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                                                               Abstract 

           Dimensionality is an important factor to govern the electronic structures of 

semiconductor nanocrystals. The quantum confinement energies in one-dimensional 

quantum wires and zero-dimensional quantum dots are quite different. Using large-scale 

first-principles calculations, we systematically study the electronic structures of 

semiconductor (including group IV, III-V, and II-VI) surface-passivated quantum wires 

and dots. The band-gap energies of quantum wires and dots have the same scaling with 

diameter for a given material. The ratio of band-gap-increases between quantum wires 

and dots is material-dependent, and slightly deviates from 0.586 predicted by effective-

mass approximation. Highly linear polarization of photoluminescence in quantum wires 

is found. The degree of polarization decreases with the increasing temperature and size.  
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                                                    1. Introduction   

            Semiconductor nanocrystals, such as quantum dots (QDs)[1] and quantum wires 

(QWs)[2] are of intense scientific and technological interest. Their electronic structures 

can be tailored by their sizes and shapes, leading to many new applications from lasers, [3] 

biological cell labelling, [4] to solar cells. [5] In comparison with QDs, the study of QWs 

has attracted less attention because of the technical difficulties to synthesis them. 

However, recently, high-quality semiconductor QWs can be fabricated by a solution-

liquid-solid approach in wet chemistry. [4-9] The diameter of the QWs synthesized in this 

way is small enough to show strong quantum confinement effect just like in colloidal 

QDs. Then one natural task is to compare the quantum confinement effects in QWs and 

QDs for the same materials. This gives us a way to study the effects of dimensionality [9] 

in the quantum confinement systems.  

            According to simple effective-mass approximation model,[10-12] the band gap 

increases of QDs and QWs from the bulk value is 2

222
dm

Eg ∗=∆ ζ� , where  ∗∗∗ +=
he mmm

111  

( ∗
em  and ∗

hm  are electron and hole's effective-mass, respectively), and d is the diameter. 

For spherical QDs, πζ =  is the zero point of the spherical Bessel function, while for 

cylindrical QWs, 4048.2=ζ  is the zero point of the cylindrical Bessel function. Thus the 

ratio of band-gap-increases between the QW and QD should be 586.0/ =∆∆ dot
g

wire
g EE . 

There are two questions about this simple effective mass model: (1) Does the gE∆  follow 

the 1/d2 scaling? If not, do the QW and QD gE∆  have the same scaling? (2) Is the real 

ratio dot
g

wire
g EE ∆∆ / close to 0.586 ?  
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            These questions have been addressed in some degree by experiments for some 

particular systems like InP and CdSe. [6-8] Here, we like to address these questions from 

ab initio calculations for many more materials: Si, InP, InAs, GaAs, CdSe, CdS, and 

CdTe.  Unlike the experiments where the exact diameters of the QD and QW always have 

some uncertainties due to size distribution, in our ab initio calculations, there is no such 

uncertainties.  

            To do ab initio calculations for thousand atom colloidal systems, we will use a 

recently developed charge patching method. This method has been applied successfully 

to calculate the electronic structure of unconventional semiconductor alloy with supercell  

containing 4096 atoms, [13-15] and IV-IV, III-V, II-VI thousand atom semiconductor 

QDs.[16] Before this method, empirical pseudopotential method (EPM) was used to 

calculate the electronic structure of semiconductor nanocrystals. [17,18] Compared to the 

EPM method, charge patching method has the following advantages: (1) There is no 

fitting uncertainties which exists in the EPM method. There is no fitting procedure in the 

charge patching method. The charge patching method generates the local-density 

approximation (LDA) quality charge density of a large nano-system without doing a self-

consistent LDA calculation for the large system. (2) The surface passivation of a colloidal 

nanosystem is straight forward and physical. In EPM, it takes a long time to fit a surface 

passivation for a given material. Despite all these advantages, the charge patching method 

is relatively new, especially in its application to colloidal nanocrystals. Thus, the second 

task of this paper is to check the accuracy of this method, especially for the calculation of 

QWs.  

                                                        2. Method 
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             The calculation scheme for the charge patching method is the following. First we 

use pseudo-hydrogen atoms (with fractional nuclei charges and numbers of electrons) on 

the surface of QWs, which provides an ideal passivation to pair the electron in the 

dangling bonds.  Second, we generate the ab initio quality electron charge density 

)(rpatchρ  using charge motifs generated from prototype systems with similar atomic 

environments.  Third, via the solution of Poisson's equation, the standard LDA formula 

can be used to calculate the total LDA potential V(r). Then the single particle 

Schrodinger's (or Kohn-Sham's) equation iiirV Ψ=Ψ+∇− ε)](
2
1[ 2  can be solved using 

the linear scaling folded spectrum method (FSM) for the band edge states. [19] The FSM 

searches for the minimum of irefi EH Ψ−Ψ 2)( , where Eref  is a reference energy 

placed inside the band gap. The details of this whole procedure are published in Ref. [16].  

