
Highly Parallel, High-Precision Numerical Integration
David H. Bailey1 and Jonathan M. Borwein2

Draft: 2005-04-17

Abstract
This paper describes a scheme for rapidly computing numerical values of definite in-

tegrals to very high accuracy, ranging from ordinary machine precision to hundreds or
thousands of digits, even for functions with singularities or infinite derivatives at end-
points. Such a scheme is of interest not only in computational physics and computational
chemistry, but also in experimental mathematics, where high-precision numerical values
of definite integrals can be used to numerically discover new identities. This paper dis-
cusses techniques for a parallel implementation of this scheme, then presents performance
results for 1-D and 2-D test suites. Results are also given for a certain problem from
mathematical physics, which features a difficult singularity, confirming a conjecture to
20,000 digit accuracy. The performance rate for this latter calculation on 1024 CPUs is
690 Gflop/s. We believe that this and one other 20,000-digit integral evaluation that we
report are the highest-precision non-trivial numerical integrations performed to date.

1. Introduction
Numerical integration (often termed “numerical quadrature”) has numerous applica-

tions in applied mathematics, particularly in fields such as mathematical physics and
computational chemistry. Recently such techniques have found application in the emerg-
ing discipline of experimental mathematics, namely the application of high-performance
computing to research questions in mathematics. In particular, high-precision numerical
values of certain definite integrals, when combined with integer relation detection algo-
rithms, can be used to discover previously unknown analytic evaluations (i.e., closed-form
formulas) for certain integrals, and to provide strong numerical confirmation that such
computer-discovered identities are valid.

An “integer relation detection” scheme is a numerical algorithm which, given an n-long
vector (xi) of high-precision floating-point values, can recover the integer coefficients (ai)
such that a1x1 + a2x2 + · · · + anxn = 0 (to within available precision), or else determine

1Lawrence Berkeley National Laboratory, Berkeley, CA 94720 dhbailey@lbl.gov. This work was
supported in part by the Director, Office of Computational and Technology Research, Division of Math-
ematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract
number DE-AC03-76SF00098.

2Faculty of Computer Science, Dalhousie University, Halifax, NS, B3H 2W5, Canada.
jborwein@cs.dal.ca. This work supported in part by NSERC and the Canada Research Chair Pro-
gramme.

1

that there are no such integers less than a certain size. The precision required in these
computations is typically 100–500 digits, although occasionally thousands of digits are
required. In one instance, 50,000-digit arithmetic was needed to find the underlying
relation [5]. The best-known integer relation algorithm is the “PSLQ” algorithm [4].

Here are some examples of this approach. In 2002, the present authors and Greg Fee
of Canada were inspired by a recent problem in the American Mathematical Monthly [1].
They found, by using an early version of the integration scheme described in this paper,
together with a PSLQ program, that if C(a) is defined by

C(a) =
∫ 1

0

arctan(
√

x2 + a2) dx√
x2 + a2(x2 + 1)

,

then

C(0) = π log 2/8 + G/2

C(1) = π/4− π
√

2/2 + 3
√

2 arctan(
√

2)/2

C(
√

2) = 5π2/96.

Here G =
∑

k≥0(−1)k/(2k + 1)2 = 0.91596559417 . . . is Catalan’s constant. These specific
experimental results then led to the following general result, which now has been rigorously
established, and several others:

∫ ∞

0

arctan(
√

x2 + a2) dx√
x2 + a2(x2 + 1)

=
π

2
√

a2 − 1

[
2 arctan(

√
a2 − 1)− arctan(

√
a4 − 1)

]
.

As a second example, the present authors empirically determined that

2√
3

∫ 1

0

log6(x) arctan[x
√

3/(x− 2)]

x + 1
dx =

1

81648
[−229635L3(8)

+29852550L3(7) log 3− 1632960L3(6)π2 + 27760320L3(5)ζ(3)

−275184L3(4)π4 + 36288000L3(3)ζ(5)− 30008L3(2)π6

−57030120L3(1)ζ(7)] ,

where L3(s) =
∑

n≥1 [1/(3n− 2)s − 1/(3n− 1)s] and where ζ(s) =
∑

n≥1 1/ns is the Rie-
mann zeta function. Based on these experimental results, general results of this type have
been conjectured but few have yet been rigorously established.

