
AMRNodeElliptic Software Package

Node-Centered AMR for Elliptic Problems

P. McCorquodale

Applied Numerical Algorithms Group
NERSC Division

Lawrence Berkeley National Laboratory
Berkeley, CA

April 21, 2003



Disclaimer

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor The Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or assumes
any legal responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by its trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof, or The Regents of the University of California, The
views and opinion authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof, or The Regents of the University of
California.
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Chapter 1

Nodal Discretization

1.1 AMR Spatial Discretization

For each level in the adaptive mesh refinement hierarchy, the underlying discretization of
space is given as lattice points (i0, . . . , iD−1) = i ∈ ZD, where i corresponds to a point
of space x0 + h · i, with x0 ∈ RD a fixed origin of coordinates for all levels, and h the
mesh spacing at the particular level.
The problem domain is discretized using node-centered grids. A grid Γ ⊂ ZD consists

of the lattice points within a rectangular region bounded by two points p, q ∈ ZD, where
p = (p0, . . . , pD−1) is the lower corner of Γ and q = (q0, . . . , qD−1) is the upper corner.
Thus Γ = {i ∈ ZD : p ≤ i ≤ q} where the notation a ≤ b means each entry of a is less
than or equal to the corresponding entry of b.
We will find it useful to define a number of operators on points and subsets of ZD.

We denote by Γ+ i the translation of a set Γ by a point i ∈ ZD. We define a coarsening
operator Cr : ZD → ZD, where r is a positive integer, by

Cr(i) = (
⌊

i0
r

⌋

, ...,

⌊

iD−1
r

⌋

).

The coarsening operator acting on subsets of ZD can be extended in a natural way to a
node-centered grid: if Γ = {i ∈ ZD : p ≤ i ≤ q} then Cr(Γ) = {i ∈ ZD : Cr(p) ≤ i ≤
Cr(q)}.
We extend this discretization of space to represent a nested hierarchy of grids that

discretize the same continuous spatial domain. We assume that our problem domain can
be discretized by a nested hierarchy of grids Γ0N , . . . ,Γ

lmax

N , with Γl+1N = Cnl
ref
(ΓlN), where

nlref is the refinement ratio between levels l and l + 1.

AMR calculations are performed on a hierarchy of node-centered meshes Ωl
N ⊂ ΓlN ,

with Ωl
N ⊃ Cnl

ref
(Ωl+1

N ). Typically, Ωl
N is decomposed into a union of node-centered grids,

R(Ωl
N), such that any two distinct Γ,Γ

′ ∈ R(Ωl
N) intersect only on grid faces.

For a node-centered union of rectangles ΩN at a fixed level of refinement, we define
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the interior nodes ΩN,int as those for which all neighbors along coordinate axes are also
in ΩN . That is, ΩN,int = ΩN ∩

⋂

d=0,...,D−1

((ΩN + ed) ∩ (ΩN − ed)).

A discretized dependent variable in AMR is a level array

ϕl : Ωl
N → Rm.

We denote by ϕi ∈ Rm the value of ϕ at node i ∈ Ωl
N .

1.2 Incorporating Geometry

If the domain Ω is not rectangular, we need a subroutine that tells us, for a given grid,
which of its nodes are in Ω. For the purposes of operator evaluation, the subroutine
should also tell which nodes are reachable from their neighbors along lines parallel to the
coordinate axes, where “reachable” in this context means that the connecting segment
lies entirely in the domain.
Specifically, we have a Chombo Fortran subroutine

subroutine reachablenodes(CHF_CONST_REAL[dx], CHF_FIA[mask])

where dx is the mesh spacing and mask is a node-centered BaseFab<int> with 2D + 1
components. At any node index i of the underlying Box, the corresponding point in space
is x = x0 + (i− 1

2
u) · dx, and the components of mask are set to represent reachability

of the neighboring nodes, as follows (see Figure 1.1):

• component 0 is set to 1 if x ∈ Ω, and 0 otherwise.

• for each d = 0, . . . ,D − 1, component 2d + 1 is set to 1 if the entire segment
[x,x+ ed · dx] ⊂ Ω, and 0 otherwise.

• for each d = 0, . . . ,D − 1, component 2d + 2 is set to 1 if the entire segment
[x,x− ed · dx] ⊂ Ω, and 0 otherwise.

The solver may call reachablenodes with any mesh spacing dx equal to a power of
2 multiplied by the finest mesh spacing in the hierarchy.

1.3 The Class NodeFArrayBox

The class NodeFArrayBox holds node-centered floating-point data for a single grid, but
the constructor takes a cell-centered Box: NodeFArrayBox(bx, nComp) assigns storage
for nComp floating-point components on each node surrounding the cells of bx.
This class is a wrapper for a node-centered FArrayBox. The purpose of introducing

a new class with a constructor based on the cell-centered grid, instead of just using a
node-centered FArrayBox, is that we can represent a level array φ : ΩN → Rm in the
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Figure 1.1: Components of the mask array at the center node indicated by ×, in two
dimensions. The notation i : v beside a node indicates that at node ×, component i has
value v, as determined by the reachability of the labeled node from ×. The shaded area
is outside the domain. We have v = 1 if the node is reachable from ×, and v = 0 if it
is not. Note that the point at top center is considered to be not reachable from ×, even
though it is in the domain, because the connecting segment does not lie entirely in the
domain.

templated data holder LevelData<NodeFArrayBox>. This structure requires that the
underlying BoxLayout be a DisjointBoxLayout. Since adjacent grids share nodes but
not cells (see Figure 1.2), we must use the cell-centered grids in the constructor.
If a node belongs to more than one grid, then the values in the LevelData<NodeFArrayBox>

at that node must be the same in each grid in which it occurs.
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Figure 1.2: An illustration of a DisjointBoxLayout consisting of six grids within a
problem domain delineated by dashed lines. Abutting grids share nodes indicated by
hollow circles. Nodes marked × are also shared by abutting grids if the domain is periodic
in the horizontal direction.
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Chapter 2

Multilevel Laplacian Operator

2.1 No-Geometry Case

From a formal numerical analysis standpoint, a solution on an adaptive mesh hierarchy
{Ωl

N}lmax

l=0 approximates the exact solution to the PDE only on interior nodes, and only
on those interior nodes that are not covered by interior nodes at a finer level. These are
defined as the valid nodes of Ωl

N (see Figure 2.1):

Ωl
N,valid = Ω

l
N,int − Cnl

ref
(Ωl+1

N,int).

Figure 2.1: A grid hierarchy with three levels of refinement. The valid nodes at the middle
level are indicated by •.

A composite array ϕcomp is a collection of discrete values defined on the valid nodes
at each of the levels of refinement.

ϕcomp = {ϕl,valid}lmax

l=0 , ϕ
l,valid : Ωl

N,valid → Rm

8



The discrete Laplacian operator ∆h on a level with mesh spacing h is defined on the
valid nodes of that level, as

(∆hϕN,l)i =
D−1
∑

d=0

(∆h
dϕ

N,l)i (2.1)

where ∆h
d is a second-derivative operator in dimension d,

(∆h
dϕ

N,l)i =
ϕN,l

i−ed − 2ϕN,l
i + ϕN,l

i+ed

h2
. (2.2)

Then (2.1)–(2.2) is a second-order approximation to the exact Laplacian ∆:

(∆hϕN,l)i = (∆ϕ
N,l)i +O(h2).

Figure 2.2: Cases in which data at non-valid nodes is needed in computing the discrete
Laplacian at a valid node. Nodes of the stencil are indicated by ×.
Left: Stencil reaches physical boundary (at top point) — then use the physical boundary
conditions.
Center: Stencil is partially covered by the next finer level (at bottom point) — then
project valid data from the finer level.
Right: Stencil intersects boundary with coarser level (at top point) — then interpolate
from coarse nodes along the boundary.

There are three cases in which i is a valid node at level l, but j = i± ed is not (see
Figure 2.2).

• The node j is on the physical boundary. Then we take the value of ϕN,l
j from the

physical boundary conditions.

• The node j is covered by a grid at finer level l+ 1. Then we project the valid data
from the finer level, ϕN,l

j = ϕN,l+1

nl
ref

j
.

• The node j is on the boundary with coarser level l − 1. Then we interpolate from
the coarser level, as described in chapter 4.
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2.2 Operators on Non-Rectangular Domains

When the domain Ω is not rectangular, the stencil of the discrete Laplacian operator at
a valid node may include points that are not in the domain. Then we need a subroutine
to compute the discrete Laplacian ∆h on a level with mesh spacing h.
The coefficients are computed in a Chombo Fortran subroutine

subroutine nodalcoefficients(CHF_CONST_REAL[dx], CHF_FRA[coeffs])

where dx is the mesh spacing and coeffs is a node-centered FArrayBox with 2D + 2
components. At any node index i of the underlying Box, the corresponding point in space
is x = x0 + (i − 1

2
u) · dx, and the components of coeffs are set to the coefficients of

the stencil for node i, as follows:

• component 0 is the coefficient of the value at x.

• for each d = 0, . . . ,D − 1, component 2d + 1 is the coefficient of the value at
x+ ed · dx.

• for each d = 0, . . . ,D − 1, component 2d + 2 is the coefficient of the value at
x− ed · dx.

• component 2D+ 1 is the constant coefficient.

Thus if c0i , . . . c
2D+1
i are the coefficients for node i at a level with mesh spacing h,

then

(∆hϕN,l)i = c0i · ϕN,l
i +

∑

d=0,...,D−1

(c2d+1i · ϕN,l
i+ed + c2d+2i · ϕN,l

i−ed) + c2D+1i .

If all of the nodes of the stencil for i are in the domain, then the coefficients are
c0i = −2/h2; c2d+1i = c2d+2i = 1/h2 for d = 0, . . . ,D− 1; and c2D+1i = 0.
At points near an internal boundary, where not all points of the regular stencil lie in

the domain, we make an approximation for (∆h
dϕ

N,l)i (d = 0, . . . ,D−1) that is based on
the regular 3-point stencil (2.2) and extrapolating from available data to covered points
of the stencil. For a point of evaluation x, define xL and xR as follows.

• If x− ed ∈ Ω, then xL = x− ed. Otherwise, xL is the first point on the segment
from x to x− ed that lies on the boundary of Ω.

• If x+ ed ∈ Ω, then xR = x+ ed. Otherwise, xR is the first point on the segment
from x to x+ ed that lies on the boundary of Ω.

We also define ϕL as the value of ϕ at xL from either ϕ
N,l
i−ed or the boundary condition,

and similarly ϕR as the value of ϕ at xR from either ϕ
N,l
i+ed or the boundary condition.
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x x x
R

L

Figure 2.3: Points (marked by ×) and distances used in approximating near an internal
boundary, when the shaded area is outside the domain. In this example, ϕL = ϕ(xL) =
ϕN,l

i−ed , and ϕR = ϕ(xR) is obtained from the Dirichlet boundary condition.

The Shortley–Weller approximation is based on quadratic extrapolation from ϕN,l
i , ϕL

and ϕR to the covered grid nodes of the regular stencil. Thus

(∆h
dϕ

N,l)i =
2

L · (L+R)
ϕL −

2

L ·Rϕ
N,l
i +

2

R · (L+R)
ϕR. (2.3)

Formula (2.3) provides a first-order approximation to the exact second partial derivative
in dimension d, and hence to the exact Laplacian ∆:

(∆hϕN,l)i = (∆ϕ
N,l)i +O(h).

An alternative approximation is based on linear extrapolation to the covered grid nodes
of the regular stencil. Thus

(∆h
dϕ

N,l)i =
1

h · LϕL −
1

h
(
1

L
+
1

R
)ϕN,l

i +
1

h ·RϕR. (2.4)

Formula (2.4) provides a zeroth-order approximation to the exact second partial derivative
in dimension d, and hence to the exact Laplacian ∆:

(∆hϕN,l)i = (∆ϕ
N,l)i +O(1).
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Chapter 3

Interlevel Transfer Operators

3.1 Averaging

This operator is used to average from a finer level down to a coarser level, or to construct
averaged residuals in multigrid iterations. Averaging from level l to level l−1, we assume
that the refinement ratio r = nl−1ref is a power of 2. To obtain the averaged value at node

i ∈ Cr(Ωl
N,int) of level l − 1, we use the values at the level-l nodes ri + q, where the

components of q satisfy −r/2 ≤ qd ≤ r/2 for d = 0, . . . ,D− 1.

3.1.1 No-Geometry Case

For a refinement ratio of r, we define weights wq on the points in

Θr = {q ∈ ZD : −r
2
u ≤ q ≤ r

2
u}.

The averaging operator down to level l− 1 is defined at nodes i ∈ Ωl−1
N where Θr+ ri ⊂

Ωl
N . These are the interior coarse nodes of level l. Thus for i ∈ Cr(Ωl

N,int):

Average(ϕN,l)i =
∑

q∈Θr

wqϕ
N,l
ri+q (3.1)

where the weight at point q = (q0, . . . , qD−1) ∈ ZD is

wq =
D−1
∏

d=0

1

(1 + δ|qd|,r/2)r
(3.2)

with δ the Kronecker delta. In words, the weights of the nodes come from the tensor
product of the weights in the one-dimensional trapezoidal rule. In the one-dimensional
trapezoidal rule, when there are r + 1 points, the r − 1 interior points are each assigned
the weight 1

r
, and the two extreme points are each assigned the weight 1

2r
.

See Figure 3.1 for two-dimensional examples.
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Figure 3.1: Averaging down to the center coarse node indicated by ×, in two dimensions.
Weights are indicated at the fine nodes, with different shadings for different weights.
Left: Refinement ratio is 2. Each corner node has weight 1

16
, each other node on an

exterior face has weight 1
8
, and the center node has weight 1

4
.

Right: Refinement ratio is 4. Each corner node has weight 1
64
, each other node on an

exterior face has weight 1
32
, and each remaining node, in the interior, has weight 1

16
.

3.1.2 Case of Non-Rectangular Domains

It is possible that a non-rectangular domain might not contain some of the points needed
in averaging by the method of section 3.1.1. Then the weights will need to be adjusted
so that only points in the domain are given nonzero weights.
To simplify the procedure for non-rectangular domains, averaging is performed as a

composition of averagings with refinement ratio of 2. In the remainder of this section, we
assume that the refinement ratio is 2.
We have a separate weight array for each coarse node. The adjustment we make to

the weights in (3.2) is that if a fine node is not reachable from the coarse node by a path
lying entirely in the domain, consisting of edges parallel to the axes, without backtracking,
then the weight of that fine node is set to zero. The weight of the projected coarse node
on the finer level is then increased so that the total of the fine–node weights at the coarse
node is 1. Thus

Average(ϕN,l)i =
∑

q∈Θ2

wi,qϕ
N,l
2i+q (3.3)

where for 0 6= q ∈ Θ2, we define the weight

wi,q =

{ ∏D−1
d=0

1
1+|qd|

if q + 2i is reachable from 2i

0 otherwise

13



and

wi,0 = 1−
∑

06=q∈Θ2

wi,q.

