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Abstract

We describe our experience with using several CORBA
products to interconnect the software modules of a fairly
complex storage coordination system.  In the application
area of High Energy and Nuclear Physics (HENP) the
volume of data reaches hundreds of terabytes per year,
and therefore it is impractical to store them on disk
systems.  Rather they are stored on robotic tape systems
that are managed by some mass storage system (MSS).
The role of the Storage Access Coordination System
(STACS) that we developed is to manage the caching of
files from the MSS to a large disk cache that is shared by
multiple HENP analysis programs.  The system design
involved multiple components developed by different
people at different sites, and the modules could potentially
be distributed as well. In this paper we describe the
architecture and implementation of the system STACS,
emphasizing the inter-module communication
requirements. We describe the use of CORBA interfaces
between system components, and our experience with
using multi-threaded CORBA and moving large objects
through the CORBA interfaces. STACS development was
recently completed and is being incorporated in an
operational environment scheduled to go on-line in the
summer of 1999 [1].

1.  Introduction

Many applications generate large volumes of data that
need to be stored on mass storage system (typically
robotic tape systems) because it is too expensive to store
them on disks.  Some examples are high energy and
nuclear physics (HENP) experiments, climate modeling
simulations, combustion modeling, and satellite data. In
such applications, one of the difficulties in accessing the
data stems from the need to retrieve different subsets of
the data by hundreds of users at the same time. Typically,
the data can be spread over many files and tapes, since the

data are stored on tapes usually in the order they were
generated.  Another difficulty in accessing the data is that
users are not interested in the API to the MSS, but rather
refer to the object data structures and their attributes. We
will describe in this paper the architecture of a Storage
Access Coordination System (called STACS) that was
built to support this application area.  The system design
involves multiple components developed by different
people at different sites, and the communication between
components needs clear interfaces to allow independent
software development. STACS is designed to optimize the
use of the limited resources, to simplify the interface
between the client analysis codes and STACS and
between STACS components, and to increase the
performance of retrieving data stored on tapes. To achieve
these design goals, a decision was made early on to have
all the modules communicate through CORBA. We
emphasize in this paper our experience of using different
CORBA products and inter-ORB connection, of using
CORBA multi-threading and moving large objects
through the CORBA interfaces. Although in this paper we
focus on High Energy and Nuclear Physics (HENP)
application similar principles of architecture and the
experience from using different CORBA products can be
applied to other applications.

Next, we describe briefly the HENP application area as
the background to the design and requirements of the
system.

1.1.  Background on High Energy and Nuclear
Physics data

High energy and Nuclear Physics (HENP) experiments
consist of accelerating sub-atomic particles to nearly the
speed of light and forcing their collision.   A small part of
the particles collide and produce a large number of
additional particles.  Each such collision, called an
“event” generates in the order of 1-10 MBs of raw data
collected by a detector.   The rate of data collected is a
few event collisions per second, or about 10 MB/s on the
average.  This corresponds to 107-108 events per year, and



the total data volume amounts to about 300 TBs per year.
This corresponds to 10,000 30 GBs tapes, which is the
reason for the use of a robotic tape system.  A typical
experiment may run for 3 years. After the raw data is
collected, they undergo a “reconstruction phase”.  Each
event is analyzed to determine its sub-particles and to
extract summary properties (such as the total energy of the
event, momentum and number of particles of each type).
The amount of data generated after the reconstruction
phase is about a tenth of the raw data, which amounts to
about 30 TBs per year.  Most of the time only the
reconstructed data are needed for analysis, but the raw
data must still be available.  Events are organized into
files, normally about 1 GB each.  Thus, each 1 GB file
contains about 200-300 events.  In [2] we have analyzed
the optimal file size, and determined that a 1GB is a
reasonable size. There are two conflicting considerations.
If the file size is too big, too much unneeded data may be
read. If the file size is too small, the overhead of accessing
a large number of small files per query is too large.