A third result is the following, which was found by one of the present authors (Borwein)
and British physicist David Broadhurst [8]:

24

7
√

7

∫ π/2

π/3
log

∣∣∣∣∣
tan t +

√
7

tan t−√7

∣∣∣∣∣ dt
?
= L−7(2) =

∞∑

n=0

[
1

(7n + 1)2
+

1

(7n + 2)2
− 1

(7n + 3)2
+

1

(7n + 4)2
− 1

(7n + 5)2
− 1

(7n + 6)2

]
.

2

This integral arose out of some studies in quantum field theory, in analysis of the volume
of ideal tetrahedra in hyperbolic space. It is the simplest of 998 empirically determined
cases where the volume of a hyperbolic knot complement is expressible in terms of an
L-series and an apparently unexpected integral or sum [8]. The question mark is used
here because although this identity has been numerically verified to very high precision
(see Section 10), as of this date no proof is yet known.

The above examples are ordinary one-dimensional integrals. Two-dimensional inte-
grals are also of interest. Along this line, recently the present authors determined that

2

3

∫ 1

0

∫ 1

0

√
x2 + y2 dx dy +

1

3

∫ 1

0

∫ 1

0

√
1 + (u− v)2 du dv =

1

9

√
2 +

5

9
log(

√
2 + 1) +

2

9
.

See [3] for some additional examples.

2. The Tanh-Sinh Quadrature Algorithm
In a previous paper [7], one of the present authors and two co-authors investigated

several numerical integration schemes, suitable for high-precision usage, and exhibited
results for computer runs with 400- and 1000-digit precision. The authors concluded the
“tanh-sinh” quadrature scheme holds the best promise for very high-precision usage. The
tanh-sinh scheme features: (1) an initialization procedure that is fundamentally faster
than the other schemes, (2) the ability to obtain fully accurate results even for many
integrand functions with infinite derivatives or blow-up singularities at endpoints, and (3)
very fast run times.

The tanh-sinh scheme is based on the observation, rooted in the Euler-Maclaurin
summation formula, that for certain bell-shaped integrands, a simple block-function ap-
proximation to the integral is much more accurate than one would normally expect [2,
pg. 180]. This principle is exploited in the tanh-sinh scheme by transforming an integral
of a given function f(x) on a finite interval such as [−1, 1] to an integral on (−∞,∞),
by using the change of variable x = g(t), where g(t) = tanh(π/2 · sinh t). The function
g(t) has the property that g(x) → 1 as x → ∞ and g(x) → −1 as x → −∞, and also
that g′(x) and all higher derivatives rapidly approach zero for large positive and negative
arguments. Thus one can write, for h > 0,

∫ 1

−1
f(x) dx =

∫ ∞

−∞
f(g(t))g′(t) dt = h

∞∑

j=−∞
wjf(xj) + E(h),

where xj = g(hj) and wj = g′(hj) and E(h) is an error term. In many cases, even where
f(x) has an infinite derivative or an integrable singularity at one or both endpoints, the
resulting integrand f(g(t))g′(t) is a smooth bell-shaped function for which the Euler-
Maclaurin argument applies. In these cases, the error E(h) decreases very rapidly with h
(faster than any power of h).

Thus one can approximate the integral of f(t) on [−1, 1] by the sum
∑N

j=−N wjf(xj),
where the abscissas are given by xj = g(hj) and the weights are given by wj = g′(hj).
In our implementation, the parameter h is set to 2−k, where k is the “level” of the
quadrature calculation, and N is chosen large enough that terms beyond N are smaller

3

than the “epsilon” of the arithmetic precision being used. Successively larger levels reduce
h in half, double the number of abscissa-weight pairs (and thus double the number of
function evaluations required in a quadrature calculation), but also approximately double
the number of correct digits in the result, in many cases. The abscissa-weight pairs of one
level are the even-indexed pairs for the next level. Full details are given in [7]. The basic
tanh-sinh integration scheme was first introduced by Takahasi and Mori [13].

