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Abstract - Many high performance applications run well 

below the peak arithmetic performance of the underlying 
machine, with inefficiencies often attributed to poor memory 
system behavior. In the context of scientific computing we 
examine three emerging processors designed to address the well-
known gap between processor and memory performance through 
the exploitation of data parallelism. The VIRAM architecture 
uses novel PIM technology to combine embedded DRAM with a 
vector co-processor for exploiting its large bandwidth potential. 
The DIVA architecture incorporates a collection of PIM chips as 
smart-memory coprocessors to a conventional microprocessor, 
and relies on superword-level parallelism to make effective use of 
the available memory bandwidth. The Imagine architecture 
provides a stream-aware memory hierarchy to support the 
tremendous processing potential of SIMD controlled VLIW 
clusters. First we develop a scalable synthetic probe that allows 
us to parametize key performance attributes of VIRAM, DIVA 
and Imagine while capturing the performance crossover points of 
these architectures. Next we present results for scientific kernels 
with different sets of computational characteristics and memory 
access patterns. Our experiments allow us to evaluate the 
strategies employed to exploit data parallelism, isolate the set of 
application characteristics best suited to each architecture  and 
show a promising direction towards interfacing leading-edge 
processor technology with high-end scientific computations. 

I. INTRODUCTION 
The increasing gap between processor and memory speeds 

is a well-known problem in computer architecture, with peak 
processor performance improving at a rate of 60% per year, 
while DRAM latencies and bandwidths improve at only 7% 
and 20% respectively [15].  To mask memory latencies, 
current high-end computers now demand up to 25 times the 
number of overlapped operations required of supercomputers 
30 years ago.  Further, techniques designed to hide memory 
latencies, such as increased instruction issue rates, 
multithreading, and prefetching, may actually increase the 
memory bandwidth requirements [8].  This so-called “memory 
wall” is one of the reasons many high performance 
applications run well below the peak arithmetic performance 
of the underlying machine. In particular, irregularly structured 
and data-intensive codes exhibit poor temporal locality and 
receive little benefit from the automatically managed caches 
of conventional microarchitectures. In addition, a significant 
fraction of scientific codes are characterized by predictable 
data-parallelism that could be exploited at compile time with 
properly structured program semantics; however, most 
superscalar general-purpose processors are poor at 

dynamically exploiting this kind of parallelism. Finally, many 
scientific programs require a bandwidth-oriented memory 
system; unlike conventional cache-based memory hierarchies 
that are entirely organized around reducing average latency 
time, and generally lack the raw bandwidth required for these 
applications. This paper presents an evaluation of emerging 
microprocessor technologies designed to address the 
processor-memory gap through explicit data-parallelism using 
three architectural paradigms: vectors, superwords, and 
streams.  

First we examine the VIRAM architecture, which uses a 
novel processor-in-memory (PIM) design to combine 
embedded DRAM with a vector-co-processor for exploiting its 
large bandwidth potential.  The PIM technology allows the 
main RAM to be in close proximity to the processing 
elements, providing lower memory latency and a significantly 
wider memory interface than conventional microprocessors.  
Next we present the DIVA system, which incorporates a 
collection of PIM chips as smart memory coprocessors and 
uses wide datapaths to utilize its large memory bandwidth and 
exploit fine-grained parallelism.  Finally we evaluate the 
Imagine architecture, which provides a stream-aware memory 
hierarchy to support the tremendous processing potential of its 
SIMD controlled VLIW clusters. 

We develop a scalable synthetic probe called Sqmat that 
allows us to parametize key performance attributes and reveal 
architectural characteristics of the processors in this study. By 
varying Sqmat’s computational requirements, we can explore 
the main architectural features of the processor, paying 
attention to the complex interactions among the programming 
paradigms, ISA, and underlying microarchitecture, while 
observing the crossover points where different technologies 
become more suitable. We then present scientific kernels 
reflecting dense and sparse matrix operations, each requiring a 
different balance of microarchitectural resources to achieve 
high performance. The SPMV benchmark performs sparse 
matrix-vector multiplication, and is characterized by irregular 
data access and low computation per memory access. In 
contrast, our second scientific kernel Transitive Closure, 
implemented via the Floyd-Warshall algorithm, can be 
blocked in order to provide a high number of operations per 
word transferred from memory. Finally we examine the 
Neighborhood benchmark, whose random data access patterns 
and potential data collisions is particularly challenging for the 
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data-parallel model. The purpose of this work is not just to 
compare these processors from a traditional benchmarking 
perspective. Instead, we use our scientific kernel codes to 
explore the salient features of these unique architectures, and 
define the program characteristics best suited for each of these 
radically different emerging technologies. 

II. ARCHITECTURE, PROGRAMMING PARADIGM, AND KERNEL 
OVERVIEW 

In this section we provide a brief overview of the processors 
examined in this study, a summary of their programming 
paradigms, and a description of the scientific kernels used in 
our experiments. 

A. VIRAM   
The VIRAM processor [5] is a research architecture being 

developed at UC Berkeley. A floor plan of the VIRAM-1 
prototype chip is presented in Figure 1. Its most novel feature 
is that it is a complete system on a chip, combining processing 
elements and 13 MB of standard DRAM into a single design. 
The processor-in-memory (PIM) technology allows the main 
RAM to be in close proximity to the processing elements, 
providing lower memory latency and a significantly wider 
memory interface than conventional microprocessors. The 
resulting memory bandwidth is an impressive 6.4 GB/s. 
VIRAM contains a conventional general purpose MIPS scalar 
processor on-chip, but to exploit its large bandwidth potential, 
it also has a vector co-processor consisting of 4 64-bit vector 
lanes. VIRAM has a peak performance of 1.6 GFlop/s for 32 
bit data and is a low power chip, designed to consume only 2 
Watts of energy. 

The hardware resources devoted to functional units and 
registers may be subdivided to operate on 8, 16, 32, or 64-bit 
data. When the data width (known as the virtual processor 
width) is cut in half, the number of elements per register 
doubles, as does the peak arithmetic rate. The variable data 
widths in VIRAM are common to other SIMD media 
extensions such as Intel’s SSE, but otherwise the architecture 
more closely matches a traditional vector supercomputer. In 
particular, the parallelism expressed in SIMD extensions are 

tied to the degree of parallelism in the hardware, whereas a 
floating-point instruction in VIRAM specifies 64-way 
parallelism while the hardware only executes 8-way. The 
advantages of specifying longer vectors include a lower 
instruction bandwidth requirement, a higher degree of 
parallelism for memory latency masking, and the ability to 
change hardware resources across chip generations without 
requiring software changes.  

