
A Comparison of Three High-Precision

Quadrature Schemes

David H. Bailey a, Xiaoye S. Li b,

aLawrence Berkeley National Laboratory, Berkeley, CA 94720. This work is
supported by the Director, Office of Computational and Technology Research,

Division of Mathematical, Information, and Computational Sciences of the U.S.
Department of Energy, under contract number DE-AC03-76SF00098.

bLawrence Berkeley National Laboratory, Berkeley, CA 94720

Abstract

The authors have implemented three numerical quadrature schemes, using the new
Arbitrary Precision (ARPREC) software package, with the objective of seeking
a completely “automatic” arbitrary precision quadrature facility, namely one that
does not rely on a priori information of the function to be integrated. Such a facility
is required, for example, to permit the experimental identification of definite inte-
grals based on their numerical values. The performance and accuracy of these three
quadrature schemes are compared using a suite of 15 integrals, ranging from contin-
uous, well-behaved functions on finite intervals to functions with vertical derivatives
and integrable singularities at endpoints, as well as several integrals on an infinite
interval.

Key words: numerical quadrature, arbitrary precision

1 Introduction

Numerical quadrature has a long and distinguished history, including con-
tributions by Newton, who devised the basis of what is now known as the
Newton-Cotes scheme, and Gauss, who devised what is now known as Gaus-
sian quadrature. In the twentieth century, numerous additional schemes were

Email addresses: dhbailey@lbl.gov (David H. Bailey), xsli@lbl.gov (Xiaoye
S. Li).

Preprint submitted to Real Numbers and Computers’5 5 June 2003

devised, including extended Simpson rules, adaptive quadrature, Romberg in-
tegration, Clenshaw-Curtis integration and others. In addition, numerous “ker-
nels” were devised that permit these schemes to efficiently compute definite
integrals of functions that include a particular expression as a factor.

Virtually all of these techniques, as well as their practical implementations on
computers, have been targeted to computing definite integrals to the accuracy
of 15 digits or less, namely the limits of ordinary IEEE 64-bit floating-point
precision. Relatively little attention has been paid to the issues of very high
precision quadrature, in part because few serious applications have been known
for such techniques. The software packages Mathematica and Maple include
arbitrary precision arithmetic, together with numerical integration to high
precision. These facilities are generally quite good, although in many cases
they either fail or require an unreasonably long run time.

In the past few years, computation of definite integrals to high precision has
emerged as a useful tool in experimental mathematics. In particular, it is
often possible to recognize an otherwise unknown definite integral in analytic
terms, provided its numerical value can be calculated to high accuracy. Such
“experimental” evaluations of integrals often involve integer relation detection,
which means finding integers ai, not all zero, such that for a given n-long real
vector (xi), we have a1x1+a2x2+· · ·+anxn = 0. Integer relation computations
are used here to determine whether the numerical value of a definite integral
is given by a formula of a certain type with unknown integer or rational
coefficients. The most frequently used integer relation detection algorithm is
the PSLQ algorithm [3]. It and other integer relation schemes require very
high precision (often hundreds or thousands of decimal digits) in both the
input data and in the operation of the algorithm to obtain meaningful results.

As one example, recently one of the authors, together with Jonathan Borwein
and Greg Fee of Simon Fraser University in Canada, were inspired by a recent
problem in the American Mathematical Monthly [1]. They found by using
one of the quadrature routines described in this paper, together with a PSLQ
integer relation detection program, that if C(a) is defined by

C(a) =

1∫
0

arctan(
√

x2 + a2) dx√
x2 + a2(x2 + 1)

then

C(0) = π log 2/8 + G/2

C(1) = π/4 − π
√

2/2 + 3
√

2 arctan(
√

2)/2

C(
√

2) = 5π2/96

2

where G =
∑

k≥0(−1)k/(2k + 1)2 is Catalan’s constant (the third of these
results is the result from the Monthly). These particular results then led to
the following general result, among others:

∞∫
0

arctan(
√

x2 + a2) dx√
x2 + a2(x2 + 1)

