
Efficient Binning for Bitmap Indices on High-Cardinality
Attributes

Doron Rotem, Kurt Stockinger, and Kesheng Wu
Computational Research Division

Lawrence Berkeley National Laboratory
1 Cyclotron Road, Berkeley, CA 94720, USA

ABSTRACT
Bitmap indexing is a common technique for indexing high-
dimensional data in data warehouses and scientific applica-
tions. Though efficient for low-cardinality attributes, query
processing can be rather costly for high-cardinality attributes
due to the large storage requirements for the bitmap indices.
Binning is a common technique for reducing storage costs of
bitmap indices. This technique partitions the attribute val-
ues into a number of ranges, called bins, and uses bitmap
vectors to represent bins (attribute ranges) rather than dis-
tinct values. Although binning may reduce storage costs, it
may increase the access costs of queries that do not fall on
exact bin boundaries (edge bins). For this kind of queries the
original data values associated with edge bins must be ac-
cessed, in order to check them against the query constraints.

In this paper we study the problem of finding optimal loca-
tions for the bin boundaries in order to minimize these access
costs subject to storage constraints. We propose a dynamic
programming algorithm for optimal partitioning of attribute
values into bins that takes into account query access patterns
as well as data distribution statistics. Mathematical analysis
and experiments on real life data sets show that the optimal
partitioning achieved by this algorithm can lead to a signif-
icant improvement in the access costs of bitmap indexing
systems for high-cardinality attributes.

1. INTRODUCTION
Scientific applications such as high-energy physics, astro-
physics or combustion studies generate large amounts of
data in the order of terabytes and petabytes. Analyzing
these large data sets is a major challenge and often re-
quires new scalable algorithms for efficiently querying high-
dimensional search spaces. Similar to typical data ware-
house applications, scientific data produced from various
scientific instruments is mostly read-only. Thus, indexing
techniques can be streamlined for fast data access without
the need for dynamic updates which is common in transac-
tional database systems.

Bitmap indexing is a common technique for indexing high-
dimensional data in data warehouses and scientific applica-
tions. This index data structure is well suited for complex,
multi-dimensional ad-hoc queries against read-only data and
is supported by the major commercial database systems.
Though efficient for low-cardinality attributes, query pro-
cessing can be rather costly for high-cardinality attributes
due to the large storage requirements for the bitmap indices.
Typical approaches for reducing the storage complexity of
bitmap indices is compression, bitmap encoding and bin-
ning. In this paper we focus on binning strategies.

Simple bitmap indices represent each distinct attribute value
by one bitmap vector. Binning, on the other hand, parti-
tions the attribute values into a small number of ranges,
called bins, and uses bitmap vectors to represent bins (at-
tribute ranges) rather than distinct values. Although bin-
ning typically reduces storage costs for high-cardinality at-
tributes, it may increase the access costs of queries that do
not fall on exact bin boundaries (edge bins). For this kind
of queries the original data values associated with edge bins
must be accessed, in order to check them against the query
constraints.

An example of the problem we are considering here is given
in Figure 1. Assume that we want to evaluate the query
37 ≤ x < 63. Bins 1, 2 and 3 contain data values relevant to
the query. However, Bins 1 and 3 are edge bins since they
contain also irrelevant values. Answering this query involves
checking the values on disk corresponding to the four “1-
bits” in these two columns. In this example only one of the
four qualifies, namely, 61.7. We call this additional step the
candidate check. As we can see from this example, the cost
of performing a candidate check on an edge bin is related to
the number of “1-bits” in that bin.

1.1 Factors Affecting Binning Strategies
Due to disk storage constraints, bitmap indexing systems
that use binning must limit the number of bins that are
allowed per each attribute. Such constraints are still ap-
plicable even when bitmap compression is effectively used.
Effective binning strategies attempt to compute bin location
boundaries that minimize the I/O cost incurred by the can-
didate check step subject to total index storage constraints.

It turns out that an optimal binning strategy must be sen-
sitive to both query distribution as well as data distribution.
Query distribution, in terms of location of query endpoints

Figure 1: Range query 37 ≤ x < 63 on a bitmap index
with binning.

and popularity of queries, may affect bin boundary locations
as the number of edge bins may be minimized by attempting
to align bin boundaries with query endpoints. In addition,
more bins can be allocated to data regions that are heavily
hit by queries. Data distribution affects the binning strategy
as one can allocate more bins to densely populated regions
of the data to avoid costly candidate check operations on
edge bins with many values.

Figure 2: Uniformly distributed data with uniform
range queries.

Figure 3: Normally distributed data with uniform
range queries.

Figures 2, 3 and 4 illustrate by a small example the effect of
data and query distribution on the optimal binning strategy.
In all cases we show optimal binning into 12 bins (produced
by our software) for an attribute using 100 simulated range

Figure 4: Normally distributed data with heavy left
region queries.

queries.

In Figure 2 both data and queries are uniformly distributed
where the values of the data fall in the range [0, 1500]. As
expected, in this case we note that the bin widths are of
approximately equal size and spread evenly over the entire
range.

In Figures 3 and 4 the values of the attributes are normally
distributed (truncated in the range [0, 1500]) with mean
750 and standard deviation 230. In Figure 3, the queries
are generated randomly from a uniform distribution. We
note that the bin sizes vary showing wider bins on the edges
of the range to reflect more sparsely populated subregions.

