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Abstract

Application of Optimal Prediction to Molecular Dynamics

by

John Letherman Barber IV
Doctor of Philosophy in Physics

University of California, Berkeley

Professor Alexandre J. Chorin, Co-Chair
Professor Edgar Knobloch, Co-Chair

Optimal prediction is a general system reduction technique for large sets of differential
equations. In this method, which was devised by Chorin, Hald, Kast, Kupferman, and
Levy, a projection operator formalism is used to construct a smaller system of equations
governing the dynamics of a subset of the original degrees of freedom. This reduced system
consists of an effective Hamiltonian dynamics, augmented by an integral memory term and
a random noise term.

Molecular dynamics is a method for simulating large systems of interacting fluid par-
ticles. In this thesis, I construct a formalism for applying optimal prediction to molecular
dynamics, producing reduced systems from which the properties of the original system can
be recovered. These reduced systems require significantly less computational time than the
original system.

I initially consider first-order optimal prediction, in which the memory and noise terms
are neglected. I construct a pair approximation to the renormalized potential, and ig-
nore three-particle and higher interactions. This produces a reduced system that correctly
reproduces static properties of the original system, such as energy and pressure, at low-to-
moderate densities. However, it fails to capture dynamical quantities, such as autocorrela-
tion functions.

I next derive a short-memory approximation, in which the memory term is represented
as a linear frictional force with configuration-dependent coefficients. This allows the use
of a Fokker-Planck equation to show that, in this regime, the noise is δ-correlated in time.
This linear friction model reproduces not only the static properties of the original system,
but also the autocorrelation functions of dynamical variables.

Professor Alexandre J. Chorin
Dissertation Committee Co-Chair

Professor Edgar Knobloch
Dissertation Committee Co-Chair
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Chapter 1

Introduction

The last half century has seen great advances in our understanding of the fluid state. To a
large extent, this has been due to the development of powerful computational techniques for
the simulation of liquids at the molecular scale. These methods have allowed theoretical re-
sults to be tested directly via numerical “experiments” on well-defined models. Early efforts
in this direction involved the Monte Carlo simulation of systems of hard spheres or disks
[43]. Later, techniques were devised to explore the dynamical properties of many-particle
systems by direct numerical integration of the equations of motion of a classical model sys-
tem [1, 52, 65, 66, 36, 37]. These methods, known collectively as “Molecular Dynamics”
(MD) were initially used in the 1950’s and 1960’s to determine the thermodynamic proper-
ties of small systems of particles that corresponded to simple, one component, monatomic
fluids and solids. In more recent decades, however, MD has found much wider application.
Its use has expanded to include the study of polyatomic fluids, defects in crystals, fracture
mechanics, cluster dynamics, and biological macromolecules such as proteins and nucleic
acids.

Unfortunately, the range of system sizes accessible via this type of first-principles micro-
scopic simulation severely restricts the utility of MD. For a system of N atoms interacting
through a classical pair potential, the amount of time required for a typical MD run scales
as N2 (or, under certain conditions, as N ; see Chapter 3), where N is usually ∼ 102 to 107.
This limits the size of MD systems to microscopic length and time scales. However, many
of the interesting effects and properties of materials occur in the mesoscopic or macroscopic
regimes.

There are several methods that have been devised to overcome this limitation. Advances
in parallel computing technology have generated great interest in developing efficient algo-
rithms for performing MD simulations on systems of great size. This brute-force approach
has been used to model systems as large as N ∼ 109 [13], and has found some use in the
study of fracture mechanics in large solids. However, this is still many orders of magnitude
smaller than the ∼ 1023 particles in a macroscopic liquid sample.

A more subtle technique for extending MD to larger scales utilizes the concept of coarse
graining, in which the underlying microscopic model is approximated by averaging over small
time and length scales, to recover a more slowly-varying, macroscopic model. Research
on this type of method has branched in many different directions. A recent, promising
implementation of this idea is the technique of “Dissipative Particle Dynamics” (DPD)
[25, 16, 40, 18]. In DPD, the fundamental elements are not the actual particles of the
underlying molecular fluid, but are instead mesoscopic “lumps” of material, each of which

1



represents a large number of particles. The various fluid elements interact via a conservative
pairwise force, with the addition of momentum-conserving frictional and white noise forces.
This model has found some success in reproducing macroscopic-scale hydrodynamic effects,
although it lacks a firm theoretical basis.

There are many other coarse-graining techniques that have been developed for various
purposes. For example, in the work of Kevrekidis, et. al. [63], a formalism involving “lift-
ing” and “restriction” operators for passing back and forth between microscopic atomistic
models and macroscopic continuum models allows the extraction of large-scale data from
a small-scale molecular simulation. Along the same lines, Weinan E and collaborators [15]
have devised an atomistic-continuum boundary matching scheme, in which certain critical
areas of a numerical “sample”, such as the vicinity of a fracture, are modelled using a
particle-based method, whereas the remainder of the material is modelled using continuum
techniques. These types of “multiscale” methods allow the efficient numerical modelling of
materials on large spatial and temporal scales, by restricting the application of relatively
time-consuming particle-based algorithms to a small fraction of the space or time domain
of the full system.

A different implementation of coarse-graining, to be used for determining the proper-
ties of large molecules, has been pioneered by Schütte and others [56]. In this approach,
instead of studying the exact behavior of a large cluster of particles or a biological macro-
molecule directly, a finite number of “almost invariant” configurations are identified. The
transition probabilities between these states are then calculated by discretizing phase space
and performing a Monte-Carlo simulation. Although this severely restricts the amount of
information obtained from the system, it allows the determination of many of the macro-
scopic properties of interest, such as the gross topology of the molecule under study. Other
coarse graining methods include lattice techniques [31], and techniques in which systems of
polymers are approximated as collections of soft, ellipsoidal particles [46], as well as many
others.

The Optimal Prediction (OP) method of Chorin, Hald, Kupferman, and collaborators
[7, 8, 9, 10, 11, 12, 20], is a system reduction technique for general differential equations
that is closely related to the idea of coarse graining. Given a large system of equations,
the degrees of freedom are split into “resolved variables” and “unresolved variables”. Un-
der the assumption that there is some prior statistical information about the distribution
of the initial conditions in the form of an invariant measure, a smaller set of equations
governing the motion of the resolved variables is constructed via the Mori-Zwanzig formal-
ism of nonequilibrium statistical mechanics. This reduced system consists of an effective
Hamiltonian dynamics augmented by an integral memory term, as well as a random forcing
term.

Molecular dynamics is an excellent candidate for system reduction via OP, due to its
underlying Hamiltonian structure, and because the canonical density provides a natural,
physically-based measure on the distribution of the coordinates. The most obvious method
for applying OP to MD is to divide the particles into “resolved particles” and “unresolved
particles”, and construct a system of equations that governs the dynamics of the resolved
particles alone. This represents a departure from other coarse graining methods, such as
those described above, in that the degrees of freedom we retain from the underlying system
are not the collective coordinates of many-particle volume elements, but are instead the
actual positions and momenta of a representative subset of the original system’s molecules.
Previous work along these lines has concentrated on the low-temperature limit of a special
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case in one dimension, in which there is a distinct spatial separation maintained between
the resolved and unresolved particles [57, 58]. The goal of this thesis is to derive a more
general formalism by which OP can be applied to MD at any state point, in any number of
dimensions, and without the requirement that the resolved and unresolved particles be kept
spatially separated. The resulting method allows the determination of the statistics, as well
as the dynamics, of the resolved subset of particles. As we will show in Chapter 4, many of
the system’s properties of interest can be expressed solely in terms of the coordinates and
trajectories of this subset.

This thesis is organized as follows: In Chapter 2, we present some necessary mathe-
matical background from probability theory and introduce a conditional expectation-based
projection operator, which allows us to derive the equations of OP via the Mori-Zwanzig
formalism. After establishing some notation, we specialize to the case of Hamiltonian sys-
tems, which simplifies our expressions somewhat, and provides an elegant framework for
what follows.

In Chapter 3, we give an overview of MD. After introducing a very basic model Hamil-
tonian and describing the interparticle potential, we show in Section 3.2 that OP takes a
particularly simple form when applied to this system. We then list several common ther-
modynamic properties of molecular fluids that will be used in later chapters to test the
effectiveness of OP. Finally, we review the popular velocity Verlet algorithm [65, 62], which
is commonly used in MD, and which forms the basis for all of the numerical methods used
in this thesis. As we will see, various book-keeping methods may be used to reduce the
computational cost of an MD simulation from O(N 2) to O(N).

Chapter 4 presents an approximation known as First Order Optimal Prediction (FOOP),
in which the memory and random forcing terms are omitted, leaving only the effective
Hamiltonian dynamics. The majority of the chapter is concerned with the evaluation of
the renormalized Hamiltonian that governs the motion of the resolved particles under this
approximation. In Section 4.2.1, we outline how this can be done in the low-density case via
a Mayer diagrammatic expansion, where the density of unresolved particles serves as a small
parameter. This expansion has much in common with similar diagrammatic methods found
in quantum field theory and other areas of physics that involve renormalization. For the
general case of arbitrary density, we show in Section 4.2.2 that the renormalized Hamiltonian
can be related to the many-particle distribution function familiar from equilibrium statistical
mechanics. Section 4.3 gives several examples illustrating how the properties of the original,
full system may be recovered from the reduced system. In particular, we derive expressions
for the energy, pressure, and heat capacity. In Section 4.5 we test FOOP, and compare
the results to those of the full system. We find that FOOP works well at low to moderate
densities for determining the static properties of the original system, such as energy or
pressure, but fails when dynamical quantities, such as correlation functions, are calculated.
This failure is a result of the fact that the memory and forcing terms we have neglected are
largely responsible for maintaining the correct temporal correlations in the reduced system.

In order to remedy this, in Chapter 5 we keep the memory and forcing terms, and
develop an approximation in which the memory term is modelled as a linear frictional
force. In Section 5.2, we show how the statistics of the random forcing are similar to those
of δ-correlated white noise, as we derive by considering the Fokker-Planck equation for
the distribution of the resolved positions and momenta. Both the coefficent matrices of
the friction and the statistics of the white noise turn out to be configuration-dependent.
The resulting system of stochastic differential equations has many similarities to the DPD
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approach described above. We next prove in Section 5.3 that this linear friction system
necessarily equilibrates to the canonical distribution of the reduced system. The results
from this model are comparable to those of FOOP for the calculation of static properties.
The linear friction model is also far better at calculating dynamical quantities, particularly
velocity autocorrelation functions, although, like FOOP, it breaks down at high densities.

Both of these methods, FOOP and linear friction, require that significant approximations
be made to the essentially exact equations of optimal prediction from which they are derived.
This inevitably results in appreciable errors in their determination of some of the properties
of the fluids they describe, particularly at high densities. Nevertheless, these techniques
may serve as the basis for future implementations of molecular dynamics system reduction.
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Chapter 2

Mathematical Background

We begin with a general outline of the problem to be solved, as well as a few results
and definitions from probability theory. We then derive the primary equation of OP via
the Mori-Zwanzig formalism, which is discussed in the context of Hamiltonian dynamical
systems.

2.1 Problem Description

As our starting point, we consider the system

d

dt
ϕ(z, t) = R

(
ϕ(z, t)

)

ϕ(z, 0) = z.
(2.1)

Here, ϕ, z, and R are all N -dimensional vectors, with components ϕi, zi, and Ri. Equation
(2.1) is an autonomous set of ordinary differential equations (ODEs), where R is generally
taken to be nonlinear. The dependence of ϕ on the initial condition z is explicitly included
here because of its importance for later results.

Following Chorin [6], the nonlinear system of ODEs (2.1) can be recast as a linear partial
differential equation (PDE). Consider the function u(z, t), which satisfies

∂tu(z, t) = Lu(z, t)

u(z, 0) = g(z),
(2.2)

where

L =

N∑

i=1

Ri(z)∂zi
(2.3)

is the Liouville operator, and g(z) is an arbitrary initial profile. The solution to (2.2) can
be written formally as

u(z, t) = etLg(z), (2.4)

where we have used semigroup notation [49] for the evolution operator etL generated by L.
The following identities hold for etL:

e0L = I, (2.5a)

LetL = etLL, (2.5b)

etLh(z) = h(etLz). (2.5c)
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In (2.5a), I is the identity operator, and in (2.5c) h(z) is an arbitrary function of z.
In addition to the formal expression (2.4), the solution to (2.2) can also be written

explicitly in terms of the solution to (2.1) as

u(z, t) = g
(
ϕ(z, t)

)
.

(A proof of this, as well as proofs of the identities above, can be found in [6].) The two
systems (2.1) and (2.2) are equivalent in that knowledge of the solution to one for all initial
conditions immediately yields the solution to the other. If we set g(z) = zi in (2.2), we find
that u(z, t) = ϕi(z, t). Combining this with (2.4) yields

ϕi(z, t) = etLzi,

which, together with (2.5b), allows us to write the system (2.1) as

d

dt
ϕ(z, t) = etLLz

ϕ(z, 0) = z.
(2.6)

We now make the assumption that (2.6) is too difficult to treat by traditional methods,
either because it is too large a system, or because we lack complete information about the
initial condition z. Our goal is to construct a smaller M -dimensional system, with M<N .
Ideally, the statistical and dynamical properties of this smaller system should mirror those
of (2.6).

The initial condition z is partitioned into two parts, so that z = {ẑ, z̃}, where
ẑ = {z1, ..., zM} and z̃ = {zM+1, ..., zN}. We similarly partition ϕ = {ϕ̂, ϕ̃}, andR = {R̂, R̃}.
It is assumed that ẑ is known, whereas z̃ is unknown. We therefore seek to obtain an ex-
pression for the evolution of ϕ̂ alone, since ϕ̂(0) = ẑ is known. The ϕ̂i are called the resolved
variables, and the ϕ̃i are called the unresolved variables.

If ẑ is known, but we have no information of any kind about z̃, then little can be done to
achieve this goal. Therefore the additional assumption is made that we have some statistical
knowledge about the distribution of the initial conditions in the form of a probability density
function f on z. Before outlining how the existence of such a density helps us to overcome
the obstacles inherent in a large nonlinear system such as (2.6), we must make a brief
digression to present some results and definitions from probability theory.

2.2 Basic Probability Theory and the Projection Operator

We begin with a vector-valued random variable Z = (Z1, ..., ZN ). The set of all possible
values of Z is Ω, which is known as the sample space. An event is defined to be a subset
of Ω, and B is the set of events we can observe, which is assumed to be a σ-algebra, i.e. it
satisfies the following conditions:

(1) ∅ ∈ B, where ∅ is the empty set.

(2) Ω ∈ B.

(3) If A ∈ B, then Ac ∈ B, where Ac ≡ {z ∈ Ω|z /∈ A} is the complement of A.

(4) If A1, A2, ... is a sequence of sets in B, and A =
⋃∞

n=1An, then A ∈ B.
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(Note that (1) follows from (2) and (3).) A function P : B → R is said to be a probability
measure if

(1) P (∅) = 0,

(2) 0 ≤ P (A) ≤ 1 for all A ∈ B,

(3) P (Ω) = 1,

(4) For any sequence A1, A2, ... of sets in B which satisfy Ai ∩Aj = 0 for i 6= j,
we have P (

⋃∞
n=1An) =

∑∞
n=1 P (An).

P assigns to each event in B a probability in [0, 1], and the triplet (Ω,B, P ) is called a
probability space.

Example: If we take our random variable Z to be the number that results from rolling a
die, then Ω = {1, 2, 3, 4, 5, 6}. The set of events B, however, depends on what we choose to
define as an “event”. We may, for example, choose to include as events every possible subset
of Ω, in which case B has 26 = 64 members, including ∅ and Ω itself. On the other hand,
we may decide to recognize only the two events “Z is even” and “Z is odd”, in which case
B =

{
∅, {2, 4, 6}, {1, 3, 5},Ω

}
. In that case, the probability measure would satisfy P (∅) = 0,

P (Ω) = 1, and P ({2, 4, 6}) = P ({1, 3, 5}) = 1/2.

Information about the probability measure associated with a continuous random variable
Z is usually given in the form of a distribution function F (z), which is related to P via

P
(
{Z ∈ Ω|Z1 ≤ z1, ..., ZN ≤ zN}

)
= F (z).

The random variable Z is then said to have the probability density function (PDF) f if

F (z) =

∫ z1

−∞
dy1...

∫ zN

−∞
dyN f(y).

f obeys the following axioms:

(1) f(z) ≥ 0 for all z ∈ Ω

(2) f is integrable on all elements A ∈ B

(3)
∫
Ω dz f(z) = 1

(4)
∫
A dz f(z) is the probability that z ∈ A ⊆ Ω

Given f , we can compute the mean, or expectation value, of a function g of z as

E[g] ≡
∫

Ω
dz g(z)f(z), (2.7)

which yields a number independent of z.
In our case, the random vector z of initial conditions to equation (2.1) is partially

specified, because we have a value for ẑ, the vector of the first M components of z. We
can use this partial information to construct a conditional probability density function on z̃
alone. This conditional PDF is denoted by f(z̃ |ẑ ), and is a function of z̃, parametrized by
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the known value of ẑ. If Ω̃ is the sample space of z̃ alone, then f(z̃ |ẑ ) is given in terms of
the full density f by

f(z̃ |ẑ ) =
f(z)∫

Ω̃
dz̃ f(z)

, (2.8)

where, in general, Ω̃ depends on ẑ. Note that (2.8) implies that f(z̃ |ẑ ) satisfies a similar
set of axioms as f :

(1) f(z̃ |ẑ ) ≥ 0 for all z̃ ∈ Ω̃, ẑ ∈ Ω̂

(2) f(z̃ |ẑ ) is integrable on all elements A ∈ B̃, where B̃ is a σ-algebra of subsets
of Ω̃

(3)
∫
Ω̃
dz̃ f(z̃ |ẑ ) = 1 for all ẑ ∈ Ω̂

(4)
∫
A dz̃ f(z̃ |ẑ ) is the probability that z̃ ∈ A ⊆ Ω̃, given ẑ.

By analogy with (2.7), we can use the conditional density (2.8) to define the average
value of a function g of z, constrained by the known value of ẑ. This is known as the
conditional expectation value of g(z), and is given by

E
[
g(z) | ẑ

]
≡
∫

Ω̃
dz̃ g(z)f(z̃ |ẑ )

=

∫
Ω̃ dz̃ g(z)f(z)∫

Ω̃ dz̃ f(z)
. (2.9)

Several properties of the conditional expectation are listed below. Here g(z) and h(z)
are arbitrary functions of z for which E[g], E[h], E[g2], and E[h2] exist; w(ẑ ) is an arbitrary
function of ẑ for which E[w] and E[w2] exist; and α and β are constants.

(1) E
[
g(z) | ẑ

]
is a function of ẑ alone.

(2) E
[
w(ẑ ) g(z) | ẑ

]
= w(ẑ )E

[
g(z) | ẑ

]

(3) E
[
E
[
g(z) | ẑ

] ]
= E

[
g(z)

]

(4) E
[
α g(z) + β h(z) | ẑ

]
= α E

[
g(z) | ẑ

]
+ β E

[
h(z) | ẑ

]

(5) E

[(
g(z) −E

[
g(z) | ẑ

])2
]
≤ E

[(
g(z) − w(ẑ )

)2
]

Properties (1)-(4) follow simply from the definition (2.9) of conditional expectation. Prop-
erty (5) is a statement of the fact that E

[
g(z) | ẑ

]
is the best approximation of g(z) by a
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function of ẑ, and can be proven as follows:

E

[(
g(z) −w(ẑ )

)2
]

= E

[(
g(z) −E

[
g(z) | ẑ

]
+E

[
g(z) | ẑ

]
− w(ẑ )

)2
]

= E

[(
g(z) −E

[
g(z) | ẑ

])2
]

+E

[(
w(ẑ ) −E

[
g(z) | ẑ

])2
]

− 2 E

[(
g(z) −E

[
g(z) | ẑ

])(
w(ẑ ) −E

[
g(z) | ẑ

])]

= E

[(
g(z) −E

[
g(z) | ẑ

])2
]

+E

[(
w(ẑ ) −E

[
g(z) | ẑ

])2
]

≥ E

[(
g(z) −E

[
g(z) | ẑ

])2
]
,

where in the third equality we have used the fact that

E

[(
g(z)−E

[
g(z) | ẑ

])(
w(ẑ ) −E

[
g(z) | ẑ

])]

= E

[
E

[(
g(z) −E

[
g(z) | ẑ

])(
w(ẑ ) −E

[
g(z) | ẑ

]) ∣∣∣ ẑ
]]

By (3)

= E

[(
w(ẑ ) −E

[
g(z) | ẑ

])
E

[(
g(z) −E

[
g(z) | ẑ

]) ∣∣ ẑ
]

︸ ︷︷ ︸
=0

]
By (2)

= 0.

We now define a projection operator P that acts on the space of functions of z,

P
{
g(z)

}
=
(
Pg
)
(ẑ ) ≡ E

[
g(z) | ẑ

]
. (2.10)

P is the orthogonal projection onto the space of functions of ẑ, and is the same projection
as the one described in [7, 8, 9, 10, 11]. We further define the operator Q = I − P. P and
Q satisfy the operator identities

P2 = P, (2.11a)

Q2 = Q, (2.11b)

PQ = QP = 0. (2.11c)

Here (2.11c) is an expression of the fact that Q is the orthogonal projection onto the null
space of P.

It is worth noting that there are several other projections commonly in use. For example,
if we take the inner product of two functions g1(z) and g2(z) to be (g1, g2) = E[g1g2], then
we may define the linear projection PL, where

PL{g(z)} =
(
PLg

)
(ẑ ) ≡

M∑

i,j=1

(
a−1
)
ij

(
g(z), ẑi

)
ẑj . (2.12)

Here a−1 is the inverse of the M ×M matrix a, which has entries aij = (ẑi, ẑj). The linear
projection is used extensively in the nonequilibrium statistical mechanics literature [17, 19].
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More generally, if we pick a set of M functions hν(ẑ), which are orthonormal in the
sense that (hν , hµ) = δνµ, then the finite-rank projection PFR is given by

PFR{g(z)} =
(
PFRg

)
(ẑ) ≡

M∑

ν=1

(g(z), hν )hν . (2.13)

If the set of functions hν (ẑ) spans Ω̂ as M becomes large, then in this limit PFR approxi-
mates the projection P defined by (2.10).

The projections PL and PFR are both useful in certain types of problems. However, for
reasons that will be made clear in Chapter 4, in the context of molecular dynamics only the
projection P is appropriate.

2.3 The Mori-Zwanzig Formalism

Following the Mori-Zwanzig procedure [9, 17, 44, 68, 69], we use the fact that P + Q = I
to split the Liouville operator into two parts: L = PL + QL. This allows us to write the
system (2.6) as

d

dt
ϕ(z, t) = etL(PL+ QL)z = etLPLz + etLQLz, (2.14)

which describes the evolution of the full N -dimensional vector ϕ. Since we are only in-
terested in the evolution of ϕ̂, we choose to focus on the ith component of (2.14), where
1 ≤ i ≤M . Keeping in mind that ϕi = ϕ̂i and zi = ẑi for i in this range, we then arrive at

d

dt
ϕ̂i(z, t) = etLPLẑi + etLQLẑi. (2.15)

The second term in (2.15) can be split further. Define wi(z, t) to be the solution to

∂twi(z, t) = QLwi(z, t)

wi(z, 0) = QLẑi ,
(2.16)

which is known as the orthogonal dynamics equation. The formal solution to (2.16) can be
written using semigroup notation as wi(z, t) = etQLQLẑi. A proof of the existence of weak
solutions to (2.16) can be found in [20].

An important property of wi(z, t) is that Pwi(z, t) = 0 for all t. This can be seen by
noting that Pwi(z, 0) = PQLẑi = 0, by (2.11c). Furthermore, the time derivative of Pwi(z, t)
is

d

dt
Pwi(z, t) = P

d

dt
wi(z, t)

= PQLwi(z, t)

= 0,

which implies that Pwi(z, t) = 0 for all t. (The commutativity of P and d
dt follows from the

definition of P.) The dynamics of wi(z, t) therefore lie entirely within the null space of P.
The evolution operators etL and etQL are related via the Duhamel/Dyson identity [14,

17]:

etL =

∫ t

0
ds e(t−s)LPLesQL + etQL.
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Substituting this expression for etL into the second term of (2.15) yields

d

dt
ϕ̂i(z, t) = etLPLẑi +

∫ t

0
ds e(t−s)LPLesQLQLẑi + etQLQLẑi.

If we now define

Ri(ẑ ) = PLẑi

Ki(ẑ, t) = PLetQLQLẑi

Fi(z, t) = etQLQLẑi ,

then we finally arrive at

d

dt
ϕ̂i(z, t) = etL

Ri(ẑ ) +

∫ t

0
ds e(t−s)L

Ki(ẑ, s) + Fi(z, t). (2.17)

Equation (2.17) is an example of a generalized Langevin equation, and is the primary equa-
tion of OP. We refer to (2.17) as the reduced system, whereas (2.1) is the full system. Note
that no approximations have been made in deriving (2.17).

The three terms on the right hand side of (2.17) are conventionally understood as
follows. The first term, etL

Ri(ẑ ) = Ri

(
ϕ̂(z, t)

)
, depends only on the value of ϕ̂ at time

t, and is a Markovian contribution to the dynamics of ϕ̂. The second term depends upon
the entire history of ϕ̂(z, s) for 0 ≤ s ≤ t, and thus represents a memory, with memory
kernel e(t−s)L

Ki(ẑ, s) = Ki

(
ϕ̂i(z, t − s), s

)
. The last term, Fi(z, t), is the same as wi(z, t)

described by equation (2.16), and so PFi(z, t) = 0 for all t. For this reason, Fi(z, t) is
usually interpreted as random noise with zero mean. Notice that Ki(ẑ, t) = PLFi(z, t). Such
expressions, which relate the memory kernel to the noise, are called fluctuation-dissipation
theorems.

In previous work on OP [7, 8, 9], equation (2.17) was multiplied on the left one final
time by P. This eliminates the noise term, since PFi = 0, and yields

d

dt
Pϕ̂i(z, t) = PRi

(
ϕ̂i(z, t)

)
+

∫ t

0
ds PKi

(
ϕ̂(z, t− s), s

)
, (2.18)

which is an evolution equation not for ϕ̂(z, t), but for Pϕ̂(z, t). Pϕ̂(z, t) represents an average
over all solutions with respect to z̃, while ẑ remains fixed. Since (2.1) is typically nonlinear,
the solution will eventually “forget” about our partial knowledge of the initial conditions
[27]. Therefore, for the types of systems studied previously, Pϕ̂(z, t) converges for large t to a
constant value equal to the mean of ẑ under the full density f . However, convergence of the
system’s coordinates to constant values is not consistent with the qualitative behavior of the
many-body molecular dynamics systems we will be studying, in which thermal excitations
should persist even after the system has come to thermodynamic equilibrium. Therefore
we shall work directly with (2.17), rather than with its projected counterpart (2.18).

2.4 Optimal Prediction for Hamiltonian Systems

If (2.1) is a Hamiltonian system, with Hamiltonian H(q, p), then it is convenient to make
a few cosmetic changes in notation. Let there be N positions qi and N momenta pi, each
of which is a d-dimensional vector. We define q = {q1, q2, ... , qN} and p = {p1, p2, ... , pN}
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to be the Nd-dimensional vectors of the positions and momenta, respectively. The set of
ODEs generated by H(q, p) is

d

dt
qi = ∇pi

H(q, p)

d

dt
pi = −∇qi

H(q, p)

qi(0) = xi

pi(0) = yi.

(2.19)

(Note that the “∇” notation is used because the qi and pi are d-dimensional vectors.)
We abandon the more general variables ϕ and z in favor of q, p, x, and y, which are

split into M resolved variables and N−M unresolved variables as follows:

q̂ = {q1, ... , qM} q̃ = {qM+1, ... , qN}
p̂ = {p1, ... , pM} p̃ = {pM+1, ... , pN}
x̂ = {x1, ... , xM} x̃ = {xM+1, ... , xN}
ŷ = {y1, ... , yM} ỹ = {yM+1, ... , yN}.

Here q̂, p̂, x̂, and ŷ are Md -dimensional, whereas q̃, p̃, x̃, and ỹ are (N−M)d -dimensional.
Note that if qi is resolved, then so is its corresponding conjugate momentum pi.

In terms of this new notation, (2.17) becomes the pair of equations

d

dt
q̂i = etLR

(q)
i (x̂, ŷ ) +

∫ t

0
ds e(t−s)L

K
(q)

i (x̂, ŷ, s) + F
(q)
i (x, y, t)

d

dt
p̂i = etLR

(p)
i (x̂, ŷ ) +

∫ t

0
ds e(t−s)L

K
(p)

i (x̂, ŷ, s) + F
(p)
i (x, y, t),

(2.20)

where

R
(q)
i (x̂, ŷ ) = PLx̂i R

(p)
i (x̂, ŷ ) = PLŷi

K
(q)

i (x̂, ŷ, t) = PLetQLQLx̂i K
(p)

i (x̂, ŷ, t) = PLetQLQLŷi (2.21)

F
(q)
i (x, y, t) = etQLQLx̂i F

(p)
i (x, y, t) = etQLQLŷi .

Here the Liouvillian L is

L =

N∑

i=1

{(
∇yi

H(x, y)
)
· ∇xi

−
(
∇xi

H(x, y)
)
· ∇yi

}
. (2.22)

In section 2.1, we introduced f , a probability density on the vector of initial conditions.
We did not, however, explain where f comes from. In fact, the form of f is unspecified,
and must either be determined from experimental data or deduced from the physics of the
problem at hand. Let the probability density of the positions and momenta of the system
(2.19) at time t be denoted by f(x, y, t), with f(x, y, 0) = f0(x, y). Then f(x, y, t) satisfies
the Liouville equation [17]

∂tf(x, y, t) = −Lf(x, y, t), (2.23)
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where L is as in (2.22). The formal solution to (2.23) is

f(x, y, t) = e−tLf0(x, y)

= f0

(
e−tLx, e−tLy

)

= f0

(
q(x, y,−t), p(x, y,−t)

)
,

where q(x, y,−t) and p(x, y,−t) are the solutions to (2.19) at time −t. IfA
(
q(x, y, t), p(x, y, t)

)

is some dynamical variable, then its average at time t is

〈A〉(t) =

∫
dx

∫
dy A

(
q(x, y, t), p(x, y, t)

)
f0(x, y) (Heisenberg representation)

=

∫
dx

∫
dy f0(x, y) e

tLA(x, y)

=

∫
dx

∫
dy A(x, y) e−tLf0(x, y)

=

∫
dx

∫
dy A(x, y) f(x, y, t). (Schroedinger representation)

In the third equality above, we have used the fact the propagator e−tL is the adjoint of the
propagator etL (see [17]).

An invariant density f ∗(x, y) satisfies

etLf∗(x, y) = f ∗
(
q(x, y,−t), p(x, y,−t)

)
= f∗(x, y),

i.e. f∗(x, y) is a stationary solution to the Liouville equation. In that case, the average
value of the dynamical variable A becomes time-independent: 〈A〉(t) = 〈A〉(0). An invariant
density would therefore be a convenient choice for the f of section 2.1.

In the context of Hamiltonian systems, an excellent candidate for f is the canonical
density

fc(x, y) =
1

Z
e−βH(x,y), (2.24)

where β = 1/kBT , kB is Boltzmann’s constant, T is the temperature, and

Z =

∫
dx

∫
dy e−βH(x,y) (2.25)

is a normalizing factor. The canonical density fc is the equilibrium density for a Hamiltonian
system in thermal contact with a heat bath at temperature T, and thus accurately describes
the statistics of many real-world systems [48]. It also has the advantage of being an invariant
density, which follows from the fact that LH = 0.

Note that fc is not the only commonly used invariant density for Hamiltonian systems.
There are several others, including, for example, the microcanonical distribution

fm(x, y) =
1

S(E)
δ
(
H(x, y) −E

)
, (2.26)

where S(E) is a normalizing factor, E is the (fixed) energy of the system, and δ is the Dirac
δ-function. fm describes the distribution of coordinates and momenta in an isolated system
of constant energy. In reality, however, complete thermodynamic isolation can be realized
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as an approximation at best, as real systems always have some external coupling. For this
reason, and for the reasons listed above, we shall use fc exclusively as the PDF of initial
conditions throughout this work. This choice follows the example of previous literature on
OP [7, 8, 9, 10, 11, 12, 27, 57, 58].
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Chapter 3

Molecular Dynamics

We introduce a Hamiltonian H that governs the dynamics of a simple molecular fluid.
After a discussion of several assumptions about the form of H, we describe a numerical
method for simulating the resulting system. Lastly, we outline the application of OP to our
Hamiltonian.

