
1

The ACTS Collection
Robust and High-Performance Tools for Scientific Computing

Guidelines for Tool Inclusion and Retirement

Tony Drummond and Osni Marques
Lawrence Berkeley National Laboratory

One Cyclotron Road, MS 50F-1650, Berkeley, CA 94720-8139
acts-support@nersc.gov

It takes about ten years for the power of the supercomputers of any give era
to migrate to the desktop. By the time we celebrate the twentieth anniversary
of Computers in Physics, we can expect machines with hundreds of
processors to be routinely available for scientists' personal use. Making
effective use of all this horsepower will require contributions from many
different fields: from the computer science and numerical analysis
communities, libraries of software to distribute problems over multiple
processors; from computer vendors, optimizing compilers for a multiprocessor
environment; and from users, a willingness to change our way of doing
business… We need to move away from a coding style suited for serial
machines, where every microstep of an algorithm needs to be though about
and explicitly coded, to a higher-level style, where the compiler and library
tools take care of the details. And the remarkable thing is, if we adopt this
higher-level approach right now, even on today's machines, we will see
immediate benefits in our productivity.

W. H. Press and S. A. Teukolsky, 1997, in “Numerical Recipes:
Does this Paradigm have a Future?”

1. Introduction

During the past decades there has been a continuous growth in the number of physical and
societal problems that have been successfully studied and solved by means of computational
modeling and simulation. Distinctively, a number of these are important scientific problems
ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as
ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon
computer chips; but it was not until 1999 that researchers finally achieved a complete numerical
solution to the simplest example of ionization, the collision of a hydrogen atom with an electron.
On the opposite scale, cosmologists have long wondered whether the expansion of the Universe,
which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch.
In 2000, analysis of new measurements of the cosmic microwave background radiation showed
that the geometry of the Universe is flat, and thus the Universe will continue expanding forever.

Both of these discoveries depended on high performance computer simulations that utilized
computational tools included in the Advanced Computational Software (ACTS) Collection. The
ACTS Collection Project evolved from the ACTS Toolkit Project, which was an umbrella
project that brought together a number of general-purpose computational tool development
projects funded and supported by the U.S. Department of Energy (DOE). These tools, which
have been developed independently, mainly at DOE laboratories, make it easier for scientific
code developers to write high performance applications for parallel computers. They tackle a
number of computational issues that are common to a large number of scientific applications,

2

Category Tool Functionalities
Aztec Algorithms for the iterative solution of large sparse linear systems.

Hypre Algorithms for the iterative solution of large sparse linear systems, intuitive
grid-centric interfaces, and dynamic configuration of parameters.

PETSc Tools for the solution of PDEs that require solving large-scale, sparse linear
and nonlinear systems of equations.

OPT++ Object-oriented nonlinear optimization package for serial architectures.

PVODE Solvers for the solution of systems of ordinary differential equations,
nonlinear algebraic equations, and differential-algebraic equations.

ScaLAPACK Library of high performance dense linear algebra routines for distributed-
memory message-passing.

SuperLU General-purpose library for the direct solution of large, sparse,
nonsymmetric systems of linear equations.

Numerical

TAO Large-scale optimization software, including nonlinear least squares,
unconstrained minimization, bound constrained optimization, and general
nonlinear optimization.

Global
Arrays

Library for writing parallel programs that use large arrays distributed across
processing nodes and that offers a shared-memory view of distributed
arrays.Code

Development Overture Object-Oriented tools for solving computational fluid dynamics and
combustion problems in complex moving geometries.

CUMULVS Framework that enables programmers to incorporate fault-tolerance,
interactive visualization and computational steering into existing parallel
programs.

Globus Bag of services for the creation of computational Grids and tools with
which applications can be developed to access the Grid.

PAWS Framework for coupling parallel applications within a component-like
model.

SILOON Tools and run-time support for building easy-to-use external interfaces to
existing numerical codes.

Code
Execution

TAU Set of tools for analyzing the performance of C, C++, Fortran and Java
programs.

ATLAS and
PHiPAC

Tools for the automatic generation of optimized numerical software for
modern computer architectures and compilers.Library

Development PADRE C++ layer for interfacing with libraries that distribute data on parallel
computers.

Table 1. Current ACTS Collection Tools and a brief description their functionalities. For more details
visit the ACTS information center at http://acts.nersc.gov/tools.

mainly implementation of numerical algorithms, and support for code development, execution
and optimization. The ACTS Collection Project enables the use of these tools by a much wider
community of computational scientists, and promotes code portability, reusability, reduction of
duplicate efforts, and tool maturity.