In Figure 4 the generated query distribution is skewed in
the following way. The region 0 to 1500 is divided into three
equal subregions of size 500. Queries are generated over the
three regions in the ratio of 6:1:2. We can see that the region
0 to 500, which is heavily hit by queries, is allocated 5 of
the 12 bins whereas the region 1000 to 1500 gets only 3 bins
to account for this skewed query distribution (fewer queries
falling into this region).

Although query and data distributions are not always known
ahead of time, in many scientific applications, simulation
and experimental data follow some known distributions and
scientists are interested in specific regions of the data. This
observation is also supported by our analysis of real life
query logs that reveal very distinct patterns in the way scien-
tists submit queries to an astrophysics database (see Figures
8 and 9). As we will show in this paper, knowledge of data
and query distribution, even if only approximate, can be
used to significantly improve the performance of the bitmap
indexing system.

In this paper, we focus on optimizing the costs involved
in the candidate check. Our experience with real life data
shows that the I/O costs involved in this step dominate all
other costs involved in answering a query such as scanning
the bitmap index and performing the necessary Boolean op-
erations. In fact, as shown later in Figures 16 and 19, the
I/O costs for the candidate check can be several orders of
magnitude higher than the costs for the index scan.

1.2 Outline and Contributions
Our research is inspired by a similar approach of [10] on
finding optimal bin boundaries for bitmap indices. In [10],
the author solved this problem for point queries and raised
several interesting open research issues that we build upon
in terms of optimal binning strategies for range queries.

The main contributions of this paper are as follows:

• We propose a novel dynamic programming algorithm
for optimal partitioning of attribute values into bins
that takes into consideration range query access pat-
terns as well as data distribution statistics. The algo-
rithm also accounts for realistic I/O costs in terms of
disk page accesses.

• We greatly reduce the complexity of the algorithm by
proving that only query endpoints need to be consid-
ered as potential locations for bin boundaries rather
than all possible values of the attribute as in [10].

• We tested our algorithm on real life data sets based on
real query workloads from a large astrophysics appli-
cation. The tests are performed on a bitmap indexing
system used in production for scientific experiments
[17]. The results show that the optimal partitioning
achieved by our algorithm leads to a significant im-
provement in the access costs of bitmap indexing sys-
tems for high-cardinality attributes.

The rest of the paper is organized as follows. Section 2 re-
vises the related work on bitmap indices. Section 3 provides
definitions and introduces a formal model for calculating op-
timal bin boundary locations for bitmap indices based on a
dynamic programming approach. In Section 4 we evaluate
our algorithm against real queries and real data from a large
astrophysics applications. Section 5 concludes the paper and
raises open issues for future work.

2. RELATED WORK
Bitmap indices are used for speeding up complex, multi-
dimensional queries for On-Line Analytical Processing and
data warehouse [7] as well as for scientific applications [14].
They were first implemented in a commercial DBMS called
Model204 [11]. Improvements on this approach were dis-
cussed in [12].

In [5, 6] the following bitmap encoding strategies are in-
troduced: equality, range and interval encoding. Equality
encoding is optimized for so-called exact match queries of
the form a = v where a is an attribute and v the value to
be searched for. Range encoding, on the other hand, is op-
timized for one-sided range queries of the from a op v where
op ∈ {<,≤, >,≥}. Finally, interval encoding shows the best
performance characteristics for two sided-range queries of
the form v1 op a op v2.

The authors of [19] represented attribute values in binary
form that yields indices with only dlog2 |A|e bitmaps, where
|A| is the attribute cardinality. The advantage of this en-
coding scheme is that the storage overhead is even smaller
than for interval encoding. However, in most cases query

processing is more efficient with interval encoding since in
the worst case only two bitmaps need to be read whereas
with binary encoding always all bitmaps have to be read.

As already mentioned before, simple bitmap indices are effi-
cient for low-cardinality attributes but they show a consid-
erable storage overhead for high-cardinality attributes. One
way of reducing the storage complexity is to use bitmap
compression. Note, an efficient bitmap compression scheme
not only has to reduce the size of bitmaps but also has to
perform bitwise Boolean operations efficiently.

Various bitmap compression schemes were studied in [1, 9].
The authors demonstrated that the scheme named Byte-
aligned Bitmap Code (BBC) [2, 3] shows the best overall
performance characteristics. More recently a new compres-
sion scheme called Word-Aligned Hybrid (WAH) [16] was in-
troduced. This compression algorithm significantly reduces
the overall query processing time compared to BBC. The
key reason for the efficiency of WAH is that it uses a much
simpler compression algorithm.

The bitmap indices discussed so far encode each distinct at-
tribute value as one bitmap vector. This technique is very
efficient for integer or floating point values with low attribute
cardinalities. However, scientific data is often based on float-
ing point values with high attribute cardinalities. The work
presented in [14] demonstrated that bitmap indices with bin-
ning can significantly speed up multi-dimensional queries
against high-cardinality attributes.

A further bitmap index with binning called range-based
bitmap indexing was introduced in [18]. The idea is to
evenly distribute skewed attribute values onto various bins
in order to achieve uniform search times for different queries.
The bin ranges for the bitmap vectors are chosen based on
a dynamic bucket expansion and contraction approach. In
the initial phase, the number of entries per bucket (bin) are
counted. If the number of entries per bucket grows beyond a
certain threshold, the bucket is dynamically expanded into
buckets with smaller ranges. Finally, multiple buckets with
adjacent ranges are combined. The authors demonstrated
that the algorithm efficiently redistributes highly skewed
data. However, performance results about query response
times were not discussed.

