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ABSTRACT 
During the last decade the scientific computing community has 
optimized many applications for execution on superscalar 
computing platforms. The recent arrival of the Japanese Earth 
Simulator has revived interest in vector architectures especially in 
the US. It is important to examine how to port our current 
scientific applications to the new vector platforms and how to 
achieve high performance. The success of porting these 
applications will also influence the acceptance of new vector 
architectures. In this paper, we first investigate the memory 
performance characteristics of the Cray X1, a recently released 
vector platform, and determine the most influential performance 
factors. Then, we examine how to optimize applications tuned on 
superscalar platforms for the Cray X1 using its performance 
characteristics as guidelines. Finally, we evaluate the different 
types of optimizations used, the effort for their implementations, 
and whether they provide any performance benefits when ported 
back to superscalar platforms. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Performance Attributes –
optimization; D.1.3 [Parallel Programming]: Performance 
Characterization and Optimization;   

General Terms 
Algorithms, Measurement, Documentation, Performance 

Keywords 
Performance optimization, performance characterization, 
performance measurement, vector processing 

1. INTRODUCTION 
Superscalar processors have experienced a rapid proliferation 

in high-performance computing systems during the last decade. A 
large body of scientific codes has been developed to run on 
systems with superscalar processors. However, the arrival of the 

Japanese Earth Simulator has revived interest in vector 
architectures. The Earth Simulator system has demonstrated 
sustained performance of almost 65% of peak-performance for a 
production global atmospheric simulation; while the typical 
sustained performance of scientific applications on superscalar 
platforms is below 15% of their peak-performance[1,9]. Recently, 
the Cray X1 supercomputer was also introduced. It provides 
exceptional memory bandwidth, low-latency interconnects and 
vector-processing capabilities. It is therefore important to 
investigate whether the codes developed on superscalar platforms 
can be run efficiently on these new vector platforms. 

 
Compared with superscalar architectures, the vector 

architecture has several advantages. First it alleviates the 
instruction fetching, decoding bottleneck since each vector 
instruction specifies a large number of operations and thus the 
vector program needs far fewer instructions. Also, it has a large 
vector register file and supports stride and gather/scatter memory 
accesses. Thus, it can tolerate longer memory latency and exploit 
the memory bandwidth more efficiently. But these architectural 
advantages can only be realized when there is enough explicit 
data level parallelism, i.e., the application programmer is able to 
implement the numerical algorithm in vector-rich subroutines. In 
addition, the fact that current vector processors run much slower 
than their contemporary superscalar processors makes it essential 
to take full advantage of its architectural features in order to 
achieve better performance on the vector platforms. 

 
Recently, several researchers have compared the application 

performance on the superscalar platforms and vector platforms 
[2,3]. But they provide little information for the end users on how 
to optimize application performance. In the 1980s a large amount 
of work was done on previous vector-architectures.  Wayne and 
Christopher analyzed how to transform the FORTRAN DO loops 
to improve the performance on vector architectures [10]. Cheng 
discussed the importance of vector pipelining and chaining on the 
IBM 3090 and Cray X-MP [11]. Many of these techniques have 
been implemented in compilers or hardware on modern vector 
architectures and today programmers no longer need to perform 
them manually. We need to examine which optimization 
techniques are still effective on modern vector platforms. At the 
same time, both superscalar and vector architectures have 
changed substantially during the last decade. Due to the 
increasing gap between the memory speed and CPU speed, the 
memory performance has become the dominant performance 
factor on the current computing platforms. In the 1980s a typical 
vector computer had a flat shared memory often build with 
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SRAM technology and therefore very fast. Today large-scale 
vector computers have either distributed memory between SMP 
nodes (Earth-Simulator) or a non-uniform hierarchical shared 
memory with caches (Cray X1). Also, the Cray X1 includes cache 
and multi-streaming in its design which is radically different from 
earlier vector architectures. Whether this innovative design will 
generate special performance characteristics needs to be 
investigated. In this paper, we use Apex-Map, a memory 
performance probe, to study the performance characteristics of 
superscalar platform and today’s vector platform and are 
interested in the following questions:  

• What are the performance characteristics of modern vector 
architectures and how do they differ from superscalar 
architectures?   

• Can programs well tuned for superscalar platforms perform 
well on modern vector architectures without further 
optimizations?  

• If not, can the performance characteristics be used as 
guidelines to optimize the performance?   

• What kinds of optimizations are needed?  Is it as simple as 
adding compiler directives or as complex as restructuring 
data structures and algorithms?  