3.1 The Molecular Dynamics Hamiltonian

We consider a classical system consisting of N identical, point particles of mass m, moving
in d dimensions. The particle positions qi are confined within a bounded, simply-connected
region Ω ⊂ Rd. The momenta are pi ∈ Rd. We define V = |Ω| to be the volume. Throughout
this thesis, we will work in the thermodynamic limit, i.e. all results will ultimately be
interpreted in the limit N,V → ∞, while the number density ρ = N/V remains constant 1.

The Hamiltonian governing the system is:

H(q, p) =
N∑

i=1

|pi|2
2m

+ φ(q), (3.1)

where the potential energy φ(q) is assumed to be a sum of radially symmetric pair interac-
tions:

φ(q) =
N∑

i<j

U
(
|qi − qj|

)
. (3.2)

The Hamiltonian (3.1) describes the simplest possible classical system of interacting par-
ticles. The assumption of a pairwise potential is an approximation. More realistic N -body
Hamiltonians may have three-particle, four-particle, or higher interactions. Furthermore,
we have neglected quantum effects, as well as the particles’ internal degrees of freedom.
In fact, (3.1) and (3.2) were used in the earliest versions of MD to be studied numerically
[1, 36, 37, 52, 65, 66]. More accurate models have since been developed that take into
account many-particle effects and the internal structure of the molecules [3]. These will not
be treated here.

1It is traditional in computational MD for “ρ” to represent number density, rather than mass density, as
it typically does in physics.
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Figure 3.1: The Lennard-Jones Potential ULJ(r)

In addition to radial symmetry, we make two assumptions about the form of the pair
potential U(r):

(1) U(r) ≥ C for some constant C > −∞.

(2) As r → ∞, U(r) → 0 faster than 1/rd.

Condition (1) ensures that the canonical density (2.24) can be normalized, whereas condition
(2) will be needed to guarantee the convergence of certain integrals that appear in the next
chapter. Note that (2) also precludes consideration of the Coulomb potential, which falls
off as 1/rd−2.

There are several pair potentials commonly used in MD that satisfy spherical symme-
try, as well as conditions (1) and (2) above. These include, for example, the hard-sphere
potential,

UHS(r) =

{
+∞ r ≤ σ

0 r > σ,

which describes the interaction of rigid spheres of diameter σ undergoing elastic collisions.
This was the first potential to be studied via an MD simulation on a computer [1].

A more realistic alternative to the hard-sphere potential in d=3 is the Lennard-Jones
potential [35],

ULJ(r) = 4ε

((σ
r

)12
−
(σ
r

)6
)
, (3.3)

which is shown in Figure 3.1. Here σ is the scale length of the interaction, and ε is the
depth of the potential well. The attractive r−6 part of (3.3) comes from the van der Waal
force, whereas the form of the repulsive r−12 contribution has no physical basis, but was
desirable in the early decades of MD for reasons of computational convenience: given r−6,
one could compute r−12 rapidly by performing a single squaring operation. The Lennard-
Jones potential has been shown to yield good agreement with the properties of spherically
symmetric molecules, such as Ar and CH3.

Several other potentials commonly used in MD, such as the Morse potential [45] or the
Buckingham potential [5], are of a similar shape to ULJ , but conform more closely to real
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interparticle interactions. Nevertheless, the Lennard-Jones potential has been extensively
studied via MD simulation over the years [3, 36, 37, 52, 65, 66], and a great deal is known
about its behavior. It is usually the first potential used to test any new MD scheme. For
these reasons, and for its simplicity, we shall use the Lennard-Jones potential in all numerics,
although our analytical results will remain general.

3.2 Optimal Prediction and the Molecular Dynamics Hamil-

tonian

The equations of motion generated by the Hamiltonian (3.1) are

d

dt
qi =

1

m
pi qi(0) = xi

d

dt
pi = Fi(q) pi(0) = yi ,

(3.4)

where

Fi(q) ≡ −∇qi
φ(q) = −

N∑

j 6=i

∇qi
U
(
|qi − qj|

)
(3.5)

is the force on the ith particle. Given these, we can make some simplifications to equations
(2.20) and (2.21). The Liouvillian (2.22) becomes

L =

N∑

i=1

{
1

m
yi · ∇xi

−
(
∇xi

φ(x)
)
· ∇yi

}
. (3.6)

We then find that

PLx̂i = P
1

m
ŷi =

1

m
ŷi

and

QLx̂i = Lx̂i − PLx̂i =
1

m
ŷi − P

1

m
ŷi = 0 ,

in which case R
(q)
i (x̂, ŷ ) = ŷi/m and K

(q)
i (x̂, ŷ, t) = F

(q)
i (x, y, t) = 0. Dropping the super-

scripts on R
(p)
i , K

(p)
i , and F

(p)
i , equation (2.20) becomes

d

dt
q̂i =

1

m
p̂i

d

dt
p̂i = etLRi(x̂, ŷ ) +

∫ t

0
ds e(t−s)L

Ki(x̂, ŷ, s) + Fi(x, y, t),

(3.7)

where Ri(x̂, ŷ ), Ki(x̂, ŷ, s), and Fi(x, y, t) are as defined in (2.21). This cannot be simplified
further without making some approximations. The majority of this thesis will consist of
the formulation and testing of various approximations to (3.7).

3.3 Thermodynamic Quantities

Equations (3.4) can be integrated numerically to yield qi(t) and pi(t) for all of theN particles
that make up the system. We will describe a method for accomplishing this in the next
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section. However, the details of the trajectories of individual particles are not our primary
concern. We are more interested in macroscopic properties of the bulk fluid. There are
two types of quantities that concern us. First, there are static thermodynamic averages,
such as energy or pressure, which depend only on the instantaneous distribution of the
positions and momenta. Second, there are autocorrelation functions of dynamical variables
such as the velocity or shear stress, which may be used to recover transport coefficients
via the appropriate Green-Kubo relation [17]. Dynamical correlation functions depend on
the collective statistics of the particle trajectories, rather than on the details of particular
molecular paths. These macroscopic properties of the system will be used to evaluate the
quality of approximations that we will make to (2.20).

We assume that the system is in thermodynamic equilibrium, and that the positions
and momenta are distributed according to the canonical density at temperature T . Given
any dynamical variable A(q, p), we can use (2.24) to find its equilibrium average:

〈
A(q, p)

〉
C

=

∫
dq
∫
dp A(q, p) e−βH(q,p)

∫
dq
∫
dp e−βH(q,p)

, (3.8)

where 〈...〉C denotes an average over the canonical density. Many of the interesting macro-
scopic properties of molecular systems can be written in terms of equilibrium averages.

The energy E, pressure P , and constant volume heat capacity CV are given by [3]:

E =
〈
K
〉
C

+
〈
φ
〉
C
,

P =
2

V d

(〈
K
〉
C
−
〈
W(q)

〉
C

)
,

CV =
1

kBT 2

(〈
K2
〉
C
−
〈
K
〉2
C

+
〈
φ2
〉
C
−
〈
φ
〉2
C

)
,

where K =
∑N

i=1
|pi|

2

2 m is the kinetic part of the Hamiltonian (3.1), and

W(q) =
1

2

N∑

i<j

|qij|U ′(|qij |)

is called the virial. (Here we have defined qij =qi−qj.) Using (3.8), as well as the separability
of H into a kinetic part depending solely on p and a potential part depending solely on q,
it is simple to show that

〈
K
〉
C

=
d

2
NkBT,

〈
K2
〉
C

= (kBT )2
(
d

2
N +

d2

4
N2

)
,

in which case E, P , and CV become

E =
d

2
NkBT +

〈
φ
〉
C

(3.9)

P = ρ kBT − 2

V d

〈
W(q)

〉
C

(Recall that ρ = N/V ) (3.10)

CV =
d

2
NkB +

1

kBT 2

(〈
φ2
〉
C
−
〈
φ
〉2
C

)
. (3.11)
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These are the expressions that we will be evaluating numerically.
We define the time average of a dynamical variable A(q, p) as

〈
A(q, p)

〉
t
= lim

τ→∞

1

τ

∫ τ

0
dt A

(
q(t), p(t)

)
.

In order to easily extract
〈
A(q, p)

〉
C

from the solution to (3.4) that will be generated
numerically, we make the additional assumption that

〈
A(q, p)

〉
t
=
〈
A(q, p)

〉
C
.

This is known as the ergodic hypothesis, and is a common assumption in statistical physics,
though no proof of it exists for any except the most simple systems.

In addition to the static properties E, P , and CV , we will also be studying the velocity
and shear stress temporal autocorrelation functions. These are commonly evaluated in MD
simulations because they are related via Green-Kubo relations to the diffusion coefficient
and shear viscosity, respectively. The diffusion coefficient is given by

D =

∫ ∞

0
dt Cvv(t), (3.12)

where

Cvv(t) =
1

3

〈
vi(0) · vi(t)

〉
C

is the velocity autocorrelation function for an arbitrary particle i. The shear viscosity is

η =
V

kBT

∫ ∞

0
dt CΞΞ(t), (3.13)

where

CΞΞ(t) =
〈
Ξµν(0) Ξµν(t)

〉
C

(µ 6= ν, no summation)

is the autocorrelation function of Ξµν , an off-diagonal component of the stress tensor. For
purposes of MD simulation, Ξµν is best written in the form:

Ξµν =
1

V

N∑

i=1

(
1

m
pi,µ pi,ν − qi,µ

∂

∂qi,ν
φ(q)

)
. (3.14)

Here we define a convention, to be used throughout this thesis, that Roman indices (i, j, ...)
will indicate particle number, while Greek indices (µ, ν, ...) will denote Cartesian compo-
nents. Thus, for example, piµ is the µth component of pi, the momentum vector of the ith

particle.

3.4 Numerical Methods

3.4.1 The Velocity Verlet Algorithm

In the traditional practice of MD, a system such as (3.4) is solved numerically via a discrete-
time finite difference scheme with time step ∆t. The typical limiting factor on the speed
of any discrete MD algorithm is the evaluation of the forces on each particle due to all the
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others. With N particles and a pairwise interaction, there are in principle N(N − 1)/2
separate interparticle forces to calculate. By careful use of various bookkeeping tricks,
evaluation of the forces can be reduced for moderate N from an O(N 2) process to an
O(N) process. Nevertheless, it remains the most time-consuming part of the simulation.
Therefore, the goal is to use a scheme that has as few force evaluations per timestep as
possible.

Energy drift is another factor to consider when selecting a finite-difference method for
(3.4). Many schemes, such as the popular 4th order Runge-Kutta algorithm for general
ODEs, result in a slow upward drift of the energy when applied to Hamiltonian systems.
An important set of methods that avoid this energy drift is the class of symplectic meth-
ods, which preserve phase space volume, a property shared by the equations of motion
themselves. This means that the volume of a set of points in the (q, p) phase space is
invariant under the map

(
q(t), p(t)

)
→
(
q(t + ∆t), p(t + ∆t)

)
which defines the finite-

difference scheme. Since energy drift over large timescales typically implies non-conservation
of phase space volume, symplectic methods keep the energy constant, to within small-
scale fluctuations. Furthermore, while discrete time integrators usually fail to conserve the
Hamiltonian, symplectic methods exactly conserve a closely related quantity known as the
“shadow Hamiltonian” H. The shadow Hamiltonian is a function of ∆t, in terms of which
it can be written as a Taylor series:

H(q, p,∆t) = H(q, p) +
∞∑

n=1

∆tn Hn(q, p).

Though it will require some modification to incorporate a thermostat and, later, aspects
of OP, we will base our numerics around a particularly simple, efficient, and popular sym-
plectic scheme known as the velocity Verlet method [62]. Given the positions qi, momenta
pi, and accelerations ai of the N particles at time t, we compute these quantities at time
t+ ∆t via the following algorithm:

(1) pi

(
t+

∆t

2

)
= pi(t) +

∆t

2
mai(t)

(2) qi(t+ ∆t) = qi(t) +
∆t

m
pi

(
t+

∆t

2

)

(3) ai(t+ ∆t) =
1

m
Fi

(
qi (t+ ∆t)

)

(4) pi(t+ ∆t) = pi

(
t+

∆t

2

)
+

∆t

2
mai(t+ ∆t).

(3.15)

Here Fi is as defined in equation (3.5). The velocity Verlet method is explicit, second order
in ∆t, and has several useful qualities. It is time-reversible, simple to implement, and
requires only one force evaluation per timestep. Though it necessitates the storage of an
additional set of quantities, the accelerations ai, this is not an impediment. In a typical
MD simulation, speed, not memory, is the limitation on system size.

For the velocity Verlet scheme and the Hamiltonian (3.1), the shadow Hamiltonian H
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is [60]:

H(q, p,∆t) =

N∑

i=1

|pi|2
2m

+ φ(q) (3.16)

+ ∆t2





1

12m2

N∑

i,j=1

(pi · ∇qi
)
(
pj · ∇qj

)
φ(q) − 1

24m

N∑

i=1

∣∣∇qi
φ(q)

∣∣2


+O

(
∆t4

)
.

We see that (3.15) conserves a quantity that differs from the actual Hamiltonian only to
order ∆t2.

3.4.2 Boundary Conditions and Initial Conditions

In addition to an integration scheme for (3.4), we must also specify a choice of initial
conditions for the positions and momenta, as well as a description of boundary conditions.
Though our analytical development assumes that the particles are confined within a general
bounded region Ω in d dimensions, all of our simulations will take place in d = 3, and make

use of periodic boundary conditions in a cubic box of side L = (N/ρ)
1
3 . In the limit of a large

system with a short-ranged potential, this difference in boundary assumptions becomes a
simple computational convenience that should have negligible effect on the bulk properties
of the material.

Ideally, the initial conditions would be drawn randomly from the canonical distribution
(2.24). For the momenta, this is simple; each component yiµ is drawn independently from
a Gaussian distribution with mean zero and variance mkBT . Given the complexity of the
potential φ, however, canonical sampling of the positions is difficult. Our goal is to simulate
a box of volume L3, filled with N particles at a uniform number density ρ. An obvious and
simple choice for the initial particle positions would be to select each independently from a
uniform distribution spanning the entire box. Unfortunately, this is untenable. Most of the
potentials commonly used in MD diverge positively as two particles approach one another.
Unless the number density is extremely low, at least two of theN uniformly selected particles
will be very close to one another with overwhelming probability. This leads to an unphysical
blowup of the total energy of the system. In order to avoid this, we choose instead to place
the particles in a face-centered cubic lattice. Because this configuration is not a minimum of
the free energy for gases or liquids, an equilibration phase will be required in our numerics,
during which the initially ordered configuration will “melt”.

3.4.3 Thermostat

The state of our system is uniquely specified by T and ρ. As the fluid’s microscopic structure
leaves the initial ordered state, kinetic energy will quickly be lost to potential energy, and
the instantaneous temperature

T̂ (p) ≡ 2

NdkB

N∑

i=1

|pi|2
2m

(3.17)

will drop. In order to maintain the state of our simulated system, some mechanism must be
added to the equations of motion (3.4) and to the numerical scheme (3.15) to regulate the
temperature. If this takes the form of a well-modeled interaction between the N particles
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and a heat bath at temperature T , it will have the additional benefit of ensuring equilibration
to the canonical distribution. Such a mechanism is known as a thermostat.

There are several kinds of thermostats in common use. In general, these can be divided
into two categories: momentum scaling and artificial friction methods. The former includes

simple scaling, in which all the momenta are multiplied by a factor (T/T̂ )
1/2

at every time
step, or perhaps periodically. This has the effect of eliminating temperature drift by forcing
the instantaneous temperature (3.17) to equal the desired system temperature T . Also in
wide use is the more drastic Andersen thermostat [4], which re-selects all momenta from
a Maxwellian distribution at random intervals. While these methods yield a canonical
distribution, and are thus suited to the calculation of static averages, they adversely effect
the dynamics, which makes it difficult to extract accurate correlation functions.

The class of artificial friction thermostats includes, for example, the Gaussian isokinetic
thermostat [17], which involves adding a term to the equations of motion:

d

dt
qi =

1

m
pi

d

dt
pi = Fi(q) − λ pi ,

where

λ ≡
∑N

i=1 pi · Fi(q)∑N
i=1 |pi|2

is a Lagrange multiplier. It can be shown that this form for the friction coefficient λ forces
the kinetic energy to be constant. This method has several drawbacks. The resulting equi-
librium distribution is not canonical, and there are no fluctuations in temperature, which
are to be expected in a real system. For this reason, we choose to implement instead the
widely used Nosé-Hoover thermostat, which has been proven to yield a canonical equilib-
rium, allows temperature fluctuations, and does not adversely change the dynamics [47, 26].

In the Nosé-Hoover scheme, the equations of motion are altered as follows:

d

dt
qi =

1

m
pi

d

dt
pi = Fi(q) − ζ pi

d

dt
ζ =

1

Q

(
N∑

i=1

|pi|2
m

−NdkBT

)
=
NdkB

Q

(
T̂ (p) − T

)
.

(3.18)

Here the heat bath coupling is modeled as a friction term with a time-dependent coefficient
ζ. The parameter Q in (3.18) is known as the heat bath mass, though its units are not those
of mass, but rather of energy · time2. The choice of Q is crucial to the efficient functioning
of the thermostat. If Q is too small, the resulting distribution will not be canonical. If Q
is too large, fluctuations in temperature will not be sufficiently damped.

Following Nosé [47], we may estimate the best value of Q via the following procedure:
Define the temperature deviation as δT = T̂ − T . Applying (3.17) and (3.18) allows us to
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derive a set of equations of motion for ζ and δT :

d

dt
ζ =

NdkB

Q
δT

d

dt
δT = −2Tζ + 2ζ δT +

2

NdkBm

N∑

i=1

pi · Fi(q) (3.19)

Near equilibrium, we expect both ζ and δT to be small. Therefore, to first order in ζ and
δT , we may ignore the second term on the right hand side of (3.19). Furthermore, the third
term has mean zero at equilbrium, and so may be regarded as “noise”. Thus, the above
system becomes:

d

dt
ζ =

NdkB

Q
δT

d

dt
δT ≈ −2T ζ + noise

(3.20)

This has the form of a noisy oscillator with natural frequency ω, which is given by

ω2 =
2TNdkB

Q
.

In order for this to make sense physically, we require that the period of oscillation 2π/ω
correspond to τo, which is defined to be a typical microscopic timescale of the system. This
allows us to solve for Q, to obtain

Q =
1

2π2
τ2
o NdkBT . (3.21)

Nosé [47] has found that the dynamics of the system at equilibrium are highly insensitive
to the exact value of τo, and so we will simply set τo =

√
mσ2/ε, where σ and ε are,

respectively, a length scale and an energy scale for the potential.
In order to integrate (3.18), some changes must be made to the velocity Verlet scheme

(3.15) to incorporate the thermostat. A simple algorithm for accomplishing this is the
following modified velocity Verlet method:

(1) pi

(
t+

∆t

2

)
= pi(t) +

∆t

2

(
mai(t) − ζ(t) pi(t)

)

(2) qi(t+ ∆t) = qi(t) +
∆t

m
pi

(
t+

∆t

2

)

(3) ζ(t+ ∆t) = ζ(t) + ∆t
Nd kB

Q

{
T̂

[
p

(
t+

∆t

2

)]
− T

}

(4) ai(t+ ∆t) =
1

m
Fi

(
qi (t+ ∆t)

)

(5) pi(t+ ∆t) = pi

(
t+

∆t

2

)
+

∆t

2

(
mai(t+ ∆t) − ζ(t+ ∆t) pi(t+ ∆t)

)
,

(3.22)

where the implicit step (5) can be rendered explicit by solving for pi(t+ ∆t), to yield

pi(t+ ∆t) =
pi

(
t+ ∆t

2

)
+ ∆t

2 mai(t+ ∆t)

1 + ∆t
2 ζ(t+ ∆t)

.

The modified velocity Verlet algorithm, like the original version, is second order and simple
to implement.
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3.4.4 Potential Truncation and Neighbor Lists

As mentioned above, the most time-consuming part of most MD algorithms is the force
evaluation (step (3) of (3.15) or step (4) of (3.22) ), which is an O(N 2) process. The force
on particle i due to particle j is

F (|qij|) = −∇qi
U(|qij|) = − qij

|qij|
U ′(|qij|).

In a numerical algorithm, the most efficient way to evaluate F for a pair of particles is by
defining a quantity

ω(r) ≡ −1

r
U ′(r),

in which case F (qij) = qij ω(|qij|). The advantage of this is that if the potential U(r) can
be written as a function of r2 alone, then ω(r) can as well. (The Lennard-Jones potential
(3.3) has this property.) Since, during any given timestep, we have the components of the
vector qij = qi − qj, but not its magnitude, this allows us to save time by evaluating the
potential using |qij|2, without also requiring the calculation of |qij|.

We can also reduce the number of particle pairs for which the interparticle force must
be calculated, by introducing a cutoff radius rc, beyond which U , F , and ω are set equal
to zero. This is normally accomplished by defining a shifted potential Uc that is close to U ,
but has the property that both Uc(r) and U ′

c(r) go smoothly to zero at r = rc. The form
usually chosen for Uc is [3]:

Uc(r) =

{
U(r) − U(rc) + (rc − r)U ′(rc) r < rc

0 r ≥ rc
. (3.23)

However, we will instead use the slightly more complicated

Uc(r) =




U(r) − U(rc) +

rc
2 − r2

2rc
U ′(rc) r < rc

0 r ≥ rc

, (3.24)

which has several advantages over the standard version (3.23). If U(r) depends only on r2,
then the Uc(r) we have chosen preserves this property. Furthermore, for the Lennard-Jones
potential, the truncated potential (3.24) deviates less from the true potential than (3.23)2.
The truncated Lennard-Jones potential with rc = 2.5σ (a typical value for rc) is shown in
Figure 3.2, along with the original potential for comparison.

It is important to note that when we truncate the potential in the manner described
by either (3.23) or (3.24), the new potential Uc(r) has a discontinuous second derivative at
r = rc. This means that the two numerical schemes (3.15) and (3.22) are no longer strictly
second order, and, in fact, become first order methods. In addition, the derivation of the
shadow Hamiltonian requires more smoothness than is present in either (3.23) or (3.24),
so (3.16) is no longer strictly valid either. Nevertheless, the velocity Verlet method (3.15),
along with a truncated potential, has been used for decades with excellent results.

By truncating the potential, we eliminate the need to evaluate the force function for the
majority of the N(N − 1)/2 particle pairs. However, every pair of particles must still be

2For all r and for all reasonable rc, the quantity |Uc(r) − U(r)| is smaller for the truncated potential
defined by (3.24) than for that defined by (3.23). The same can be said for the deviations in the F and ω
functions derived from the two truncated potentials.
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Figure 3.2: Solid line: The truncated Lennard-Jones Potential Uc(r) with rc = 2.5σ. Dashed
line: The original Lennard-Jones potential.

checked to see if they fall within rc of each other. Thus, the force evaluation step remains
an O(N2) process. The usual remedy for this is by use of a neighbor list [65, 64]. For each
particle, we maintain a list of its most recent neighbors, where a “neighbor” is defined as
any other particle less than a distance r` away, where r` > rc is the neighbor list radius.
For the Lennard-Jones potential, r` is normally chosen to be approximately rc + σ.

Under the neighbor list method, we only check the distances between neighbors during
a typical timestep. All other particle pairs are ignored. The interparticle force is then
calculated for those neighbor pairs that fall within rc of each other. On average, the
time needed for force evaluation will then be proportional to ρrc

3N , rather than N 2. The
neighbor list is updated periodically by inspecting all N(N − 1)/2 particle pair distances,
and rebuilding the list according to which particles fall within r` of each other. This is an
O(N2) process, but it is done at relatively widely-spaced intervals, so the overall process
remains approximately O(N), unless N is quite large. Even in the case of large N , the
neighbor list method significantly reduces the runtime.

3.4.5 Timestep

In any discrete integration scheme, the time step ∆t must be chosen carefully. Most short-
range interparticle potentials possess a scale length σ that can serve both as a measure of
the range of the force, as well as a rough estimate of the “size” of a molecule. In nature,
this length is usually on the order of a few Å. A good rule of thumb is that the timestep
must be much shorter than the time it takes for a particle travelling at a typical thermal
velocity to traverse one molecular length, i.e.

∆t� σ

√
m

kBT
.

In all our numerics, we therefore set

∆t =
σ

100

√
m

3 kBT
, (3.25)
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which is sufficiently small for most purposes.

3.4.6 Lennard-Jones Reduced Units

When studying the interaction of Lennard-Jones particles numerically, it is both traditional
and useful to work in Lennard-Jones reduced units, in which all quantities are rendered
dimensionless using appropriate combinations of the particle mass m, the scale length σ, the
well depth ε, and Boltzmann’s constant kB . The dimensionless quantities are then known
as “reduced variables”, and are denoted by a superscript asterisk: ∗ . The relationships
between several frequently used dimensional quantities and their reduced counterparts are
shown below for reference.

q∗ =
1

σ
q p∗ =

(
1

mε

) 1
2

p t∗ =
( ε

mσ2

) 1
2
t

U∗(r∗) =
1

ε
U(σr∗) T ∗ =

kB

ε
T ρ∗ = σ3ρ

CV
∗ =

1

kB
CV E∗ =

1

ε
E P ∗ =

σ3

ε
P

The advantage of this is that all numerical results generated using reduced units are
universal, and can be scaled to yield the corresponding quantity for any values of m, σ,
and ε. For this reason, almost all of the literature on the Lennard-Jones potential gives the
results in reduced units.

3.5 Phase Diagram of the Lennard-Jones System

As a reference which will be used throughout this thesis, Figure 3.3 shows the phase di-
agram of the Lennard-Jones system in reduced units. The horizontal and vertical axes
are density and temperature, respectively. Note that this system has a critical point at
(ρ∗c , T

∗
c ) = (0.316, 1.312) [50], above which there is no distinction between the gas and liq-

uid phases. The various regions in the phase diagram carry labels that indicate the nature
of the phase at that point:

G: Gas. Low-density subcritical fluid phase.

L: Liquid. High-density subcritical fluid phase.

S: Solid. In the solid state, the Lennard-Jones system crystalizes into either a face-centered
cubic (FCC) or hexagonally close-packed (HCC) lattice, depending on the exact value
of the density and temperature. Thus this system possesses solid-solid phase transi-
tions between different packings, which are not indicated in Figure 3.3. These will
not concern us in this thesis, however, as we will be focusing almost exclusively on
the fluid phases.

S.C.: Supercritical Fluid. The single fluid state above the critical temperature. The lower
bound of this state (T ∗ = T ∗

c ) is indicated by the dotted line in Figure 3.3.

U: Unstable. A volume filled with a fluid that is initially at an unstable density and
temperature will quickly and spontaneously separate into gas phase regions and liquid
phase regions. Thus the unstable state points do not actually exist for a system at
equilibrium.
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T ∗

ρ∗

Figure 3.3: Phase diagram for the Lennard-Jones system in the (ρ∗, T ∗) plane. Solid lines:
Phase boundaries. Dashed lines: Stability limits for liquid-gas equilibrium. Dotted line:
Lower bound of supercritical fluid. (Image courtesy of Lin, Blanco, and Goddard [38])

M: Metastable. Metastable states, like unstable states, may spontaneously separate into
regions of differing phase. However, they are neutrally stable to such separation. In ad-
dition to the gas-liquid metastable states, there is also a set of liquid-solid metastable
states.

There are several methods by which the states in a numerical phase diagram such as
Figure 3.3 are typically characterized during a MD simulation. Transitions to the solid
phase may be identified, for example, by measuring the diffusion coefficient, which will
be nearly zero for a solid, or by examining the Fourier transform of the particle density,
which, for a crystaline state, will possess large contributions at the reciprocal vectors of the
lattice [30]. Gases and liquids, on the other hand, can be distinguished by looking at the
isothermal compressibility, which is much larger in a gaseous state.

Throughout this thesis, we will assume implicitly that the space in which our system
of particles resides is isotropic. This will prove to be a useful assumption, both from
the standpoint of conceptual simplicity and mathematical symmetry. The unstable and
metastable states, because they are likely to contain boundaries between liquid and gaseous
domains, are not spatially homogeneous, and so violate this assumption. For this reason, we
will avoid subcritical temperatures in our numerical experiments by simulating only those
state points that fall on the T ∗ = 1.6 line in the (ρ∗, T ∗) plane. At the very least, this allows
us to avoid the gas/liquid metastable/unstable region that appears below T ∗ = T ∗

c .
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Chapter 4

First Order Optimal Prediction

We outline an approximation to the full equations of OP known as “First Order Optimal
Prediction.” This approximation implies the existence of a renormalized Hamiltonian gov-
erning the reduced system, for which we derive expressions in the low density limit, as
well as in the general case. This approximation is tested by comparing several static and
dynamical properties calculated from the reduced dynamics with those calculated from the
full system.

4.1 A Markovian Approximation to Optimal Prediction

We will now construct a Markovian approximation to the general equation (2.17) for the
evolution of the resolved variables. The components of the solution to the approximate
equation will be denoted by ϕi, where 1 ≤ i ≤ M , in order to distinguish them from the
components ϕ̂i of the exact solution to (2.17).

We start by setting the memory and random forcing terms in (2.17) to zero, leaving
only the first term, which yields

d

dt
ϕ̂i(t) = etLRi(ẑ ) = Ri(e

tLẑ ) .

ϕ̂i(0) = ẑi .

We then approximate the propagator etL associated with the full dynamics by etL , where

L ≡
M∑

i=1

Ri(ẑ )∂ẑi
,

which yields

d

dt
ϕi(ẑ, t) = Ri

(
ϕ(ẑ, t)

)

ϕi(ẑ, 0) = ẑi .
(4.1)

An alternative, more intuitive, method of deriving (4.1) proceeds as follows. We start
with the exact equation for the evolution of the resolved variables

d

dt
ϕ̂i = R̂i(ϕ) (4.2)

ϕ̂i(0) = ẑi ,
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where we have used the notation of Section 2.1. Note that evaluating the right hand side of
(4.2) requires knowledge of ϕ̃. We now assume that the distribution of the initial conditions
is described by the probability density f0(z). This density evolves according to the Liouville
equation (2.23), and at time t, the distribution of the ϕ is f(ϕ, t). By analogy with (2.9), and
assuming that ϕ̂(t) is known, we can use f(ϕ, t) to define the time-dependent conditional
expectation value of an arbitrary function g(ϕ) as follows:

Et [g(ϕ)|ϕ̂(t)] ≡
∫
dϕ̃ g(ϕ) f(ϕ, t)∫
dϕ̃ f(ϕ, t)

. (4.3)

We now approximate the left hand side of (4.2) by its time-dependent conditional ex-
pectation value at time t, i.e.

R̂i

(
ϕ(t)

)
≈ Et

[
R̂i(ϕ)|ϕ̂(t)

]

=

∫
dϕ̃ R̂i(ϕ) f(ϕ, t)∫

dϕ̃ f(ϕ, t)

≡ Ri(ϕ̂, t) .

If f0(z) is an invariant density, such as the canonical density, then f(ϕ, t) = f0(ϕ), and

the form of Ri(ϕ̂, t) becomes time-independent. We then have Ri(ϕ̂, t) = etLE
[
R̂i(z)|ẑ

]
=

etLPLẑi = Ri(ϕ̂ ), as before. Here P is the projection operator described in Chapter 2. This
reproduces equation (4.1), and provides another reason why an invariant density on the
initial condition z is preferable.

Both of these methods involve uncontrolled approximations, and no attempt has been
made at a rigorous justification. All that can be said is that according to the results of
Section 2.2, Ri(ẑ) = PLẑi is the best approximation of R̂i(z) = Lẑi by a function of ẑ alone.
Thus, the flow of ϕ̂ generated by R is in some sense “close” to the flow generated by R̂.