A typical analysis that physicists wish to perform on
the reconstructed data involves the selection of some
subset of the events according to some conditions over the
summary information (extracted in the reconstruction
phase).  This summary data is quite large. For about 100
properties and 108 events, the property space is about 40-
80 GBs.  Searching for the qualified events in the property
space is another challenge.  In [3], we have discussed
building a specialized index to be able to search this space
efficiently.  Suffice here to point out that the events that
qualify for a query may be spread over many files and
tapes.

When hundreds of users execute different queries, the
number of files to cache from the MSS (which in our case
is HPSS – High Performance Storage System developed
by IBM) can be very large; hundreds of files may be
requested at the same time. Direct access to HPSS does
not guarantee coordination of file caching or file sharing
since no advance knowledge of the requested files for
queries is used. Our goal was to take advantage of such
knowledge and to develop an efficient way to coordinate
the caching of files so that analysis programs share files in
cache whenever possible, and all queries are treated fairly.
We achieve this by providing a simple API to the STACS
instead of having users access HPSS directly. Another
problem we had to face is the inter-communication
between the modules that required passing large amount
of data through interfaces for large queries.  This problem
exists because queries that cover a large property range,
the number of qualified events is very large (several
100,000s), and the event lists need to be passed between
some of the modules.  We have tested a few cases, and
discuss them in the section on test runs. In a previous

paper [3], we discussed an efficient way of coordinating
the queries. Another major problem we had to face was
the inter-communication between modules developed by
different people on different sites. We will focus here on
the problems of simplifying the interfaces, passing large
amount of data, and our experience using different ORBs
and inter-ORBs.

This paper is organized as follows: In section 2 we
describe the system architecture we developed. In section
3 we describe results from the test runs, and discuss our
experience with different ORBs and inter-ORB
implementation. In section 4 we summarize the paper.

2.  The Storage Access Coordination System
Architecture

The architecture of STACS was designed to simplify
the interface between client user codes from many
different machines and platforms, and between the
STACS components. Another aspect of the design is in
the use of different ORBs between client user codes and
STACS.

STACS has three main components [3] which interface
with each other through CORBA (see Figure 1 below).

1) The Query Estimator (QE) uses its index to estimate the
total number of events that will result from a query, the
number of files involved, and how long it will take to
process the query.  The query estimation is passed to the
HENP analysis component via the Query Object, so that it
can decide whether to proceed with the query.  The user
may choose to abandon or modify the query if the number
of files (and therefore its processing time) is too long.   If
he/she decides to proceed, the QE determines the list of
files needed by the query and the set of events in each.
This result, which can have thousands to millions of
events, is passed to the Query Monitor (QM) component.
This represents a large transfer across a CORBA interface,
in the order of several megabytes.  We also support
another functionality: returning the entire event ID list to
the HENP application. Again, this requires the transfer of
several megabytes across the CORBA interface.  In the
QE, we have experimented with three different ORBs:
Orbix [7], Orbacus [8] and TAO [9].  The HENP
application always uses Orbacus, and the QM always uses
Orbix.

2) The Query Monitor (QM) keeps track of what queries
are executing at any time, what files are cached to disk for
each query, what files are not in use but are still in cache,
what files still need to be cached, and what files need to be
purged to make more cache space available for other



queries. The QM consults an additional module, the
Caching Policy, that determines what files to cache next
according to the policies selected by the system
administrator.  The QM performs the scheduling of file
caching and the coordination between files needed by
multiple queries.  Because it deals with multiple query
requests simultaneously, and with multiple file caching
requests simultaneously it uses multi-threading
extensively.  The QM uses Orbix, but interfaces with the
QE that uses Orbix/Orbacus/Tao, with the Query Object
that use Orbacus, and the Cache Manager (CM) that uses
Orbix.

3) The Cache Manager interfaces to HPSS to perform all
the actions of staging files from HPSS to local cache and
purging files from the local cache. The CM interfaces to
the QM with Orbix.  It, too, needs to use multi-threading.

These three components use multi-threaded ORBs [7,
8, 9] to communicate with each other, and each
component can reside on a different machine. The reason
that we chose multi-threaded ORBs within STACS is that
each of these components has to deal with multiple
requests concurrently. The reason for choosing Orbix [7]
initially was its popularity, the product compatibility, and
their support. We will discuss our experience with using
different ORBs and inter-ORBs in the following section.