B. DIVA 
The DIVA (Data IntensiVe Architecture) system 

incorporates a collection of processor-in-memory (PIM) chips 
as smart-memory coprocessors to a conventional 
microprocessor. DIVA targets two important classes of 
bandwidth-limited applications, multimedia and irregular 
applications, including sparse-matrix and pointer 
computations. By performing computation directly in 
memory, streaming multimedia applications obtain high 
bandwidth to on-chip memories through a 256-bit wide 
datapath, while irregular applications benefit from very low 
latency accesses to memory. 

DIVA was designed to support a smooth migration path for 
application software by integrating PIMs into conventional 
systems as seamlessly as possible. A separate memory-to-
memory interconnect enables communication between 
memories without involving the host processor. 

Each DIVA PIM chip is a VLSI memory device augmented 
with general-purpose computing and communication 
hardware. Although a PIM may consist of multiple nodes, 
each of which is primarily comprised of a few megabytes of 
memory and a node processor, Figure 2 shows a PIM with a 
single node, which reflects the focus of the initial research 
being conducted. Nodes on a PIM chip share a host interface 
and a single PIM Routing Component for PIM-to-PIM 
communication. Note that since DIVA was designed for multi-
PIM configurations, we expect limited performance from the 
single PIM system examined in our study.  Multi-PIM 
performance scalability will be addressed in future work. 

The PIM node processing logic supports single-issue, in-
order execution, with 32-bit instructions and 32-bit addresses. 
There are two datapaths whose actions are coordinated by a 
single execution control unit: a 32-bit scalar datapath and a 
256-bit wide datapath. The scalar datapath is a standard RISC 
architecture, augmented with a few DIVA-specific functions 
for coordinating with the wide datapath. The wide datapath 
operates on aggregate objects (superwords) of 256 bits, 
performing SIMD parallel operations on variable-sized fields 
in the object (8,16, and 32-bit fields). In addition to 
conventional arithmetic and logic operations, the wide ALU 
also supports a rich set of operations for manipulating data, 
including rearrangement of data within a wide operand, 
transfers between wide  and scalar registers and packing and 
unpacking operations. Furthermore, the wide ALU supports 
selective execution of instructions on a per-datapath basis, 
depending on the state of condition codes.  

The first DIVA PIM prototype is an SRAM-based, single-
Figure 1: Block diagram of the VIRAM architecture 

node implementation of the DIVA PIM chip architecture. It 
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Figure 2: DIVA system and PIM chip organization 
ludes all architectural features of a DIVA PIM, except 
dress translation and floating-point capabilities, which will 
 integrated in the second version of the chip. The chip was 
ricated through MOSIS in TSMC 0.18m technology, and 

ntains approximately 2 million logic transistors in addition 
the 53 million transistors that implement 8 Mbits of SRAM. 
e current chip, under test, is performing 1.28 GOPS while 
sipating only 800mW.  

. Imagine   
A different approach for addressing the processor-memory 
p is through stream processing. Imagine [16] is a 
grammable streaming microprocessor currently being 

veloped at Stanford University. Stream processors are 
signed for computationally intensive applications 
aracterized by high data parallelism and producer-consumer 
ality with little global data reuse.  The general layout 
gram of Imagine is presented in Figure 3. Imagine contains 
 arithmetic units, and a unique three level memory hierarchy 
signed to keep the functional units saturated during stream 
cessing. The architecture is centered around a 128 KB 

eam register file (SRF), which reads data from off-chip 
AM through a memory system interface and sequentially 
ds the 8 arithmetic clusters. The local storage of the SRF 
 effectively reuse intermediate results (producer-consumer 
ality), allowing for the amortization of off-chip memory 
esses. In addition, the SRF can be used to overlap 

mputations with memory traffic, by simultaneously reading 
m main-memory while writing to the arithmetic clusters 
uble-buffering). The Imagine architecture emphasizes raw 
cessing power much more heavily than the others with a 

ak performance of 20 GFlop/s for 32 bit data. 
Each of Imagine’s 8 arithmetic clusters consists of 6 
ctional units containing 3 adders, 2 multipliers, and a 
ide/square root. Imagine is a native 32-bit architecture; 

th support for performing operations on 16- and 8-bit data 
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Figure 3: Overview of the Imagine architecture
dths; however, unlike VIRAM there is no support for 64 bit 
erations. Thus we restrict our study to 32-bit data elements. 
key difference between the architectures is in the way 
tructions are issued. In Imagine, a single microcontroller 
adcasts VLIW instructions in SIMD fashion to all of the 

thmetic clusters. In contrast, VIRAM and DIVA use a more 
ditional single instruction per cycle issue, counting on 
rallelism within each vector instruction to achieve high 
rformance.  

. IBM RS6000 Power3 
For comparison purposes, we present actual performance 
asurements on the IBM RS6000 Power3 [2].  The Power3 

an out-of-order 64-bit PowerPC implementation with a peak 
stained) execution rate of eight (four) instructions per 

cle.  Like most conventional superscalar architectures, the 
wer3 relies on cache reuse to reduce memory overhead and 
is the programmer’s responsibility to write “cache-aware” 
de.  The CPU has a 32 KB instruction cache and a 128 KB 
8-way set associative L1 data cache, as well as an 8MB off-
ip 4-way set associative L2 cache.   The Power3 
periments reported in this paper were conducted on a single 
U of the 6080-processor NERSC system running AIX5.1; 

rrently rated as the fifth most powerful supercomputer [39].  
ch 375 MHz processor contains two FPUs that can issue a 
ltiply-add per cycle, for a peak performance of 1.5 Gflop/s.  
des were compiled using the IBM xlc compiler. Since 
rpose of this work is to study emerging microarchitectural 
radigms, Power3 results are provided for a baseline 
mparison, without detailed analysis.  
Table 1 summarizes the high level differences between the 
RAM, Imagine, DIVA and Power3 architectures. Notice 
t Imagine has an order of magnitude higher peak 

rformance, while VIRAM has twice the memory bandwidth 
d consumes half the power.  Also observe that VIRAM and 
VA have enough bandwidth to sustain one operation per 
mory access, while Imagine requires 30 operations to 



amortize one word of off-chip memory (2.5 operations for 
SRF references). The power consumption reported for DIVA 
is a projection for the second PIM chip, which will include 
floating-point capabilities. 

