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Abstract

The general classification of scaling laws will be presented and the
basic concepts of modern similarity analysis — intermediate asymptotics,
complete and incomplete similarity — will be introduced and discussed.
The examples of scaling laws corresponding to complete similarity will be
given. The Paris scaling law in fatigue will be discussed as an instructive
example of incomplete similarity. It will be emphasized that in the Paris
law the powers are not the material constants. Therefore, the evaluation
of the life-time of structures using the data obtained from standard fatigue
tests requires some precautions.

1 Introduction

Signore il Presidente, Ladies and Gentlemen,

Scaling laws

y = Cxα1
1 . . . xαn

n (1)

which often appear in modeling phenomena in nature, engineering and society,
seem to be trivial. Very often they are considered only as a first, simplest
attempt to represent a set of data. Indeed, laws are trivial, but non-trivial is
why they are trivial! The reason of their importance is that the scaling laws
always reveal a deep feature of processes under consideration: self-similarity.
For processes developing in time self-similarity means that the phenomenon is
reproducing itself in scales, which vary in time:

U(r, t) = U0(t)f
(

r
`(t)

)
. (2)

Establishing scaling laws and self-similarity was always considered as an
important, sometimes crucially important step in construction of engineering
and physical theories. In the pre-computer era they were considered as special,
“exact” solutions illuminating complicated models, elegant, sometimes useful,
but nevertheless restricted in their value, elements of theories. Later, when
computers entered into play, the role of such solutions did not diminish, just
the contrary. However, the general attitude to them changed: they started to
attract attention mainly as “intermediate asymptotics” — an important element
of physical or engineering theories describing the behavior of systems when the
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influence of accidental details of the initial and/or boundary conditions already
disappears, but the system is still far from the ultimate state of equilibrium.

Establishing the scaling laws and self-similarities was of special importance in
studies of turbulence and structural strength. Remarkably both these branches
of natural and engineering science were started by two great Italians: Leonardo
da Vinci, born in a suburb of Florence, and Galileo Galilei, born in Pisa: both
these places are not far from Torino where we are assembled these days.

Turbulence is the fluid flow with randomly accumulating and dissipating
vortices.

Structural strength is inseparable from fatigue. Fatigue in a broader sense
is the deformation and flow of solids with accumulating defects, terminating by
fracture.

Generally in scientific circles turbulence is considered as a major challenge
of applied mathematics and classical physics. Among those who made seminal
contributions to studies of turbulence were giants — A.N. Kolmogorov and W.
Heisenberg, as well as great applied mathematicians of the XX century — L.
Prandtl, Th. von Kármán and G.I. Taylor.

At the same time in the circles of physicists and applied mathematicians the
problem of structural strength, and in particular the problem of fatigue, def-
initely remains overshadowed by turbulence. Meanwhile, fatigue and fracture
present not less thrilling fundamental problems than turbulence, not to speak
about practical importance. In fact, the phenomenon of fatigue is in principle
even more complicated! Indeed, stop the turbulent flow of air and/or water,
and the fluid becomes indistinguishable from that at the beginning of the mo-
tion. This is not the case for fatigue. And there is even something worse. In
turbulence we have good experimental reasons to believe that the fluid, like air
and water remains Newtonian even in the most complicated flows up to the
scales of smallest vortices. At the same time even for quasi-brittle solids the
very possibility of using any constitutive equations for the materials near the
defects is doubtful!

Parallels between turbulence and fatigue are instructive — also in another
aspect. Yes, turbulence is generally considered as a great challenge, and during
more than a century an army of engineers and scientists led by geniuses attacked
it. But let’s ask ourselves with full sincerity: what was achieved during this time
as far as the creation of pure self-contained theory of turbulence based on first
principles is concerned? The answer is very disappointing — practically nothing!
And it is clear now that such a theory will not be constructed in real time —
such was in particular the opinion of A.N. Kolmogorov. He claimed that the
practical way is to construct models based on special hypotheses relying on the
results of experimental studies. Clearly such models could be valid for special
classes of flows only. It can be expected that the same path is to be followed in
structural strength and fatigue studies.

