
Performance Characteristics of the Cray X1 and Their
Implications for Application Performance Tuning

Hongzhang Shan
Lawrence Berkeley National Laboratory

One Cyclotron Road
Berkeley, CA 94720

hshan@lbl.gov

Erich Strohmaier
Lawrence Berkeley National Laboratory

One Cyclotron Road
Berkeley, CA 94720

estrohmaier@lbl.gov

ABSTRACT
During the last decade the scientific computing community has
optimized many applications for execution on superscalar
computing platforms. The recent arrival of the Japanese Earth
Simulator has revived interest in vector architectures especially in
the US. It is important to examine how to port our current
scientific applications to the new vector platforms and how to
achieve high performance. The success of porting these
applications will also influence the acceptance of new vector
architectures. In this paper, we first investigate the memory
performance characteristics of the Cray X1, a recently released
vector platform, and determine the most influential performance
factors. Then, we examine how to optimize applications tuned on
superscalar platforms for the Cray X1 using its performance
characteristics as guidelines. Finally, we evaluate the different
types of optimizations used, the effort for their implementations,
and whether they provide any performance benefits when ported
back to superscalar platforms.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Performance Attributes –
optimization; D.1.3 [Parallel Programming]: Performance
Characterization and Optimization;

General Terms
Algorithms, Measurement, Documentation, Performance

Keywords
Performance optimization, performance characterization,
performance measurement, vector processing

1. INTRODUCTION
Superscalar processors have experienced a rapid proliferation

in high-performance computing systems during the last decade. A
large body of scientific codes has been developed to run on
systems with superscalar processors. However, the arrival of the

Japanese Earth Simulator has revived interest in vector
architectures. The Earth Simulator system has demonstrated
sustained performance of almost 65% of peak-performance for a
production global atmospheric simulation; while the typical
sustained performance of scientific applications on superscalar
platforms is below 15% of their peak-performance[1,9]. Recently,
the Cray X1 supercomputer was also introduced. It provides
exceptional memory bandwidth, low-latency interconnects and
vector-processing capabilities. It is therefore important to
investigate whether the codes developed on superscalar platforms
can be run efficiently on these new vector platforms.

Compared with superscalar architectures, the vector

architecture has several advantages. First it alleviates the
instruction fetching, decoding bottleneck since each vector
instruction specifies a large number of operations and thus the
vector program needs far fewer instructions. Also, it has a large
vector register file and supports stride and gather/scatter memory
accesses. Thus, it can tolerate longer memory latency and exploit
the memory bandwidth more efficiently. But these architectural
advantages can only be realized when there is enough explicit
data level parallelism, i.e., the application programmer is able to
implement the numerical algorithm in vector-rich subroutines. In
addition, the fact that current vector processors run much slower
than their contemporary superscalar processors makes it essential
to take full advantage of its architectural features in order to
achieve better performance on the vector platforms.

Recently, several researchers have compared the application

performance on the superscalar platforms and vector platforms
[2,3]. But they provide little information for the end users on how
to optimize application performance. In the 1980s a large amount
of work was done on previous vector-architectures. Wayne and
Christopher analyzed how to transform the FORTRAN DO loops
to improve the performance on vector architectures [10]. Cheng
discussed the importance of vector pipelining and chaining on the
IBM 3090 and Cray X-MP [11]. Many of these techniques have
been implemented in compilers or hardware on modern vector
architectures and today programmers no longer need to perform
them manually. We need to examine which optimization
techniques are still effective on modern vector platforms. At the
same time, both superscalar and vector architectures have
changed substantially during the last decade. Due to the
increasing gap between the memory speed and CPU speed, the
memory performance has become the dominant performance
factor on the current computing platforms. In the 1980s a typical
vector computer had a flat shared memory often build with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICS’04, June 26-July 1, 2004, Malo, France.
Copyright 2004 ACM 1-58113-839-3/04/0006…$5.00.

SRAM technology and therefore very fast. Today large-scale
vector computers have either distributed memory between SMP
nodes (Earth-Simulator) or a non-uniform hierarchical shared
memory with caches (Cray X1). Also, the Cray X1 includes cache
and multi-streaming in its design which is radically different from
earlier vector architectures. Whether this innovative design will
generate special performance characteristics needs to be
investigated. In this paper, we use Apex-Map, a memory
performance probe, to study the performance characteristics of
superscalar platform and today’s vector platform and are
interested in the following questions:

• What are the performance characteristics of modern vector
architectures and how do they differ from superscalar
architectures?

• Can programs well tuned for superscalar platforms perform
well on modern vector architectures without further
optimizations?

• If not, can the performance characteristics be used as
guidelines to optimize the performance?

• What kinds of optimizations are needed? Is it as simple as
adding compiler directives or as complex as restructuring
data structures and algorithms?

From our experiments we find that data reuse, the most

influential performance factor on the superscalar platform, has
only little effect on the vector platform. The total amount of
memory accessed also minimally affects the performance. It is
still the vector length of data access and memory bank conflicts
that affect the performance most. Multi-streaming further helps
performance. We also learn that applications developed on
superscalar platforms cannot be ported directly to vector
platforms and achieve high performance. Adding compiler
directives can substantially improve performance in many cases.
However, restructuring the programs to increase vector length and
to eliminate memory bank conflicts provides the most potential
for performance optimization.