 
 VIRAM Imagine 

Memory 
DIVA (1 
PIM) 

Power3 

Bandwidth 

GB/sec 
6.4 2.7 1.77 1.6 

Peak Flops 

GFlop/s 

(32 bit) 

1.6 20 1.3 1.5 

Peak 

Flop/Word 
1 30 1 3.75 

Clock Speed 

MHz 
200 500 166 375 

Chip Area 

15x18mm 

(270 

mm2) 

12x12mm 

(144 mm2) 

9.8x9.8mm 

(96 mm2) 
270 mm2 

Data widths 

supported 

64/32/16 

bit 

32/16/8 

bit 
64/32/16/8 64 

Transistors 
130 

Million 
21 Million 55 Million 

15 

Million 

Power 

consumption 
2 Watts 4 Watts 1.6 Watts 33 Watts 

Table 1:Highlights of VIRAM, Imagine, DIVA and Power3 
architecture 

E. Programming Paradigms and Software Environments 
The vector programming paradigm [22] of VIRAM is well 

understood and can leverage years of algorithmic research as 
well as sophisticated compiler technologies. Logically, a 
vector instruction specifies the parallel operations to be 
performed on all elements of the vector register. However, at 
the hardware level each vector instruction splits into multiple 
element groups that then perform the operations. For example, 
when operating on 32-bit data in VIRAM, the logical vector 
length refers to 64 elements while the physical configuration 
contains only 8 lanes. Therefore each vector instruction results 
in the execution of 64/8=8 element groups, where each group 
uses the actual vector hardware to process 8 elements at a 
time. 

DIVA can be programmed using conventional solutions 
from parallel computing, rather than requiring a programming 
paradigm specific to DIVA or to PIMs. As a system-level 
programming strategy, DIVA has adopted Unified Parallel C 
(UPC) [40], a relatively new parallel programming language. 
UPC was developed as a unification of the best ideas among 
several research C compilers that support a global address 
space, and allow high-level specification of data distribution in 
an SPMD abstraction for high-end shared-memory, 
distributed-shared-memory and even distributed-memory 
parallel systems. At the PIM level, each node supports SIMD 
parallel operations on different field widths, 8-bit, 16-bit, 32-

bit and 64bit (this type of fine-grain parallelism is referred to 
as superword-level parallelism, or SLP [23]). The DIVA PIM 
compiler targets SLP and also exploits superword-level 
locality, via compiler-controlled caching in the wide  register 
file [34]. 

Imagine supports the relatively new stream programming 
paradigm, designed to express the high degree of fine-grained 
parallelism necessary to effectively utilize the large number of 
functional units. The stream programming model organizes 
data as streams and expresses all computations as kernels [19]. 
A stream is an ordered set of records of arbitrary (but 
homogeneous) data-objects. For example, in a finite-element 
scientific simulation the computational stream could contain a 
set of records, where each record element represents various 
physical components of the experiment (such as pressure, 
velocity, position, etc.)  Vectors, on the other hand, are 
restricted to operating on basic data types, and must 
decompose complex records into vectors of separate elements. 
Kernels perform computation on entire streams, by applying 
potentially complex functions to each stream record in order. 
However, kernels cannot make arbitrary memory references 
and are limited to only accessing data from the SRF in a 
sequential fashion. The kernel memory reference restrictions 
allow the memory subsystem to effectively provide data to the 
large number of functional units. However, these memory 
access limitations increase programming complexity, 
especially for irregularly structured applications.  This 
approach can be viewed as a generalization of vector 
computing with user defined, coarse-grained kernel operations 
replacing traditional vector instructions.  In addition, chaining 
is also generalized through the use of the Stream Register File 
and producer-consumer locality. 

Vector, SLP and stream programming paradigms provide 
methods for expressing the data parallelism of an application.  
Providing for explicit parallelism in the ISA allows the 
underlying hardware to directly support vectors, superwords 
or streams in an energy-efficient manner. The application 
performance, however, is highly correlated to the fraction of 
the application amenable to data parallelism. A key distinction 
between the vector or superword models and the stream model 
is that the Imagine architecture supports streams of multi-word 
records directly in the ISA, as opposed to VIRAM whose ISA 
support is limited to vectors of basic data-types, or DIVA 
whose ISA supports SIMD operations on superwords for 
objects of the same data types. Going back to our finite-
element example, Imagine is able to access the multi-word 
data records of the simulation in a unit-stride fashion from 
main memory. Appropriate reordering is then performed in the 
on-chip memory subsystem, before passing the correctly 
structured data to the SRF. However, in vector architectures, 
strided accesses are required to load each basic data type of 
the underlying physical component causing potential memory 
overheads. In architectures with support for SLP, such as 
DIVA, it is necessary to pack the objects of the same data type 
into a superword before performing the parallel operation. 
This permits Imagine to access off-chip main memory in a 
more efficient manner. Additionally, organizing streams as 



multi-word records also increases kernel locality, allowing for 
efficient VLIW processing by each of the functional units. 
Other advantages of multi-word parallelism include the 
potential of reduced programming complexity and low 
instruction bandwidth. 

We end this section with a brief description of the software 
environment. In VIRAM, applications are coded in C using 
the vcc [22] vectorizing compiler. However, it is occasionally 
necessary to hand tune assembly instructions to overcome the 
deficiencies of the compiler environment.  In DIVA the 
applications are written in C and compiled by a SUIF-based 
PIM compiler that supports SLP and compiler-controlled 
caching in superword registers. The output of SUIF-based 
compiler is an optimized C program, augmented with special 
superword data types and operations. The optimized C-
augmented code is then passed to a GNU backend, modified to 
support superword data types and operations of the DIVA 
ISA. As in the VIRAM code, it was necessary to hand tune the 
assembly code, to overcome the limitations of the preliminary 
implementation of the DIVA PIM compiler.  

In Imagine, two languages are used to express a program: 
the StreamC language is used to coordinate the streaming of 
data while KernelC is used to define the computational kernels 
to be performed on each stream record. Separate stream and 
kernel compilers then map these two languages to the ISA of 
the stream controller and micro-controller respectively. The 
Imagine software environment allows for automatic code 
optimizations such as loop unrolling and software pipelining, 
as well as visual tools for isolating performance bottlenecks.  