Here I want to emphasize that practically all significant results in turbulence
studies were obtained using similarity considerations and scaling laws. The
value of these tools and their technique should be properly understood, and
they should be properly used in everyday practice by engineers and researchers
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working in fatigue and fracture.
This is the main topic for my lecture. It is well known that the subject of

scaling in structural strength attracted the attention of engineers and researchers
starting from Galileo. There exist multiple treatises, monographs and papers
where the scaling problems in structural strength are treated. I want to mention
especially recent monographs and papers by Professor Z. Bažant and his school
[1-6], the very recent summarizing paper [6] should be especially recommended
— and our President Professor A. Carpinteri and his school [7-13]. We all
learned a lot from their remarkable works. However, I do not attempt to review
and discuss them here in this lecture — it would be impossible. We have a special
section to discuss the problems of scaling in structural engineering, where their
contributions will find a descent place.

In my lecture I will speak about the results related to a different approach,
developed independently starting from the late fifties–early sixties in my close
collaboration with my unforgettable colleague and friend Ya. B. Zeldovich [14,15].
My students and close colleagues G.I. Sivashinsky and L.R. Botvina participated
in various parts of these works.

2 Scaling laws obtained by dimensional analysis

I will present here the state of art of these matters with some instructive ex-
amples of scaling laws and scaling phenomena. Naturally all except one of the
examples will be related to fracture and fatigue, the examples from other fields
in particular turbulence can be found in my books [16,17]. However, I want to
make a short intermezzo: to demonstrate one of the milestones not only of fluid
mechanics, but of engineering science as a whole achieved by similarity methods.
I mean the famous scaling law obtained first by Sir Geoffrey Taylor [18] for the
radius rf of the shock wave formed after an atomic explosion (Figure 1):

rf =
(

Et2

ρ0

)1/5

. (3)

Here E is the energy of the explosion, t — the time after the explosion, and
ρ0 — the air density before the explosion. Scaling law (3) was obtained by G.I.
using dimensional analysis (I will demonstrate this technique on examples from
fracture and fatigue later, the explanation of it with details and examples can be
found in [16,17].) I emphasize specially: of crucial importance was not the formal
application of rather simple rules of dimensional analysis, but the preliminary
idealization of the problem which was invented by G.I. Taylor: He made two
basic assumptions — the explosion is instantaneous and concentrated at a point.
Furthermore, the initial atmospheric pressure p0 is negligible in comparison with
the pressure behind the shock wave. This basic idealization allowed G.I. Taylor
to establish the self-similarity of the phenomenon and to assume that the radius
of the shock wave rf can depend on E, t, and ρ0 only. After this assumption
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Figure 1: Photograph of the fireball of the atomic explosion.

scaling law (3) followed from dimensional analysis immediately. Scaling law (3)
obtained excellent experimental confirmation ([19], Figure 2).

In fracture mechanics also there are well-known scaling laws which can be
obtained after a plausible idealization in G.I. Taylor style using dimensional
analysis. I want to mention here some of them. The first example is the sym-
metric wedging of a brittle or quasi-brittle thick plate (plain strain) by a thin
wedge ([20]), see Figure 3a.

We introduce a natural idealization. First we assume that the spearheads of
the wedge are concentrated on opposite lines, so that the action of the wedge
is represented by two equal and oppositely directed concentrated tractions P ,
per unit length of the plate thickness (Figure 3b). Further, we assume that the
plate is infinite. Thus, the length of the crack ` can depend only on P , the
Poisson ratio ν, and a characteristic of fracture toughness, the cohesion mod-
ulus K. I emphasize here the known difference between the cohesion modulus
K, introduced by the author in 1959 [20], and determined under conditions of
stable crack propagation, and another fracture toughness characteristic KIc, in-
troduced practically simultaneously by G.R. Irwin in 1960 [21] and determined
by the beginning of the unstable crack propagation. In the case under consid-
eration the crack is stable, therefore a relation for the crack length ` is valid

