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Abstract. With the increasing gap between processor, memory, and intercon-
nect speed, the performances of scientific applications on high performance 
computing systems have become dominated by the ability to move global data.  
However, many benchmarks in the field of high performance computing focus 
on measuring the achieved CPU speed in MFlop/s. In this paper, we introduced 
a novel benchmark, Apex-Map, which focuses on global data movement and 
measures how fast global data can be fed into computational units. Apex-Map is 
a parameterized synthetic performance probe and integrates concepts for tempo-
ral and spatial locality into its design. By measuring the Apex-Map performance 
for a whole range of temporal and spatial localities performance surfaces can be 
generated which can be used to study the characteristics of the computational 
platforms and which are useful for performance comparison. Results on a vector 
platform and two superscalar platforms clearly reflect the design differences be-
tween these two types of systems. 

1   Introduction 

Benchmarking of high performance computing has often focused on floating point 
performance. One prominent example of this is the Linpack benchmark, which is used 
to rank systems in the TOP500 Project [1]. However, the performance of Linpack is in 
general not a good performance indicator for real applications. On most platforms, 
Linpack can achieve over 70% of peak performance while on the same systems many 
real applications might only achieve substantially lower performances. 

With the increasing gap between CPU speed and memory speed, the capability to 
load and store data locally and globally has become the dominant performance factor 
for many applications. System designers are spending enormous efforts to design 
complex memory systems and interconnect networks to increase the data transfer 
bandwidths and reduce latencies. However, we still lack a quantitative methodology 
to relate changes in computer architectures to improvements in application perform-
ances. There even still is no standard or widely accepted way to measure progress in 
our ability to access globally distributed data. STREAM [2] is often used to measure 
memory bandwidth but its use is limited to at the most a single shared memory node. 



Recently, the HPC Challenge benchmark [3] has included the RandomAccess bench-
mark, to measure the rate of integer random updates of memory. Unfortunately, this 
benchmark cannot easily be related to scientific applications and thus does not help 
much for applications performances. 

In this paper, we introduced a novel synthetic memory access probe, called Apex-
Map [4], to measure global data access performance. Apex-Map has three main pa-
rameters, the global memory size M used, the temporal locality α, and the spatial lo-
cality L. Our basic assumption is that an application’s global memory access can be 
approximated by multiple data access streams, each of which can be characterized 
with the three parameters introduced above. The execution profile of Apex-Map can 
then be tuned by its set of input parameters to match the data access characteristics of 
a chosen scientific application. This allows us to use Apex-Map as a performance 
proxy for the actual codes. An advantage of our synthetic benchmark probe is that due 
to its simplicity it can easily be run by simulators. This allows its usage in the early 
stages of architecture design.  

Another feature that distinguishes Apex-Map from many other benchmarks is that 
its input parameters can be varied independent of each other between extreme values. 
This allows generating continuous performance surfaces to explore the performance 
effects of all potential values of the characterizing parameters. By examining these 
surfaces, we can understand how changes in spatial or temporal locality affect the 
performances of applications and which factors are more important for performance. 
Moreover, we can compare these performance surfaces across different platforms and 
explore the advantages and disadvantages of each platform. Most current benchmark 
suits (HPCC, NAS [5], and SPEC [6]) only contain several application codes or their 
synthetic benchmarks have other features strongly limiting the scope of performance 
behaviors they can explore. The results of these application benchmarks provide very 
good indications how similar applications will perform on a specific platform. How-
ever, these benchmarks are not very helpful for other applications, as their perform-
ances cannot be related directly to them. 

The design details of Apex-Map are described in Section 2. In Section 3, we ana-
lyze our results on our three test platforms, two superscalar platforms and one vector 
platform.  We find that the Apex-Map performance results clearly reflect the design 
differences between the superscalar and the vector platforms.  Finally, we analyze the 
scalability of these three platforms based on the Apex-Map results. Section 4 summa-
rize our results and discusses our ongoing and future work. 