The rest of the paper is organized as follows. Section 2

introduces the experimental platforms we used. In Section 3, we
introduce Apex-Map, a performance probe based on memory
accesses, to analyze the different performance characteristics of
superscalar and vector architectures and establish the guidelines
to optimize on vector platforms. The applications we selected are
briefly described in Section 4. Performance of these applications
is analyzed in Section 5, which also examine the programming
efforts needed for performance optimization. Finally, Section 6
summarizes our results.

2. EXPERIMENTAL PLATFORMS
For this study we select two platforms, the most commonly used
IBM Power4 platform and the newly released Cray X1 platform
to represent the superscalar and vector platforms respectively.

2.1 IBM Power4 Platform
The Power4 chip contains two 64-bit microprocessor-cores

including their L1 caches, a microprocessor interface controller
unit, a shared 1.41MB L2 cache, a L3 cache directory, and other
controllers. Each processor has eight execution units (2 floating-
point units, 2 load/store units, 2 fixed-point units, 1 branch unit,
and 1 logic unit), each capable of being issued an instruction each
cycle. The floating-point unit can start a fused multiply and add

each cycle. Thus, the peak floating point performance for a 1.3
GHz model is 4*1.3G = 5.2 GFLOPS. It can fetch up to eight
instructions per cycle and can dispatch and complete instructions
at a rate of up to five per cycle.

The Power4 storage hierarchy consists of three levels of

cache and the memory subsystem. Each processor has one 64KB
instruction cache and one 32KB data cache. The L1 data cache is
triple ported capable of two 8-byte read and one 8-byte write per
cycle with no blocking. The L1 data cache reloads from L2 are
32-bytes per cycle. This means that the L2 cache can load the
equivalent of four double precision floating-point data elements
per cycle, which is double the capability of the processors to issue
load instructions. The L1 is write-through and the stores are
passed to the L2 interface 8 bytes at a time. Cache line size is 128
bytes. The L2 is a store-in cache. In the case where the cache line
is not already present in the L2 cache, then it must be loaded from
memory, another chip’s L2 cache, or the L3 cache to ensure that
the L2 cache contains the latest copy of the cache line. Each
processor is capable of managing up to eight data cache line
requests to the L2 cache (and beyond) at any given time.

The Fabric Controller is responsible for controlling data flow
between the L2 and L3 controller for the chip. The bus between
L3 controller and L3 cache (on a different chip) is 16-byte wide
running at 1/3 the processor frequency. The L3 cache size is
32MB. It is designed to be combined with other L3 caches on the
same processor module in pairs or quadruplets to create a larger,
address-interleaved L3 cache of 64MB or 128MB. Each
processor has three types of buffer caches to speed the process of
translating from virtual address to physical address: a translation
look-aside buffer (TLB), a segment look aside buffer (SLB), and
an effective-to-real address table (ERAT). The page size can be
4KB or 16MB. It supports up to eight prefetch streams. A
load/store between floating point register and L1 has a latency of
about 4cycles; between registers and L2 it is approximately 14
cycles.

2.2 Cray X1

The basic building block for Cray X1 is the multi-streaming

processor (MSP), which consists of four identical single-stream
processors (SSP). Each SSP has two 64-bit vector units and one 2-
way superscalar unit. The clock frequency for the vector units is
800MHz. Each vector unit is capable of one 64-bit floating-point
add and one floating-point multiply operation each cycle. Thus
the peak floating-point performance for a SSP is 3.2GFLOPs/s.
Each SSP has 32 vector registers holding 64 double-precision
words, allowing up to 512 outstanding memory requests to hide
latency. Additionally, all vector operations are performed under a
bit mask, allowing loop blocks with conditionals to compute
without the need for scatter/gather operations. The scalar unit
runs at 400MHz with two 16KB caches (instruction cache and
data cache).

The four SSPs inside a MSP share a 2-way set associative
2MB data cache, a unique feature for vector architectures. The
cache is needed because the memory bandwidth is not large
enough to saturate the vector units. The peak memory bandwidth
is 25.6 GB/s, i.e. 0.5 Words/FLOP while the cache bandwidth is

doubled to 51.2GB/s. The cache here is mainly designed to
exploit the temporal locality of scientific applications. An X1
node consists of four MSPs sharing a flat memory through 16
memory controllers (Mchips). Each Mchip is attached to a local
memory bank (Mbank), for an aggregate of 200GB/s node
bandwidth. To build large configurations, a modified 3D torus
interconnect is implemented via specialized routing chips.
Finally, the X1 is a globally addressable architecture, with
specialized hardware support that allows processors to directly
read/write remote memory address in an efficient way.