=
π

2
√

a2 − 1

[
2 arctan(

√
a2 − 1) − arctan(

√
a4 − 1)

]

As another example, recently Borwein and Roland Girgensohn of Zentrum
Mathematik in Germany were able to derive an analytic representation for
sums of the form [7]

b2(k) =
∑
n≥1

nk(
2n
n

)

b3(k) =
∑
n≥1

nk(
3n
n

)
2n

by transforming them into the integral expressions

b2(k) =
∑
j

ck
j (2)

1∫
0

[1 − x(1 − x)]−j dx

b3(k) =
∑
j

ck
j (3)

1∫
0

[1 − x2(1 − x)]−j dx

where the c function involves certain combinatorial values. Borwein and Gir-
gensohn then identified these two integrals (named d2(k) and d3(k)) by us-
ing a high-precision quadrature routine, similar to those described here, com-
bined with an integer relation detection facility. In this manner they obtained
d2(0) = 1, d2(1) = 2π/(3

√
3), and the recursion

(3p − 3)d2(p) = (7p − 12)d2(p − 1) − (4p − 10)d2(p − 2)

for p ≥ 2. In a similar manner they obtained d3(0) = 1, d3(1) = (3 log 2 +
π)/5, d3(2) = (90 + 96 log 2 + 37π)/250, and the recursion

25(p − 1)(p − 2)d3(p) = (77p − 153)(p − 2)d3(p − 1)

−[79(p − 2)(p − 3) + p + 21]d3(p − 2)

+3(3p − 10)(3p − 8)d3(p − 3)

3

for p ≥ 3.

As a third example, recently Borwein and one of the present authors deter-
mined that

π/2∫
0

erf2
(√

a cos x
)

cos2 (x) dx

=
∞∑

N=0

(−a
4

)N+1
(8N + 12)

(
2 N
N

)

(N + 2)!
F

(
1

2
,−N,−N − 1

2
;
3

2
,−N +

1

2
;−1

)
,

where F denotes the hypergeometric function.

In some cases, Maple or Mathematica is able to evaluate a definite integral
analytically, but the resulting expressions are extremely complicated, and thus
not very useful. For example, although the integrals

I1 =

1∫
0

t2 ln(t) dt

(t2 − 1)(t4 + 1)

I2 =

π/4∫
0

t2 dt

sin2(t)

I3 =

π∫
0

x sin x dx

1 + cos2 x

are successfully evaluated by Maple and Mathematica, the results are lengthy
expressions involving advanced functions and complex entities. In the third
problem, for instance, the expression produced by Mathematica continues for
more than 100 lines. We suspect that there are considerably simpler closed-
form versions of these integrals. Indeed, we can obtain the following, based
solely on the high-precision numerical values of these integrals, combined with
integer relation computations:

I1 = π2(2 −
√

2)/32

I2 =−π2/16 + π ln(2)/4 + G

I3 = π2/4,

These and numerous other examples that we could cite underscore the need for
a truly general-purpose, high-precision quadrature facility, by which we mean
a computer program that can numerically evaluate any definite integral to high
precision, given nothing other than the function definition in a separate user

4

subprogram. In other words, we seek a quadrature facility that does not rely
on symbolic manipulation, the presence or absence of certain “kernels” in the
integrand, bounds on the magnitude of the function or any of its derivatives, or
any other a priori knowledge of the specific function to be integrated. We also
seek a scheme that is well-suited to highly parallel implementation, so that a
parallel computer system can be utilized when required for significantly faster
run times. This latter requirement by itself rules out reliance on symbolic
manipulation software, or on commercial products such as Mathematica and
Maple, since these are not yet available for parallel computer systems.

The only assumptions that we grant is that the function to be integrated has a
finite definite integral and is infinitely differentiable within the given interval.
It may have a singularity (either a blow-up singularity or a vertical derivative)
at one or both endpoints. The interval itself may be finite, semi-infinite or the
entire real line. Note that definite integrals of functions with a finite set of
discontinuities or other singularities within an interval may be computed as a
sum of definite integrals on subintervals, so that the assumption given above
encompasses a broad range of functions of interest.