STACS also interfaces to other components of the
HENP system with CORBA.  While we only focus on
STACS in this paper, it is important to understand how it
interfaces to the rest of the HENP system.  Figure 1 shows
the HENP system components and the interaction between
them, including STACS. On the right are the three
components of STACS.  On the left there are two
components: 1) the Query Object, which is the component
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that initiates the query, and 2) the Event Iterator, which is
the component that passes the events one by one to the
analysis program, and reads the events one by one from
the file system. The client user codes interact with the
Query Object and Event Iterators. Multiple Event Iterators
are supported for parallel computing. Orbacus [11]
(formerly OmniBroker) is used in these components. The
user codes use Orbacus also.

The labels on the arrows show the type of messages
sent between the components. We discuss below the
CORBA interfaces used to process a query.

1) A query estimation request is sent from the Query
Object (QO) to the Query Estimator (QE) through
Orbacus-to-Orbix interface. The QO only passes the
user ID and gets the query ID back. The QE uses its
index to estimate the total number of events that will
result from such a query, the number of files
involved, and how long it will take to process this
query. Even small queries involving several 10s of
files may take hours to download from tape, so users
are given the estimated processing time to decide if to
proceed. Query estimation can also be used by the
system to prevent users from proceeding with large
queries if they do not have proper user permissions.

2) If the user decides to proceed, he/she issues an
“execute” request to the QE with the query ID. The
QE uses its index to generate the list of files that the
query needs to access, as well as the set of event IDs
for the events that qualify for the query.

3) The user code then starts an Event Iterator that issues
one or more file requests to the Query Monitor
through Orbacus-to-Orbix interface. Multiple Event
Iterators can be started for parallel analysis.

4) The QE passes the (file IDs, event IDs) request in a
CORBA sequence form to the Query Monitor (QM)
through an Orbix-to-Orbix interface. The set of (file
IDs, event  IDs) can be as big as a few 10s of MBs.
Passing these large data through CORBA was tested
and will be discussed in the following section.

5) The QM adds the query to its query queue.  When it
is the query’s turn to be serviced, the QM consults the
Policy Module as to which file to give the query next.

6) The QM checks what files are in the cache.  If a file
for the query is found in the cache, it is locked into
the cache. If no file is found in cache, the Policy
Module selects a file to be cached from tape
according to the policy that the STACS administrator
has set.  If necessary, it also selects which unlocked
and unused files to remove from cache to make more
cache space available for the new file. Note that the
events needed by a given query may be spread over
many files and tapes. In such a case, multiple files
need to be cached.

7) If a file has to be read from tape, the QM requests the
Cache Manager (CM) to cache that file through an
Orbix-to-Orbix interface, passing the file ID.  The
CM requests the caching of the file from the HPSS
(currently via parallel FTP), and monitors its
progress.  When the file is cached, the QM is notified.

8) The QM passes to the Event Iterator the set of file IDs
along with the set of event IDs that qualified in each
file for the query in CORBA sequences through an
Orbix-to-Orbacus interface. This interface passes
relatively small chunks of data.

9) When the Event Iterator finishes processing all the
events in a file, it issues a “release” message to the
QM through an Orbacus-to-Orbix interface. The QM
then makes the query “active” and processes it for the
next file in its turn.

10) When all the requested files by a query are processed,
the QM notifies the Event Iterator that there are no
more files, through an Orbix-to-Orbacus interface.
This causes the Query Object to terminate the query,
by issuing the “done” message to the QE through an
Orbacus-to-Orbix interface. The QM also notifies the
QE that the query is finished.  The whole process can
also be stopped with an “abort” message from the
Query Object.

3. Test Runs and Our Experiences

3.1 Experience with ORBs

The system has been tested in a real environment.
While running the tests, we log various events, such as
when a request is made for caching, and when a file is
passed to the analysis code.  By plotting the behaviors of
different tests we could confirm the correct behavior of
STACS. We managed CORBA interfaces between
different ORBs (Orbix, Orbacus and TAO), between
different machines and between different platforms
(Solaris and Linux, Solaris and Windows NT).