The results reported in this paper were gathered from the 
VIRAM, DIVA and Imagine cycle-accurate simulators. Since 
these are academic research projects, the reported clock speeds 
are conservative and do not necessarily reflect the potential of 
these systems if they were to be designed in a commercial 
environment. Therefore our performance comparison focuses 
on simulated cycles instead of Mflop/s rates. 

F. Kernel Overview 
The first scientific kernel we examine is sparse matrix 

vector multiply (SPMV). This is one of the most heavily used 
algorithms in large-scale numerical simulations, and is a 
critical component in data mining, as well as signal and image 
processing applications.  For example, when solving large 
sparse linear systems or eigensystems, the running time is 
generally dominated by the SPMV kernel.  The performance of 
sparse matrix operations tends to perform poorly on modern 
microprocessors due to the low ratio between arithmetic 
computation and memory accesses. Additionally, the irregular 
data access of this algorithm is inherently at odds with cache-
based architectures. 

Our second benchmark problem is to compute the 
Transitive Closure of a directed graph in a dense 
representation.  Finding the Transitive Closure [9] of a 
directed graph (also known as shortest path) is an important 
problem with applications in communications, transportation, 
and operations research. Unlike SPMV, this is a 
computationally intensive code, requiring O(n3) operations on 

an O(n2) data set. However, blocking this algorithm for 
efficient cache reuse is nontrivial due to the complex data 
dependency requirements [29]. 

Finally we examine the Neighborhood Stressmark, taken 
from the DIS suite, which estimates the GLCM entropy and 
energy of an input image [10].  In this benchmark, the main 
computational kernel involves computing histograms of the 
sums and differences of neighboring pixel values.  Because 
there are dependences involved in updating the histogram, 
implementing this operation can be quite challenging on data 
parallel architectures. 

It is important to note that although we have attempted to 
minimize kernel execution costs on all three architectures, 
performance can inevitably be improved through further 
program optimization and algorithmic developments.  This 
holds true for just about any benchmarking experiment, and is 
particularly relevant for our set of experiments; since we are 
examining emerging technologies whose tools, software 
environment, and programming paradigms are still areas of 
active research.   

III. INSIGHTS INTO THE ARCHITECTURES 
In order to gain insights into the architectural differences 

among the processors, we constructed a scalable synthetic 
probe called Sqmat. This specially designed microbenchmark 
has several tunable parameters used to isolate key 
characteristics of the systems, and capture the performance 
crossover point of these radically different technologies.  

A. Sqmat Overview    
The computational task of Sqmat is to square a set of L 

matrices of size NxN repeatedly M times. By varying N and M, 
we can control the size of the computation kernel, as well as 
the number of arithmetic operations per memory access. In 
addition, by varying the number of matrices (L) we can 
correlate the vector/stream length with performance.   This 
way we can extract a performance profile of each processor 
that reveals, in practice, the number of arithmetic operations 
required to amortize the cost of a memory access. 

The squaring of each NxN matrix requires N3 
multiplications and N2·(N-1) additions, while requiring 2N2 
memory accesses (loading and storing 32 bit words). On 
VIRAM the minimum number of cycles (algorithmic peak) 
required to perform M repeated squarings of L matrices is 
L·M·(2N3- N2)/8, since each of the 8 vector lanes can perform 
one 32-bit flop per cycle. Additionally, the total number of 
operations per word of memory accessed in VIRAM is 
M·(2N3-N2)/2N2 =M·(2N-1)/2.   The analysis for DIVA is 
similar, since the wide ALU can process eight 32-bit words 
concurrently. However, the situation is somewhat different for 
Imagine since it contains multiple functional units per cluster 
and operates in VLIW fashion.  To calculate Imagine’s 
algorithmic peak performance, we can effectively ignore the 
cost of addition operations because Imagine can perform 3 
adds and 2 multiplies per cycle, while the Sqmat benchmark 
requires fewer additions than multiplications. As a result 
Imagine’s peak performance for Sqmat requires only 
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Figure 4: Sqmat with low ops per word (a) cycles (b) Mflop/s 

L·M·N3/16 cycles, since each of the 8 clusters can perform 2 
multiplies per cycle. Additionally, the ratio between the 
number of multiplies performed per memory access is 
M·N3/2N2 = N·M/2. Thus for the Sqmat example, Imagine is 
required to sustain about twice the memory bandwidth of 
VIRAM and DIVA to keep its functional units optimally 
saturated. Finally, note that due to limitations imposed by the 
number of VIRAM vector registers, N could be no larger then 
3 for these experiments. 

B. Sqmat Performance   
By varying the number of times the matrix is squared and 

its size we can determine the performance of each processor in 
different regimes where we change the number of arithmetic 
operations per memory access.   We examine Sqmat under 
both low and high computational intensities, while 
highlighting the relevant architectural features and 
performance crossover. Our goal is not use Sqmat for simply 
benchmarking these systems, but rather as a tool for gaining 
insight into their key architectural features.  

1) Low Operations per Memory Access 
Our first experiment examines the performance of Sqmat 

when computational intensity is low.  Figures 4a and 4b show 
cycles and Mflops (respectively), for a single matrix squaring 
(M=1) of a 3x3 matrix (N=3), with varying vector/stream 
lengths (L=8..1024).  Limiting this example to only a single 
squaring of the matrices causes relatively few operations per 
word of data access and results in high stress on the memory 
system.  In addition, the short vector/stream lengths 

deleteriously affect the performance of all the architectures. 
As the vector length increases, we can examine the 
architecture’s ability to overlap computation with data access.   

Power3 results are provided for a baseline comparison.  For 
efficient local register use, each matrix is copied into a local 
array. Additionally, the matrix multiplications are hand 
unrolled to allow for maximal use of the multiple functional 
units. 

For the VIRAM experiments, each matrix is read into the 
vector registers, squared the appropriate number of times in 
the vector lanes and written back to memory.   Figures 4a and 
4b show that VIRAM performance starts low but quickly 
grows with L to a reasonable fraction of Sqmat’s algorithmic 
peak performance, achieving 560 Mflops (and 35% of peak) 
when L≥32.  The vector pipelines effectively hide memory 
access overheads by overlapping loads with arithmetic 
operations. In addition, the on-chip DRAM allows for high 
bandwidth and low latency memory access.  VIRAM thus 
achieves a surprisingly large fraction of its peak performance 
considering the low volume of required computations and 
short vector length. 