As stated above, “reachable” here means that there is a path through the fine nodes that
avoids backtracking, where each edge in the path is parallel to one of the axes and lies
entirely in the domain. For each edge, this code calls the reachablenodes subroutine
described in section 1.2. The two-dimensional domain subset used in Figure 1.1 is shown
in Figure 3.2 with the weights on the fine nodes.

0

5/8 0

1/8

1/8

1/16

1/16 0

0

Figure 3.2: Weights of fine nodes in averaging to the coarse node indicated by ×. The
shaded area is outside the domain. Some nodes have weight 0, even though they are in
the domain, because there is no path to them from × following edges that lie entirely in
the domain, without backtracking. Compare with Figure 3.1, left side.

3.2 Interpolation

This operator is primarily used in multigrid iteration to interpolate the correction from the
coarser level to the next finer level. We interpolate from the neighboring coarse nodes,
using a formula that is bilinear in two dimensions, trilinear in three dimensions.
In this section, we assume we are interpolating from level l − 1 to level l, where the

refinement ratio is r = nl−1ref .

3.2.1 No-Geometry Case

The interpolated value at i ∈ ΩN,l is a linear combination of the values at the 2D

coarse nodes in ΩN,l−1 that are the vertices of the box with corners at Cr(i) =
(bi0/rc , . . . , biD−1/rc) and Cr(i) + u. The length fractions for each dimension d =
0, . . . ,D− 1 are

εdi (0) = 1− id − r bid/rc
r

εdi (1) =
id − r bid/rc

r

14



and these are multiplied to give the weights of the coarse nodes, offset from Cr(i) by
0 ≤ q ≤ u:

wi,q =
D−1
∏

d=0

εdi (qd).

Then the interpolation formula is

Interp(ϕN,l−1)i =
∑

0≤q≤u

wi,q · ϕN,l
Cr(i)+q

.

See Figures 3.3 and 3.4 for illustrations in two dimensions.

ε (0)ε (0) ε (1)ε (0)

ε (1)ε (1)

ε (0)

ε (1)

ε (0)ε (1)

0ε (1) ε (0)0
0

00

0 1

1 1

1

1

1

3/16 1/16

3/169/16

1/4

3/4

1/4

3/4

Figure 3.3: Left: Length fractions and weights of coarse nodes in bilinear interpolation in
two dimensions to the fine node indicated by ×.
Right: An example with refinement ratio of 4.

1 1/21/2 1/4

1/41/4

1/40

000 0

Figure 3.4: Interpolation in two dimensions to a fine node indicated by ×, when the
refinement ratio is 2. Weights are shown on the coarse nodes in three cases.

3.2.2 Case of Non-Rectangular Domains

When the domain is not rectangular, some of the points needed in interpolating by the
method of section 3.2.1 may be outside the domain. As we did with averaging in section

15



3.1.2, we assume that the refinement ratio is a power of 2, and to simplify the procedure,
we perform interpolation as a composition of interpolations with refinement ratio of 2. In
the remainder of this section, we assume a refinement ratio of 2.
The value at i is interpolated from coarse nodes in the box with corners bi/2c and

di/2e = (di0/2e , . . . , diD−1/2e). The number of such coarse nodes is 2 to the power
of the number of odd components of i. We assign equal weight to each of these coarse
nodes that is reachable from the fine node in the sense described in section 3.1.2: that
is, connected by a path through fine nodes along edges parallel to the axes, with no
backtracking. See Figure 3.5 for weights used in interpolating to some of the fine nodes
in the two-dimensional domain subset used in Figure 1.1.

1 01 0

01/2

1/2

Figure 3.5: Interpolation in two dimensions to a fine node indicated by ×, when the
refinement ratio is 2. The shaded area is outside the domain. For three different fine
nodes, weights are shown on the coarse nodes used for interpolation. Compare with
Figure 3.4.
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Chapter 4

Coarse/Fine Boundary Interpolation

4.1 No-Geometry Case

i

Figure 4.1: A two-dimensional example in which the stencil of the operator includes a
node i on the interface with the next coarser level. This is not a valid node of the finer
level. Valid nodes of the finer level are marked •, and valid nodes of the coarser level are
marked ◦.
When the stencil for evaluating the operator on ϕN,l at level l includes a node i lying

on the boundary with the next coarser level l − 1 (see Figure 4.1), we must interpolate
ϕN,l

i from ϕN,l−1 at the valid coarser-level nodes.
We assume that the refinement ratio nl−1ref is a power of 2. Then the interpolation

from level l − 1 to level l is a composition of log2(nl−1ref ) successive interpolations each
with refinement ratio of 2.
If nl−1ref > 2 then we first interpolate from level l − 1 to the interface with the grids

of level l coarsened by nl−1ref /2. The remaining inter-level interpolations use data only
on the coarse/fine interface and the physical boundary conditions, which are set at each
intermediate stage (see Figure 4.2).
In the remainder of this section, we assume a refinement ratio of 2.
If the level-l node i coincides with a node at level l − 1, then we project the value

of ϕN,l−1
i/2 . In other cases, in two dimensions we use either linear or quadratic interpola-
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Figure 4.2: A two-dimensional example with refinement ratio of 4. We interpolate to
finer-level nodes on the coarse/fine interface in two stages.
First stage: interpolate from the valid coarser-level nodes indicated by ◦ to interface
nodes at the intermediate level, indicated by ¦. Intermediate-level interface nodes that
are also coarser-level nodes are indicated by ◦ superimposed with ¦.
Second stage: interpolate from the intermediate-level interface nodes to the finer-level
interface nodes. In interpolating to the node marked ×, we use only data at nodes
indicated by ¦ in this figure, and not data at other coarser-level or intermediate-level
nodes.

tion along one-dimensional interfaces, and in three dimensions we use either bilinear or
biquadratic interpolation along two-dimensional interfaces.

4.1.1 2-dimensional problem: 1-dimensional interface

In the two-dimensional problem, the coarse/fine interface is one-dimensional. Along the
interface, the coordinates vary in only one of the two dimensions, say the first. Let (a, b)
be the coordinates of a point of approximation on the interface. If h is the mesh spacing
at the finer level, then the coarse nodes on the interface are at (a ± h, b), (a ± 3h, b),
etc. We interpolate to the fine nodes with a function that is either piecewise linear or
piecewise quadratic.
The piecewise linear interpolation function f1 on the interface has values equal to

ϕN,l−1 at the coarse nodes. At the fine nodes,

f1(a) =
f1(a− h) + f1(a+ h)

2
. (4.1)

This formula gives second-order accuracy,

f1(a) = ϕN,l(a, b) +O(h2). (4.2)
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Figure 4.3: We interpolate a value at the fine node marked × from coarse nodes indicated
by ◦ along the one-dimensional interface. The piecewise linear interpolant f1(a) is simply
the mean of the values at a − h and a + h. The piecewise quadratic interpolant f2(a)
also depends on values at a ± 3h. The weight for the piecewise quadratic interpolant is
shown to the left of each point.

The piecewise quadratic interpolation function f2 on the interface also has values equal
to ϕN,l−1 at the coarse nodes. At the fine nodes,

f2(a) = f1(a)−
h2

2
f ′′2 (a) (4.3)

where f1 is the linear interpolant (4.1). The second derivative f
′′
2 (a) then comes from the

coarse values f2(a − h), f2(a + h), and either f2(a − 3h) or f2(a + 3h) or both, using
one of the following formulas (see Figure 4.3):

f ′′2 (a) =
f2(a− 3h)− f2(a− h)− f2(a+ h) + f2(a+ 3h)

2(2h)2
(4.4a)

f ′′2 (a) =
f2(a− 3h)− 2f2(a− h) + f2(a+ h)

(2h)2
(4.4b)

f ′′2 (a) =
f2(a− h)− 2f2(a+ h) + f2(a+ 3h)

(2h)2
. (4.4c)

We use (4.4a) if both (a − 3h, b) and (a + 3h, b) are valid nodes, and one of the other
formulas if not. At least one of the nodes (a± 3h, b) will be valid, because a grid at any
level, in particular the coarser level, has length at least 2 cells in each dimension. With
(4.4a), we have fourth-order accuracy,

f2(a) = ϕN,l(a, b) +O(h4) (4.5)
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because this is actually cubic interpolation; with (4.4b) and (4.4c), we have third-order
accuracy,

f2(a) = ϕN,l(a, b) +O(h3) (4.6)

because this is quadratic interpolation.

4.1.2 3-dimensional problem: 2-dimensional interface

In the three-dimensional problem, the coarse/fine interface is two-dimensional, so that
along the interface, the coordinates vary in only two of the three dimensions, say the first
two. Let (a, b, c) be the coordinates, in level l, of a point of approximation on the interface
with level l − 1. If both a and b are even, then (a, b, c) is a coarse node, and we project
the value ϕN,l−1(a/2, b/2, c/2). If either a or b is even, but not both (see Figure 4.4,
left side) then we interpolate along the line as in section 4.1.1. In the remainder of this
section we consider the case in which both a and b are odd (see Figure 4.4, right side).
Then the coarse nodes are at (a±h, b±h, c), (a±3h, b±h, c), (a±h, b±3h, c), etc. We
interpolate to the fine nodes with a function that is either piecewise bilinear or piecewise
biquadratic.

b

b−h

a

b+h b+h

b

b−h

a−h a a+h

Figure 4.4: Interpolating a value at the point (a, b), marked×, from coarse nodes indicated
by ◦.
Left: When a is even, interpolate along the line where the first coordinate is fixed at a.
Right: When both a and b are odd, interpolate from the four neighboring coarse nodes and
their coarse neighbors. In the piecewise biquadratic interpolant, second partial derivatives
are estimated at points indicated by •.

The piecewise bilinear interpolation function f1 on the interface has values equal to
ϕN,l−1 at the coarse nodes. At the fine nodes,

f1(a, b) =
f1(a− h, b− h) + f1(a− h, b+ h) + f1(a+ h, b− h) + f1(a+ h, b+ h)

4
.(4.7)

This formula gives second-order accuracy,

f1(a, b) = ϕN,l(a, b, c) +O(h2). (4.8)
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The piecewise biquadratic interpolation function f2 on the interface also has values
equal to ϕN,l−1 at the coarse nodes. At the fine nodes,

f2(a, b) = f1(a, b)−
h2

2
(
∂2f2
∂x2

(a, b) +
∂2f2
∂y2

(a, b)). (4.9)

where f1 is the linear interpolant (4.7). Our value for the second derivative
∂2f2
∂x2 (a, b)

comes from the mean of estimates of ∂2f2
∂x2 (a, b − h) and ∂2f2

∂x2 (a, b + h). Likewise for
∂2f2
∂y2 (a, b) from

∂2f2
∂y2 (a − h, b) and ∂2f2

∂y2 (a + h, b). We calculate these derivatives from

points along a line, following equations (4.4) as described in Section 4.1.1. Then the
formula for f2 is third-order accurate,

f2(a, b) = ϕN,l(a, b, c) +O(h3). (4.10)

4.2 Case of Non-Rectangular Domains

If the domain is not rectangular, then coarse/fine boundary interpolation may be more
complicated. Near a fine node on the coarse/fine interface, some of the coarse-node
neighbors may be outside the domain.
As in the no-geometry case, we assume a refinement ratio of 2. For higher refinement

ratios, we perform a composition of interpolations with refinement ratio of 2.
Again, if the level-l node i coincides with a node at level l−1, then we project the value

of ϕN,l−1
i/2 . In other cases, where possible we use linear or quadratic interpolation in two

dimensions, or bilinear or biquadratic interpolation in three dimensions. The interpolation
formulas are modified if some of the required coarse points are covered.
For non-rectangular domains, our algorithms depend on whether or not nodes are

reachable from other nodes. As in section 1.2, “reachable” means that the segment
connecting the nodes lies entirely in the domain.

4.2.1 2-dimensional problem: 1-dimensional interface

In the two-dimensional problem, the coarse/fine interface is one-dimensional. As in section
4.1.1, let (a, b) be the coordinates of a point on the interface over which the first coordinate
varies. Let h be the finer-level mesh spacing. We assume that at least one of the coarse
neighbors (a−h, b) and (a+h, b) is reachable from a. If both are reachable, then we use
the formulas of section 4.1.1 and achieve the same accuracy – with the exception that
quadratic interpolation is not possible if neither of the nodes (a± 3h, b) is reachable from
(a, b).
Now suppose (a + h, b) is not reachable from (a, b), but (a − h, b) is reachable. If

(a− 3h, b) is not reachable from (a, b), then we must approximate the value at (a, b) by
the value at (a − h, b), and this approximation is first-order accurate. But if (a − 3h, b)
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is reachable from (a, b), then linear interpolation uses the one-sided formula

f1(a) =
3

2
f1(a− h)− 1

2
f1(a− 3h)

which is still second-order accurate. Quadratic interpolation from one side is possible if
(a− 5h, b) is also reachable from (a, b):

f2(a) =
15

8
f2(a− h)− 5

4
f2(a− 3h) +

3

8
f2(a− 5h)

which is a third-order accurate formula. See Figure 4.5.

a+h

a

a−h

a−3h

a−5h

15/8

3/8

−5/4

a+h

a

a−3h

a−5h

3/2

−1/2

a

a+h

a−h

a−3h

a−5h

1a−h

Figure 4.5: Interpolating at the fine node a marked × from coarse nodes indicated by
◦ along the one-dimensional interface when a + h is not reachable from a. We use the
weights displayed at the coarse nodes, under one of the three possibilities of reachability
of a − 3h and a − 5h from a. Interpolation is either quadratic (left), linear (center), or
constant (right).

4.2.2 3-dimensional problem: 2-dimensional interface

In the three-dimensional problem, the coarse/fine interface is two-dimensional. As in
section 4.1.2, let (a, b, c) be the coordinates of a point on the interface, along which the
first two coordinates vary but the third is fixed. If either a or b is even then we interpolate
along the line, following section 4.2.1. In the remainder of this section, we assume both
a and b are odd.
Letting h be the finer-level mesh spacing, then the nearest coarse neighbors of (a, b, c)

on the interface are (a± h, b± h, c). We assume that at least one of these is reachable
from (a, b, c). If all of them are reachable, then we can use the formulas of section 4.1.2.
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If not all four of the nearest coarse neighbors on the interface are reachable from
(a, b, c), then the first approximation is the mean of the values at the subset of these
coarse neighbors that are in the domain, except that if the number is three, then one of
them is ignored. See Figure 4.6 for the five cases: (a) one coarse neighbor; (b) two coarse
neighbors, on a line parallel to an axis; (c) two coarse neighbors, not on a line parallel to
an axis; (d) three coarse neighbors; (e) four coarse neighbors.