2   Implementation 

The parallel implementation of Apex-Map uses the same concept as the sequential 
version [7]. It has the same three main parameters, the global memory size M, the 
temporal locality α, and the spatial locality L. These parameters are related to our 
methodology to characterize application performances. Apex-Map assumes that the 
performance of a data access pattern of an application can be approximated by com-
bining a blocked access to memory with length L with a non-uniform random address 
determined by α. In Apex-Map a global data-array of size M is evenly distributed 



across all processes as illustrated in Fig. 1. Data will be accessed in block mode, i.e., 
L continuous memory addresses will be accessed in succession and the block length L 
is used to characterize spatial locality. The starting addresses X of these data blocks 
are computed by using a non-uniform random address generator driven by a power 
function with the shape parameter α. A power function was chosen as generating 
function as a simple scale-invariant, one-parameter approximation for the behavior of 
real applications.    

 
 
 

 
 
 
 
 

Fig. 1. Apex-Map Data Distribution and Data Access 

Table 1. The flowchart of the Apex-Map implementation 

Basic Parallel MPI 
Repeat N Times 
    Generate Index Array 
    CLOCK(start) 
    For each Index i in the Array 
         If (data not in local memory) 
            Get Remote Data 
         End If   
         Compute 
    CLOCK(end) 
    RunningTime += end – start; 
End Repeat 
 

Repeat N Times 
   Generate Index Array 
   CLOCK(start) 
   For each Index i in the Array 
        If (local data) 
           Compute 
        Else 
           Generate Remote Request 
        End If 
        Serve Incoming Requests 
        Process Replies 
       CLOCK(end) 
       RunningTime += end - start 
End Repeat 
CLOCK(start) 
Wait For Finish 
CLOCK(end) 
RunningTime += end – start 

 
The basic flowchart of the plain parallel version of Apex-Map is shown in the left 

side of Table 1. The indices X are generated and stored in an index array first before 
the measurement starts. Then, for each index it is tested, if the addressed data resides 
in local memory in which case the computation proceeds immediately, or if it resides 
in remote memory in which case it is fetched into local memory first. Apex-Map is 
designed to measure the rate at which global data can be fed not only into the memory 
or into cache but into the CPU itself. Therefore, it is essential that an actual computa-
tion is performed in the Compute module, which currently is a global sum of all ac-
cessed array elements.  
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The pre-computed indices X are stored in an array of size I. The indices are gener-
ated based on a power distribution based random function, which is controlled by the 
parameters M, L, and α. Generated addresses are shifted so that each process accesses 
its own memory with the highest probability. The frequency with which remote data 
access occurs is determined by the temporal locality parameter α. For 256 processes 
and α = 1, the data accesses follow a uniform random distribution and the percentage 
of remote access is 255/256 (=99.6%). With the increase of temporal locality, the per-
centage reduces to 0.55% for α = 0.001.  

The main output of Apex-Map is the average cycles per data access for one proc-
ess and the aggregate bandwidth in MB/s for the given parameters. The results are 
directly comparable across different platforms. By running a set of parameters, such 
as α = 0.001 to 1.0 and L = 1 to 16384 words, Apex-Map can generate a performance 
surface to explore the performance effects of temporal locality and spatial locality. 

2.1   MPI Implementation 

One major non-trivial issue that has not been discussed until now is how the re-
mote access is carried out. The implementation could be highly affected by the avail-
able parallel programming paradigm and different programming styles. We assume 
that the operation for different indices is independent and multiple remote accesses 
can be executed on the fly at the same time. Our first version was developed using 
two-sided MPI since it is the most popular and portable parallel programming model 
available today. 

Even if we only consider MPI, there are many implementations thinkable. One 
possibility is to aggregate the remote requests instead of sending them one by one. We 
explored several different strategies to do this in depth, but had to conclude, that we 
ended up only benchmarking our inventiveness for new algorithms to assemble and 
exchange these messages and our skills to implement them. This approach not only 
further complicates the code, but also conflicts with our locality concept. By exten-
sively rearranging the order of data-accesses, the actual executed address stream will 
no longer show the intended features to achieve the given localities. In effect, such 
rearranging would substantially change the actual localities from the intended locali-
ties and would go contrary against our design principles.  We therefore decided not to 
permit such message aggregation and to exchange messages for each remote access. 

However, we permit multiple outstanding requests for data and out-of-order proc-
essing of the received data. Since in Apex-Map the process numbers for message ex-
changes are generated based on a non-uniform random access, non-blocking, asyn-
chronous MPI functions are used to avoid blocking and deadlock. Given our non-
deterministic random message pattern it was not clear if a scalable implementation of 
Apex-Map in MPI was possible. However, we succeeded with an efficient and scal-
able implementation, which shows increasing performance up to 1000s of processors.  