 
From our experiments we find that data reuse, the most 

influential performance factor on the superscalar platform, has 
only little effect on the vector platform. The total amount of 
memory accessed also minimally affects the performance. It is 
still the vector length of data access and memory bank conflicts 
that affect the performance most. Multi-streaming further helps 
performance. We also learn that applications developed on 
superscalar platforms cannot be ported directly to vector 
platforms and achieve high performance. Adding compiler 
directives can substantially improve performance in many cases. 
However, restructuring the programs to increase vector length and 
to eliminate memory bank conflicts provides the most potential 
for performance optimization.   

 
The rest of the paper is organized as follows. Section 2 

introduces the experimental platforms we used. In Section 3, we 
introduce Apex-Map, a performance probe based on memory 
accesses, to analyze the different performance characteristics of 
superscalar and vector architectures and establish the guidelines 
to optimize on vector platforms. The applications we selected are 
briefly described in Section 4. Performance of these applications 
is analyzed in Section 5, which also examine the programming 
efforts needed for performance optimization.  Finally, Section 6 
summarizes our results.    

2. EXPERIMENTAL PLATFORMS 
For this study we select two platforms, the most commonly used 
IBM Power4 platform and the newly released Cray X1 platform 
to represent the superscalar and vector platforms respectively. 

2.1 IBM Power4 Platform 
The Power4 chip contains two 64-bit microprocessor-cores 

including their L1 caches, a microprocessor interface controller 
unit, a shared 1.41MB L2 cache, a L3 cache directory, and other 
controllers. Each processor has eight execution units (2 floating-
point units, 2 load/store units, 2 fixed-point units, 1 branch unit, 
and 1 logic unit), each capable of being issued an instruction each 
cycle. The floating-point unit can start a fused multiply and add 

each cycle. Thus, the peak floating point performance for a 1.3 
GHz model is 4*1.3G = 5.2 GFLOPS. It can fetch up to eight 
instructions per cycle and can dispatch and complete instructions 
at a rate of up to five per cycle.  

 
The Power4 storage hierarchy consists of three levels of 

cache and the memory subsystem. Each processor has one 64KB 
instruction cache and one 32KB data cache. The L1 data cache is 
triple ported capable of two 8-byte read and one 8-byte write per 
cycle with no blocking. The L1 data cache reloads from L2 are 
32-bytes per cycle. This means that the L2 cache can load the 
equivalent of four double precision floating-point data elements 
per cycle, which is double the capability of the processors to issue 
load instructions.  The L1 is write-through and the stores are 
passed to the L2 interface 8 bytes at a time. Cache line size is 128 
bytes.  The L2 is a store-in cache. In the case where the cache line 
is not already present in the L2 cache, then it must be loaded from 
memory, another chip’s L2 cache, or the L3 cache to ensure that 
the L2 cache contains the latest copy of the cache line. Each 
processor is capable of managing up to eight data cache line 
requests to the L2 cache (and beyond) at any given time. 
 

The Fabric Controller is responsible for controlling data flow 
between the L2 and L3 controller for the chip. The bus between 
L3 controller and L3 cache (on a different chip) is 16-byte wide 
running at 1/3 the processor frequency.  The L3 cache size is 
32MB. It is designed to be combined with other L3 caches on the 
same processor module in pairs or quadruplets to create a larger, 
address-interleaved L3 cache of 64MB or 128MB.  Each 
processor has three types of buffer caches to speed the process of 
translating from virtual address to physical address: a translation 
look-aside buffer (TLB), a segment look aside buffer (SLB), and 
an effective-to-real address table (ERAT). The page size can be 
4KB or 16MB. It supports up to eight prefetch streams. A 
load/store between floating point register and L1 has a latency of 
about 4cycles; between registers and L2 it is approximately 14 
cycles. 

 

2.2 Cray X1 
 
The basic building block for Cray X1 is the multi-streaming 

processor (MSP), which consists of four identical single-stream 
processors (SSP). Each SSP has two 64-bit vector units and one 2-
way superscalar unit.  The clock frequency for the vector units is 
800MHz. Each vector unit is capable of one 64-bit floating-point 
add and one floating-point multiply operation each cycle. Thus 
the peak floating-point performance for a SSP is 3.2GFLOPs/s.  
Each SSP has 32 vector registers holding 64 double-precision 
words, allowing up to 512 outstanding memory requests to hide 
latency. Additionally, all vector operations are performed under a 
bit mask, allowing loop blocks with conditionals to compute 
without the need for scatter/gather operations.  The scalar unit 
runs at 400MHz with two 16KB caches (instruction cache and 
data cache).   
 