3. High-Precision Arithmetic
The Arbitrary Precision (ARPREC) computation library was used to perform the

required high-precision arithmetic computations described in this paper [6]. This software
library is written in C++, but it includes both C++ and Fortran-90 translation modules,
so that existing C++ and Fortran-90 application programs can utilize this library by
making only very minor changes to the source code. In most cases, it is only necessary to
change type statements and input/output statements of the variables that one wishes to be
treated as arbitrary precision, and all other operations are automatically performed by the
library. One fortunate feature of high-precision numerical quadrature, as described in this
paper, is that individual high-precision arithmetic operations and transcendental function
evaluations can be performed locally on a single processor. Thus it is not necessary to
invoke parallel processing within the ARPREC library itself, at least for the problems
considered below.

4. 1-D Parallel Implementation
Among its virtues, the tanh-sinh quadrature scheme is very well suited for implemen-

tation on a highly parallel computer system, using either a MPI or OpenMP programming
model, although there are several details that must be observed to avoid major reductions
in parallel performance.

Two approaches were considered for a parallel implementation: (1) computing abscissa-
weight pairs in parallel, distributing all resulting pairs to all processors, and then parceling
out function evaluations to processors in some evenly distributed manner; and (2) cal-
culating the abscissa-weight pair indexed j only on processor ρ(j) (for some processor
assignment function ρ(j)), and performing only those function evaluations corresponding
to pairs indexed j on processor ρ(j). (Some additional details, such as the error esti-
mation procedure, are not mentioned in this brief sketch of the parallelization strategy.)
Either way, function-weight products are summed locally, then these sums are combined
onto a single processor and added together using high-precision arithmetic to produce
a global sum. Option (1) requires substantial interprocessor communication, and in the
tests below is scalable only to about 256 processors. It also requires a large amount of
memory on each node. Option (2) requires much less communication and only a modest
amount of memory on each node, but suffers from severe load imbalances (and reductions
in scalability) unless the processor assignment function ρ(j) is chosen carefully.

One straightforward processor assignment scheme is a simple cyclic scheme, namely
ρ(j) = j mod m, where m is the total number of processors. One difficulty with this
scheme derives from the fact that different integration problems require different numbers

4

CYC BC1 BC2 MCBC RAND
Proc. Stride Min Max Min Max Min Max Min Max Min Max

16 1 4375 4375 4368 4384 4369 4386 4374 4376 4267 4505
16 2 0 4375 2184 2192 2056 2322 2187 2188 2133 2247
16 4 0 4375 1092 1096 1028 1290 1093 1094 1037 1135
16 8 0 4375 546 548 514 774 546 547 500 596
16 16 0 4375 273 274 257 516 273 274 246 305
64 1 1093 1094 1088 1104 1088 1105 1093 1095 1022 1169
64 2 0 1094 544 552 512 585 545 548 505 600
64 4 0 1094 272 276 256 325 272 276 242 315
64 8 0 1094 136 138 128 195 136 138 112 176
64 16 0 1094 68 69 64 130 68 69 48 87

256 1 273 274 272 288 272 289 272 274 234 320
256 2 0 274 136 144 128 153 136 137 106 168
256 4 0 274 68 72 64 85 68 69 45 93
256 8 0 274 34 36 32 51 34 35 17 51
256 16 0 274 17 18 16 34 17 18 6 29

1024 1 68 69 64 80 68 85 67 69 42 97
1024 2 0 69 32 40 32 45 32 36 16 54
1024 4 0 69 16 20 16 25 16 20 6 30
1024 8 0 69 8 10 8 15 8 10 0 19
1024 16 0 69 4 5 4 10 4 5 0 12

Table 1: Min/max processor counts for five assignment functions (70,000 indices)

of abscissa-weight pairs to achieve a given accuracy target. Even among the problems
described in the next section, some achieve full 2000-digit accuracy with only nine levels of
abscissa-weight pairs (h = 2−9), while others require 13 levels of abscissa-weight pairs (h =
2−13), which means 16 times as many pairs and 16 times as many function evaluations. But
if one has pre-computed 13 levels of abscissa-weight pairs, then when only nine levels are
used, the abscissa-weight array is accessed with a stride of 16. Such power-of-two strides
result in catastrophic load imbalances when a cyclic assignment function is employed—
some processors have a large fraction of the pairs and corresponding function evaluations,
while other processors literally have none.