The approximate system (4.1) has come to be known as First Order Optimal Prediction
(FOOP), and is the form of OP found in the earliest papers on the topic [10, 11, 12].
These were written before the connection between (4.1) and the Mori-Zwanzig formalism
was realized [7]. For Hamiltonian systems, FOOP takes the form

d

dt
qi = R

(q)
i (q, p )

d

dt
pi = R

(p)
i (q, p ) ,

(4.4)

where R
(q)
i (x̂, ŷ ) = PLx̂i and R

(p)
i (x̂, ŷ ) = PLŷi. We now introduce a useful theorem due to

Hald (though a similar result was derived in a different context by Kirkwood in 1933 [29]):

Theorem 4.1 (Hald) For Hamiltonian systems governed by a Hamiltonian H(x, y),

R
(q)
i (x̂, ŷ ) = ∇ŷi

H (x̂, ŷ )

R
(p)
i (x̂, ŷ ) = −∇x̂i

H (x̂, ŷ ) ,

where

H (x̂, ŷ) = −kBT log

(
1

c

∫
dx̃

∫
dỹ e−βH(x,y)

)
. (4.5)

(Here c is an arbitrary constant with units of action(N−M)d.)
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Proof:

R
(q)
i (x̂, ŷ ) = PLx̂i

= P
{
∇ŷi

H(x, y)
}

=

∫
dx̃
∫
dỹ ∇ŷi

H(x, y) e−βH(x,y)

∫
dx̃
∫
dỹ e−βH(x,y)

=
−kBT ∇ŷi

∫
dx̃
∫
dỹ e−βH(x,y)

∫
dx̃
∫
dỹ e−βH(x,y)

= ∇ŷi

{
−kBT log

(
1

c

∫
dx̃

∫
dỹ e−βH(x,y)

)}

The expression for R
(p)
i (x̂, ŷ ) follows analogously. In the last step above, we have inserted

c to keep the units consistent. �

Hald’s Theorem implies that (4.4) can be written as a Hamiltonian system:

d

dt
qi = ∇pi

H (q, p ) qi(0) = x̂i

d

dt
pi = −∇qi

H (q, p ) pi(0) = ŷi ,

(4.6)

where H is the renormalized Hamiltonian. This system can, in principle, be solved to
yield trajectories for the 2M qi and pi. However, the approximations we have made in
order to arrive at (4.6), i.e. neglecting the memory and random forcing terms in (2.17),
are drastic enough that we should not expect the qi(t) and pi(t) to accurately reproduce
the correct dynamics of the q̂i and p̂i. Nevertheless, the FOOP system will prove to be
very useful. As we will show later in this chapter (see Theorem 4.2), numerical solutions to
(4.6) can be used to exactly evaluate the canonical average of any function of the resolved
coordinates alone. Furthermore, it can be proven that many common static properties of
the full system, such as energy, pressure, and heat capacity, are expressible solely in terms
of averages over functions of the resolved variables. Note, however, that there is no reason
to conclude from this that FOOP can adequately reproduce temporal correlation functions
or other quantities that depend strongly on the memory effects we are ignoring.

It is worth pausing at this point to note that if we had chosen to use either the linear
projection PL (2.12) or the finite rank projection PFR (2.13) instead of P, then Hald’s
Theorem would no longer hold. More importantly, when M =N , i.e. when all particles
are resolved, we would fail to recover the original system of ODEs (3.4), which should be
required for consistency in a real physical problem. Using P, however, it is clear from the
definition (4.5) that H =H when M=N , to within irrelevant constants. Qualitatively, this
means that P is the only projection that preserves the essential “character” of the equations
of motion.

4.2 First Order Optimal Prediction for Molecular Dynamics

We start with the MD system governed by the Hamiltonian (3.1). Our goal is to evaluate
the associated renormalized Hamiltonian (4.5) by integrating out the coordinates q̃ and p̃
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of the N−M unresolved particles. As a shorthand, the resolved particles will be refered to
as “r-particles”, and the unresolved particles will be called “u-particles”.

According to (4.5), the renormalized Hamiltonian is given by

e−βH (q̂,p̂ ) =
1

c

∫
dq̃

∫
dp̃ exp

[
−β
(

N∑

i=1

|pi|2
2m

+ φ(q)

)]

=
1

c
exp

[
−β

M∑

i=1

|p̂i|2
2m

]∫
dp̃ exp

[
−β

N−M∑

i=1

|p̃i|2
2m

]∫
dq̃ e−βφ(q) . (4.7)

When working with the OP of MD, it is convenient to define the resolved number density
ρ̂ ≡M/V and the unresolved number density ρ̃ ≡ (N−M)/V . Note that ρ̂+ ρ̃ = N/V = ρ.
The thermodynamic limit now takes the form of assuming that N,M, V → ∞, while ρ̂ and
ρ̃ remain constant. As we will see below, if the unresolved density ρ̃ is relatively low, (4.7)
can be simplified further by expanding H as a Taylor series in ρ̃. In general, however, the
q̃ integral is not analytically tractable, and we must resort to other methods. We will treat
the low-density case first.

4.2.1 Low-Density Diagrammatic Methods

We begin by dividing the potential (3.2) into three parts:

φ(q) = φrr(q̂ ) + φru(q̂, q̃ ) + φuu(q̃ ),

where

φrr(q̂ ) ≡
M∑

i<j

U
(
|q̂i − q̂j|

)
, (4.8)

φru(q̂, q̃ ) ≡
M∑

i=1

N−M∑

j=1

U
(
|q̂i − q̃j|

)
, (4.9)

and

φuu(q̃ ) ≡
N−M∑

i<j

U
(
|q̃i − q̃j|

)
. (4.10)

Here φrr is the potential energy resulting solely from interactions among resolved particles
(“r-r” interactions), φru represents the contribution from interactions between resolved and
unresolved particles (“r-u” interactions), and φuu is the potential energy resulting from
interactions among unresolved particles (“u-u” interactions). If we now choose the arbitrary
constant c to be (N−M)! h(N−M)d, where h is Planck’s constant, then, after some minor
rearrangement, (4.7) becomes

H (q̂, p̂ ) =
M∑

i=1

|p̂i|2
2m

+ φrr(q̂) − kBT log





∫
dq̃ e−β

[
φru(q̂,q̃ )+φuu(q̃ )

]

∫
dq̃ e−βφuu(q̃ )





− kBT log





1

(N−M)! h(N−M)d

∫
dp̃

∫
dq̃ exp

[
−β
(

N−M∑

i=1

|p̃i|2
2m

+ φuu(q̃)

)]
 .

(4.11)
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The third quantity on the right hand of (4.11) is a constant that is equal to the Helmholtz
free energy F (N−M, ρ̃, T ) of N−M interacting particles at density ρ̃ and temperature T
[48]. Furthermore, we define

HG(q̂, p̂ ) ≡
M∑

i=1

|p̂i|2
2m

+ φrr(q̂ ) . (4.12)

HG is the Hamiltonian of the system

d

dt
q̂i =

1

m
p̂i

d

dt
p̂i = −

M∑

j 6=i

∇q̂i
U
(
|q̂i − q̂j|

)
,

(4.13)

which is obtained from the full system (3.4) by neglecting all of the unresolved degrees
of freedom q̃ and p̃. The subscript “G” alludes to the fact that this is reminiscent of the
Galerkin method of system reduction for ODEs and boundary value problems [28], and we
will refer to (4.13) as the “Galerkin system”.

The Galerkin system will frequently be used as a “zeroth order” approximation to the
exact dynamics (3.7) of the reduced system. Since (4.13) describes a fluid in the state
(ρ̂, T ), we would not expect its macroscopic properties to accurately mirror those of the
full system, which is in the state (ρ, T ). However, we will use the Galerkin system as an
example of a bad approximation to (3.7), which will serve as a comparison to FOOP, as
well as other, hopefully better, approximations to be made in Chapter 5.

The renormalized Hamiltonian now becomes

H (q̂, p̂) = F (N−M, ρ̃, T ) +HG(q̂, p̂ ) − kBT log





∫
dq̃ e−β

[
φru(q̂,q̃ )+φuu(q̃ )

]

∫
dq̃ e−βφuu(q̃ )



 . (4.14)

The first two terms of (4.14) represent the contributions to H of the unresolved and resolved
subsystems taken in isolation, whereas the third term describes the correction due to their
interaction.

The correction term can be divided into two parts as follows:

log





∫
dq̃ e−β

[
φru(q̂,q̃ )+φuu(q̃ )

]

∫
dq̃ e−βφuu(q̃ )



 =

log

{
1

V N−M

∫
dq̃ e−β

[
φru(q̂,q̃ )+φuu(q̃ )

]}
− log

{
1

V N−M

∫
dq̃ e−βφuu(q̃ )

}
. (4.15)

Each of these two quantities can be expanded for small ρ̃ in a diagrammatic series. The
argument of the second logarithm is simpler, and we will tackle it first. Following the
methods of Mayer and Mayer [41] and Mayer and Montroll [42], we define a function

f(r) ≡ e−βU(r) − 1 .
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In terms of f , we can write

e−βφuu(q̃ ) =

N−M∏

i<j

e−βU(|q̃i−q̃j |)

=

N−M∏

i<j

(
fij + 1

) (
fij ≡ f (|q̃i − q̃j|)

)

= 1 +
∑

{ij}

fij +
∑

{ij}

∑

{kl}

fijfkl +
∑

{ij}

∑

{kl}

∑

{mn}

fijfklfmn + · · · ,

where
∑

{ij} indicates a sum over all distinct pairs of u-particles,
∑

{ij}

∑
{kl} indicates a

sum over all distinct pairs of pairs, and so on. The Mayer f -function is convenient to work
with because it is short ranged: f(r) → −βU(r) for large r, so f goes to zero asymptotically
at the same rate as U . This is in contrast to the behavior of exp

(
−βU(r)

)
, which goes to

1 as r → ∞.
The argument of the second logarithm in the correction term (4.15) can now be written

as

1

V N−M

∫
dq̃ e−βφuu(q̃ ) =

1

V N−M

∫
dq̃



1 +

∑

{ij}

fij +
∑

{ij}

∑

{kl}

fijfkl +
∑

{ij}

∑

{kl}

∑

{mn}

fijfklfmn + · · ·



 . (4.16)

The first quantity in brackets above yields a 1, since
∫
dq̃ = V N−M . The remaining terms

in (4.16) are integrals over all N−M of the q̃i, where the integrands consist of one or
more f -functions, the arguments of which involve some subset of the q̃i. These integrals
are best depicted diagrammatically using labeled graphs known as Mayer diagrams. We
represent the ith u-particle by a labeled, filled node: t

i. An “f -bond” linking particles i and
j contributes a factor fij to the integrand, and is represented by a line joining the nodes
labeled i and j: t t

i j. The way in which the various integrals in (4.16) are represented
by diagrams is best illustrated by example:

t t
1 2 =

1

V

∫
dq̃1

∫
dq̃2 f1,2

t

t

t
3

4

7
=

1

V

∫
dq̃3

∫
dq̃4

∫
dq̃7 f3,4f4,7

t

t t

t
4

9 1

2
=

1

V

∫
dq̃4

∫
dq̃9

∫
dq̃1

∫
dq̃2 f4,9f9,1f9,2f1,2 etc...

The purpose of the 1/V factor is to ensure that the diagrams are intensive quantities.
Each q̃i that takes part in a diagram is integrated over the whole domain Ω. In the first
example above, we can fix q̃1 as the origin of the q̃2 integration. Unless q̃1 happens to be
within a few multiples of the potential scale length σ of ∂Ω, where ∂Ω is the boundary of
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Ω, we then have:

t t
1 2 =

1

V

∫
dq̃1

∫
dq̃2 f1,2

=
1

V

∫
dq̃1

∫
dq̃2 f

(
|q̃2|
)

=

∫
dq̃2 f

(
|q̃2|
)
,

A similar argument shows that the 1/V is necessary to cancel an extraneous volume factor
for each diagram. The boundary effects alluded to above are restricted to a thin “skin” of
volume ∼ σ |∂Ω|. Since σ is of the order of several Å, this constitutes a negligible fraction
of the total volume, and we will ignore this effect. Note that such boundary effects may not
be ignored when considering a long-range interaction such as the Coulomb potential.

All of the diagrams shown above are examples of connected diagrams. A connected
diagram has the property that it is possible to find a path joining any two of its nodes,
where a “path” is defined as a sequence of nodes connected by bonds. The vast majority of
the diagrams in the expansion (4.16) are unconnected diagrams, i.e. diagrams that can be
divided into two or more smaller diagrams (known as “components”) that are not connected
by any bonds. The value of an unconnected diagram is the product of the values of the
components that comprise it. Some examples of unconnected diagrams, along with their
corresponding values, are shown below:

t

t

1

2

t

t

3

4
=

(
1

V

∫
dq̃1

∫
dq̃2 f1,2

)2

t

t

t
1

2

3
t

t

t
4

5

6
=

(
1

V

∫
dq̃1

∫
dq̃2

∫
dq̃3 f1,2f2,3

)(
1

V

∫
dq̃1

∫
dq̃2

∫
dq̃3 f1,2f2,3f1,3

)

etc...

Here we have made use of the fact that the node labels are dummy indices that refer to
variables of integration, and thus may be permuted or renamed without changing the value
of the corresponding integral. For this reason, we will usually omit the labels altogether.

The connection set of a labeled diagram is the set of node index pairs that are connected
by bonds. For example, the connection set for

t

t t

t
1

2 3

4

is
{
(1, 2), (2, 3), (2, 4), (3, 4)

}
. Two unlabeled diagrams are called topologically equivalent if

they have the same number of nodes and bonds, and labeled versions of each can be found
that have the same connection set. Two diagrams that are not topologically equivalent are
called topologically distinct. Thus

t

t t

t

and
t

t t

t

are topologically equivalent, whereas

t

t

t

t

t

and
t

t

t

t

t
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are topologically distinct.
Equation (4.16) is equivalent to the following sum of diagrams:

1

V N−M

∫
dq̃ e−βφuu(q̃ )

= 1 +

N−M∑

m=2





A weighted sum of all topologically
distinct, unlabeled diagrams that have

exactly m nodes





= 1 +

{(
N−M

2

)
1

V
t t

}
+

{(
N−M

3

)
1

V 2

(
3

t

t

t

+
t

t

t

)}

+

{
1

2

(
4

2

)(
N−M

4

)
1

V 2

t

t

t

t

+

(
N−M

4

)
1

V 3

(
12

t

t t

t

+ 4
t

t t

t

+ 12
t

t t

t

+ 3
t

t t

t

+ 6
t

t t

t

+
t

t t

t

)}

+ · · ·
The coefficients in front of each diagram above can be determined from the following count-
ing argument. Consider a diagram consisting of m nodes and k components, where m ≥ 2
and k ≥ 1. We define n=m−k to be the number of “extra” nodes in the diagram (note
that this nomenclature is nonstandard). The integral term in (4.16) that gives rise to this
diagram initially has the prefactor 1/V N−M . However, N−M−m of these volume factors
are immediately cancelled when we integrate out the coordinates of the u-particles that do
not take part in the diagram. We must then remove another factor of 1/V for each of the
k components, due to the 1/V in the definitions of the diagrams. This leaves us with an
overall prefactor of 1/V m−k = 1/V n. The remainder of the coefficient preceding each dia-
gram above is a combinatorical factor representing the number of distinct ways of forming
labeled versions of that diagram using the N−M possible indices. This suggests that we
may write the above sum as

1

V N−M

∫
dq̃ e−βφuu(q̃ )

= 1 +
N−M−1∑

n=1

(
1

V

)n




A sum of all topologically distinct, unlabeled diagrams
with n extra nodes, weighted by the number of distinct
ways of forming each diagram from N−M u particles





= 1 +
1

V

{(
N−M

2

)
t t

}
(4.17)

+

(
1

V

)2
{

1

2

(
4

2

)(
N−M

4

) t

t

t

t

+ 3

(
N−M

3

)

t

t

t

+

(
N−M

3

)

t

t

t

}

+ · · ·
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There is an explicit expression for the combinatorical factors that serve as weights in
(4.17). Consider a general term involving a (possibly unconnected) diagram with n extra
nodes and k components. If the ith component has αi extra nodes, where

∑k
i=1 αi = n, then

its total number of nodes will be αi +1. Furthermore, there are N−M−n−k u-particles that
are not associated with any node in the diagram. This implies that the number of distinct
ways of constructing this diagram is

1

µ(α)

(
k∏

i=1

γi

)(
N−M

α1+1, ... , αk+1

)
,

where α = (α1, ... , αk) and

(
N−M

α1+1, ... , αk+1

)
=

(N−M)!

(N−M−n−k)!∏k
i=1 (αi + 1)!

is the multinomial coefficient giving the number of ways of dividing N−M elements into
k+ 1 distinct sets of sizes N−M−n−k, α1 + 1, ... , αk + 1. The γi are geometrical factors,
independent of N and M , which describe the number of ways of forming the ith component,
given αi + 1 distinguishable nodes. There is no general formula that determines the γi, but
they can usually be found easily by inspection. For example, the diagram

t

t t

t
b

a

has γ = 12, because for each of the four ways of assigning an index to node a, there are
three ways of assigning one of the remaining indices to node b (the final two nodes are
equivalent). Finally, µ(α) is a multiplicity term that has one factor of p! for every αi whose
value is repeated p times. For example, µ

(
(1, 1, 2, 3, 3, 4, 4, 4, 5)

)
= 2! 2! 3! = 24. If all the αi

are different, then µ(α) = 1. The purpose of µ is to account for the p! possible permutations
of the indices among p identical components. These permutations do not generate distinct
diagrams, and would otherwise be multiply counted, i.e.

t

t

1

2

t

t

3

4
is the same as

t

t

3

4

t

t

1

2
.

The condition
∑k

i=1 αi = n implies that α ∈ P{n}, where P{n} is the set of partitions
of n, i.e. P{1}= {(1)}, P{2}= {(1, 1), (2)}, P{3}= {(1, 1, 1), (1, 2), (3)}, etc. Many of the
terms in (4.17) with identical n also have the same values of α and µ(α), as well as the same
multinomial coefficient. We can therefore simplify (4.17) further by the following additional
grouping of diagrams:

1

V N−M

∫
dq̃ e−βφuu(q̃ ) = 1 +

N−M−1∑

n=1

(
1

V

)n ∑

α∈P{n}

1

µ(α)

(
N−M

α1+1, ... , αk+1

) k∏

i=1

Cαi
, (4.18)

where

Cs =





A sum of all topologically distinct, connected, unlabeled
diagrams with s+1 nodes, with each diagram preceeded

by its corresponding γ factor



 .
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The diagrams described in the definition of Cs are known as clusters in the physics
literature, and so we will call Cs the cluster sum1 of order s. The first few Cs are listed
below:

C1 = t t

C2 = 3
t

t

t

+
t

t

t

C3 = 12
t

t t

t

+ 4
t

t t

t

+ 12
t

t t

t

+ 3
t

t t

t

+ 6
t

t t

t

+
t

t t

t

C4 = 60
t

t

t

t

t

+ 5
t

t

t

t

t

+ 60
t

t

t

t

t

+ 60
t

t

t

t

t

+ 30
t

t

t

t

t

+ 60
t

t

t

t

t

+ 60
t

t

t

t

t

+ 15
t

t

t

t

t

+ 60
t

t

t

t

t

+ 60
t

t

t

t

t

+ 20
t

t

t

t

t

+ 12
t

t

t

t

t

+ 10
t

t

t

t

t

+ 60
t

t

t

t

t

+ 10
t

t

t

t

t

+ 60
t

t

t

t

t

+ 30
t

t

t

t

t

+ 30
t

t

t

t

t

+ 15
t

t

t

t

t

+ 10
t

t

t

t

t

+
t

t

t

t

t

Note that the cluster sums, as well as the diagrams of which they are comprised, depend
on T , but not on N , M , or V .

According to (4.15), we are interested in the logarithm of (4.18). Taylor expanding the
logarithm in powers of 1/V yields

log

{
1

V N−M

∫
dq̃ e−βφuu(q̃ )

}
= log

{
1 +

N−M−1∑

n=1

(
1

V

)n

θn

}

=

∞∑

n=1

(
1

V

)n

ψn , (4.19)

where

θn =
∑

α∈P{n}

1

µ(α)

(
N−M

α1+1, ... , αk+1

) k∏

i=1

Cαi
, (4.20)

and the ψn are to be determined. In principle, we can find the ψn by a direct comparison
of the expansions on either side of (4.19), but first we will need to introduce some more
terminology from graph theory.

An articulation point of a connected diagram is a node whose removal causes the diagram
to split into two or more disconnected components. A diagram that has an articulation point
is called reducible, and can be written as a product of lower order diagrams by fixing the
variable associated with the articulation node as the origin for the integrations over all other

1Mayer and Mayer instead used the related quantity bs = (1/s!)Cs, which they called the cluster integral

of order s.
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node variables. For example,

t

t

t

=
1

V

∫
dq̃1

∫
dq̃2

∫
dq̃3 f1,2f2,3

=
1

V

∫
dq̃2

∫
dq̃1 f

(
|q̃1|
) ∫

dq̃3 f
(
|q̃3|
)

=

(∫
dq̃1f

(
|q̃1|
))2

=
(

t t

)2
.

Diagrams without articulation points are called irreducible. We define C s to be the irre-
ducible part of Cs, i.e. it is equal to the order s cluster sum with all reducible diagrams
dropped. The first few Cs are

C1 = t t

C2 =
t

t

t

C3 = 3
t

t t

t

+ 6
t

t t

t

+
t

t t

t

C4 = 12
t

t

t

t

t

+ 10
t

t

t

t

t

+ 60
t

t

t

t

t

+ 10
t

t

t

t

t

+ 60
t

t

t

t

t

+ 30
t

t

t

t

t

+ 30
t

t

t

t

t

+ 15
t

t

t

t

t

+ 10
t

t

t

t

t

+
t

t

t

t

t

Returning to (4.19) and using the definition (4.20) of the θn, we can obtain lengthy
expressions for the first few ψn in terms of the cluster sums Cs (which will not be reproduced
here). After inserting the expressions for the Cs and passing to the thermodynamic limit,
we find that a fortuitous cancellation occurs, and that the first few ψn satisfy

ψn =
(N−M)

(n+ 1)!

n+1

Cn . (4.21)

In fact, the above expression is generally true for all n. The proof of this is beyond the
scope of this thesis, and can be found in [41]. Combining (4.21) and (4.19), and using the
fact that (N−M)/V = ρ̃, we finally arrive at

log

{
1

V N−M

∫
dq̃ e−βφuu(q̃ )

}
= (N−M)

∞∑

n=1

ρ̃n

(n+ 1)!
Cn . (4.22)

The first term in (4.15) can be obtained as a series in ρ̃ by a procedure similar to that
which lead us to (4.22), with a few notational differences. Our integrand now contains the
coordinates of u-particles, which are integrated over, as well as the coordinates of r-particles,
which are fixed. As in (4.16), we expand the integral as a series of products of Mayer f -
functions, which we again depict as diagrams. There are now two varieties of nodes: those
denoting u-particles, which we continue to represent as filled nodes ( t), and those denoting
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r-particles, which we represent as open nodes ( ). These will be referred to as “u-nodes”
and “r-nodes”, respectively. Lines still represent f -bonds, which may connect either two
u-nodes, or one r-node and one u-node. There are no bonds allowed between r-nodes in
these diagrams, since we subtracted out all r-r interactions before arriving at the expression
(4.15) for the correction term.

We must be careful in specifying the meaning of these new, more general diagrams. All
diagrams (or components of diagrams) that consist solely of u-nodes retain their previous
definitions. Diagrams or components that have one or more r-nodes, as well as one or more
u-nodes, are defined similarly, except that they lack the prefactor 1/V , and the integrands
are parameterized by the fixed coordinates associated with each r-node. Some examples:

t
i =

∫
dq̃1 f1,i

t

i j
=

∫
dq̃1 f1,if1,j

t

t

t

t
i

j

=

(
1

V

∫
dq̃1

∫
dq̃2 f1,2

)(∫
dq̃1

∫
dq̃2 f1,if1,jf2,j

)

Note that the labels on r-nodes refer to specific particles, and thus may not be changed or
omitted without altering the meaning of the diagram. An entirely unlabeled diagram with
p r-nodes is taken as shorthand for the sum over all topologically distinct ways of labelling
that diagram using p of the M possible resolved indices, i.e.

t =
M∑

i=1

t
i

t

t

=

M∑

i<j





t

t
i

j

+

t

t
j

i




t t

=

M∑

i<j<k





t

i

t

j k
+

t

k

t

i j
+

t

j

t

k i





etc...

Using the above definitions, and by a counting argument nearly identical to the one that
gave us (4.19) and (4.20), we obtain

1

V N−M

∫
dq̃ e−β

[
φru(q̂,q̃ )+φuu(q̃ )

]
= 1 +

N−M∑

n=1

(
1

V

)n

Θn , (4.23)

where

Θn =
∑

α∈P{n}

M∑

β1=0

· · ·
M∑

βk=0

1

µ(α, β)

(
N−M

α1+δ0,β1 , · · · , αk+δ0,βk

) k∏

i=1

Cβi,αi
. (4.24)
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Here δ is the Kronecker delta function, βi is the number of r-nodes in the ith component
of the diagram, and µ(α, β) is again a multiplicity factor, though its definition has changed
somewhat. It now contains a factor of p! for every αi whose value is repeated p times,
provided the corresponding βi is zero. For example, µ

(
(1, 2, 2, 3, 3, 3), (6, 0, 0, 7, 0, 0)

)
= 2! 2!.

The C`,s are a more general version of the Cs introduced earlier. C`,s is a weighted sum of all
topologically distinct, connected, unlabeled diagrams consisting of ` r-nodes and s u-nodes,
where the weights are given by the number of distinct ways of arranging s labels over the
u-nodes of the corresponding diagram, treating the r-nodes as distinguishable. Note that
C0,s = Cs. The first few C`,s with ` ≥ 1 are listed below:

C1,1 = t C2,1 =

t

C3,1 =

t

C1,2 = 2

t

t

+
t t

+
t t

C2,2 = 2

t

t

+ 2

t t

+ 2

t t

+ 2

t t

+

t

t

+

t

t

C3,2 = 2
t t

+ 2

t

t
+ 2

t t
+ 2

t

t

+ 2
t t

+ 2
t t

+ 2
t

t

+ 2
t

t

+
t t

+
t t

C1,3 = 6

t t

t

+ 6
t

t

t

+ 3

t t

t

+
t

t

t

+ 6
t

t

t

+ 3
t

t

t

+ 3

t t

t

+ 3

t t

t

+ 3
t

t t

+ 3

t t

t

+

t t

t

The next cluster sum in the sequence, C2,3, contains 42 diagrams, so we see that the length
of C`,s grows rapidly with ` and s.

Before we continue, we must generalize the definition of “reducible” introduced earlier.
A connected diagram can be written as a product of smaller diagrams, and is thus reducible,
if one or both of the following criteria are met:

(1) By removal of a single u-node, we can divide the diagram into two or more disconnected
pieces, at least one of which contains no r-nodes.

Examples:

t

t

↙

,
t

t

t

↙

,
t

t

t

t

↙

(2) By removal of some number of r-nodes, we can divide the diagram into two or more
disconnected pieces.

Examples:
t t

↙

,
t

t

t

↙

,
t

t
↙

↙
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For diagrams with only u-nodes, this is equivalent to the previous definition. We define C`,s

as the irreducible part of C`,s. The C`,s corresponding to the C`,s listed above are:

C1,1 = C1,1 = t C2,1 = C2,1 =

t

C3,1 = C3,1 =

t

C1,2 =
t t

C2,2 = 2

t t

+ 2

t t

+

t

t

C3,2 = 2
t

t

+ 2
t t

+ 2
t t

+ 2
t

t

+
t t

C1,3 = 3

t t

t

+ 3
t

t t

+ 3

t t

t

+

t t

t

As was done previously, we Taylor expand the logarithm of (4.23) in powers of 1/V to
obtain

log

{
1

V N−M

∫
dq̃ e−β

[
φru(q̂,q̃ )+φuu(q̃ )

]}
= log

{
1 +

N−M∑

n=1

(
1

V

)n

Θn

}

=

∞∑

n=1

(
1

V

)n

Ψn . (4.25)

By comparing the expansions of both sides of (4.25) term by term, using the definitions of
the C`,s, and passing to the thermodynamic limit, we find that the first few Ψn satisfy

Ψn =
(N−M)

(n+ 1)!

n+1

Cn +
(N−M)n

n!

M∑

`=1

C`,n. (4.26)

As before, this relation holds generally, but the proof is nontrivial, and is beyond the scope
of this thesis. A proof based in the grand canonical ensemble, which is equivalent in the
thermodynamic limit, can be found in [23] and the references therein.

Using (4.22), (4.25), and (4.26), we now arrive at the following expression for the cor-
rection term (4.15):

log





∫
dq̃ e−β

[
φru(q̂,q̃ )+φuu(q̃ )

]

∫
dq̃ e−βφuu(q̃ )



 =

∞∑

n=1

1

n!
ρ̃n

M∑

`=1

C`,n , (4.27)

After combining (4.27) with (4.14), and performing a simple regrouping of terms, we obtain
our final expression for the renormalized Hamiltonian:

H (q̂, p̂ ) =
M∑

i=1

|p̂i|2
2m

+ φ̂(q̂ ) + F (N−M, ρ̃, T ) , (4.28)

where the F (N−M, ρ̃, T ) term is a constant that has no effect on the dynamics, and is
included for completeness only. Here

φ̂(q̂ ) = φ̂(1)(q̂ ) + φ̂(2)(q̂ ) + φ̂(3)(q̂ ) + · · · (4.29)
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is called the renormalized potential. φ̂(`) represents a sum of `-particle interactions, and is
given by

φ̂(`)(q̂ ) = δ`,2 φrr(q̂ ) − kBT

∞∑

n=1

1

n!
ρ̃n C`,n . (4.30)

The fact that the original pair potential gains 3-particle, 4-particle, and higher interactions
after renormalization should come as no surprise to those familiar with other, similar prob-
lems in physics, such as the block renormalization of spin systems. We will discuss the
convergence properties of the sum (4.30) in Section 4.2.3.

Let us examine the various terms in (4.29). The first term in the renormalized potential
is

φ̂(1)(q̂ ) = −kBT
∞∑

n=1

1

n!
ρ̃n C1,n

= −kBT


ρ̃

{
t

}
+

1

2!
ρ̃ 2

{

t t

}

+
1

3!
ρ̃ 3

{
3

t t

t

+ 3
t

t t

+ 3

t t

t

+

t t

t

}
+ · · ·


 , (4.31)

which is a single-particle effective field felt by each r-particle due to the surrounding sea of
u-particles (recall that each of the diagrams above is shorthand for a sum over all M possible
labellings of the single r-node). However, unless an r-particle is within a few multiples of
σ of the boundary ∂Ω, spatial isotropy implies that all of the diagrams in the expansion of
φ̂(1) are constants, independent of the resolved coordinates. The r-node is merely an anchor
that serves as the origin for the integrals associated with the u-nodes. In fact, a simple
counting argument can be used to show that, in general, C1,n = M Cn, in which case

φ̂(1) = −kBT M
∞∑

n=1

1

n!
ρ̃n Cn = constant.

In the event that one of the r-particles should happen to be within several σ-multiples of a
wall, the corresponding single-particle field φ̂(1) would be nonconstant due to the anisotropy
of space in this region, and the particle would feel a net force which, by symmetry, must
be directed normal to the wall. The magnitude and sign of this force would depend on the
distance to the wall, as well as upon the shape of the interparticle potential. In principle, by
appropriately restricting the integration domains of the diagrams to reflect the proximity
of the wall, (4.31) could be used to estimate the potential associated with this force. Since
both the underlying interparticle potential U(r) and the correspoding Mayer function f(r)
have a short range equal to several multiples of σ, we expect these “boundary forces” to
persist for a comparable distance into the fluid from the wall. However, since we are ignoring
boundary effects, φ̂(1) is assumed to be constant for all particles.

The second term in the renormalized potential consists of diagrams with two r-nodes
and any number of u-nodes. By spatial isotropy, the associated integrals can depend only
on the distance between the two r-particles. Thus we can write φ̂(2) as

φ̂(2)(q̂ ) =

M∑

i<j

Û
(
|q̂i − q̂j|

)
,
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Figure 4.1: Diagrams contributing to the first and second order corrections to the Lennard-
Jones potential at T ∗ = 1.6, in reduced units.

where Û , the renormalized pair potential, is given by

Û
(
|q̂i − q̂j|

)
= U

(
|q̂i − q̂j|

)

− kBT


ρ̃





t

i j



+

ρ̃ 2

2!



2

t t

i j
+ 4

t t

i j
+

t

t
i

j


+ · · ·


 . (4.32)

In arriving at (4.32), we have used the fact that, by symmetry,

t t

i j
=

t t

j i
.

The various diagrams that make up the correction terms to the “bare potential” U
must in general be calculated numerically for each value of the temperature. In order to
compute Û up through order n in ρ̃, we need to evaluate several nd-dimensional integrals
of products of f -functions for a large number of values of the interparticle separation. This
is computationally intensive, however, and in practice, we will truncate (4.32) after the
second order correction. To give some idea of what these corrections look like, the first four
diagrams in (4.32) are plotted in Figure 4.1 as a function of the interparticle separation for
the Lennard-Jones potential in three dimensions at T ∗=1.6.