` = f(P, K, ν). (4)

The dimensions of the quantities entering relation (4) are obviously as fol-
lows:

[`] = L, [P ] = FL−1, [K] = FL−3/2, [ν] = 1

where L and F are the dimensions of the length and force. From the arguments
only P and K have independent dimensions, and only one quantity of the di-
mension of length can be formed of them: P 2/K2. Therefore the dimensionless
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Figure 2: The experimental results confirms scaling law (3) (Taylor [19])

quantity `/(P 2/K2) can depend on the Poisson ratio ν only, and we obtain

` = Const(ν)
P 2

K2
. (5)

An analytic calculation [20] shows that Const is equal to one. Scaling law (5)
also obtained a reliable experimental confirmation, and relation (5) served for
experimental evaluation of the cohesion modulus (see the comprehensive book
by V.V. Panasyuk [22].

The cohesion crack model was introduced by the author in 1959 [20]. Before
that the analogous problem was considered by the author [23] for the case when
the propagation of the crack is resisted by uniform compression q, like in rock
massives (also an instructive illustrative example is achieved by a ruler inserted
between the pages of a horizontally lying book). In this case the scaling law is
different:

` =
2
π

P

q
(6)

so that the length of the crack is proportional to the first, not the second, degree
of the load.

A remarkable scaling law was obtained using the dimensional analysis by
F. Roesler [24], and J.J. Benbow [25] for the cone crack formed under small
diameter punch in a block of fused silica (Figure 4). Roesler and Benbow also
replaced the problem by an idealized one: point indentor punched into an infinite
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Figure 3: The wedging of a thick plate. (a) Original problem. (b) Idealized
problem.

6



Figure 4: Conical crack in a fused silica block (Benbow [25]).

block. The scaling law, also obtained by dimensional analysis, for the diameter
of the base of the cone crack D under the load P has the form:

D = Const(ν)
(

P

K

)2/3

. (7)

This scaling law also obtained remarkable experimental confirmation (Figure
5).

When considering the examples presented above, a natural question can
arise: In fact, for instance, for the problem of wedging of a thick plate, there
appear two additional length scales: the width of the spearhead of the wedge
d0 which we equal to zero, and the size of the block d, which was assumed to be
infinite. However, in fact, both these length scales are finite, and if we take them
into account in relation (4), the dimensional analysis will lead to a different, and
completely non-constructive result:

D =
(

P

K

)2

Φ(Π1,Π2, ν)

Π1 =
d0(
P 2

K2

) , Π2 =
d(

P 2

K2

)
.

(8)

In fact, scaling law (6) is an “intermediate-asymptotic law” valid when

d0 ¿ D ¿ d. (9)
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Figure 5: The experimental data confirm scaling law (7) (Benbow [25]).

The decisive advantage of the problem of wedging of a plate is that it can
be proved rigorously that there exists a finite, non-zero limit of the function
Φ(Π1,Π2, ν), at Π1 → 0 and Π2 → ∞. Therefore at sufficiently small Π1, and
sufficiently large Π2 the intermediate asymptotic scaling law (5) works. Ap-
parently, excellent experimental confirmation of scaling laws (3) and (7) shows
that the same situation happens in G.I. Taylor and Roesler-Benbow problems,
although up to the present time nobody has proved it rigorously.

But what is the practical meaning of this fact? It means that if we take a
different larger or smaller wedge, and a larger or smaller block from the same
material, so that d′0 = λd0, d′ = µd, where λ and µ are certain positive numbers
of the order of unity, nothing will change at this intermediate stage! Similarly,
if we take a smaller or larger punch and a smaller or larger block in the Roesler-
Benbow problem the propagation of the crack at the intermediate stage will not
change. Also, in G.I. Taylor problem of very intense explosion the moderate
variation of the charge size and of the atmospheric pressure will change noting
in the propagation of the shock wave.