It turns out that it is not easy to find an optimal assignment scheme ρ(j) for this
application. Several popular “hashing” schemes from the computer science literature
were tried but found not to be very effective. Table 1 gives the results of tests of five
different assignment schemes. In these tests, 70,000 indices (the approximate number of
abscissa-weight pairs actually generated in the quadrature computations described in the
Sections 5 and 6) were assigned to processors according to the five schemes. The smallest
and largest number of indices assigned to any processor by a given scheme, for various
processor numbers and strides, are then shown in the table. The more nearly equal these
max and min figures are, the better the assignment scheme. The five assignment schemes
are:

1. CYC, a cyclic scheme: ρ(j) = mod(j,m)

5

2. BC1, a block-cyclic scheme: ρ(j) = mod(bj/16c,m)

3. BC2, a block-cyclic scheme: ρ(j) = mod(bj/17c,m)

4. MCBC, a mixed cyclic, block-cyclic scheme: ρ(j) = mod(j + bj/16c,m)

5. RAND, a pseudo-random scheme: ρ(j) = bzjmc, where zj is a uniform generator
on (0, 1).

It can be seen from the results in Table 1 that of the five schemes mentioned, the one
named “mixed cyclic, block-cyclic” (MCBC) is the best. It provides a virtually perfect
load balance across a large range of processors (up to 1024) and strides (up to stride 16).
This is the scheme that was used in the computations described below.

5. 1-D Test Problems
The following 14 integrals are taken from the suite used in the earlier paper [7]. They

are typical of the integrals that have been encountered in experimental math research,
except that in each of these cases an analytic result is known, as shown below, facilitating
the checking of results:

• 1–4: Continuous functions on finite intervals.

• 5–6: Continuous functions on finite intervals, but with an infinite derivative at an
endpoint.

• 7–10: Functions on finite intervals with an integrable singularity at an endpoint.

• 11–13: Functions on an infinite interval.

• 14: An oscillatory function on an infinite interval.

1 :
∫ 1

0
t log(1 + t) dt = 1/4

2 :
∫ 1

0
t2 arctan t dt = (π − 2 + 2 log 2)/12

3 :
∫ π/2

0
et cos t dt = (eπ/2 − 1)/2

4 :
∫ 1

0

arctan(
√

2 + t2)

(1 + t2)
√

2 + t2
dt = 5π2/96

5 :
∫ 1

0

√
t log t dt = −4/9

6 :
∫ 1

0

√
1− t2 dt = π/4

7 :
∫ 1

0

√
t√

1− t2
dt = 2

√
πΓ(3/4)/Γ(1/4) = β(1/2, 3/4)/2

6

8 :
∫ 1

0
log t2 dt = 2

9 :
∫ π/2

0
log(cos t) dt = −π log(2)/2

10 :
∫ π/2

0

√
tan t dt = π

√
2/2

11 :
∫ ∞

0

1

1 + t2
dt = π/2

12 :
∫ ∞

0

e−t

√
t

dt =
√

π

13 :
∫ ∞

0
e−t2/2 dt =

√
π/2

14 :
∫ ∞

0
e−t cos t dt = 1/2

6. 1-D Performance Results
The results of the 1-D parallel quadrature tests are given in Table 2. The first line

gives the run time, in seconds, for the initialization process (calculating all abscissa-weight
pairs). The second column gives the levels of abscissa-weight pairs (see Sections 2 and
4) required to achieve the target accuracy (10−2000) for the individual problems. The
corresponding number of abscissa-weight pairs is roughly 8.7× 2k, where k is the number
of levels shown in the table. The target accuracy was achieved in each problem, except
in Problem 14 where the accuracy was 10−1972. When 14 levels are used, or if a slightly
smaller value of h is used, the error target is achieved here also.

