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Abstract

We present a numerical method for computing diffusive transport on a surface
derived from image data. Our underlying discretization method uses a Cartesian
grid embedded boundary method for computing the volume transport in region
consisting of all points a small distance from the surface. We obtain a representa-
tion of this region from image data using a front propagation computation based
on level set methods for solving the Hamilton-Jacobi and eikonal equations. We
demonstrate that the method is second-order accurate in space and time, and is ca-
pable of computing solutions on complex surface geometries obtained from image
data of cells.
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1 Introduction

We consider the problem of computing the solution to the diffusion equation on a sur-
face.

∂C

∂t

surf

= ∆surfCsurf (1)

Csurf : S → R (2)

whereS is a surface inR3. Our interest is motivated by problems in systems biology.
Processes such as cellular metabolism, locomotion, and chemotaxis, are mediated in
part by diffusive transport on the membrane, represented by (1). In particular, we want
to be able to compute high-fidelity solutions to these problems, in which the surface is
obtained from image data of actual cells.

Traditional approaches to solving partial differential equations (PDE) on surfaces
have been based either on a global representation of the surface, such as a triangulariza-
tion, or on local representations, such as with local coordinate representations, stitched
together using techniques such as multiblock or overset grids. In either case, both the
construction of such representations and the design of discretizations of (1) based on
them, have algorithmic difficulties and complications beyond those arising when the
domain is a subset ofR2. In this paper, we present an approach to this problem that
avoids many of these difficulties. It is based on recent developments both in numerical
methods for solving partial differential equations in complex geometries, and in math-
ematical methods for detecting features in image data. In our approach, we solve the
heat equation on an annular domain consisting of all the points within a small distance
ε of S.

∂C

∂t
= ∆C (3)

C : Ω(S, ε) → R (4)

∂C

∂n
= 0 on∂Ω(S, ε) (5)

Ω(S, ε) = {x : min
x′∈S

||x− x′|| < ε} (6)

This problem is solved using a Cartesian grid embedded boundary method [1, 2], in
which the equation (3) is discretized an any domain inR3 on a finite volume grid
constructed by intersecting the domain with rectangular grid cells. A representation
of the annular region for which the requisite intersection information is obtained from
image data using the methods in [3] that represent the surface in terms of a solution
to a Hamilton-Jacobi equation. Specifically, we obtain from this process a function
whose values are the signed distance from the surface, defined in an annular region
around the surface. Using such an implicit function representation forΩ(S, ε) it is
routine to compute the required intersection information. In [4], a similar approach
to the one described here has been used to simulate biomedical fluid flow problems
starting from images derived using the methods in [3] from MRI data. The application
to surface transport both imposes a different set of requirements, and provides some
opportunities for simplification.
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The idea of solving this problem on a Cartesian mesh discretization onΩ(S, ε)
was used previously in [5]. In that case, the PDE being solved was the original surface
equation (1), extended in a natural way to the annular region. Such an approach leads to
complicated difference approximations of the metric terms in the surface derivatives.
In addition,∆surf is highly degenerate when viewed as an operator on functions in
R3. For example, in the case whereS is a plane, any function that depends on the
coordinate direction orthogonal toS is in the null space of∆surf . This complicates the
construction of implicit time discretizations, that require the solution of linear systems
derived from discretizing∆surf .

The present approach avoids both these problems. The finite volume approxima-
tions to∆ are relatively simple, and when combined with standard implicit discretiza-
tions in time, lead to linear systems that permit the use of efficient iterative methods
such as multigrid. The cost is that the solution to (3) is only an approximation to the
solution to (1). However, we show that the approximation isO(ε2). Sinceε can be
chosen to be a fixed multiple of the mesh spacing, this leads to error that is comparable
to the other discretizations errors in a second-order accurate method.

2 Thin-Layer Asymptotics

Let S ⊂ R3 denote a compact, smooth, orientable surface, with orientation defined by
a unit normal fieldn. Then there exist a finite collection of smooth maps of the form,

x0 : (0, 1)2 → S (7)

such that union of the range of these maps coverS, and, forε sufficiently small, the
extensions

x : (−1, 1)× (0, 1)2 → Ω(S, ε) (8)

x(ξ1, ξ2, ξ3) = εξ1n(x0(ξ2, ξ3)) + x0(ξ2, ξ3) (9)

have nonsingular Jacobians and ranges whose union coversΩ(S, ε). In that case,
x(ξ1, ξ2, ξ3) is the unique point inΩ(S, ε) that is a signed distanceεξ1 from x0(ξ2, ξ3).