The X1 programming model is designed to hierarchically

leverage parallelism. At the SSP level, vector instructions allow a
large number of SIMD operations to execute in a pipeline fashion,
thereby tolerating memory latency and allowing for high-
sustained performance. MSP parallelism is achieved by
distributing loop iterations across each of the four SSPs. The
compiler must therefore generate both vectorizing and
multistreaming instructions to effectively utilize the X1. Intra-
node parallelism across the four MSPs is explicitly controlled
using shared-memory directives such as OpenMP or Pthreads.
Finally, traditional message passing via MPI is used for coarse-
grain parallelism at the inter-node level. Additionally, the
hardware supported globally addressable memory allows efficient
implementations of one-sided communication libraries (SHMEM,
MPI- 2), as well as implicitly parallel programming languages
(UPC and CAF). All X1 experiments reported in this paper were
performed on the 128-MSP system running UNICOS/mp 2.3.07
and operated by Oak Ridge National Laboratory.

3. ANALYSIS OF PERFORMANCE
CHARACTERISTICS

In this section, we use Apex-Map to investigate the
performance characteristics of superscalar architectures and
vector architectures. The goal is to find the performance
characteristics of the vector architectures that are distinct from the
conventional superscalar architectures and set up guidelines for
performance tuning on vector platforms.

Apex-Map [4] is a synthetic memory access probe to evaluate

different architectures. It has three input parameters: the amount
of memory accessed (M), the temporal reuse of data (α), and
vector length of data access (L). It assumes that application
performance can be characterized by these three architecture
independent parameters. Once an application has been
characterized with these parameters, Apex-Map generates a non-
uniform random access stream based on these parameters to
simulate the application’s memory access behavior. Therefore the
performance the Apex-Map should be close to that of the
corresponding application. Such a benchmark can be used as a
realistic indicator of achievable application performance and
enables the users to directly evaluate a new platform based on
their own interests.

Apex-Map uses indexed accesses to simulate memory

behavior. The starting addresses are aligned by length L and
generated by a random power distribution function controlled by
the parameter α. Once an address is accessed, the following L
addresses will also be accessed. The range of memory accessed is
within size M. The value of α varies between 0 and 1. Zero

indicates that maximum reuse (only one data item will be
repeatedly accessed) while one means uniform random access.
The value of L or M is between 1 and ∞ (or the maximum
memory available). Following is the kernel code for Apex-Map:

for (j=0; j < Length Of the Index Array/4; j ++) {
 for (k = 0; k < L; k++) {
 tmp += data[index[j*4]+k];
 tmp1 += data[index[j*4]+1+k];
 tmp2 += data[index[j*4]+2+k];
 tmp3 += data[index[j*4]+3+k];
 }

 }
The index array is computed using a power distribution

function with parameter α, L and M. The loop is manually
unrolled four times because some compilers cannot optimize the
loop well. Now let’s examine how the performance are affected
by these three parameters.

0.1

1.0

10.0

100.0

1000.0

1 10 100 1000 10000

Vector Length L

A
ve

ra
ge

 C
yc

le
s

Pe
r M

em
or

y
A

cc
es

s Cray X1

Power4

Figure 1. Effect of Vector Length L (M = 512 MB, α= 1.0).

The first experiment evaluates the effect of the parameter L.
The output of Apex-Map is the average number of cycles needed
for one memory access. The accesses to the index-array used to
store the random addresses are not counted as memory addresses,
only the accesses to the main data array. On Cray X1, the size of
L is equal to the vector length. When L is small, the startup cost of
the vector operation cannot be amortized well, leading to an
average of 160 cycles per memory access for vector length 1 (see
Fig. 1). With the increase of the vector length, the average access
time reduces substantially. On average it even takes less than 1
cycle when the vector length reaches 4096. On the Power4
platform, the average number of cycles per memory access
needed starts from around 250 for vector length 1 and goes down
with increasing L. However, beyond a vector-length of 256, the
average access times start to increase again. Contrary to the Cray
X1 platform, the longer vector length begins to hurt performance.
By examining hardware counters on the Power4, we found that
the number of loads per TLB miss drops almost four times
compared with the version without loop unrolling, which causes
the average access times to be flat for longer vectors. The possible
reason is that the prefectching of the unrolling version becomes
too aggressive for longer vectors. The results of this experiment
clearly indicate that using long vectors is critical to achieve high

performance on Cray X1 and the longer the better; on the Power4
platform, only certain vector length helps to improve the
performance.

The next experiment examines the effect of the parameter M,
the amount of memory accessed. The average cycles needed when
α=1 (uniform random access) and L = 64 are shown in Fig. 2. On
the Cray X1, the average cycles only change slightly when the
data set size approaches the cache size from about 5 cycles to 6
cycles. Otherwise, the number of cycles needed is almost stable.
However, on the Power4 platform, the number of average cycles
increases significantly from 1 cycle for 32KB memory size to
more than 11 cycles for 512MB. The memory access on the Cray
X1 is similar to uniform memory access. But the performance on
the Power4 platform is very sensitive to the parameter M. When
M is small, the data fit in cache and one needs only a few cycles
per memory access; when M becomes larger, most of the data
resides in main memory and cause the average cycles per memory
access to increase significantly. The Cray X1 hides the memory
latency much better than the Power4 platform.