Another important aspect that we have tested was
passing very large objects sets with CORBA. We have
passed a set of file IDs and a set of one million event IDs
in a CORBA sequence of structs between the STACS
components (approx. 10 Mbytes), and the CORBA
interfaces handled it very well. However, it slowed down
the query execution process for that query. To check if
one large query affected the execution of smaller queries,
we tested running the same big query with two other small
queries. STACS with multi-threaded CORBA interfaces
handled the execution very well without having much
delays on smaller queries because of the larger query.



Our experience with mixed ORBs is that ORBs seem to
talk to each other flawlessly. However, we could benefit
from ORBs that support a daemon feature, in order to
establish the CORBA connections easily, and to perform
crash recovery by restarting the crashed module and re-
establishing the connections. Unfortunately, the Orbix
daemon (for Orbix 2.3c MT) crashed when we had many
inter-ORB connections. We have worked around the
problem of re-establishing connections with a transient
port method without the Orbix daemon, and have the
client user codes connect to STACS directly. However,
we are still trying to solve the problem of restarting
crashed modules  without an ORB daemon.

We have tested Orbacus and TAO. They come with
source code and are free. (Orbacus is free for non-
commercial use.) The reason that we tested TAO is

because of its reputation. TAO, indeed, seems very
efficient, but we have still to do rigorous testing. TAO and
Orbacus support several threading models. It is very easy
to switch between models (thread per client, thread per
request, single threaded, thread pool). These models are
also possible with Orbix, but the programmer needs to do
the coding himself (by adding Orbix specific calls).  It was
relatively easy to write codes in such a way that switching
ORBs is a matter of recompiling with different
compilation flags. Switching between ORBs while
developing, is useful because the user must follow the
standard CORBA specifications. When the standard
CORBA calls are followed, it is easy to switch ORBs if
the need arises. One can be forced to switch ORBs due to
budget constraints or because part or all of the developed
code needs to be run with a framework that does not work
with a certain ORB.
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Figure 2. Display of a test run showing file sharing in cache



3.2 Test runs

Figure 2, figure 3, and figure 4 show graphs drawn
from the actual logging of the test runs. A visualization
tool, NetLogger [4], developed at LBNL was used to show
the progression of events in real time.

The graph shown in Figure 2 illustrates the value of file
sharing in a very limited cache which can hold only four
files at one time.  We started with an empty cache.  We
ran three queries: each query needs 8 large files from tape
to be cached from tape to disk.  The entire test ran for
about 50 minutes.

The graph represents the occurrence of logged events
over time (the x-axis), but spreads out various logged

events in the y-axis.  In this graph, five logged events are
shown from bottom to top: a) caching request arrived to
HPSS, b) stage finished, d) file pushed (i.e. file is
available for the Event Iterator), e) file retrieved (by the
Event Iterator), and f) file released.   We note that the time
between a) and b) is the time to get the file from tape to
local cache. The time between b) and c) is the time to pass
the file to the EI queue after it was cached.  This should
normally be done immediately. The time between c) and
d) is the time between making a file available to an EI and
the time the EI actually reads it. The time between d) and
e) is the time that it took the user code to process all the
events from the files. Thus, a vertically connected line
represents a single file and chronicles how it was
processed.
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Figure 3. Display of a test run with 5 client user codes without over-lapping files



Figures 2, 3, and 4 show increasing number of queries
processed in parallel. In figure 2, we had 3 parallel
queries, in figure 3 we had 5 parallel queries, and in figure
4 we ran 39 parallel queries. We explain briefly below
each figure. Figure 2 shows that when Query 1 and Query
2 started at the same time, four file requests were made,
two for each query. The four files took several minutes to
cache, and two files at a time were passed to the queries
for processing. Because the needed data were spread over

files, those two files had to be passed together to the EI.
The files were processed for a few seconds. We
intentionally made the processing time short to make the
caching time dominate the total time. Only when each
query finished and released the files, a new request was
made, reflecting the pre- fetching policy.  This process
continued and files in cache are shared with other queries
whenever possible.