In [10] a methodology for building space efficient bitmap
indices is introduced for high-cardinality attributes based
on binning. The work in [10] focuses on point (equality)
queries rather than range queries discussed in this paper.
Similar to our approach, an optimal dynamic programming
algorithm is used for efficiently choosing bin ranges. The
experiments were executed on synthetic data and workloads
(point queries) following a Zipf distribution, which is com-
mon in real applications. The author raised several inter-
esting open research issues that inspired our research. We
extend the work of [10] by analyzing range queries. In ad-
dition, we evaluate our optimal binning algorithm on real
data and real query workloads taken from the Sloan Digital
Sky Survey [13, 15].

Notation Explanation
P Total number of pages on disk for values of an attribute
q = [lq, uq) A range query q with endpoints lq and uq, the range is open on the right
Q A set of range queries
xi A bin boundary point
bi = [xi−1, xi) A bin defines a sub-range open on the right
B =< b1, b2, ..., bk > A partitioning into k bins
E(b) The set of queries having bin b as an edge bin
Cost(Q, B) Candidate check I/O cost associated with binning B and query set Q

ej The jth smallest query endpoint
EP (Q) = 〈e1, ..., er〉 Ordered set of distinct query endpoints
r Number of distinct query endpoints
Π(k, n) All possible binnings of the range 1 to n into k bins
wi =

∑
q∈E(bi)

pq Weight of bin bi, the sum of probabilities of all queries in E(b)

Bopt Optimal binning
R(Q, j) The set of queries in Q with a right endpoint on the right of ej

Bopt(ej , l) Optimal binning of the sub-region from ej to n using l bins
bi,j A bin defined over the range between query endpoints ei and ej , i.e., bi,j = [ei, ej)

Table 1: Notation used throughout the paper.

3. OPTIMAL BINNING ALGORITHM
3.1 Preliminaries
In this section we will formulate the OptBin problem for
attributes where the set of queries is known. Most of the
common notation used through the paper is summarized in
Table 1. Assume attribute A has N values that occupy P
disk pages. For simplicity we will assume that each such
value is an integer in the range [1, n] . We are also given
a collection of range queries Q such that each q ∈ Q de-
fines a range q = [lq, uq) open on the right (i.e., it includes
the points lq, lq + 1, ..., uq − 1) and is associated with a
probability pq reflecting its relative popularity. The points
lq ∈ [1, n] and uq ∈ [2, n+1] are called endpoints of query q.
A bitmap index on A is built by partitioning the range [1, n]
into bins with one bitmap (consisting of N bits) associated
with each bin as previously described. An integer constraint
k, specifies the maximum number of bins allowed, i.e., it is
required to partition the range [1, n] into k successive sub-
ranges (bins) B =< b1, b2, ..., bk >.

This is done by choosing k − 1 integer bin boundary points
xi where 1 < x1 < x2 < ... < xk−1 < n + 1 .

Note that there are

(
n− 1
k − 1

)
possible ways of choosing

the bin boundary points which makes it impractical to ex-
haustively check all possibilities.

The sub-ranges associated with bins bi are all open on the
right and defined as follows:

b1 = [1, x1)

bi = [xi−1, xi) for 2 ≤ i ≤ k

bk = [xk−1, n + 1)

A bin b ∈ B is defined as an edge bin for query q if the
range defined by the query q overlaps some part of the range
defined by bin b but not its whole range i.e., q∩b 6= ∅ and q∩
b 6= b. In general a query may have 0, 1, or 2 edge bins.

Figure 5: Query endpoints and bin boundaries.
Horizontal lines represent query ranges. Dotted ver-
tical lines mark query endpoints.

In Figure 5 a set of 10 range queries and a binning into 4
bins is shown. In this example query q3 has no edge bins
since both its endpoints fall on bin boundaries. Each of the
queries q4, q5, q6, q7, q10 have 1 edge bin and each of the
queries q1, q2, q8, q9 have 2 edge bins. As explained earlier,
when query q is specified, a significant fraction of the I/O
costs it incurs are related to the number of data pages we
need to read in order to perform candidate check on each
of its edge bins. For a given bin b, let E(b) denote the set
of queries that have bin b as an edge bin. For example, in
Figure 5 E(b1) = {q1, q2}; E(b2) = {q1, q2, q4, q5, q6, q7, q8};
E(b3) = {q9}; E(b4) = {q8, q9, q10}.

Let nb denote the number of data values that fall into the
range defined by b, this is also the number of “1-bits” in the
bitmap corresponding to b.

Based on the usual assumption that records are distributed
uniformly across pages and recalling that the total number
of pages occupied by attribute A is P , the expected number
of disk pages that contain data values that fall in the range
defined by bin b denoted by Pb, satisfies [12]:

Pb = P (1− (1− 1/P)nb) ≈ P (1− e−nb/P) (1)

The expected candidate check I/O cost of answering the

queries in Q when an attribute range is partitioned by the
set of bins B is denoted by Cost(Q, B) defined as

Cost(Q, B) =
∑
b∈B

Pb

∑
q∈E(b)

pq (2)

The inner sum computes the total probability of all the
queries that use a given bin b as an edge bin, this is then
multiplied by the I/O cost of the bin (expected number of
pages) and summed over all bins.

3.2 Bin Boundaries and Query Endpoints
The problem we wish to solve, OptBin is defined as follows:

Given a set of range queries Q and the values of an attribute
in the range [1,n], find the location of the k-1 bin boundary
points that partition the attribute values into k bins such that
the I/O cost for candidate check is minimized.