1/2 1/2

0 1/4

1/4

1/4

1

1/2 1/2

1/4

(a) (b) (c) (d) (e)

1/2 1/2

Figure 4.6: The first approximation at the center node indicated by × is a weighted
average of the neighboring coarse nodes that are in the domain. Weights are indicated
beside the coarse nodes.

In cases (c), (d) and (e), this first approximation is bilinear. In cases (a) and (b),
in order to get a bilinear approximation we add a one-sided bilinear correction if coarse
nodes neighboring the four base ones are in the domain. See Figure 4.7.

1 1/2 1/4 1/4 1/2

−1/2

−1/2

−1/4 −1/4 −1/2

−1/2

(a) (b)

Figure 4.7: One-sided bilinear correction to approximation at center node ×. Weights of
the correction are indicated beside the coarse nodes.
(a) If only one coarse neighbor of× is in the domain, we add a correction in each dimension
where it is possible.
(b) If two coarse neighbors of × are in the domain, and they lie on a line parallel to an
axis, then we add a correction in the perpendicular direction if possible.

From the bilinear approximation, we can make a biquadratic correction if there are
enough coarse nodes in the domain to obtain estimates of the second derivatives. We
use one of the formulas (4.4) for estimating the second derivative in each dimension,
where the correction term takes the form −h2

2
f ′′2 (a). In addition, if we made a one-sided

correction, cases (a) or (b) above, then in each dimension where the correction was made

we also add a correction of (2h)
2

2
f ′′2 (a).
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4.3 Truncation Error of Laplacian Near Interfaces

Recall that the purpose of interpolating along the coarse/fine interface is to obtain data
for a point of the stencil of the Laplacian operator (see Figure 4.1) given by (2.1)–(2.2).
Because of the h2 denominator in (2.2), the truncation error is two orders of accuracy
below that of the approximation error at the interface point, and at most second-order.
Hence the second-order error in linear interpolation in two dimensions (4.2) or bilinear

interpolation in three dimensions (4.8) gives rise to constant truncation error:

∆hϕN,l = ∆ϕN,l +O(1).

Third-order error in quadratic interpolation in two dimensions (4.6) or biquadratic inter-
polation in three dimensions (4.10) gives rise to first-order truncation error:

∆hϕN,l = ∆ϕN,l +O(h).

When the stencil includes interpolated points with fourth-order error in cubic interpolation
in two dimensions (4.5) or bicubic interpolation in three dimensions, truncation error is
second-order:

∆hϕN,l = ∆ϕN,l +O(h2).
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Chapter 5

AMR-Multigrid Algorithm

In the pseudocode description of the algorithm, we use the operator Lnf which is a two-
level discretization of the Laplacian: Lnf (ϕl, ϕl−1) is defined on the nodes Ωl

N,int, as
described as ∆h in chapter 2, with the assumption that there is no finer level.

5.1 Multigrid Solver on One Level

For the one-level multigrid solver, we have a recursive smoothing operator mgRelax(ϕf , Rf , nc)
on ϕf with operator Lnf and right-hand side Rf , assuming identically zero values on the
physical and coarse/fine interface boundary conditions. The argument nc is the depth of
the V-cycle, usually chosen to be the highest number such that 2nc divides the length
of every side of every grid on the level. This routine uses the average-to-coarse routine
Average, described in section 3.1, and the coarse-to-fine interpolation routine Interp,
described in section 3.2. It also calls the point-relaxation function LevelGSRB described
in section 5.2, and a bottom smoother as described in section 5.4.
See Figure 5.1 for a pseudo-code description of the multigrid solver on a level.

5.2 Point Relaxation

For point relaxation we use procedure LevelGSRB(ϕf , Rf ), which performs Gauss-Seidel
iteration with red-black ordering, as shown in Figure 5.2. This operation uses data on
one level only. Gauss-Seidel iteration increments ϕf by the residual weighted at each
point by a relaxation parameter λ, such that the diagonal of the resulting operator is
zero. Red-black ordering means that we relax using two passes through the domain in
a checkerboard pattern: on the first pass, we relax on the points ΩBLACK

N ⊂ ΩN where
the sum of the coordinates is odd; on the second pass, we relax on the remaining points
ΩRED
N ⊂ ΩN where the sum of the coordinates is even.
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Rf := ρf − Lnf (ϕf , ϕc)
ef := 0
while (||Rf − Lnf (ef , ec ≡ 0)|| > ε||ρf ||)

mgRelax(ef , Rf , nc)
end while
ϕf := ϕf + ef

procedure mgRelax(ϕf , Rf , nc)
{

if (nc > 0) then
δc := 0
for i = 1, . . . , NumSmoothDown

LevelGSRB(ϕf , Rf )
end for
Rc := Average(Rf − Lnf (ϕf , ϕc ≡ 0))
mgRelax(δc, Rc, nc − 1)
ϕf := ϕf + Interp(δc)
for i = 1, . . . , NumSmoothUp

LevelGSRB(ϕf , Rf )
end for

else
for i = 1, . . . , NumBottomGSRB

LevelGSRB(ϕf , Rf )
end for
if (points > 1) then

bottomSmooth(ϕf , Rf )
end if

end if
}

Figure 5.1: Pseudo-code description of the multigrid solver on a level, with the recursive
relaxation procedure. Here nc is the depth of the V-cycle.
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procedure LevelGSRB(ϕf , Rf )
{

ϕf := ϕf + λ(Lnf (ϕf , ϕc ≡ 0)−Rf ) on ΩBLACK
N

ϕf := ϕf + λ(Lnf (ϕf , ϕc ≡ 0)−Rf ) on ΩRED
N

}

Figure 5.2: Gauss-Seidel relaxation with red-black ordering. Here λ is the relaxation
parameter.

5.3 AMR Multigrid Algorithm

Pseudo-code for the AMR multigrid algorithm to solve L(ϕ) = ρ is shown in Figure 5.4.
The smoothing operator AMRmgRelax(ϕf , Rf , r), described in detail in Figure 5.3, per-
forms a mini-V-cycle iteration on ϕf for the operator Lnf and right-hand sideRf , assuming
the coarse-grid values required for the boundary conditions are identically zero. The num-
ber r is the refinement ratio. This routine uses the average-to-coarse routine Average,
described in section 3.1, and the coarse-to-fine interpolation routine Interp, described in
section 3.2.

5.4 Bottom Smoothers

For the bottom smoother in the multigrid algorithm (see Figure 5.1), we use either a
conjugate gradient algorithm (see Figure 5.6) or a modified version of the BiCGStab
algorithm (see Figure 5.5), as described in [BBC+94].

5.4.1 Preconditioner

Functionally, applyPreconditioner(φ̂, φ) is equivalent to solving Mφ̂ = φ. The precondi-
tioner initializes with the solution to D(L)φ̂ = φ, where D(L) is the diagonal part of the
operator. Then it does a few GSRB passes, as shown in Figure 5.7.

5.5 Level-by-level Multigrid Algorithm

As an alternative to the AMR multigrid algorithm, we may solve level by level, from
coarsest to finest, interpolating the coarse solution to the fine solution between each level
solve. See Figure 5.8.
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procedure AMRmgRelax(ϕf , Rf , r)
{

for i = 1, . . . , NumBottomGSRB
LevelGSRB(ϕf , Rf )

end for
if (r > 2) then

for i = 1, . . . , NumSmoothDown
LevelGSRB(ϕf , Rf )

end for
δc := 0
Rc := Average(Rf − Lnf (ϕf , ϕc ≡ 0))
AMRmgRelax(δc, Rc, r/2)
ϕf := ϕf + Interp(δc)
for i = 1, . . . , NumSmoothUp

LevelGSRB(ϕf , Rf )
end for

end if
}

Figure 5.3: Recursive relaxation procedure.
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R := ρ− L(ϕ)
while (||R|| > ε||ρ||)

AMRVCycleMG(lmax)
R := ρ− L(ϕ)

end while

procedure AMRVCycleMG(level l):
{

if (l = lmax) then Rl := ρl − Lnf (ϕl, ϕl−1)
if (l > 0) then

ϕl,save := ϕl on Ωl
N

el := 0 on Ωl
N

AMRmgRelax(el, Rl, nl−1ref )

ϕl := ϕl + el

el−1 := 0 on Ωl−1
N

Rl−1 := Average(Rl−1 − Lnf (el, el−1)) on Cnl−1
ref
(Ωl

N)

Rl−1 := ρl−1 − Lcomp,l−1(ϕ) on Ωl−1
N − Cnl−1

ref
(Ωl

N)

AMRVCycleMG(l − 1)
el := el + Interp(el−1)
Rl := Rl − Lnf,l(el, el−1)
δel := 0 on Ωl

N

AMRmgRelax(δel, Rl, nl−1ref )

el := el + δel

ϕl := ϕl,save + el

else
solve Lnf (e0, 0) = R0 on Ω0N , by one-level multigrid algorithm.
ϕ0 := ϕ0 + e0

end if
}

Figure 5.4: Pseudo-code description of the AMR multigrid algorithm.
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procedure bottomSmooth(x, b)
{

r(0) := b− Lnf (x, 0)
r̃ := r(0), i := 0
e(0) := 0 (set correction to 0)
while i < imax and ||r(i)|| > ε||r(0)||

i := i+ 1
ρi−1 = r̃T r(i−1)

if ρi−1 = 0 then (method fails)
x := x+ e(i−1)

exit
end if
if i = 1 then

p(i) := r(i−1)

else
βi−1 := (ρi−1/ρi−2) · (αi−1/ωi−1)
p(i) := r(i−1) + βi−1(p

(i−1) − ωi−1v
(i−1))

end if
applyPreconditioner(p̂, p(i))
v(i) := Lnf (p̂, 0)
αi := ρi−1/(r̃

Tv(i))
check magnitude of αiv

(i): OK := (r̃Tv(i) > (small)ρi−1)
if OK then

r(i) := r(i−1) − αiv
(i)

e(i) := e(i−1) + αip̂
else

r(i) := 0 (this will force restart from clean residual)
e(i) := e(i−1)

end if
if ||r(i)|| > ε||r0|| then

applyPreconditioner(ŝ, r(i))
t := Lnf (ŝ, 0)
ωi := (t

T r(i))/(tT t)
e(i) := e(i) + ωiŝ
r(i) := r(i) − ωit

end if
if ||r(i)|| < ε||r(0)|| or ωi = 0 then

x := x+ e(i)

r(i) := b− Lnf (x, 0) (recompute “clean” residual)
r̃ := r(i)

e(i) := 0 (reset correction to 0, since we’ve already incremented solution)
end if

end while
}

Figure 5.5: Pseudo-code description of the BiCGStab bottom smoother.
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procedure bottomSmooth(x, b)
{

r(0) := b− Lnf (x, 0)
i := 0
e(0) := 0 (set correction to 0)
while i < imax and ||r(i)|| > ε||r(0)||

i := i+ 1
applyPreconditioner(z, r(i−1))
ρi−1 = zT r(i−1)

if ρi−1 = 0 then (method fails)
if i = 1 then

p := z
else

p := z + (ρi−1/ρi−2)p
end if
q := Lnf (p, 0)
αi := ρi−1/(p

T q)
check magnitude of αiq: OK := (pT q > (small)ρi−1)
if OK then

x := x+ αip
r(i) := r(i−1) − αiq

else
r(i) := 0 (this will force restart from clean residual)

end if
end while

}

Figure 5.6: Pseudo-code description of the conjugate gradient bottom smoother.

procedure applyPreconditioner(φ̂, φ)
{

solve D(L)φ̂ = φ

LevelGSRB(φ̂, φ)

LevelGSRB(φ̂, φ)
}

Figure 5.7: Pseudo-code description of applying the preconditioner.
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for l = 0, . . . , lmax

solve Lnf (ϕl, ϕl−1) = ρl on Ωl
N , by one-level multigrid algorithm.

end for

Figure 5.8: Pseudo-code description of the level-by-level multigrid algorithm.
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Chapter 6

Convergence Tests

6.1 Norms over Multilevel Hierarchies

Before describing the convergence tests, we define the norms we use to measure error on
multilevel hierarchies. Let f comp = {f l}lmax

l=0 be a composite array defined on the nodes
of each level.
The L∞ norm of f

l is defined as the maximum value over the valid nodes at level l:

||f l||∞ = max
i∈Ωl

N,valid

|f li|.

The composite L∞ norm is the maximum over all levels:

||f comp||∞ = maxlmax

l=0 ||f l||∞.
For finite p we define the Lp norm of f

l by integrating |f l|p over the valid nodes. If
the mesh spacing on level l is hl, then

||f l||p = (hD
l

∑

i∈Ωl
N,valid

|f li|p)1/p.

The composite Lp norm is the p-th root of the sum of p-th powers of the norms of each
level:

||f comp||p = (
lmax
∑

l=0

||f l||pp)1/p = (
lmax
∑

l=0

hD
l

∑

i∈Ωl
N,valid

|f li|p)1/p.

6.2 Operator Tests, No-Geometry Case

We perform some tests over two-level grid hierarchies in two and three dimensions. In
two dimensions, the hierarchy is shown in Figure 6.1 and has a refinement ratio of four
between the levels. The three-dimensional grid hierarchy is shown in Figure 6.2 and has
a refinement ratio of two between the levels. In both cases, the coarser-level domain has
unit length in each dimension, and is centered at the origin.
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Figure 6.1: Grid configuration for two-dimensional operator tests. There are two levels of
refinement, with a refinement ratio of four between them. In this illustration, we show
one 16 × 16 grid at the coarser level, and four grids at the finer level. We also use fully
refined versions of this same set of grids, partitioned so that the maximum length of any
grid in any dimension is 32.
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Figure 6.2: Grid configuration for three-dimensional operator tests. There are two levels
of refinement. The edges of the coarser-level grid and the face cells of the finer-level
grids are shown. Note that the projection of the finer-level grids on the the (horizontal)
xy-plane yields the configuration of Figure 6.1. The refinement ratio between the levels
is two. In this illustration, the coarser-level domain contains one 16 × 16 × 16 grid, and
there are four grids at the finer level where the domain is 32× 32× 32. We also use fully
refined versions of this same set of grids, partitioned so that the maximum length of any
grid in any dimension is 32.
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6.2.1 Laplacian of quadratic

We first test the discrete Laplacian operator ∆hϕ by checking that it evaluates the correct
answer if ϕ is quadratic over a hierarchy. Since ϕ is quadratic, its third derivative is
identically zero, so the truncation error of the operator is also zero in this special case,
whether the coarse/fine interpolation is (bi)quadratic or (bi)linear. In two dimensions, we
initialize the solution to be the quadratic

ϕ(x, y) = x2 + y2 (6.1)

over the grid hierarchy in Figure 6.1, and we evaluate the Laplacian ∆hϕ. At all of the
valid nodes, we find ∆hϕ = 4. In three dimensions, we initialize the solution to be the
quadratic

ϕ(x, y, z) = x2 + y2 + z2 (6.2)

over the grid hierarchy shown in Figure 6.2, and we evaluate the Laplacian ∆hϕ. At all
of the valid nodes, we find ∆hϕ = 6.