These are simple examples of the invariance of the intermediate asymptotics
with respect to the renormalization group, a concept of extreme importance in
the whole of this subject. The details concerning the renormalization group
and its connection with intermediate asymptotics can be found in the books of
Goldenfeld [26] and the author [16,17].
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Figure 6: Experimental data for fatigue crack growth in the alluminum alloy
confirm Paris law (17) in the major part of the crack velocity range (Botvina
[38]).
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3 Classification of scaling laws: complete and
incomplete similarity

A natural question arises. There exist many scaling laws in engineering science
and physics. Whether the idyllic situation demonstrated above on three exam-
ples is always the case, and all scaling laws can be obtained using dimensional
analysis after a simple natural idealization-like point explosion or pressing along
a line in an infinite space. The answer is no, and there should be no illusions: as
a rule the scaling laws and self-similarities cannot be obtained by dimensional
analysis alone, and such “natural” idealization does not exist. In particular,
this is true for a basic scaling law in fatigue: the Paris law; we will see it later.

To clarify this point, let’s consider the scaling laws from a more general
viewpoint. Namely, consider a certain physical relation, i.e., a relation, valid for
all observers having different sizes of units of measurement of the same physical
nature:

a = f

n arguments︷ ︸︸ ︷
(a1, . . . , ak, b1, b2 . . . ) . (10)

Here a is the quantity, possibly a vector, to be determined, a1, . . . , ak — the ar-
guments, having independent dimensions, like say length, time, density whereas
the dimensions of a, b1, b2 — are dependent, and can be expressed via the
dimensions of a1, . . . , ak:

[a] = [a1]p . . . [ak]r; [b1] = [a1]p1 . . . [ak]r1 . . . . (11)

Dimensional analysis allows one to reduce relation (10) to a dimensionless
form:

Π = Φ

n−k arguments︷ ︸︸ ︷
(Π2, Π2 . . . )

Π =
a

ap
1 . . . ar

k

, Π1 =
b1

ap1
1 . . . ar1

k

, . . . (12)

The advantage of relation (12) in comparison with the original relation (10)
is that the number of arguments of function Φ in (12) is less than the number
of arguments of function f in the original equation (10). Moreover, according
to (12) the basic function f entering a physical relation possesses an important
property of generalized homogeneity, i.e., it can be represented via a function Φ
of a lesser number of arguments:

f = ap
1 . . . ar

kΦ




n−k arguments︷ ︸︸ ︷
b1

ap1
1 . . . ar1

k

, . . .


 . (13)

When we idealized the problems considered in the previous section, we did
not intend to consider the limiting cases Π1 = 0, Π2 = ∞. What we really did
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— we obtained the asymptotics (intermediate asymptotics), i.e., the asymptotic
relations which appear when Π1,Π2, . . . are small or large, but not equal to
their limiting values.

If there exists a finite non-zero limit C of the function Φ at Π1,Π2 . . . → 0,∞,
then at sufficiently small (large) Π1,Π2 . . . the function Φ can be replaced by
its limiting value C, and the scaling law is valid:

a = f = Cap
1 . . . ar

k, (14)

so that the arguments b1, b2 . . . disappear from the resulting relation, and all
powers p, . . . , r can be obtained by a simple procedure of dimensional analysis,
as it was demonstrated in the problems considered in the previous section.

Colleagues, we say often, teaching our students, and reducing the relations
to a dimensionless form, that if a dimensionless argument is small or large, it
can be neglected. Generally speaking this statement is erroneous; it is correct
only when the finite non-zero limit of the function Φ in (12) does exist, which
is a priori unknown. And what will happen if such a finite non-zero limit of
the function Φ does not exist, which is in fact the general case? In this case we
cannot say anything in general terms, if, of course, we do not know the solution,
in which case the similarity approach is superfluous.