Figure 4. Display of a test run with 26 client user codes showing file sharing in cache



This test validated the correctness of the performance
of the software, as well as the ability of the multi-threaded
CORBA calls to handle the multiple requests properly.

Figure 3 shows a test with five queries launched
simultaneously, each requesting non-overlapping files. We
used a limited cache space, which is the reason that
Query 5 was postponed until cache space became
available. Figure 3 also shows how STACS coordinates
the queries to optimize the limited system resources so
that no one query can dominate the cache and HPSS.

Another test we ran was with 39 queries running all at
the same time while sharing cached files, and the test ran
very well. This test is shown in figure 4. This test took
only about 800 seconds, because we designed the test so
that all these queries shared nine files. If those queries
contacted HPSS individually, and cached files for their
analysis, it would have taken hours. Note that some files
took a long time to be cached because file caching
requests queued. This test shows the robustness of
STACS, as well as the benefits of coordination by
STACS.

4.  Summary

In this paper, we presented the architecture of the
Storage Access Coordination System. We found that
CORBA simplifies the interfaces between the user code
and STACS and between the STACS components.
CORBA also simplifies the communication between
different machines and between different platforms.
CORBA IDL was used to define the interfaces clearly
between the system components to allow independent
code development by different people at different sites.

The mixed-ORB between the user codes and STACS
worked well. Using only the standard features of ORBs
permits users to select an ORB that they are already
familiar with.

Passing large amounts of data through CORBA
connections was tested, and worked well. This experience
gave us the confidence to continue to scale up to even
larger number of users and larger number of files
requested per query.

One missing part in our experience is the ability to
recover from crashes of system components, using an
ORB daemon. Since Orbacus and TAO did not have a
daemon feature at the time of the system development, we
wanted to take advantage of this feature in Orbix.
However, so far we are not able to use the Orbix daemon
feature as it crashes often. If this feature is stable, it would

be very useful for crash recovery. This recovery issue is
currently under development.

Acknowledgement

This project is funded by the Grand Challenge program at
the Department of Energy, in the Office of Energy
Research, Office of Computational and Technology
Research, Division of Mathematical, Information, and
Computational Sciences, of the U.S. Department of
Energy under Contract No. DE-AC03-76SF00098.

We thank all the collaborators of this project who
provided the realistic requirements for the storage
management component of this project. Special thanks are
due to Dave Malon, Jeff Porter and Dave Zimmerman
who developed and implemented the other non-STACS
components of the system.

References

[1]  STAR Computing Software,
http://www.rhic.bnl.gov/STAR/html/star_computing.html

[2]  L. Bernardo, H. Nordberg, D. Rotem, and A. Shoshani,
Determining the Optimal File Size on Tertiary Storage Systems
Based on the Distribution of Query Sizes, Tenth International
Conference on Scientific and Statistical Database Management,
1998. (http://www.lbl.gov/~arie/papers/file.size.ssdbm.ps).

[3] A. Shoshani, L. Bernardo, H. Nordberg, D. Rotem, and A.
Sim, Multidimensional Indexing and Query Coordination for
Tertiary Storage Management, the 11th International Conference
on Scientific and Statistical Database Management, 1999.

[4] NetLogger: A Methodology for Monitoring and Analysis of
Distributed Systems, http://www-itg.lbl.gov/DPSS/logging/

[5] R. Orfali, D. Harkey, J. Edwards, Instant CORBA, (John
Wiley & Sons), 1997

[6] Sean Baker, CORBA Distributed Objects using Orbix,
(Addison-Wesley), 1997

[7]  IONA Technology, Orbix 2.3c MT, http://www.iona.com

[8] Object Oriented Concepts, Inc., Orbacus 3.1.2,
http://www.ooc.com

[9] D. C. Schmidt, The ACE ORB (TAO),
http://www.cs.wustl.edu/~schmidt/TAO.html