6.2.2 Gaussian example

In our next tests, we initialize ϕ to be the Gaussian function

ϕ(x, y) = exp(−x
2 + y2

4σ2
) (6.3)

in two dimensions or

ϕ(x, y, z) = exp(−x
2 + y2 + z2

4σ2
) (6.4)

in three dimensions, where σ = 1
8
.

6.2.3 Trigonometric polynomial on semi-periodic domain

For examples on periodic domains, we choose the same grids in Figures 6.1 and 6.2,
with periodicity in the x direction. That is, the domain wraps around from x = 1/2 to
x = −1/2.
We initialize ϕ to be the trigonometric polynomial

ϕ(x, y) =
sin(2πx) + sin(2πy)

−4π2 (6.5)

in two dimensions or

ϕ(x, y, z) =
sin(2πx) + sin(2πy) + sin(2πz)

−4π2 (6.6)

in three dimensions.
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6.2.4 Tests performed

We compute the discrete Laplacian ∆hϕ at two different levels of refinement and take
the difference with the exact Laplacian, ∆ϕ. Using three different norms (L1, L2, and
L∞), we compute the order of convergence of the operator with grid refinement. If ϕh

denotes the composite array with mesh spacing of h at the base level, then the order of
convergence p is given by

p =
1

ln(2)
ln(
||∆2hϕ2h −∆ϕ2h||
||∆hϕh −∆ϕh||

). (6.7)

We also test the convergence of the norms of the difference between the calculated
values of ∆2hϕ2h and the projection of those calculated on the same set of grids refined
by two, P2(∆

hϕh). Using three different mesh spacings, h, 2h, and 4h, the order of
convergence p is

p =
1

ln(2)
ln(
||∆4hϕ4h − P2(∆

2hϕ2h)||
||∆2hϕ2h − P2(∆hϕh)||

). (6.8)

Finally, we test with both linear and quadratic interpolation along the coarse/fine
boundary interace in two dimensions, and both bilinear and biquadratic interpolation
along the interface in three dimensions.
Summarizing our tests, we vary the following.

• Dimensions: two (example with refinement ratio of four) or three (example with
refinement ratio of two).

• Mesh spacings.

• Norms: L1, L2, and L∞.

• Error: difference with exact error, ∆hϕh−∆ϕh, or with projected value, ∆
2hϕ2h−

P2(∆
hϕh).

• Degree of coarse/fine interpolation: quadratic (biquadratic) or linear (bilinear).

6.2.5 Interpretation of results

Tables 6.1–6.2 and 6.5–6.6 show that when using quadratic interpolation in two dimensions
or biquadratic interpolation in three dimensions, the discrete Laplacian operator converges
to first order in L∞ norm and to second order in L1 norm. The L2 norm of the error is
O(h3/2) in two dimensions and O(h2) in three dimensions. These results are consistent
with the operator error being O(h2) everywhere except on a one-dimensional set on which
the error is O(h), as shown in Table 6.9. In three dimensions, the set of points with data
interpolated biquadratically is one-dimensional instead of two-dimensional because on the
interior of the coarse/fine interfaces, we interpolate bicubically.
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D deg norm h ||∆hϕh −∆ϕh|| ||∆2hϕ2h −∆ϕ2h|| p

2 2 L∞ 1/128 2.99939E-01 6.28624E-01 1.07
2 2 L∞ 1/256 1.46318E-01 2.99939E-01 1.04
2 2 L∞ 1/512 7.22411E-02 1.46318E-01 1.02
2 2 L∞ 1/1024 3.58907E-02 7.22411E-02 1.01

2 2 L1 1/128 1.39222E-03 5.95619E-03 2.10
2 2 L1 1/256 3.36113E-04 1.39222E-03 2.05
2 2 L1 1/512 8.25601E-05 3.36113E-04 2.03
2 2 L1 1/1024 2.04562E-05 8.25601E-05 2.01

2 2 L2 1/128 3.39859E-03 1.35755E-02 2.00
2 2 L2 1/256 9.29003E-04 3.39859E-03 1.87
2 2 L2 1/512 2.75872E-04 9.29003E-04 1.75
2 2 L2 1/1024 8.74869E-05 2.75872E-04 1.66

D deg norm h ||∆2hϕ2h − P2(∆
hϕh)|| ||∆4hϕ4h − P2(∆

2hϕ2h)|| p

2 2 L∞ 1/128 6.28710E-01 1.36572E+00 1.12
2 2 L∞ 1/256 2.99961E-01 6.28710E-01 1.07
2 2 L∞ 1/512 1.46323E-01 2.99961E-01 1.04
2 2 L∞ 1/1024 7.22425E-02 1.46323E-01 1.02

2 2 L1 1/128 4.60020E-03 2.13511E-02 2.21
2 2 L1 1/256 1.06385E-03 4.60020E-03 2.11
2 2 L1 1/512 2.55320E-04 1.06385E-03 2.06
2 2 L1 1/1024 6.25220E-05 2.55320E-04 2.03

2 2 L2 1/128 1.19733E-02 5.39635E-02 2.17
2 2 L2 1/256 3.02249E-03 1.19733E-02 1.99
2 2 L2 1/512 8.46416E-04 3.02249E-03 1.84
2 2 L2 1/1024 2.58986E-04 8.46416E-04 1.71

Table 6.1: Convergence test of discrete Laplacian operator on Gaussian (6.3) with the
two-dimensional (D = 2) two-level grid hierarchy shown in Figure 6.1, and quadratic (deg
= 2) coarse/fine interpolation. Here h denotes the grid spacing at the base level, and p
is the order of convergence of the scheme calculated by either (6.7) or (6.8). The other
parameters of the convergence test are described in the text.
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D deg norm h ||∆hϕh −∆ϕh|| ||∆2hϕ2h −∆ϕ2h|| p

2 2 L∞ 1/128 4.90485E-02 9.78139E-02 1.00
2 2 L∞ 1/256 2.45404E-02 4.90485E-02 1.00
2 2 L∞ 1/512 1.22718E-02 2.45404E-02 1.00
2 2 L∞ 1/1024 6.13602E-03 1.22718E-02 1.00

2 2 L1 1/128 1.04271E-04 4.38903E-04 2.07
2 2 L1 1/256 2.53882E-05 1.04271E-04 2.04
2 2 L1 1/512 6.26122E-06 2.53882E-05 2.02
2 2 L1 1/1024 1.55466E-06 6.26122E-06 2.01

2 2 L2 1/128 3.84463E-04 1.52148E-03 1.98
2 2 L2 1/256 9.86578E-05 3.84463E-04 1.96
2 2 L2 1/512 2.59415E-05 9.86578E-05 1.93
2 2 L2 1/1024 7.09558E-06 2.59415E-05 1.87

D deg norm h ||∆2hϕ2h − P2(∆
hϕh)|| ||∆4hϕ4h − P2(∆

2hϕ2h)|| p

2 2 L∞ 1/128 9.78007E-02 1.93217E-01 0.98
2 2 L∞ 1/256 4.90453E-02 9.78007E-02 1.00
2 2 L∞ 1/512 2.45396E-02 4.90453E-02 1.00
2 2 L∞ 1/1024 1.22716E-02 2.45396E-02 1.00

2 2 L1 1/128 3.40011E-04 1.52611E-03 2.17
2 2 L1 1/256 7.97738E-05 3.40011E-04 2.09
2 2 L1 1/512 1.92927E-05 7.97738E-05 2.05
2 2 L1 1/1024 4.74099E-06 1.92927E-05 2.02

2 2 L2 1/128 1.46500E-03 5.82888E-03 1.99
2 2 L2 1/256 3.70663E-04 1.46500E-03 1.98
2 2 L2 1/512 9.53200E-05 3.70663E-04 1.96
2 2 L2 1/1024 2.51519E-05 9.53200E-05 1.92

Table 6.2: Convergence test of discrete Laplacian operator on trigonometric polynomial
(6.5) with the two-dimensional (D = 2) two-level grid hierarchy shown in Figure 6.1,
periodic in the x direction, and quadratic (deg = 2) coarse/fine interpolation. Here h
denotes the grid spacing at the base level, and p is the order of convergence of the
scheme calculated by either (6.7) or (6.8). The other parameters of the convergence test
are described in the text.
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D deg norm h ||∆hϕh −∆ϕh|| ||∆2hϕ2h −∆ϕ2h|| p

2 1 L∞ 1/128 4.97998E+01 4.96696E+01 0.00
2 1 L∞ 1/256 4.98324E+01 4.97998E+01 0.00
2 1 L∞ 1/512 4.98405E+01 4.98324E+01 0.00
2 1 L∞ 1/1024 4.98426E+01 4.98405E+01 0.00

2 1 L1 1/128 5.20676E-02 1.06302E-01 1.03
2 1 L1 1/256 2.57803E-02 5.20676E-02 1.01
2 1 L1 1/512 1.28269E-02 2.57803E-02 1.01
2 1 L1 1/1024 6.39808E-03 1.28269E-02 1.00

2 1 L2 1/128 9.56406E-01 1.34852E+00 0.50
2 1 L2 1/256 6.77208E-01 9.56406E-01 0.50
2 1 L2 1/512 4.79170E-01 6.77208E-01 0.50
2 1 L2 1/1024 3.38932E-01 4.79170E-01 0.50

D deg norm h ||∆2hϕ2h − P2(∆
hϕh)|| ||∆4hϕ4h − P2(∆

2hϕ2h)|| p

2 1 L∞ 1/128 4.96705E+01 4.91548E+01 -0.02
2 1 L∞ 1/256 4.98000E+01 4.96705E+01 0.00
2 1 L∞ 1/512 4.98324E+01 4.98000E+01 0.00
2 1 L∞ 1/1024 4.98405E+01 4.98324E+01 0.00

2 1 L1 1/128 1.04946E-01 2.16124E-01 1.04
2 1 L1 1/256 5.17393E-02 1.04946E-01 1.02
2 1 L1 1/512 2.56995E-02 5.17393E-02 1.01
2 1 L1 1/1024 1.28068E-02 2.56995E-02 1.00

2 1 L2 1/128 1.34852E+00 1.89397E+00 0.49
2 1 L2 1/256 9.56407E-01 1.34852E+00 0.50
2 1 L2 1/512 6.77208E-01 9.56407E-01 0.50
2 1 L2 1/1024 4.79170E-01 6.77208E-01 0.50

Table 6.3: Convergence test of discrete Laplacian operator on Gaussian (6.3) with the
two-dimensional (D = 2) two-level grid hierarchy shown in Figure 6.1, and linear (deg
= 1) coarse/fine interpolation. Here h denotes the grid spacing at the base level, and p
is the order of convergence of the scheme calculated by either (6.7) or (6.8). The other
parameters of the convergence test are described in the text.
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D deg norm h ||∆hϕh −∆ϕh|| ||∆2hϕ2h −∆ϕ2h|| p

2 1 L∞ 1/128 2.53827E+00 2.51451E+00 -0.01
2 1 L∞ 1/256 2.54964E+00 2.53827E+00 -0.01
2 1 L∞ 1/512 2.55519E+00 2.54964E+00 0.00
2 1 L∞ 1/1024 2.55794E+00 2.55519E+00 0.00

2 1 L1 1/128 5.24667E-03 1.06590E-02 1.02
2 1 L1 1/256 2.60286E-03 5.24667E-03 1.01
2 1 L1 1/512 1.29634E-03 2.60286E-03 1.01
2 1 L1 1/1024 6.46904E-04 1.29634E-03 1.00

2 1 L2 1/128 8.26120E-02 1.16683E-01 0.50
2 1 L2 1/256 5.84471E-02 8.26120E-02 0.50
2 1 L2 1/512 4.13385E-02 5.84471E-02 0.50
2 1 L2 1/1024 2.92342E-02 4.13385E-02 0.50

D deg norm h ||∆2hϕ2h − P2(∆
hϕh)|| ||∆4hϕ4h − P2(∆

2hϕ2h)|| p

2 1 L∞ 1/128 2.51453E+00 2.46303E+00 -0.03
2 1 L∞ 1/256 2.53828E+00 2.51453E+00 -0.01
2 1 L∞ 1/512 2.54964E+00 2.53828E+00 -0.01
2 1 L∞ 1/1024 2.55519E+00 2.54964E+00 0.00

2 1 L1 1/128 1.05602E-02 2.15927E-02 1.03
2 1 L1 1/256 5.22217E-03 1.05602E-02 1.02
2 1 L1 1/512 2.59676E-03 5.22217E-03 1.01
2 1 L1 1/1024 1.29482E-03 2.59676E-03 1.00

2 1 L2 1/128 1.16683E-01 1.64475E-01 0.50
2 1 L2 1/256 8.26120E-02 1.16683E-01 0.50
2 1 L2 1/512 5.84471E-02 8.26120E-02 0.50
2 1 L2 1/1024 4.13385E-02 5.84471E-02 0.50

Table 6.4: Convergence test of discrete Laplacian operator on trigonometric polynomial
(6.5) with the two-dimensional (D = 2) two-level grid hierarchy shown in Figure 6.1,
periodic in the x direction, and linear (deg = 1) coarse/fine interpolation. Here h denotes
the grid spacing at the base level, and p is the order of convergence of the scheme
calculated by either (6.7) or (6.8). The other parameters of the convergence test are
described in the text.
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D deg norm h ||∆hϕh −∆ϕh|| ||∆2hϕ2h −∆ϕ2h|| p

3 2 L∞ 1/32 4.88845E-01 1.87290E+00 1.94
3 2 L∞ 1/64 2.34887E-01 4.88845E-01 1.06
3 2 L∞ 1/128 1.14431E-01 2.34887E-01 1.04