However, the following remarkable possibility should not be missed. Let the
finite non-zero limit of the function Φ not exist, but at small (large) Π1,Π2, . . .
let the function Φ possess in its turn the property of generalized homogeneity in
its dimensionless arguments. Here we consider the simplest case (for the general
discussion the reader can be addressed to the books [16,17]) which we will need
further:

Φ = Πα
1 Φ1 + . . . (15)

where this time the function Φ1 has a finite non-zero limit at Π1, Π2, . . . → 0,∞.
Substitute (14) to (12), and we obtain that in this case again at large (small)
values of Π1, . . . a scaling law of type (14) is valid:

a = f = Cap−αp1
1 . . . ar−αr1

k bα
1 . (16)

There is however a substantial difference between scaling laws (14) and (16):
(a) The exponents p − αp1 . . . r − αr1 cannot be obtained by using dimen-

sional analysis alone, because the power α in (15) is unknown. It should be
obtained using some additional information, including sometimes experimental
or computational data;

(b) The argument b1 does not disappear from scaling law (16), it continues to
influence the phenomenon, although it enters only in multiplicative combination
with other parameters;

(c) The generalized homogeneity of function Φ, contrary to the case of func-
tion f in the original relation (10), does not follow from a fundamental physical
principle of equality of all observers having different magnitude of the units of
measurement of the same physical nature. Just the contrary: this is a property
only of the special phenomenon under consideration.
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In the case when the scaling law of type (14) is valid we speak about the com-
plete similarity of the phenomenon in the parameters Π1, Π2, . . . (cf Reynolds
number similarity in turbulence, the generally accepted term for the situation
when the influence of the Reynolds number disappears).

In the second case when the scaling law of type (16) is valid we speak about
incomplete similarity. Clearly, incomplete similarity is a much more general case
than complete similarity, although it is still a very special case of asymptotic
laws at small (large) values of parameters Π1, Π2 . . . . Discovery of incomplete
similarity in gas dynamics, turbulence and fatigue marked important steps in
the development of these disciplines. Mandelbrot fractals [27-29] also present
a remarkable example of incomplete similarity. Incomplete similarity is also
related to the asymptotic invariance of the mathematical model to a renormal-
ization group, but in this case the renormalization group is more complicated.
The details can be found in the books [16,17].

4 Paris law — an example of incomplete simi-
larity

An instructive and important example of incomplete similarity is represented
by the Paris scaling law in fatigue.

The standard fatigue experiment is performed as follows. A specimen (notched
or slotted bar or plate) is loaded by a combination of static tensile and a pulsat-
ing tensile load of constant frequency and amplitude. At the tip of the notch a
fatigue crack is formed, and its propagation, i.e., its length as a function of the
number of cycles n is recorded. The Paris law is specified for multicycle fatigue
tests, when the number of cycles before failure is of the order of many millions.

Processing the experimental data of such tests [30] (see also the preceding
paper [31]) revealed the following scaling law

d`

dn
= A(∆N)m (17)

which is being established after a certain initial stage. Here d`/dn is the crack
speed averaged over the cycle; ∆N = Nmax−Nmin is the stress-intensity-factor
amplitude, A and m are empirically obtained constants. Under the conditions
of the present experiment N = Cσ

√
`, where σ is the pulsating bulk stress,

and the constant C is a form-factor which can be evaluated using the technique
of the theory of elasticity. The Paris law (17) has found subsequently multi-
ple confirmations for different materials (see example in Figure 6) and now is
considered as one of the fundamental laws of structural strength engineering
science.

And here an important and very practical question arises: whether A and
m are material constants, or may they be different for different specimens? The
constant m was found to vary in a wide range from slightly more than two
to ten and even more. In engineering practice, scaling law (17) is used for an
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important prediction of the life-time of the structure, i.e., the number of cycles
before failure nF . Relation (17) can be rewritten in the form:

d`

dn
= ACm(σmax − σmin)m`

m
2 . (18)

By integration we obtain:

1

`
m
2 −1
0

− 1
`

m
2 −1

= G(m− 2)n (19)

where G = ACm(σmax−σmin)m/2, and `0 — the initial crack length. Remember
that in multicycle fatigue the number of cycles before the failure is very high,
so that it is possible to neglect in the evaluation of the life-time the number of
cycles corresponding to the preliminary stage when the Paris law (17) still does
not hold.