The four SSPs inside a MSP share a 2-way set associative 
2MB data cache, a unique feature for vector architectures.  The 
cache is needed because the memory bandwidth is not large 
enough to saturate the vector units. The peak memory bandwidth 
is 25.6 GB/s, i.e. 0.5 Words/FLOP while the cache bandwidth is 



doubled to 51.2GB/s. The cache here is mainly designed to 
exploit the temporal locality of scientific applications.  An X1 
node consists of four MSPs sharing a flat memory through 16 
memory controllers (Mchips). Each Mchip is attached to a local 
memory bank (Mbank), for an aggregate of 200GB/s node 
bandwidth. To build large configurations, a modified 3D torus 
interconnect is implemented via specialized routing chips.  
Finally, the X1 is a globally addressable architecture, with 
specialized hardware support that allows processors to directly 
read/write remote memory address in an efficient way.  

 
The X1 programming model is designed to hierarchically 

leverage parallelism. At the SSP level, vector instructions allow a 
large number of SIMD operations to execute in a pipeline fashion, 
thereby tolerating memory latency and allowing for high-
sustained performance. MSP parallelism is achieved by 
distributing loop iterations across each of the four SSPs. The 
compiler must therefore generate both vectorizing and 
multistreaming instructions to effectively utilize the X1. Intra-
node parallelism across the four MSPs is explicitly controlled 
using shared-memory directives such as OpenMP or Pthreads. 
Finally, traditional message passing via MPI is used for coarse-
grain parallelism at the inter-node level. Additionally, the 
hardware supported globally addressable memory allows efficient 
implementations of one-sided communication libraries (SHMEM, 
MPI- 2), as well as implicitly parallel programming languages 
(UPC and CAF). All X1 experiments reported in this paper were 
performed on the 128-MSP system running UNICOS/mp 2.3.07 
and operated by Oak Ridge National Laboratory.  

3. ANALYSIS OF PERFORMANCE 
CHARACTERISTICS 

In this section, we use Apex-Map to investigate the 
performance characteristics of superscalar architectures and 
vector architectures. The goal is to find the performance 
characteristics of the vector architectures that are distinct from the 
conventional superscalar architectures and set up guidelines for 
performance tuning on vector platforms.   

 
Apex-Map [4] is a synthetic memory access probe to evaluate 

different architectures. It has three input parameters: the amount 
of memory accessed (M), the temporal reuse of data (α), and 
vector length of data access (L). It assumes that application 
performance can be characterized by these three architecture 
independent parameters. Once an application has been 
characterized with these parameters, Apex-Map generates a non-
uniform random access stream based on these parameters to 
simulate the application’s memory access behavior. Therefore the 
performance the Apex-Map should be close to that of the 
corresponding application. Such a benchmark can be used as a 
realistic indicator of achievable application performance and 
enables the users to directly evaluate a new platform based on 
their own interests.  

 
Apex-Map uses indexed accesses to simulate memory 

behavior. The starting addresses are aligned by length L and 
generated by a random power distribution function controlled by 
the parameter α. Once an address is accessed, the following L 
addresses will also be accessed. The range of memory accessed is 
within size M. The value of α varies between 0 and 1. Zero 

indicates that maximum reuse (only one data item will be 
repeatedly accessed) while one means uniform random access. 
The value of L or M is between 1 and ∞ (or the maximum 
memory available). Following is the kernel code for Apex-Map: 

 
for  (j=0; j < Length Of the Index Array/4; j ++) { 
 for  (k = 0; k < L; k++) { 
     tmp += data[index[j*4]+k]; 
     tmp1 += data[index[j*4]+1+k]; 
      tmp2 += data[index[j*4]+2+k]; 
     tmp3 += data[index[j*4]+3+k]; 
       } 

        } 
The index array is computed using a power distribution 

function with parameter α, L and M. The loop is manually 
unrolled four times because some compilers cannot optimize the 
loop well. Now let’s examine how the performance are affected 
by these three parameters. 
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Figure 1. Effect of Vector Length L ( M = 512 MB, α= 1.0). 
 