3 2 L1 1/32 2.20173E-02 9.32968E-02 2.08
3 2 L1 1/64 5.29526E-03 2.20173E-02 2.06
3 2 L1 1/128 1.29560E-03 5.29526E-03 2.03

3 2 L2 1/32 4.04914E-02 1.79846E-01 2.15
3 2 L2 1/64 9.54041E-03 4.04914E-02 2.09
3 2 L2 1/128 2.31020E-03 9.54041E-03 2.05

D deg norm h ||∆2hϕ2h − P2(∆
hϕh)|| ||∆4hϕ4h − P2(∆

2hϕ2h)|| p

3 2 L∞ 1/32 1.95947E+00 7.07055E+00 1.85
3 2 L∞ 1/64 4.89721E-01 1.95947E+00 2.00
3 2 L∞ 1/128 2.35139E-01 4.89721E-01 1.06

3 2 L1 1/32 7.16858E-02 3.21741E-01 2.17
3 2 L1 1/64 1.67692E-02 7.16858E-02 2.10
3 2 L1 1/128 4.00633E-03 1.67692E-02 2.07

3 2 L2 1/32 1.39949E-01 6.72440E-01 2.26
3 2 L2 1/64 3.12095E-02 1.39949E-01 2.16
3 2 L2 1/128 7.28422E-03 3.12095E-02 2.10

Table 6.5: Convergence test of discrete Laplacian operator on Gaussian (6.4) with the
three-dimensional (D = 3) two-level grid hierarchy shown in Figure 6.2, and biquadratic
(deg = 2) coarse/fine interpolation. Here h denotes the grid spacing at the base level,
and p is the order of convergence of the scheme calculated by either (6.7) or (6.8). The
other parameters of the convergence test are described in the text.
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D deg norm h ||∆hϕh −∆ϕh|| ||∆2hϕ2h −∆ϕ2h|| p

3 2 L∞ 1/32 1.09348E-01 2.33653E-01 1.10
3 2 L∞ 1/64 5.20965E-02 1.09348E-01 1.07
3 2 L∞ 1/128 2.53218E-02 5.20965E-02 1.04

3 2 L1 1/32 2.80423E-03 1.11387E-02 1.99
3 2 L1 1/64 6.99859E-04 2.80423E-03 2.00
3 2 L1 1/128 1.74598E-04 6.99859E-04 2.00

3 2 L2 1/32 3.93319E-03 1.56701E-02 1.99
3 2 L2 1/64 9.81668E-04 3.93319E-03 2.00
3 2 L2 1/128 2.44991E-04 9.81668E-04 2.00

D deg norm h ||∆2hϕ2h − P2(∆
hϕh)|| ||∆4hϕ4h − P2(∆

2hϕ2h)|| p

3 2 L∞ 1/32 2.35071E-01 7.76380E-01 1.72
3 2 L∞ 1/64 1.09728E-01 2.35071E-01 1.10
3 2 L∞ 1/128 5.21943E-02 1.09728E-01 1.07

3 2 L1 1/32 8.52419E-03 3.22905E-02 1.92
3 2 L1 1/64 2.12814E-03 8.52419E-03 2.00
3 2 L1 1/128 5.28239E-04 2.12814E-03 2.01

3 2 L2 1/32 1.25655E-02 4.87623E-02 1.96
3 2 L2 1/64 3.14705E-03 1.25655E-02 2.00
3 2 L2 1/128 7.83819E-04 3.14705E-03 2.01

Table 6.6: Convergence test of discrete Laplacian operator on trigonometric polynomial
(6.6) with the three-dimensional (D = 3) two-level grid hierarchy shown in Figure 6.2,
periodic in the x direction, and biquadratic (deg = 2) coarse/fine interpolation. Here
h denotes the grid spacing at the base level, and p is the order of convergence of the
scheme calculated by either (6.7) or (6.8). The other parameters of the convergence test
are described in the text.
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D deg norm h ||∆hϕh −∆ϕh|| ||∆2hϕ2h −∆ϕ2h|| p

3 1 L∞ 1/32 3.28267E+01 3.51650E+01 0.10
3 1 L∞ 1/64 3.11139E+01 3.28267E+01 0.08
3 1 L∞ 1/128 3.01457E+01 3.11139E+01 0.05

3 1 L1 1/32 8.13179E-02 2.00611E-01 1.30
3 1 L1 1/64 3.64497E-02 8.13179E-02 1.16
3 1 L1 1/128 1.72252E-02 3.64497E-02 1.08

3 1 L2 1/32 7.09253E-01 1.05989E+00 0.58
3 1 L2 1/64 4.94085E-01 7.09253E-01 0.52
3 1 L2 1/128 3.47614E-01 4.94085E-01 0.51

D deg norm h ||∆2hϕ2h − P2(∆
hϕh)|| ||∆4hϕ4h − P2(∆

2hϕ2h)|| p

3 1 L∞ 1/32 3.52516E+01 3.50928E+01 -0.01
3 1 L∞ 1/64 3.28432E+01 3.52516E+01 0.10
3 1 L∞ 1/128 3.11173E+01 3.28432E+01 0.08

3 1 L1 1/32 1.79018E-01 4.85710E-01 1.44
3 1 L1 1/64 7.60713E-02 1.79018E-01 1.23
3 1 L1 1/128 3.51612E-02 7.60713E-02 1.11

3 1 L2 1/32 1.05795E+00 1.81204E+00 0.78
3 1 L2 1/64 7.09454E-01 1.05795E+00 0.58
3 1 L2 1/128 4.94157E-01 7.09454E-01 0.52

Table 6.7: Convergence test of discrete Laplacian operator on Gaussian (6.4) with the
three-dimensional (D = 3) two-level grid hierarchy shown in Figure 6.2, and bilinear (deg
= 1) coarse/fine interpolation. Here h denotes the grid spacing at the base level, and p
is the order of convergence of the scheme calculated by either (6.7) or (6.8). The other
parameters of the convergence test are described in the text.
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D deg norm h ||∆hϕh −∆ϕh|| ||∆2hϕ2h −∆ϕ2h|| p

3 1 L∞ 1/32 2.98076E+00 2.92347E+00 -0.03
3 1 L∞ 1/64 2.99518E+00 2.98076E+00 -0.01
3 1 L∞ 1/128 2.99880E+00 2.99518E+00 0.00

3 1 L1 1/32 1.08923E-02 2.52229E-02 1.21
3 1 L1 1/64 4.98999E-03 1.08923E-02 1.13
3 1 L1 1/128 2.37785E-03 4.98999E-03 1.07

3 1 L2 1/32 6.73793E-02 9.82547E-02 0.54
3 1 L2 1/64 4.69739E-02 6.73793E-02 0.52
3 1 L2 1/128 3.29774E-02 4.69739E-02 0.51

D deg norm h ||∆2hϕ2h − P2(∆
hϕh)|| ||∆4hϕ4h − P2(∆

2hϕ2h)|| p

3 1 L∞ 1/32 2.92584E+00 2.70966E+00 -0.11
3 1 L∞ 1/64 2.98136E+00 2.92584E+00 -0.03
3 1 L∞ 1/128 2.99533E+00 2.98136E+00 -0.01

3 1 L1 1/32 2.26160E-02 5.25943E-02 1.22
3 1 L1 1/64 1.02172E-02 2.26160E-02 1.15
3 1 L1 1/128 4.81851E-03 1.02172E-02 1.08

3 1 L2 1/32 9.79474E-02 1.49947E-01 0.61
3 1 L2 1/64 6.73646E-02 9.79474E-02 0.54
3 1 L2 1/128 4.69750E-02 6.73646E-02 0.52

Table 6.8: Convergence test of discrete Laplacian operator on trigonometric polynomial
(6.6) with the three-dimensional (D = 3) two-level grid hierarchy shown in Figure 6.2,
periodic in the x direction, and bilinear (deg = 1) coarse/fine interpolation. Here h
denotes the grid spacing at the base level, and p is the order of convergence of the
scheme calculated by either (6.7) or (6.8). The other parameters of the convergence test
are described in the text.
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coarse/fine operator on set norm of operator error
D interpolation error of size L∞ L1 L2
2 quadratic, O(h3) O(h) O(h) O(h) O(h2) O(h3/2)
2 linear, O(h2) O(1) O(h) O(1) O(h) O(h1/2)
3 biquadratic, O(h3) O(h) O(h2) O(h) O(h2) O(h2)
3 bilinear, O(h2) O(1) O(h) O(1) O(h) O(h1/2)

Table 6.9: The error in the discrete Laplacian operator is O(h2), except where the operator
is computed from interpolated data. At these points, two orders of accuracy are lost from
the data by computing the discrete operator. This table shows the dimensionality D, the
error in the interpolated data points, the resulting error in the operator, and the volume
of the set of points on which interpolated data with this order of accuracy are used —
the operator error being O(h2) on the remaining points. The table also shows the norm
of the error with the three norms.

These tables also show the advantage of quadratic over linear interpolation (in two
dimensions) and biquadratic over bilinear interpolation (in three dimensions). For the
linear/bilinear cases, Tables 6.3–6.4 and 6.7–6.8 show that the error in the discrete Lapla-
cian operator is constant in L∞ norm and converges linearly in L1 norm. The L2 norm
of the error is O(h1/2). These results are consistent with the operator error being O(h2)
everywhere except on a set of codimension one on which the error is O(1), as shown in
Table 6.9.
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6.3 Solver Tests, No-Geometry Case

We initialize the right-hand side ρ of the solver to be a function for which we can compute
the analytical solution ϕ in Poisson’s equation

∆ϕ = ρ.

We compute the solution at different base refinements and compare the solutions to the
exact solutions. The boundary conditions of the computed solution are inhomogeneous
Dirichlet. The value at the boundary is set to the analytic solution at that location. The
difference between the computed and exact solutions should converge to zero with grid
refinement, to second order if coarse/fine interpolation is (bi)quadratic, and to first order
if (bi)linear. We also initialize ϕ with the exact solution and compare ∆hϕ with the exact
ρ.

6.3.1 Polynomial example

We initialize the charge density ρ to be a function of r,

ρ(r) =

{

ρ0(2(
r
R0
)3 − 3( r

R0
)2 + 1), if r < R0;

0, if r ≥ R0 .
(6.9)

Then for the two-dimensional problem, we set boundary conditions for the exact solution

ϕ(r) =

{

ρ0r
2(1
4
− 3

16
( r
R0
)2 + 2

25
( r
R0
)3), if r < R0;

3ρ0R2
0

20
(ln( r

R0
) + 19

20
), if r ≥ R0 .

(6.10)

For the three-dimensional problem, we set boundary conditions for the exact solution

ϕ(r) =

{

ρ0r
2(1
6
− 3

20
( r
R0
)2 + 1

15
( r
R0
)3) if r < R0;

ρ0R
2
0(

3
20
− 1

15
R0

r
) if r ≥ R0 .

(6.11)

We use the two–level grid hierarchies shown in Figures 6.1 and 6.2, on domains that
have unit length in each direction and are centered at the origin. In (6.9), we set R0 =

1
2

and ρ0 =
3
4
.

6.3.2 Trigonometric polynomial on semi-periodic domain

For examples on periodic domains, we choose the same grids in Figures 6.1 and 6.2, with
periodicity in the x direction, meaning that the domain wraps around from x = 1/2 to
x = −1/2.
We initialize the charge density ρ to be the trigonometric polynomial

ρ(r) = sin(2πx) + sin(2πy) (6.12)
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in two dimensions or

ρ(r) = sin(2πx) + sin(2πy) + sin(2πz) (6.13)

in three dimensions.
Then for the two-dimensional problem, we set boundary conditions for the exact so-

lution

ϕ(x, y) =
sin(2πx) + sin(2πy)

−4π2 (6.14)

in two dimensions or

ϕ(x, y, z) =
sin(2πx) + sin(2πy) + sin(2πz)

−4π2 (6.15)

in three dimensions.

6.3.3 Results

In Tables 6.10–6.17 we show the order of convergence of the solution Uh with mesh
spacing h to the exact solution Ue:

p =
1

ln(2)
ln(
||U2h − Ue||
||Uh − Ue||

). (6.16)
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D deg norm h ||Uh − Ue|| ||U2h − Ue|| p

2 2 L∞ 1/128 3.71549E-07 1.54797E-06 2.06
2 2 L∞ 1/256 9.36432E-08 3.71549E-07 1.99
2 2 L∞ 1/512 2.35204E-08 9.36432E-08 1.99
2 2 L∞ 1/1024 5.89332E-09 2.35204E-08 2.00

2 2 L1 1/128 1.35213E-07 5.62979E-07 2.06
2 2 L1 1/256 3.31677E-08 1.35213E-07 2.03
2 2 L1 1/512 8.21767E-09 3.31677E-08 2.01
2 2 L1 1/1024 2.04532E-09 8.21767E-09 2.01

2 2 L2 1/128 1.66213E-07 6.91554E-07 2.06
2 2 L2 1/256 4.08389E-08 1.66213E-07 2.03
2 2 L2 1/512 1.01300E-08 4.08389E-08 2.01
2 2 L2 1/1024 2.52297E-09 1.01300E-08 2.01

Table 6.10: Convergence test of Poisson solver on polynomial example with the two-
dimensional (D = 2) two-level grid hierarchy shown in Figure 6.1, and quadratic (deg =
2) coarse/fine interpolation. We compare the solution at different refinements to Ue, the
exact solution in (6.10). Here h denotes the grid spacing at the base level, and p is the
order of convergence of the scheme calculated by (6.16).