By analogy with a commercial company, the ACTS Project has put the formerly uncoordinated
research and development performed at various places into one distribution channel. ACTS
complements the R&D effort by adding technical support, quality assurance, and marketing.
Specifically, ACTS has provided technical support, tool information and evaluations.
Consequently, it has increased the availability and stability of the tools; and has educated
scientists about the Collection through presentations and workshops. These efforts have resulted
in increased use of the tools in significant scientific applications. Feedback from users has
resulted in improvements in the tools.

Currently, the ACTS Collection comprises 17 tools (see Table 1) that provide implementations
of numerical algorithms, support for code development, run time environments, and library
development. This paper presents a list of guidelines for the inclusion and retirement of tools
into the ACTS Collection. The primary goal is to provide a robust set of high performance tools
that best meets the software requirement of computational scientists and their applications.

3

In this document, we propose a mechanism for the inclusion of new tools into the Collection
with a yearly peer-reviewed process that certifies the tools as part of the ACTS Collection. At
the end of a fiscal year, tools should present progress reports (new version, target applications,
etc.) and a certification panel would judge which tools to include, which to retired and which
need further development.

2. Why should there be an ACTS Collection?

Our initial work with the ACTS Toolkit (an umbrella project sponsored by the MICS office
under the DOE 2000 initiative) included many successful interactions with the scientific
computing community, including tool users and developers. From the outcome of these
interactions we have learned various lessons that were taken in consideration during the design
of the ACTS Collection Project. Further these lessons must also be taken into consideration
during the implementation and evolution of the ACTS Project. Here we summarize the lessons
that are relevant to the continuation of the ACTS Project and the certification of tools:

• There is still a gap between tool developers and application developers which leads to
duplication of efforts. Without projects like ACTS, application developers will continue to
design and implement codes using techniques that are already available from other sources.
Quite often these new developments are far from optimal because of the application
developers’ inexperience with all the different issues that lead to optimal performance. In
many cases, application developers only consult sources like Numerical Recipes [1] that do
not address platform optimization and parallelism, algorithm robustness, and language
specific optimization issues. The ACTS Collection Project has been carefully designed to
vitalize the current development efforts to promote reusability of quality and reliable
software.

• Users demand long-term support of the tools. One of the main concerns that users have
expressed to us is the longevity of support from tool developers and required evolution of the
software as the hardware technology continues to evolve and the complexity of the scientific
application continues to grow. Inasmuch as a solid base collection of reusable tools is
utilized inside newer tool developments, users are guaranteed the evolution of the tools; thus
long-term support and functionality are also guaranteed

• Applications and users play an important role in hardening tools. The main parameters for
maturity are portability, robustness, acceptance, and long-term support. It is particularly the
interactions with real users and real applications that have made the software mature,
portable, robust and better documented. In turn, mature software will be widely accepted
inside a given scientific community. The current ACTS Collection has promoted the tools to
a wider national and international audience, thus increasing not only the visibility of the
tools worldwide but also the range of users and applications.

• Tools evolve or are superseded by other tools. As technology continues to advance, there are
some tool functionalities that are either no longer needed or are improved as direct
consequences of the user demands. An example of these changes in the ACTS Collection is
the Aztec library being superseded by AztecOO, which is one of the components of the
Trilinos solver framework [2]. A project like the ACTS Collection provides mechanisms to
help users with the transition and adoption of the new tools.

4

• There is a demand for tool interoperability and more uniformity in the documentation and
user interfaces. Users want to experiment with functionalities available in a subset of the
ACTS tools, and finding similar user interfaces and comparable levels of support and
documentation makes this task even simpler and risk free. Furthermore, the computational
challenges at hand demand new software developments that interact with legacy code
practices, data and computer languages. ACTS provides a natural infrastructure to put in
practice all the code, data and language interoperability required by these new challenges.

3. Tool Certification

In 1999, the PITAC Report [3] recommended the creation of a national library of certified
domain-specific software in order to reduce the labor required for software development, testing
and evolution (some of those recommendations were later implemented by the Networking and
Information Technology Research and Development Program [4]. From interactions with many
computational scientists and industry we have realized that ACTS has the potential of becoming
a major player in such an activity. Computer vendors and a great part of the scientific computing
community are already familiar with at least a couple of the ACTS tools. The implementation of
the peer-reviewed certification will push the frontiers of the tools forward, and the tools or
subsets of the tools will be eventually integrated in vendor-supported software libraries (for
example, ScaLAPACK, one of the numerical tools in the ACTS Collection, has already been
incorporated in IBM’s and Cray’s scientific libraries).