Due to the unpredictable communication patterns, the flowchart becomes substan-
tially more complex (see the right side of Table 1) and several MPI related implemen-
tation parameters have to be introduced.  The first parameter is B, the number of re-
ceive buffers allocated, which are needed for each call of MPI_Irecv. It defines the 
maximum possible number of concurrent outstanding remote data requests per proc-



ess. Another parameter is SMSG, the maximum number of outstanding send handles 
defined for MPI_Isend. The last parameter is NSER, with which we limit how many 
remote requests can be served at one time by our Serving Incoming Requests module. 
This parameter is especially useful when the remote request distribution is imbal-
anced. Without this parameter, a process may get completely stuck in serving remote 
requests for a long time and might not make any progress on its own local computa-
tion, which would cause a severe load-imbalance at the end of the global execution.  

In summary, there are three kinds of Apex-Map parameters. The first category of 
parameters includes M, L and α, which are the characteristic parameters of interest. 
The second category includes general implementation related parameters, including 
the index array size I and the number of times N the experiment is repeated. The third 
category includes parameters related to the MPI implementation such as the number 
of receive buffer B, the number of send handles SMSG, and the maximum number of 
served requests in one iteration NSER. Fortunately, experiments on several systems 
indicate that our default values for all implementation parameters work reasonably 
well on all of them. The “Wait For Finish” module is needed for MPI because even if 
a process has finished its own task, it may still need to provide data for other proc-
esses and hence cannot complete its execution. 

3   Results and Analysis 

In this section, we first introduce the three platforms we tested, two superscalar plat-
forms and one vector platform. Then, we analyze the relation of the results of Apex-
Map and the PingPong benchmark, as a traditional measure for global communication 
performance. Finally, we compare the Apex-Map results between the three platforms 
and examine how the Apex-Map results reflect their architectural differences.  

3.1   Three Platforms: Seaborg, Cheetah, and Phoenix 

Seaborg is currently the main computing platform of NERSC, a DOE Office of Sci-
ence user facility at Lawrence Berkeley National Laboratory. It is an IBM Power3 
based distributed memory machine. Each node has 16 IBM Power3 processors run-
ning at the speed of 375 MHz. The peak performance of each processor is 1.5 Gflop/s. 
Its network switch is the IBM Colony II, which is connected to two “GX Bus Colony” 
network adapters per node. 

Table 2. Some characteristics of the three platforms used 

 CPU Memory Bandwidth Network 
Seaborg IBM Power3, 375 MHz 16 GB/s /node 

1 GB/s /processor 
IBM Colony-II,  
1 GB/s /node 

Cheetah IBM Power4, 1.3 GHz 44 GB/s /node 
1.375 GB/s /processor 

IBM Federation,  
4 GB/s /node 

Phoenix Cray X1, 400 MHz, 
(800 MHz for vector units) 

25.6 GB/s/ MSP 
 

Cray SeaStar 
25 GB/s /node 



Cheetah is a 27-node IBM p690 system with the IBM Federated switch, where 
each node has 32 Power4 processors at 1.3 GHz. The peak performance of each proc-
essor is 5.2 Gflop/s. Phoenix is a Cray X1 platform consisting of 512 multi-streaming 
vector processors. Each MSP has four single-stream vector processors and a 2 MB 
cache. Four MSPs form a node with 16 GB of shared memory. The inter-connect 
functions as an extension of the memory system, offering each node direct access to 
memories on other nodes. These two machines are currently operated by the center for 
Computational Sciences at Oak Ridge National Laboratory.  Table 2 lists some main 
characteristics of these three systems. 

3.2   Relationship with PingPong Performance 

The PingPong benchmark performance is a well-accepted performance number of 
parallel systems. In this subsection, we are going to examine the relationships be-
tween Apex-Map and PingPong on the above three platforms. The inter-node Ping-
Pong performance is measured with one process sending data while the other process 
is receiving them. The code used was obtained from the Pallas MPI benchmarks [8].  
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Fig. 2. The performance ratio between Apex-Map (α =1.0) and PingPong 