D deg norm h ||Uh − Ue|| ||U2h − Ue|| p

2 2 L∞ 1/128 1.11486E-05 4.48981E-05 2.01
2 2 L∞ 1/256 2.77719E-06 1.11486E-05 2.01
2 2 L∞ 1/512 6.93039E-07 2.77719E-06 2.00
2 2 L∞ 1/1024 1.73098E-07 6.93039E-07 2.00

2 2 L1 1/128 3.89967E-06 1.58442E-05 2.02
2 2 L1 1/256 9.66897E-07 3.89967E-06 2.01
2 2 L1 1/512 2.40699E-07 9.66897E-07 2.01
2 2 L1 1/1024 6.00452E-08 2.40699E-07 2.00

2 2 L2 1/128 4.90515E-06 1.98496E-05 2.02
2 2 L2 1/256 1.21874E-06 4.90515E-06 2.01
2 2 L2 1/512 3.03718E-07 1.21874E-06 2.00
2 2 L2 1/1024 7.58069E-08 3.03718E-07 2.00

Table 6.11: Convergence test of Poisson solver on trigonometric polynomial with the
two-dimensional (D = 2) two-level grid hierarchy shown in Figure 6.1, periodic in the x
direction, and quadratic (deg = 2) coarse/fine interpolation. We compare the solution at
different refinements to Ue, the exact solution in (6.14). Here h denotes the grid spacing
at the base level, and p is the order of convergence of the scheme calculated by (6.16).
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D deg norm h ||Uh − Ue|| ||U2h − Ue|| p

3 2 L∞ 1/32 1.49905E-05 6.81452E-05 2.18
3 2 L∞ 1/64 3.54130E-06 1.49905E-05 2.08
3 2 L∞ 1/128 8.61632E-07 3.54130E-06 2.04

3 2 L1 1/32 2.23346E-06 9.77178E-06 2.13
3 2 L1 1/64 5.33136E-07 2.23346E-06 2.07
3 2 L1 1/128 1.30171E-07 5.33136E-07 2.03

3 2 L2 1/32 3.69778E-06 1.67465E-05 2.18
3 2 L2 1/64 8.67701E-07 3.69778E-06 2.09
3 2 L2 1/128 2.10033E-07 8.67701E-07 2.05

Table 6.12: Convergence test of Poisson solver on polynomial example with the three-
dimensional (D = 3) two-level grid hierarchy shown in Figure 6.2, and biquadratic (deg
= 2) coarse/fine interpolation. We compare the solution at different refinements to Ue,
the exact solution in (6.11). Here h denotes the grid spacing at the base level, and p is
the order of convergence of the scheme calculated by (6.16).

D deg norm h ||Uh − Ue|| ||U2h − Ue|| p

3 2 L∞ 1/32 1.91237E-04 7.68912E-04 2.01
3 2 L∞ 1/64 4.78046E-05 1.91237E-04 2.00
3 2 L∞ 1/128 1.19318E-05 4.78046E-05 2.00

3 2 L1 1/32 4.50721E-05 1.86469E-04 2.05
3 2 L1 1/64 1.10234E-05 4.50721E-05 2.03
3 2 L1 1/128 2.72211E-06 1.10234E-05 2.02

3 2 L2 1/32 5.99624E-05 2.47669E-04 2.05
3 2 L2 1/64 1.47278E-05 5.99624E-05 2.03
3 2 L2 1/128 3.64781E-06 1.47278E-05 2.01

Table 6.13: Convergence test of Poisson solver on trigonometric polynomial with the
three-dimensional (D = 3) two-level grid hierarchy shown in Figure 6.2, periodic in the x
direction, and biquadratic (deg = 2) coarse/fine interpolation. We compare the solution
at different refinements to Ue, the exact solution in (6.15). Here h denotes the grid
spacing at the base level, and p is the order of convergence of the scheme calculated by
(6.16).
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D deg norm h ||Uh − Ue|| ||U2h − Ue|| p

2 1 L∞ 1/128 3.91186E-05 7.88447E-05 1.01
2 1 L∞ 1/256 1.94866E-05 3.91186E-05 1.01
2 1 L∞ 1/512 9.72555E-06 1.94866E-05 1.00
2 1 L∞ 1/1024 4.85859E-06 9.72555E-06 1.00

2 1 L1 1/128 1.25249E-05 2.53626E-05 1.02
2 1 L1 1/256 6.21855E-06 1.25249E-05 1.01
2 1 L1 1/512 3.09799E-06 6.21855E-06 1.01
2 1 L1 1/1024 1.54620E-06 3.09799E-06 1.00

2 1 L2 1/128 1.63519E-05 3.28192E-05 1.01
2 1 L2 1/256 8.15521E-06 1.63519E-05 1.00
2 1 L2 1/512 4.07198E-06 8.15521E-06 1.00
2 1 L2 1/1024 2.03461E-06 4.07198E-06 1.00

Table 6.14: Convergence test of Poisson solver on polynomial example with the two-
dimensional (D = 2) two-level grid hierarchy shown in Figure 6.1, and linear (deg = 1)
coarse/fine interpolation. We compare the solution at different refinements to Ue, the
exact solution in (6.10). Here h denotes the grid spacing at the base level, and p is the
order of convergence of the scheme calculated by (6.16).

D deg norm h ||Uh − Ue|| ||U2h − Ue|| p

2 1 L∞ 1/128 5.24215E-05 1.09359E-04 1.06
2 1 L∞ 1/256 2.56060E-05 5.24215E-05 1.03
2 1 L∞ 1/512 1.33853E-05 2.56060E-05 0.94
2 1 L∞ 1/1024 6.85865E-06 1.33853E-05 0.96

2 1 L1 1/128 1.42906E-05 2.79043E-05 0.97
2 1 L1 1/256 7.55767E-06 1.42906E-05 0.92
2 1 L1 1/512 3.89860E-06 7.55767E-06 0.95
2 1 L1 1/1024 1.98108E-06 3.89860E-06 0.98

2 1 L2 1/128 1.80384E-05 3.53822E-05 0.97
2 1 L2 1/256 9.51594E-06 1.80384E-05 0.92
2 1 L2 1/512 4.92608E-06 9.51594E-06 0.95
2 1 L2 1/1024 2.51000E-06 4.92608E-06 0.97

Table 6.15: Convergence test of Poisson solver on trigonometric polynomial with the
two-dimensional (D = 2) two-level grid hierarchy shown in Figure 6.1, periodic in the
x direction, and linear (deg = 1) coarse/fine interpolation. We compare the solution at
different refinements to Ue, the exact solution in (6.14). Here h denotes the grid spacing
at the base level, and p is the order of convergence of the scheme calculated by (6.16).
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D deg norm h ||Uh − Ue|| ||U2h − Ue|| p

3 1 L∞ 1/32 1.20183E-04 2.32466E-04 0.95
3 1 L∞ 1/64 6.21735E-05 1.20183E-04 0.95
3 1 L∞ 1/128 3.15018E-05 6.21735E-05 0.98

3 1 L1 1/32 2.06800E-05 3.42476E-05 0.73
3 1 L1 1/64 1.10046E-05 2.06800E-05 0.91
3 1 L1 1/128 5.64018E-06 1.10046E-05 0.96

3 1 L2 1/32 3.04811E-05 4.91818E-05 0.69
3 1 L2 1/64 1.65058E-05 3.04811E-05 0.88
3 1 L2 1/128 8.53615E-06 1.65058E-05 0.95

Table 6.16: Convergence test of Poisson solver on polynomial example with the three-
dimensional (D = 3) two-level grid hierarchy shown in Figure 6.2, and bilinear (deg =
1) coarse/fine interpolation. We compare the solution at different refinements to Ue, the
exact solution in (6.11). Here h denotes the grid spacing at the base level, and p is the
order of convergence of the scheme calculated by (6.16).

D deg norm h ||Uh − Ue|| ||U2h − Ue|| p

3 1 L∞ 1/32 4.19926E-04 7.86925E-04 0.91
3 1 L∞ 1/64 2.43219E-04 4.19926E-04 0.79
3 1 L∞ 1/128 1.31656E-04 2.43219E-04 0.89

3 1 L1 1/32 7.63277E-05 1.90602E-04 1.32
3 1 L1 1/64 3.54366E-05 7.63277E-05 1.11
3 1 L1 1/128 1.71978E-05 3.54366E-05 1.04

3 1 L2 1/32 9.71736E-05 2.56948E-04 1.40
3 1 L2 1/64 4.89655E-05 9.71736E-05 0.99
3 1 L2 1/128 2.56318E-05 4.89655E-05 0.93

Table 6.17: Convergence test of Poisson solver on trigonometric polynomial with the
three-dimensional (D = 3) two-level grid hierarchy shown in Figure 6.2, periodic in the x
direction, and bilinear (deg = 1) coarse/fine interpolation. We compare the solution at
different refinements to Ue, the exact solution in (6.15). Here h denotes the grid spacing
at the base level, and p is the order of convergence of the scheme calculated by (6.16).
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D deg norm h ||∆hUe − ρh|| ||∆2hUe − ρ2h|| p

2 2 L∞ 1/128 2.45308E-03 4.75624E-03 0.96
2 2 L∞ 1/256 1.20846E-03 2.45308E-03 1.02
2 2 L∞ 1/512 5.99774E-04 1.20846E-03 1.01
2 2 L∞ 1/1024 2.98781E-04 5.99774E-04 1.01

2 2 L1 1/128 1.75358E-05 7.26963E-05 2.05
2 2 L1 1/256 4.30312E-06 1.75358E-05 2.03
2 2 L1 1/512 1.06609E-06 4.30312E-06 2.01
2 2 L1 1/1024 2.65295E-07 1.06609E-06 2.01

2 2 L2 1/128 3.37694E-05 1.28541E-04 1.93
2 2 L2 1/256 9.40996E-06 3.37694E-05 1.84
2 2 L2 1/512 2.81870E-06 9.40996E-06 1.74
2 2 L2 1/1024 8.94368E-07 2.81870E-06 1.66

Table 6.18: Convergence test of discrete Laplacian operator on polynomial example (6.10)
with the two-dimensional (D = 2) two-level grid hierarchy shown in Figure 6.1, and
quadratic (deg = 2) coarse/fine interpolation. We compare the discrete operator evaluated
at different refinements of Ue, the exact solution, to ρ, the right-hand side. Here h
denotes the grid spacing at the base level, and p is the order of convergence of the
scheme calculated by (6.7).

Tables 6.10–6.13 show that the solution error converges quadratically to zero in all
three norms when using quadratic or biquadratic coarse/fine interpolation. These results
are consistent with uniform second-order convergence of the solution across the domain.
Tables 6.14–6.17 show that the solution error converges only linearly to zero in all three

norms when using linear or bilinear coarse/fine interpolation. These results are consistent
with uniform first-order convergence of the solution across the domain.
Tables 6.18–6.25 show the convergence of the error in the discrete Laplacian operator.

The results for order of convergence agree with those for the examples in section 6.2.
With quadratic/biquadratic interpolation, the operator error converges to first order in
L∞ norm and to second order in L1 norm, while the L2 norm of the error is O(h3/2)
in two dimensions and O(h2) in three dimensions. With linear/bilinear interpolation, the
operator error is constant in L∞ norm and converges to first order in L1 norm, while the
L2 norm of the error is O(h

1/2). These results are consistent with the error analysis of
Table 6.9.
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D deg norm h ||∆hUe − ρh|| ||∆2hUe − ρ2h|| p

2 2 L∞ 1/128 4.90485E-02 9.78139E-02 1.00
2 2 L∞ 1/256 2.45404E-02 4.90485E-02 1.00
2 2 L∞ 1/512 1.22718E-02 2.45404E-02 1.00
2 2 L∞ 1/1024 6.13602E-03 1.22718E-02 1.00

2 2 L1 1/128 1.04271E-04 4.38903E-04 2.07
2 2 L1 1/256 2.53882E-05 1.04271E-04 2.04
2 2 L1 1/512 6.26122E-06 2.53882E-05 2.02
2 2 L1 1/1024 1.55466E-06 6.26122E-06 2.01

2 2 L2 1/128 3.84463E-04 1.52148E-03 1.98
2 2 L2 1/256 9.86578E-05 3.84463E-04 1.96
2 2 L2 1/512 2.59415E-05 9.86578E-05 1.93
2 2 L2 1/1024 7.09558E-06 2.59415E-05 1.87

Table 6.19: Convergence test of discrete Laplacian operator on trigonometric polynomial
(6.14) with the two-dimensional (D = 2) two-level grid hierarchy shown in Figure 6.1,
periodic in the x direction, and quadratic (deg = 2) coarse/fine interpolation. We compare
the discrete operator evaluated at different refinements of Ue, the exact solution, to ρ,
the right-hand side. Here h denotes the grid spacing at the base level, and p is the order
of convergence of the scheme calculated by (6.7).

D deg norm h ||∆hUe − ρh|| ||∆2hUe − ρ2h|| p

3 2 L∞ 1/32 5.01139E-03 9.33079E-03 0.90
3 2 L∞ 1/64 2.59449E-03 5.01139E-03 0.95
3 2 L∞ 1/128 1.27999E-03 2.59449E-03 1.02

3 2 L1 1/32 2.68607E-04 1.09871E-03 2.03
3 2 L1 1/64 6.63975E-05 2.68607E-04 2.02
3 2 L1 1/128 1.65126E-05 6.63975E-05 2.01

3 2 L2 1/32 3.84822E-04 1.58720E-03 2.04
3 2 L2 1/64 9.46695E-05 3.84822E-04 2.02
3 2 L2 1/128 2.35043E-05 9.46695E-05 2.01

Table 6.20: Convergence test of discrete Laplacian operator on polynomial example (6.11)
with the three-dimensional (D = 3) two-level grid hierarchy shown in Figure 6.2, and bi-
quadratic (deg = 2) coarse/fine interpolation. We compare the discrete operator evaluated
at different refinements of Ue, the exact solution, to ρ, the right-hand side. Here h de-
notes the grid spacing at the base level, and p is the order of convergence of the scheme
calculated by (6.7).
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D deg norm h ||∆hUe − ρh|| ||∆2hUe − ρ2h|| p

3 2 L∞ 1/32 1.09348E-01 2.33653E-01 1.10
3 2 L∞ 1/64 5.20965E-02 1.09348E-01 1.07
3 2 L∞ 1/128 2.53218E-02 5.20965E-02 1.04

3 2 L1 1/32 2.80423E-03 1.11387E-02 1.99
3 2 L1 1/64 6.99859E-04 2.80423E-03 2.00
3 2 L1 1/128 1.74598E-04 6.99859E-04 2.00

3 2 L2 1/32 3.93319E-03 1.56701E-02 1.99
3 2 L2 1/64 9.81668E-04 3.93319E-03 2.00
3 2 L2 1/128 2.44991E-04 9.81668E-04 2.00

Table 6.21: Convergence test of discrete Laplacian operator on trigonometric polynomial
(6.15) with the three-dimensional (D = 3) two-level grid hierarchy shown in Figure 6.2,
periodic in the x direction, and biquadratic (deg = 2) coarse/fine interpolation. We
compare the discrete operator evaluated at different refinements of Ue, the exact solution,
to ρ, the right-hand side. Here h denotes the grid spacing at the base level, and p is the
order of convergence of the scheme calculated by (6.7).