For any smooth coordinate mapping, we have

∆C =
1

det(F )
∇ξ ·

(
det(F )F−TF−1∇ξC

)
, F = ∇ξx (10)

For the coordinate mapping (9) this leads to the following form for the diffusion equa-
tion (3).

ε2J
∂C

∂t
=

∂

∂ξ1

(
J
∂C

∂ξ1

)
+ ε2

∑
1<i,j≤3

∂

∂ξi

(
aij

J

∂C

∂ξj

)
(11)

where

J =
(
∂x

∂ξ2
× ∂x

∂ξ3

)
· n (12)

and

aij = ±
(
∂x

∂ξi
× n

)
·
(
∂x

∂ξj
× n

)
for 1 < i, j ≤ 3 (13)
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where± = + if i = j,± = − if i 6= j. We can computeJ andaij as functions ofε.

J = J0 − εξ1H + ε2ξ1
2K

aij = a0
ij + εξ1Aij +O(ε2)

where the quantitiesJ0, a0
ij ,H,K andAij depend only onξ2, ξ3. In particular, the sur-

face Laplacian∆surf appearing in (1) can be written in terms of theξ2, ξ3 coordinate
system.

∂C

∂t

surf

= ∆surfCsurf (14)

=
1
J0

∑
1<i,j≤3

∂

∂ξi

(
a0

ij

J0

∂C

∂ξj

surf)
(15)

We now show that asε → 0, a solution to (3) differs from a solution to (1) by
O(ε2). To do this, we expandC in powers ofε

C =
3∑

p=0

C(p)εp, (16)

equate terms in (11) corresponding to the same power ofε. We will further assume
that the derivatives ofC with respect to all of the original spatial variables and time
are independent ofε, so that no inverse powers ofε appear from differentiating with
respect to time or the mapped variables. This will be the case, for example, if the initial
data is independent ofξ1.

First, we note that the homogeneous Neumann boundary condition in (3) becomes

∂C

∂ξ1
= 0 at ξ1 = ±1 (17)

Furthermore, differentiating (16) with respect toε implies that (17) must hold for each
of theC(p) separately. Then we have:

• p = 0:
∂

∂ξ1

(
J0 ∂C

(0)

∂ξ1

)
= 0 (18)

and (17) implies thatC(0) is independent ofξ1.

• p = 1:
∂

∂ξ1

(
J0 ∂C

(1)

∂ξ1

)
=

∂

∂ξ1

(
ξ1H

∂C(0)

∂ξ1

)
= 0 (19)

Again, by (17)C(1) is independent ofξ1.

• p = 2:
After rearranging terms, and recalling thatC(0) andC(1) are independent ofξ1, we
have

− ∂

∂ξ1

(
J0 ∂C

(2)

∂ξ1

)
= J0 ∂C

(0)

∂t
+

∑
1<i,j≤3

∂

∂ξi

(
a0

ij

J0

∂C(0)

∂ξj

)
. (20)
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The right-hand side is independent ofξ1, and by (17) it must be identically zero. i.e.,
C(0) satisfies (14). In addition,C(2) is independent ofξ1.

• p = 3:
Similarly to the casep = 2 we have

− ∂

∂ξ1

(
J0 ∂C

(3)

∂ξ1

)
= J0 ∂C

(1)

∂t
+

∑
1<i,j≤3

∂

∂ξi

(
a0

ij

J0

∂C(1)

∂ξj

)
+ ξ1G(ξ2, ξ3). (21)

It follows fromC(1) being independent ofξ1 and (17) thatC(1) satisfies (14).

From this argument we see thatC(0) + εC(1) satisfies (14), which implies thatC itself
differs from a solution to (14) byO(ε2).

Even though the analysis was carried out given specific assumptions about the ini-
tial data, the conclusion appears to be robust relative relaxing the assumptions. In
particular, we continue to observe in our numerical calculations nearly invariant be-
havior of the solution in the direction normal to the surface for problems with forcing
of equation (1) with a source term; for long-time integration of the equations; and for
initial data that varies in the normal direction. Qualitatively, this is not surprising: dif-
fusion in the normal direction relaxes to a local steady state very rapidly relative to the
time scale for diffusion in the tangential direction.