2 The ARPREC Software

The quadrature techniques we describe below have been implemented using
the new Arbitrary Precision (ARPREC) computation package [4]. This soft-
ware is based in part on the Fortran-90 MPFUN package [6], which in turn
is based on an earlier Fortran-77 package [5]. In the Fortran-90 version of
MPFUN, object-oriented facilities built into the Fortran-90 language (notably
custom datatypes and operator overloading) were exploited to permit Fortran
programmers to utilize the MPFUN library by making only minor changes to
the user’s source code.

The ARPREC library extends the functionality of the MPFUN packages to
the realm of C/C++ programs. In particular, the ARPREC package combines
the following features, which we believe to be unique for currently available
software of this type:

• Code written in C++ for high performance and broad portability.
• Both C++ and Fortran-90 translation modules, which permit conventional

C++ and Fortran-90 programs to utilize the package with only very minor
changes to source code.

• Arbitrary precision integer, floating and complex datatypes.
• Support for datatypes with differing precision levels.
• Inter-operability with conventional integer and floating-point datatypes.
• Many common transcendental functions (sqrt, exp, sin, erf, etc).

5

• Quadrature routines (for numerical integration).
• PSLQ routines (for integer relation detection).
• Polynomial equation solutions, both real and complex roots.
• Special routines, including FFT-based multiplication, for extra-high preci-

sion (> 1000 digits) computation.

3 The Three Quadrature Schemes

We describe here three state-of-the-art numerical quadrature schemes that are
suitable for computing definite integrals to very high precision. We considered
other quadrature schemes, including several of the classical schemes mentioned
in the introduction, but we found that they are not competitive with these
three schemes, particularly when high-precision results are required.

• QUADGS: A Gaussian quadrature scheme. Gaussian quadrature certainly
is not new, although most descriptions in the literature do not address the
requirements of arbitrary precision implementation. This scheme approxi-
mates an integral on [−1, 1] as the sum

∑
0≤j<n wjf(xj), where the abscissas

xj are the roots of the n-th degree Legendre polynomial Pn(x) on [−1, 1],
and the weights xj are

wj =
−2

(n + 1)P ′
n(xj)Pn+1(xj)

[2, pg. 187]. We compute the abscissas using a Newton iteration scheme with
a dynamically changing level of precision (approximately doubling with each
iteration), so that the total cost is only about twice times the cost of the final
iteration. The starting value for xj in these iterations is given by cos[π(j −
1/4)/(n+1/2)] [12, pg. 125]. We compute the Legendre polynomial function
values using an n-long iteration of the recurrence P0(x) = 0, P1(x) = 1 and

(k + 1)Pk+1(x) = (2k + 1)xPk(x) − kPk−1(x)

for k ≥ 2. The derivative is computed as P ′
n(x) = n(xPn(x)−Pn−1(x))/(x2−

1). Multiple levels (in other words, multiple sets of abscissas and weights)
are typically pre-computed, where each level has twice as many abscissas
and weights as the level before. When evaluating an integral, we start with
the first level, and continue with additional levels until we either exhaust
our set of pre-computed abscissas and weights, or else we are satisfied with
the accuracy of our result (see Section 5).

The number n of abscissas and weights required at level k is n = 3 · 2k in
the implementation below, so that the total required for m levels is

∑
k≤m 3 ·

2k ≈ 6 · 2m. The cost of computing abscissas and weights at a given level
with this scheme increases quadratically with n. The abscissas and weights

6

can alternately be computed using an eigenvector scheme due to Golub and
Welch [10], although the cost for this method also increases quadratically
with n.

• QUADERF: A error function-based quadrature scheme. This program ap-
proximates an integral on [−1, 1] as a sum

∑
0≤i<n wif(xi), as with Gaus-

sian quadrature, but here the abscissas xj are given by erf(hj), where
erf(x) = (2/

√
π)

∫ x
0 e−t2 dt, and the weights are given by (2/

√
π)e−(hj)2 .