0

2

4

6

8

10

12

32
KB

12
8K

B
51

2K
B

2M
B

8M
B

32
MB

12
8M

B

The Amount of Memory Accessed

A
ve

ra
ge

 C
yc

le
s

Pe
r M

em
or

y
A

cc
es

s Cray X1
Power4

 Figure 2. The effect of the amount of memory accessed (a =
1.0, L = 64).

Finally, let’s look at the effect of the data reuse α (Fig. 3).
The temporal reuse of data has little effect on the average cycles
per memory access on Cray X1 (Series: Cray-X1) while it
significantly affects the performance on Power4 (Series: Power4).
The number of average cycles per memory access increases from
1.5 cycles to 11.5 cycles when α changes from 0.001 to 1.0. At
the same time, on the Cray X1, the average number of cycles
increases only from 5.3 to 6. The Cray X1 has a large register file
and each SSP allows a maximum of 512 outstanding load
requests. This large pipeline of memory operations reduces the
effect of temporal reuse of the data on the performance. The
Power4 only allows eight outstanding memory requests and its
memory performance is therefore substantially influenced by the
value of α.

For nested loops, the Cray X1 prefers the longer loops to be
the inner loop to achieve high efficiency. If we switch loop j and
loop k in the above code, the new performance data are shown in
Fig. 3 as Series Cray X1-S and Power4-S. We would expect that

the number of average cycles per memory access is smaller when
the data reuse is higher (smaller α value). This is exactly the case
on the Power4 platform. To our surprise, on the Cray X1
platform, the number of cycles to load the data reaches its
maximum when the temporal reuse reaches the highest point at
α=0.001. This abnormal behavior is the consequence of memory
bank conflicts. When accessing the data in the same memory
bank, the second operation must wait until the first operation has
finished and the memory bank access logic has refreshed. The
pipeline of memory access for vector loads cannot work
efficiently in this case. If the temporal reuse of data is high, the
chance of memory bank conflicts in our programs becomes also
high. And the performance begins to suffer from the memory
bank conflicts. This is an artificial effect of our program. But it
does reflect the effect of memory bank conflicts on the vector
platform.

0
2
4
6
8

10
12
14
16
18
20

0.001 0.01 0.1 1

Temporal Reuse Of Data a

A
ve

ra
ge

 C
yc

le
s

Pe
r M

em
or

y
A

cc
es

s

Cray X1 Power4

Cray X1-S Power4-S

Figure 3. Effect of Temporal Reuse α (M = 512 MB, L = 64).
Smaller α value represents higher temporal data reuse. α = 1
represents uniform random distribution. The results of the
original code are labeled as Cray X1, and Power4
respectively. The results after switching the loops are labeled
as Cray X1-S and Power4-S.

By studying the effects of different parameters on memory

performance, we have found that the most influential parameter
on the Cray X1 platform is the vector length. Memory bank
conflict can also significantly hurt the performance. But the
memory size accessed and temporal locality, which highly affect
the memory performance on the Power4 platform, only have little
effect on the Cray X1. Therefore, the application tuning for vector
architectures should focus on increasing the vector length and
avoiding memory bank conflicts.

Optimizing the inter-node communication is not the focus of

this paper since it is common on both platforms for programs
written in MPI programming model. In this paper, we are
interested in the performance characteristics on vector platforms
that are different from superscalar platforms. Also the
applications we selected are already well tuned for inter node
communications on superscalar platforms.

4. APPLICATIONS
We start with applications that are well tuned for cache-

based superscalar platforms. Three applications, 1-D FFT, Radix
Sorting, and Nbody are originally from the SPLASH2 suites. We
rewrote them in the MPI programming model and tuned them on
the Origin 2000 platform [5,6]. Another application we used is
matrix multiplication.

FFT is a double precision complex 1-D version of the radix-

n six-step FFT algorithm described in [7], which is optimized
to minimize the inter-process communications. The n-point data

set is arranged in the form of a nn * matrix, and the matrix

is partitioned among the processors in blocks of pn
continuous rows each. The whole FFT structure is as follows: (i)
transpose matrix, (ii) perform 1-D FFTs individually on local

rows of size n each, (iii) multiply the elements of the resulting
complex matrix by the corresponded roots of unity, (iv) transpose
matrix, (v) perform 1-D FFTs individually on local rows, (vi)
transpose matrix.

Radix sorts a series of integer keys in ascending order using
the radix algorithm. The radix size used determines the number of
iterations. For each iteration, it computes the histograms first and
then moves the keys according to the histograms. There are two
main arrays working as source and destination alternatively. The
source data are read sequentially while the destination data are
written scattered.

Nbody simulates the interaction of a system of bodies in

three dimensions over a number of time steps, using a hierarchical
N-body method. There are three main stages, building an oct-tree
to represent the distribution of the bodies, browsing the oct-tree
and calculating the gravitational force, updating the body
positions and velocities. At the beginning of each time step, a
process has to exchange information with other processes to build
the tree. Then it will browse the tree from the top for each body
and compute the gravitational force along the path. The data
accesses are scattered and involve many pointer-chasing
operations. Force calculation is the most time-consuming stage.