The first experiment evaluates the effect of the parameter L. 
The output of Apex-Map is the average number of cycles needed 
for one memory access. The accesses to the index-array used to 
store the random addresses are not counted as memory addresses, 
only the accesses to the main data array. On Cray X1, the size of 
L is equal to the vector length. When L is small, the startup cost of 
the vector operation cannot be amortized well, leading to an 
average of 160 cycles per memory access for vector length 1 (see 
Fig. 1). With the increase of the vector length, the average access 
time reduces substantially. On average it even takes less than 1 
cycle when the vector length reaches 4096. On the Power4 
platform, the average number of cycles per memory access 
needed starts from around 250 for vector length 1 and goes down 
with increasing L. However, beyond a vector-length of 256, the 
average access times start to increase again. Contrary to the Cray 
X1 platform, the longer vector length begins to hurt performance. 
By examining hardware counters on the Power4, we found that 
the number of loads per TLB miss drops almost four times 
compared with the version without loop unrolling, which causes 
the average access times to be flat for longer vectors. The possible 
reason is that the prefectching of the unrolling version becomes 
too aggressive for longer vectors.  The results of this experiment 
clearly indicate that using long vectors is critical to achieve high 



performance on Cray X1 and the longer the better; on the Power4 
platform, only certain vector length helps to improve the 
performance. 
 

The next experiment examines the effect of the parameter M, 
the amount of memory accessed. The average cycles needed when 
α=1 (uniform random access) and L = 64 are shown in Fig. 2. On 
the Cray X1, the average cycles only change slightly when the 
data set size approaches the cache size from about 5 cycles to 6 
cycles. Otherwise, the number of cycles needed is almost stable. 
However, on the Power4 platform, the number of average cycles 
increases significantly from 1 cycle for 32KB memory size to 
more than 11 cycles for 512MB. The memory access on the Cray 
X1 is similar to uniform memory access.  But the performance on 
the Power4 platform is very sensitive to the parameter M. When 
M is small, the data fit in cache and one needs only a few cycles 
per memory access; when M becomes larger, most of the data 
resides in main memory and cause the average cycles per memory 
access to increase significantly.  The Cray X1 hides the memory 
latency much better than the Power4 platform.  
 

0

2

4

6

8

10

12

32
KB

12
8K

B
51

2K
B

2M
B

8M
B

32
MB

12
8M

B

The Amount of Memory Accessed

A
ve

ra
ge

 C
yc

le
s

Pe
r M

em
or

y 
A

cc
es

s Cray X1
Power4

 Figure 2. The effect of the amount of memory accessed (a = 
1.0, L = 64). 

Finally, let’s look at the effect of the data reuse α (Fig. 3). 
The temporal reuse of data has little effect on the average cycles 
per memory access on Cray X1 (Series: Cray-X1) while it 
significantly affects the performance on Power4 (Series: Power4). 
The number of average cycles per memory access increases from 
1.5 cycles to 11.5 cycles when α changes from 0.001 to 1.0. At 
the same time, on the Cray X1, the average number of cycles 
increases only from 5.3 to 6. The Cray X1 has a large register file 
and each SSP allows a maximum of 512 outstanding load 
requests. This large pipeline of memory operations reduces the 
effect of temporal reuse of the data on the performance. The 
Power4 only allows eight outstanding memory requests and its 
memory performance is therefore substantially influenced by the 
value of α. 
 

For nested loops, the Cray X1 prefers the longer loops to be 
the inner loop to achieve high efficiency. If we switch loop j and 
loop k in the above code, the new performance data are shown in 
Fig. 3 as Series Cray X1-S and Power4-S. We would expect that 

the number of average cycles per memory access is smaller when 
the data reuse is higher (smaller α value). This is exactly the case 
on the Power4 platform. To our surprise, on the Cray X1 
platform, the number of cycles to load the data reaches its 
maximum when the temporal reuse reaches the highest point at 
α=0.001. This abnormal behavior is the consequence of memory 
bank conflicts. When accessing the data in the same memory 
bank, the second operation must wait until the first operation has 
finished and the memory bank access logic has refreshed. The 
pipeline of memory access for vector loads cannot work 
efficiently in this case. If the temporal reuse of data is high, the 
chance of memory bank conflicts in our programs becomes also 
high. And the performance begins to suffer from the memory 
bank conflicts. This is an artificial effect of our program. But it 
does reflect the effect of memory bank conflicts on the vector 
platform. 
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Figure 3.  Effect of Temporal Reuse α (M = 512 MB, L = 64). 
Smaller α value represents higher temporal data reuse. α = 1 
represents uniform random distribution. The results of the 
original code are labeled as Cray X1, and Power4 
respectively. The results after switching the loops are labeled 
as Cray X1-S and Power4-S. 

 
By studying the effects of different parameters on memory 

performance, we have found that the most influential parameter 
on the Cray X1 platform is the vector length. Memory bank 
conflict can also significantly hurt the performance. But the 
memory size accessed and temporal locality, which highly affect 
the memory performance on the Power4 platform, only have little 
effect on the Cray X1. Therefore, the application tuning for vector 
architectures should focus on increasing the vector length and 
avoiding memory bank conflicts.  