These runs were made on “System X,” an Apple G5-based parallel supercomputer at
Virginia Technical University, using the IBM xlf90 Fortran-90 compiler (for the paral-
lel quadrature application program) and the IBM xlC C++ compiler (for the ARPREC
library). The parallel program performs all functions of the single processor code, in-
cluding the calculation of an estimated error in the result [7]. The one-processor timings
shown in Table 2 are for an efficient single-processor version of this program, with no
parallel constructs. Thus the speedup ratios shown in the table are true comparisons to
single-processor performance. Note that these are not scaled speedup figures—each run,
including the 1-CPU run, is for the same full-sized problem. Note also that these timings
exhibit super-linear speedup up to 256 CPUs, but drop back a bit for 1024 CPUs.

6. Two-Dimensional Quadrature
The tanh-sinh scheme described above can be generalized to two or more dimensions.

In particular, a 2-D iterated integral can be approximated as follows:

∫ 1

−1

∫ 1

−1
f(x, y) dx dy =

∫ ∞

−∞

∫ ∞

−∞
f(g(s), g(t))g′(s)g′(t) ds dt

= h
∞∑

k=−∞

∞∑

j=−∞
wjwkf(xj, xk) + E(h),

7

Problem Levels Processors
Number Required 1 4 16 64 256 1024

Init 4329.04 1085.34 271.87 68.88 17.73 5.02
1 10 480.07 101.63 25.55 6.45 1.65 0.53
2 10 1403.63 294.32 74.04 18.83 4.99 1.54
3 10 1421.99 317.01 79.69 20.42 5.24 1.83
4 10 1553.24 328.73 82.13 20.84 5.52 1.63
5 9 236.68 51.62 12.90 3.30 0.93 0.30
6 10 26.31 5.62 1.42 0.36 0.11 0.05
7 10 52.65 11.46 2.87 0.72 0.20 0.10
8 9 234.06 50.98 12.85 3.26 0.90 0.27
9 10 1552.38 333.24 83.60 21.34 5.44 1.84

10 10 1138.78 245.45 61.39 15.73 3.99 1.44
11 11 25.30 5.17 1.30 0.33 0.09 0.04
12 12 655.03 161.99 40.71 10.20 2.65 0.80
13 13 871.99 216.50 54.13 13.65 3.52 0.97
14 13 8291.43 1826.02 457.02 114.84 29.48 7.87

Total 22272.58 5035.08 1261.47 319.15 82.44 24.23
Speedup 1.00 4.42 17.66 69.79 270.17 919.22

Table 2: Parallel run times (in seconds) and speedup ratios for 1-D problems

where g(t) = tanh(π/2 · sinh(t)) as in the 1-D case, and where xj and wj are the 1-D
abscissas and weights. This same approach can easily be extended to numerically evaluate
more general integrals of the form

∫ b

a

∫ d(y)

c(y)
f(x, y) dx dy.

As before, the Euler-Maclaurin formula asserts that for a certain class of functions
f(x, y), including many with infinite derivatives and blow-up singularities at the bound-
aries of the rectangle, the error E(h) in the above approximation goes to zero faster than
any power of h. As a result, 2-D tanh-sinh quadrature, like the 1-D version, often achieves
quadratic convergence, wherein each additional level of abscissa-weight pairs yields twice
as many correct digits in the result.

However, 2-D quadrature inherently is much more expensive than 1-D quadrature,
because the number of function evaluations in a 2-D array, assuming the same overall
spacing, is many times larger than in a 1-D problem. Millions of function evaluations
may be required to obtain, say, 100-digit accuracy in the result. Also, it has been found
that 2-D tanh-sinh scheme is more sensitive to anomalies such infinite derivatives or blow-
up singularities at boundaries. In such cases, each additional level typically yields only
about 1.4 times as many correct digits, whereas in 1-D quadrature, problems with similar
anomalies typically exhibit quadratic convergence (each additional level approximately

8

doubles the number of correct digits). What’s more, in 2-D quadrature, each additional
level quadruples the computational cost instead of merely doubling the cost, since four
times as many function evaluations are required.