Matrix-Multiplication (MM) computes the product of two

matrices, which is a very common basic operation in scientific
computations.

5. PERFORMANCE TUNING ON CRAY X1

The sequential performance of the original version on both

platforms is shown in Fig. 4. On the Cray X1, the codes run in
MSP mode. The data set sizes for Nbody, FFT, Radix, and MM
are 2 million bodies, 16 million data points, 256 million integers,
and 2048*2048 matrices respectively. In all cases, the execution
time on the Cray X1 is clearly much longer than that on Power4.
Note that the Y-axis is in log scale! The compiler on Cray X1 is
conservative and many loops cannot be vectorized or
multistreamed directly. By adding compiler directives wherever
suitable to instruct the compiler to generate both vectorizing and

multistreaming instructions, the performance can be significantly
improved. The new results are also shown in Fig. 4. The vendor
provides a compiling tool to indicate whether the loops can be
vectorized or not. The compiler is conservative when analyzing
the data independence between loop iterations. The compiler
directives can be used to explicitly instruct the compiler the data
independence so that the loop can be vectorized.

With proper compiler directives, the Cray X1 now performs
better for FFT and especially the matrix multiplication but still
worse for nbody and radix. The average vector lengths for nbody,
FFT, and radix are 3.71, 9.8, and 1 respectively (obtained using
the PAT tool on Cray X1). They are far less than the vector
register length of 64. This partially explains the lower efficiency
of the Cray X1 compared to the Power4 for these kernels. In case
of the matrix multiplication the vector length exceeds the vector
register length of 64. This leads to a substantially higher
efficiency of the Cray X1. Many applications, which have been
optimized for execution on superscalar platforms, can however
not be directly ported to the Cray X1 platform and achieve good
performance without further optimization.

Performance of the Original Version

1

10

100

1000

10000

Nbody FFT Radix MM

R
un

 T
im

e
(s

ec
s) Power4

Cray X1

Cray X1 with
directives

Figure 4. The Sequential Performance of the Original Code
Version on Power4 (5.2 GFlops/ peak) and Cray X1 (12.8
GFlop/s peak).

As we have discussed in Section 3, the performance of
vector machines is highly affected by the average vector length
and memory bank conflicts. Now let’s examine for each
individual application whether increasing the average vector
length and eliminating memory bank conflicts can optimize the
performance to a substantial extent. The codes with proper
compiler directives are called base version. Increasing the vector
length is mainly carried out by restructuring the code to exploit
the data parallelism across loops, which is difficult for the current
compiler to identify automatically.

5.1 FFT

Fig. 5 presents the performance of the base version on both
the Cray X1 and Power4 platforms. The Cray X1 performs better
than the Power4 platform, especially for large number of
processors. The average vector length is 9.8. In order to take full
advantage of the vector units, we need to increase the average

vector length. The approach is to perform the FFTs on 64 local
rows simultaneously instead of on only one row each time so that
the local computation can be fully vectorized. Unfortunately,
though the average vector length has been increased to almost 64,
the run time (Cray X1-vec) adversely becomes much longer.

One possible reason for the performance drop is the memory bank

conflicts since the row length n is a power of two. In order to
verify our guess, we pad each row with additional space so that
the row length is no longer a power of two. The padding results,
labeled as Cray X1-vec-pad in Fig. 5, indicate that the memory
bank conflict is indeed the reason for the performance loss. After
vectorizing and padding, the code can now deliver 16 times better
performance on the Cray X1 than on the Power4 platform for the
sequential case and at least five times better performance for large
number of processors. Actually, we find that even the base
version can benefit significantly from padding. By simply
padding the matrix for the base version, the performance on the
Cray X1 (Cray X1-pad) has been increased four times for the
sequential case.

0.1

1.0

10.0

100.0

1 2 4 8 16 32 64
Number Of Processors

R
un

 T
im

e
(s

ec
s)

Cray X1-Base

Cray X1-vec

Cray X1-pad

Cray X1-vec-pad

Power4-Base

 Figure 5. The Performance of FFT on Power4 and Cray X1.

5.2 Radix

Radix sort includes three phases: browsing the local data to
compute the local histogram, communicating among all the
processors to compute global histogram, and reassigning the data
based on the global histogram. However, none of these three
phases in the base version could be directly vectorized because of
loop dependencies. For example, following is the code used for
the first phase:

For (I = 0; I < N; I++) {
 key_val = key_from[I] & bb;
 key_val = key_val >> shift;
 bucket[key_val]++;
}

N is the number of data. Key_from is the source data array.

Bb and shift are used to compute which buckets the data belongs
to. Bucket is used to record the local histogram. The computation
of the value for the bucket prevents the loop from parallelized for
vector units on the Cray X1. We see in Fig. 6 that the base version
runs much slower on Cray X1. For the sequential case, the run

time is almost 4 times worse. This is mainly due to the slower
CPU speed and the smaller cache size on Cray X1 in addition to
the short average vector length. Both platforms can achieve
almost linear speedups when the number of processors is less than
32. However, when the number of processors reaches 64, Cray X1
becomes better since the communication switch currently
installed on the Power4 platform is not as efficient as that on Cray
X1.