We compute the error function erf(x) as 1 − erfc(x), using the following
formula given by Crandall [9, pg. 85] (who in turn attributes it to a 1968
paper by Chiarella and Reichel [8]):

erfc(t) =
e−t2αt

π

 1

t2
+ 2

∑
k≥1

e−k2α2

k2α2 + t2

 +

2

1 − e2πt/α
+ E

where |E| < e−π2/α2
. The parameter α is chosen large enough to ensure

that the error E is sufficiently small. As with the Gaussian scheme, multiple
“levels” of abscissas and weights are typically pre-computed, with each level
having approximately twice as many abscissas and weights as the level be-
fore. Here level k uses h = 22−k. Note that in this scheme, the even-indexed
abscissas and weights at one level are merely the full set of abscissas and
weights at the previous level. Thus only the odd-indexed half of the abscis-
sas and weights need to be computed at each level (after the first level), and
the function to be integrated needs to be evaluated only at the odd-indexed
abscissas at each level.

The number n of abscissas and weights required at level k depends on
the numeric precision being used. In the implementation below, n = 4 ·
2k approximately, so that the total required for m levels is approximately∑

k≤m 4 · 2k ≈ 8 · 2m. The cost of computing abscissas and weights with this
scheme increases only linearly with n.

• QUADTS: A tanh-sinh quadrature scheme. This scheme is similar to the er-
ror function scheme. In this case the abscissas are chosen as xj = tanh(π/2 ·
sinh(hj)) and the weights wj = π/2 · cosh(hj)/ cosh2(π/2 · sinh(hj)). In this
case level k uses h = 2−k. As with the QUADERF scheme, the even-indexed
abscissas and weights at one level are merely the full set of abscissas and
weights at the previous level. This scheme was first introduced by Takahasi
and Mori [13,11].

The number n of abscissas and weights required at level k depends on
the numeric precision being used. In the implementation here, n = 3.3 ·
2k approximately, so that the total required for m levels is approximately∑

k≤m 3.3 · 2k ≈ 6.6 · 2m. The cost of computing abscissas and weights with
this scheme increases only linearly with n.

7

4 The Euler-MacLaurin Summation Formula

The error function and tanh-sinh quadrature schemes are based on the Euler-
MacLaurin summation formula, which can be stated as follows [2, pg. 180].
Let m ≥ 0 and n ≥ 1 be integers, and define h = (b−a)/n and xj = a+ jh for
0 ≤ j ≤ n. Further assume that the function f(x) is at least (2m + 2)-times
continuously differentiable on [a, b]. Then

b∫
a

f(x) dx = h
n∑

j=0

f(xj) − h

2
(f(a) + f(b))

−
m∑

i=1

h2iB2i

(2i)!

(
f (2i−1)(b) − f (2i−1)(a)

)
− E

where B2i denote the Bernoulli numbers, and

E =
h2m+2(b − a)B2m+2f

2m+2(ξ)

(2m + 2)!

for some ξ ∈ (a, b).

In the circumstance where the function f(x) and all of its derivatives are zero
at the endpoints a and b (as in a smooth, bell-shaped function), the second
and third terms of the Euler-MacLaurin formula are zero. Thus the error in a
simple step-function approximation to the integral, with interval h, is simply
E. But since E is then less than a constant times h2m+2/(2m+2)!, for any m,
we conclude that the error goes to zero more rapidly than any power of h. In
the case of a function defined on (−∞,∞), the Euler-MacLaurin summation
formula still applies to the resulting infinite sum approximation, provided
as before that the function and all of its derivatives tend to zero for large
arguments.