7. 2-D Parallel Implementation
The parallel implementation of the 2-D scheme again relies crucially on a carefully

chosen scheme for allocating processors to the abscissa array for function evaluations.
The program assigns a batch of 16 consecutively numbered processors to each column,
and then assigns the function evaluations in this column among these 16 processors. In
this way, the program exploits available parallelism in both dimensions. The particular
assignment scheme used by the program is as follows: the 16 processors p that satisfy
bp/16c = mod (j+j/16, n/16) are assigned to column j of the 2-d array of abscissas. Then
within column j, location (i, j) is assigned to the processor p that satisfies mod(p, 16) =
mod(i + i/16, 16). Note that both rows and columns employ a mixed cyclic, block-cyclic
scheme, which provides an even load balance for function evaluations, yet avoids difficulties
with power-of-two strides.

8. 2-D Test Problems
The serial and parallel implementations of this 2-D tanh-sinh quadrature scheme have

been tested on a suite of eight test problems. Because of the much higher computational
cost of 2-D quadrature, a more modest goal of 100-digit accuracy was established in these
problems, using 120-digit working precision. As before, this set includes some rather
difficult examples, including one problem with a non-differentiable point at a boundary
(Problem 1), two problems with a blow-up singularity at a boundary (Problems 4 and
6), two problems where the inner integral boundary is not merely an interval but instead
bounded by two functions (Problems 7 and 8), and one problem on an infinite interval
(Problem 5).

1 :
∫ 1

0

∫ 1

0

√
s2 + t2 ds dt =

√
2/3− log(2)/6 + log(2 +

√
2)/3

2 :
∫ 1

0

∫ 1

0

√
1 + (s− t)2 ds dt = −

√
2/3− log(

√
2− 1)/2 + log(

√
2 + 1)/2 + 2/3

3 :
∫ 1

−1

∫ 1

−1
(1 + s2 + t2)−1/2 ds dt = 4 log(2 +

√
3)− 2π/3

4 :
∫ π

0

∫ π

0
log[2− cos s− cos t] ds dt = 4πG− π2 log 2

5 :
∫ ∞

0

∫ ∞

0

√
s2 + st + t2 e−s−t ds dt = 1 + 3/4 · log 3

6 :
∫ 1

0

∫ 1

0
(s + t)−1[(1− s)(1− t)]−1/2 ds dt = 4G

7 :
∫ 1

0

∫ t

0
(1 + s2 + t2)−1/2 ds dt = −π/12− 1/2 · log 2 + log(1 +

√
3)

8 :
∫ π

0

∫ t

0
(cos s sin t)e−s−t ds dt = 1/4 · (1 + e−π)

9

Problem Levels Processors
Number Required 1 16 64 256 1024

1 9 1246.26 96.42 24.66 7.05 3.33
2 6 19.03 1.52 0.46 0.27 0.73
3 7 82.79 6.56 1.91 0.64 1.17
4 9 15310.44 1194.52 305.11 81.88 24.40
5 9 2209.86 170.84 44.38 12.23 4.62
6 9 1552.87 120.86 30.80 8.67 3.37
7 6 21.79 1.72 0.54 0.28 0.73
8 6 113.04 8.90 2.87 1.08 1.51

Total 20556.08 1601.34 410.73 112.10 39.86
Speedup 1.00 12.84 50.05 183.37 515.71

Table 3: Parallel run times (in seconds) and speedup ratios for 2-D problems

9. 2-D Performance Results
Performance results for the 2-D quadrature program are shown in Table 2. In each

problem over 100-digit accuracy, except for Problems 4 and 6, where the errors were 10−86

and 10−80, respectively. No results are shown in this table for four processors, since the
parallel program assumes a minimum of 16 processors.

It is clear from these results that, unlike the 1-D case, there is a large difference in
run times between well-behaved integrands and those with singularities at a corner or
boundary. Those without such anomalies can be evaluated to over 100-digit accuracy
with just six levels, requiring only a few minutes run time. For those problems that do
exhibit such anomalies, nine levels are needed, requiring many more function evaluations.
Indeed, for Problems 4 and 6, even nine levels of abscissa-weight pairs evidently were not
sufficient—it appears that one additional level would be required in each case to achieve
over 100 digit accuracy, which would multiply the run times by a factor of four.