We seek to work with tool developers and leading computational scientists in defining the
criteria to be used in the certification process. In this paper we present an initial set of
parameters to carry out such a process. These parameters come from compilations of user
feedback and our interactions with ACTS tools developers and their users. Further, we propose
a yearly process for reviewing the status of the ACTS Collection. Tool development projects
will be encouraged to participate. The matured and certified tools in the ACTS Collection will
continue to set higher standards for high performance software development and continue to
build the scientific community’s confidence in the tools. The accumulated expertise, that will be
made available through the ACTS information center, will also provide assistance to other tool
developers to cope with these advancements. This approach also encourages a natural evolution
for the basic set of tools to adapt to arising scientific challenges and new technology, thus
promoting long-term and continuous support to users in the computational sciences community.

The ACTS Collection software certification process should be defined in terms of software
correctness, robustness, functionality, portability, documentation, availability, and
interoperability. The goal is not to preclude new software paradigms but to promote existing and
new paradigms based on what works best for the computational science community. In the
following paragraphs, we briefly define the basic set of parameters.

3.1 Correctness

This is defined by the ability of a software tool to accurately implement an algorithm or
functionality. When possible, the correctness of a tool will be compared against other tools with
similar functionalities. In addition tool developers must provide proofs of correctness.

We perform independent software evaluations of the tools in the ACTS Collection. These tests
include the verification of correctness of their functionality. In addition, we collect feedback
from users on the tools that are shared with the individual tool developers and the entire
scientific computing community through the ACTS Information Center.

5

3.2 Robustness

Refers to the ability of a software tool to function correctly even in abnormal conditions (for
example, the use of handlers and error signaling in the event of hardware violation or numerical
exceptions). The robustness of a tool must not depend on a particular computational
environment. By computational environment we define a combination of computer architectures
and supporting software environments.

The current set of tools in the ACTS Collection reflects these high robust standards. The tools
have been rigorously tested in several computational environments. The tools implementing
numerical algorithms have been successfully verified and articles have been published in
reputable journals in the scientific computing community. Likewise, the tools that facilitate
code development and execution have been tested in a variety of computational environments
and high performance applications.

3.3 Functionality and Applicability

This item refers to the value provided by the tools in today and future’s computer technologies.
Tools developed for computational environments or requirements that no longer comply with
the technology should be retired or not considered for inclusion into the ACTS Collection. For
instance, some tool development projects were developed to facilitate the use a specific
hardware or a mere software trend from the past. While some of these tools provided some
added value to the computational science community, they may also preclude the evolution, and
performance scalability of complex applications in the state of the art technology. Further, these
types of tool developments represent a high risk for application developers that in most cases
plan to use their codes beyond the scope of existing architectures, compilers and programming
trends.

The ACTS Collection is probing to be effective by delivering software tools that evolve. This
feature is instrumental in guaranteeing the long-term support of the tools and adaptability of
large complex codes to today and tomorrow’s computational solutions.

3.4 Portability

This item accounts for the easy at installation and porting of one tool from one computational
environment to another. Tools that target a particular computer architecture are discouraged
from their participation in the ACTS Collection. Portability should also emphasize the
independence of a tool from compilers and operating systems. From our experience, tools that
depend on specific compilers and/or operating systems are less attractive to application
developers and stops short the life cycle of software reusability.

3.5 Documentation

A very important element in promoting the use of a tool is the documentation that describes the
tool functionality, and its interfaces. In addition, the practice of providing proper documentation
is the only vehicle for instructing users on the correct utilization of a tool, and its limitations.
Adequate levels of documentation is also effective in reducing the amount of time a user will
spend prototyping her/his codes using the tool.

6

Currently, the tools in the ACTS Collection have various different levels of documentation. In
the ACTS Collection we are working to uniformly provide appropriate levels of documentation
for all tools, as well as develop didactical mechanism to teach users through examples at
different levels of complexity and tool expertise.

3.6 Availability and Distribution

Tools in the ACTS Collection are distributed as open source software with its accompanying
documentation. Since tools have been developed mostly at different DOE laboratories, some of
them require specific agreements to comply with the software licensing policies of the institution
that holds the ownership of the software. Tools under the ACTS Collection must be available to
a wide audience within the computational sciences and engineering community. Software tools
with higher licensing restrictions that prevent them from distributing the source codes for the
entire tool are discouraged. The ACTS Collection does not commercialize the distribution of the
tools and in turn the tools cannot be commercialized by a third party. Commercial packages that
make use of the tools will need to instruct their users to download the ACTS tools directly from
their distribution site.

3.7 Interoperability

The current ACTS funding has encouraged software interoperability and has spawned a few
collaborations between projects under ACTS. Interoperability may affect performance in some
cases but it potentially reduces time to solution and, most important, it assures longevity of the
software. We have been working on a more general solution that can be addressed by the
Common Component Architecture (CCA [5]) specifications funded by the DOE Scientific
Discovery through Advanced Computing (SciDAC) Program [6]. We foresee the use of these
specifications as a requirement for tools to be certified by the ACTS Collection Project and this
will facilitate the interaction between the tools and migration from one tool to the other when
necessary.