More formally, let Π(k, n) denote the set of all possible bin-
nings of the range [1, n] into k bins. We wish to find a
binning Bopt such that Bopt ∈ Π(k, n) and

Cost(Q, Bopt) ≤ Cost(Q, B) for all B ∈ Π(k, n) (3)

Let EP (Q) = 〈e1, ..., er〉 denote the ordered set of distinct
query endpoints of queries in Q, i.e., ei ∈ EP (Q) implies
that for at least one query q ∈ Q, ei = lq or ei = uq.
For example in Figure 5, the distinct endpoints of 10 range
queries are shown.

The following lemma shows that an optimal solution exists
such that each of its bin boundary points are in EP (Q). In
practice |EP (Q)| is much smaller than n as only a few of the
points in the range serve as query endpoints. We will use
this result to speed up the dynamic programming solution
presented in Section 3.3.

Lemma 1. If any binning B ∈ Π(k, n) uses a boundary
point xi that is not in EP (Q) then a binning of equal or
smaller cost can be found by replacing xi with some point in
EP (Q).

Proof. Assume B ∈ Π(k, n) has a boundary point xi /∈
EP (Q). For a bin bi ∈ B, let ni denote the number of its
data points and let wi (bin weight) denote the sum of proba-
bilities of queries with endpoints in it, i.e., wi =

∑
q∈E(bi)

pq.

We first assume that both bins bi = [xi−1, xi) and bi+1 =
[xi, xi+1) have non-zero weights (i.e., wi > 0 and wi+1 > 0)
other cases are much simpler and will be dealt with later.
Let x, y ∈ EP (Q) be the closest members of EP (Q) (query
endpoints) to xi in bins bi and bi+1 respectively such that
x is an endpoint of query qx ∈ E(bi) and y an endpoint of
query qy ∈ E(bi+1) (see Figure 6).

The non-zero weight assumption above guarantees the exis-
tence of such queries. Based on Equation 1 the total cost
contributed by bins bi and bi+1 to Cost(Q, B) is

P (1− e−ni/P)wi + P (1− e−ni+1/P)wi+1 (4)

Let Bx ∈ Π(k, n) be a binning obtained from B by replacing
xi with x. This replacement only affects the bins bi and bi+1

Figure 6: Replacing a bin boundary with a close
query endpoint.

as it may cause mx data points to move from bin bi to bin
bi+1 for some integer mx ≥ 0. After this replacement, the
contribution of bin bi and bin bi+1 to Cost(Q, Bx) will be
at most

P (1− e−(ni−mx)/P)wi + P (1− e−(ni+1+mx)/P)wi+1 (5)

as qx may have no remaining endpoints in bin bi thus reduc-
ing wi. If mx = 0 then Cost(Q, Bx) ≤ Cost(Q, B) and the
lemma is proved so we assume mx > 0.

The difference Dx between the two costs is

Dx = Cost(Q, Bx)− Cost(Q, B)

≤ P [(1− e−(ni−mx)/P)− (1− e−ni/P)]wi +

P [(1− e−(ni+1+mx)/P)− (1− e−ni+1/P)]wi+1

= P (1− emx/P)(e−ni/P wi + e−ni+1/P wi+1) (6)

If Dx ≤ 0 the lemma is proved, otherwise we have Dx > 0,
this in turn implies

wie
−ni/P

wi+1e−ni+1/P
≤ e−mx/p (7)

Similar arguments show that replacing xi with y results in a
binning By ∈ Π(k, n) where my data points move from bin
bi+1 to bin bi for some integer my ≥ 0. The difference in
cost denoted by Dy is defined as

Dy = Cost(Q, By)− Cost(Q, B) (8)

Again if Dy ≤ 0 the lemma is proved, otherwise we have
Dy > 0 which in turn implies

wie
−ni/P

wi+1e−ni+1/P
≥ emy/p (9)

Since e−mx/p < 1 and emy/p > 1 (assuming mx > 0 and
my > 0), Equations 7 and 9 can not both hold, so at least
one of Dx or Dy are negative, thus proving the lemma.

In the case that exactly one of the bins bi or bi+1 have zero
weight we can show that Dy < 0 if wi = 0 (endpoint x does
not exist) and Dx < 0 if wi+1 = 0 (endpoint y does not
exist). In both cases this shows that replacing xi /∈ EP (Q)
with a point in EP (Q) results in a binning with equal or
lesser cost then Cost(Q, B). Finally, in the case that both
bins bi and bi+1 have zero weight, xi can be eliminated
altogether and the two bins merged without any cost in-
crease.

Figure 7: Dynamic programming, queries in R(Q, j)
are emphasized using thick lines.

Theorem 2. There exists an optimal binning B∗
opt ∈

Π(k, n) with all its bin boundary points in EP (Q).

Proof. Assume there exists an optimal binning Bopt ∈
Π(k, n) with one or more boundary points not in EP (Q).
Using the above lemma, we can replace these boundary
points one by one with a point in EP (Q) where each such
replacement does not increase the cost. Let us denote the
resulting binning B∗

opt ∈ Π(k, n), then B∗
opt is also optimal

and has all its boundary points in EP (Q).

3.3 Dynamic Programming Formulation
The previous lemma showed that the boundary points of an
optimal binning are taken from the set of query endpoints
EP (Q). Assuming that the number of distinct query end-
points is much larger than the desired number of bins, i.e.,
|EP (Q)| = r � k, we present here a dynamic programming
algorithm that chooses k − 1 bin boundary points from the
r elements of the set EP (Q) in O(kr2) time and obtains a
minimum cost binning .