The renormalized pair potential Û can also be calculated exactly from a MD simulation,
using methods to be described in Section 4.2.4. The results of such calculations for several
densities are shown in Figure 4.2, along with Û obtained by truncating (4.32) after the term
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Figure 4.2: Solid lines: Û∗(r∗) obtained from MD experiments. Dashed lines: Û∗(r∗)
obtained by truncating the diagrammatic series (4.32) to second order. Here T ∗ = 1.6.

second order in ρ̃. We see that the truncated series works well up to about ρ̃∗ ∼ 0.30, at
which point significant errors begin to appear for r∗ & 2.0. This occurs because the higher
order terms in (4.32) that we have neglected determine the shape of Û(r) for large values
of r.

Note that as the density ρ̃ of u-particles increases, the renormalized pair potential Û
develops features that are not present in the bare potential U . As we will see in Section
4.2.4, this effect becomes even more pronounced at higher densities. The physical reason for
this is that as ρ̃ increases, it becomes more and more probable for one or more u-particles
to occupy the region between any two r-particles. As the two r-particles approach one
another, they feel a resistance due to the need to push the interceding u-particles out of
the way. The average effect of this is to create a series of additional maxima and minima
in Û . For the Lennard-Jones potential, particles have an effective “size” of roughly σ. Two
r-particles that are a distance nσ apart therefore have room for about n u-particle between
them. For this reason, we expect successive maxima in Û to be separated by a distance of
approximately ∆r ≈ σ, or ∆r∗ ≈ 1 in reduced units. Though this effect is hard to discern
in Figure 4.2, it can can be seen much more easily for higher values of ρ̃ (see, in particular,
Figure 4.4).
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The next term in (4.29) is the triplet potential

φ̂(3)(q̂ ) = −kBT

∞∑

n=1

1

n!
ρ̃n C3,n

= −kBT


ρ̃
{

t
}

+
ρ̃ 2

2!

{
t t

+ 2
t

t

+ 2
t t

+ 2
t t

+ 2
t

t

}
+ · · ·


 .

Since the distances between the three particles serve to uniquely specify their relative po-
sitions, spatial isotropy allows us to express this as

φ̂(3)(q̂ ) =

M∑

i<j<k

Û3

(
|q̂i − q̂j|, |q̂j − q̂k|, |q̂k − q̂i|

)
,

where Û3 must be invariant under arbitrary permutations of its three arguments. For
numerical applications, the force on particle i due to the triplet potential can, in principle,
be written as

F
(3)
i (q̂) = −∇q̂i

M∑

j<k
j,k 6=i

Û3

(
|q̂i − q̂j |, |q̂j − q̂k|, |q̂k − q̂i|

)

=

M∑

j<k
j,k 6=i

{(
q̂i − q̂j

)
ω̂3

(
|q̂ij |; |q̂ik|, |q̂jk|

)
+
(
q̂i − q̂k

)
ω̂3

(
|q̂ik|; |q̂ij |, |q̂jk|

)}
,

where q̂ij = q̂i − q̂j, and

ω̂3

(
x1; x2, x3

)
≡ − 1

x1

∂

∂x1
Û3

(
x1, x2, x3

)

is the three-particle analog of the ω function defined in Section 3.4.4. In practice, however,
the calculation of the various terms in the expansion of the triplet potential is too great a
computational challenge to be useful. For example, in order to evaluate Û3 by discretising
the range of each of its three arguments into 100 segments (which amounts to a very
low resolution), one must calculate and store on the order of 106 separate high-dimensional
integrals for each diagram. For this reason, we are forced to neglect the triplet and all higher
potentials, and approximate the renormalized potential by its pair contribution (4.32) alone.
At low densities, this approximation is plausible, since the multiple-particle interactions that
are mediated by the neglected potentials would not be expected to occur with any significant
frequency until the density becomes somewhat higher.

4.2.2 The General Case: M-particle Distribution Functions

The ρ̃-expansion of the renormalized potential (4.30) is an example of a virial series, in which
a thermodynamic or structural quantity is expanded as a series in the density. Virial series
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have historically played an important role in the theory of non-ideal gases and low density
liquids [41]. However, their utility for obtaining useful results is limited to low densities. For
this reason, we need to explore alternative methods of evaluating the renormalized potential
that are valid at higher densities.

A comparison between (4.11) and (4.28) reveals that

e−βφ̂(q̂) =

∫
dq̃ e−βφ(q)

∫
dq̃ e−βφuu(q̃)

, (4.33)

which we will take as the definition of the renormalized potential. We may now relate φ̂ to
the M -particle distribution function g(M) commonly encountered in statistical mechanics,
which, for a particular form of the interparticle interaction, is defined as

g(M)(q̂ ) =

(
Probability of the configuration
q̂ in the system with interactions

)

(
Probability of the same

configuration in an ideal gas

) . (4.34)

It can be shown [23] that this is equivalent to

g(M) (q̂, ρ̃, T ) ≡ 1

ρ̃M

N !

(N−M)!

∫
dq̃ e−βφ(q)

∫
dq e−βφ(q)

, (4.35)

where the dependence of g(M) on the density ρ̃ of particles whose coordinates have been
integrated away, as well as on the temperature, has been made explicit. Combining (4.33)
and (4.35) yields

φ̂(q̂ ) = −kBT log
(
g(M) (q̂, ρ̃, T )

)
− kBT log

(
ρM (N−M)!

N !

∫
dq e−βφ(q)

∫
dq̃ e−βφuu(q̃ )

)

︸ ︷︷ ︸
an irrelevant constant

, (4.36)

which is valid at any density or temperature, and is the most general expression for the
renormalized potential.

The M -particle distribution function is often written as g(M) = exp (−βψ), where ψ
is called the potential of mean force. Equation (4.36) tells us that φ̂ = ψ + constants. In
what follows, we will ignore all constants, and treat ψ and φ̂ as equal. Just as in (4.29),
the potential of mean force ψ, and hence also the renormalized potential, can be written
as the sum of a pair contribution, a triplet contribution, and so on. For example, the two-
particle and three-particle distribution functions are defined in terms of the pair and triplet
potentials as

g(2) (r, ρ̃, T ) ≡ exp
[
−β Û(r)

]
,

and
g(3) (r1, r2, r3, ρ̃, T ) ≡ exp

[
−β
(
Û(r1) + Û(r2) + Û(r3) + Û3(r1, r2, r3)

)]
.

Higher many-particle distribution functions are defined analogously.
The two-particle distribution function g(2)(r, ρ̃, T ) is usually refered to as the radial

distribution function (RDF), and has been extensively studied. It describes the distribution
of particles around a single particle located at the origin in a fluid at the state point (ρ̃, T ).
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For a fluid with no interparticle interactions, g(2)(r) = 1 for all r. In a real fluid, any
two particles are prevented from approaching one another closely by a hard-core repulsion,
and g(2)(r) → 0 as r → 0. However, as r → ∞, the two particles become uncorrelated,
and g(2) → 1. In the intermediate region, which is usually several multiples of σ wide,
the RDF tends to oscillate, though the extent of the oscillation depends strongly on the
density and temperature. Given g(2), we can calculate the renormalized pair potential as
Û(r) = −kBT log

(
g(2)(r)

)
.

4.2.3 Convergence of the Virial Expansion

Now that we have connected the renormalized potential φ̂ to the M -particle distribution
function g(M) familiar from statistical mechanics, we can use several classical results to
investigate the convergence properties of the series (4.30). As was originally shown by
Mayer and Montroll [42], g(M)(q̂, ρ̃, T ) has the following series expansion in the density ρ̃:

g(M)(q̂, ρ̃, T ) = e−βφrr(q̂ )

(
1 +

∞∑

n=1

1

n!
ρ̃n

M∑

`=1

C`,n

)
. (4.37)

If we recall that (to within constants) φ̂(q̂ ) = −kBT log
(
g(M)(q̂ )

)
, then we can write

φ̂(q̂ ) = φrr(q̂ ) − kBT log

(
1 +

∞∑

n=1

1

n!
ρ̃n

M∑

`=1

C`,n

)
. (4.38)

At the same time, combining equations (4.29) and (4.30) allows us to write the renormalized
potential as

φ̂(q̂ ) = φrr(q̂ ) − kBT
∞∑

n=1

1

n!
ρ̃n

M∑

`=1

C`,n . (4.39)

Comparing (4.39) and (4.38) shows that the effect of the log operation in (4.38) is simply
to remove all of the reducible graphs from the sum. This is the primary result of [42].

The maximum value of ρ̃ for which the series in (4.37) and (4.39) converge is called the
radius of convergence of these series, and it represents the largest value of ρ̃ for which the
virial expansion of the renormalized potential is useable and valid. Lebowitz and Penrose
[34] have demonstrated that, for s ≥ 1, the virial series of both the s-particle distribution
function g(s)(q1, ..., qs) and the s-particle potential of mean force ψ(q1, ..., qs) have a radius
of convergence that is at least as great that of the virial series of the pressure P , which is
given by [41]

P (ρ) = ρkBT

(
1 −

∞∑

n=1

n

n+ 1

ρn

n!
Cn

)
. (4.40)

This means that a lower bound on the radius of convergence of (4.40) will also serve as a
lower bound on the convergence of the series in (4.30) for any value of `. This is advantageous
because (4.40) is much simpler to work with than either (4.37) or (4.39), and many rigorous
results concerning this series have been derived over the years.
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We define the class of stable potentials as the set of all interparticle pair potentials U(r)
that satisfy the following two properties:

A ≡
∫
dx
∣∣e−βU(|x|) − 1

∣∣ <∞ (4.41)

N∑

i<j

U
(
|xi − xj|

)
≥ −N B, for some constant B ≥ 0 (4.42)

Condition (4.41) is obeyed by any potential that satisfies the assumptions we made about
the form of U(r) in Section 3.1. Furthermore, Ruelle [54] has proven that (4.42) is satisfied
for a wide range of potentials, including the Lennard-Jones potential. We now define ρo as
the radius of convergence of (4.40). Several lower bounds on ρo have been derived (see [55]
or [33] for a summary of these results), and the one we will use is that of Groeneveld [22],
which states that

ρo ≥ ρ−o ≡ 1

eA (1 + e2βB)
. (4.43)

Given a particular potential, the integral A is easily calculated numerically. Finding a
value for B is often much more difficult. In the case of the Lennard-Jones potential (3.3) we
can determine B by noting that, given N � 1 particles, the configuration of lowest potential
energy occurs when the particles are arrayed in a face-centered cubic (FCC) lattice. If we
assume that the FCC cell has a side of length “a”, then the positions of the particles on the
corners of each cell in this lattice can be written as a× (i, j, k), whereas the positions of the
particles on the faces of each cell can be written as a× (i+ 1

2 , j + 1
2 , k), a× (i+ 1

2 , j, k+ 1
2),

and a× (i, j + 1
2 , k + 1

2). Here i, j, and k are integers that range from −∞ to ∞. Since all
particles are equivalent, we can focus on the particle at the origin (i = j = k = 0) without
loss of generality. The potential energy due to this particle’s interactions with all of the
other particles in the lattice is then the same as the potential energy per particle in the
system as a whole. This quantity is a function of the lattice spacing a, and can be written
as

φ(a)

N
= 2ε

[
σ12

a12
(α12 + 3β12) −

σ6

a6
(α6 + 3β6)

]
, (4.44)

where

αn ≡
∞∑′

i,j,k=−∞

1

(i2 + j2 + k2)n/2
,

βn ≡
∞∑

i,j,k=−∞

1

[(i+ 1/2)2 + (j + 1/2)2 + k2]
n/2

.

In the expression for αn, the ′ notation indicates that the i = j = k = 0 term is not included
in the sum. In order to calculate B, we must find the finimum of (4.44) over all values of
a. Using the fact that α6 = 8.402, α12 = 6.202, β6 = 35.743, and β12 = 256.746, it is easy
to show that2

B = −min
a

φ(a)

N
= 8.610ε .

2It should be noted that Ruelle’s expression for B in [54] yields B = 6258.27ε for the Lennard-Jones
potential, which is a gross over-estimate.
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Figure 4.3: Groeneveld’s lower bound ρ−o
∗
, plotted in reduced units as a function of T ∗ for

the Lennard-Jones potential.

Groeneveld’s lower bound ρ−o on the radius of convergence ρo is plotted for the Lennard-
Jones potential in Figure 4.3. We see that the typical values of ρ−o are extremely low. In
particular, for T ∗ = 1.6, the value of the temperature used in numerics throughout this
thesis, we have ρ−o

∗ ∼ 6.5 × 10−7. However, we should keep in mind that there was no
reason a priori to assume that ρo was different from zero. In other words, the series (4.40)
might not have converged for any value of ρ. It is therefore encouraging that one can prove
convergence for nonzero density. Furthermore, (4.43) is only a lower bound, and the true
value of ρo may be many orders of magnitude higher. In fact, numerical studies of the virial
series for the pressure [65, 23] have shown empirically that (4.40), and hence also (4.30),
converges at densities that extend far into the dense fluid range (i.e. ρ∗o & 0.7). This is
corroborated by Figure 4.2, which suggests that keeping only two terms in the expansion
(4.32) is sufficient to capture the general shape of Û at densities up to ρ̃∗ ∼ 0.5.

4.2.4 Calculating the Renormalized Pair Potential

There are various methods of calculating g(2) for a given state point. At low densities, one
can use the diagrammatic expansion of the previous section to find g (2) via Û . At higher
densities, there are several approximate and exact integral equations for g (2) that can be
solved numerically. These will not be described here. The RDF can also be determined
experimentally, either by computer simulation using MD, as in [66], or by direct X-ray
scattering experiments on real fluids (see, for example, [21]).

In this thesis, we will derive our high-density RDF’s (and the corresponding Û ’s) from
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computer MD data. The definition (4.34) of g(M) allows us to write g(2) as

g(2)(r) =




Number of particle pairs separated
by a distance between r and r + dr

in the system with interactions




(
Number of particle pairs separated
by the same distance in an ideal gas

) , (4.45)

where “dr” is a small interval. Thus g(2)(r, ρ̃, T ) is easily evaluated by running a MD
simulation of the full system (3.4) with N particles at density ρ̃ and temperature T . The
numerator in (4.45) can be found directly by performing an operation every few timesteps
in which all N(N − 1)/2 of the interparticle distances are sorted into bins and counted [3].
Examples of g(2)(r) calculated in this fashion, as well as the corresponding Û ’s, are plotted
in Figure 4.4 for several moderate-to-high values of ρ̃. Note that the prediction made earlier
that the successive maxima of Û should be separated by a distance of ∆r ≈ σ (∆r∗ ≈ 1 in
reduced units) is verified by these high-density results.

The three-particle distribution function g(3), can, in principle, be determined from com-
puter simulation or real experiments (for an example of the latter for a colloidal liquid in
two dimensions, see [67]). In reality, the problem of extracting g (3) from simulation data
is much more difficult than that of determining g(2), for essentially the same reasons as in
the low-density diagrammatic case. We therefore choose to ignore the triplet and all higher
potentials, and again approximate φ̂ by its pairwise term alone:

φ̂(q̂ ) ≈ φ̂(2)(q̂ ) (4.46)

For arbitrary densities, (4.46) is a rather drastic approximation, and it seems plausible
to expect it to break down as ρ̃ increases and the magnitude of the many-particle contri-
butions to the renormalized potential becomes large. The reality of when and why this
approximation fails is more subtle, however, as will be discussed in Section 4.4.

4.3 The Relationship Between the Full and Reduced Systems

We now have an approximate model for the evolution of the resolved coordinates, in the
form of a dynamical system governed by the renormalized Hamiltonian (4.28):

d

dt
qi =

1

m
pi qi(0) = x̂i

d

dt
pi = −∇qi

φ̂(q ) pi(0) = ŷi ,

(4.47)

where 1 ≤ i ≤M . As described above, we will generally ignore all but the pair contribution
to the renormalized potential:

φ̂(q ) ≈

M∑

i<j

Û
(∣∣qi − qj

∣∣
)

(4.48)

Here Û may be calculated from the diagrammatic expansion (4.32) at low unresolved den-
sities, and from MD data for higher densities.

Our goal is to determine how the macroscopic properties of the full system (as described
in Section 3.3), can be extracted from the dynamics of (4.47). We begin by considering
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Figure 4.4: g(2)(r∗) and Û∗(r∗) of the Lennard-Jones potential determined by direct MD
simulation for several values of ρ̃∗. Here T ∗ = 1.6.
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(4.47), with the exact expression (4.33) for φ̂. Under the influence of a heat bath in real sys-
tems, or a thermostat on the computer3, (4.47) will quickly equilibrate to the renormalized
canonical distribution (RCD):

f̂c(q̂, p̂ ) =
1

Ẑ
e−βH (q̂,p̂ ) , (4.49)

where Ẑ =
∫
dp̂
∫
dq̂ exp

(
−βH (q̂, p̂ )

)
. Given some phase variable A which is a function of

the resolved coordinates alone (a “resolved phase variable”), we will write its average under
the RCD as

〈A〉RC ≡
∫
dp̂
∫
dq̂ A(q̂, p̂ ) e−βH (q̂,p̂)

∫
dp̂
∫
dq̂ e−βH (q̂,p̂)

.

When evaluating a MD simulation of the reduced system (4.47), our ability to calculate ther-
modynamic quantities is limited to the evaluation of averages and correlations of resolved
phase variables under the RCD. The properties of the full system that we are interested
in must be related to these quantities. The following two closely-related theorems will be
useful:

Theorem 4.2 If A is a resolved phase variable, then 〈A〉RC = 〈A〉C .

Proof:

〈A〉RC =

∫
dp̂
∫
dq̂ A(q̂, p̂ ) e−βH (q̂,p̂ )

∫
dp̂
∫
dq̂ e−βH (q̂,p̂ )

=
1
c

∫
dp̂
∫
dq̂ A(q̂, p̂ )

∫
dp̃
∫
dq̃ e−βH(q,p)

1
c

∫
dp̂
∫
dq̂
∫
dp̃
∫
dq̃ e−βH(q,p)

by Hald′s Theorem

=

∫
dp
∫
dq A(q̂, p̂ ) e−βH(q,p)

∫
dp
∫
dq e−βH(q,p)

= 〈A〉C

�

Theorem 4.3 Let g(m)(q̂1...q̂m, ρ, T ) be the m-particle distribution function derived from
the potential φ of the full system, and let ĝ (m)(q̂1...q̂m, ρ̂, T ) be the corresponding m-particle
distribution function derived from the renormalized potential φ̂. Then, for fixed m,
g(m)(q̂1...q̂m, ρ, T ) = ĝ (m)(q̂1...q̂m, ρ̂, T ) in the thermodynamic limit.

Proof: From the definition of the m-particle distribution function [23], we have:

g(m)(q̂1...q̂m, ρ, T ) ≡ 1

ρm

N !

(N −m)!

∫
dq̂m+1...dq̂M

∫
dq̃ e−βφ(q)

∫
dq̂
∫
dq̃ e−βφ(q)

=
1

ρm

N !

(N −m)!

∫
dq̂m+1...dq̂M e−βφ̂(q̂ )

∫
dq̂ e−βφ̂(q̂ )

by (4.33) .

3For a proof that this must occur for the Nosé-Hoover thermostat, see [47] or [26].
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Using the fact that ρ = (N/M)ρ̂, the prefactor can be rearranged as

1

ρm

N !

(N −m)!
=

1

ρ̂m

Mm

Nm

N !

(N −m)!

=
1

ρ̂m

M !

(M −m)!

{
(M −m)!

M !

Mm

Nm

N !

(N −m)!

}
.

In the thermodynamic limit, N and M become large, and the quantity in brackets can be
simplified using Stirling’s approximation:

(M −m)!

M !

Mm

Nm

N !

(N −m)!
≈

(M −m)M−m+ 1
2 em−M

MM+ 1
2 e−M

Mm

Nm

NN+ 1
2 e−N

(N −m)N−m+ 1
2 em−N

=

(
1 − m

M

)M−m+ 1
2

(
1 − m

N

)N−m+ 1
2

−→ e−m

e−m
= 1 ,

and the original expression becomes

g(m)(q̂1...q̂m, ρ, T ) =
1

ρ̂m

M !

(M −m)!

∫
dq̂m+1...dq̂M e−βφ̂(q̂ )

∫
dq̂ e−βφ̂(q̂ )

= ĝ (m)(q̂1...q̂m, ρ̂, T ) .

�

4.3.1 Static Averages

Energy

According to (3.9), the energy of the full system in 3 dimensions is given by

E =
3

2
NkBT +

〈
φ
〉
C
,

where the canonical average of the potential φ is the quantity typically evaluated in a
simulation. We may express 〈φ〉C in terms of the RDF of the full system as follows:

〈
φ
〉
C

=

∫
dq
∑M

i<j Uij e
−βφ(q)

∫
dq e−βφ(q)

=
N(N − 1)

2

∫
dq U12 e

−βφ(q)

∫
dq e−βφ(q)

because all particle pairs are equivalent.

=
N(N − 1)

2

∫
dq1

∫
dq2 U12

{∫
dq3...dqN e−βφ(q)

∫
dq e−βφ(q)

}

︸ ︷︷ ︸
=

(N−2)!
N!

ρ2g(2)(|q12|)

=
ρ2

2

∫
dq1

∫
dq2 U

(
|q12|

)
g(2)
(
|q12|

)

= N
ρ

2

∫
dr U

(
|r|
)
g(2)
(
|r|
)
.
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Theorem 4.3 tells us that g(2) = ĝ (2), which allows us to write

〈
φ
〉
C

= N
ρ

2

∫
dr U

(
|r|
)
ĝ (2)

(
|r|
)

=

(
N

M

)2

M
ρ̂

2

∫
dr U

(
|r|
)
ĝ (2)

(
|r|
)

=

(
N

M

)2〈
φrr

〉
RC

, (4.50)

where φrr is as defined in (4.8). This implies that the quantity

Ê(M) ≡ 3

2
NkBT +

(
N

M

)2〈
φrr

〉
RC

, (4.51)

if evaluated using the full expression (4.33) for φ̂, should exactly reproduce the energy of
the full system.

Pressure

An expression for the pressure similar to (4.51) can be derived in an analogous fashion.
Equation (3.10) tells us that

P = ρkBT − 2

3V

〈
W(q)

〉
C

= ρkBT − 1

3V

〈
N∑

i<j

|qij |U ′
(
|qij|

)
〉

C

,

which can be expressed in terms of the RDF as

P = ρkBT − ρ2

6

∫
dr |r|U ′

(
|r|
)
g(2)
(
|r|
)
.

Using Theorem 4.3 to replace g(2) by ĝ (2) and proceeding as before, we obtain

P̂ (M) ≡ ρkBT −
(
N

M

)2 2

3V

〈
Wrr(q̂ )

〉
RC

, (4.52)

where

Wrr(q̂ ) ≡ 1

2

M∑

i<j

|q̂ij|U ′
(
|q̂ij |

)

is the resolved virial. P̂ (M) should yield the exact pressure of the full system.

Heat Capacity

The heat capacity presents a somewhat more challenging problem than the energy or pres-
sure. According to (3.11), the heat capacity can be written as

CV =
3

2
NkB +

1

kBT 2
δφ2 , (4.53)
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where
δφ2 =

〈
φ2
〉
C
−
〈
φ
〉2
C

is the fluctuation in the potential energy, and is usually the quantity calculated in a simu-
lation. The first term above can be broken up as follows:

〈
φ2
〉
C

=

〈
N∑

i<j

N∑

k<`

UijUk`

〉

C

=

〈
terms with both

indices in common

〉

C

+

〈
terms with one

index in common

〉

C

+

〈
terms with no

indices in common

〉

C

=

〈
N∑

i<j

Uij
2

〉

C

+

〈
2

N∑

i=1

N∑

j<k
j,k 6=i

UijUik

〉

C

+

〈
N∑

i<j

N∑

k<`
k, 6̀=i,j

UijUk`

〉

C

(4.54)

In each of the three quantities above, all terms of the sum yield the same contribution to
the average, since all particles are equivalent. The first summation has N(N − 1)/2 terms,
the second has N(N − 1)(N − 2)/2 terms, and the third has N(N − 1)(N − 2)(N − 3)/4
terms. (4.54) can therefore be written as

〈
φ2
〉
C

=
1

2
N(N − 1)

〈
U2

12

〉
C

+N(N − 1)(N − 2)
〈
U12U13

〉
C

+
1

4
N(N − 1)(N − 2)(N − 3)

〈
U12U34

〉
C
.

Finally, using (4.50), Theorem 4.2, and the indistinguishability of the resolved particles, we
obtain

δφ2 =
N(N − 1)

M(M − 1)

〈
M∑

i<j

Uij
2

〉

RC

+
N(N − 1)(N − 2)

M(M − 1)(M − 2)

〈
2

M∑

i=1

M∑

j<k
j,k 6=i

UijUik

〉

RC

+
N(N − 1)(N − 2)(N − 3)

M(M − 1)(M − 2)(M − 3)

〈
M∑

i<j

M∑

k<`
k, 6̀=i,j

UijUk`

〉

RC

−
(
N(N − 1)

M(M − 1)
〈φrr〉RC

)2

.

(4.55)

We see that the δφ2 calculated under the RCD can be scaled to recover the same quantity
calculated under the full distribution. However, unlike the corresponding expressions for
energy and pressure, different pieces of δφ2 are scaled by different functions of N and M .
Note that we have used a different method to arrive at (4.55) than we used to obtain
the expressions for energy and pressure. The reasons for this are subtle. Had we used
distribution functions as before, we would have arrived at an expression similar to (4.55),
except that all rational polynomials in N and M would be replaced by their large N , M
limit, i.e. (N/M)2 instead of N(N − 1)/M(M − 1), for example. This is a result of the
assumption, inherent in the use of Theorem 4.3, that we are operating in the thermodynamic
limit. In most cases treated here, this is a sound assumption. However, here this gives the
wrong result for any values of N and M , due to the fact that the accuracy of (4.55) depends
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on a significant degree of cancellation between the last two terms. This cancellation cannot
be captured without using the exact form for the N and M -dependent coefficients.

If we define

α1 ≡
M∑

i<j

Uij
2 α2 ≡ 2

M∑

i=1

M∑

j<k
j,k 6=i

UijUik α3 ≡
M∑

i<j

M∑

k<`
k, 6̀=i,j

UijUk` ,

then (4.55) can be written as

δφ2 =
N(N − 1)

M(M − 1)

〈
α1

〉
RC

+
N(N − 1)(N − 2)

M(M − 1)(M − 2)

〈
α2

〉
RC

+
N(N − 1)(N − 2)(N − 3)

M(M − 1)(M − 2)(M − 3)

〈
α3

〉
RC

−
(
N(N − 1)

M(M − 1)

〈
φrr

〉
RC

)2

.

(4.56)

Each of the αi must be evaluated separately in order to implement (4.56). The most
straightforward way to do this would be to keep track of the contribution to the total
potential energy from each of the M(M − 1)/2 pairs of resolved particles. The products
of these contributions could then be sorted into α1, α2, and α3 depending on the number
of distinct indices. Unfortunately, the computational overhead associated with performing
this sorting procedure at each timestep is at least O(M 2), and is therefore untenable.

We can calculate the αi via a more indirect route by defining the following two quantities:

φi ≡
M∑

j 6=i

Uij βi ≡
M∑

j 6=i

U2
ij

By a simple process of rearranging indices, it is then possible to show that

φrr =
1

2

M∑

i=1

φi α1 =
1

2

M∑

i=1

βi

α2 =

M∑

i=1

(
φ2

i − βi

)
α3 = φ2

rr − α1 − α2

During a simulation, the φi and βi can be evaluated at each timestep in the course of
calculating the interparticle forces with very little additional computational overhead. The
calculation of the αi then introduces an extra O(M) process, which is acceptable.

Combining equations (4.53) and (4.56) shows that the quantity

ĈV (M) =
3

2
NkB +

1

kBT 2

[
N(N − 1)

M(M − 1)

〈
α1

〉
RC

+
N(N − 1)(N − 2)

M(M − 1)(M − 2)

〈
α2

〉
RC

+
N(N − 1)(N − 2)(N − 3)

M(M − 1)(M − 2)(M − 3)

〈
α3

〉
RC

−
(
N(N − 1)

M(M − 1)

〈
φrr

〉
RC

)2
]
, (4.57)

should reproduce the heat capacity of the full system exactly.
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4.3.2 Equilibrium Autocorrelation Functions

As we have seen, it is relatively simple to determine how static quantities, such as energy
or pressure, must be scaled in order to reproduce the properties of the full system from
data generated by the reduced dynamics (4.47). Equilibrium autocorrelation functions
such as those described in Section 3.3, on the other hand, are extremely difficult to study
analytically for t > 0. In fact, the only factor we can directly control via scaling is the value
of the autocorrelation function at t = 0.

Consider some dynamical variable A(q, p), which depends on both the resolved and
unresolved variables. Its autocorrelation function, calculated in the context of the full
system, is CAA(t) = 〈A(0)A(t)〉C . We define Â(q̂, p̂ ) to be the corresponding quantity in

the reduced system, with autocorrelation function CÂÂ(t) =
〈
Â(0)Â(t)

〉
RC

. Our goal is to

choose the scaling of Â to ensure that C
ÂÂ

(0) = CAA(0). How these two autocorrelation
functions compare for t > 0 is beyond our control.

Velocity Autocorrelation Function

Let us consider the velocity autocorrelation function first. Under the full system, we have

Cvv(0) =
1

3

〈
vi(0) · vi(0)

〉
C

for any 1 ≤ i ≤ N

=
kBT

m
,

and for the reduced system

Cv̂v̂(0) =
1

3

〈
v̂i(0) · v̂i(0)

〉
RC

for any 1 ≤ i ≤M

=
kBT

m
.

(Here vi = pi/m and v̂i = p̂i/m.) Since both the full system and the reduced system are
thermostated to maintain the same temperature T , no special scaling is required to ensure
that the two velocity autocorrelation functions coincide at t = 0.

Shear Stress Autocorrelation Function

The shear stress autocorrelation function CΞΞ(t) =
〈
Ξµν(0) Ξµν(t)

〉
C

is a much more diffi-
cult and interesting case. According to equation (3.14), for the full system

Ξµν =
1

V

N∑

i=1

(
1

m
pi,µ pi,ν − qi,µ

∂

∂qi,ν
φ(q)

)
,

in which case it can be shown (see Appendix A) that

CΞΞ(0) =
kBT

V

{
ρkBT +

2π

15
ρ2

∫ ∞

0
dr

d

dr

(
r4U ′(r)

)
g(2)(r)

}
. (4.58)

For the reduced system, we define

Ξ̂µν =
1

V

M∑

i=1

(
a

1

m
p̂i,µ p̂i,ν − b q̂i,µ

∂

∂q̂i,ν
φrr(q̂ )

)
,
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where a and b are scaling constants to be determined. A derivation identical to that which
generated (4.58) yields

CΞ̂Ξ̂(0) =
kBT

V

{
a2ρ̂kBT +

2π

15
b2ρ̂ 2

∫ ∞

0
dr

d

dr

(
r4U ′(r)

)
ĝ (2)(r)

}
.

If we now apply Theorem 4.3, and use the fact that ρ̂ = (M/N)ρ, we arrive at

C
Ξ̂Ξ̂

(0) = a2M

N
ρkBT +

2π

15
b2
(
M

N

)2

ρ2

∫ ∞

0
dr

d

dr

(
r4U ′(r)

)
g(2)(r) ,

which, when compared with (4.58), implies that

a =

(
N

M

) 1
2

b =
N

M
.

Thus, the autocorrelation function of the resolved quantity

Ξ̂µν =
1

V

M∑

i=1

((
N

M

) 1
2 1

m
p̂i,µ p̂i,ν − N

M
q̂i,µ

∂

∂q̂i,ν
φrr(q̂)

)
(4.59)

will be guaranteed to coincide with CΞΞ(t) at t = 0, i.e.

〈
Ξ̂2

µν(0)
〉

RC
=
〈
Ξ2

µν(0)
〉

C
. (4.60)

Keep in mind, however, that our approximation (4.48) to the renormalized potential will
prevent equation (4.60) from being obeyed exactly at moderate to high densities.

There is no reason to suspect that the above scaling procedure, which constrains the
values of the autocorrelation functions at t = 0, will reproduce these functions for the full
system at t > 0. In fact, we will see that FOOP is not nearly as effective in reproducing the
velocity and shear stress autocorrelation functions as it is for calculating static quantities.
This is to be expected. Autocorrelation functions embody the correlations of dynamical
quantities over extended periods of time, and are thus closely dependent upon the memory
and forcing terms that we ignored when deriving FOOP.

4.4 Consequences of Neglecting Many-Particle Interactions

In an actual reduced simulation, in which expressions such as (4.51), (4.52), and (4.57) are
used to determine the properties of the full system, the accuracy of the results will depend
on the degree to which the pair approximation (4.46) is valid. When many-particles effects
play a significant role in the dynamics, we expect these expressions to yield values that
differ appreciably from the true energy, pressure, and heat capacity.