The DIVA version of Sqmat also performs the matrix 
multiply in the register file, and exploits superword-level 
parallelism. Each matrix row is loaded into a wide register (we 
chose not to keep more than one row per register to avoid 
overheads due to packing and unpacking data). The data is 
then replicated into a set of wide registers in order to perform 
the matrix multiply. Since each  register can keep up to eight 
single-precision floating-point values, the registers are not 
fully utilized. More importantly, the wide ALU performs only 
three useful operations per cycle, out of the eight 32-bit 
datapaths that are capable of performing eight floating-point 
operations per cycle. 

As can be seen in Figures 4a and 4b, the stream length does 
not affect performance of DIVA because the first DIVA PIM 
chip does not support overlapping computation and memory 
access. Therefore each memory access incurs the full memory 
access overhead, and even though the on-chip latency is low 
(3 and 7 cycles for page-mode and random-mode accesses, 
respectively), the impact is significant.  Thus the low 
computational intensity of M=1 is too small to amortize the 
cost of memory access on DIVA, causing the system to 
achieve no more than 8% of its algorithmic peak.  A closer 
analysis reveals that on average 50% of the time is spent 
transferring data from the on-chip memory.   

Imagine’s Sqmat implementation stores each matrix as a 
multi-word entry in the data stream.  Each arithmetic cluster 
receives a single matrix (one stream element), performs the 
matrix multiplication in local registers and writes out the 
resulting matrix as an element of the output stream. Since 
Imagine’s stream model requires large number of arithmetic 
operations per memory access to effectively use the 
underlying hardware, this computational balance is poorly 
suited for the Imagine architecture. The computational rate is 
too low to amortize off-chip memory bandwidth, and the SRF 
is not being used effectively since there is no producer-
consumer locality in this example.  Performance for low L is 
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rather poor, achieving 200 Mflop/s (2% of algorithmic peak) 
for L=32.   

 Another requirement for good streaming performance is 
that the stream must be long enough to hide memory latency. 
Figure 4 shows that as L is increased from 8 to 1024, peak 
performance gradually improves, but plateaus at about 590 
Mflop/s (about 7% of peak). For each kernel called, there are a 
number of overheads, including: sending the instructions from 
the host to the microcontroller, scheduling the SRF, and 
filling/draining the software pipeline. Thus performance is 
expected to improve with larger L since these costs are 
amortized. Additionally, increasing the stream size helps 
amortize expensive off-chip memory latency. 

This example demonstrates that the architectural balance of 
VIRAM (and to a lesser extend DIVA) is better suited for this 
difficult class of problems, characterized by low 
computational requirements and relatively short vector 
lengths. 

2) High Operations per Memory Access  
Figures 5a and 5b show performance results for a 

computationally intensive Sqmat experiment where each 
(N=3) matrix is repeatedly squared 10 times (M=10) for a 
variety of vector/stream lengths (L=8..1024). As expected, all 
architectures perform better as M increases since there is more 
required computation for each word of data access.  

VIRAM now shows high performance L≥32, achieving over 
1180 Mflop/s (78% algorithmic peak), about a factor of two 
improvement over the M=1 benchmark.  Since this is 
relatively close to its peak, only a slight increase to 1317 

Mflop/s is attained for the largest vector length (L=1024). For 
DIVA, performance is now 440Mflop/s (about 33% of 
algorithmic peak) regardless of the vector length.  Once again 
this is an artifact of the preliminary chip version that does not 
support overlapping computation with pipelined memory 
fetches.  However, since the computational intensity has 
grown by a factor of 10, the cost of memory transfers is 
amortized and the average time due to memory latencies is 
reduced to only 15% of the execution time. 

Performance on the Imagine architecture is now most 
impressive, achieving over 3Gflop/s for the largest stream 
length of 1024.  The computational requirement of this 
benchmark is sufficient to effectively utilize the large-scale 
processing power of Imagine. One reason for the impressive 
(factor of 5) improvement in Imagine’s performance is that the 
computational kernel is now significantly bigger.  For small 
M, the number of arithmetic operations per kernel call is 
small, and the fixed overheads of each kernel call can 
dominate performance. These overheads include reading and 
writing from the SRF to the clusters, and filling/draining the 
kernel pipeline. It is also important to note that although 
Imagine is showing impressive raw performance, it still 
achieves less than 40% of its algorithmic peak for this 
experiment, even though the ratio between operations and 
memory accesses is now 15.   This shows that for the Imagine 
architecture, a very large computational intensity is required  
to fully utilize the tremendous processing power of the 
underlying hardware. 

3) Performance Crossover 
Finally, we can examine Figures 4b and 5b to find the 

performance crossover points of the architectures.  For the low 
operations experiment (M=1), there is no performance 
crossover with regards to VIRAM.  The VIRAM architecture 
has an advantage due to its low latency memory access and 
ability to effectively process short vector computations.   

 For the high computational intensity example (M=10), 
Imagine’s performance starts below DIVA and VIRAM for 
small stream lengths; but as the vector/stream length increases 
(L≥32 and L≥128 respectively), the raw processing power 
advantages of Imagine become apparent. Codes characterized 
by this balance of computational intensity and memory 
requirements would greatly benefit from Imagine’s streaming 
architecture.  In fact, increasing the computational intensity 
results in even more performance (in Sqmat) and this is further 
evidenced by Imagine achieving over 13 Gflop/s on Complex 
QR decomposition [19]. 

IV. SPARSE MATRIX VECTOR MULTIPLICATION (SPMV) 
The Sparse Matrix-Vector Multiplication (SPMV) algorithm 
requires random memory access patterns and a low number of 
arithmetic operations.  It is common in scientific applications,  
and appears in both the DIS [10] and NPB [3] suites as a 
kernel  of a Conjugate Gradient solver.  For the SPMV kernel 
we examine several implementation strategies, each 
highlighting different aspects of the underlying architecture. 
We chose two matrices for this experiment, each with 
different characteristics that enable us to explore how 



architectural and programming differences affect performance. 
The first matrix LSHAPE is from Harwell-Boeing collection 
and represents a finite matrix problem. It is a 1008x1009 
matrix with an average of 6.8 nonzeros and a maximum of 7 
nonzeros per row. Our second matrix LARGEDIS is the same 
one used in previous IRAM experiments [13], and contains a 
pseudo-random pattern of non-zeros using a construction 
algorithm from the DIS specification [10], parameterized by 
the matrix dimension, and the number of nonzeros. This input 
matrix size is 10000x10000 with an average of 18 nonzeros 
and a maximum of 82 nonzeros per row. 