So, because the intermediate self-similar stage where the Paris law is valid
holds during the basic part of the fatigue fracture process, the estimate for the
life-time, i.e., for the number of cycles before the failure nF can be obtained
from (19) assuming ` À `0 and neglecting the second term in the left-hand side
of (19). We obtain

nF =
1

(m− 2)G`
m−2

2
0

. (20)

Clearly the life-time nF sharply depends upon the parameter m, the expo-
nent entering the Paris law, and also upon the pre-power coefficient A, entering
expression (17) of this law. Therefore, it is worthwhile to analyze the Paris
scaling law (17) on the basis of the procedure outlined above to understand
whether these coefficients are indeed the material constants.

We assume that the shape of the loading cycle is fixed. Then the dependent
quantity, the mean crack velocity averaged over the cycle d`/dn can depend in
principle upon the following arguments: the stress-intensity-factor amplitude
∆N = Nmax − Nmin, stress-intensity-factor asymmetry R = Nmax/Nmin (as a
reminder, Nmax and Nmin are the maximum and minimum values of the stress
intensity factor over the cycle), and, what is specially important, the charac-
teristic length scale of the specimen h, e.g., its diameter, or thickness. The
number of cycles n does not enter the list of the governing parameters because
it is the intermediate self-similar stage under consideration. Also, important
material properties should be included in the list of arguments: the yield stress
σY (analysis of the fracture surface shows that the local yield takes place at
least at a certain part of the cycle), and a fracture toughness parameter. As
the fracture toughness property it is reasonable to take Irwin’s parameter KIc

because the crack extension goes by jumps, i.e., unstably. Thus, we assume that
there exists a relation of the form:

d`

dn
= f(∆N, R, σY ,KIc, h). (21)
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The corresponding dimensions of the parameters entering (21) are as follows:

[N ] = [KIc] = FL−3/2, [σY ] = FL−2, [h] = L, [R] = [n] = 1 (22)

Here again F is the dimension of force, L is the dimension of length. The
dimension of determined quantity d`/dn is therefore equal to L.

We assume as the governing parameters with independent dimensions the
parameters ∆N and σY . The dimensional analysis gives by a standard proce-
dure

d`

dn
=

(
∆N

σY

)2

Φ
(

∆N

KIc
, R, Z

)
(23)

where the dimensionless parameter

Z =
σY

√
h

KIc
(24)

is the square root of the ratio of characteristic specimen length scale h to the
fracture yield length scale σ2

Y /K2
Ic.

The evaluations show that the dimensionless parameter Π1 = ∆N/KIc is
small. And here we have an appropriate case to apply the technique of the
analysis of asymptotic scaling laws, “advanced similarity analysis”, discussed in
section 2. Thus, if a finite non-zero limit of the function Φ in (23) at ∆N/KIc →
0 does exist, i.e., if there exists a complete similarity in the parameter ∆N/KIc,
we obtain the scaling law:

d`

dn
=

(
∆N

σY

)2

Φ1(R, Z) (25)

so that the parameter m in the Paris scaling law (17) is equal to 2, however
the constant A appears to be non-universal, depending on the specimen size.
The analysis of the experimental data shows that m = 2 is practically never the
case: for some aluminum alloys m is close to 2, but nevertheless always larger
than 2. For the vast majority of cases m is substantially larger than 2.

Assuming incomplete similarity we obtain [32] (see also [16]):

Φ =
(

∆N

KIc

)α(R,Z)

Φ1(R,Z), (26)

exactly the form of the experimentally observed Paris law (17) with the following
expressions for the parameters of this law:

A =
Φ1(R,Z)
σ2

Y Kα
Ic

, m = 2 + α(R,Z). (27)

The most important conclusion of the analysis just performed is that the
parameters A and m of the Paris law are not the material characteristics. Be-
sides the asymmetry of the cycle R they should depend on the specimen length
scale.
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Figure 7: The dependence of the exponent in Paris law (17) on the similarity
parameter Z for 4340 steel (Botvina, see [32]).