This principle is utilized in the error function and tanh-sinh schemes by trans-
forming the integral of f(x) on the interval (−1, 1) to an integral on (−∞,∞)
using the change of variable x = g(t). Here g(x) is some monotonic function
with the property that g(x) → 1 as x → ∞ and g(x) → −1 as x → −∞, and
also with the property that g′(x) and all higher derivatives rapidly approach
zero for large positive and negative arguments. In this case we can write, for
h > 0,

1∫
−1

f(x) dx =

∞∫
−∞

f(g(t))g′(t) dt = h
∞∑
−∞

wjf(xj)

8

where xj = g(hj) and wj = g′(hj). If the convergence of g′(t) and its deriva-
tives to zero is sufficiently rapid for large |t|, then even in cases where f(x)
has a vertical derivative or an integrable singularity at one or both endpoints,
the resulting integrand f(g(t))g′(t) will be a smooth bell-shaped function for
which the Euler-Maclaurin summation formula applies. In such cases the error
in the above approximation decreases faster than any power of h.

The error function integration scheme uses g(t) = erf(t) and g′(t) = (2/
√

π)e−t2 .
Note that g′(t) is merely the bell-shaped probability density function, which
is well-known to converge rapidly to zero, together with all of its derivatives,
for large arguments. The tanh-sinh scheme uses g(t) = tanh(π/2 · sinh t) and
g′(t) = π/2 · sinh t/ cosh2(π/2 · sinh t), for which the convergence to zero is
compound exponential, even faster than the probability density function.

In practice, for functions that are bounded and well behaved on a finite closed
interval, all three of these numerical integration schemes exhibit quadratic con-
vergence: after a few initial levels, subsequent levels produce approximations
with approximately twice the number of correct digits as the previous level.
Further, as we shall see, the error function and tanh-sinh schemes also exhibit
quadratic convergence even for many functions with vertical derivatives or
singularities at one or both endpoints of the interval.

5 Error Estimation

As mentioned above, we seek a general purpose high-precision numerical in-
tegration facility that does not depend on any a priori knowledge of the func-
tion or its derivatives. Thus the theoretical bounds that are known for many
quadrature schemes are not of much use here. Instead, we use the following
error estimation scheme, which is inspired by (although it does not critically
rely on) the quadratically convergent behavior normally achieved by the above
schemes.

Let Sk be the computed approximations of the integral for levels k up to level
n. Then the estimated error En at level n is one if n ≤ 2, zero if Sn = Sn−1, and
otherwise 10d, where d = min[0, max(d2

1/d2, 2d1, d3)], with d1 = log10 |Sn −
Sn−1|, d2 = log10 |Sn−Sn−2|, and d3 = log10(ε ·maxj |f(xj)|). In the definition
of d3 in the previous sentence, ε is the “machine epsilon” of the multiprecision
system being used (in the examples below, ε = 10−412), and the maximum
indicated in this expression is taken over all abscissas xj at the n-th level.

9

6 Test Problems

The following set of 15 integrals were used as a test suite to compare these
three quadrature schemes. In each case an analytic result is known, as shown
below, facilitating the checking of results. The 15 integrals are listed in 5
groups:

• 1–4: Continuous functions on finite intervals.
• 5–6: Continuous functions on finite intervals, but with a vertical derivative

at an endpoint.
• 7–10: Functions on finite intervals with an integrable singularity at an end-

point.
• 11–13: Functions on an infinite interval.
• 14–15: Oscillatory functions on an infinite interval.

1 :

1∫
0

t log(1 + t) dt = 1/4

2 :

1∫
0

t2 arctan t dt = (π − 2 + 2 log 2)/12

3 :

π/2∫
0

et cos t dt = (eπ/2 − 1)/2

4 :

1∫
0

arctan(
√

2 + t2)

(1 + t2)
√

2 + t2
dt = 5π2/96

5 :

1∫
0

√
t log t dt = −4/9

6 :

1∫
0

√
1 − t2 dt = π/4

7 :

1∫
0

t√
1 − t2

dt = 1

8 :

1∫
0

log t2 dt = 2

9 :

π/2∫
0

log(cos t) dt = −π log(2)/2

10

10 :

π/2∫
0

√
tan t dt = π

√
2/2

11 :

∞∫
0

1

1 + t2
dt =

1∫
0

ds

1 − 2s + 2s2
= π/2

12 :

∞∫
0

e−t

√
t

dt =

1∫
0

e1−1/s ds√
s3 − s4

=
√

π

13 :