3 Embedded Boundary Discretization

The underlying discretization of space is given by rectangular control volumes on a
Cartesian grid:Υi = [ih, (i + u)h], i ∈ Z3, h is the mesh spacing, andu is the
vector whose entries are all ones. The geometry is represented by the intersection of
the irregular domainΩ with the Cartesian grid. We obtain control volumesVi = Υi∩Ω
and facesAi± 1

2 ed
, which are the intersection of∂Vi with the coordinate planes{x :

xd = (id + 1
2 ±

1
2 )h}. Hereed is the unit vector in thed direction. We also define

AB
i to be the intersection of the boundary of the irregular domain with the Cartesian

control volume:AB
i = ∂Ω ∩Υi.

In order to construct finite difference methods, we will need only a small number
of real-valued quantities that are derived from these geometric objects.

• Areas and volumes are expressed in dimensionless terms: volume fractionsκi =
|Vi|h−3, face aperturesαi± 1

2 ed
= |Ai± 1

2 ed
|h−2 and boundary aperturesαB

i = |AB
i |h−2.

• The locations of centroids, and the average outward normal to the boundary are given
exactly by:
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Face centroid:xi+ 1
2 ed

=
1

|Ai+ 1
2 ed

|

∫
A

i+ 1
2 ed

xdA

Boundary face centroid:xB
i =

1
|AB

i |

∫
AB

i

xdA

Outward normal:nB
i =

1
|AB

i |

∫
AB

i

nBdA

wherenB is the outward normal to∂Ω, defined for each point on∂Ω. We assume that
we can compute estimates of these quantities that are accurate toO(h2).

Using just these quantities, we can define conservative discretizations for the diver-
gence operator. Let~F = (F 1, F 2, F 3) be a function ofx. Then

∇ · ~F ≈ 1
|Vi|

∫
Vi

∇ · ~FdV =
1
|Vi|

∫
∂Vi

~F · ndA

≈ 1
κih

∑
±=+,−

3∑
d=1

±αi± 1
2 ed

F d(xi± 1
2 ed

)
(22)

where (22) is obtained by replacing the integrals of the normal components of the vec-
tor field ~F with the values at the face centroids. We obtain the spatial discretization
from replacingF d(xi± 1

2 ed
) with difference approximations. Following [1, 2], we de-

fine the discrete Laplacian

∆hC =
1
κih

∑
±=+,−

3∑
d=1

±αi± 1
2 ed

F d
i± 1

2 ed
(23)

where the fluxes satisfy

F d
i+ 1

2 ed
=

∑
as

(Ci+s+ed
− Ci+s)
h

= F d(xi+ 1
2 ed

) +O(h2). (24)

Here the sum over faces and the weights correspond to bilinear interpolation of the
centered difference approximations to the centroid location. Then we solve

dCi

dt
= (∆hC)i (25)

by discretizing in time using a second-order accurate,L0-stable implicit Runge-Kutta
method [6]. The resulting method provides uniformly second-order accurate solutions
and is amenable to the use of geometric multigrid solvers for solving the resulting
linear systems. This approach can be generalized to include the effect of source terms;
for details, see [1, 2].
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4 Grid Generation

In order to carry out the numerical procedure outlined in the previous section, it is
necessary to generate the geometric data obtained from intersectingΩ(S, ε) with rect-
angular grid cells, i.e., the areas, volumes, and centroids defined above. In order to do
this, we compute on a Cartesian grid the representation of the domain as an implicit
function:

Ω(S, ε) = {x : |ψ(x)| < ε} (26)

Given the values ofψ on the grid, it is a routine exercise in quadrature to compute the
intersection information we require toO(h2) accuracy. In this section, we will describe
how we obtain such an implicit function starting from image data.

Typically, we are given image data in the form of intensitiesG = G(x) evaluated
on a rectangular grid in three dimensions. In this work, the images are given as a
collection of deconvolution microscopy images where eachx − y slice contains gray
scale values in the range[0, 1] (figure 1). The goal of this method is to find a surface
that lies along high values of the gradient∇G, as that indicates a sharp change in
image intensity. Additional requirements need to be imposed, since in a typical image,
the gradient is noisy, and there can be both missing edges due to imaging effects and
multiple possible edges due to internal structures. Following [3], we can formulate this
problem as a front propagation problem, to be solved using level set methods to solve
the associated Hamilton-Jacobi equation [7].