The parallel speedups for 2-D quadrature are not nearly as high as for 1-D quadra-
ture, in part because features such as estimated error calculation are significantly more
complicated than in the 1-D case, and also because it is more difficult to allocate tasks
evenly in 2-D. Also, much of this reduction in scalability occurs in the shorter-running
problems, whose modest computational work cannot be as efficiently distributed among
1024 processors.

10. Confirmation of a Conjectured Identity to 20,000 Digits
As mentioned in the Introduction, one of the present authors (Borwein) and David

Broadhurst found the following conjectured identity:

24

7
√

7

∫ π/2

π/3
log

∣∣∣∣∣
tan t +

√
7

tan t−√7

∣∣∣∣∣ dt
?
= L−7(2) = (1)

∞∑

n=0

[
1

(7n + 1)2
+

1

(7n + 2)2
− 1

(7n + 3)2
+

1

(7n + 4)2
− 1

(7n + 5)2
− 1

(7n + 6)2

]
.

10

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 1.1 1.2 1.3 1.4 1.5 1.6

Figure 1: Integrand function with singularity

This integral arose out of some studies in quantum field theory, in analysis of the volume
of ideal tetrahedra in hyperbolic space. Note that the integrand function has a nasty
singularity at t = arctan(

√
7) (see Figure 1). The question mark is used because no

formal proof is yet known. We note that Richard Crandall [10] has observed that the
right-hand expression L−7(2) is also given by the integral

L−7(2) = −
∫ 1

0

1 + 2u + u2 + 2u3 + u4

1 + u + u2 + u3 + u4 + u5 + u6
log u du. (2)

Because of the interest expressed by researchers in the above conjecture and some
related conjectures [8], we decided to calculate the integral

24

7
√

7

∫ π/2

π/3
log

∣∣∣∣∣
tan t +

√
7

tan t−√7

∣∣∣∣∣ dt = 1.15192547054449104710169239732054996 . . .

to 20,000-digit accuracy (which approaches the limits of presently feasible computation)
and compare with a 20,000-digit evaluation of the six-term infinite series on the right-
hand side of (1). This integral was evaluated by splitting it into two integrals, the first
from π/3 to arctan(

√
7), and the second from arctan(

√
7) to π/2, and then applying the

1-D tanh-sinh scheme to each part. This test was successful—the numerical value of the
integral on the left-hand side of (1) agrees with the numerical value of the six-term infinite
series on the right-hand side of (1) to at least 19,995 digits. The infinite series in was
evaluated in approximately five hours on a personal computer using Mathematica.

11

CPUs Init Integral #1 Integral #2 Total Speedup
1 ∗190013 ∗1534652 ∗1026692 ∗2751357 1.00

16 12266 101647 64720 178633 15.40
64 3022 24771 16586 44379 62.00

256 770 6333 4194 11297 243.55
1024 199 1536 1034 2769 993.63

Table 4: Parallel run times (in seconds) and speedup ratios for the 20,000-digit problem

Efficiently performing any numerical computation to 20,000-digit accuracy requires
advanced techniques. The key idea here is to note that high-precision multiplications can
be evaluated using a linear convolution scheme, which in turn can be performed using fast
Fourier transforms. High-precision divisions can then be done using Newton iterations.
Quadratically convergent algorithms (where every iteration roughly doubles the number
of correct digits) are known for most transcendental functions. These advanced algorithms
are incorporated in the ARPREC multi-precision package and are automatically invoked
when a numeric precision of greater than about 2,000 digits is specified [6]. Aside from
precision level, the parallel integration was performed exactly as described in Section 4.
Thirteen levels (approximately 85,000) abscissa-weight pairs were required to achieve the
target accuracy in this problem.