Let us recall that the elements of EP (Q) are sorted in in-
creasing order, where ej denotes the jth smallest member
of EP (Q). For the purpose of describing the “principle
of optimality” in our problem [4], we need to describe the
cost of an optimal solution on sub-ranges of [1, n]. This
requires looking at a subset of the queries in Q falling on
the right of some potential boundary point. To this end
we need some definitions. Let R(Q, j) denote the queries
in Q that have a right endpoint greater than ej , formally,
R(Q, j) = {q ∈ Q : uq > ej}. For two query endpoints,
ei, ej ∈ EP (Q), let bi,j represent a potential bin defined over
the range [ei, ej) (see Figure 7). In case this bin is eventu-
ally used in any binning B, its contribution to Cost(Q, B)
is Cost(bi,j) = Pbi,j

∑
q∈E(bi,j) pq, where as before, Pbi,j de-

notes the total number of disk pages that hold values of the
attribute falling in the range [ei, ej) and E(bi,j) denotes the
set of queries having bi,j as a range bin, i.e., overlapping the
range defined by the bin but not containing it.

To simplify our notation we assume a dummy endpoint e0 =
1 and let Bopt(ei, l) represent an optimal binning of the
range [ei, n] using l bins defined over the queries in R(Q, i)
(see Figure 7). Using the above notation, our goal is to find
Bopt(e0, k).

Theorem 3. Given a set of queries Q with an ordered
set of distinct endpoints EP (Q) =< e1, e2, .., er >consisting

of r distinct endpoints then

Cost(Bopt(ei, l)) =
mini<j≤r−(l−2)(Cost(bi,j) + Cost(Bopt(ej , l − 1)))

Proof. Assume an optimal binning, Bopt(ei, l) is given
with all its boundary points in EP (Q) (this is always pos-
sible based on Theorem 2). The right boundary of the
leftmost bin must be some ej ∈ EP (Q) such that j > i
and there are l − 1 additional bins on its right (See Figure
7). Therefore ej is a candidate only if j satisfies i < j ≤
r− (l−2). The total cost of this binning can be broken into
the contribution of the first bin, Cost(bi,j), and the con-
tribution of the last l − 1 bins. For any choice of ej , the
partition into l − 1 bins on its right must be optimal with
respect to the set of queries R(Q, j) and therefore equal to
Cost(Bopt(ej , l − 1)), otherwise Cost(Bopt(ei, l)) can be re-
duced contradicting the optimality of Bopt(ei, l).

Theorem 3 allows us to devise an efficient dynamic program-
ming algorithm as it expresses the optimal cost of binning
into l bins in terms of smaller binning problems and contri-
butions of single bins. The algorithm uses three basic tables

• BinCost is an r×r array used for tabulating single bin
costs, i.e. BinCost[i, j]= Cost(bi,j) for 1 ≤ i < j ≤ r

• OptCost is a k × r array used for tabulating optimal
costs for binning subproblems for up to k bins, i.e.,
OptCost[i, j]= Cost(Bopt(ej , i)) for 1 ≤ i ≤ k and
1 ≤ j ≤ r − i.

• OptBin is a k×r array used to store the location of the
bins. After the execution of the algorithm in Listing
1, the smallest value of OptCost in row k is the min-
imal cost of having k bin boundaries (k+1 bins). Let
OptCost[k, j1] be the first element with the minimal
cost, the first bin boundary of optimal bins is ej1 . Let
j2 be OptBin[k, j1], the second bin boundary is ej2 .
Later bin boundaries eji can be defined recursively as

ji = OptBin[k − i + 2, ji−1], j = 2, . . . , k.

The computation of BinCost utilizes a number of different
arrays to accumulate various partial sums of pq. They are
important to reduce the computation complexity from O(r3)
to O(r2). The formula used in Listing 1 is based on the
observation that all queries contributing to the bin weight
either have the left endpoint or the right endpoint in the
bin. The temporary array dpq is a cumulation of total query
probabilities of those with left endpoints at a given value.
The temporary array bpq stores the total query probabilities
of those with left endpoint less than or equal ei and right
endpoints in the range (ei, ej). The recursion for bpq is

bpq[i, j] = bpq[i, j − 1] + cpq[i, j − 1],

with bpq[i, i + 1] = 0. Note that array bpq is computed
progressively and only the last element of each row is stored.
The content of array cpq can be derived with a small amount
of computation which we omit here.

Listing 1. Algorithm to Compute OptBin and OptCost ar-
rays.

Input arrays:
cc[r]: cumulative count of records with values.

less than ei

pq[r,r]: pq[i,j] is the probability of
query ei ≤ A < ej, i.e., pq.

Internal arrays:
BinCost[r,r]: the cost of a single bin.
cpq[r,r]: a cumulation of array pq.
bpq[r]: a cumulation of array cpq.
dpq[r]: a cumulation of array cpq.

Output arrays:
OptBin[k,r]: location of the bin boundaries.
OptCost[k,r]: total cost of the bins.