D deg norm h ||∆hUe − ρh|| ||∆2hUe − ρ2h|| p

2 1 L∞ 1/128 6.88865E-01 6.88272E-01 0.00
2 1 L∞ 1/256 6.89013E-01 6.88865E-01 0.00
2 1 L∞ 1/512 6.89050E-01 6.89013E-01 0.00
2 1 L∞ 1/1024 6.89059E-01 6.89050E-01 0.00

2 1 L1 1/128 1.02557E-03 2.08522E-03 1.02
2 1 L1 1/256 5.08584E-04 1.02557E-03 1.01
2 1 L1 1/512 2.53243E-04 5.08584E-04 1.01
2 1 L1 1/1024 1.26362E-04 2.53243E-04 1.00

2 1 L2 1/128 1.91226E-02 2.71016E-02 0.50
2 1 L2 1/256 1.35074E-02 1.91226E-02 0.50
2 1 L2 1/512 9.54612E-03 1.35074E-02 0.50
2 1 L2 1/1024 6.74834E-03 9.54612E-03 0.50

Table 6.22: Convergence test of discrete Laplacian operator on polynomial example (6.10)
with the two-dimensional (D = 2) two-level grid hierarchy shown in Figure 6.1, and linear
(deg = 1) coarse/fine interpolation. We compare the discrete operator evaluated at
different refinements of Ue, the exact solution, to ρ, the right-hand side. Here h denotes
the grid spacing at the base level, and p is the order of convergence of the scheme
calculated by (6.7).
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D deg norm h ||∆hUe − ρh|| ||∆2hUe − ρ2h|| p

2 1 L∞ 1/128 2.53827E+00 2.51451E+00 -0.01
2 1 L∞ 1/256 2.54964E+00 2.53827E+00 -0.01
2 1 L∞ 1/512 2.55519E+00 2.54964E+00 0.00
2 1 L∞ 1/1024 2.55794E+00 2.55519E+00 0.00

2 1 L1 1/128 5.24667E-03 1.06590E-02 1.02
2 1 L1 1/256 2.60286E-03 5.24667E-03 1.01
2 1 L1 1/512 1.29634E-03 2.60286E-03 1.01
2 1 L1 1/1024 6.46904E-04 1.29634E-03 1.00

2 1 L2 1/128 8.26120E-02 1.16683E-01 0.50
2 1 L2 1/256 5.84471E-02 8.26120E-02 0.50
2 1 L2 1/512 4.13385E-02 5.84471E-02 0.50
2 1 L2 1/1024 2.92342E-02 4.13385E-02 0.50

Table 6.23: Convergence test of discrete Laplacian operator on trigonometric polynomial
(6.14) with the two-dimensional (D = 2) two-level grid hierarchy shown in Figure 6.1,
periodic in the x direction, and linear (deg = 1) coarse/fine interpolation. We compare
the discrete operator evaluated at different refinements of Ue, the exact solution, to ρ,
the right-hand side. Here h denotes the grid spacing at the base level, and p is the order
of convergence of the scheme calculated by (6.7).

D deg norm h ||∆hUe − ρh|| ||∆2hUe − ρ2h|| p

3 1 L∞ 1/32 3.99153E-01 3.95059E-01 -0.01
3 1 L∞ 1/64 4.24970E-01 3.99153E-01 -0.09
3 1 L∞ 1/128 4.37564E-01 4.24970E-01 -0.04

3 1 L1 1/32 1.41976E-03 3.27223E-03 1.20
3 1 L1 1/64 6.54851E-04 1.41976E-03 1.12
3 1 L1 1/128 3.13588E-04 6.54851E-04 1.06

3 1 L2 1/32 1.14019E-02 1.74821E-02 0.62
3 1 L2 1/64 7.75064E-03 1.14019E-02 0.56
3 1 L2 1/128 5.37544E-03 7.75064E-03 0.53

Table 6.24: Convergence test of discrete Laplacian operator on polynomial example (6.11)
with the three-dimensional (D = 3) two-level grid hierarchy shown in Figure 6.2, and
bilinear (deg = 1) coarse/fine interpolation. We compare the discrete operator evaluated
at different refinements of Ue, the exact solution, to ρ, the right-hand side. Here h
denotes the grid spacing at the base level, and p is the order of convergence of the
scheme calculated by (6.7).
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D deg norm h ||∆hUe − ρh|| ||∆2hUe − ρ2h|| p

3 1 L∞ 1/32 2.98076E+00 2.92347E+00 -0.03
3 1 L∞ 1/64 2.99518E+00 2.98076E+00 -0.01
3 1 L∞ 1/128 2.99880E+00 2.99518E+00 0.00

3 1 L1 1/32 1.08923E-02 2.52229E-02 1.21
3 1 L1 1/64 4.98999E-03 1.08923E-02 1.13
3 1 L1 1/128 2.37785E-03 4.98999E-03 1.07

3 1 L2 1/32 6.73793E-02 9.82547E-02 0.54
3 1 L2 1/64 4.69739E-02 6.73793E-02 0.52
3 1 L2 1/128 3.29774E-02 4.69739E-02 0.51

Table 6.25: Convergence test of discrete Laplacian operator on trigonometric polynomial
(6.15) with the three-dimensional (D = 3) two-level grid hierarchy shown in Figure 6.2,
periodic in the x direction, and bilinear (deg = 1) coarse/fine interpolation. We compare
the discrete operator evaluated at different refinements of Ue, the exact solution, to ρ,
the right-hand side. Here h denotes the grid spacing at the base level, and p is the order
of convergence of the scheme calculated by (6.7).

6.4 Solver Tests, With Geometry

In our tests of convergence on a non-rectangular domain, we use the following physical
example. The domain lies between a cube and a sphere nested inside and concentric with
it (or a square and a circle in two dimensions), as illustrated in Figure 6.3. We solve for
the field within this domain due to a point charge lying inside the spherical region, from
Laplace’s equation

∆ϕ = 0

with inhomogeneous Dirichlet boundary conditions for ϕ enforced on the sphere and on
the faces of the cube.
Assuming a coordinate system with the surrounding cube having unit length in

each dimension and centered at the origin, the point charge is located at q =
(0.02,−0.05,−0.01) in the three-dimensional problem, or q = (0.02,−0.05) in the two-
dimensional problem. The radius of the sphere is r = 1/

√
35 = 0.169. We can compare

our answers with the exact solutions,

ϕ(x) = log ||x− q||2 (6.17)

in two dimensions, or

ϕ(x) =
1

||x− q||2
(6.18)
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Figure 6.3: In our examples, we solve for the field outside the shaded region due to a
point charge at the position marked ?. We solve on nested hierarchies of grids in the
configurations shown in two dimensions with either two levels (left) or three levels (right)
of refinement. The three-dimensional grid configurations are such that their projections
on two of the three axis planes are exactly the two-dimensional grid configurations shown
here. We also use fully refined versions of these same sets of grids, partitioned so that
the maximum length of any grid in any dimension is 32.
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in three dimensions.
In Tables 6.26–6.29 we show the solution error on the two-level or three-level grid

hierarchies in two or three dimensions, with (bi)quadratic interpolation at coarse/fine
interfaces, and either the Shortley–Weller approximation or linear extrapolation to compute
the derivative near internal boundaries, as discussed in section 2.2. The solution error
converges quadratically to zero in all three norms. These results are consistent with
uniform second-order convergence of the solution across the domain.
In Tables 6.30–6.33 we show the solution error on the same grid hierarchies, but with

(bi)linear interpolation at coarse/fine interfaces. The solution error converges linearly to
zero in all three norms. These results are consistent with uniform first-order convergence
of the solution across the domain.
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D levels deg deriv norm h ||Uh − Ue|| ||U2h − Ue|| p

2 2 2 S–W L∞ 1/32 9.73844E-04 4.44521E-03 2.19
2 2 2 S–W L∞ 1/64 2.35225E-04 9.73844E-04 2.05
2 2 2 S–W L∞ 1/128 5.76281E-05 2.35225E-04 2.03
2 2 2 S–W L∞ 1/256 1.42413E-05 5.76281E-05 2.02
2 2 2 S–W L∞ 1/512 3.54359E-06 1.42413E-05 2.01

2 2 2 S–W L1 1/32 1.40614E-04 6.11903E-04 2.12
2 2 2 S–W L1 1/64 3.36654E-05 1.40614E-04 2.06
2 2 2 S–W L1 1/128 8.27132E-06 3.36654E-05 2.03
2 2 2 S–W L1 1/256 2.04687E-06 8.27132E-06 2.01
2 2 2 S–W L1 1/512 5.09495E-07 2.04687E-06 2.01

2 2 2 S–W L2 1/32 2.07108E-04 9.27218E-04 2.16
2 2 2 S–W L2 1/64 4.93872E-05 2.07108E-04 2.07
2 2 2 S–W L2 1/128 1.21237E-05 4.93872E-05 2.03
2 2 2 S–W L2 1/256 2.99974E-06 1.21237E-05 2.01
2 2 2 S–W L2 1/512 7.46776E-07 2.99974E-06 2.01

D levels deg deriv norm h ||Uh − Ue|| ||U2h − Ue|| p

2 2 2 linear L∞ 1/32 1.57254E-03 3.40825E-03 1.12
2 2 2 linear L∞ 1/64 4.57024E-04 1.57254E-03 1.78
2 2 2 linear L∞ 1/128 1.09987E-04 4.57024E-04 2.05
2 2 2 linear L∞ 1/256 3.04461E-05 1.09987E-04 1.85
2 2 2 linear L∞ 1/512 7.69995E-06 3.04461E-05 1.98

2 2 2 linear L1 1/32 1.53771E-04 6.28844E-04 2.03
2 2 2 linear L1 1/64 3.69547E-05 1.53771E-04 2.06
2 2 2 linear L1 1/128 8.71767E-06 3.69547E-05 2.08
2 2 2 linear L1 1/256 2.21476E-06 8.71767E-06 1.98
2 2 2 linear L1 1/512 5.37367E-07 2.21476E-06 2.04

2 2 2 linear L2 1/32 2.15568E-04 8.77324E-04 2.02
2 2 2 linear L2 1/64 5.19275E-05 2.15568E-04 2.05
2 2 2 linear L2 1/128 1.20342E-05 5.19275E-05 2.11
2 2 2 linear L2 1/256 3.09112E-06 1.20342E-05 1.96
2 2 2 linear L2 1/512 7.42570E-07 3.09112E-06 2.06

Table 6.26: Convergence test of solution from Poisson solver with the two-dimensional
(D = 2) two-level grid hierarchy shown in Figure 6.3, quadratic (deg = 2) coarse/fine
interpolation, and either (top) Shortley–Weller approximation or (bottom) linear extrapo-
lation for derivatives at internal boundaries. We compare the solution at different refine-
ments to Ue, the exact solution. Here h denotes the grid spacing at the base level, and p
is the order of convergence of the scheme calculated by (6.16).
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D levels deg deriv norm h ||Uh − Ue|| ||U2h − Ue|| p

2 3 2 S–W L∞ 1/32 2.90628E-04 1.31271E-03 2.18
2 3 2 S–W L∞ 1/64 6.90617E-05 2.90628E-04 2.07
2 3 2 S–W L∞ 1/128 1.68905E-05 6.90617E-05 2.03
2 3 2 S–W L∞ 1/256 4.16657E-06 1.68905E-05 2.02
2 3 2 S–W L∞ 1/512 1.03590E-06 4.16657E-06 2.01

2 3 2 S–W L1 1/32 6.24714E-05 2.70186E-04 2.11
2 3 2 S–W L1 1/64 1.48516E-05 6.24714E-05 2.07
2 3 2 S–W L1 1/128 3.63267E-06 1.48516E-05 2.03
2 3 2 S–W L1 1/256 8.97397E-07 3.63267E-06 2.02
2 3 2 S–W L1 1/512 2.23125E-07 8.97397E-07 2.01

2 3 2 S–W L2 1/32 8.55212E-05 3.73703E-04 2.13
2 3 2 S–W L2 1/64 2.03233E-05 8.55212E-05 2.07
2 3 2 S–W L2 1/128 4.98116E-06 2.03233E-05 2.03
2 3 2 S–W L2 1/256 1.23206E-06 4.98116E-06 2.02
2 3 2 S–W L2 1/512 3.06585E-07 1.23206E-06 2.01

D levels deg deriv norm h ||Uh − Ue|| ||U2h − Ue|| p

2 3 2 linear L∞ 1/32 1.07990E-03 3.46799E-03 1.68
2 3 2 linear L∞ 1/64 3.73431E-04 1.07990E-03 1.53
2 3 2 linear L∞ 1/128 7.07797E-05 3.73431E-04 2.40
2 3 2 linear L∞ 1/256 2.70732E-05 7.07797E-05 1.39
2 3 2 linear L∞ 1/512 6.11590E-06 2.70732E-05 2.15

2 3 2 linear L1 1/32 8.00561E-05 3.32044E-04 2.05
2 3 2 linear L1 1/64 1.92086E-05 8.00561E-05 2.06
2 3 2 linear L1 1/128 4.41078E-06 1.92086E-05 2.12
2 3 2 linear L1 1/256 1.13220E-06 4.41078E-06 1.96
2 3 2 linear L1 1/512 2.68771E-07 1.13220E-06 2.07

2 3 2 linear L2 1/32 1.16620E-04 4.67352E-04 2.00
2 3 2 linear L2 1/64 2.83191E-05 1.16620E-04 2.04
2 3 2 linear L2 1/128 6.31035E-06 2.83191E-05 2.17
2 3 2 linear L2 1/256 1.65507E-06 6.31035E-06 1.93
2 3 2 linear L2 1/512 3.85755E-07 1.65507E-06 2.10

Table 6.27: Convergence test of solution from Poisson solver with the two-dimensional
(D = 2) three-level grid hierarchy shown in Figure 6.3, quadratic (deg = 2) coarse/fine
interpolation, and either (top) Shortley–Weller approximation or (bottom) linear extrapo-
lation for derivatives at internal boundaries. We compare the solution at different refine-
ments to Ue, the exact solution. Here h denotes the grid spacing at the base level, and p
is the order of convergence of the scheme calculated by (6.16).
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D levels deg deriv norm h ||Uh − Ue|| ||U2h − Ue|| p

3 2 2 S–W L∞ 1/16 6.14956E-02 1.36680E-01 1.15
3 2 2 S–W L∞ 1/32 1.28625E-02 6.14956E-02 2.26
3 2 2 S–W L∞ 1/64 2.95191E-03 1.28625E-02 2.12

3 2 2 S–W L1 1/16 2.11123E-03 9.18361E-03 2.12
3 2 2 S–W L1 1/32 4.81696E-04 2.11123E-03 2.13
3 2 2 S–W L1 1/64 1.15904E-04 4.81696E-04 2.06

3 2 2 S–W L2 1/16 4.59751E-03 1.73702E-02 1.92
3 2 2 S–W L2 1/32 1.00240E-03 4.59751E-03 2.20
3 2 2 S–W L2 1/64 2.39005E-04 1.00240E-03 2.07