Consider a system of interacting particles with a typical Hamiltonian of the form
H = K + φ, where K is the kinetic energy and φ is the potential energy. It is common
for the phase of such a system to be classified according to the relative magnitudes of
〈K〉 and 〈φ〉: |〈K〉| � |〈φ〉| corresponds to a gaseous phase, |〈K〉| � |〈φ〉| indicates a solid,
and |〈K〉| ∼ |〈φ〉| is usually taken to correspond to a liquid.

The same type of reasoning can be used to gain some qualitative insight into when (4.46)
should be expected to fail. As (4.29) indicates, the renormalized potential φ̂ may be written
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as a sum of a two-particle term, a three-particle term, etc. The n-particle contribution to
φ̂ can be expressed as

φ̂(n)(q̂ ) =
M∑

i1<...<in

Ûn

(
q̂i1 , ..., q̂in

)
,

where the form of Ûn depends on ρ̃ and T . Note that Û2 = Û , the renormalized pair
potential introduced at the end of Section 4.2.1. The average of φ̂ in the (exact) reduced
system is 〈

φ̂
〉

RC
=
〈
φ̂(2)

〉
RC

+
〈
φ̂(3)

〉
RC

+
〈
φ̂(4)

〉
RC

+ ... . (4.61)

Note that each of these terms must be an extensive quantity, i.e. proportional to the
number of resolved particles M , in order for the average energy per particle to be stable
in the thermodynamic limit. Understanding when the various terms in (4.61) are large or
small will take us a long way towards determining the appropriateness of (4.46), as well as
towards explaining several of the numerical results to come later in this chapter.

We begin by defining some terminology. A set of n resolved particles, with coordinates(
q̂1, ..., q̂n

)
, is said to be “within range R of each other” if

∣∣q̂i − q̂j
∣∣ ≤ R for all 1 ≤ i, j ≤ n.

We define Rn to be the “range” of Ûn, in the sense that Ûn

(
q̂1, ..., q̂n

)
= 0 unless

(
q̂1, ..., q̂n

)

are within range Rn of each other. For a bare potential such as the Lennard-Jones potential,
Ûn will never be strictly zero as long as its arguments are finite, so we take this definition
to mean that Rn is the range beyond which Ûn is approximately zero. For example, the
renormalized pair potentials shown in Figure 4.2 have R∗

2 ∼ 2 or 3. In general, Rn will be
a function of ρ̃ and T .

For a reduced system containing M resolved particles at a density of ρ̂, we define a
quantity Nn(ρ̂, R, T ) by requiring that MNn(ρ̂, R, T ) be the average number of n-tuplets of
particles within range R of each other in the system at equilibrium. Clearly, the maximum
possible value of MNn is

(
M
n

)
. However, the actual value in a typical system will be far less

than this. As will be shown below, the fact that Nn is an intensive quantity follows from

the fact that
〈
φ̂(n)

〉
is extensive.

Finally, we introduce Un(ρ̃, T ), which is defined as the magnitude of the average value
of Ûn

(
q̂1, ..., q̂n

)
, given that the coordinates

(
q̂1, ..., q̂n

)
are within range Rn of each other.

In other words, Un is the size of a typical contribution to φ̂(n) due to n particles that are
in the process of interacting via Ûn.

Given the above definitions, a few remarks can be made concerning the behavior of Rn,
Nn, and Un. For simplicity, we will leave out the dependence of these three quantities on
T here, since this is an inherently constant-temperature problem.

• Rn(ρ̃) is a monotonically increasing function of ρ̃.

As ρ̃ increases from 0, the diagrammatic expansion of Ûn contains significant contri-
butions from higher and higher order diagrams, which have larger ranges than lower
order diagrams. This effect is evident for n = 2 in Figures 4.2 and 4.4.

• Rn(ρ̃) → Rn(0) > 0 as ρ̃→ 0.

For n = 2, Û2 → U , which has a finite, nonzero range. For n > 2, the shape of Ûn is
dominated by the first diagram in its series, which likewise has a finite, nonzero range.

• Nn(ρ̂, R) is a monotonically increasing function of both ρ̂ and R.
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• Nn(ρ̂, R) → 0 as either ρ̂→ 0 or R→ 0.
As either the density of particles ρ̂ or the range R decrease, the probability that n
particles will fall within range R of each other decreases as well, and vice versa.

• As ρ̃→ 0, U 2(ρ̃) → U 2(0) > 0.
When ρ̃ = 0, the renormalized pair potential reduces to the bare potential, which has
nonzero magnitude.

• For n > 2, Un(ρ̃) → 0 as ρ̃→ 0.

This follows from the fact that Ûn for n > 2 is linear in ρ̃ to lowest order.

In addition, note that in a noninteracting, ideal gas, where the particle positions are
uncorrelated and distributed uniformly throughout the domain, there is no inherent scale
length of the system independent of the density, and Nn will satisfy

Nn(ρ̂, R) = N ideal
n

(
ρ̂Rd

)
, (4.62)

where d is the dimensionality of the system. Here N ideal
n is a monotonically increasing

function of its argument. Equation (4.62) follows from a simple scaling argument that
involves considering the average number of particles within a ball of radius R, which is
proportional to ρ̂Rd. For an interacting system, (4.62) fails, due to the fact that a natural,
density-independent microscopic length scale exists in the form of σ, the range of the inter-
particle potential. However, equation (4.62) should still hold approximately when R � σ
or ρ̂−1/d � σ.

The magnitude of the nth order term in (4.61) can now be written as

∣∣∣
〈
φ̂(n)

〉
RC

∣∣∣ =

(
Average number of resolved

n-tuplets interacting via Ûn

)
×

∣∣∣∣∣∣




Average potential energy due
to n particles in the process

of interacting via Ûn



∣∣∣∣∣∣

= M Nn

(
ρ̂, Rn(ρ̃)

)
Un(ρ̃ ) . (4.63)

Note that since
〈
φ̂(n)

〉
RC

is necessarily extensive, and Un is intensive by definition, this

indicates that Nn is intensive. The fact that ρ̂ = ρ− ρ̃ allows us to rewrite (4.63) as

1

M

∣∣∣
〈
φ̂(n)

〉
RC

∣∣∣ = Nn

(
ρ− ρ̃, Rn(ρ̃)

)
Un(ρ̃ ) . (4.64)

By definition, ρ̃ is constrained to lie between 0 and ρ. Using the properties of Rn, Nn, and
Un described above, we can study (4.64) in each of these two limiting cases.

For ρ̃→ 0, we have

lim
ρ̃→0

1

M

∣∣∣
〈
φ̂(n)

〉
RC

∣∣∣ = Nn

(
ρ,Rn(0)

)
︸ ︷︷ ︸

>0

Un(0)︸ ︷︷ ︸
>0 n=2
=0 n>2

=

{
N2

(
ρ,R2(0)

)
U2(0) n = 2

0 n > 2
. (4.65)

On the other hand, when ρ̃→ ρ, (4.64) becomes

lim
ρ̃→ρ

1

M

∣∣∣
〈
φ̂(n)

〉
RC

∣∣∣ = Nn

(
0, Rn(ρ)

)
︸ ︷︷ ︸

=0 ∀n

Un(ρ)︸ ︷︷ ︸
>0

= 0 . (4.66)
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Equations (4.65) and (4.66) show that, for n > 2, the error associated with ignoring the
nth order term in (4.29) will drop to zero when either ρ̃ → 0 or ρ̃ → ρ. Stated in a more
applicable way, for a reduced system of size M , the error associated with making the pair
approximation (4.46) will drop to zero when either M → N or M → 0. The first of these
is unremarkable, since when M = N , we recover the exact full system (3.4). The latter,
however, is surprising, and seems to imply that we can gain something for nothing by
working with a reduced system containing only a handful of resolved particles. In reality, of
course, a reduced system with such a small value of M would be plagued by other sources
of error. In particular, the errors in numerically calculating canonical averages, which
typically scale as M−1/2, become large in this limit. There would also be errors of order
M−1 associated with the fact that very small M values place the system too far from the
thermodynamic limit. It is an empirical rule of thumb in MD simulation that one must have
at least several hundred particles in the system in order for finite system-size effects of this
kind to be insignificant compared to other types of error (i.e. rounding error, finite timestep
error, etc) [3]. Nevertheless, equations (4.65) and (4.66) make a definite prediction: That
as the size M of our reduced system decreases from N , the error due to (4.46) will first
increase from zero, before attaining a maximum (or maxima) at some intermediate value,
and then decreasing until M becomes moderately small, at which point other sources of
error become dominant.

All of what has been said so far in this section has been very qualitative. It would be
convenient, however, to have some quantitative means of estimating the value of M at which
our pair approximation fails. Ideally, this would take the form of two functions, ρ+(ρ) and
ρ−(ρ), such that (4.46) fails for ρ̃ in the range ρ−(ρ) ≤ ρ̃ ≤ ρ+(ρ). For fixed ρ, ρ+ and ρ−

could probably best be estimated by determining the values of ρ̃ for which the magnitude
of the triplet potential is comparable to that of the pair potential, i.e.

1

M

∣∣∣
〈
φ̂(2)

〉
RC

∣∣∣ ∼ 1

M

∣∣∣
〈
φ̂(3)

〉
RC

∣∣∣

or equivalently, by (4.64),

N2

(
ρ− ρ̃, R2(ρ̃ )

)
U2(ρ̃ ) ∼ N3

(
ρ− ρ̃, R3(ρ̃ )

)
U3(ρ̃ ) . (4.67)

Unfortunately, the quantitative forms of the functionsRn, Nn, and Un are extremely difficult
to determine either analytically or numerically, since they require knowledge of the exact
form of the renormalized potential in order to be calculated. For this reason, the limits of
our approximation will have to be found empirically by direct simulation of the reduced
system.

4.5 Results

4.5.1 Full System

In order to serve as a baseline to which results from various reduced systems may later be
compared, simulations of the full system (3.4) were done using the modified velocity Verlet
scheme (3.22). The full system consisted of N=4000 Lennard-Jones particles with a cutoff
radius of r∗c = 2.5. As described previously, the temperature was chosen to be T ∗ = 1.6,
which, according to (3.25), yields a timestep of ∆t∗ ≈ 0.005. These simulations were
performed for densities in the range ρ∗ ∈ [0.1, 1.1], at intervals of ∆ρ∗ = 0.05. In order to
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Figure 4.5: Runtime of the full system as a function of the reduced density ρ∗

check that the algorithm yields accurate results, additional simulations were performed for
ρ∗ ∈ [0.955, 1.045], at intervals of ∆ρ∗ = 0.005. This range of densities contains the fluid-
solid phase transition at this temperature, which, according to the Lennard-Jones phase
diagram in Section 3.5, occurs at ρ∗ ≈ 1.02. Thermodynamic averages determined from
these simulations, such as energy or pressure, should have a discontinuity at this density.
Furthermore, we expect the heat capacity to diverge, due to the fact that energy added to
a system at the fluid-solid transition will go into “melting” the solid, rather than increasing
the kinetic temperature.

In each simulation, the system was initially integrated for 1000 timesteps, during which
it was allowed to equilibrate, followed by 50, 000 timesteps during which data was taken. It
is interesting to look at the runtime of these simulations as a function of density, which is
plotted in Figure 4.5. As the density increases from zero, the average number of neighbors
associated with each particle grows. Thus a larger number of interparticle force calculations
must be performed per timestep, and the runtime increases. At high densities, however, the
freedom of individual particles to move around the domain is curtailed, and the neighbor
list needs to be recalculated less frequently, which causes the runtime to decrease. In fact,
at sufficiently high densities a point is reached at which particles may not move past one
another to any extent, and are trapped in an effective potential well due to the combined
interactions with their neighbors. Past this point, the neighbor list need only be calculated
once at the beginning of the simulation, and, as can be seen in Figure 4.5, the runtime
drops considerably. The density at which this occurs is the location of the fluid-solid phase
transition. According to these numerics, the location of the transition falls in the interval
1.015 ≤ ρ∗ ≤ 1.020, in accord with our expectations.

The energy per particle E/N , the pressure P , and the heat capacity per particle CV /N
of the full system were evaluated using equations (3.9), (3.10), and (3.11), respectively.
The results of these calculations are shown as functions of density in Figures 4.6, 4.7, and
4.8. Note that, as expected, there are discontinuities in the energy and pressure, as well
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Figure 4.6: Energy per particle E∗/N of the full system as a function of density, in reduced
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Figure 4.7: Pressure P ∗ of the full system as a function of density, in reduced units
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Figure 4.8: Heat capacity per particle C∗
V /N of the full system as a function of density, in

reduced units

as a divergence in the heat capacity, within the interval 1.015 ≤ ρ∗ ≤ 1.020 of the phase
transition. Note also that the results for the heat capacity are somewhat noisier than those
for either energy or pressure. This occurs universally in MD [3], and is a consequence of the
fact that the heat capacity represents the mean fluctuation in a quantity, whereas energy
and pressure are simple averages.

Velocity and shear stress autocorrelation functions were also calculated for the full sys-
tem. These will be discussed below.

4.5.2 Reduced Systems

The pair-approximated FOOP system ((4.47) with (4.48)) and the Galerkin system (4.13)
were each simulated using the same scheme (3.22) as the full system, as well as the same
values of T ∗ and ∆t∗, and the same number of timesteps. For every density ρ∗ ∈ [0.1, 1.1]
at which the full system was studied, five different values of M were tried for each of the
two reduced models: M = 2916, 2048, 1372, 864, and 500. (The reduced systems were not
simulated at the closely-spaced densities in the range [0.955, 1.045], which were used solely
to verify the reliability of our implementation of the algorithm (3.22) against established
results.) As explained in Section 3.4.2, the reason for these particular values of M is that
the system is initialized in a face-centered cubic configuration, which constrains M to be of
the form 4n3

c , where nc is the number of unit cells in each spatial direction. The density of
resolved particles for each of these reduced simulations was ρ̂∗ = (M/N)ρ∗. Furthermore,
the unresolved density ρ̃∗ =

(
(N−M)/N

)
ρ∗ was used for each FOOP system to calculate

the form of the renormalized pair potential Û , using the methods outlined in this chapter.
For ρ̃∗ ≤ 0.25, the diagrammatic sum truncated to 2nd order was used, and for ρ̃∗ > 0.25
the RDF calculated by MD was used to find Û .

One complication that arises in dealing with the renormalized pair potential is that it
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Figure 4.9: Cutoff radius r̂c of the renormalized pair potential as a function of the unresolved
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has a longer range than the bare potential, as is evident in Figures 4.2 and 4.4. For fixed
temperature, the unresolved density ρ̃ alone determines its shape. In general, the larger
ρ̃ is, the longer the range of Û . Therefore, a different cutoff radius r̂c was used for each
distinct value of ρ̃ studied by FOOP. This cutoff radius was determined in the following
manner: if rc was the cutoff radius used in the full system (r∗c = 2.5 in our case), then r̂c

was chosen to be the smallest value of r such that |Û(r′)| ≤ |U(rc)| for all r′ ≥ r. The cutoff
radius of the FOOP system, as determined by this method, is shown in Figure 4.9 for each
value of ρ̃∗ to be examined. As expected, the cutoff radius is generally larger for larger ρ̃∗.
The apparent discontinuities in the graph of r̂∗c as a function of ρ̃∗ are a result of maxima
and minima of the renormalized pair potential that rise to cross the |Û | = |U(rc)| threshold
as ρ̃∗ increases.

The fact that a larger cutoff radius must be used for larger values of ρ̃ has significant
consequences for the running speed of FOOP simulations. When M is small or ρ is large,
r̂c increases, and the neighbor list of each particle grows in length. With a greater number
of interparticle forces to evaluate per timestep, the FOOP system requires more time to
simulate than the corresponding Galerkin system.

The “relative runtime” is defined as

Relative Runtime ≡
(

Runtime of the reduced system
)

(
Runtime of the full system at

the same density and temperature

) . (4.68)

Thus, relative runtimes less than 1 indicate that the reduced system runs faster than the full
system, whereas values greater than 1 mean that it is slower. Figures 4.10 and 4.11 show,
for each value of M , the relative runtimes of the FOOP systems and the Galerkin systems,
respectively, as functions of density. Here, and throughout this thesis, data obtained by
simulating the reduced models will be graphed as a function of ρ∗, the density of the full
system they seek to mimic, rather than as a function of ρ̂∗, the actual density of resolved
particles. This allows easy comparison between the full system and reduced system results.
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Figure 4.10: Relative runtimes of the FOOP systems as functions of reduced density, and
for various values of M
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Figure 4.11: Relative runtimes of the Galerkin systems as functions of reduced density, and
for various values of M
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As should be expected, the smaller the value of M , the faster the reduced systems run.
Furthermore, for fixed M and ρ∗, the Galerkin system always runs faster than the FOOP
system. This is a result of the fact that the renormalized potential has a larger cutoff radius,
as explained above. It may seem peculiar at first that at high densities the Galerkin system
with M = 2916 requires more time to run than the full system. In fact, the increase in
the relative runtime of all of the reduced systems for ρ∗ & 1 is simply a consequence of
the full system’s phase transition, which causes it to run faster. This implies that in order
to approximate the solid phase via FOOP, one must use a sufficiently small value of M .
Otherwise, little will be gained in terms of computational advantage.

Static Averages

The scaled energy per particle Ê∗(M)/N , the scaled pressure P̂ ∗(M), and the scaled heat
capacity per particle Ĉ∗

V (M)/N were calculated during each of the reduced simulations,
using (4.51), (4.52), and (4.57), respectively. The FOOP energy, pressure, and heat capacity
are shown in Figures 4.12, 4.14, and 4.16, respectively, along with the same result from the
full system for comparison. The same three quantities calculated via the Galerkin system
are shown in Figures 4.13, 4.15, and 4.17.

We will discuss the energy and pressure results first. We see that, for both the energy
and the pressure, FOOP performs significantly better than the Galerkin method. The
energy and pressure curves derived from FOOP coincide nearly perfectly with the exact
results from the full system, up to ρ∗ ≈ 0.7 and ρ∗ ≈ 0.5, respectively. By contrast, the
Galerkin results begin to diverge from the exact curves both at a lower density and to a
greater degree. This is as expected, since the Galerkin method makes no attempt to account
for the influence of the unresolved particles.

It is important to note that FOOP fails to capture the behavior of the energy and
pressure in the vicinity of the phase transition at ρ∗ ≈ 1. The reason for this is that the
fluid-solid transition is, by definition, entirely dependent upon the many-particle effects
that we have neglected. In a way, a solid comprised of N molecules can be thought of as
a single N -tuplet of particles interacting via a long-range N -particle potential. Clearly, no
reduced system that includes only pairwise interactions can adequately model a solid or
dense liquid. However, if we could somehow calculate φ̂ exactly, the curves from the full
system and the curves for each of the FOOP systems would necessarily lie on top of one
another, to within an error of order 1/

√
Mns resulting from finite system sizes and run

lengths, where ns is the number of timesteps in the simulation. The same is true for any
static quantity for which a scaling formula analogous to equations (4.51) and (4.52) can be
derived.

The results for heat capacity are not nearly as smooth as those for energy or pressure.
In fact, for M = 864 and M = 500, the degree of noise was so extreme that the results were
rendered useless. Thus, Figures 4.16 and 4.17 contain only the data from the M = 2916,
M = 2048, and M = 1372 reduced systems. From these, the only conclusions that can
be drawn are that the results are the right order of magnitude, and that neither model
correctly predicts the divergence of CV near the phase transition. This latter fact should
come as no surprise, given the explanation outlined above.

There are two main reasons why any calculation of the heat capacity via these methods
will be inherently prone to noise. The first, as mentioned in Section 4.5.1, is that CV

represents the fluctuation of a quantity, rather than just a simple average. More important,
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Figure 4.12: E∗/N of the full system, and Ê∗(M)/N calculated via the FOOP system for
various M values.
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Figure 4.13: E∗/N of the full system, and Ê∗(M)/N calculated via the Galerkin system for
various M values.
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Figure 4.14: P ∗ of the full system, and P̂ ∗(M) calculated via the FOOP system for various
M values.
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Figure 4.15: P ∗ of the full system, and P̂ ∗(M) calculated via the Galerkin system for various
M values.
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Figure 4.16: C∗
V /N of the full system, and Ĉ∗

V (M)/N calculated via the FOOP system for
various M values.
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Figure 4.17: C∗
V /N of the full system, and Ĉ∗

V (M)/N calculated via the Galerkin system
for various M values.
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however, is the fact, alluded to briefly in Section 4.3.1, that the accuracy of the expression
(4.57) for ĈV (M) depends upon a large degree of cancellation between

〈
φ2
〉

and 〈φ〉2. In
particular, the last two terms in (4.57) (i.e. those involving alpha3 and φrr) are of similar
magnitude but opposite sign. Each of these two terms has a coefficient of order (N/M)4,
which can be as high as ∼ 4000 for the values of N and M we are considering. In general,
any calculation that involves finding the difference between two large random quantities
that nearly cancel one another will be subject to overwhelming uncertainty. Unfortunately,
there is no remedy for this problem aside from carrying out simulations much longer than
those performed for this thesis.

Unlike the heat capacity data, the energy and pressure results are regular enough to
permit some discussion of the magnitude their errors. We define δE to be the deviation
between the energy per particle recovered from the reduced system and the full system:

δE ≡
∣∣∣∣∣
Ê(M) −E

N

∣∣∣∣∣ .

The deviation in the pressure is similarly defined as

δP ≡
∣∣P̂ (M) − P

∣∣ .

Figures 4.18 and 4.19 show δE as a function of M at several moderate-to-high densities for
FOOP and the Galerkin system, respectively. Similar graphs for δP are shown in Figures
4.20 and 4.21. As predicted in Section 4.4, we see that for FOOP both δE and δP have
a maximum in the intermediate region near M = 2048. This effect is most striking in
the results for δP . By contrast, the Galerkin data shows no such feature; both δE and
δP increase monotonically as M decreases. This is because the Galerkin system contains
no mechanism to compensate for the neglected particles, as FOOP does in the form of a
modified pair potential.

It should be pointed out that for low values of ρ∗, which are not shown in these figures,
FOOP no longer produces these types of neat, unimodal error curves. This is because,
at low densities, the systematic error associated with neglecting many-particle effects is
negligible compared to the various other sources of random noise described earlier.

Autocorrelation Functions

The velocity autocorrelation functions (VAC’s) of the full system and of the various FOOP
systems are shown in Figure 4.22 for several representative values of ρ∗. As predicted in
Section 4.3.2, FOOP does not do nearly as well calculating autocorrelation functions as
it does with quantities like energy or pressure. We see that, although the value of C v̂v̂(t)
is constrained to equal kBT/m at t = 0, FOOP fails to capture the correct shape of the
VAC’s for t > 0, especially when M is small. At low densities, the decay rate is insufficient,
whereas at high densities, FOOP does not reflect the oscillatory behavior of the full system’s
VAC, which is typical of a solid or dense fluid. It should be mentioned that the VAC’s
calculated from the Galerkin system (which are not shown) were found to be identical to
those generated by FOOP, which implies that the difference between the renormalized and
bare potentials does not significantly impact autocorrelation functions.

The shear stress autocorrelation functions (SSAC’s), shown in Figure 4.23, were calcu-
lated using (3.14) and (4.59). These are subject to far greater statistical errors than the
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Figure 4.18: δE∗ of the FOOP system as a function of M , for several densities.
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Figure 4.19: δE∗ of the Galerkin system as a function of M , for several densities.
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Figure 4.20: δP ∗ of the FOOP system as a function of M , for several densities.
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Figure 4.21: δP ∗ of the Galerkin system as a function of M , for several densities.
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VAC’s, due to the fact that the definitions of CΞΞ(t) and C
Ξ̂Ξ̂

(t) do not allow us to perform
an average over all particles for each value of t, as we could when calculating the VAC’s.
We are then left only with an average over all timesteps, which yields a precision an order
of magnitude smaller than in the VAC case. Despite the increased noise, however, several
features are clear. Aside from random errors, there are two types of deviations that can
be discerned between the SSAC’s of the FOOP and full systems. First, we see that the
reduced and full system SSAC’s do not coincide very well at t = 0 for high densities. This
is again due to our neglect of many-particle effects, since the value of the autocorrelation
function of any quantity at t = 0 is the same as the static average of that quantity’s square,
i.e. CAA(0) = 〈A(0)A(0)〉 =

〈
A2
〉
. Also apparent, particularly in the low density result, is

the fact that the reduced SSAC’s do not decay sufficiently fast to match the behavior of
the full system. This is in accord with the VAC results described above.

Clearly, there is room to improve upon FOOP’s treatment of autocorrelation functions.
In order to better calculate these quantities, we must find some way of accounting for the
contributions of the memory and forcing terms in (3.7). This will be the topic of Chapter 5.
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Figure 4.22: Velocity autocorrelation functions calculated via the full system and via FOOP,
for various values of M , and for several densities.
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system are labeled for reference.
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Chapter 5

The Linear Friction Approximation

In order to include the effects of the memory integral in (3.7), we propose a linear friction
approximation to this term. This leads to a Fokker-Planck equation for the evolution of
the probability density of the positions and momenta. If we then require the renormalized
canonical distribution (4.49) to be a stationary solution of this equation, we can derive
constraints on the form of the random forcing term. The resulting system is a set of
coupled Langevin equations for the resolved positions and momenta.

5.1 Approximating the Memory Kernel

In Chapter 4, the FOOP approximation was unable to accurately reproduce the shape of
the autocorrelation functions of dynamical variables. In order to remedy this, we need to
somehow include the contributions from the memory and forcing terms in (3.7). We begin
by developing an approximation to the memory integral associated with the ith particle,
which is given exactly by

Mi(t) ≡
∫ t

0
ds e(t−s)L

Ki(x̂, ŷ, s) =

∫ t

0
ds Ki

(
q̂(t− s), p̂(t− s), s

)
, (5.1)

where
Ki(x̂, ŷ, s) = PLesQLQLŷi . (5.2)

(Recall that ŷi is the initial value of the momentum of the ith resolved particle.) The
definition of Mi(t) implies that the integration variable s can be interpreted as increasing
backwards in time, with larger values of s incorporating information about the behavior of
the resolved variables further in the past. Since the memory kernel (5.2) contains a leading
factor of P and the dynamics are highly nonlinear, we expect the system to “forget” about
the values of the resolved variables at much earlier times. This implies that Ki(x̂, ŷ, s) → 0 as
s→ ∞ for all finite x̂ and ŷ. Furthermore, since we assumed in Chapter 3 that our interpar-
ticle potential is bounded from below, conservation of energy implies that the trajectories(
q̂(t), p̂(t)

)
are bounded. Thus, we should expect the integrand Ki

(
q̂(t− s), p̂(t− s), s

)
to

decay to zero for large s as well.
We now make the additional assumption that the support backwards in time of the

memory kernel Ki(x̂, ŷ, s) is short, with a characteristic timescale τ > 0, and that we may
approximate it by

Ki(x̂, ŷ, s) ≈ Ki(x̂, ŷ, 0) k(s/τ) . (5.3)
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Here k(s/τ) is an unknown function that must satisfy k(0) = 1 and
∫∞
0 ds k(s/τ) = τ .

The approximation (5.3) is common in the nonequilibrium statistical mechanics literature
[39, 53, 59], and it often yields surprisingly good results for autocorrelation functions. This
is due to the fact that correlation functions are somewhat insensitive to the exact form
of the memory kernel. Some common choices for k(s/τ) include an exponential form,

k(s/τ) = exp(−s/τ), as well as a Gaussian form, k(s/τ) = exp
(
−π

4
s2

τ2

)
. Since τ is a

timescale of the microscopic dynamics, it should be an intensive quantity, which may depend
on ρ̂, ρ̃, and T , but not on N , M , or V separately. Aside from these rather general
observations, τ remains an undetermined parameter. Some criteria for estimating the best
value of τ will be discussed later in this chapter.

The memory term now becomes

Mi(t) ≈

∫ t

0
ds e(t−s)L

Ki

(
x̂, ŷ, 0

)
k(s/τ) .

Regardless of the exact form of k(s/τ), we assume that τ is small, which implies that k(s/τ)
is strongly peaked near s = 0. We then may make the approximation that

Mi(t) ≈ τ etL
Ki

(
x̂, ŷ, 0

)
. (5.4)

This is equivalent to approximating the integral (5.1) by its value at s = 0 multiplied by the
constant timescale τ . As we will see in Section 5.2, (5.4) implies that the random forcing
term in (3.7) is δ-correlated in time. Thus, (5.4) is closely related to the assumption of
δ-correlated noise that is often found in the literature of dynamical renormalization [24].

In general, (5.4) is difficult to justify analytically, although, for the special case where
k(s/τ) = exp(−s/τ), we can derive (5.4) in the low-τ limit by showing that

lim
τ→0

∣∣∣∣∣

∫ t
0 ds Ki(t− s) e−s/τ − τ Ki(t)

τ

∣∣∣∣∣ = 0 (5.5)

when t > 0. Here, we have used the shorthand Ki(t) = etLKi(x̂, ŷ, 0). We proceed as
follows:

1

τ

[∫ t

0
ds Ki(t− s) e−s/τ − τ Ki(t)

]
=

∫ t

0
ds Ki(t− s)

d

ds

(
−e−s/τ

)
− Ki(t)

= − Ki(t− s) e−s/τ

∣∣∣∣
t

s=0

− Ki(t) +

∫ t

0
ds e−s/τ d

ds
Ki(t− s)

= −Ki(0)e
−t/τ −

∫ t

0
ds e−s/τ

K
′

i (t− s) .

If we also assume that
∣∣K ′

i (t)
∣∣ ≤ C for some C>0, then (5.5) becomes:

lim
τ→0

∣∣∣∣∣

∫ t
0 ds Ki(t− s) e−s/τ − τ Ki(t)

τ

∣∣∣∣∣ ≤ lim
τ→0

[∣∣Ki(0)
∣∣e−t/τ + C

∫ t

0
ds e−s/τ

]

≤ lim
τ→0

[∣∣Ki(0)
∣∣e−t/τ + Cτ

(
1 − e−t/τ

)]
= 0 .

This shows that, in this instance at least, (5.4) holds to lowest order in τ .
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Equation (5.4) requires us to evaluate Ki(x̂, ŷ, 0). According to (5.2), this quantity is

Ki(x̂, ŷ, 0) = PLQL ŷi

= PL(I − P)
(
−∇x̂i

φ(x)
)

= −P

N∑

j=1

1

m
yj · ∇xj

(
∇x̂i

φ(x) −∇x̂i
φ̂(x̂)

)

= −
N∑

j=1

1

m
P

{
yj · ∇xj

(
∇x̂i

φ(x) −∇x̂i
φ̂(x̂)

)}
. (5.6)

Since the Hamiltonian (3.1) of the full system is separable into a kinetic part and a potential
part, the projection operator P is separable as well. This allows us to write (5.6) as

Ki(x̂, ŷ, 0) = −
N∑

j=1

1

m
P
{

P{yj} · ∇xj

(
∇x̂i

φ(x) −∇x̂i
φ̂(x̂)

)}
. (5.7)

The fact that the ỹi have zero mean implies that

Pyj =

{
ŷj 1 ≤ j ≤M

0 j > M
,

in which case we can truncate the sum in (5.7) at the M th term, to yield

Ki(x̂, ŷ, 0) = −
M∑

j=1

1

m
P

{(
∇x̂i

⊗∇x̂j

) (
φ(x) − φ̂(x̂)

)}
ŷj .

Here “⊗” is the dyadic product, which, given two vectors a and b, forms a matrix with
components (a⊗ b)µν = aµbν . When this matrix acts on a third vector c, the result is
(a⊗ b)c = (b · c)a.

We now define the matrices Aij by

Aij(x̂) ≡ τ

m
P

{(
∇x̂i

⊗∇x̂j

) (
φ(x) − φ̂(x̂)

)}
, (5.8)

in which case the memory term becomes

Mi(t) ≈ −
M∑

j=1

Aij(q̂ ) p̂j . (5.9)

This has the form of a linear frictional force on particle i that depends on the momenta of
all M resolved particles, with matrix coefficients Aij that are functions of the configuration
q̂. The Aij are therefore called the friction matrices.

We should be careful to note that Aij is not the i, jth component of a matrix A. Rather,
the Aij are a family of d× d matrices, indexed by i and j, which range from 1 to M . If we
wish to refer to the components of Aij , we will use Greek subscript indices: Aij

µν . According
to the definition of the dyadic product, (a⊗ b)T = (b⊗a), where the superscript T indicates

a matrix transpose. This implies that (Aij)
T

= Aji. Furthermore, another property of the
Aij is described by the following theorem:
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Theorem 5.1 Given an arbitrary set of M d-dimensional vectors ai, the following inequal-
ity holds:

M∑

i,j=1

ai ·
(
Aij(x̂) aj

)
≥ 0 .