A. Implementation Details 
We consider two algorithmic approaches for SPMV on 

VIRAM [13], each reflecting a different optimization strategy 
for vector architectures. Our first strategy uses the segmented 
sum (Segsum) algorithm, originally developed for the Cray 
PVP [6]. The data structure is an augmented form of the 
commonly used Compressed Row Storage (CRS), with some 
additional control complexity. Since VIRAM’s performance 
suffers from strided memory accesses due to its limited 
number of address generators, we modified the original Cray 
code to use unit stride. Our second approach uses the Ellpack 
(or Itpack) format [20], which forces all rows to have the same 
length by padding them with zeros. This implementation 
increases the number of operations performed, but increases 
data parallelism by allowing vectorization across the rows.  

Due to the mixed regular/irregular nature of data accesses, 
DIVA's SPMV (also using CRS) only exploits superword-level 
parallelism for the regular portions of the computation. The 
dense vector accesses are loaded into wide registers, and the 
dense vector multiplies are performed in parallel in the wide 
floating-point unit. Some of the address computation is also 
performed in parallel. 

The DIVA implementation performs the accumulations into 
the sparse matrix in a sequential fashion. Selective execution 
is used to perform the accumulate in only one element of the 
superword currently in a wide register. Further performance 
improvements are obtained by reordering memory accesses 
and grouping streaming accesses to the dense arrays to achieve 
page-mode memory access latencies. 

A key component of Imagine’s streaming paradigm is that 
the computational clusters can only access data in a sequential 
fashion from the SRF. However SPMV requires irregular data 
access to properly index the source vector.  Therefore, in 
Imagine’s SPMV implementations, the data are properly 
reordered from main-memory into the SRF to avoid the need 
for any indirect addressing during computation. Additionally, 
the indexed source vector stream is expanded to as many 
elements as in the sparse matrix, since it is not possible to 
arbitrarily access the vector data. 

Our first Imagine implementation (streams) leverages the 
stream concept of producer-consumer locality. Here, in 
addition to the matrix and indexed vector, the computational 
kernel receives a third (sentinel) stream indicating which 
nonzeros entries are at the end of a row. Based on this 
information, the arithmetic clusters selectively sum two 
elements if they are determined to be on the same row. The 

partial sum is repeatedly passed through the computational 
kernel until the dot product summation is complete. Our 
second Imagine strategy is similar the VIRAM Ellpack 
algorithm. This approach fills the rows of the sparse matrix 
such that each has the same number of non-zeros. Each of the 
eight arithmetic clusters then performs all of the required 
floating point operations on a given row, and outputs the 
corresponding entry of the result. This results in a very simple 
kernel whose performance is dependent on the length of the 
row. 

For the Power3 implementation, we implemented a variety 
of matrix storage formats, with the CRS version producing the 
best performance.  
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Figure 6: SPMV Performance relative to Power3 

B. Performance Results   
Figure 6 presents the relative number of Power3 cycles 

necessary to compute SPMV for the LSHAPE and 
LARGEDIS matrices. Note that that algorithmic peak differs 
for each architecture: on VIRAM and DIVA the peak is 8 
operations per cycle (one for each vector lane/32-bit datapath 
of a wide FPU), while on Imagine arithmetic peak 
performance is 32 operations per cycle (2 multiplies and 2 
adds for each of 8 clusters).   

VIRAM’s performance on SPMV is surprisingly good 
considering that on average only a small number of the row 
entries are nonzeros (7 and 18 respectively).  The Segsum 
algorithm, specifically designed for vector architectures, 
allows VIRAM to compute the SPMV iteration about 2.4 and 
3.8 times faster than the Power3 (in cycles) for the Lshape and 
LargeDIS matrices respectively. The Segsum approach allows 
the vectorization across multiple rows with varying numbers 
of nonzero entries. VIRAM’s Ellpack also shows impressive 
performance, reducing Power3’s required cycles by factors of 
10 and 3.3.  

 DIVA’s poor performance on SPMV is due to the lack of 
parallelism, even more so than VIRAM, since exploiting 
superword-level parallelism [23] on DIVA requires each 
superword operand to be in a wide register. If the objects in a 
superword operand reside in contiguous memory locations, 
they can be loaded directly into a wide register (but it may be 
necessary to align the superword). Otherwise the objects need 
to be packed into a superword, either in memory or in registers 
[34].  Since in LSHAPE the maximum number of nonzeros 



per row is 7, DIVA’s SPMV does not exploit SLP, since the 
cost of packing a variable number of nonzeros in a superword 
would offset the benefits of parallelism.  For LARGEDIS the 
average number of nonzeros per row is 18, allowing SLP to be 
exploited to some extent.   

 

Imagine’s Streams SPMV implementation required fewer 
cycles than the Power3 (about 80%), but achieved lower 
performance than VIRAM.  We believe that this was partially 
due to the unpredictable length of the output streams after 
each kernel cycle, which caused the stream scheduler to 
function inefficiently.  Using the Ellpack format on Imagine, 
improved the data-parallelism, causing the total number of 
cycles to reduce (dramatically for the LargeDIS matrix).  
Note, that since that for both the VIRAM and Imagine Ellpack 
implementations, the matrices are artificially padded with 
zeros to create symmetric row lengths, thus the fraction of 
useful operations can be arbitrarily poor depending on the 
matrix structure. However, this fraction of useful 
computations would penalize the effective performance of 
both architectures equally. 

V. TRANSITIVE CLOSURE 
Computing the Transitive Closure of a directed graph is an 

important problem that arises in many applications, including 
network routing and distributed computing. The classical 
sequential approach for solving this problem uses the dynamic 
programming methodology of the Floyd-Warshall algorithm 
[9].  Although a titled approach is necessary for efficient data 
reuse, blocking this algorithm is nontrivial due to the complex 
data dependency requirements. We examine four problem 
sizes from the DIS specification, consisting of 64, 128, 256 
and 512 vertices. 

A. Implementation Details 
The VIRAM version of Transitive Closure is taken from the 

DIS reference implementation. [10] and uses a dense matrix to 
represent the distance graph.  A small code modification 
allowed data access in unit-stride fashion, and thus 
significantly improved performance.  