Moreover, language choices made by the tool developers must not dictate the choice of language
used by the application developers. Thus, we propose to deal with the language interoperability
issue by exploring and exploiting interface language techniques like the ones used by the Babel
project [7].

Further, this certification process defines only a minimal set of requirements that a tool must
satisfy in order to be classified as matured within the software collection. We will provide
support to tool developers via the ACTS Information Center and acts-support to meet these
requirements and shared information from the panel reviews. In addition, every time that a new
version of a tool is made available, we will perform an evaluation on the applicable platforms
and write the corresponding report that will be made available via the ACTS Information Center.

3.8 Extendibility

Tools should also provide opportunities for new functionalities and expansion to different
research areas. When appropriate and based on user specific needs, we propose to employ our
expertise to improve the features provided by a particular tool. We foresee this activity
happening in collaboration with the tool developers or independently, when funding for the
development of a certain tool has ceased. As an example, some users of ScaLAPACK have
already expressed an interest in features that are not currently available in that library, such as
tools for facilitating the block cyclic data distribution required by ScaLAPACK. Others have

7

expressed interest in a generalized library for data representation and translation between the
numerical software tools. A last example is a distributed and general-purpose coupling interface
that preempts the communication bottlenecks caused by the current centralized practices.

We propose to actively support tool developers in the adoption of interoperable software
solutions like the CCA to facilitate the expansion of tool functionalities and scope

4. Goals and Milestones

The ultimate goal of the software certification and interoperability will be the distribution of the
ACTS tools on user demand. For now, this has remained a difficult task given the different
compiler requirements, makefiles, distributions, and installations posed by the different tool
developers. By composing all the requirements and specifications inside centralized mechanisms
for software distribution inside the ACTS Information Center, we will be able to provide a better
service to the scientific community and alleviate early difficulties related to tool installation and
testing. To realize these tasks, we propose the creation of dynamically configurable scripts that
will allow users to install subsets of the interoperable tools under different computing platforms
using scripting languages.

The ACTS Software repository will be a collection of actual tar (tape archive) and compressed
files that will contain the distribution files of supported versions of the tools and corresponding
licensing agreements. For tools that require special licensing agreements, as it is currently the
case for some tools in ACTS, the repository will contain actual links to the software download
sites where potential users can sign and agree to special licensing requirements. The ACTS
repository will provide the aforementioned automatic installation scripts for all the tools,
whether the distribution files are in the local ACTS repository or in a remote location. For the
latter, users will be instructed to complete the required downloads before running the installation
scripts.

All these activities can be seen as part a process that has been defined as usability engineering
[8]. The objectives of this process are basically threefold:

i. To capitalize users’ knowledge so that less time is spent with software learning.
ii. To reduce possibilities of error by arranging operations in ways that match user’s notions

and expectations about software behavior.
iii. To facilitate user’s recovery from errors resulting from improper software utilization.

We propose a list of milestones, deliverables and activities related to the issues addressed in this
white paper, for the fiscal years FY03-FY05 (see attached Gantt Chart) [9]. We have
strategically categorized these milestones and deliverables into four groups. The first group,
Solid Base of Tools, contains the activities necessary to maintain and deliver a robust set of
quality tools. Information Center refers to the activities involved in the development,
management and enhancement of the ACTS Information Center. Outreach and Education
contains a minimum set of planned activities for reaching out users of the tools. Lastly,
Collaboration with Others refers to the interactions with other projects and institutions for the
successful delivery, port and acceptance of DOE’s high performance software technology by
other communities.

8

5. References

[1] W. Press, S. Teukolsky, W. Vetterling and B. Flannery, 1992. Numerical Recipes in
Fortran 77, Cambridge University Press.

[2] Trilinos, http://www.cs.sandia.gov/Trilinos

[3] PITAC, http://www.ccic.gov/ac/report

[4] NITRD, http://www.itrd.gov/pubs/blue02/index.html

[5] CCA-Forum, http://www.cca-forum.org

[6] DOE/SciDAC, http://www.er.doe.gov/scidac

[7] Babel, http://www.llnl.gov/CASC/components/babel.html

[8] F. Berman, Engineering NPACI Software for Usability, EnVision, NPACI & SDSC,
January-March 2002.

[9] O. Marques and T. Drummond, An Expanded Framework for the Advanced Computational
Software Collection, Strategic Proposal and Implementation Plan, FY 2003-2005, October
1, 2002.