Proof: In order to prove this, we must first obtain the Aij in a slightly different form than
(5.8):

Aij(x̂) =
τ

m
P

{(
∇x̂i

⊗∇x̂j

) (
φ(x) − φ̂(x̂)

)}

=
τ

m

d∑

µ,ν=1

(êµ ⊗ êν)

∫
dx̃
[
∇iµ∇jν

(
φ− φ̂

)]
e−βφ

∫
dx̃ eβφ

.

where “∇iµ” is short for ∇x̂iµ
, and êµ is a unit vector in the µth direction. The integral

above can be manipulated as follows:

∫
dx̃
[
∇iµ∇jν

(
φ− φ̂

)]
e−βφ

∫
dx̃ e−βφ

=

∫
dx̃ (∇iµ∇jνφ) e−βφ

∫
dx̃ e−βφ

−∇iµ∇jν φ̂

= ∇iµ

(∫
dx̃ (∇jνφ) e−βφ

∫
dx̃ e−βφ

)
+ β

∫
dx̃ (∇jνφ) (∇iµφ) e−βφ

∫
dx̃ e−βφ

− β

(∫
dx̃ (∇jνφ) e−βφ

∫
dx̃ e−βφ

)(∫
dx̃ (∇iµφ) e−βφ

∫
dx̃ e−βφ

)
−∇iµ∇jνφ̂

= ∇iµ∇jνφ̂+ β P

{
(∇iµφ) (∇jνφ)

}
− β

(
∇iµφ̂

)(
∇jνφ̂

)
−∇iµ∇jνφ̂

=
1

kBT
P

{
∇iµ

(
φ− φ̂

)
∇jν

(
φ− φ̂

)}
,

which allows us to write Aij as

Aij(x̂) =
τ

mkBT
P

{[
∇x̂i

(
φ(x) − φ̂(x̂)

)]
⊗
[
∇x̂j

(
φ(x) − φ̂(x̂)

)]}
. (5.10)

Given this form for Aij, and M arbitrary, d-dimensional vectors ai (which may or may not
depend on the resolved variables x̂ and ŷ), we have:

M∑

i,j=1

ai ·
(
Aij(x̂) aj

)
=

τ

mkBT

M∑

i,j=1

P

{[
ai · ∇x̂i

(
φ(x) − φ̂(x̂)

)] [
aj · ∇x̂j

(
φ(x) − φ̂(x̂)

)]}

=
τ

mkBT
P





[
M∑

i=1

ai · ∇x̂i

(
φ(x) − φ̂(x̂)

)]2


 ≥ 0

�
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Theorem 5.11 is equivalent to the statement that A is positive semi-definite, where

A =




A11 A12 · · · A1M

A21 A22 ...
...

. . .
...

AM1 · · · · · · AMM




(5.11)

is the Md ×Md block matrix of the Aij . The fact that
(
Aij
)T

= Aji also tells us that
AT = A.

5.2 Fokker-Planck Equations and the Forcing Term

We have approximated the memory term in (3.7) by (5.9). We have yet to find a corre-
sponding expression for the random forcing terms Fi(x, y, t). According to (2.21), these are
given exactly by

Fi(x, y, t) = etQLQLŷi . (5.12)

However, this expression is difficult to work with due to the leading etQL factor, and so
we will use a more indirect method of finding an approximation for the Fi. First, some
mathematical background must be introduced.

Suppose we have n d-dimensional, time-dependent vectors zi(t), which evolve according
to the set of stochastic differential equations

d

dt
zi = Γi(z, t) ,

where the Γi are stochastic processes that depend on the zi. We now define the vectors αi

and the matrices γij by

αi(z, t) ≡ lim
∆t→0

1

∆t

〈
zi(t+ ∆t) − zi(t)

〉

γij(z, t) ≡ lim
∆t→0

1

∆t

〈(
zi(t+ ∆t) − zi(t)

)
⊗
(
zj(t+ ∆t) − zj(t)

)〉
,

where 〈...〉 indicates an average over the ensemble of the Γi, treating the values of the zi at
time t as fixed. If the αi and γij exist, then the probability density f(z, t) of the zi evolves
in time according to the Fokker-Planck equation [61]:

∂tf +

n∑

i=1

d∑

µ=1

∂ziµ

(
αi

µ(z, t) f
)
− 1

2

n∑

i,j=1

d∑

µ,ν=1

∂ziµ
∂zjν

(
γij

µν(z, t) f
)

= 0 . (5.13)

Example: Consider the quantity u(t), which evolves according to the simple one-dimensional
Langevin equation

d

dt
u = −a u+ b Ẇ (t) , (5.14)

1Note that the proof of Theorem 5.1 presented here is similar in many respects to the proof in [9] of the
decay of the renormalized Hamiltonian under the “t-damping approximation”.

81



where a and b are positive constants, and Ẇ (t) is the standard white noise process, which
satisfies 〈

Ẇ (t)
〉

= 0
〈
Ẇ (t)Ẇ (t′)

〉
= δ(t− t′) .

The probability density f(u, t) of u at time t satisfies

∂tf + ∂u

(
α(u, t)f

)
− 1

2
∂2

u

(
γ(u, t)f

)
= 0 . (5.15)

We can calculate α and γ using the fact that

u(t+ ∆t) = u(t) − a u(t)∆t+ b

∫ t+∆t

t
ds Ẇ (s) +O

(
∆t2

)
,

in which case:

α = lim
∆t→0

1

∆t

〈
u(t+ ∆t) − u(t)

〉

= lim
∆t→0

1

∆t




−a u(t)∆t+ b

∫ t+∆t

t
ds
〈
Ẇ (s)

〉

︸ ︷︷ ︸
= 0

+ O
(
∆t2

)




= −a u

γ = lim
∆t→0

1

∆t

〈(
u(t+ ∆t) − u(t)

)(
u(t+ ∆t) − u(t)

)〉

= lim
∆t→0

1

∆t

〈(
−a u(t)∆t+ b

∫ t+∆t

t
ds Ẇ (s)

)(
−a u(t)∆t+ b

∫ t+∆t

t
ds′ Ẇ (s′)

)
+O

(
∆t2

)〉

= lim
∆t→0

1

∆t




a2u2∆t2 − 2abu∆t

∫ t+∆t

t
ds
〈
Ẇ (s)

〉

︸ ︷︷ ︸
= 0

+b2
∫ t+∆t

t
ds

∫ t+∆t

t
ds′

〈
Ẇ (s)Ẇ (s′)

〉

︸ ︷︷ ︸
= δ(s−s′)





= b2 .

The Fokker-Planck equation (5.15) for f(u, t) then becomes:

∂tf − a∂u

(
u f
)
− 1

2
b2∂2

uf = 0 .

The above techniques can also be used to generate a Fokker-Planck equation for the
evolution of f(q̂, p̂, t), the probability density function of the resolved variables. Our goal
is to use this Fokker-Planck equation to derive some constraints on the form of the random
forces Fi. Given the approximation (5.9) to the memory term, the equations (3.7) for the
evolution of the q̂i and p̂i become

d

dt
q̂i =

1

m
p̂i

d

dt
p̂i = −∇q̂i

φ̂(q̂) −
M∑

j=1

Aij(q̂) p̂j + Fi(t) .
(5.16)
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We will treat the Fi as zero-mean stochastic processes with as-yet-unknown statistics.
With the 2M q̂i and p̂i, (5.13) becomes

∂tf +
M∑

i=1

{
∇q̂i

·
(
αq̂i f

)
+ ∇p̂i

·
(
αp̂i f

)}

− 1

2

M∑

i,j=1

d∑

µ,ν=1

{
∂q̂iµ

∂q̂jν

(
γ

q̂iq̂j
µν f

)
+ 2 ∂q̂iµ

∂p̂jν

(
γ

q̂ip̂j
µν f

)
+ ∂p̂iµ

∂p̂jν

(
γ

p̂ip̂j
µν f

)}
= 0 ,

(5.17)

where

αq̂i = lim
∆t→0

1

∆t

〈
q̂i(t+ ∆t) − q̂i(t)

〉

αp̂i = lim
∆t→0

1

∆t

〈
p̂i(t+ ∆t) − p̂i(t)

〉

γ q̂iq̂j = lim
∆t→0

1

∆t

〈(
q̂i(t+ ∆t) − q̂i(t)

)
⊗
(
q̂j(t+ ∆t) − q̂j(t)

)〉

γ q̂ip̂j = lim
∆t→0

1

∆t

〈(
q̂i(t+ ∆t) − q̂i(t)

)
⊗
(
p̂j(t+ ∆t) − p̂j(t)

)〉

γp̂ip̂j = lim
∆t→0

1

∆t

〈(
p̂i(t+ ∆t) − p̂i(t)

)
⊗
(
p̂j(t+ ∆t) − p̂j(t)

)〉
.

Here “〈...〉” indicates an average over the ensemble of the Fi, with q̂(t) and p̂(t) taken as
fixed. Equations (5.16) imply that

q̂i(t+ ∆t) = q̂i(t) + ∆t
1

m
p̂i(t) +O

(
∆t2

)

p̂i(t+ ∆t) = p̂i(t) + ∆t


−∇q̂i

φ̂
(
q̂(t)

)
−

M∑

j=1

Aij
(
q̂(t)

)
p̂j(t)


+

∫ t+∆t

t
ds Fi(s) + O

(
∆t2

)
,

which can be used to evaluate the α’s and γ’s via the same method as in the one-dimensional
example above, to yield:

αq̂i =
1

m
p̂i αp̂i = −∇q̂i

φ̂−
M∑

j=1

Aij p̂j

γ q̂iq̂j = 0 γ q̂ip̂j = 0

and

γp̂ip̂j = lim
∆t→0

1

∆t

∫ t+∆t

t
ds

∫ t+∆t

t
ds′
〈

Fi(s) ⊗ Fj(s
′)

〉
.

The most general condition that the Fi must satisfy in order for this last quantity to exist
and be nonzero is

〈
Fi(s) ⊗ Fj(s

′)

〉
= Bij

(
q̂(s), p̂(s), s

)
δ(s− s′) , (5.18)

in which case
γp̂ip̂j = Bij

(
q̂, p̂, t

)
.
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Here the Bij are a family of d × d matrices. We may additionally note that, since there
are no explicitly time-dependent forces in the full system, the form of the reduced system’s
coefficients should be time-translationally invariant. Therefore, we can eliminate the explicit
time dependence of the Bij, so Bij = Bij(q̂, p̂). The expressions we have derived for the α’s
and γ’s allow us to write the Fokker-Planck equation (5.17) as

∂tf = −
M∑

i=1





1

m
p̂i · ∇q̂i

f −∇p̂i
·




∇q̂i

φ̂+

M∑

j=1

Aij p̂j


 f








+
1

2

M∑

i,j=1

M∑

µ,ν=1

∂p̂iµ
∂p̂jν

(
Bij

µν f
)
.

(5.19)
The distribution of the coordinates of the full system is assumed to come to equilibrium

at the canonical probability density (2.24), which implies that the marginal distribution of
the resolved variables will equilibrate to the renormalized canonical distribution f̂c(q̂, p̂ ),
which is defined by equation (4.49). Thus, f̂c must be a stationary solution of (5.19). This
fact allows us to derive more properties of the matrices B ij. If we eliminate the ∂tf term
in (5.19), set f = f̂c, and simplify the resulting expression, we arrive at

f̂c


−

M∑

i=1

Tr

{
Aii − 1

2mkBT
Bii

}
+

1

mkBT

M∑

i,j=1

p̂i ·
{(

Aij − 1

2mkBT
Bij

)
p̂j

}

−1

2

M∑

i,j=1

M∑

µ,ν=1

{(
∂p̂iµ

∂p̂jν
Bij

µν

)
− 1

mkBT

(
p̂iµ∂p̂jν

+ p̂jν∂p̂iµ

)
Bij

µν

}
 = 0 ,

(5.20)

which is a necessary and sufficient condition for f̂c to be a stationary state of (5.19). (Here
Tr{...} indicates the trace of a matrix.)

In order to simplify (5.20) somewhat, we make the additional assumption that the
random forces Fi are independent of the resolved momenta p̂i. This is a very common
assumption in the literature, and can be justified as follows: The higher the momentum of
a given resolved particle, the greater the degree of resistance it will feel from the surrounding
“sea” of unresolved particles, due to a larger number of interparticle collisions. However,
this net effect has already been accounted for by our approximation to the memory term
(5.9), and the random forces Fi represent fluctuations from the mean contribution of these
interactions. Such fluctuations result from factors such as the variations in local density
and average velocity of the unresolved particles, which would depend weakly, if at all, on
the momenta of the resolved particles.

We define a set of matrices Dij by the relation

Bij = 2mkBT A
ij +Dij . (5.21)

Equation (5.21), along with our assumption that the forces Fi, and hence the matrices Bij,
are p̂-independent, allows us to write (5.20) as

M∑

i=1

Tr
{
Dii
}
− 1

mkBT

M∑

i,j=1

p̂i ·Dij p̂j = 0 , (5.22)
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which must be true for any choice of the p̂i. This can be used to derive some conditions on
the Dij. If we choose to set p̂i = 0 for all i, then (5.22) becomes

M∑

i=1

Tr
{
Dii
}

= 0 . (5.23)

However, if we instead choose p̂i = p̂kδik, for arbitrary k and p̂k, then (5.22), in combination
with (5.23), reduces to

p̂k ·Dkkp̂k = 0 ∀ k, p̂k ,

which implies that Dkk is skew-symmetric:

(
Dkk

)T
= −Dkk . (5.24)

Finally, if we let p̂i = p̂kδik + p̂`δi`, where k 6= `, then (5.22) becomes

0 = p̂k ·Dkkp̂k︸ ︷︷ ︸
=0 by (5.24)

+p̂k ·Dk`p̂` + p̂` ·D`kp̂k + p̂` ·D``p̂`︸ ︷︷ ︸
=0 by (5.24)

= p̂` ·
((

Dk`
)T

+D`k

)
p̂k ,

which can be true for all p̂k and p̂` if and only if

(
Dk`

)T
= −D`k for k 6= ` . (5.25)

Note that equations (5.21), (5.24), and (5.25) are equivalent to the statement

B = 2mkBT A + D where DT = −D . (5.26)

Here A is as defined in (5.11), and B and D are similarly defined as the Md ×Md block
matrices of the Bij and Dij, respectively. From (5.26), and the fact that A is positive
semi-definite, it follows that B is positive semi-definite, as well. This implies that the B ij

satisfy a similar theorem to Theorem 5.1.
Equation (5.21) or, equivalently, (5.26), is an example of a fluctuation-dissipation rela-

tion. Along with the supplementary conditions (5.24) and (5.25), they describe most general
constraints that the Bij must satisfy in order to ensure that f̂c(q̂, p̂ ) is a stationary state
of the Fokker-Planck equation (5.19). Note, however, that we have not yet arrived at an
approximate form for the forces Fi. The expression (5.18) serves to define the covariances
of the Fi in terms of the Bij, but does not tell us how to evaluate the forces themselves
in an actual simulation. An expression for the Fi derived from an approximation to the
friction matrices Aij will be given in a later section.

5.3 Relaxation to Equilibrium

In Section 5.2 we have shown, given our approximation (5.9) to the memory term, and
given certain conditions on the covariances of the random forces, that the renormalized
canonical distribution (RCD) f̂c is a stationary state of the Fokker-Planck equation (5.19).
However, we have yet to show that this state is likely to be reached from some given initial
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distribution, which is necessary if the linear friction approximation is to be useful. It is the
goal of this section to prove that the distribution of the q̂i and p̂i will equilibrate to f̂c from
any initial state. (Some of the notation here, as well as parts of the proof of Theorem 5.5,
have been adapted from [40].)

If the Bij are momentum-independent, then the Fokker-Planck equation can be written
as

∂tf = − (LC + LD) f , (5.27)

where

LC ≡
M∑

i=1

{
1

m
p̂i · ∇q̂i

−
(
∇q̂i

φ̂
)
· ∇p̂i

}
(5.28)

is the Liouville operator associated with the FOOP system (4.47), and

LD ≡ −
M∑

i,j=1

∇p̂i
·
{
Aij p̂j +

1

2
Bij∇p̂j

}
(5.29)

is the dissipative Liouville operator which incorporates the effects of the friction and random
forcing.

In general, our probability density function f(q̂, p̂, t) can be thought of as a function of
q̂ and p̂, parameterized by the time t. We will assume that p̂i ∈ Rd, and q̂i ∈ Ω ⊆ Rd for
all 1 ≤ i ≤ M . Furthermore, we assume boundary conditions (BC) such that f → 0 as
|p̂i| → ∞, and such that f is either periodic in q̂i, or f → 0 as q̂i → ∂Ω, where ∂Ω is the
boundary of Ω.

We now define Q as the set of all functions g of q̂ and p̂ that satisfy

•
∫
dq̂

∫
dp̂ g(q̂, p̂) = 1 (5.30)

• g(q̂, p̂) ≥ 0 ∀ q̂, p̂ . (5.31)

Q is the set of all probability density functions on the q̂ and p̂. Note that Q is a subset
of L1

(
ΩM × RMd

)
, and that f̂c ∈ Q. The significance of Q is illustrated by the following

theorem:

Theorem 5.2 The set Q is invariant under the flow described by the Fokker-Planck equa-
tion (5.27).

Proof: Let f(q̂, p̂, t) be a solution to (5.27), with initial condition f(q̂, p̂, 0) = f0(q̂, p̂ ). In
order to prove this theorem, it suffices to show that

(1) If f0(q̂, p̂ ) satisfies (5.30), then so does f(q̂, p̂, t) for all t.

(2) If f0(q̂, p̂ ) satisfies (5.31), then so does f(q̂, p̂, t) for all t.

We begin by noting that the Fokker-Planck equation can be written somewhat more
compactly in terms of the matrices A and B as

∂tf = −
(

1

m
p̂ · ∇q̂ −

(
∇q̂φ̂

)
· ∇p̂

)
f + ∇p̂ ·

(
A p̂+

1

2
B∇p̂

)
f , (5.32)

where ∇q̂ and ∇p̂ are the Md-dimensional gradients in q̂ and p̂, respectively.

86



We now define the functional

N [f ] ≡
∫
dq̂

∫
dp̂ f(q̂, p̂, t) .

Then

∂tN [f ] =

∫
dq̂

∫
dp̂ ∂tf(q̂, p̂, t)

= −
∫
dq̂

∫
dp̂

[
∇q̂ ·

(
1

m
p̂f

)
−∇p̂ ·

(
∇q̂φ̂ f + Ap̂f +

1

2
B∇p̂f

)]

= 0 ,

where the last equality follows from the boundary conditions we’ve assumed. This proves (1).
The proof of (2) is more involved. Suppose there exists some time t∗ such that f(q̂, p̂, t) ≥ 0

for all 0 ≤ t ≤ t∗. We do not rule out the possibility that t∗ = 0. We now imagine that
f(q̂∗, p̂∗, t∗) = 0 for some q̂∗ and p̂∗. Rearranging (5.32) somewhat allows us to write the
time derivative of f at (q̂∗, p̂∗, t∗) as

∂tf

∣∣∣∣
(q̂∗,p̂∗,t∗)

= − 1

m
p̂ · ∇q̂f

∣∣∣∣
(q̂∗,p̂∗,t∗)

+
(
∇q̂φ̂

)
· ∇p̂f

∣∣∣∣
(q̂∗,p̂∗,t∗)

+ Tr {A} f
∣∣∣∣
(q̂∗,p̂∗,t∗)

+
(
∇p̂f

)
· A p̂

∣∣∣∣
(q̂∗,p̂∗,t∗)

+
1

2
Tr

{
B
(
∇p̂ ⊗∇p̂f

)} ∣∣∣∣
(q̂∗,p̂∗,t∗)

.

The fact that f(q̂∗, p̂∗, t∗) = 0 means that the third term on the righthand side above is
zero. Furthermore, since by assumption f(q̂, p̂, t∗) ≥ f(q̂∗, p̂∗, t∗) for all q̂ and p̂, it follows
that

∇q̂f

∣∣∣∣
(q̂∗,p̂∗,t∗)

= 0 and ∇p̂f

∣∣∣∣
(q̂∗,p̂∗,t∗)

= 0 .

This implies that the first, second, and fourth terms are zero as well, after which we are left
with

∂tf

∣∣∣∣
(q̂∗,p̂∗,t∗)

=
1

2
Tr

{
B
(
∇p̂ ⊗∇p̂f

)} ∣∣∣∣
(q̂∗,p̂∗,t∗)

.

The matrix
(
∇p̂ ⊗∇p̂f

)
of second derivatives of f must be positive semi-definite at

(q̂∗, p̂∗, t∗), since f is either flat or a minimum in each of the 2Md coordinate directions at
that point. This then implies that

∂tf

∣∣∣∣
(q̂∗,p̂∗,t∗)

≥ 0 ,

because B is positive semi-definite, and the trace of the product of two positive semi-definite
matrices is always greater than or equal to zero.

The above argument shows that any f which is greater than or equal to zero everywhere
for 0 ≥ t ≥ t∗ cannot pass through zero under the flow generated by (5.32) at any point
(q̂∗, p̂∗, t∗), since f is nondecreasing when f = 0. This proves (2). �

Now that we have proven that solutions to the Fokker-Planck equation that start out
in Q stay in Q for all time, we can proceed to analyze the flow in Q generated by (5.27).
We define an energy functional

E[f ] ≡
∫
dq̂

∫
dp̂ H (q̂, p̂) f(q̂, p̂) , (5.33)
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where H =
∑M

i=1 |p̂i| /2m+ φ̂(q̂ ) is the renormalized Hamiltonian defined in Chapter 4, as
well as an entropy functional

S[f ] ≡ −kB

∫
dq̂

∫
dp̂ log

(
f(q̂, p̂)

)
f(q̂, p̂) , (5.34)

and a Helmholtz free energy functional

F [f ] ≡ E[f ] − T S[f ] =

∫
dq̂

∫
dp̂
(
H (q̂, p̂) + kBT log

(
f(q̂, p̂)

))
f(q̂, p̂) . (5.35)

We will eventually be using F [f ] as a Lyapunov functional to show that all solutions equi-
librate to f̂c. The first step is to show that f̂c minimizes F [f ].

Theorem 5.3 F [f̂c] ≤ F [f ] for any f ∈ Q, with equality if and only if f = f̂c.

Proof: Any element f ∈ Q can be written as

f(q̂, p̂ ) = f̂c(q̂, p̂ ) + δf(q̂, p̂ ) ,

for some δf . By (5.31), δf(q̂, p̂ ) ≥ −f̂c(q̂, p̂ ) for all q̂ and p̂. Furthermore, (5.30) implies
that ∫

dq̂

∫
dp̂ δf(q̂, p̂ ) = 0 .

We then have:

F [f ] = F [f̂c + δf ]

=

∫
dq̂

∫
dp̂
(
H + kBT log

(
f̂c + δf

)) (
f̂c + δf

)

=

∫
dq̂

∫
dp̂
(
H + kBT log

(
f̂c

))
f̂c

︸ ︷︷ ︸
=F [f̂c]

+

∫
dq̂

∫
dp̂ δf

(
H + kBT log

(
f̂c

))

︸ ︷︷ ︸
= −kBT log(Z)

∫
dq̂
∫

dp̂ δf(q̂,p̂) = 0

+ kBT

∫
dq̂

∫
dp̂ log

(
1 +

δf

f̂c

)(
f̂c + δf

)

= F [f̂c] + kBT

∫
dq̂

∫
dp̂ f̂c

(
1 +

δf

f̂c

)
log

(
1 +

δf

f̂c

)
.

The fact that (1 + x) log(1 + x) ≥ x for all x ≥ −1, with equality if and only if x = 0, tells
us that (

1 +
δf

f̂c

)
log

(
1 +

δf

f̂c

)
≥ δf

f̂c

,

in which case

F [f ] ≥ F [f̂c] + kBT

∫
dq̂

∫
dp̂ f̂c

δf

f̂c

≥ F [f̂c] + kBT

∫
dq̂

∫
dp̂ δf

≥ F [f̂c] ,

where the equality holds only when δf = 0, i.e. when f = f̂c. �

The next step is to show that f̂c is the only minimum of F .
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Theorem 5.4 Let f ∗ be an extremum of F in Q. Then f ∗ = f̂c.

Proof: We define the functional

G[f ] = F [f ] + λ

(∫
dq̂

∫
dp̂ f(q̂, p̂) − 1

)
, (5.36)

where λ is a Lagrange multiplier, and the purpose of the second term is to enforce the
constraint (5.30). The functional derivative of G at f ∗ must be zero if f ∗ is to be an
extremum:

δ

δf
G[f ]

∣∣∣
f=f∗

= H + kBT
(
1 + log(f ∗)

)
+ λ = 0 ,

or

f∗ = exp

(
−1 − λ

kBT

)
e−βH .

Using the normalization condition (5.30) allows us to solve for λ, to yield f ∗ = e−βH /Z = f̂c.
�

Theorems 5.3 and 5.4 prove that f̂c is the unique, global minimum of F . Our next goal is
to show that F will approach this minimum monotonically in time. In order to accomplish
this, we define QK ⊂ Q as the set of all f ∈ Q that have the form

f(q̂, p̂ ) =
g(q̂ )

(2πmkBT )Md/2
exp

(
−β

M∑

i=1

|p̂i|2
2m

)
. (5.37)

Clearly, g must satisfy g ≥ 0 and
∫
dq̂ g(q̂) = 1. The following theorem then holds:

Theorem 5.5 If A is strictly positive definite, and f ∈ Q is a solution to the Fokker-Planck
equation (5.27) or, equivalently, (5.32), then

∂tF [f ] ≤ 0 ,

with equality if and only if f ∈ QK.

Proof:

∂tF [f ] =

∫
dq̂

∫
dp̂
(
H + kBT log(f)

)
∂tf + kBT

∫
dq̂

∫
dp̂ ∂tf

︸ ︷︷ ︸
=0 by Theorem 5.2

= −
∫
dq̂

∫
dp̂
(
H + kBT log(f)

)
LCf −

∫
dq̂

∫
dp̂
(
H + kBT log(f)

)
LDf

=

∫
dq̂

∫
dp̂
(
LCH︸ ︷︷ ︸

=0

f + kBTLCf︸ ︷︷ ︸
yields 0 by BC

)

+

∫
dq̂

∫
dp̂
(
H + kBT log(f)

)
∇p̂ ·

{(
A p̂+

1

2
B∇p̂

)
f

}
,

where in the third equality we have used the fact that LC is a first-order differential operator
to integrate by parts. If we also integrate the last expression above by parts in p̂, and use
the fact that ∇p̂f = f∇p̂ log(f), we arrive at

∂tF [f ] = −
∫
dq̂

∫
dp̂

1

m
f
(
p̂+mkBT∇p̂ log(f)

)
·
(
A p̂+

1

2
B∇p̂ log(f)

)
.
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Substituting in the expression (5.26) for B yields:

∂tF [f ] = −
∫
dq̂

∫
dp̂

1

m
f
(
p̂+mkBT∇p̂ log(f)

)
· A
(
p̂+mkBT ∇p̂ log(f)

)

−
∫
dq̂

∫
dp̂

1

2m
f
(
p̂+mkBT∇p̂ log(f)

)
· D∇p̂ log(f) .

The second term on the righthand side above can be manipulated as follows:
∫
dq̂

∫
dp̂

1

2m
f
(
p̂+mkBT∇p̂ log(f)

)
· D∇p̂ log(f)

=

∫
dp̂

1

2m
f
(
p̂ · D∇p̂ log(f) +mkBT ∇p̂ log(f) · D∇p̂ log(f)︸ ︷︷ ︸

=0 since D is skew−symmetric

)
.

If we again make use of f∇p̂ log(f) = ∇p̂f , and integrate by parts, this expression becomes∫
dq̂
∫
dp̂ Tr {D} f = 0, and the original expression simplifies to

∂tF [f ] = −
∫
dq̂

∫
dp̂

1

m
f
(
p̂+mkBT ∇p̂ log(f)

)
· A
(
p̂+mkBT ∇p̂ log(f)

)

≤ 0 ,

where the last step follows from the fact that A is positive definite. Equality is obtained if
and only if

p̂+mkBT∇p̂ log(f) = 0 ,

which implies that f ∈ QK . �

Theorems 5.3, 5.4, and 5.5 above allow us to finally accomplish the goal of this section:

Theorem 5.6 If f(q̂, p̂, t) is a solution of the Fokker-Planck equation (5.32), and A is
strictly positive definite, then f → f̂c asymptotically as t→ ∞.

Proof: According to Theorem 5.5, if A is positive definite, then ∂tF [f ] < 0 for f /∈ QK .
Theorems 5.3 and 5.4 tell us that f̂c is the only minimum of F . This means that f will
approach f̂c monotonically, until it either reaches it, or enters the set QK . Therefore, all
that remains to establish global equilibration to f̂c is to show that f̂c is the only fixed point
of the Fokker-Planck equation in QK . This can be accomplished as follows: Let f ∗ ∈ QK be
written as in (5.37). We can substitute this expression into (5.32), to derive an equation for
the evolution of g, the q̂-dependent part of f ∗. Performing this substitution and simplifying
the resulting expression yields

∂tg = − 1

m
p̂ ·
{
∇q̂ g +

1

kBT

(
∇q̂φ̂

)
g

}
,

which must be zero for all p̂ in order for f ∗ to be a stationary state. However, this can only
be realized by assuming that

∇q̂ g +
1

kBT

(
∇q̂φ̂

)
g = 0 ,

which implies that f ∗ = f̂c. Any other form for g will necessarily cause f ∗ to leave the set
QK , and continue its approach to f̂c. Since f̂c is the only stationary point in QK , and any
point off of QK approaches f̂c monotonically, the theorem is established. �
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Theorem 5.6 shows us that our reduced system (5.16) will equilibrate to the renormalized
canonical distribution from any initial state. It does not tell us the time scale of the
equilibration. The amount of time necessary to obtain an adequate approximation to the
RCD from some arbitrary, presumably highly non-canonical, state must be determined
experimentally by simulating the system. One important thing to note is that any numerical
scheme designed to integrate the equations of motion (5.16) will not require an additional
thermostat, such as the Nosé-Hoover thermostat of Chapter 4, to maintain its temperature.
The balance between the memory and random forcing terms implied by the fluctuation-
dissipation relation (5.26) will accomplish that for us.

5.4 Approximating the Friction Matrices and Random Forces

The expression (5.8) for the friction matrices Aij is not particularly useful as it is written,
since it depends in general on all M of the x̂i, and involves a projection which we have no
way of evaluating exactly. We will therefore make several approximations to (5.8) which are
closely related to the approximation made in Chapter 4, where we neglected many-particle
effects in order to derive an expression for the renormalized potential φ̂.

We start with the off-diagonal sub-matrices of A, the Aij with i 6= j. Using the fact
that

φ(x) =
N∑

i<j

U
(
|xi − xj |

)
≡

N∑

i<j

Uij ,

as well as the approximation (4.48)

φ̂(x̂ ) ≈

M∑

i<j

Û
(
|x̂i − x̂j|

)
≡

M∑

i<j

Ûij ,

allows us to write Aij(x̂ ) as

Aij(x̂ ) ≈
τ

m

[(
∇x̂i

⊗∇x̂j

) (
Uij − Ûij

)]
i 6= j .

If we now define δÛ = Û −U to be the amount by which the renormalized potential differs
from the bare potential, then we arrive at

Aij(x̂ ) ≈
τ

m
(∇x̂i

⊗∇x̂i
)δÛ ij i 6= j , (5.38)

where we have used the fact that ∇x̂j
Uij = −∇x̂i

Uij and ∇x̂j
Ûij = −∇x̂i

Ûij. This expres-
sion can be cast in a more intuitive form by applying the useful relation

(∇x̂i
⊗∇x̂i

)Θ
(
|x̂i − x̂j|

)
= Θ′′

(
|x̂i − x̂j|

)
P ij +

Θ′
(
|x̂i − x̂j|

)

|x̂i − x̂j|
Qij , (5.39)

where Θ is an arbitrary function,

P ij ≡ (x̂i − x̂j) ⊗ (x̂i − x̂j)

|x̂i − x̂j |2
(5.40)

is the d × d spatial projection matrix, which, when applied to any vector, picks out the
component parrallel to x̂i−x̂j, and Qij = I−P ij is its complement. Note that (P ij)

2
= P ij ,
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(Qij)
2

= Qij, and P ijQij = QijP ij = 0. Note also that the P ij and Qij are symmetric and
positive semi-definite. Combining (5.38) and (5.39) yields

Aij(x̂ ) ≈
τ

m

(
δÛ

′′

ij P
ij +

δÛ
′

ij

|x̂ij |
Qij

)
i 6= j . (5.41)

The i = j case is somewhat more involved, but the same principles may be applied. The
expression for Aii can be divided into two parts as follows:

Aii(x̂ ) =
τ

m

[
P

{
(∇x̂i

⊗∇x̂i
)φ(x)

}
− (∇x̂i

⊗∇x̂i
)φ̂(x̂ )

]

≈
τ

m




N∑

j 6=i

P

{
(∇x̂i

⊗∇x̂i
)Uij

}
−

M∑

j 6=i

(∇x̂i
⊗∇x̂i

)Ûij




=
τ

m




M∑

j 6=i

(∇x̂i
⊗∇x̂i

)Uij +

N∑

j=M+1

P

{
(∇x̂i

⊗∇x̂i
)Uij

}
−

M∑

j 6=i

(∇x̂i
⊗∇x̂i

)Ûij




=
τ

m


(N−M)P

{
(∇x̂i

⊗∇x̂i
)Ui M+1

}
−

M∑

j 6=i

(∇x̂i
⊗∇x̂i

)δÛ ij


 , (5.42)

where in the second line we have again approximated φ̂ by its pair term, and in the fourth
line we have made use of the indistinguishability of the unresolved particles.