// fill the arrays cpq and dpq
For i = 1 to r;

cpq[i,i] = 0;
For j = i+1 to r;

cpq[i,j] = pq[i, j]
For i = 1 to r;

For j = i+1 to r;
cpq[i,j] = cpq[i,j] + cpq[i-1,j];

For i = 1 to r;
dpq[i] = 0;
For j = i+1 to r;

dpq[i] = dpq[i] + cpq[i,j]

// Compute BinCost and bpq
For i = 1 to r;

bpq[i] = 0;
BinCost[i,i+1] = 0;
For j = i+2 to r;

bpq[i] = bpq[i] + cpq[i,j-1];
BinCost[i,j] = P(1-exp((cc[i]-cc[j])/P)) *
(dpq[j-1] - dpq[i] + bpq[i]);

bpq[i] = bpq[i] + cpq[i,j];

// Initialize OptCost and OptBin
For j = 1 to r

OptBin[1,j] = j;
// compute the cost of bin [ej, n]
OptCost[1,j] = P(1-exp((cc[j]-N)/P)) *
(dpq[r] - dpq[j] + bpq[j]);

// Iterate on OptCost
For i = 2 to k;

For j = 1 to r-i;
loc = j + 1;
cst = OptCost[i-1, loc];
For g = j+2 to r-i+1;

tmp = BinCost[j,g] + OptCost[i-1,g];
If (tmp < cst) then

cst = tmp;
loc = g;

OptCost[i,j] = cst;
OptBin[i,j] = loc;

// Finalize the total cost by adding the left most bin
For i = 1 to k;

For j = 0 to r-i;
OptCost[i,j] = OptCost[i,j] + dpq[j] *
P(1-exp(-cc[j]/P)).

It is easy to see that the BinCost array can be computed in
O(r2) time. Based on Theorem 3, each entry in OptCost is
computed by finding the minimum over O(r) values so that
OptCost can be computed in O(kr2). The total computa-

tional complexity of the algorithm is therefore O(kr2). The
following lemma provides bounds on r.

Lemma 4. Let r denote the number of distinct query end-
points in Q (elements in EP (Q)), i.e, r = |EP (Q)| then

⌊
1

2

(√
1 + 8 |Q| − 1

)⌋
≤ r ≤ min(2 |Q| , n) (10)

Proof. The first inequality in Equation 10 follows by ob-
serving that x endpoints can define at most x(x + 1)/2 dis-
tinct queries, the result then follows by solving the inequality
|Q| ≥ r2 + r/2. The second inequality in Equation 10 fol-
lows since each point in EP(Q) is a distinct element of [1, n]
and each query in Q can contribute at most 2 members to
EP(Q).

4. EXPERIMENTAL RESULTS
We ran a set of experiments for evaluating our optimal bin-
ning algorithm against real data and real query workloads.
The goal of these experiments is to compare the performance
of bitmap indices using the optimal binning strategy against
bitmap indices using more conventional binning strategies
such as equi-width and equi-depth binning.

Equi-width binning partitions the bins into equally spaced
ranges by retrieving vmin and vmax, the minimum and max-
imum value of a specific attribute, and dividing the at-
tribute range by the number of bins. This binning strategy
is straightforward to implement and has shown to perform
well in some cases. However, in the worst case, the can-
didate check is as expensive as sequential scan. Equi-depth
binning, on the other hand, chooses the bin boundaries in
such a way, that each bin contains approximately the same
number of entries. This makes each candidate check equally
expensive.

4.1 Query Workloads and Data Distribution
Our experiments are based on a large real data set from
the Sloan Digital Sky Survey (SDSS), Data Release 1 [13].
SDSS is an astronomical survey project that maps one quar-
ter of the entire sky in order to determine the positions and
absolute brightnesses of more than 100 million celestial ob-
jects. The survey also measures the distances to more than
a million galaxies and quasars.

The data set of Data Release 1 consists of 168 million records
and some 500 attributes. We first had to transform this data
set from FITS-format [8] to binary in order to incorporate
the data into our indexing software. The next step was
to select a representative subset of attributes for studying
the query performance of our optimized bitmap index. For
this purpose we did an extensive study of real query work-
loads from astronomers of the SDSS collaboration over a few
weeks. We extracted 100,000 queries and identified three at-
tributes that were by far the most commonly used ones in all
observed queries. For instance, each of the variables ra and
dec appeared in 30.3% of all range conditions of the queries.
petromag z was used in 28.5% of the range conditions. The
variables ra and dec describe the position of celestial objects

in the sky in terms of right ascension and declination, and
petromag z defines the Petrosian flux [13].

A representative subset of the workload patterns of these
three attributes is shown in Figures 8, 9 and 10. For the
attributes ra and dec we can observe similar patterns that
are characterized by various range queries that probe small
ranges of the sky (the right endpoint and the left endpoint
of the query are very close to each other with respect to
the whole domain space of the attribute). For petromag z
we can observe range queries where one query range (left
endpoint) is fixed whereas the other one (right endpoint) is
systematically increased by a small percentage.

Figure 8: Subset of the query history of attribute
“ra” with endpoints in the range of [326.91, 330.81].
Note that the domain space of the attribute “ra” is
in the range of [0, 360].

Figure 9: Subset of the query history of attribute
“dec” with endpoints in the range of [-9.73, -8.92].
Note that the domain space of the attribute “dec”
is in the range of [-11.27, 68.77].

The data distributions of these attributes are given in Fig-
ures 11, 12 and 13. For the attribute ra the distribution is
fairly uniform whereas for the attributes dec and petromag z
the distributions are very skewed.

4.2 Building Bitmap Indices
The next step of our study was to build the bitmap indices.
For each of the three attributes we built bitmap indices
based on the three binning strategies we discussed in the
beginning of this section, namely equi-width, equi-depth and
opt-binning. One of the key parameters for building bitmap
indices is to decide on the optimal number of bins which is
usually a trade-off between query speed and index size [6].

Figure 10: Subset of the query history of attribute
“petromag z” with endpoints in the range of [0,
15.47]. Note that the domain space of the attribute
“petromag z” is in the range of [4.11, 53.62].