 
Optimizing the inter-node communication is not the focus of 

this paper since it is common on both platforms for programs 
written in MPI programming model. In this paper, we are 
interested in the performance characteristics on vector platforms 
that are different from superscalar platforms. Also the 
applications we selected are already well tuned for inter node 
communications on superscalar platforms.  

 



4. APPLICATIONS 
We start with applications that are well tuned for cache-

based superscalar platforms. Three applications, 1-D FFT, Radix 
Sorting, and Nbody are originally from the SPLASH2 suites. We 
rewrote them in the MPI programming model and tuned them on 
the Origin 2000 platform [5,6]. Another application we used is 
matrix multiplication. 

 
FFT is a double precision complex 1-D version of the radix-

n  six-step FFT algorithm described in [7], which is optimized 
to minimize the inter-process communications. The n-point data 

set is arranged in the form of a nn * matrix, and the matrix 

is partitioned among the processors in blocks of pn  
continuous rows each. The whole FFT structure is as follows: (i) 
transpose matrix, (ii) perform 1-D FFTs individually on local 

rows of size n each, (iii) multiply the elements of the resulting 
complex matrix by the corresponded roots of unity, (iv) transpose 
matrix, (v) perform 1-D FFTs individually on local rows, (vi) 
transpose matrix. 
 

Radix sorts a series of integer keys in ascending order using 
the radix algorithm. The radix size used determines the number of 
iterations. For each iteration, it computes the histograms first and 
then moves the keys according to the histograms. There are two 
main arrays working as source and destination alternatively. The 
source data are read sequentially while the destination data are 
written scattered.  

 
Nbody simulates the interaction of a system of bodies in 

three dimensions over a number of time steps, using a hierarchical 
N-body method. There are three main stages, building an oct-tree 
to represent the distribution of the bodies, browsing the oct-tree 
and calculating the gravitational force, updating the body 
positions and velocities. At the beginning of each time step, a 
process has to exchange information with other processes to build 
the tree. Then it will browse the tree from the top for each body 
and compute the gravitational force along the path. The data 
accesses are scattered and involve many pointer-chasing 
operations. Force calculation is the most time-consuming stage.  

 
Matrix-Multiplication (MM) computes the product of two 

matrices, which is a very common basic operation in scientific 
computations.  
 

5. PERFORMANCE TUNING ON CRAY X1 
 
The sequential performance of the original version on both 

platforms is shown in Fig. 4. On the Cray X1, the codes run in 
MSP mode. The data set sizes for Nbody, FFT, Radix, and MM 
are 2 million bodies, 16 million data points, 256 million integers, 
and 2048*2048 matrices respectively. In all cases, the execution 
time on the Cray X1 is clearly much longer than that on Power4. 
Note that the Y-axis is in log scale! The compiler on Cray X1 is 
conservative and many loops cannot be vectorized or 
multistreamed directly.  By adding compiler directives wherever 
suitable to instruct the compiler to generate both vectorizing and 

multistreaming instructions, the performance can be significantly 
improved. The new results are also shown in Fig. 4. The vendor 
provides a compiling tool to indicate whether the loops can be 
vectorized or not. The compiler is conservative when analyzing 
the data independence between loop iterations. The compiler 
directives can be used to explicitly instruct the compiler the data 
independence so that the loop can be vectorized.  
 

With proper compiler directives, the Cray X1 now performs 
better for FFT and especially the matrix multiplication but still 
worse for nbody and radix. The average vector lengths for nbody, 
FFT, and radix are 3.71, 9.8, and 1 respectively (obtained using 
the PAT tool on Cray X1). They are far less than the vector 
register length of 64. This partially explains the lower efficiency 
of the Cray X1 compared to the Power4 for these kernels. In case 
of the matrix multiplication the vector length exceeds the vector 
register length of 64. This leads to a substantially higher 
efficiency of the Cray X1. Many applications, which have been 
optimized for execution on superscalar platforms, can however 
not be directly ported to the Cray X1 platform and achieve good 
performance without further optimization.  
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As we have discussed in Section 3, the performance of 
vector machines is highly affected by the average vector length 
and memory bank conflicts. Now let’s examine for each 
individual application whether increasing the average vector 
length and eliminating memory bank conflicts can optimize the 
performance to a substantial extent. The codes with proper 
compiler directives are called base version. Increasing the vector 
length is mainly carried out by restructuring the code to exploit 
the data parallelism across loops, which is difficult for the current 
compiler to identify automatically. 