We plot the relative performance of Apex-Map to PingPong in Fig. 2. The inter-
node Apex-Map bandwidth per process is obtained with α =1.0 (uniform random data 
access) and M = 64 Mwords using two Apex-Map processes. Unlike PingPong, Apex-
Map measures the performance of non-uniform random access. The communication 
pattern is unpredictable and the code overhead for it is substantially higher. These 
factors contribute to the lower performance of Apex-Map when the message size is 
small.  With the increase of message size, the constant overhead becomes less and less 
important and the Apex-Map performance gets closer to that of PingPong. On 
Seaborg, Apex-Map performance becomes 60% better than PingPong when message 
size reaches 1024 words. If we only count the number of exchanged messages and of 
local memory accesses, Apex-Map should perform 200% better than PingPong since 
only 50% of the accesses are remote access when α = 1. However, beyond the mes-
sage size of 1024 words, the performance ratio begins to drop. The main reason here 
is that Apex-Map measures how fast the data can be fed into the CPU. After remote 



data arrive in local memory, they further have to be brought into cache and registers 
for the global sum computation. The effect of this computation can be ignored for 
smaller messages but is more substantial for large messages on superscalar platforms 
such as Seaborg. The performance ratio on Cheetah is similar to Seaborg but the MPI-
overhead seems to be more severe.  

On Phoenix, the performance ratio of Apex-Map to PingPong for smaller messages 
is even smaller than on the IBM platforms. There also are further differences in the 
MPI implementations on these two different systems. On Phoenix, using multiple 
receive buffers in Apex-Map does not improve the performance at all while on 
Seaborg and Cheetah, the performances benefit substantially from using multiple 
buffers. Phoenix also does not exhibit the drop in the performance ratio for large mes-
sages. Experimental results indicate that the sum computation has only a minor effect 
on Apex-Map performance on this vector platform.  

3.3   Apex-Map Performance 

Different from other benchmarks, which usually provide only several performance 
points, Apex-Map can generate continuous performance surfaces over a whole range 
of temporal and spatial locality values. These surfaces can be used to study the effects 
of varying temporal and spatial locality and provide insight into architectural designs. 
Fig. 3 and 4 show the surface space for α = 0.001 to 1.0, L = 1 to 65536 words on 256 
processors for M = 64 Mwords*256 on Seaborg and Phoenix. The Z-axis shows the 
achieved bandwidth per processes in log-scale. 
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Fig. 3. The achieved bandwidth per process 
on Seaborg for 256 Processes 

Fig. 4. The achieved bandwidth per process 
on Phoenix for 256 Processes 

 
Fig. 3 shows that both temporal and spatial localities affect the bandwidth sub-

stantially. The worst performance is observed when α = 1 and L = 1, which are the 
lowest values for temporal and spatial locality. By increasing either the temporal lo-
cality or spatial locality, the performance improves. The best performance is obtained 

α α



when α = 0.001 and L = 4096 Words.  Further increasing L does not improve per-
formance. This is mainly because the sum computation on this platform is less effi-
cient for very large messages. Beyond L = 4096 spatial locality has only minor influ-
ence on performance while temporal locality α still has a large influence. If we look at 
an intermediate performance level such as 1 MB/s, we see that the temporal locality 
and spatial locality can be substituted by each other to some degree. To achieve 1 
MB/s at high temporal locality of α = 0.005, a very low spatial locality of L = 1 is 
sufficient. With decreasing temporal locality (increasing α), a higher spatial locality of 
up to L = 85 is needed to maintain this performance. The performance characteristics 
of Cheetah are very similar to Seaborg.  

Fig. 5 shows the performance ratio between Cheetah and Seaborg. From Table 2 
we see that the ratio of processor speeds between these two systems is 3.47, the ratio 
of local memory bandwidth is 1.375, and of network bandwidth is 4. For high tempo-
ral locality or high spatial locality the performance ratio of 2-4 seems to be dominated 
by the ratio of the respective memory bandwidth. For low localities, the performance 
ratio between these two systems is in the range of 6-8 and thus higher than any ratio 
of simple architectural parameters. In this locality range, performance is dominated by 
a large number of very short messages. The details of the MPI implementation as well 
as the cross-section bandwidth of the interconnect can be expected to have a large 
influence on performance in this corner of low localities where it will be notoriously 
difficult to achieve high absolute performance. 
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Fig. 5.  The bandwidth performance ratio 
between Cheetah and Seaborg 