The remaining projection in (5.42) can be written as

(N−M) P

{
(∇x̂i

⊗∇x̂i
)Ui M+1

}

= (N−M)

∫
dx̃ (∇x̂i

⊗∇x̂i
)Ui M+1 e

−βφ

∫
dx̃ e−βφ

= (N−M)

∫
dx̃1 (∇x̂i

⊗∇x̂i
)U
(
|x̂i − x̃1|

) ∫
dx̃2...dx̃N−M e−βφ

∫
dx̃ e−βφ

.

This expression can be simplified somewhat by using the relations

∫
dx̃ e−βφ = ρ̃M (N −M)!

N !
g(M)(x̂, ρ̃, T )

∫
dx e−βφ

and ∫
dx̃2...dx̃N−M e−βφ = ρ̃M+1 (N−M−1)!

N !
g(M+1)(x̂, x̃1, ρ̃, T )

∫
dx e−βφ ,

which follow from the definition of the M -particle and M+1-particle distribution functions.
We then have:

(N−M) P

{
(∇x̂i

⊗∇x̂i
)UiM+1

}
= ρ̃

∫
dx̃1 (∇x̂i

⊗∇x̂i
)U
(
|x̂i − x̃1|

)
g(M+1)(x̂, x̃1, ρ̃, T )

g(M)(x̂, ρ̃, T )
.

(5.43)
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Equation (5.43) is an exact expression for the projection term in (5.42). However, it is
not useful as written, since we do not have access to the full M -particle and M +1-particle
distribution functions. We may write these distribution functions in terms of the potentials
of mean force described in Chapter 4:

g(M)(x̂) = exp
[
−βψ(M)(x̂ )

]
and g(M+1)(x̂, x̃1) = exp

[
−βψ(M+1)(x̂, x̃1)

]
, (5.44)

where we have omitted the arguments ρ̃ and T for clarity. Here

ψ(M)(x̂ ) =

M∑

i<j

Û
(
|x̂i − x̂j |

)
+

M∑

i<j<k

Û3

(
|x̂i − x̂j |, |x̂j − x̂k|, |x̂k − x̂i|

)
+ · · · (5.45)

is the same as the renormalized potential, to within constants [23]. We may also write
ψ(M+1) as:

ψ(M+1)(x̂, x̃1) = ψ(M)(x̂ )+

M∑

i=1

Û
(
|x̂i−x̃1|

)
+

M∑

i<j

Û3

(
|x̂i−x̃1|, |x̂j−x̃1|, |x̂i−x̂j|

)
+ · · · (5.46)

If we now ignore the three-particle and higher interactions in (5.46), and use the fact that
g(2) = exp[−βÛ ], then we arrive at

g(M+1)(x̂, x̃1) ≈ g(M)(x̂ )
M∏

j=1

g(2)
(
|x̂j − x̃1|

)
.

This approximation simplifies (5.43) to:

(N−M) P

{
(∇x̂i

⊗∇x̂i
)Ui M+1

}
≈ ρ̃

∫
dx̃1 (∇x̂i

⊗∇x̂i
)U
(
|x̂i − x̃1|

) M∏

j=1

g(2)
(
|x̂j − x̃1|

)
.

(5.47)
The expression (5.47) still involves an intractable integral that depends on all M of

the x̂i. In order to remedy this, we express the product of radial distribution functions
in (5.47) as a Mayer-like expansion, analogous to the one used in Chapter 4 to derive the
renormalized potential:

M∏

j=1

g(2)
(
|x̂j − x̃1|

)

= g(2)
(
|x̂i − x̃1|

) M∏

j 6=i

g(2)
(
|x̂j − x̃1|

)

= g(2)
(
|x̂i − x̃1|

)


1 +

M∑

j 6=i

(
g(2)
(
|x̂j − x̃1|

)
− 1
)

+

M∑

j 6=i

M∑

k 6=i,j

(
g(2)
(
|x̂j − x̃1|

)
− 1
)(

g(2)
(
|x̂k − x̃1|

)
− 1
)

+ · · ·



 .
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The advantage of this is that whereas g(2)(r) → 1 as r → ∞, and is thus long-ranged,(
g(2)(r)− 1

)
→ 0 as r → ∞, with a length scale equal to that of the renormalized potential.

The first term in braces above represents an effect that depends only on the coordinates of
the single resolved particle x̂i, the second term yields an interaction between two resolved
particles (x̂i and x̂j), the third term generates a three-particle interaction (x̂i, x̂j , and x̂k),
and so on. In keeping with our previous approximations, we will neglect all but the first
two of these terms, which yields

(N−M) P

{
(∇x̂i

⊗∇x̂i
)Ui M+1

}

≈ ρ̃

∫
dx̃1 (∇x̂i

⊗∇x̂i
)U
(
|x̂i − x̃1|

)
g(2)
(
|x̂i − x̃1|

)
(5.48)

+
M∑

j 6=i

ρ̃

∫
dx̃1 (∇x̂i

⊗∇x̂i
)U
(
|x̂i − x̃1|

)
g(2)
(
|x̂i − x̃1|

) (
g(2)
(
|x̂j − x̃1|

)
− 1
)
.

We will consider the two terms in the truncated expansion above one at a time. The first
can be simplified by realizing that the presence of the factor (∇x̂i

⊗∇x̂i
)U
(
|x̂i − x̃1|

)
in the

integrand ensures that it is short-ranged, i.e. it rapidly approaches zero as the integration
variable x̃1 moves away from x̂i. This implies that, unless x̂i is very close to the edge of
the domain (a boundary effect we ignore, as usual), we can shift the origin of the integral
to eliminate the x̂i dependence:

∫
dx̃1 (∇x̂i

⊗∇x̂i
)U
(
|x̂i − x̃1|

)
g(2)
(
|x̂i − x̃1|

)
=

∫
dy
(
∇y ⊗∇y

)
U
(
|y|
)
g(2)
(
|y|
)
.

Since there is no preferred direction in the above integral, symmetry implies that the matrix
it generates must be isotropic, i.e.

∫
dy
(
∇y ⊗∇y

)
U
(
|y|
)
g(2)
(
|y|
)

= Γ I , (5.49)

where I is the identity matrix and

Γ = Γ(ρ̃, T ) ≡ 1

3

∫
dy 4U

(
|y|
)
g(2)
(
|y|, ρ̃, T

)
. (5.50)

(Here “y” is a dummy variable of integration.)
The integral in (5.50) depends sensitively on values of g(2)(r) at small r, which are

difficult to ascertain numerically, due to the hard-core repulsion present in most interparticle
potentials. It is therefore more accurate to evaluate Γ directly, by running a MD simulation
of the full system at density ρ̃ and temperature T , and using the equivalent expression

Γ(ρ̃, T ) =
2

3ρ̃N

〈
N∑

i<j

4U
(
|xi − xj|

)
〉

C

, (5.51)

which follows from the definition of g(2). A graph of Γ as a function of density, as calculated
via this method for the Lennard-Jones potential at reduced temperature T ∗ = 1.6, is shown
in Figure 5.1. Note that Γ is a relatively large, positive number for all densities. The
discontinuity near ρ∗ = 1.0 is due to the fluid-solid phase transition.
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Figure 5.1: Γ∗ as a function of ρ∗ for the Lennard-Jones system at T ∗ = 1.6.

We now consider the integral in the second term of (5.48):

∫
dx̃1 (∇x̂i

⊗∇x̂i
)U
(
|x̂i − x̃1|

)
g(2)
(
|x̂i − x̃1|

) (
g(2)
(
|x̂j − x̃1|

)
− 1
)
. (5.52)

This cannot be simplified completely using spatial isotropy, as we did to arrive at (5.49),
because there is now a preferred direction, namely the vector x̂ij = x̂i − x̂j joining the two
resolved coordinates. However, cylindrical symmetry around x̂ij tells us two things: first,
that the matrix generated by (5.52) can depend only on the magnitude of x̂ij , second, that
it can be divided into a longitudinal part that acts on components of vectors parrallel to
x̂ij , as well as a transverse part that acts on components perpendicular to x̂ij.

We begin by shifting the origin of (5.52) to x̂i, and rotate the coordinates of the integrand
so that x̂ij points along the positive dth axis. If we further define r ≡ |x̂ij |, then (5.52)
becomes

S−1
ij

∫
dy
(
∇y ⊗∇y

)
U
(
|y|
)
g(2)
(
|y|
) (
g(2)
(
|y − r ed|

)
− 1
)
Sij , (5.53)

where Sij is any d× d rotation matrix that brings x̂ij parallel to the dth axis. In this basis,

∫
dy
(
∇y ⊗∇y

)
U
(
|y|
)
g(2)
(
|y|
) (
g(2)
(
|y − r ed|

)
− 1
)

= Diag
(
ξ⊥(r), ξ⊥(r), ... , ξ⊥(r), ξ‖(r)

)
, (5.54)

where

ξ‖(r) ≡
∫
dy

∂2

∂yd
2U
(
|y|
)
g(2)
(
|y|
) (
g(2)
(
|y − r ed|

)
− 1
)
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Figure 5.2: The functions ξ‖ and ξ⊥ for the Lennard-Jones potential at T ∗ = 1.6, in reduced
units. a) ρ̃∗ = 0.0657 b) ρ̃∗ = 0.4148 c) ρ̃∗ = 0.9625.

and

ξ⊥(r) ≡
∫
dy

∂2

∂y1
2U
(
|y|
)
g(2)
(
|y|
) (
g(2)
(
|y − r ed|

)
− 1
)
.

The shapes of the functions ξ‖ and ξ⊥ depend on the state variables ρ̃ and T . In d = 3,
ξ‖ and ξ⊥ can be calculated most efficiently using the expressions

ξ‖(r) = 2π

∫ ∞

0
dR

∫ 1

−1
dα
(
(1 − α2)RU ′(R) + α2R2U ′′(R)

)
g(2)(R)

×
(
g(r)

(√
R2 + r2 − 2Rrα

)
− 1
)

ξ⊥(r) = −1

2
ξ‖(r) + π

∫ ∞

0
dR

∫ 1

−1
dα R

(
2U ′(R) +RU ′′(R)

)
g(2)(R)

×
(
g(r)

(√
R2 + r2 − 2Rrα

)
− 1
)
,

which follow by switching to spherical polar coordinates. Examples of ξ‖ and ξ⊥ for the
Lennard-Jones system at various values of ρ̃ are shown in Figure 5.2.

It should be clear that equations (5.53) and (5.54) together are equivalent to

ξ‖(r) P ij + ξ⊥(r) Qij , (5.55)
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in which case our expression (5.48) for the projection becomes

(N−M) P

{
(∇x̂i

⊗∇x̂i
)Ui M+1

}

≈ ρ̃


Γ(ρ̃, T ) I +

M∑

j 6=i

(
ξ‖
(
|x̂ij |

)
P ij + ξ⊥

(
|x̂ij |

)
Qij
)

 . (5.56)

This, when combined with (5.42), yields the final approximate form for the matrices Aii:

Aii(x̂) ≈
τ

m


ρ̃Γ I +

M∑

j 6=i

(
χ

(1)
ij I + χ

(2)
ij P ij

)

 , (5.57)

where we have used the fact that Qij = I − P ij, and defined two new functions for conve-
nience,

χ
(1)
ij ≡ ρ̃ξ⊥ij −

δÛ
′

ij

|x̂ij|

χ
(2)
ij ≡ ρ̃

(
ξ
‖
ij − ξ⊥ij

)
+
δÛ

′

ij

|x̂ij |
− δÛ

′′

ij .

Examples of χ(1)(r) and χ(2)(r) for several densities are plotted in Figure 5.3. Note that
these functions are shown only for r∗ > 1. This is because the hard-core repulsion of the
Lennard-Jones potential makes δÛ (r) difficult to determine accurately at small distances.
This should not be a problem, however, because for r∗ ≤ 1 the interaction between any
two resolved particles is dominated by the strong repulsive forces of the renormalized pair
potential, and friction becomes less important. In any case, other than at very high resolved
densities, such encounters should be extremely rare.

The form of our approximations (5.41) and (5.57) to the friction matrices Aij is highly

suggestive. All of the pairwise functions (i.e. δÛ
′′
(r), δÛ

′
(r)/r, χ(1)(r), and χ(2)(r)) involved

in determining the Aij go to zero at large separation. This implies that a resolved particle in
isolation will feel an isotropic friction governed solely by the surrounding sea of unresolved
particles, with

Aij
o = 0 (i 6= j) and Aii

o =
τ

m
ρ̃Γ I , (5.58)

where we have defined the independent parts Aij
o of the friction matrices. The deviations

from isotropy embodied in (5.41) and (5.57) are a result of the fact that the distribution of
unresolved particles around any given resolved particle is altered by the proximity of other
resolved particles.

We now turn to the evaluation of the random forces Fi(t). Equation (5.18) tells us that
the Fi satisfy 〈

Fi(t) ⊗ Fj(t
′)
〉

= Bijδ(t− t′) .

This can be written more concisely by defining the Md-dimensional vector F , where F(t) ≡(
F1(t), ...,FM (t)

)
, in which case we have

〈
F(t) ⊗F(t′)

〉
= B δ(t− t′) . (5.59)
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Figure 5.3: The functions χ(1) and χ(2) for the Lennard-Jones potential at T ∗ = 1.6, in
reduced units. a) ρ̃∗ = 0.0657 b) ρ̃∗ = 0.4148 c) ρ̃∗ = 0.9625.
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The fact that F is δ-correlated implies that it must be some linear combination of white
noise processes. The most general way (5.59) can be realized is thus

F(t) = GW(t) .

Here G is a real, Md ×M ′ matrix, with M ′ ≥ Md, and W(t) is an M ′-dimensional vector
of standard white noise processes, with components Wµ(t) that satisfy

〈Wµ(t)〉 = 0 and
〈
Wµ(t)Wν(t

′)
〉

= δµνδ(t − t′) .

In order for (5.59) to hold, we must also have

GGT = B = 2mkBTA + D , (5.60)

where we have used (5.26). The fact that GGT is symmetric for all real matrices G imme-
diately implies that the previously arbitrary skew-symmetric matrix D must be zero, since
A is symmetric by construction, and (5.60) cannot hold otherwise.

We will restrict ourselves to solutions with M ′ = Md, in which case G is a square matrix
that must obey

GGT = 2mkBTA , (5.61)

by (5.60). For the general case of A described by the approximations (5.41) and (5.57),
there is no analytical solution to (5.61) for all configurations x̂ of the resolved particles.
However, if these approximations preserve the positive-definiteness of A, then we may cal-
culate G numerically at each timestep as a lower-triangular real matrix via a Cholesky
decomposition [51], and, in principle, determine the random forces Fi. Unfortunately, in
practice A is an extremely large Md×Md matrix, where, for the numerical experiments we
are conducting, 1, 500 ≤Md ≤ 12, 000. For these matrix sizes, performing a single Cholesky
decomposition requires at least several minutes, and so this method is untenable in a sim-
ulation of several thousand timesteps. Some additional approximation must therefore be
made.

We choose to ignore the contributions to A from the off-diagonal sub-matrices Aij with
i 6= j. This is equivalent to assuming that the frictional force felt by each resolved particle
depends only on its own momentum, and not on the momenta of any other surrounding
resolved particles. We can justify this numerically by looking at the magnitude of the
contribution to the frictional force from the off-diagonal elements of A. The frictional force
on particle i can be divided into a diagonal part and an off-diagonal part as follows:

−
M∑

j=1

Aij(q̂) p̂j = −Aii(q̂) p̂i −
M∑

j 6=i

Aij(q̂) p̂j

= − τ

m

(
θD
i (q̂, p̂ ) + θOD

i (q̂, p̂ )
)
,

where, according to (5.41) and (5.57),

θD
i (q̂, p̂ ) =


ρ̃Γ I +

M∑

j 6=i

(
χ

(1)
ij I + χ

(2)
ij P ij

)

 p̂i ,

θOD
i (q̂, p̂ ) =

M∑

j 6=i

[
δÛ

′

ij

|q̂ij|
I +

(
δÛ

′′

ij −
δÛ

′

ij

|q̂ij|

)
P ij

]
p̂j .
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Figure 5.4: The set of (ρ̂∗, ρ̃∗) pairs considered in this thesis, in reduced units. Bold points
represent those states described in Figures 5.5 and 5.6.

If ignoring the off-diagonal contributions to the friction is to be a plausible approximation,
we must have

∣∣θD
i

∣∣ significantly greater than
∣∣θOD

i

∣∣ for most probable configurations. The
average magnitudes of these quantities in a typical simulation depend on the state variables
T , ρ̂, and ρ̃. All of the (ρ̂, ρ̃) pairs we consider in this thesis are shown in Figure 5.4. In order
to check the relative size of the θD

i and θOD
i , we select several representative points from

this graph (those shown in bold), and perform a thermostated run of the FOOP system
described in Chapter 4, at temperature T ∗ = 1.6, and with the corresponding resolved and
unresolved densities. This can be used to generate configurations of the resolved particles
that are drawn from the renormalized canonical ensemble. These are then used to evaluate
the θD

i and θOD
i for all 1 ≤ i ≤M , and compare the distribution of their magnitudes. The

results of such a calculation for the Lennard-Jones system are shown in Figure 5.5. We see
that the typical values of

∣∣θD
∣∣ are usually about 4 to 10 times larger than those of

∣∣θOD
∣∣.

Under the above approximation, we can write the random force on particle i as Fi(t) =

GiiW i(t), where Gii is a real, d×d matrix that satisfies Gii
(
Gii
)T

= 2mkBTA
ii, and W i(t) is

a d-dimensional vector of white noise processes. In general, there is no analytical solution to
this for all configurations of the resolved particles, so we will still be performing Cholesky
decompositions to find the Gii. However, our labor has been greatly reduced from the
calculation of a single Md×Md matrix, to the much more tractable task of finding M d×d
matrices, which is an O(M) process that can be done quite rapidly.

All that remains in order to show that this can work is to prove that the diagonal
submatrices Aii of A are themselves positive definite. Unfortunately, this is not the case
in general. It is possible to construct configurations x̂ of the resolved particles such that
one or more of the Aii is not positive definite. However, as we will see, these configurations
have an extremely low probability under the renormalized canonical distribution, and are
thus not likely to occur very frequently in an actual simulation.

A necessary and sufficient condition for a matrix to be positive definite is that all of its
eigenvalues be positive. The properties of the matrices Aii depend on the state variables ρ̃
and T . In addition, the set of probable configurations of the resolved particles depends on
the resolved density ρ̂. We can generate a set of values for the matrices Aii by sampling
configurations from the renormalized canonical ensemble via the method described above.
This will give us a set of M d× d matrices, from which Md eigenvalues can be calculated.
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Figure 5.5: The probability distributions of
∣∣θD
∣∣ and

∣∣θOD
∣∣ for several density pairs, in

reduced units. a) ρ̂∗ = 0.0343, ρ̃∗ = 0.0657 b) ρ̂∗ = 0.4352, ρ̃∗ = 0.4148 c) ρ̂∗ = 0.8019,
ρ̃∗ = 0.2981 d) ρ̂∗ = 0.1375, ρ̃∗ = 0.9625.
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Figure 5.6: The probability distributions of λ, a typical eigenvalue of Aii, for several density
pairs, in reduced units and scaled by the corresponding value of τ ∗ρ̃∗Γ∗. a) ρ̂∗ = 0.0343,
ρ̃∗ = 0.0657 b) ρ̂∗ = 0.4352, ρ̃∗ = 0.4148 c) ρ̂∗ = 0.8019, ρ̃∗ = 0.2981 d) ρ̂∗ = 0.1375,
ρ̃∗ = 0.9625.

We denote the µth eigenvalue of the ith matrix as λi
µ, where 1 ≤ i ≤M and 1 ≤ µ ≤ d. Since

the Aii are symmetric, all of the λi
µ will be real. Furthermore, since the configurations of

resolved particles that are used to generate the Aii are random, this means that the λi
µ are

themselves random variables. Finally, due to spatial isotropy and the indistinguishability of
the resolved particles, we can conclude that the λi

µ are distributed identically, regardless of
i or µ. The eigenvalue distributions of the Aii obtained in this manner for the bold points
in Figure 5.4 are shown in Figure 5.6. It is clear that the Aii are positive definite with
overwhelming probabilty.

We now arrive at the final form for the approximate equations of motion of the resolved
particles under the linear friction approximation:

d

dt
qi =

1

m
pi

d

dt
pi = −∇qi

φ̂(q) −Aii(q) pi + Gii(q)W i(t) ,

(5.62)

where the Aii are as in (5.57), and the Gii satisfy the fluctuation-dissipation relation

Gii
(
Gii
)T

= 2mkBTA
ii . (5.63)
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5.5 Finding the Optimal Microscopic Timescale

The value of the microscopic timescale τ cannot be determined directly from the steps
leading to the short-memory approximation (5.4). However, we can obtain a rough estimate
of its order of magnitude by other means. In this section, we use the requirement that
the velocity autocorrelation functions of the full and reduced systems coincide as much as
possible to derive estimates for τ in the low-density and high density limits. These results
will be valid in d = 3, though the method may be easily generalised to an arbitrary number
of dimensions.

5.5.1 Low Density

When the density ρ of the full system is low, the resolved and unresolved densities ρ̂ and
ρ̃ will be low as well. In that case, subsequent collisions between a tagged particle and
the surrounding particles should be approximately uncorrelated in both the full system and
the reduced system. We can therefore use a first-principles kinetic argument to derive an
expression for the average net force on a given particle due to collisions with its neighbors.

Consider a tagged particle moving with momentum p in the full system at equilibrium,
where the density of surrounding particles is ρ, and the temperature is T . The change in
the particle’s momentum during a small time interval can be written as:

dp =

(
Number of particles

encountered

)
×
(

Average change in
momentum per encounter

)

= dN
dp

dN
. (5.64)

The number of particles encountered dN can be estimated by considering the volume
of influence of the particle when it moves a distance dx, as well as the number of particles
contained in that volume (see Figure 5.7):

dN ≈ dx π(ασ)2 ρ

=
|p|
m
dt πα2σ2ρ . (5.65)

Here dt is a small increment of time, and π(ασ)2 is the total scattering cross section area
of the interparticle potential. We have defined ασ to be the effective range of the potential,
where σ is defined in Chapter 3 as the scale length of the potential, and α is a dimensionless
parameter of order unity. Note that the scattering cross section must be finite, since the
potential is assumed to fall off faster than 1/rd.

The change in momentum per encounter dp/dN can be estimated by noting that, since
all of the particles have equal mass, the tagged particle’s momentum will change by an
amount roughly equal to the momentum of the particle it collides with. This will have a
magnitude of approximately

√
mkBT at thermal equilibrium. Furthermore, we expect the

average change in momentum to be directed opposite the momentum of the tagged particle.
Thus:

dp

dN
≈ −

√
mkBT

p

|p| . (5.66)

Combining equations (5.64), (5.65), and (5.66) yields

dp ≈ −πα2σ2ρ

√
kBT

m
p dt ,
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Figure 5.7: Schematic diagram depicting the volume of influence of a particle moving at
momentum p that travels a distance dx.

which implies that the equation of motion of a single particle in the full system at low
density can be approximated by

d

dt
p(t) = −πα2σ2ρ

√
kBT

m
p(t) + noise . (5.67)

Here “noise” represents mean-zero deviations from the average value of dp/dN from (5.66).
The velocity autocorrelation function Cvv(t) of the full system is given in terms of the

tagged particle’s momentum by

Cvv(t) =
1

3m2
〈y · p(t)〉C .

Here p(0) = y is the initial value of the momentum, and 〈...〉C represents an average over
the canonical distribution. If we multiply both sides of (5.67) by

(
1/3m2

)
y, and take a

canonical average, we arrive at

d

dt
Cvv(t) = −πα2σ2ρ

√
kBT

m
Cvv(t) , (5.68)

where we have made the assumption that the noise term is uncorrelated with y. Combining
(5.68) with that fact that Cvv(0) = kBT/m at equilibrium allows us to write Cvv(t) as

Cvv(t) =
kBT

m
exp

(
−πα2σ2ρ

√
kBT

m
t

)
. (5.69)

Note that this expression cannot be accurate for large t, since it is known that in this
limit the velocity autocorrelation function decays as t−3/2 due to hydrodynamic effects [2].
However, for small t, it should suffice.
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Turning now to the reduced system with linear friction given by equation (5.62), we may
write the equation of motion for the momentum of a tagged particle, for example particle
1, as

d

dt
p1 = −∇q1

φ̂(q) − A11(q)p1 + noise . (5.70)

The first term on the righthand side of (5.70) represents the net interaction of particle 1
with its neighbors via the renormalized pair potential. Since the density of the surrounding
resolved particles ρ̂ is low, we may approximate this quantity by the same kinetic argument
that lead us to (5.67), which yields:

−∇q1
φ̂(q) ≈ −πα̂2σ2ρ̂

√
kBT

m
p1 .

Here α̂σ is the effective range of the renormalized pair potential, and α̂ is a dimensionless
quantity of order unity. Since the range of the renormalized potential tends to increase
with increasing ρ̃, we expect α̂ to be a function of ρ̃, and to be greater than or equal to α.
The second term in (5.70) may be simplified by noting that Figure 5.6a indicates that the
matrices Aii are dominated by their leading diagonal contributions at low densities. This
allows us to make the approximation that

A11(q) ≈
τ

m
ρ̃Γ(ρ̃) I , (5.71)

in which case (5.70) becomes

d

dt
p1 ≈ −

(
πα̂2σ2ρ̂

√
kBT

m
+
τ

m
ρ̃Γ(ρ̃)

)
p1 + noise . (5.72)

Equation (5.72) implies that the velocity autocorrelation function Ĉvv(t) of the reduced
system may be written as

Ĉvv(t) =
kBT

m
exp

[
−
(
πα̂2σ2ρ̂

√
kBT

m
+
τ

m
ρ̃Γ(ρ̃)

)
t

]
. (5.73)

Since the correlation functions of the reduced system are meant to mimic those of the full
system as well as possible, we equate the two exponents in (5.69) and (5.73), which allows
us to solve for τ`d, the low density estimate for τ :

τ`d =
πσ2

√
mkBT

(
α2ρ− α̂2ρ̂

)

ρ̃Γ(ρ̃)
. (5.74)

Since ρ, ρ̂, and ρ̃ are not independent of one another, we may consider τ`d to be a function
of any two of them. For later convenience, we choose to regard this and all other expressions
for τ as functions of ρ and ρ̃.

It may be argued that we have simply replaced one unknown parameter, τ , by the two
unknown parameters α and α̂. However, there are several advantages to this formulation.
Since both α and α̂ are of order unity, we know their order of magnitude. The same cannot
be said for τ . Furthermore, because Û → U as ρ̃ → 0, we expect α̂ → α in this limit as
well. Thus, in the low density limit, we should be able to approximate the ρ̃ dependence
of α̂ by the first terms of a series around ρ̃ = 0: α̂ ≈ α + γσ3ρ̃. Here a factor of σ3 has
been introduced to keep α̂ dimensionless, and γ is a small, dimensionless parameter. The
original problem of finding a different value of τ for every value of ρ and ρ̃ has therefore
been reduced to the determination of the two dimensionless quantities α and γ.
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5.5.2 High Density

At high densities, matters become more complicated, as subsequent interparticle collisions
become highly correlated in a way that is difficult to model analytically. However, we can
make some progress by noting that at high densities dynamical autocorrelation functions are
better approximated by their Taylor expansions around t = 0 than at low densities. In other
words, the first few terms of the Taylor series track the behavior of the true function for
much larger values of t at high densities. By examining the leading terms of the expansions
of the velocity autocorrelation functions in the full and reduced systems, we can extract an
estimate for the high density behavior of τ .

The velocity autocorrelation function Cvv(t) of the full system can be written as a Taylor
series as follows:

Cvv(t) =
1

3m2

〈
y1 · p1(t)

〉
C

=
1

3m2

〈
y1 · etLy1

〉
C

=
1

3m2

{〈
|y1|2

〉
C

+
t2

2!

〈
y1 · L2y1

〉
C

+ O
(
t4
)}

. (5.75)

Since all particles are equivalent, we have chosen to write Cvv(t) in terms of the momentum
of particle 1 for convenience. Note that only terms even in t appear in (5.75) due to time-
reversal symmetry. We can simplify the terms in (5.75) as follows:

〈
|y1|2

〉
C

= 3mkBT

and

〈
y1 · L2y1

〉
C

= −
〈
y1 · L∇x1φ(x)

〉
C

= − 1

m

N∑

i=1

〈
(y1 · ∇x1) (yi · ∇xi

)φ(x)
〉

C

= −kBT
〈
4x1φ(x)

〉
C

= −kBT (N − 1)

∫
dx1

∫
dx2 4x1U12

∫
dx3...dxN e−βφ

∫
dx e−βφ

= −kBT ρ

∫
dx1 4x1U

(
|x1|
)
g(2)
(
|x1|, ρ, T

)

= −3kBT ρΓ(ρ) ,

where in the third equality we have used the fact that 〈yiµyjν〉C = δijδµνmkBT , and in the

fifth equality we have used the definition of g(2). The function Γ(ρ) is as defined in (5.50).
These expressions allow us to write (5.75) as

Cvv(t) =
kBT

m

{
1 − ρΓ(ρ)

m

t2

2!
+ O

(
t4
)}

. (5.76)

In order to find the leading terms in the series expansion of Ĉvv(t), we start with (5.70).
Replacing A11 with its dominant diagonal contribution as in (5.71), multiplying both sides
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on the left by
(
1/3m2

)
ŷ1, and taking an average over the renormalized canonical distribution

gives us
d

dt
Ĉvv(t) = − τ

m
ρ̃Γ(ρ̃) Ĉvv(t) − 1

3m2

〈
ŷ · ∇q1

φ̂(q)
〉

Ĉ
,

which may be solved for Ĉvv(t) to yield

Ĉvv(t) =
kBT

m
exp

(
− τ

m
ρ̃Γ(ρ̃) t

)

− 1

3m2

∫ t

0
ds exp

(
− τ

m
ρ̃Γ(ρ̃) (t− s)

) 〈
ŷ1 · ∇q1

φ̂
(
q(s)

)〉
Ĉ
. (5.77)

The integral term in (5.77) contributes only to second order in t, as can be seen by
expanding the integrand:

∫ t

0
ds exp

(
− τ

m
ρ̃Γ(ρ̃) (t− s)

) 〈
ŷ1 · ∇q1

φ̂
(
q(s)

)〉
Ĉ

=

∫ t

0
ds
{

1 + O (t, s)
}
×





〈
ŷ1 · ∇x̂1

φ̂(x̂)
〉

Ĉ︸ ︷︷ ︸
=0

+ O(s)





= O
(
t2
)
.

This allows us to write (5.77) as

Ĉvv(t) =
kBT

m

{
1 − τ

m
ρ̃Γ(ρ̃) t + O

(
t2
)}

. (5.78)

Comparing equations (5.76) and (5.78) indicates that it is impossible for Cvv(t) and Ĉvv(t)
to coincide exactly at high densities, since the former is even in t, whereas the series of the
latter contains nonzero contributions to all orders in t. However, we can ensure that the
curves Cvv(t) and Ĉvv(t) are close to one another in the neighborhood of t = 0 by requiring
the values of the leading-order coefficients in their series expansions to satisfy

τ

m
ρ̃Γ(ρ̃) ∼

(
ρΓ(ρ)

m

) 1
2

. (5.79)

Treating (5.79) as a literal equality allows us to solve for τhd, the high density estimate
for τ :

τhd =

(
mρΓ(ρ)

) 1
2

ρ̃Γ(ρ̃)
. (5.80)

5.5.3 Comparison to Optimal Values

The extensive approximations we have made in order to arrive at the low and high density
expressions (5.74) and (5.80) imply that they cannot be used for anything more than order-
of-magnitude estimates of τ . In order to test this, we can directly determine the optimal
values of τ for various values of ρ and ρ̃, by the following procedure: Let Cvv(t, ρ, T ) and
Ĉvv(t, τ, ρ̃, ρ, T ) be the velocity autocorrelation functions of the full system and the reduced
system, respectively. We include here the parametric dependence of both of these functions
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upon such quantities as ρ, T , τ , etc. The “distance” between these two correlation functions
is defined as

I(τ, ρ, ρ̃, T ) ≡
∫ tmax

0
dt
[
Cvv(t, ρ, T ) − Ĉvv(t, τ, ρ̃, ρ, T )

]2
.