∞∫
0

e−t2/2 dt =

1∫
0

e−(1/s−1)2/2 ds

s2
=

√
π/2

14 :

∞∫
0

e−t cos t dt =

1∫
0

e1−1/s cos(1/s − 1) ds

s2
= 1/2

15 :

∞∫
0

sin t

t
dt =

π∫
0

sin t

t
dt + 40320

1/π∫
0

t7 sin(1/t) dt − 1

π
+

2

π3
− 24

π5
+

720

π7

=
π

2

Problem 4, as was mentioned above, appeared in Sept. 2002 American Mathe-
matical Monthly [1]. The others were constructed by the authors. Problems 11-
15 are integrals on an infinite interval, which is in each case here [0,∞). Except
for Problem 15, such integrals are evaluated by using the variable transforma-
tion t = 1/s− 1, as shown above. In Problem 15, the integral is written as the
sum of integrals on [0, π] and [π,∞). Then integration by parts is applied sev-
eral times to the second integral of this pair, resulting in the expression shown
above. This expression requires the evaluation of the integrals

∫ π
0 t−1 sin t dt

and
∫ 1/π
0 t7 sin(1/t) dt, which are significantly better behaved than the origi-

nal, resulting in faster convergence. Even with this transformation, however,
problem 15 remains the most difficult of the entire set.

7 Results of Tests

The three quadrature routines were each implemented using the ARPREC
arbitrary precision computation package [4], in a virtually identical program-
ming style, with the user working precision set at 400 digits (the actual working
precision employed by the software is slightly higher, roughly 412 digits). We
seek answers good to a target accuracy of 10−390, making allowance for some
numerical round-off error. In each case, nine levels of abscissas and weights
were pre-computed. Each quadrature routine was then run blindly—beginning
at level one and continuing at successively higher levels (each of which approx-

11

QUADGS QUADERF QUADTS

Prob. Level Time Error Level Time Error Level Time Error

Init 9 2778.29 9 131.80 9 45.46

1 6 8.72 10−406 9 57.43 10−406 7 13.69 10−390

2 6 8.86 10−406 9 36.17 10−406 8 21.86 10−406

3 5 4.16 10−405 9 44.06 10−405 7 12.01 10−405

4 6 8.78 10−405 9 92.48 10−406 8 38.43 10−406

5 9 78.00 10−11 9 68.15 10−406 7 16.08 10−406

6 9 3.65 10−12 9 3.94 10−406 7 0.90 10−392

7 9 4.39 10−4 8 2.39 10−210 6 0.55 10−196

8 9 75.84 10−6 9 65.58 10−405 7 15.29 10−400

9 9 99.83 10−7 9 69.96 10−403 7 17.97 10−390

10 9 31.68 10−4 8 7.49 10−203 6 2.36 10−194

11 7 0.61 10−405 9 3.04 10−255 9 2.59 0

12 9 47.55 10−4 9 18.88 10−132 9 26.09 10−203

13 9 41.74 10−353 9 11.30 10−91 9 17.97 10−241

14 9 71.69 10−126 9 26.87 10−68 9 44.39 10−165

15 5/9 34.45 10−19 9/9 41.14 10−17 7/9 31.66 10−19

imately doubles the run time) until one of these three conditions was met: (1)
the maximum level (level nine) is completed; (2) the estimated error achieves
the accuracy target (10−390); or (3) the absolute values of the function near
an endpoint are found to be so large that even when multiplied by very small
weights, the resulting summands are not sufficiently small to insure full accu-
racy in the result. In the last case, the usage of additional levels of abscissas
and weights will not further improve the accuracy—higher numeric precision
is required to attain the target accuracy.

The results of these tests are given in the table below. The first line gives the
run time, in seconds, for the initialization process. Altogether, the nine levels
of initialization produced 3066 multi-precision abscissas (and the same number
of weights) for the Gaussian scheme, 4033 for the error function scheme, and
3305 for the tanh-sinh scheme. In problems 15, where a two-step scheme is
used, the number of levels used for both steps are shown in the table. Note
that in problem 11, the tanh-sinh quadrature routine produced a value that
was identical to the reference value (i.e. no error whatsoever).