Figure 11: Data distribution of attribute “ra”.

Figure 12: Data distribution of attribute “dec”.

For our experiments we have chosen 1,000 bins which has
shown to be a good trade-off in previous experiments [16].

Figure 13: Data distribution of attribute “petro-
mag z”.

We first built bitmap indices with 1,000 bins based on equi-
width and equi-depth binning strategies. For all our exper-
iments we used equality encoded bitmap indices and WAH
compression [16]. The experiments were carried out on a 2.8
GHz Intel Pentium IV with 2 GB RAM. The I/O subsystem
is a hardware RAID with two SCSI disks.

Next we built bitmap indices based on our novel strategy
opt-binning that we introduced in Section 3. The optimal
bin boundaries were calculated from the real query work-
loads against the SDSS data set. We have chosen the 5,000
most frequently used conditions for each attribute and ran
the dynamic programming algorithm for calculating the op-
timal bin boundaries for each of the three attributes. The
sizes of the three selected attributes and the respective sizes
of the compressed bitmap indices based on three different
binning strategies are shown in Figure 14. Base data refers
to the original data values consisting of 168 million records.
The attributes ra and dec are of type double with a total
size of 1.4 GB each. The attribute petromag z is of type
float with a total size of 0.7 GB. We can observe that with
equi-width and equi-depth binning, the attributes ra and dec
compress very well and are only a small fraction of the orig-
inal data size. However, the index for the attribute petro-
mag z is about twice the size of the base data as expected
for attributes with random distribution [16]. With our novel
binning strategy opt-binning the attributes ra and dec com-
press slightly worse but the total size of all three attributes
combined is significantly lower than with the other two bin-
ning strategies. This suggests that opt-binning rearranges
the bin boundaries in such a way, that the size of the com-
pressed bitmap index gets significantly reduced.

4.3 Optimized Query Performance
After having built the bitmap indices, we will now measure
the query performance for the three different binning strate-
gies. Given a set of 5,000 query workloads from real SDSS
data analysis, we randomly sampled 1,000 queries for each
attribute to test our strategies. For all our experiments we
flushed the disk cache before performing each query. This

Figure 14: Size of the base data and of the com-
pressed bitmap indices with various binning strate-
gies.

ensures that the query response time includes the full costs
of disk I/O.

We first analyze the performance of queries against attribute
ra. The total run time of 1,000 queries based on the three
different binning strategies is is about 6,000 seconds (more
than 1.5 hours). As we can see in Figure 15, the binning
strategy opt-binning shows the best performance (average
query response time 1.6 seconds) for 88.4% of all queries,
followed by equi-depth (average query response time 2.0 sec-
onds) and equi-width binning (average query response time
2.2 seconds). In particular, the total run time of all 1000
queries based on opt-binning is about 20% lower than for all
1000 queries based on equi-width binning. For opt-binning
we can observe three different trends in the query perfor-
mance:

• For queries, where both ranges fall on optimal bin
boundaries, the response time per query is on aver-
age 0.1 seconds. When compared with the average
query response time of equi-width and equi-depth bin-
ning, this is a performance improvement of a factor
of 20. The reason for this large performance improve-
ment is that for queries that fall on the bin boundaries,
there is no expensive candidate check. This effect can
be seen in Figure 16 where we show the time for the in-
dex scan and the candidate check for the same queries.

• For queries where only one query range falls on a bin
boundary, the query response time is on average 0.9
seconds. When compared with the average query re-
sponse time of equi-width and equi-depth binning, this
is a performance improvement of more than a factor
of 2.

• For all other queries with ranges that do not fall on
bin boundaries, the response time is between 1 and
2.4 seconds.

Figure 15: Query response time against attribute
“ra” for three different binning strategies.

Figure 16: Query response time and index scan for
attribute “ra” with opt-binning. The time for the
candidate check is the difference between the total
time and the time for the index scan. Note that
the costs for the candidate check are up to a factor of
20 higher than the costs for the index scan.

Next we analyzed the performance of queries against at-
tribute dec (see Figure 17). The total response time for all
1,000 queries is some 8,000 seconds (more than 2 hours).
The average query response times for equi-width, equi-depth
and opt-binning are 2.56, 2.73 and 2.53 seconds respectively.
Note that the differences between the various strategies is
less significant for attribute dec than for attribute ra. How-
ever, opt-binning performs slightly better than the other two
strategies.

Finally we analyze the performance of queries against at-
tribute petromag z. Note that both the data distribution
and the query workload are considerably different from the
two previously analyzed attributes. The total response time

Figure 17: Query response time against attribute
“dec” for three different binning strategies.

for all 1,000 queries is some 16 hours. The average query re-
sponse times for equi-width, equi-depth and opt-binning are
21.7, 21.7 and 13.1 seconds respectively (see Figure 18). The
strategy opt-binning performs better than the two other bin-
ning strategies in 88.6% of all the 1,000 queries. Unlike in
our previous observations, we can only see two trend lines
in the query performance for opt-binning rather than three.
The reason is that in all queries, at least one range falls on
a bin boundary.

Figure 18: Query response time against attribute
“petromag z” for three different binning strategies.