Here “tmax” is a somewhat arbitrary timescale equal to the time below which all of the
“interesting” behavior of the full system’s autocorrelation function occurs. For example,
the ρ∗ = 1.1 autocorrelation function of the full system depicted in Figure 4.22 would have
tmax ≈ 0.7.

Our estimate of the optimal value of τ for a given ρ, ρ̃, and T is the value that minimizes
I(τ, ρ, ρ̃, T ). We can bracket this minimum within an acceptable tolerance by numerically
simulating the linear friction equations of motion (5.62) for many values of τ , via an algo-
rithm to be described Section 5.7. The results of such a calculation for the Lennard-Jones
system at reduced temperature T ∗ = 1.6, and at various values of ρ∗ and ρ̃∗, is shown in
Figure 5.8, along with the low and high density estimates τ`d and τhd, as well as their
average (τ`d + τhd)/2. We see that τ`d and τhd give surprisingly good results at low and
high densities, respectively. At moderate densities, however, neither estimate captures the
correct value of τ , which generally lies between them.

We should point out two things about this calculation. First, we find that the parameter
values α ≈ 1.36 and γ ≈ 0.57 yield the best fit of (5.74) to the low density results. Second,
we find that I(τ, ρ, ρ̃, T ) is relatively insensitive to the value of τ near the minimum. Thus,
there is a wide range of acceptable τ ’s at any given density and temperature. This is
illustrated by the vertical bars on each of the points in Figure 5.8.

5.6 Optimal Prediction and Dissipative Particle Dynamics

It is worth pausing at this point to note the similarities and differences between the linear
friction approximation of this chapter as derived from OP, and another coarse-graining
procedure known as dissipative particle dynamics (DPD) [25, 16, 40]. DPD is a technique
for simulating a fluid on the mesoscopic scale that seeks to overcome the limitations of pure
MD, which is confined to microscopic time and length scales. A typical implementation
of DPD consists of M particles, with positions qi and pi, that evolve according to a set of
stochastic differential equations which are usually written as follows:

d

dt
qi =

1

m
pi

d

dt
pi =

M∑

j 6=i

{
−∇qi

U(|qij |) −
γ

m
wD(|qij |)

[
êij · (pi − pj)

]
êij + σ wR(|qij |) êijηij(t)

}
.

(5.81)

The three terms in brackets above can be interpreted as a conservative force, a dissipative
frictional force, and a random force, respectively. Here U is a radially symmetric interpar-
ticle potential, as is normally found in MD. In the second term, γ is a positive constant,
wD is a scalar weighting function, and êij is a unit vector along the line joining particle j
and particle i. In the last term, σ is another positive constant, wR is another weighting
function, and the ηij(t) are a family of scalar-valued white noise processes that satisfy

〈ηij(t)〉 = 0 and
〈
ηij(t)ηk`(t

′)
〉

= δ(t− t′) (δikδj` + δi`δjk) . (5.82)

108



0.025 0.05 0.075
0

0.02

0.04

(a) ρ∗ = 0.10

τ∗

ρ̃∗
0.05 0.1 0.15

0

0.02

0.04

(b) ρ∗ = 0.20

τ∗

ρ̃∗

0.2 0.4
0

0.02

0.04

0.06

(c) ρ∗ = 0.45

τ∗

ρ̃∗
0.25 0.5

0

0.04

0.08

(d) ρ∗ = 0.60

τ∗

ρ̃∗

0.2 0.4 0.6
0

0.04

0.08

0.12

(e) ρ∗ = 0.75

τ∗

ρ̃∗
0.2 0.4 0.6 0.8

0

0.05

0.1

0.15

(f) ρ∗ = 0.85

τ∗

ρ̃∗

0.25 0.5 0.75
0

0.2

0.4

(g) ρ∗ = 0.90

τ∗

ρ̃∗ 0.25 0.5 0.75 1
0

0.25

0.5

(h) ρ∗ = 1.10

τ∗

ρ̃∗

Figure 5.8: The microscopic timescale τ ∗ as a function of ρ̃∗, for various values of ρ∗, at
T ∗ = 1.6. Points: numerically-determined optimal values (bars represent the acceptable
interval for τ ∗). Dotted lines: low density estimate τ`d. Solid lines: high density estimate
τhd. Dashed lines: average of the low and high density estimates, 1

2 (τ`d + τhd).
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Note that all of the forces in (5.81) are pairwise forces directed along the line joining
each pair of particles. Furthermore, (5.81) conserves both linear and angular momentum,
though not energy. By using detailed balance, as well the requirement that the DPD system
equilibrate to the canonical distribution associated with the Hamiltonian

H ≡
M∑

i=1

|pi|2
2m

+

M∑

i<j

U(|qij |) ,

it can be shown that

wD(r) = w2
R(r) ≡ w(r) and kBT =

σ2

2γ
. (5.83)

This implies that w(r) must be a positive function. Numerical results tend to be fairly insen-
sitive to the exact form of w(r), and so it is usually chosen for computational convenience.
A typical choice is

w(r) =

{
2
(
1 − r

rc

)
r < rc

0 r ≥ rc
.

We can rearrange (5.81) somewhat to put it into a more suggestive form by noting that[
êij · (pi − pj)

]
êij = P ij(pi − pj), where P ij is as defined in (5.40). Furthermore, it is easy

to show that the quantity êijηij(t), subject to the constraints (5.82), is identical, in the
statistical sense, to P ijW̃ ij(t), where the W̃ ij are a family of d-dimensional white noise
processes that satisfy

〈
W̃ ij(t)

〉
= 0 and

〈
W̃ ij

µ (t)W̃ k`
ν (t′)

〉
= δ(t− t′)δµν (δikδj` − δi`δjk) .

This, along with the constraint (5.83), allows us to rewrite (5.81) as

d

dt
qi =

1

m
pi

d

dt
pi =

M∑

j 6=i

{
−∇qi

U(|qij |) −
γ

m
w(|qij |) P ij(pi − pj) + [2kBTγ w(|qij |)]1/2 P ijW̃ ij(t)

}
.

(5.84)

We now turn to the linear friction approximation, in the form

d

dt
qi =

1

m
pi

d

dt
pi = −

M∑

j 6=i

∇qi
Û
(
|qij |

)
+

M∑

j=1

{
−Aij(q) pj +Gij(q)Ẇ ij(t)

}
,

(5.85)

where the Aij and Gij are constrained by (5.61). If we use the expressions (5.41) and (5.57)
for the Aij, then we can rearrange (5.85) to yield:

d

dt
qi =

1

m
pi

d

dt
pi =

M∑

j 6=i

{
−∇qi

Û
(
|qij|

)
− τ

m
ζ(qij) (pi − pj) +Gij(q) Ẇ ij(t)

}

− τ

m
Ωi(q) pi +Gii(q) Ẇ ii(t) ,

(5.86)
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where

ζ(qij) ≡ −
δÛ

′

ij

|qij|
I +

(
δÛ

′

ij

|qij |
− δÛ

′′

ij

)
P ij ,

and

Ωi(q) ≡ ρ̃Γ(ρ̃, T )I +
M∑

j 6=i

ρ̃
[
ξ⊥ijI +

(
ξ
‖
ij − ξ⊥ij

)
P ij
]
.

There are many striking similarities and differences between (5.84) and (5.86). They
both share a pairwise conservative force term, a momentum-conserving friction term, and a
pairwise white noise term. However, the noise term in (5.86) is not momentum conserving,
because the Ẇ ij are entirely uncorrelated with one another. Furthermore, (5.86) contains
an additional one-particle friction term and an additional noise term, neither of which
conserves momentum.

The fact that the linear friction approximation does not conserve momentum implies
that it will not be able to reproduce macroscopic hydrodynamics, since local momentum
conservation is necessary for a momentum transport equation to exist. While the DPD
method does conserve local momentum, this is partially a result of the fact that it was
not originally derived from any underlying microscopic model (though attempts have been
made to remedy this [18]), but was instead an ad-hoc attempt at coarse-graining that was
designed to conserve momentum by construction. This also results from differences in the
“philosophies” of OP and DPD. When OP is applied to MD, the resolved particles are
actual particles of the original system, whereas in DPD, the “particles” are really meant
to represent mesoscopic “lumps” of fluid containing many of the underlying microscopic
molecules.

This conceptual difference can be illustrated by an analogy with simple two-dimensional
spin systems. In such systems, in which there is a lattice of interacting spins, one often wants
to make a type of coarse-grained approximation by blocking together several neighboring
spins and performing a renormalization step in which each block is replaced by a single
spin. This has the effect of altering the system’s Hamiltonian. A spin system that possesses
only nearest-neighbor pair interactions will, in general, gain longer-ranged interactions that
include multi-particle effects after renormalization. This is illustrated schematically in Fig-
ure 5.9. This effect is analogous to what happened in Chapter 4 during renormalization of
the interparticle potential.

When performing the renormalization step depicted in Figure 5.9, there are various
methods used to determine the value of the spin that remains from each block. For example,
one might use a “majority rules” or “grouping” technique, by which the value of the new
spin is positive if the majority of the spins in the original block were positive, and vice-versa.
It should be clear that in this case the new spin is really a composite of the original spins.
Alternatively, one might choose a “representative” technique, in which we take the value
of the new spin to be equal to the value of one particular spin from the original block (for
example, the center spin). In this instance, the new spin is the same as one of the old spins.
DPD is a molecular analog of the grouping method of coarse-graining, whereas OP, when
applied to MD, is analogous to the representative method.
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Figure 5.9: Block renormalization of a two-dimensional spin system. Dashed lines represent
spin-spin interactions.

5.7 Numerical Tests of the Linear Friction Approximation

5.7.1 Numerical Algorithm

Before we can test the linear friction approximation to see if it adequately reproduces various
thermodynamic quantities, we must construct a suitable numerical scheme for the equations
of motion (5.62), which we write here as

d

dt
qi =

1

m
pi

d

dt
pi = F c

i −Aii pi + GiiẆ i(t) ,

(5.87)

where

F c
i ≡ −

M∑

j 6=i

∇qi
Û
(
|qij |

)

is the conservative force on particle i.
As we will see, it is possible to construct an algorithm that is second-order in the timestep

∆t, requires only one force evaluation per timestep, and is reasonably simple to execute.
We start with the analog of the velocity Verlet scheme (3.15) for (5.87):

(1) pi

(
t+

∆t

2

)
= pi(t) +

∆t

2

[
F c

i (t) −Aii(t) pi(t)
]
+

(
∆t

2

)1/2

Gii(t)Zi(t)

(2) qi(t+ ∆t) = qi(t) +
∆t

m
pi

(
t+

∆t

2

)

(3) F c
i (t+ ∆t) = F c

i

(
qi (t+ ∆t)

)

Aii(t+ ∆t) = Aii
(
q(t+ ∆t)

)

Gii(t+ ∆t) by Cholesky decomposition from Gii(Gii)
T

= 2mkBTA
ii

(4) pi(t+ ∆t) = pi

(
t+

∆t

2

)
+

∆t

2

[
F c

i (t+ ∆t) −Aii(t+ ∆t) pi(t+ ∆t)
]

+

(
∆t

2

)1/2

Gii(t+ ∆t)Zi

(
t+

∆t

2

)
.

(5.88)
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Here the Zi(t) and Zi(t+
∆t
2 ) are d-dimensional vectors whose components are independent,

identically-distributed random Gaussian numbers with mean zero and unit variance. These,

along with the factors
(

∆t
2

)1/2
, follow from the fact that

∫ t+∆t
2

t
ds Ẇ i

µ(s) =

(
∆t

2

)1/2

Z ,

where Z is Gaussian, mean zero, and has unit variance.
There are a number of difficulties that must be overcome in order to make the algorithm

(5.88) practical. First, the implicit step (4) must be rendered explicit. Solving for pi(t+∆t)
yields

pi(t+ ∆t) =

(
I +

∆t

2
Aii(t+ ∆t)

)−1 [
pi

(
t+

∆t

2

)
+

∆t

2
F c

i (t+ ∆t)

+

(
∆t

2

)1/2

Gii(t+ ∆t)Zi

(
t+

∆t

2

)]
.

Since we are only trying to construct a second-order scheme, we can avoid performing M
matrix inversions per timestep, by Taylor exanding as follows:

(
I +

∆t

2
Aii(t+ ∆t)

)−1

= I − ∆t

2
Aii(t+ ∆t) +

(
∆t

2
Aii(t+ ∆t)

)2

+O
(
∆t3

)
.

Also, we must guard against the event that Aii is not positive definite. Figure 5.6(b) implies
that we may expect rare configurations of the resolved particles to make this happen a few
times during a simulation, especially at moderate values of ρ̂ and ρ̃. If Aii is not positive
definite, it raises the possibility of negative friction, which makes the system (5.87) highly
unstable. We can remedy this by introducing a step into our algorithm in which we check
to see if Aii is positive definite. This test can be performed concurrent with the Cholesky
decomposition step in which we calculate Gii. If it is not, we simply set both the matrices
Aii and Gii equal to zero.

113



Taking the above details into account, we can write our modified Verlet scheme as:

(1) pi

(
t+

∆t

2

)
= pi(t) +

∆t

2

[
F c

i (t) −Aii(t) pi(t)
]
+

(
∆t

2

)1/2

Gii(t)Zi(t)

(2) qi(t+ ∆t) = qi(t) +
∆t

m
pi

(
t+

∆t

2

)

(3) F c
i (t+ ∆t) = F c

i

(
qi (t+ ∆t)

)

Aii(t+ ∆t) = Aii
(
q(t+ ∆t)

)

Check Aii(t+ ∆t). If it is positive definite, then calculate

Gii(t+ ∆t) via Cholesky decomposition from Gii(Gii)
T

= 2mkBTA
ii.

Otherwise, set Aii = Gii = 0.

(4) p∗ = pi

(
t+

∆t

2

)
+

∆t

2
F c

i (t+ ∆t)

+

(
∆t

2

)1/2

Gii(t+ ∆t)Zi

(
t+

∆t

2

)

(5) p∗∗ =
∆t

2
Aii(t+ ∆t) p∗

(6) p∗ = p∗ − p∗∗

(7) pi(t+ dt) = p∗ +
∆t

2
Aii(t+ ∆t) p∗∗ .

(5.89)

Here p∗ and p∗∗ are temporary dummy variables, and steps (4)-(7) simply describe the most
efficient way of performing the matrix multiplications by various powers of ∆t

2 A
ii.

The method (5.89) is second-order, fast, and requires only one force evaluation per
timestep (in step (3)). Furthermore, it preserves the temperature well, which is vital if we
are to equilibrate to the canonical equilibrium.

5.7.2 Results

The linear friction approximation (LFA), as given in (5.87), was tested via the algorithm
(5.89), and with the same parameter values used in Section 4.5.2 to investigate FOOP and
the Galerkin model. The values chosen for the τ ’s were determined by a least-square fit to
the velocity autocorrelation data, as described in Section 5.5.3.

The relative runtimes of the LFA, as defined by (??), are shown in Figure ?? for each
value of M considered. A comparison with Figures ?? and ?? immediately reveals that the
LFA requires significantly longer to simulate than either FOOP or the Galerkin system. In
fact, at the highest densities, only the M = 500 system runs faster than the full system.
This is entirely due to the increased computational overhead inherent in the LFA scheme
(5.89). In particular, at each timestep there are M Cholesky decompositions (step (3)) and
2M matrix multiplications (steps (5) and (7)) to perform, neither of which is present in
the modified velocity Verlet algorithm (3.22) used in Chapter 4. Nevertheless, even with
these handicaps, the LFA allows considerable reduction in the runtime for low-to-moderate
densities and for low values of M .
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Figure 5.10: Relative runtimes of the linear friction systems as functions of reduced density,
and for various values of M

Static Averages

As before, equations (4.51), (4.52), and (4.57) were used to evaluate the energy per particle,
pressure, and heat capacity per particle, respectively, and the results are shown in Figures
5.11, 5.12, and 5.13. A comparison with Figures 4.12, 4.14, and 4.16 in Chapter 4 shows that
the results are fairly similar to those obtained with FOOP. Although the heat capacity is still
plagued by noise for the same reasons as explained in the previous chapter, the performance
of the LFA system in determining the energy and pressure is superior to that of the Galerkin
model. It is important to note, however, that there is a greater degree of irregularity in
the data obtained from the LFA model, especially at high densities or low M values. The
reasons for this are subtle. MD simulations are often plagued by rare events, i.e. unlikely
configurations of particles that cause two or more of them to approach one another extremely
closely during a single timestep. This creates an unphysical blowup of local particle speeds,
which, though rare, has an impact on the calculation of global quantities such as energy or
pressure, since it tends to drive the system away from canonical equilibrium. Clearly, this
source of error will be enhanced at high densities, due to the greater likelihood of many-
particle encounters. Furthermore, a random force added to the system, such as the one in
the linear friction model, will have a similar effect, because the discretization of a white
noise process adds kicks of potentially arbitrary size to the coordinates of the system at
each timestep. Since the magnitude of the random force scales roughly linearly with ρ̃ in
the LFA, the size of this effect will tend to be greater when either ρ is large or M is small.
Thus, the LFA has two sources of harmful rare events, whereas FOOP has only one.

Figures 5.14 and 5.15 graph the δE∗ and δP ∗, respectively, of the linear friction system.
These should be compared to Figures 4.18 and 4.20, the analogous results for FOOP. We
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Figure 5.11: E∗/N of the full system, and Ê∗(M)/N calculated via the linear friction system
for various M values.
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Figure 5.12: P ∗ of the full system, and P̂ ∗(M) calculated via the linear friction system for
various M values.
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Figure 5.13: C∗
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see that while the magnitudes of the errors under the LFA are somewhat larger than those
of FOOP, as explained above, the qualitative behavior is the same: smaller errors at high
and low values of M , with a maximum in the intermediate region. This serves to further
confirm the validity of the formalism presented in Section 4.4, which predicts this effect.

Autocorrelation Functions

The velocity autocorrelation functions and shear stress autocorrelations for the linear fric-
tion system were calculated via the method derived in Section 4.3.2. Examples of the VAC
and SSAC for the LFA system are shown in Figures 5.16 and 5.17, respectively. These
should be compared to Figures 4.22 and 4.23. Whereas for static averages the LFA per-
formed slightly worse than FOOP, for autocorrelation functions the results are clearly far
superior. Particularly striking are the low and moderate density VAC’s, which lie essentially
on top of the exact full system result for all values of M . Even for high density, the LFA
curves are much closer to the truth than those obtained from FOOP, although the linear
friction model is incapable of capturing the complex oscillatory behavior of the high-density
autocorrelation function. This is due to the breakdown of the short-memory assumption
embodied in equations (5.3) and (5.4).

The linear friction system (5.62) qualitatively resembles the Langevin equation in the
form (5.14), which was originally proposed as a way to describe the behavior of systems
such as a massive Brownian particle under constant bombardment by the much lighter
molecules of the fluid that surrounds it. In that case, one would expect a large separation
of time scales between the slow motion of the Brownian particle and the rapid motion of the
particles striking it, and a short-memory approximation would be appropriate. What we
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are considering, on the other hand, is a simple fluid of identical-mass molecules, in which the
time scale of the motion of any given particle is the same as the time scale of those colliding
with it. As long as the density is low, subsequent collisions are reasonably uncorrelated,
and a short-memory approximation is plausible. At high densities, however, each particle
is trapped in an effective potential well due to the combined influence of its neighbors, and
its motion becomes highly self-correlated for long periods of time. In this case, the support
of the memory kernel (5.2) should extend far back in time, and the approximations (5.3)
and (5.4) become untenable.

As in Chapter 4, the shear stress autocorrelation functions of this reduced model are
subject to a significant degree of noise. Nevertheless, we can see that the decay rates of the
LFA SSAC’s are an improvment over the results of Chapter 4, especially at low densities,
although there is an increased deviation in the value of C

Ξ̂Ξ̂
(0), for reasons explained above.

The results of this section show that even the rather crude approximation we have made
to the memory and random forcing terms of optimal prediction can lead to a remarkable
improvement in the degree to which the reduced system captures the dyamical properties
of the underlying full system.
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Chapter 6

Conclusions

The goal of this thesis was to construct a formalism for applying OP to the problem of the
MD of an N -particle system, by devising a smaller system of M particles from which the
properties of the original system could be recovered. In this chapter, we will summarize the
progress that has been made towards this goal, and suggest several possible future avenues
of research.

In Chapter 2, after presenting some necessary background from probability theory, we
described the foundations of OP, which follow from a particular implementation of the
Mori-Zwanzig formalism. We then established some general notational conventions for the
application of OP to Hamiltonian systems, which were used throughout this thesis.

In Chapter 3 we described a very general system of N classical, identical, point particles.
The equations of OP from Chapter 2 were then cast into a form more easily applicable to
the set of Hamiltonian ODE’s that governs this system. We then outlined the standard
techniques of MD simulation. It is important to note that the form of MD considered in
this thesis is of the simplest and oldest type, and that many variants and additions have
been formulated over the years. Nevertheless, these methods form the backbone of most
modern MD simulation schemes. Thus, the main results of this thesis can potentially be
applied to many disparate areas of atomistic modeling.

The remainder of the thesis concerned the derivation and application of various approx-
imations to the full equations of motion from Chapter 3. Chapter 4 described first order
optimal prediction (FOOP), in which the exact integro-differential equations of motion for
the reduced system are approximated by an effective dynamics governed by a renormalized
Hamiltonian H . Our investigation into the form of H allowed us to make a number of new
connections between OP and several classical results from the microscopic theory of fluids.
In particular, the M -particle distribution function g(M) arose naturally when considering
the nature of the renormalized potential φ̂. We were therefore able to take advantage of
the large literature regarding g(M). For example, we made use of the low density expansion
for the n-particle potential of mean force, as well as various related convergence properties.
These results are not typically seen applied in a dynamical context, as has been done here.

A large part of Chapter 4 was spent outlining two of the main results of this thesis. In
Section 4.3, we proved that if the exact renormalized potential is used, many of the static
properties of the original N -particle system can be extracted from averages of dynamical
variables under the reduced system. This involved the use of scaling expressions which are
rigorously constrained to reproduce the analogous quantities in the full system.

In reality, however, we were forced to use a pairwise approximation to the exact ex-
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pression for φ̂. The second major result of Chapter 4 was the development, in Section 4.4,
of a formalism that yields a qualitative explanation for when and how this approximation
will fail. Although not quantitative, this formalism makes the nonintuitive prediction that,
after a certain point, reducing the number of resolved particles in the approximate system
can actually improve the accuracy of the scaling expressions described above.

The numerical results of Chapter 4 confirmed that FOOP can accurately reproduce
the energy and pressure of the full system at low-to-moderate densities, while requiring a
fraction of the computer time. For example, the M = 500 FOOP system predicted the
correct energy and pressure for ρ∗ ≤ 0.75 and ρ∗ ≤ 0.60, respectively, to within an average
error of ∼ %5. On the other hand, it required, on average, ∼ 1/35th as much runtime as the
full system to achieve this result. Of nearly equal importance, however, was the behavior of
FOOP in the region where it failed. An analysis of the high-density errors clearly confirmed
the surprising prediction of Section 4.4, in that the deviations between the FOOP estimates
and the exact values of the energy and pressure decreased with decreasing M for M ≤ 2048.

This has profound implications for the scalability of FOOP to larger system sizes. For
example, with modern computers, MD simulations with N ∼ 1, 000, 000 are commonplace.
If we were to take this as our full system, it would not be unreasonable to consider a reduced
FOOP system with M ∼ 5000. As mentioned in Section 4.4, this is at least one order of
magnitude higher than the number of particles required to avoid small system-size effects.
The only significant remaining source of error would then be associated with making the
pairwise approximation to the renormalized potential. However, for these choices of N and
M we have M/N ∼ 0.005. Results such as those shown in Figure 4.20 strongly suggest that
in that case the error would drop to approximately zero. Meanwhile, this reduced system
would require only a small fraction of the runtime.

In Chapter 5, we improved upon FOOP’s treatment of dynamical quantities, such as
autocorrelation functions, by making a short-memory approximation, in which the integral
memory and random forcing terms were replaced by a linear friction and white noise, respec-
tively. The form of the friction term was derived directly from the equations for the memory
kernel, whereas the statistics of the forcing were deduced independently, by examining the
Fokker-Planck equation for the distribution of the 2M positions and momenta. We then
proved that the resulting approximate system necessarily equilibrates to the renormalized
canonical distribution, and described the similarities and differences between this linear
friction approximation (LFA) and another coarse-graining technique known as Dissipative
Particle Dynamics. The results of simulating the LFA system via a numerical method de-
rived from the velocity Verlet scheme of MD showed that it is comparable to FOOP in
terms of calculating static properties, but far better when it comes to measuring correlation
functions. However, like FOOP, the LFA works poorly at high densities for the M values
considered in this thesis.

These two approximations, FOOP and the LFA, can serve as a basis for further devel-
opments. One way to better capture the static properties of high density systems such as
solids or dense liquids would be to include some approximation to the three body potential.
In terms of evaluating dynamical quantities, it would also be useful to construct a form for
the memory kernel that allows finite-time memory effects, which would in turn transform
the random forcing term into a colored noise process with a known autocorrelation func-
tion. Furthermore, there are many other possible forms for the memory kernel that arise
by considering alternate projection operators in its derivation, some of which may lead to
better results. These have yet to be explored.
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It would be interesting to move beyond the determination of simple fluid properties, and
into the realm of everyday MD applications. For instance, one might extend these methods
to polyatomic molecules. Systems reduction for complex molecules would probably take a
different form than that introduced here. For example, instead of decreasing the overall
number of particles, one may choose to average over the internal degrees of freedom, and
thus reduce polyatomic molecules to monatomic particles. This would yield a different type
of renormalized potential, with different behavior. Another area that might benefit from
these techniques is the simulation of biological macromolecules, such as proteins. In a typical
single-protein simulation, a significant fraction of the computational time is spent modeling
the behavior of solvent-solvent and solvent-protein interactions. Since the properties of
interest are those of the protein itself, and the solvent is often represented as a simple,
one-component fluid, we can imagine applying OP to the solvent, while the protein is left
to evolve according to its full equations of motion.

Another setting in which these methods have yet to be explored is the study of nonequi-
librium situations, in particular the determination of the mesoscopic flow of a fluid by MD.
Since the formalism of this thesis uses the canonical distribution, which precludes large-scale
flow, a new measure on the space of initial conditions appropriate to the nonequilibrium
state would need to be constructed. This opens up the interesting possiblility of entire
families of variations on optimal prediction, each predicated on the use of different nonequi-
librium ensembles.

One point that should be stressed, however, is the fact that the techniques outlined in
this thesis do not apply to systems that interact via the Coulomb potential, such as plasmas.
A long-range bare potential would necessarily invalidate the diagrammatic expansion of
Section 4.2.1, since the integrals to which the diagrams correspond would no longer converge.
Furthermore, the form of the renormalized potential would depend strongly on the shape
and size of the domain, as well as on position, i.e. spatial isotropy would no longer hold. This
set of complications indicates that our formalism would need to be radically altered in order
to accomodate the presence of ions or other charged particles. Furthermore, any discussion
of plasmas or similar systems would certainly need to include the effects of external fields,
which have been neglected in this thesis. This would require an additional term in the
Hamiltonian of the form

∑
i U1(qi), where U1 is the one-particle potential associate with the

external field. On this point, the outlook is more optimistic, since all that needs to be done
is to associate with each particle a weight function e−βU1(qi), so that every integral of the
form

∫
dqi (· · · ) becomes

∫
dqi e

−βU1(qi)(· · · ). If the length scale on which the external field
varies is short compared to microscopic scales, then the only modification that would need
to be made would be to include the parametric dependence of the renormalized potential
and friction matrices upon the local values and gradients of the external potential.
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Appendix A

Evaluation of the Shear Stress

Autocorrelation Function at t=0

The shear stress autocorrelation function is

CΞΞ(t) = 〈Ξµν(t)Ξµν(0)〉C µ 6= ν ,

where

Ξµν =
1

V

N∑

i=1

(
1

m
piµpiν − qiµ∇qiν

φ(q)

)

is an off-diagonal component of the stress tensor. Our goal is to calculate CΞΞ(0). Since
any µν pair will yield the same result, we will choose µ = 1 and ν = 2 for simplicity. Then

CΞΞ(0) =
1

V 2

〈
N∑

i=1

(
1

m
pi1 pi2 − qi1∇qi2φ(q)

) N∑

j=1

(
1

m
pj1 pj2 − qj1∇qj2φ(q)

)〉

C

=
1

V 2

N∑

i,j=1





〈
1

m2
pi1 pi2 pj1 pj2

〉

C︸ ︷︷ ︸
=(kBT )2δij

−
〈

1

m
pi1 pi2 qj1∇qj2φ

〉

C︸ ︷︷ ︸
=0

−
〈

1

m
pj1 pj2 qi1∇qi2φ

〉

C︸ ︷︷ ︸
=0

+
〈
(qi1∇qi2φ)

(
qj1∇qj2φ

)〉
C





=
1

V
ρ(kBT )2 +

1

V 2

N∑

i,j=1

〈
(qi1∇qi2φ)

(
qj1∇qj2φ

)〉
C

︸ ︷︷ ︸
≡ Λ

,

where in the second line we have made repeated use of the fact that, under the canonical
distribution, 〈piµpjµ〉C = mkBTδijδµν . This follows because the different components of
the momentum for each of the N particles are independently distributed according to a
Maxwellian distribution. Let us concentrate on the second term (which we have labeled
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“Λ” for ease of reference):

Λ =
1

V 2

N∑

i,j=1

1

Zc

∫
dq (qi1∇qi2φ)

(
qj1∇qj2φ

)
e−βφ .

Here Zc ≡
∫
dq e−βφ is known as the configurational part of the partition function. We now

make use of the fact that

(qi1∇qi2φ) e−βφ = −kBT ∇qi2

(
qi1e

−βφ
)

and perform an integration by parts, to arrive at

Λ =
kBT

V 2

N∑

i,j=1

1

Zc

∫
dq qi1qj1

(
∇qi2∇qj2φ

)
e−βφ .

In the above expression, there are N terms with i = j (all of which are equal), and N(N−1)
terms with i 6= j (all of which are equal). This allows us to write

Λ =
kBT

V 2

1

Zc

{
N

∫
dq q2

11 (∇q12∇q12φ) e−βφ +N(N − 1)

∫
dq q11q21 (∇q12∇q22φ) e−βφ

}
.

Since

∇q12∇q12φ =
N∑

i=2

∇q12∇q12U1i

and
∇q12∇q22φ = ∇q12∇q22U12 = −∇q12∇q12U12 ,

we can use indistinguishability of particles to obtain:

Λ =
kBT

V 2

N(N − 1)

Zc

∫
dq
(
q211 − q11q21

)
(∇q12∇q12U12) e

−βφ .

This can be simplified further by realizing that q2
11 − q11q21 = (q11 − q21)

2 −
(
q221 − q11q21

)
.

By symmetry, the quantity q2
21−q11q21 gives the same result when substituted for q2

11−q11q21
in the above integral. Thus

Λ =
kBT

V 2

1

Zc

N(N − 1)

2

∫
dq (q11 − q21)

2 (∇q12∇q12U12) e
−βφ .

According to the definition of the radial distribution function [23],

1

Zc

∫
dq3...dqN e−βφ = ρ2 1

N(N − 1)
g(2)
(
|q1 − q2|

)
.

If we take advantage of this, and define a new variable x = q1 − q2 with components x1, x2,
etc, then Λ simplifies to

Λ =
kBT

2V
ρ2

∫
dx x2

1

(
∂2

x2
U
(
|x|
))
g(2)
(
|x|
)
.
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Finally, we switch to spherical polar coordinates and perform the angular part of the re-
sulting integral, which yields

Λ =
2π

15

kBT

V
ρ2

∫ ∞

0
dr

d

dr

(
r4U ′(r)

)
g(2)(r) .

Our final expression for CΞΞ(0) is therefore

CΞΞ(0) =
kBT

V

{
ρkBT +

2π

15
ρ2

∫ ∞

0
dr

d

dr

(
r4U ′(r)

)
g(2)(r)

}
.
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