ψt + F |∇ψ|+ ~U · ∇ψ + gκ|∇ψ| = 0

Here the set{x : ψ(x, t) = 0} corresponds to the location of the front at timet, with
the front located initially outside the surface to be detected, and

κ = ∇ ·
(
∇ψ
|∇ψ|

)
is the curvature. The functionsF and~U are chosen so that the front is attracted to the
maximum value of|∇G|, while g is chosen to constrain the curvature of the front, thus
preventing the front from propagating through small gaps in the image data represen-
tation of the surface.

kI =
1

1 + |∇S(G)|
F = αkI , g = γkI , ~U = β∇(|∇(S(G))|)

The operatorS is a Gaussian smoothing operator, chosen to reduce the noise in the
image data. The parametersα, β, andγ are currently chosen by trial and error, usually
by running the detection code on two-dimensional slices of the data, which takes a
few seconds per run on a workstation (computing a 3D solution typically takes a few
minutes). When the solution to (4) reaches a steady state, we expect the zero set ofψ to
correspond to the outermost surface in the image. In practice, one solves the equations
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for a fixed time (e.g.t = 1) and adjusts the parametersα, β, andγ so that a solution
sufficiently close to a steady state is obtained. Since we are interested in the solution
only within a small distance of the propagating front, we use the technique in [8] to
perform the calculation only in a narrow band near the front. Finally, we require not
only the location of the front, but thatψ be a distance function defined within anε
distance on either side of the front. We use the method in [9] to compute extensions of
F , gκ and~U away from the zero set at each time step so that the time evolution tends
to preserve the property that the solution satisfies the eikonal equation|∇ψ| = 1 and
is therefore a signed distance function. In particular at the end of the calculation we
expect the condition (26) to be satisfied. We also post-process the solution by solving
the eikonal equation using the method in [10, 11] to eliminate numerical error in the
signed distance property that may have accumulated in the course of the time evolution.

5 Results

We show results for two examples. In the first, the surfaceS in a sphere of radius
r0 = .4. In spherical coordinates, the initial data isCsurf (θ, φ, t = 0) = cos(φ), for
which the exact solution is

Csurf (θ, φ, t) = cos(φ)e−2t/r2
0

We compute the solution on a spherical shell as in (3) forh = 1
32 ,

1
64 ,

1
128 , with ε = 3h.

Since the sphere can be specified analytically as a signed distance function, this calcu-
lation will test only the accuracy of the method for discretizing the diffusion equation.
We advance the solution in time until the accumulated time is0.1 using a time-step
∆t = h

2 . At the final time the magnitude of the solution has decreased by approxi-
mately a factor of 4. Figure 2 shows the computed solution on the outer surface of the
sphere. Figure 3 shows the corresponding error, given as the difference between the
computed solution and the exact solution extended to the entire spherical shell to be
constant in the radial direction. Table??contains various norms of the error, where the
integral norms (L1 andL2) are computed by computing a consistent approximation to
the integrals overΩ(S, ε) divided by2ε. In the limit of vanishingε, these estimates
converge to an estimate of the appropriate integrals overS. TheL∞ norm is computed
as the maximum over all cells of the absolute value. For all three norms, the method is
seen to be second order accurate. This is consistent with the modified equation analysis
in [1, 2, 12].

The second example demonstrates the end-to-end capability. We generate a signed
distance representation of the image in figure 1, then use it to compute the grid inter-
section information required to discretize the solution to the diffusion equation in the
annular region. In figures 4 and 5, the initial condition for this problem was a two-
valued function: on a circular patch on the flat underside of the surface we setC = 10;
everywhere elseC = 0. The time-step was5.0 seconds, which is approximately30
times the maximum time-step for an explicit method on this problem.

There are a number of directions in which we intend to take this work. The dif-
fusion solver described here is the core of a multicompartment model currently under
development for reaction-diffusion processes in cells. Transport in both the membrane
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and the cytosol is represented using the embedded boundary approach, with coupling to
chemical reaction terms in both regions, and spatially- and state-dependent fluxes rep-
resenting transport coupling the membrane and the interior of the cell. We would also
like to extend this approach to other PDE representing mechanical processes on the sur-
face of the cell, including the representation of the membrane as a elastic or viscoelas-
tic medium, coupling the ideas discussed here to the versions of embedded boundary
method for hyperbolic problems described in [13], extended to moving boundaries fol-
lowing [14].
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Figure 1: 2D slices through a gray-scale image of an hl-60 cell [15] obtained using
deconvolution microscopy.

Figure Legends
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Figure 2: Computed solution on the spherical shell using1283 grid points.
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Figure 3: Slices through the spherical shell showing the difference between the com-
puted solution and the exact solution using1283 grid points.
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Figure 4: Solution for diffusion equation for a256 × 256 × 128 grid at time = 50
seconds. The time step is 5.0 seconds.
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Figure 5: Solution for diffusion equation for the256 × 256 × 128 grid at time = 100
seconds. The time step is 5.0 seconds.
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