In order to vectorize the code, we borrowed the “virtual
processor” concept from [8]. Each element of the vector register
is viewed as a virtual processor. Each virtual processor is assigned
a portion of the data and a set of independent buckets so that it
can work exactly as a processor in the base version. The
corresponding code for the first phase is changed to following:

For (j=0; j< VL; j++) {
 For (I=0; I < N / VL; I++) {
 key_val = key_from[j*N/VL+I] & bb;
 key_val = key_val >> shift;
 bucket_size[j*radix+key_val]++;
 }
}

VL is the number of virtual processors. The register size on

Cray X1 is 64 elements and there are four SSPs in each MSP
processor. Therefore, there are total 64*4 virtual processors
available. The performance for the vectorized code is shown in
Fig. 6, labeled as Cray X1-vec-64. Now the average vector length
becomes 64. The performance is better than the base version but
still significantly worse compared with its performance on the
Power4. The problem is also related to memory bank conflicts.
Using 256 as the number of virtual processors causes significant
memory bank conflicts and substantially hurt the performance.
Instead, if we use 63*4 as the number of virtual processors, the
run time, labeled as Cray X1-vec-63, is 8 – 36 times better than its
base version and 3 – 9 times better than Power4.

0.1

1.0

10.0

100.0

1000.0

1 2 4 8 16 32 64

Number Of Processors

R
un

 T
im

e
(s

ec
s)

Cray X1-Base
Power4-Base
Cray X1-Vec-63
Cray X1-Vec-64

 Figure. 6. The Performance of Radix on Power4 and Cray
X1.

5.2 Nbody
The performance of the nbody application is shown in Fig. 7.

Its base version also runs faster on the Power4 platform than on
the Cray X1. There are three phases in each time step of a
simulation. But, the main computation lies in the force calculation
phase. In this phase, each body traverses the oct-tree starting from

the root. If the distance between the body and a visited node is
large enough, the whole subtree rooted at it, will be approximated
by that node. Otherwise, the body will visit all the children of the
node, computing their effects individually and recursively.
Therefore, the path through which a body traverses the oct-tree is
dynamically decided and different from each other. Because of
the complexity and irregularity of the code, we have not been able
to reform the code to enable the compiler to vectorize this whole
process.

A partial solution is to separate this process into two stages:

finding all the nodes affecting the body first (browsing stage) and
computing the force effects later (computing stage). In this way,
we can easily vectorize the second stage and leave only the first
stage not vectorized. But the first stage is not intrinsically serial.
It could be efficiently multi-streamed. The performance of the
new version is shown in Fig labeled as Cray X1-opt. The
performance improvement is limited to 20%. The average vector
length is increased from 3.71 to 27.40. However, The code still
runs slower on the Cray X1. By further analysis we find that the
browsing stage is very time consuming and dominates the tree
traversing process. For example, using the optimized version, the
combined time of these two stages within a one-step simulation
for 2 million bodies is 130 seconds. By removing the computing
stage, the run time is only reduced to 122 seconds. The pointer-
chasing operation on the Cray X1 platform is very expensive. It
needs several instructions to form a 64-bit address.

0

100

200

300

400

500

1 2 4 8 16 32 64

Number of Processors

R
un

 T
im

e
(s

) Cray X1-Base
Cray X1-Opt
Power4-Base

Figure 7. The Performance of Nbody on Power4 and Cray X1.

5.4 Matrix Multiplication (MM)

The base version we used is a blocked matrix multiplication.
On the cache-based superscalar platforms, block algorithms are
often exploited to achieve better reuse of data in local memory.
We select 16 as the block size on Power4 platform and 256 on
Cray X1 individually. The run times are presented in Fig. 8. The
Cray X1 runs 26 times faster for the sequential case and at least
six times faster for the multiprocessor cases. The average vector
length reaches 64. The advantages of vector units for such
regular, vector-rich applications have been fully demonstrated.

Compared with non-blocked code, blocked code is usually

much more difficult to develop and understand. It also introduces
an artificial parameter, block size, that has nothing to do with the
algorithm and has to be tuned on each specific platform.
Therefore, we like to examine how the non-blocked code works

on the Cray X1 platform since it prefers longer vectors. Suppose
the matrix sizes for a and b are M*N and N*K respectively and the
matrices are stored in one-dimensional arrays. There are two
naïve ways to implement the matrix multiplication: stride and uni-
stride:

0.01

0.10

1.00

10.00

100.00

1 2 4 8 16 32 64

Number Of Processors

R
un

ni
ng

 T
im

e
(s

ec
s)

Cray X1-stride

Cray X1-uni

Cray X1-base

Power4-base

Figure 8. The Performance of Matrix Multiplication on

Power4 and Cray X1.