             We have studied Si, GaAs, InAs, InP, CdSe, CdS, and CdTe QWs in [111] 

growth directions (we will also call it c-axis or z-direction in the following). We use the 

experimental bulk lattice constants shown in Table I. The effective diameter of QWs is 

defined in terms of the number of atoms Nwire in the wire (with one unit cell along [111] 

c-axis) as 2/1)
4

3( wireNad
π

= , where a is the bulk lattice constant. We have used plane-

wave basis sets and norm conserving pseudopotentials in our calculations. The kinetic 

energy cutoff for plane-wave basis set is listed in Table I.  We found our calculated bulk 

band structures are in excellent agreement with all electron linearized augmented plane 

wave (LAPW) method results. [20] The real space grids for the largest quantum wire are 

320×320×64.  

                                            3. Results and Discussion 
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            We first test the accuracy of the charge patching method for QWs. The test is done 

by comparing the charge patching method calculated results with direct self-consistent 

LDA calculated results. We will test the calculated eigen energies and charge densities. 

We will use InP as our test case, although similar results are found for other systems. Fig. 

1 plots the energy shifts of the conduction band minimum (CBM) and valence band 

maximum (VBM) states of InP QWs from the bulk values. The largest error (48 meV in 

CBM and 29 meV in VBM) are found in the QWs with diameter of 1.34 nm. After the 

size of QWs larger than 2 nm, the single particle eigen energies cause an error within 20 

meV compared to direct LDA calculations. The errors of band gap gE∆  shown in Table I 

are even smaller. The 1.34 nm QWs have 19 meV error. The QWs larger than 2 nm have 

typical errors of just 5≤  meV. The bulk InP has only 3×10-4 meV error in the gap, which 

can be thought as very large size QWs (diameter is infinite). The accuracy of the patched 

charge density )(rpatchρ  itself can be measured by its difference to the directly calculated 

self-consistent LDA charge density )(rLDAρ :  

∫ ∫−=∆ rdrrdrr LDALDApatch
33 )()()( ρρρρ . The results are shown in Table I for 

different systems. Overall, we get a charge density error less than 1%, similar to what we 

get for semiconductor QDs. [16] 

            After established the accuracy of the charge patching method, we can now use it 

to study the electronic states of various QWs. In Fig. 2, we have shown the contour plots 

of charge density distribution for the CBM state and VBM state of a 5.2 nm diameter InP 

QW. The wave functions of both CBM and VBM states are distributed mostly in the 

interior of the wire rather than at the surface. The envelope functions of both CBM and 

VBM states are σ-type (s-like in the xy plane). The electronic band structure of InP QWs 
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with diameter of 5.18 nm is plotted in Fig. 3 (a). In the conduction band, the lowest 

energy state is σc, and the next energy state is πc (p-like envelope function in the xy 

plane) with double degeneracy. The subscript c stands for the conduction band. In the 

valence band, the highest energy state is σz. Here, the subscript z indicates the Bloch part 

of the wave function has a pz character. The next energy state is πz with a double 

degeneracy. Lower than that, the energy states are πxy with a double degeneracy. Here, the 

subscribe xy indicates the pxy character of the Bloch part of the wave function.   

             The band gap change gE∆  as a function of QW diameter is plotted in Fig. 3 (b). 

We fit gE∆  with diameter d using an expression αβ dEg =∆ . We get α = 1.10972 for 

InP QWs. The quality of the fitting is shown in Fig.3(c).  This α value we get is far away 

from the simple effective-mass value of α=2.   

              We have done the same fitting for the calculated QD band gaps. The fitted 

results of α and β are listed in Table III for all the systems we have calculated. By 

comparing the values between QD and QW, we have the following observations: (1) The 

difference of α between QD and QW for a same material is very small. Typically they are 

within 4%, except for CdS and CdTe, there the difference is about 6∼ 8%. (2) For these 

small differences, there is no systematic trend. For example, one cannot say α from QW 

is larger or smaller than the QD. (3) Given the small differences and the lack of trend, 

one can assume that the difference of α between QW and QD is probably due to 

fluctuation of the fitting, thus they can be set as the same. Note that the differences of α 

between different materials are more robust. Roughly, the IV-IV material of Si has α ≈ 

1.6, while the III-V materials have α ≈ 1.0, and the II-V materials have α ≈ 1.2.   
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            By assuming the αdot to be the same as αwire, we can use αdot to fit the gE∆  of the 

QWs.  That gives us a new wireβ ′  which is also listed in Table III. As a result, the 

)()( dEdE dot
g

wire
g ∆∆  ratio will just be the ratio of dotwire ββ ′ . We found this ratio to range 

from 0.564 (for Si) to 0.731 (for CdS). All these ratios are relatively close to the simple 

effective mass results of 0.586, but in average they are slightly larger than the effective 

mass result.  