5.1 FFT 
 

Fig. 5 presents the performance of the base version on both 
the Cray X1 and Power4 platforms. The Cray X1 performs better 
than the Power4 platform, especially for large number of 
processors. The average vector length is 9.8.  In order to take full 
advantage of the vector units, we need to increase the average 



vector length. The approach is to perform the FFTs on 64 local 
rows simultaneously instead of on only one row each time so that 
the local computation can be fully vectorized. Unfortunately, 
though the average vector length has been increased to almost 64, 
the run time (Cray X1-vec) adversely becomes much longer.   
 
One possible reason for the performance drop is the memory bank 

conflicts since the row length n  is a power of two. In order to 
verify our guess, we pad each row with additional space so that 
the row length is no longer a power of two. The padding results, 
labeled as Cray X1-vec-pad in Fig. 5, indicate that the memory 
bank conflict is indeed the reason for the performance loss. After 
vectorizing and padding, the code can now deliver 16 times better 
performance on the Cray X1 than on the Power4 platform for the 
sequential case and at least five times better performance for large 
number of processors. Actually, we find that even the base 
version can benefit significantly from padding. By simply 
padding the matrix for the base version, the performance on the 
Cray X1 (Cray X1-pad) has been increased four times for the 
sequential case. 
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 Figure 5. The Performance of FFT on Power4 and Cray X1. 

 
5.2 Radix 

Radix sort includes three phases: browsing the local data to 
compute the local histogram, communicating among all the 
processors to compute global histogram, and reassigning the data 
based on the global histogram. However, none of these three 
phases in the base version could be directly vectorized because of 
loop dependencies. For example, following is the code used for 
the first phase: 

 
For (I = 0; I < N; I++) { 
 key_val = key_from[I] & bb; 
 key_val = key_val >> shift; 
 bucket[key_val]++; 
} 

 
N is the number of data. Key_from is the source data array.  

Bb and shift are used to compute which buckets the data belongs 
to. Bucket is used to record the local histogram. The computation 
of the value for the bucket prevents the loop from parallelized for 
vector units on the Cray X1. We see in Fig. 6 that the base version 
runs much slower on Cray X1. For the sequential case, the run 

time is almost 4 times worse. This is mainly due to the slower 
CPU speed and the smaller cache size on Cray X1 in addition to 
the short average vector length. Both platforms can achieve 
almost linear speedups when the number of processors is less than 
32. However, when the number of processors reaches 64, Cray X1 
becomes better since the communication switch currently 
installed on the Power4 platform is not as efficient as that on Cray 
X1. 
 

In order to vectorize the code, we borrowed the “virtual 
processor” concept from [8]. Each element of the vector register 
is viewed as a virtual processor. Each virtual processor is assigned 
a portion of the data and a set of independent buckets so that it 
can work exactly as a processor in the base version. The 
corresponding code for the first phase is changed to following: 

 
For (j=0; j< VL; j++) { 
  For (I=0; I < N / VL; I++) { 
 key_val = key_from[j*N/VL+I] & bb; 
 key_val = key_val >> shift; 
 bucket_size[j*radix+key_val]++; 
  } 
} 
 
VL is the number of virtual processors. The register size on 

Cray X1 is 64 elements and there are four SSPs in each MSP 
processor. Therefore, there are total 64*4 virtual processors 
available. The performance for the vectorized code is shown in 
Fig. 6, labeled as Cray X1-vec-64. Now the average vector length 
becomes 64. The performance is better than the base version but 
still significantly worse compared with its performance on the 
Power4. The problem is also related to memory bank conflicts. 
Using 256 as the number of virtual processors causes significant 
memory bank conflicts and substantially hurt the performance. 
Instead, if we use 63*4 as the number of virtual processors, the 
run time, labeled as Cray X1-vec-63, is 8 – 36 times better than its 
base version and 3 – 9 times better than Power4.   
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 Figure. 6. The Performance of Radix on Power4 and Cray 
X1. 

 

5.2 Nbody 
The performance of the nbody application is shown in Fig. 7. 

Its base version also runs faster on the Power4 platform than on 
the Cray X1. There are three phases in each time step of a 
simulation. But, the main computation lies in the force calculation 
phase. In this phase, each body traverses the oct-tree starting from 



the root. If the distance between the body and a visited node is 
large enough, the whole subtree rooted at it, will be approximated 
by that node. Otherwise, the body will visit all the children of the 
node, computing their effects individually and recursively. 
Therefore, the path through which a body traverses the oct-tree is 
dynamically decided and different from each other. Because of 
the complexity and irregularity of the code, we have not been able 
to reform the code to enable the compiler to vectorize this whole 
process. 