This conclusion is of high importance, and it had to be checked experimen-
tally. Indeed, it obtained a persuasive experimental confirmation. L.R. Botvina,
processing the data by Heiser and Mortimer [33] (see [32]), and R.O. Ritchie
[34], processing the data by Knott and Ritchie [35] (Figures 7 and 8), showed
that the dependence of m upon Z, i.e., upon the specimen size can be substan-
tial. Therefore, using in practical structural design of the results of the standard
fatigue experiments performed on small specimens can be dangerous: the real
life-time of the structure can be overestimated.

I think that this example has a wider meaning. Power laws are often used in
engineering practice as material properties. Characteristic examples — the cal-
culation of J-integrals for plastic materials assuming the power law constitutive
equation, or the evaluation of the life-time of polymeric structures assuming the
power-type dependence of the fracture toughness on the crack-tip velocity. In
fact, the universality of constitutive relations should be carefully checked in the
the specimens of various sizes, otherwise the predictions of strength could be
unreliable.
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Figure 8: The dependence of the exponent in Paris law (17) on the similarity
parameter Z for various steels (Ritchie [35]).

16



5 Conclusion

I want to mention in the end of my lecture a very recent result of K.B. Broberg
[36], related to dynamic crack propagation and at the same time — indirectly
— to incomplete similarity.

It is known that in various fields of applied mathematics over the last century,
there appeared the Korteweg-de Vries equation

∂tu + u∂xu + β∂3
xxxu = 0, (28)

where t is the time, x the space coordinate, and β > 0 is a constant. Equation
(28) has special solitary wave solutions of the traveling wave type: u = u(x −
λt + c):

u =
u0

cosh2
(√

uo

12β ζ
) , ζ = x− λt + c, u0 = 3λ, (29)

so that the wave is uniformly propagating with velocity λ and amplitude 3λ.
Transforming the variables x = ln ξ, t = ln τ , and c = − ln A is reducing the

traveling wave solution (28) to a simple self-similar form:

u =
12λ

2 + (η)
√

λ/β + (η)−
√

λ/β
, η =

ξ

Aτλ
. (30)

One of the results of the remarkable work by Gardner, Greene, Kruskal and
Miura [37] was that the traveling wave solutions of type (29) are intermediate
asymptotics of the solutions corresponding to hump-like shapes of the initial
conditions. The velocity λ and the amplitude u0 = 3λ depend on the initial
conditions of the original problem for which the traveling wave is an intermediate
asymptotic. The self-similar interpretation (30) of the traveling wave shows that
this is exactly the case of the incomplete similarity where the power cannot be
determined by dimensional analysis.

K.B. Broberg [38] found recently, using the numerical cell method which he
invented, that the situation similar to traveling-wave solutions of the Korteweg-
de Vries equation happens also for dynamic cracks, so that for steady dynamic
cracks the velocity of propagation and the amplitude are determined by initial
conditions. Contrary to the case of Korteweg-de Vries solitary waves where the
velocity can be an arbitrary positive number, the velocities of dynamic cracks
(experimental fact!) does not exceed approximately one third of the Rayleigh
velocity. What is the reason of that is yet unknown — discovery of that reason
would be of fundamental interest for dynamic fracture.

I want to say in conclusion that in our time multiscale phenomena where
the parameters of the same dimensions but of largely different magnitude enter
the model of the phenomenon simultaneously, attract more and more attention.
(The examples presented above are characteristic ones.) Nanoscience which is
very popular now is one of the characteristic fields, too. Scaling and incomplete
similarity will play a decisive role in studying structural strength multi-scale
models, turbulence, and other branches of applied mathematics and engineering
science.

17



6 Acknowledgments

This work was supported by the Director, Office of Science, Computational
and Technology Research, U.S. Department of Energy under Contract No. DE-
AC03-76SF00098.

18



References
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