               Finally, to highline a difference of the QW electronic structure from the QD, we 

have calculated the photoluminescence (PL) polarization. One common characteristic of 

the QW PL spectra is that: the linear polarization along the z-direction and the xy-

directions are significantly different. This can be used as an experimental indicator to 

distinguish the QWs from QDs. It also opens doors to new device applications such as 

polarization-sensitive nanoscale photodetectors, integrated photonic circuits, optical 

switches and interconnects. [21] However, the polarization might sensitively depend on the 

temperature, especially for large QW. To get this temperature dependence, we have 

calculated 40 conduction band states and 40 valence band states of a given QW for 100 kz 

points. The optical transition matrix elements between these 40 states are calculated, and 

the Boltzmann distribution is used to occupy the states. The resulting PL polarization 

along z and xy directions are calculated for different temperatures for d=2.37 nm and 

d=5.37 nm CdSe QWs. The resulting linear polarization defined as 
⊥

⊥

+
−

=
II
II

P
||

||   [22] are 

shown in Fig.4. We find that for the small QW, the polarization is almost independent of 
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the temperature, while for the large QWs, the polarization is significantly reduced at 

room temperature from zero temperature result.   

                                                    4. Conclusions 

             We have performed ab initio charge patching calculations for large-scale 

semiconductor QWs and confirmed its accuracy in thousand atom QWs applications. The 

present method is reliably applied to all the semiconductor systems without any fitting 

parameters. All the errors of eigen-energies compared with self-consistent LDA 

calculations are within 50 meV. Both the calculated QW and QD band gap can be 

described as a formula αβ dEg =∆  with material-dependent parameters α and β. We 

find that for a given material, QWs and QDs have the same 1/dα scaling. But α is 

different from effective-mass value 2. The ratios of QW and QD band gap are also 

material-dependent, and range from 0.564 (for Si) to 0.731 (for CdS), slightly deviate 

from 0.586 predicted by effective-mass approximation. Finally, we have studied the 

linear polarization of PL in QWs. The degree of polarization decreases with the 

increasing temperature and size. But for small QWs, the degree of polarization is almost 

independent of temperature. 
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Figure Captions 
 
          Fig. 1 The CBM and VBM band energy shifts of InP QWs from the bulk values. 

The full-squares correspond to the results of charge patching method. The LDA self-

consistent calculations are shown as open-dots. 

           Fig. 2 Contour plot of charge density distribution of (a) CBM and (b) VBM state 

of InP QWs in xz-plane; and (c) CBM and (d) VBM in xy-plane. Magenta dots represent 

In-atom, yellow dots represent P-atom. The surface atoms are not ploted in this figure. 

Red, yellow, green, and blue colors indicate electron density from higher to lower. 

          Fig. 3 (a) Electronic band structure of InP QWs with diameter of 5.18 nm. The 

numbers in parentheses indicate the degeneracy of the states. (b) The change of the band 

gap gE∆  as functions of the diameter d of the InP QWs. (c) The linear least-squares fit to 

gE∆  vs d-1.10972 for InP QWs. 

            Fig. 4. Degrees fo linear polarization as functions of temperature for CdSe QWs 

with diameter of 2.37nm and 5.37nm. 
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Tables 
 
TABLE I.  Zinc-blende lattice a (in Å) and kinetic energy cutoff (in Ryd) for the plane-
wave basis set are used in this calculations. 

 

 

TABLE II. The accuracy of the charge patching method compared to direct self-
consistent LDA calculations. The band gap errors for all eigenstates of other materials are 
similar to the band gap errors shown here.  
 

 

system ∆ρ ∆Eg (meV) 

InP(bulk) 0.067% 3×10-4 

InP(100) 0.32% 18 

InP(111) 0.39% 22 

InP(110) 0.33% 15 

 d=1.34 nm 0.97% 19 

 d=2.29 nm 0.72% 1 

 d=2.84 nm 0.62% 3 

 

Si GaAs InAs InP CdSe CdS CdTe

 a (Å) 5.43 5.65 6.06 5.87 6.08 5.82 6.48

 Ecut (Ryd) 25.0 25.0 25.0 25.0 35.0 25.0 25.0
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TABLE III.    The α and β for the β/dα fit of the ∆Eg for different materials. The unit of β 
is eV×(nm)α. The QDs parameters of βdot and αdot are reported in Ref. [16]. We list here 
for comparison with these of QWs. Using  αdot to fit the  ∆Eg of QWs, we get wireβ ′ . 
 
 

 Si GaAs InAs InP CdSe CdS CdTe 

 dotβ  3.81   3.88 4.41 3.90 3.84 3.35 4.40 

dotα  1.60 1.01 1.01 1.10 1.18 1.22 1.28 

wireβ  2.09 2.65 3.15 2.77 2.79 2.56 2.80 

wireα  1.53 0.97 0.98 1.11 1.20 1.30 1.18 

wireβ ′  2.15 2.64 3.22 2.76 2.79 2.45 2.83 

 dotwire ββ ′  0.564 0.680 0.730 0.707 0.727 0.731 0.643 
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                                                             Fig. 2 Li and Wang 

 

 

                                                                                                    

                                                                                                    

 

 

 

                                                                                                       

 

 

 

 

 

                       

 

 

 

(a) CBM (xz-plane) 

(c) CBM  

(b) VBM (xz-plane) 

(d) VBM  

 d=5.18 nm

x
y 

z
[111]

x 

y 



 15

 

 

                                                Fig. 3 Li and Wang 
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                                 Fig. 4 Li and Wang 
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