 
A partial solution is to separate this process into two stages: 

finding all the nodes affecting the body first (browsing stage) and 
computing the force effects later (computing stage). In this way, 
we can easily vectorize the second stage and leave only the first 
stage not vectorized. But the first stage is not intrinsically serial. 
It could be efficiently multi-streamed.  The performance of the 
new version is shown in Fig labeled as Cray X1-opt. The 
performance improvement is limited to 20%. The average vector 
length is increased from 3.71 to 27.40. However, The code still 
runs slower on the Cray X1. By further analysis we find that the 
browsing stage is very time consuming and dominates the tree 
traversing process. For example, using the optimized version, the 
combined time of these two stages within a one-step simulation 
for 2 million bodies is 130 seconds. By removing the computing 
stage, the run time is only reduced to 122 seconds. The pointer-
chasing operation on the Cray X1 platform is very expensive. It 
needs several instructions to form a 64-bit address.      
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Figure 7. The Performance of Nbody on Power4 and Cray X1. 
 

5.4 Matrix Multiplication (MM) 
 

The base version we used is a blocked matrix multiplication. 
On the cache-based superscalar platforms, block algorithms are 
often exploited to achieve better reuse of data in local memory. 
We select 16 as the block size on Power4 platform and 256 on 
Cray X1 individually. The run times are presented in Fig. 8. The 
Cray X1 runs 26 times faster for the sequential case and at least 
six times faster for the multiprocessor cases. The average vector 
length reaches 64. The advantages of vector units for such 
regular, vector-rich applications have been fully demonstrated. 

 
Compared with non-blocked code, blocked code is usually 

much more difficult to develop and understand. It also introduces 
an artificial parameter, block size, that has nothing to do with the 
algorithm and has to be tuned on each specific platform. 
Therefore, we like to examine how the non-blocked code works 

on the Cray X1 platform since it prefers longer vectors. Suppose 
the matrix sizes for a and b are M*N and N*K respectively and the 
matrices are stored in one-dimensional arrays. There are two 
naïve ways to implement the matrix multiplication: stride and uni-
stride: 
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Figure 8. The Performance of Matrix Multiplication on 

Power4 and Cray X1. 
 
Stride Implementation: 
For (i=0; i < M; i ++) { 
 For (j = 0; j < K; j++) { 
      tmp = 0;  

    For (k = 0; k < N; k++) { 
  tmp += a[i*N+k] * b[k*K+j]; 
      } 
     c[i*K+j] = tmp; 
 } 
} 
 
Uni-stride Implementation: 
For (i=0; i < M; i ++) { 
 For (k = 0; k < N; k++) { 
       For (j = 0; j < K; j++) { 
    c[I*K+j] += a[i*N+k] * b[k*K+j]; 
        } 
 } 
} 
 
The main difference between these two implementations is 

the order of the second and third loop. Both versions can achieve 
the same average vector length 64 on the Cray X1. And we expect 
the uni-stride version to deliver better performance. This is true 
on the cache-based Power4 platform. Surprisingly, the stride 
version performs at least two times better than the uni-stride 
version and also better than the blocked version. If we unroll the 
most outer loop four times, the stride version can deliver even 
slightly better performance than the vendor-provided dgemm 
function in the sci library.  By the performance tools on the Cray 
X1 (PAT), we find that there are actually no vector load 
references with stride bigger than 2. The main difference between 
these two versions is the number of load/store references. The 
uni-stride version has M times more store references and eight 
time more load references since each time a c element has 
changed, it has to stored first and read back later. By examining 
the assembler code, we find that the characteristics of stride 



access have been changed due to vector processing. Fig. 9 
illustrates this effect. 

 
 

 
Figure 9. Memory Access for Stride Matrix Multiplication. 
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Figure 10. The Run time Ratio of SSP vs. MSP on Cray X1. 

 

In order to compute 0,0c , we need to load the first row of 

matrix A and the first column of matrix B. Accessing 0,0a ~ 

1,0 −na is continuous access. However, visiting 0,0b ~ 1,0 −nb is 

stride accesses. Because of the vector effect, 0,0c ~ 1,0 −VLc are 

computed simultaneously. Therefore 0,ib ~ 1, −VLib should also be 

accessed at the same time. The result is that the stride access is 
replaced by continuous access. We only need to load matrix A 
and C one time unlike the uni-stride version where the matrix C 
has to be accessed many times. 