D levels deg deriv norm h ||Uh − Ue|| ||U2h − Ue|| p

3 2 2 linear L∞ 1/16 4.55179E-02 1.88341E-01 2.05
3 2 2 linear L∞ 1/32 2.46091E-02 4.55179E-02 0.89
3 2 2 linear L∞ 1/64 7.13979E-03 2.46091E-02 1.79

3 2 2 linear L1 1/16 2.30059E-03 1.30019E-02 2.50
3 2 2 linear L1 1/32 5.65412E-04 2.30059E-03 2.02
3 2 2 linear L1 1/64 1.38440E-04 5.65412E-04 2.03

3 2 2 linear L2 1/16 4.07855E-03 2.19075E-02 2.43
3 2 2 linear L2 1/32 9.57652E-04 4.07855E-03 2.09
3 2 2 linear L2 1/64 2.32183E-04 9.57652E-04 2.04

Table 6.28: Convergence test of solution from Poisson solver with the three-dimensional
(D = 3) two-level grid hierarchy described in Figure 6.3, biquadratic (deg = 2) coarse/fine
interpolation, and either (top) Shortley–Weller approximation or (bottom) linear extrapo-
lation for derivatives at internal boundaries. We compare the solution at different refine-
ments to Ue, the exact solution. Here h denotes the grid spacing at the base level, and p
is the order of convergence of the scheme calculated by (6.16).
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D levels deg deriv norm h ||Uh − Ue|| ||U2h − Ue|| p

3 3 2 S–W L∞ 1/16 2.65224E-02 7.29967E-02 1.46
3 3 2 S–W L∞ 1/32 8.27441E-03 2.65224E-02 1.68
3 3 2 S–W L∞ 1/64 2.24033E-03 8.27441E-03 1.88

3 3 2 S–W L1 1/16 9.67464E-04 4.47553E-03 2.21
3 3 2 S–W L1 1/32 2.21810E-04 9.67464E-04 2.12
3 3 2 S–W L1 1/64 5.29570E-05 2.21810E-04 2.07

3 3 2 S–W L2 1/16 1.71964E-03 8.56805E-03 2.32
3 3 2 S–W L2 1/32 3.91017E-04 1.71964E-03 2.14
3 3 2 S–W L2 1/64 9.37494E-05 3.91017E-04 2.06

D levels deg deriv norm h ||Uh − Ue|| ||U2h − Ue|| p

3 3 2 linear L∞ 1/16 4.96743E-02 1.63454E-01 1.72
3 3 2 linear L∞ 1/32 1.89876E-02 4.96743E-02 1.39
3 3 2 linear L∞ 1/64 6.00576E-03 1.89876E-02 1.66

3 3 2 linear L1 1/16 1.26120E-03 6.37969E-03 2.34
3 3 2 linear L1 1/32 3.13440E-04 1.26120E-03 2.01
3 3 2 linear L1 1/64 7.57937E-05 3.13440E-04 2.05

3 3 2 linear L2 1/16 2.10255E-03 1.12886E-02 2.42
3 3 2 linear L2 1/32 5.51658E-04 2.10255E-03 1.93
3 3 2 linear L2 1/64 1.32848E-04 5.51658E-04 2.05

Table 6.29: Convergence test of solution from Poisson solver with the three-dimensional
(D = 3) three-level grid hierarchy described in Figure 6.3, biquadratic (deg = 2)
coarse/fine interpolation, and either (top) Shortley–Weller approximation or (bottom)
linear extrapolation for derivatives at internal boundaries. We compare the solution at
different refinements to Ue, the exact solution. Here h denotes the grid spacing at the
base level, and p is the order of convergence of the scheme calculated by (6.16).
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D levels deg deriv norm h ||Uh − Ue|| ||U2h − Ue|| p

2 2 1 S–W L∞ 1/32 1.93841E-03 4.10973E-03 1.08
2 2 1 S–W L∞ 1/64 1.04052E-03 1.93841E-03 0.90
2 2 1 S–W L∞ 1/128 5.50668E-04 1.04052E-03 0.92
2 2 1 S–W L∞ 1/256 2.83014E-04 5.50668E-04 0.96
2 2 1 S–W L∞ 1/512 1.43334E-04 2.83014E-04 0.98

2 2 1 S–W L1 1/32 3.64472E-04 7.86963E-04 1.11
2 2 1 S–W L1 1/64 2.08342E-04 3.64472E-04 0.81
2 2 1 S–W L1 1/128 1.09886E-04 2.08342E-04 0.92
2 2 1 S–W L1 1/256 5.62656E-05 1.09886E-04 0.97
2 2 1 S–W L1 1/512 2.84493E-05 5.62656E-05 0.98

2 2 1 S–W L2 1/32 5.13819E-04 1.12287E-03 1.13
2 2 1 S–W L2 1/64 2.79849E-04 5.13819E-04 0.88
2 2 1 S–W L2 1/128 1.48011E-04 2.79849E-04 0.92
2 2 1 S–W L2 1/256 7.61958E-05 1.48011E-04 0.96
2 2 1 S–W L2 1/512 3.86595E-05 7.61958E-05 0.98

D levels deg deriv norm h ||Uh − Ue|| ||U2h − Ue|| p

2 2 1 linear L∞ 1/32 2.46572E-03 5.16868E-03 1.07
2 2 1 linear L∞ 1/64 1.19729E-03 2.46572E-03 1.04
2 2 1 linear L∞ 1/128 5.81155E-04 1.19729E-03 1.04
2 2 1 linear L∞ 1/256 2.91844E-04 5.81155E-04 0.99
2 2 1 linear L∞ 1/512 1.45185E-04 2.91844E-04 1.01

2 2 1 linear L1 1/32 4.72402E-04 9.47369E-04 1.00
2 2 1 linear L1 1/64 2.35521E-04 4.72402E-04 1.00
2 2 1 linear L1 1/128 1.15486E-04 2.35521E-04 1.03
2 2 1 linear L1 1/256 5.78447E-05 1.15486E-04 1.00
2 2 1 linear L1 1/512 2.87967E-05 5.78447E-05 1.01

2 2 1 linear L2 1/32 6.52228E-04 1.40974E-03 1.11
2 2 1 linear L2 1/64 3.16475E-04 6.52228E-04 1.04
2 2 1 linear L2 1/128 1.55525E-04 3.16475E-04 1.02
2 2 1 linear L2 1/256 7.83115E-05 1.55525E-04 0.99
2 2 1 linear L2 1/512 3.91222E-05 7.83115E-05 1.00

Table 6.30: Convergence test of solution from Poisson solver with the two-dimensional
(D = 2) two-level grid hierarchy shown in Figure 6.3, linear (deg = 1) coarse/fine inter-
polation, and either (top) Shortley–Weller approximation or (bottom) linear extrapolation
for derivatives at internal boundaries. We compare the solution at different refinements
to Ue, the exact solution. Here h denotes the grid spacing at the base level, and p is the
order of convergence of the scheme calculated by (6.16).
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D levels deg deriv norm h ||Uh − Ue|| ||U2h − Ue|| p

2 3 1 S–W L∞ 1/32 1.42850E-03 2.99625E-03 1.07
2 3 1 S–W L∞ 1/64 7.10728E-04 1.42850E-03 1.01
2 3 1 S–W L∞ 1/128 3.52346E-04 7.10728E-04 1.01
2 3 1 S–W L∞ 1/256 1.75116E-04 3.52346E-04 1.01
2 3 1 S–W L∞ 1/512 8.72580E-05 1.75116E-04 1.00

2 3 1 S–W L1 1/32 4.56828E-04 9.55886E-04 1.07
2 3 1 S–W L1 1/64 2.20841E-04 4.56828E-04 1.05
2 3 1 S–W L1 1/128 1.08038E-04 2.20841E-04 1.03
2 3 1 S–W L1 1/256 5.33268E-05 1.08038E-04 1.02
2 3 1 S–W L1 1/512 2.64886E-05 5.33268E-05 1.01

2 3 1 S–W L2 1/32 5.74100E-04 1.21862E-03 1.09
2 3 1 S–W L2 1/64 2.80744E-04 5.74100E-04 1.03
2 3 1 S–W L2 1/128 1.38692E-04 2.80744E-04 1.02
2 3 1 S–W L2 1/256 6.88673E-05 1.38692E-04 1.01
2 3 1 S–W L2 1/512 3.43191E-05 6.88673E-05 1.00

D levels deg deriv norm h ||Uh − Ue|| ||U2h − Ue|| p

2 3 1 linear L∞ 1/32 1.48681E-03 4.63644E-03 1.64
2 3 1 linear L∞ 1/64 7.20245E-04 1.48681E-03 1.05
2 3 1 linear L∞ 1/128 3.54764E-04 7.20245E-04 1.02
2 3 1 linear L∞ 1/256 1.75666E-04 3.54764E-04 1.01
2 3 1 linear L∞ 1/512 8.73932E-05 1.75666E-04 1.01

2 3 1 linear L1 1/32 5.17284E-04 1.20203E-03 1.22
2 3 1 linear L1 1/64 2.35301E-04 5.17284E-04 1.14
2 3 1 linear L1 1/128 1.11144E-04 2.35301E-04 1.08
2 3 1 linear L1 1/256 5.41408E-05 1.11144E-04 1.04
2 3 1 linear L1 1/512 2.66707E-05 5.41408E-05 1.02

2 3 1 linear L2 1/32 6.38078E-04 1.49702E-03 1.23
2 3 1 linear L2 1/64 2.95370E-04 6.38078E-04 1.11
2 3 1 linear L2 1/128 1.41811E-04 2.95370E-04 1.06
2 3 1 linear L2 1/256 6.96679E-05 1.41811E-04 1.03
2 3 1 linear L2 1/512 3.44977E-05 6.96679E-05 1.01

Table 6.31: Convergence test of solution from Poisson solver with the two-dimensional
(D = 2) three-level grid hierarchy shown in Figure 6.3, linear (deg = 1) coarse/fine inter-
polation, and either (top) Shortley–Weller approximation or (bottom) linear extrapolation
for derivatives at internal boundaries. We compare the solution at different refinements
to Ue, the exact solution. Here h denotes the grid spacing at the base level, and p is the
order of convergence of the scheme calculated by (6.16).
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D levels deg deriv norm h ||Uh − Ue|| ||U2h − Ue|| p

3 2 1 S–W L∞ 1/16 5.00943E-02 1.34004E-01 1.42
3 2 1 S–W L∞ 1/32 1.38932E-02 5.00943E-02 1.85
3 2 1 S–W L∞ 1/64 8.05347E-03 1.38932E-02 0.79

3 2 1 S–W L1 1/16 3.33804E-03 1.10461E-02 1.73
3 2 1 S–W L1 1/32 1.73776E-03 3.33804E-03 0.94
3 2 1 S–W L1 1/64 9.81944E-04 1.73776E-03 0.82

3 2 1 S–W L2 1/16 5.43462E-03 1.99433E-02 1.88
3 2 1 S–W L2 1/32 2.64239E-03 5.43462E-03 1.04
3 2 1 S–W L2 1/64 1.44245E-03 2.64239E-03 0.87

D levels deg deriv norm h ||Uh − Ue|| ||U2h − Ue|| p

3 2 1 linear L∞ 1/16 4.85218E-02 2.10950E-01 2.12
3 2 1 linear L∞ 1/32 2.67532E-02 4.85218E-02 0.86
3 2 1 linear L∞ 1/64 9.48032E-03 2.67532E-02 1.50

3 2 1 linear L1 1/16 4.25807E-03 1.53695E-02 1.85
3 2 1 linear L1 1/32 2.17625E-03 4.25807E-03 0.97
3 2 1 linear L1 1/64 1.09445E-03 2.17625E-03 0.99

3 2 1 linear L2 1/16 6.95016E-03 2.71364E-02 1.97
3 2 1 linear L2 1/32 3.32538E-03 6.95016E-03 1.06
3 2 1 linear L2 1/64 1.61891E-03 3.32538E-03 1.04

Table 6.32: Convergence test of solution from Poisson solver with the three-dimensional
(D = 3) two-level grid hierarchy described in Figure 6.3, bilinear (deg = 1) coarse/fine
interpolation, and either (top) Shortley–Weller approximation or (bottom) linear extrapo-
lation for derivatives at internal boundaries. We compare the solution at different refine-
ments to Ue, the exact solution. Here h denotes the grid spacing at the base level, and p
is the order of convergence of the scheme calculated by (6.16).
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D levels deg deriv norm h ||Uh − Ue|| ||U2h − Ue|| p

3 3 1 S–W L∞ 1/16 5.23181E-02 6.12688E-02 0.23
3 3 1 S–W L∞ 1/32 1.33302E-02 5.23181E-02 1.97
3 3 1 S–W L∞ 1/64 5.07895E-03 1.33302E-02 1.39

3 3 1 S–W L1 1/16 3.75659E-03 8.49343E-03 1.18
3 3 1 S–W L1 1/32 1.79256E-03 3.75659E-03 1.07
3 3 1 S–W L1 1/64 8.66731E-04 1.79256E-03 1.05

3 3 1 S–W L2 1/16 5.00354E-03 1.18890E-02 1.25
3 3 1 S–W L2 1/32 2.35013E-03 5.00354E-03 1.09
3 3 1 S–W L2 1/64 1.14896E-03 2.35013E-03 1.03

D levels deg deriv norm h ||Uh − Ue|| ||U2h − Ue|| p

3 3 1 linear L∞ 1/16 8.05650E-02 1.72357E-01 1.10
3 3 1 linear L∞ 1/32 2.22017E-02 8.05650E-02 1.86
3 3 1 linear L∞ 1/64 7.74776E-03 2.22017E-02 1.52

3 3 1 linear L1 1/16 4.69344E-03 1.25343E-02 1.42
3 3 1 linear L1 1/32 2.04888E-03 4.69344E-03 1.20
3 3 1 linear L1 1/64 9.28839E-04 2.04888E-03 1.14

3 3 1 linear L2 1/16 6.27555E-03 1.83465E-02 1.55
3 3 1 linear L2 1/32 2.67609E-03 6.27555E-03 1.23
3 3 1 linear L2 1/64 1.22368E-03 2.67609E-03 1.13

Table 6.33: Convergence test of solution from Poisson solver with the three-dimensional
(D = 3) three-level grid hierarchy described in Figure 6.3, bilinear (deg = 1) coarse/fine
interpolation, and either (top) Shortley–Weller approximation or (bottom) linear extrapo-
lation for derivatives at internal boundaries. We compare the solution at different refine-
ments to Ue, the exact solution. Here h denotes the grid spacing at the base level, and p
is the order of convergence of the scheme calculated by (6.16).
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