The DIVA version of Transitive Closure is also based on 
the DIS implementation .  Here, the two inner loops of the 
original main loop nest are interchanged, so that the matrix is 
accessed with stride one in the innermost loop, and spatial 
reuse can be exploited in wide registers. The DIVA version 
exploits fine-grained parallelism by performing arithmetic 
operations on eight 32-bit elements of the matrix in parallel. In 
addition to the arithmetic operations, it uses the selective 
execution mode supported by the wide ALU. A wide 
operation (wmrgcc) merges the contents of two wide registers 
according to condition-code bits, allowing an efficient 
computation of the minimum value of each pair of elements of 
two superword  operands. 

Imagine’s Transitive Closure implementation is 
significantly different than the VIRAM or DIVA approach due 
to the relatively high overhead of off-chip memory transfers.  
It was therefore necessary to implement a tiled version of the 
algorithm to minimize data transfer overhead.  However, 
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Figure 7: Transitive Closure cycles relative to Power3 

nsitive Closure presents a very different set of challenges 
 those present in dense linear algebra problems such as 

rix multiply and FFT, due to complex data dependencies 
 restrictions of the stream programming paradigm. Some of 
algorithmic considerations required to effective utilize the 
gine architecture included: converting each computational 
k to a data stream, effectively reusing the limited number 
ddressable registers (256 per arithmetic cluster), managing 
am register file reuse in the context of complex data 
endencies, and minimizing expensive off-chip memory 
ss operations.  Our specialized Imagine implementation 
es data streams aggressively and resulted in memory 
sfers near the theoretical minimum. Details are presented 
4].  
he Power3 implementation of Transitive Closure also uses 
iled algorithm to maximize cache-reuse.  To allow 
ressive compiler optimization, all block entries are copied 
 local variables for efficient use of local registers.  
itionally, block computations are hand unrolled to 
imize instruction level parallelism.  Details are presented 
4]. 

 Performance Results 
igure 7 compares Transitive Closure performance (in 
les) between the Power3 and the three emerging 
itectures.  VIRAM achieves excellent performance, 
iring only 19%-25% of Power3’s cycles.  These results 

firm the expected advantage for VIRAM on a problem 
 abundant parallelism and low arithmetic/memory 

ration ratio (per step).  Notice that VIRAM is relatively 
nsitive to graph size, although we would expect larger 
lem to perform better due to the longer average vector 
ths. 
IVA’s Transitive Closure takes advantage of the available 

erword-level parallelism and spatial locality in wide 
sters. However, this simple implementation does not 
ude optimizations for temporal locality in registers, and 
 a limited amount of loop unrolling (just enough to expose 

erword-level parallelism).  For this simple implementation 
1-PIM DIVA achieves an average performance of 1.2x 
 respect to the Power3. Again, the fact that the first PIM 
 has no support for hiding memory latencies results on 



memory stall times of  57% of the execution time.  
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The Imagine implementation was by far the most complex, 
since blocking was required to minimize the volume of off-
chip memory transfer.  For the small data size (64 vertices), 
Imagine requires 2.2X more cycles than the Power3.  
However, for the larger data sets, Imagine’s relative 
performance improves, achieving 80% of the Power3 cycles 
for 512 vertices.  Figure 8, shows a breakdown of cycles spent 
in computation and memory transfers, and helps explain why 
Imagine’s performance is limited for this computationally 
intensive benchmark.  Notice the total percentage exceeds 
100% since certain operations overlap.  As Figure 8 shows, 
only a small fraction of the total cycles (23%-37%) are 
actually accounted for by the kernel execution.  The remaining 
cycles are mostly consumed for host and SRF data transfers, 
while a small fraction is necessary for loading the microcode.  
See [14] for an extensive analysis of Transitive Closure on the 
Imagine architecture. 

Figure 8: Comparison of Imagine’s cycles spent on
communication and I/O for Transitive Closure.  Totals exceed
100% as certain operations overlap. 

VI. NEIGHBORHOOD 
The key kernel of the Neighborhood algorithm computes a 

histogram of a set of integers.   Two important considerations 
govern the algorithmic choices of this benchmark: the number 
of buckets, b, and the likelihood of duplicates.  For image 
processing applications, the number of buckets is large and 
collisions are common because are typically many occurrences 
of certain colors (e.g. white) in an image.  The possibility of 
collisions limits parallelism and inhibits an efficient data-
parallel implementation.  Our experiments examine a 500x500 
image from the DIS specification, with pixel depths of 7, 11, 
and 15. 

A. Implementation Details 
Different algorithms for computing histograms on vector 

processors have been proposed in the past [36][1].  However, 
each of these techniques can exhibit poor worst case time or 
space performance.  For the VIRAM implementation we took 
advantage of the fact that it is possible to sort a vector register 
of integers very quickly.  This makes use of the vhalf 
instructions that implement "butterfly" permutations.  Using 
these instructions we can efficiently implement Batcher's 
[4]sort on a vector register.  Once this register is sorted it is 
easy to update the histogram using a diff-find-diff trick [24]. 
This algorithm has the advantage that its running time is 
relatively insensitive to the distribution of data values while 
not using any extra main memory storage. 

The Neighborhood algorithm is currently being developed 
on DIVA and will be available for the final paper. 

On Imagine, the histogram in Neighborhood is updated in 
local scratch memory.  Because this buffer may be too small 
to accommodate the entire histogram, it is updated in phases.  
On each phase a portion of the histogram (representing values 
between, say, i and i+k) is loaded into scratch memory.  The 
remaining data array (which hasn't yet updated any portion of 
the histogram) is streamed through the clusters and those 
elements corresponding to the current portion of the histogram 
perform updates. The rest of the data array is saved for the 

next phase where the next portion of the histogram is updated.  
This process continues until all the data elements have been 
exhausted. 

The Power3 Neighborhood benchmark is implemented 
directly from the DIS specification, without any additional 
optimization.  

B. Performance Results 
Figure 9 presents the relative number of Power3 cycles 

necessary to compute the Neighborhood using three pixel 
input depths from the DIS specification, 7-, 11- and 15- bit. 
For the small bin sizes VIRAM performance is poor, requiring 
2.3 and 1.5 times more cycles than the Power3.  For these 
cases, the presence of duplicates in the image data inhibits 
data-parallelism and thus hurts vectorization performance; 
however, the short bin depths can actually help improve cache 
hits on cache-based architectures.  We therefore see very high 
performance on the Power3 without any special optimizations.  
VIRAM’s memory system advantage starts to become 
apparent for 15-bit pixels, where the histograms do not fit in 
cache.  Here VIRAM shows a 3X improvement in cycles 
compared to the Power3. 