 
  In summary, the tuning results of FFT and Radix indicate 

that increasing the vector length and avoiding memory bank 
conflicts at the same time indeed improve the performance on the 
vector machine substantially. This conclusion is also validated by 
the negative nbody result. If a code cannot be vectorized well, 
there is no way to expect good performance from vector 
machines. Matrix multiplication tells us that vector processing 
may benefit from some access patterns that we try to avoid on 
cache-based superscalar architectures. 

  
  
 

5.5 MSP vs. SSP 
 
On the Cray X1, each MSP processor contains four identical 

SSPs that share a 2-way set associative 2MB cache. Programming 
in MSP mode is similar to developing codes on SMP-based 
platforms using the OpenMP model inside a SMP node and the 
MPI programming model across the nodes. But the compiler on 
the Cray X1 can automatically distribute loop iterations across 
each of the four SSPs and generate either SMP or MSP executable 
codes from the same source code. It does not require the 
programmer to provide explicit OpenMP directives so the 
programmer can freely select either MSP mode or SSP mode 
based on the application characteristics to achieve better 
performance without modifying the source code. 

 
Fig. 10 presents the run time ratio of SSP over MSP using 

the best version we presented above. The number of processors on 
the X-axis is the number of MSP processors. Each MSP processor 
contains four identical SSP processors. We find that only for a 
few cases, the SSP mode performs slightly better than the MSP 
mode. In most cases, its performance falls behind that of the 
MSPs, especially when the number of processors goes up. In the 
worst case, it causes a four-time performance slowdown. The 
main reason for the performance drop is that the SSP mode will 
increase the number of messages each processor has to process 
and reduce the size of each message. 
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5.6 Optimization Impact on the Power4 
platform 
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Figure 11. Effects of Cray X1 Optimizations on Power4. 

 
It is interesting to examine whether the optimizations that are 

beneficial on Cray X1 are portable to the Power4 platform or if 
they are unique to the Cray X1. The sequential results for the base 
version and optimized version on Power4 are exhibited in Fig. 11. 
The run times of the optimized version are either similar to their 
base version (Nbody, FFT, Radix) or substantially longer. The 
optimizations for these four are unique to the Cray X1 and cannot 
be ported back to the Power4 platform. This is different from the 
results reported from [12]. The vectorized code runs 10~20% 
faster there when ported back to Power4 platforms. The reason is 
that the optimized code brought more loop level parallelism in the 
leaf subroutines, and the Power 4 had more useful flops to do 
rather than branches. Therefore, the performance impact of 
vectorized code on Power4 is closely related with application 
characteristics.    
 

6. CONCLUSIONS 
In this paper, we have investigated the performance 

characteristics of the Cray X1 using Apex-Map, a memory access 
probe. We find that the most important factors, which affect the 
performance on this platform, are the average vector length and 
memory bank conflicts. The memory size accessed and data reuse 
have a much smaller effect.  Using these characteristics as a guide 
for performance-tuning, we are able to substantially improve the 
performance of several applications. The performance of FFT has 
been improved 10 times for the sequential case and 1.2 times for 
the 64-processor case. When the number of processors is high, the 
transpose in the FFT starts to dominate the execution time, 
leading the performance to drop. Radix has been improved 36 
times for the sequential case and 9 times for the 64-processor 
case. However, for nbody, the performance gain is only 20%. 
This limited improvement is mainly due to unsuccessful 
vectorization. For such dynamic, irregular applications, the code 
becomes more complex and irregular; vectorizing the code 
becomes challenging.  For matrix multiplication, we use a strided 
version, which is intentionally avoided on Power4 platforms, to 
improve the performance 1.5 ~ 2.2 times. The optimized version 
can achieve 85% of the peak performance on a single SMP node 
and even runs slightly faster than vendor provided dgemm library 
routine.  

 
Adding compiler directives can significantly improve the 

performance because in many cases the compiler cannot perform 
an adequate dependency analysis on its own. The compiler 
directives can explicitly inform the compiler of the data 
independence between loop iterations. However, adding 
directives itself cannot deliver optimal performance since 
directives do not help to exploit the data parallelism across loops 
or functions. For all our four applications, we have to 
substantially change the code to change data structures or 
algorithms in order to help the compiler to find the parallelism. 
For FFT, we have padded the data structure to eliminate the 
memory bank conflicts and change the loop structure to increase 
the average vector length. For Radix, we use the virtual processor 
concept to reorganize the code.  In nbody, we separate the tree 
browsing and force calculation operations. For matrix 
multiplication, we use strided access. Unfortunately, we find that 
these optimizations on Cray X1 cannot be ported back to Power4 
platform as well as some other applications.   
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