Performance results on the Virginia Tech system are shown in Table 4. Multi-CPU
timings include barrier waits and communication operations, as before. The one-CPU
timings (noted by asterisks) are the sums of individual process timings in a 64-CPU run,
in which only local computation was timed—barrier waits and communication operations
were not timed. Based on tests on other problems and problem sizes, these summed
timings are accurate estimates of the timings of a true 1-CPU run, which would have
taken 32 days in this case. In these runs, as well as the others reported in the paper,
timing variations of up to 6% have been noted in tests. The performance rate for the
1024-CPU run is 690 Gflop/s, based on a measurement of floating-point operation count
done on the Seaborg system at LBNL, using a hardware performance monitoring tool.

As a separate test of our computer program, we also evaluated Crandall’s integral (2),
which, as noted above, is equal to L−7(2), or in other words the right-hand side of the
conjectured identity (1). On 1024 CPUs, our program was able to evaluate this integral
to 20,000 digits (which completely agrees with the results above) in 416 seconds runtime,
including initialization. This is 6.6 times faster than the timing (2769 seconds) shown in
Table 4, even though (2) also has a singularity and requires 25% more function evaluations
than (1) to attain 20,000-digit accuracy. The main reason for the lower run time is the
fact that the integrand in (2), which lacks trigonometric functions, is faster to evaluate,
although it should also be noted that there is only one integral to evaluate here, whereas
two are required for (1).

We believe that these two evaluations are the highest-precision non-trivial numerical
integrations performed to date.

12

References

[1] Zafar Ahmed, “Definitely an Integral,” American Mathematical Monthly, vol. 109
(2002), no. 7, pg. 670–671.

[2] Kendall E. Atkinson, Elementary Numerical Analysis, John Wiley and Sons, 1993.

[3] David H. Bailey, Jonathan M. Borwein, Vishaal Kapoor and Eric Weisstein, “Ten
Problems in Experimental Mathematics: A Challenge,” manuscript, 2004, available
at http://crd.lbl.gov/˜dhbailey/dhbpapers/tenproblems.pdf.

[4] David H. Bailey and David Broadhurst, “Parallel Integer Relation Detection:
Techniques and Applications,” Mathematics of Computation, vol. 70, no. 236
(2000), pg. 1719-1736.

[5] David H. Bailey and David J. Broadhurst, “A Seventeenth-Order Polylogarithm
Ladder,” manuscript, 1999, availabe at
http://crd.lbl.gov/˜dhbailey/dhbpapers/ladder.pdf.

[6] David H. Bailey, Yozo Hida, Xiaoye S. Li and Brandon Thompson, “ARPREC: An
Arbitrary Precision Computation Package,” technical report LBNL-53651, software
and documentation available at http://crdl.bl.gov/˜dhbailey/mpdist.

[7] David H. Bailey, Xiaoye S. Li and Karthik Jeyabalan, “A Comparison of Three
High-Precision Quadrature Programs,” manuscript, available at
http://crd.lbl.gov/˜dhbailey/dhbpapers/quadrature.pdf.

[8] J. Borwein and D. Broadhurst, “Determination of Rational Dirichlet-zets Invariants
of Hyperbolic Manifolds and Feynman Knots and Links,” available at
http://arxiv.org/hep-th/9811173.

[9] J. Borwein, J. Zucker and J. Boersma, “Evaluation of Character Euler Double
Sums,” D-DRIVE Preprint #260, 2004, available at
http://users.cs.dal.ca/˜jborwein/bzb7.pdf.

[10] Richard E. Crandall, private communication, April 2005.

[11] William Gropp, Ewing Lusk, Anthony Skjellum, Using MPI: A Portable Parallel
Programming with the Message-Passing Interface, MIT Press, Cambridge, MA,
1996.

[12] Yozo Hida, Xiaoye S. Li and David H. Bailey, “Algorithms for Quad-Double
Precision Floating Point Arithmetic,” 15th IEEE Symposium on Computer
Arithmetic, IEEE Computer Society, 2001, pg. 155–162.

[13] H. Takahasi and M. Mori, “Double Exponential Formulas for Numerical
Integration,” Publications of RIMS, Kyoto University, vol. 9 (1974), pg. 721–741.

13

