). | R male students 23-27
years of age. | Five daily one-half hour exposures
to 0.5 percent CO for 8-10 days.
Overall mean COHb resulting
was 12.5 percent. | No significant changes in total fatty acids, phospholipids, or triglycerides. Cholesterol showed a significant increase only during the last 3 days of exposure. | | Kjeldsen,
1960,
Denmark
(113). | 72 female albino rabbits: 1. Regular diet, 24 subjects. 11. Regular diet plus 2 percent choles- terol, 24 subjects. 111. Regular diet plus 2 percent choles- terol, 24 subjects. | I. 12 control and 12 exposed to gradually increasing CO concentrations (0.015-0.40 percent) over a 4-week period. II. 12 control and 12 exposed to 0.020 percent CO for 35 days. III. 12 control and 12 exposed to to 0.020 percent CO for 7 weeks, then 0.036 percent CO for 3 weeks. | I. Scrum cholesterol concentrations vose rapidly and then remained slightly above control values for the 4-week period. II. At 35 days, the scrum cholesterol concentration in the exposed group was 315 times that in the control group. III. Scrum cholesterol concentrations among those exposed were significantly higher than those in the control group for 5 weeks of the 10-week period. | | Kjeldsen,
1969,
Denmark
(113). | 24 castrated male albino
rabbits. Regular diet
plus 2 percent
cholesterol. | 12 control and 12 maintained at 10 percent oxygen levels for 6 weeks, then 9 percent for 2 weeks. | Serum cholesterol and triglyceride concentrations rose to significantly higher levels during 3 of the 8 weeks. No changes noted in serum phospholipids. |