Imagine performance for the 7-bit input is rather poor, 
requiring 5 times as many cycles as the Power3.  This is due to 
the relatively low computational requirements of the 
benchmark, which does not allow Imagine to effectively 
utilize its large set of functional units  To date we have been 
unable to successfully run the Imagine experiments for the 
larger pixel depths, but expect to have those results complete 
for the final paper. 

VII. RELATED WORK 
Over the last few years many techniques have been 

proposed for addressing the growing processor-memory gap.  
One area that has received much interest concerns improving 
the latency tolerance of traditional processors through various 
degrees of multithreading (such as the Tera MTA and current 



processors with SMT).  Traditional processors can also be 
enhanced with more intelligent memory controllers, improving 
performance for strided and indexed accesses [41]. The idea of 
adding more powerful data parallel units to contemporary 
microprocessors [12] has also been explored.  There have also 
been attempts to use embedded processors (for their low 
power) in a high performance computing context [7]. PIM 
technology is also explored in [17] and [33]. 

The architectures in this paper have also been the subject of 
other benchmarking activities.  The performance IRAM, 
DIVA, and Imagine on signal processing applications is 
discussed in [37].  IRAM is compared to cache-based 
processors for scientific and multimedia workloads in [13] and 
[21]. 

Many other benchmarks appear in the literature for 
processor-memory system characterization.  The STREAMS 
benchmark [35] is a standard way of measuring memory 
bandwidths for copy and simple vector operations.  Probes for 
determining memory system parameters (such as cache sizes 
and various latencies) are introduced in [32].  For determining 
the maximum performance of high performance architectures 
under “real-world” conditions the Linpack benchmark is 
traditionally employed.  Finally, the Livermore Loops [27]are 
often used to determine how vector systems handle algorithms 
with differing types of data dependencies.  

VIII. CONCLUSIONS AND FUTURE WORK 
This paper examines three emerging microprocessor 

technologies designed to address the processor-memory gap 
through the use of explicit data parallelism.  Our first 
contribution is the development an adaptable probe, Sqmat, 
which allowed us to evaluate key architectural features.  By 
varying a small set of parameters, we explored performance 
sensitivity to computational intensity, vector/stream length, 
memory access patterns, and kernel overheads.  Sqmat 
allowed us to gain insight into the balance of the architectures 
and quantify the computational space best suited for each 
processing paradigm.  Work is currently underway to expand 
Sqmat’s functionality and evaluate the architectural balance of 
leading microprocessor designs.   

Next we examined three important computational kernels, 
each with a different balance computational intensity, memory 
access patterns, and available data-parallelism.  The SPMV 
kernel requires random data access and a low number of 
arithmetic operations. Transitive Closure is a dense code, and 
can be block to provide a high ration of operations per 
memory access; however, the tiled approach requires 
adherence to complex data dependencies.  Finally we 
presented Neighborhood whose random data access patterns 
and potential data collisions are at odds with data parallel 
programming. 

Our benchmark set allowed us to explore several critical 
components of the underlying data-parallel architectures: 
staging data to the functional units, overhead of irregular data 
access, penalty of algorithmic data dependencies, 
programming complexity and overall performance.  Both 
VIRAM and DIVA have used PIM technology allowing for 
low-latency and high-bandwidth memory access. This is 
significantly less expensive than Imagine’s off-chip memory 
access. However, Imagine can utilize a large volume of 
external memory, whereas VIRAM and DIVA are limited to 
the small on-chip DRAM before additional programming and 
performance overheads are incurred. 

All three architectures incur a penalty for irregular data 
access.  VIRAM’s overhead is the smallest, but suffers a 
slowdown due to limited number of address generators in 
comparison to the number of its functional units.  DIVA’s 
overhead is relatively high, since extra operations are required 
to pack data contiguously into superwords. Imagine’s stream 
programming paradigm is restricted to uniform data access; 
therefore a relatively high penalty must be paid to 
appropriately reorder irregularly structure data. 
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Figure 9: Neighborhood Performance 

Algorithms with data dependencies are inherently at odds 
with data-parallel architectures.  DIVA seems to incur the 
smallest penalty since each wide register holds only eight 32-
bit elements, thus limiting the potential effect of data 
dependence operations.  VIRAM sustains a higher overhead 
since each vector instruction specifies the execution of 64 
elements (or 8 element groups).  Imagine has the potential to 
incur the highest cost, since computations may need to be 
streamed repeatedly to address complex data dependencies. 

Programmability is also an important issue that must be 
considered for each of the architectures. DIVA presents the 
simplest migration from scalar programming due to its 
similarity to conventional microprocessors. The VIRAM 
vector programming paradigm incurs a higher programming 
complexity but is well understood and can leverage years of 
algorithmic research as well as sophisticated compiler 
technologies.  Stream program development on Imagine was 
the most challenging, compared to the better-known vector or 
SLP approaches. The Imagine programmer is exposed to the 
memory hierarchy and cluster organization of the underlying 
architecture, and programming is awkward for irregular 
applications. Improvement in the quality of the compiler and 
software development tools, and abstracting lower level 
details of the hardware, worked currently in progress will be 
essential in bringing the stream programming model to the 



wider scientific community. 
Finally, our performance comparisons showed that VIRAM 

consistently outperformed the superscalar Power3 
architecture, with significantly less power consumption.  The 
Imagine architecture’s performance was inhibited by the 
irregularity and complex data dependencies; although it posses 
tremendous processing potential for properly structured 
algorithms.  Finally DIVA displayed limited performance. 
This was due to the first DIVA PIM chip, which does not 
support overlapping computation and memory access. 
Additionally, our experiments examined a one-PIM DIVA 
configuration, even though DIVA was designed to contain 
four nodes per PIM  and multiple PIM chips.   

Future plans include validating our results on real hardware 
as it becomes available, as well as examining a broader scope 
of scientific codes. We plan to evaluate more complex data-
parallel systems such as those proposed for the DARPA HPCS 
initiative. Our long-term goal is to evaluate these technologies 
as building blocks for future high-performance multiprocessor 
systems.   
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