Stride Implementation:
For (i=0; i < M; i ++) {
 For (j = 0; j < K; j++) {
 tmp = 0;

 For (k = 0; k < N; k++) {
 tmp += a[i*N+k] * b[k*K+j];
 }
 c[i*K+j] = tmp;
 }
}

Uni-stride Implementation:
For (i=0; i < M; i ++) {
 For (k = 0; k < N; k++) {
 For (j = 0; j < K; j++) {
 c[I*K+j] += a[i*N+k] * b[k*K+j];
 }
 }
}

The main difference between these two implementations is

the order of the second and third loop. Both versions can achieve
the same average vector length 64 on the Cray X1. And we expect
the uni-stride version to deliver better performance. This is true
on the cache-based Power4 platform. Surprisingly, the stride
version performs at least two times better than the uni-stride
version and also better than the blocked version. If we unroll the
most outer loop four times, the stride version can deliver even
slightly better performance than the vendor-provided dgemm
function in the sci library. By the performance tools on the Cray
X1 (PAT), we find that there are actually no vector load
references with stride bigger than 2. The main difference between
these two versions is the number of load/store references. The
uni-stride version has M times more store references and eight
time more load references since each time a c element has
changed, it has to stored first and read back later. By examining
the assembler code, we find that the characteristics of stride

access have been changed due to vector processing. Fig. 9
illustrates this effect.

Figure 9. Memory Access for Stride Matrix Multiplication.

0.0

1.0

2.0

3.0

4.0

5.0

1 2 4 8 16 32 64

Number Of MSP Processors

R
un

 T
im

e
R

at
io

of
 S

SP
 v

s.
 M

SP

Nbody Radix

FFT MM

Figure 10. The Run time Ratio of SSP vs. MSP on Cray X1.

In order to compute 0,0c , we need to load the first row of

matrix A and the first column of matrix B. Accessing 0,0a ~

1,0 −na is continuous access. However, visiting 0,0b ~ 1,0 −nb is

stride accesses. Because of the vector effect, 0,0c ~ 1,0 −VLc are

computed simultaneously. Therefore 0,ib ~ 1, −VLib should also be

accessed at the same time. The result is that the stride access is
replaced by continuous access. We only need to load matrix A
and C one time unlike the uni-stride version where the matrix C
has to be accessed many times.

 In summary, the tuning results of FFT and Radix indicate

that increasing the vector length and avoiding memory bank
conflicts at the same time indeed improve the performance on the
vector machine substantially. This conclusion is also validated by
the negative nbody result. If a code cannot be vectorized well,
there is no way to expect good performance from vector
machines. Matrix multiplication tells us that vector processing
may benefit from some access patterns that we try to avoid on
cache-based superscalar architectures.

5.5 MSP vs. SSP

On the Cray X1, each MSP processor contains four identical

SSPs that share a 2-way set associative 2MB cache. Programming
in MSP mode is similar to developing codes on SMP-based
platforms using the OpenMP model inside a SMP node and the
MPI programming model across the nodes. But the compiler on
the Cray X1 can automatically distribute loop iterations across
each of the four SSPs and generate either SMP or MSP executable
codes from the same source code. It does not require the
programmer to provide explicit OpenMP directives so the
programmer can freely select either MSP mode or SSP mode
based on the application characteristics to achieve better
performance without modifying the source code.

Fig. 10 presents the run time ratio of SSP over MSP using

the best version we presented above. The number of processors on
the X-axis is the number of MSP processors. Each MSP processor
contains four identical SSP processors. We find that only for a
few cases, the SSP mode performs slightly better than the MSP
mode. In most cases, its performance falls behind that of the
MSPs, especially when the number of processors goes up. In the
worst case, it causes a four-time performance slowdown. The
main reason for the performance drop is that the SSP mode will
increase the number of messages each processor has to process
and reduce the size of each message.

VL VL

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−−

−

−

−−−−

−

−

−−−−

−

−

1,11,10,1

1,11,10,1

1,01,00,0

1,11,10,1

1,11,10,1

1,01,00,0

1,11,10,1

1,11,10,1

1,01,00,0

*

kmmm

k

k

knnn

k

k

nmmm

n

n

ccc

ccc
ccc

bbb

bbb
bbb

aaa

aaa
aaa

L

MMMM

L

L

L

MMMM

L

L

L

MMMM

L

L

5.6 Optimization Impact on the Power4
platform

0

50

100

150

200

250

300

Nbody FFT Radix MM

R
un

 T
im

e
(s

ec
s)

Base

Optimized

Figure 11. Effects of Cray X1 Optimizations on Power4.

It is interesting to examine whether the optimizations that are

beneficial on Cray X1 are portable to the Power4 platform or if
they are unique to the Cray X1. The sequential results for the base
version and optimized version on Power4 are exhibited in Fig. 11.
The run times of the optimized version are either similar to their
base version (Nbody, FFT, Radix) or substantially longer. The
optimizations for these four are unique to the Cray X1 and cannot
be ported back to the Power4 platform. This is different from the
results reported from [12]. The vectorized code runs 10~20%
faster there when ported back to Power4 platforms. The reason is
that the optimized code brought more loop level parallelism in the
leaf subroutines, and the Power 4 had more useful flops to do
rather than branches. Therefore, the performance impact of
vectorized code on Power4 is closely related with application
characteristics.