Fig. 6. The performance ratio between 
Phoenix and Cheetah 

 
Fig. 4 shows the performance surface for the Cray X1 for which the effects of in-

creasing spatial locality are significant even for values of L beyond 4096. Spatial lo-
cality affects the performance in general much stronger. For example, on Cheetah, in 
order to maintain the bandwidth around 10 MB/s, if we reducing the temporal locality 
α from 0.001 to 1, the spatial locality needs to increase 128 times. On Phoenix, it only 
needs to increase 16 times. We also notice that when L changes from 32 to 64, the 
performance drops. This is an effect of the MPI implementation on the Cray X1. 
When the message size becomes larger than 32 words or 256 bytes, communication in 

α



MPI will switch from eager mode to rendezvous mode and the implementation over-
head increases.  
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Fig. 7 Contour plots of the performance surfaces for Seaborg and Phoenix 

 
To compare the performance surface for the superscalar IBM systems with the 

Cray vector system we put contour-plots of Seaborg and Phoenix next to each other in 
Fig 7. For the IBM systems, the area of highest performance is of rectangular shape 
and clearly elongated parallel to the spatial locality axis while for the Cray system it is 
elongated parallel to the temporal locality axis. The IBM system can tolerate a de-
crease in spatial locality more easily but is much more sensitive to a loss of temporal 
locality. This reflects the elaborate cache and memory hierarchy on the individual 
nodes as well as the global system hierarchy which also heavily relies on reuse of data 
as the interconnect bandwidth is substantially lower than the local memory band-
width. The Cray system can tolerate a decrease in temporal locality much better but is 
sensitive to a loss in spatial locality. This reflects an architecture which depends very 
little on local caching of data and an interconnect bandwidth equal to local memory 
bandwidth. To see such a clear signature of the Cray architecture is even more surpris-
ing considering that we us an MPI based benchmark, which does not fully exploit the 
capability of this system. The lines of equal performance on the Cray system are in 
general more vertical than diagonal as with the IBM system, which further confirms 
our interpretation. These differences in our performance surfaces overall clearly re-
flect the different design philosophies of these two different systems and demonstrate 
the utility of our approach. 

The performance ratio between Phoenix and Cheetah is shown in Fig. 6. Interest-
ingly, when the spatial locality is poor or temporal locality is high, the vector proces-
sor X1 delivers less performance than the super-scalar processor Power4. In these 
cases, performance is dominated either by short MPI messages for which the Power 4 
processor has the clear advantage of a much faster scalar processor or by very local-
ized memory accesses for which the Power4 can effectively use its cache hierarchy. In 
this locality range, the Cray X1 can also not show its true potential with our current 
MPI based benchmark implementation. A shmem or UPC implementation might 
change this. The X1 shows the clearly better performance when spatial locality be-
comes high, especially in the area with poor temporal locality (the bottom-right cor-
ner). In the best case, it can deliver 12 times better performance than Power4 plat-

α α 



form. Performance in this corner is dominated by the exchange of many long mes-
sages which requires an interconnect network with a large cross-section bandwidth. 

4   Conclusion and Future Work 

The wide gap between the advertised peak performances and achieved performances 
on high performance computing platforms indicates the significance of developing 
better benchmarks to understand the interaction between the features of applications 
and architectures. In this paper, we describe a novel synthetic performance probe, 
Apex-Map. It focuses on measuring the performance of global data movement and has 
three main parameters, the global data size M, the temporal locality α, and the spatial 
locality L. We assume that the performance of the data accesses of an application can 
be approximated by a generic, non-uniform random, block-access to global data de-
fined by the parameters M, α, and L. We have run multiple experiments with Apex-
Map on two superscalar platforms and one vector platform and have generated con-
tinuous performance surfaces, which enable us to study the effects of spatial and tem-
poral locality on performance. The initial results on these platforms show that Apex-
Map can be used to compare efficiency and scalability across different platforms and 
the performance surfaces generated by Apex-Map clearly reflect the design differ-
ences between these platforms.     

Our first parallel implementation of Apex-Map is based on the most common 
parallel programming model, MPI. Currently we are implementing Apex-Map in 
other popular or emerging programming models, such as SHMEM and UPC, to study 
the effects of different programming paradigms and their relation to spatial and tem-
poral locality. More importantly, we are also investigating methods to characterize 
parallel applications with the Apex-Map parameters. In our earlier work, we have 
successfully characterized several sequential scientific kernels [7] this way. Such a 
characterization allows us to use Apex-Map as a performance proxy for real scientific 
applications.   
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