Also note that there is a much larger difference in the re-
sponse time between optimized and non-optimized queries.
For instance, for optimized queries, the average response
time is 1.5 seconds whereas for non-optimized queries the
average response time is at least an order of magnitude
higher. By looking at Figure 19 we can see that there is
a big difference between the time spent on the index scan
and the time spent on the candidate check. The reason for

Figure 19: Query response time and index scan for
attribute “petromag z” with opt-binning. The time
for the candidate check is the difference between the
total time and the time for the index scan. Note that
the costs for the candidate check are up to a factor of
200 higher than the costs for the index scan.

the different candidate check time is that the data values of
the previous attributes ra and dec show a larger degree of
physical clustering on disk than the attribute petromag z.
This is due the way the data is acquired by the astrophysics
instruments. We can measure the degree of physical clus-
tering of the attributes by analyzing the compression ratio
of the bitmap index with equi-width binning. As we can see
in Figure 14, the bitmap indices for the attributes ra and
dec compress very well, whereas the bitmap index for the
attribute petromag z does not compress at all. In short, the
more the values of an attribute are clustered, the lower is
the probability of hitting many pages in the candidate check.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have introduced a novel algorithm for im-
proving the query response time of bitmap indices by com-
puting optimal bin boundaries. We presented a detailed
analytical model of our strategy and evaluated the perfor-
mance of real query workloads against a large data set from
the Sloan Digital Sky Survey. We have shown that our op-
timized binning strategy has the following two advantages:
1) The query response time gets significantly improved by
optimally placing bin boundaries and thus minimizing the
costs for the candidate check. 2) The total size of the bitmap
indices gets reduced by re-arranging the bin boundaries and
thus re-arranging attribute values between bins. Our algo-
rithm can be used as a tool for periodically reorganizing the
bitmap index based on observed query workloads.

As part of our future work we plan to extend our optimal
binning strategy for multi-dimensional queries. This raises
an interesting unsolved challenge such as computing the op-
timal number of bins for each attribute subject to a global
storage constraint. Initial studies show that this requires
taking into account the likelihood of attributes being in-
cluded in queries, attribute selectivities [14] as well as at-
tribute cardinalities.

6. REFERENCES
[1] S. Amer-Yahia and T. Johnson. Optimizing Queries

on Compressed Bitmaps. In International Conference
on Very Large Data Bases, Cairo, Egypt, September
2000. Morgan Kaufmann.

[2] G. Antoshenkov. Byte-aligned Bitmap Compression.
Technical report, Oracle Corp., 1994. U.S. Patent
number 5,363,098.

[3] G. Antoshenkov and M. Ziauddin. Query Processing
and Optimization in ORACLE RDB. VLDB Journal,
5:229–237, 1996.

[4] R. E. Bellman. Dynamic Programming. Dover
Publications, Incorporated, 2003.

[5] C.-Y. Chan and Y. E. Ioannidis. Bitmap Index Design
and Evaluation. In SIGMOD, Seattle, Washington,
USA, June 1998. ACM Press.

[6] C. Y. Chan and Y. E. Ioannidis. An Efficient Bitmap
Encoding Scheme for Selection Queries. In SIGMOD,
Philadelphia, Pennsylvania, USA, June 1999. ACM
Press.

[7] S. Chaudhuri and U. Dayal. An Overview of Data
wharehousing and OLAP Technology. ACM SIGMOD
Record, 26(1):65–74, March 1997.

[8] FITS - Flexible Image Transport System.
http://heasarc.gsfc.nasa.gov/docs/heasarc/fits.html.

[9] T. Johnson. Performance Measurements of
Compressed Bitmap Indices. In International
Conference on Very Large Data Bases, Edinburgh,
Scotland, September 1999. Morgan Kaufmann.

[10] N. Koudas. Space Efficient Bitmap Indexing. In
International Conference on Information and
Knowledge Management, McLean, Virginia, USA,
November 2000. ACM Press.

[11] P. O’Neil. Model 204 Architecture and Performance.
In 2nd International Workshop in High Performance
Transaction Systems, Asilomar, California, USA,
1987. Springer-Verlag.

[12] P. O’Neil and D. Quass. Improved Query Performance
with Variant Indexes. In Proceedings ACM SIGMOD
International Conference on Management of Data,
Tucson, Arizona, USA, May 1997. ACM Press.

[13] Sloan Digital Sky Survey. http://www.sdss.org/dr1/.

[14] K. Stockinger, K. Wu, and A. Shoshani. Evaluation
Strategies for Bitmap Indices with Binning. In
International Conference on Database and Expert
Systems Applications (DEXA), Zaragoza, Spain,
September 2004. Springer-Verlag.

[15] A. Szalay, P. Kunszt, A. Thakar, J. Gray, and
D. Slutz. Designing and Mining Multi-Terabyte
Astronomy Archives: The Sloan Digital Sky Survey. In
SIGMOD, Dallas, Texas, USA, May 2000. ACM Press.

[16] K. Wu, E. J. Otoo, and A. Shoshani. On the
Performance of Bitmap Indices for High Cardinality
Attributes. In International Conference on Very Large
Data Bases, Toronto, Canada, September 2004.
Morgan Kaufmann.

[17] K. Wu, W.-M. Zhang, V. Perevoztchikov, J. Lauret,
and A. Shoshani. The Grid Collector: Using an Event
Catalog to Speedup User Analysis in Distributed
Environment. In Computing in High Energy and
Nuclear Physics (CHEP) 2004, Interlaken,
Switzerland, September 2004.

[18] K.-L. Wu and P.S. Yu. Range-Based Bitmap Indexing
for High-Cardinality Attributes with Skew. Technical
report, IBM Watson Research Center, May 1996.

[19] M.-C. Wu and A. P. Buchmann. Encoded Bitmap
Indexing for Data Warehouses. In International
Conference on Data Engineering, Orlando, Florida,
USA, February 1998. IEEE Computer Society Press.