6. CONCLUSIONS
In this paper, we have investigated the performance

characteristics of the Cray X1 using Apex-Map, a memory access
probe. We find that the most important factors, which affect the
performance on this platform, are the average vector length and
memory bank conflicts. The memory size accessed and data reuse
have a much smaller effect. Using these characteristics as a guide
for performance-tuning, we are able to substantially improve the
performance of several applications. The performance of FFT has
been improved 10 times for the sequential case and 1.2 times for
the 64-processor case. When the number of processors is high, the
transpose in the FFT starts to dominate the execution time,
leading the performance to drop. Radix has been improved 36
times for the sequential case and 9 times for the 64-processor
case. However, for nbody, the performance gain is only 20%.
This limited improvement is mainly due to unsuccessful
vectorization. For such dynamic, irregular applications, the code
becomes more complex and irregular; vectorizing the code
becomes challenging. For matrix multiplication, we use a strided
version, which is intentionally avoided on Power4 platforms, to
improve the performance 1.5 ~ 2.2 times. The optimized version
can achieve 85% of the peak performance on a single SMP node
and even runs slightly faster than vendor provided dgemm library
routine.

Adding compiler directives can significantly improve the

performance because in many cases the compiler cannot perform
an adequate dependency analysis on its own. The compiler
directives can explicitly inform the compiler of the data
independence between loop iterations. However, adding
directives itself cannot deliver optimal performance since
directives do not help to exploit the data parallelism across loops
or functions. For all our four applications, we have to
substantially change the code to change data structures or
algorithms in order to help the compiler to find the parallelism.
For FFT, we have padded the data structure to eliminate the
memory bank conflicts and change the loop structure to increase
the average vector length. For Radix, we use the virtual processor
concept to reorganize the code. In nbody, we separate the tree
browsing and force calculation operations. For matrix
multiplication, we use strided access. Unfortunately, we find that
these optimizations on Cray X1 cannot be ported back to Power4
platform as well as some other applications.

7. ACKNOWLEDGMENTS
The authors thank ORNL for providing access to the Cray

X1 and Power4 platforms. All authors are supported by the Office
of Advanced Scientific Computing Research in the U.S. DOE
Office of Science under contract DE-AC03-76SF00098. The
authors would also like to thank James Schwarzmeier for his
valuable discussion.

8. REFERENCES

[1] Gordon Bell and Jim Gray, What’s Next in High-Performance
Computing? Communications of the ACM, February 2002, Vol.
45 No. 2.
[2] T.H.Dunigan, M.R. Fahey, J.B.White, P.H. Worley, Early
Evaluation of the Cray X1, SC2003, Phoenix, AZ. Nov. 2003.
[3] Leonid Oliker, Rupak Biswas, Julian Borrill, Andrew
Canning, Jonathan Crater, M. Jahed Djomehri, Hongzhang Shan,
and David Skinner, “A Performance Evaluation of the Cray X1
for Scientific Applications”, 6th International Meeting on High-
Performance Computing for Computational Science, Valencia,
Spain, June 28-30, 2004.
[4] Apex-Map, Application Performance Characterization –
Memory Access Probe. See http://ftg.lbl.gov.
[5] Hongzhang Shan, Jaswinder Pal Singh, Comparison of
Message Passing, SHMEM and Cache-coherent Shared Address
Space Programming Models on the SGI Origin 2000,
International Conference of Supercomputing, May 1999, Rhodes
Island.
[6] Hongzhang Shan, Leonid Oliker, Rupak Biswas, Jaswinder
Pal Singh, Comparing Three Programming Models for Adaptive
Applications on SGI Origin 2000, Supercomputing, 2000, Dallas,
Texas.
[7] David H. Bailey, FFTs in External or Hierarchical Memories,
Journal of Supercomputing, 4:23-25, 1990.
[8] Marco Zagha, Guy E. Blelloch, Radix Sort For Vector
Multiprocessors, SC1991, Albuquerque, New Mexico.

[9] S. Shingu et al, A 26.58 Tflops Global Atmospheric Simulation
With The Spectral Transform Method On the Earth Simulator, in
Proceeding SC2002, Baltimore, MD, 2002.
[10] Wayne R. Cowell and Christopher P. Thompson,
Transforming FORTRAN DO loops to improve performance on
vector architectures, ACM Transactions on Mathematical
Software, Vol.2 Issue 4, Pages 324-353, 1987.

[11] H. Cheng, Vector Pipelining, Chaining, and Speed on the
IBM 3090 and Cray X-MP, IEEE Computers, 22(9):31-46, sep
1989.
[12] Hoffman, Forrest M., Trey White, and Mariana Vertenstein.
June 25, 2003. Vectorizing the CLM: Progress and Plans. Land
Model Working Group Meeting at the Community Climate
System Model (CCSM) Annual Meeting, Breckenridge,
Colorado.
http://climate.ornl.gov/clm/presentations/20030625/

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor The Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or assumes
any legal responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by its trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof, or The Regents of the University of California. The
views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof or The Regents of the University of
California.