12

8 Analysis

The Gaussian quadrature routine was clearly superior for the first set of prob-
lems, namely integrals of bounded, well-behaved continuous functions on finite
intervals. It was as much as ten times faster than the error function routine
on these problems, and as much as four times faster than the tanh-sinh rou-
tine. Its accuracy on these problems was consistently “machine epsilon.” The
Gaussian routine also did quite well on problems 11 and 13. But for the other
problems, which are characterized by functions that are not well-behaved at
endpoints, its accuracy was quite poor, even when all nine levels of abscissas
and weights were utilized. Another drawback of the Gaussian scheme is that
its initialization time is 20 times longer than the error function scheme and
57 times longer than the tanh-sinh routine. This is due to the fact that the
amount of computation in the Gaussian initialization scales as n2, where n is
the number of abscissas and weights, whereas the scaling is linear with the
other two schemes. The authors are not aware of any solution to this feature of
Gaussian quadrature—all known schemes for computing abscissas and weights
have n2 scaling.

The error function quadrature routine was several times slower than Gaussian
quadrature on the well-behaved problems, as noted above, but it produced
highly accurate answers on almost all problems. In cases where it did not
achieve 400 digits accuracy, it is clear that it could do better, provided addi-
tional levels of abscissas and weights are used, and a higher working precision
is employed. It did poorly on problem 15, but so did the other two routines.
For problems seven and ten, the error function scheme stopped before using
all nine levels of abscissas and weights, even though it has achieved only about
200 digits accuracy, because it encountered case 3 of the termination criteria
above: function values near one of the endpoints became very large, so that
as a result higher levels of abscissas and weights will not further increase ac-
curacy. On these problems, roughly 800 digit working precision is required to
achieve 400 digit accuracy in the result.

The tanh-sinh quadrature routine run times were faster than the error function
routine in most cases, although not as fast as the Gaussian quadrature rou-
tine on the well-behaved problems. Its initialization time is easily the fastest
of the three. It did poorly on problem 15, but no worse than the other two
routines. As with the error function routine, the tanh-sinh function scheme
achieved only about 200 digits accuracy on problems seven and ten, because
the function values near one of the endpoints are very large. For these prob-
lems, roughly 800 digit working precision is required to achieve a full 400 digit
precision in the result, as noted above with the error function scheme.

One additional item of note here is that the error estimation scheme given in

13

Section 5 performed very well in these tests, for each of the three quadrature
routines. In most cases it produced a value that was either identical to (in
power of ten), or a few orders of magnitude higher than, the actual error in the
final result. In no case did it underestimate the actual error of the final result,
except for problem 15, where it was roughly four orders of magnitude too high
for each of the three routines. But this is easily explained, since the second of
the two integrals involved here is multiplied by the coefficient 40,320 in the
main program outside the integration routine (see the description of problem
15 in section four above). In other words, even in problem 15, the estimated
error was accurate for the actual definite integrals that were calculated.

9 Summary

Each of these quadrature routines has proven its value in a certain domain of
quadrature problems. Overall, the tanh-sinh scheme appears to be the best.
It combines uniformly excellent accuracy (except for problem 15) with fast
run times, typically only a few seconds. It is the nearest we have to a truly
all-purpose quadrature scheme at the present time. These three programs, as
well as the associated ARPREC arbitrary precision computation software, are
available from the website

http://www.nersc.gov/~dhbailey/mpdist

We wish to add here that each of the three schemes described above are well-
suited for parallel computation. The present authors are thus working on an
implementation for highly parallel computer platforms. The implementation is
based on the MPI programming model. We expect reasonably linear scalability
up to roughly 256 or possibly more processors.

References

[1] Zafar Ahmed, “Definitely an Integral,” American Mathematical Monthly, vol.
109 (2002), no. 7, pg. 670–671.

[2] Kendall E. Atkinson, Elementary Numerical Analysis, John Wiley and Sons,
1993.

[3] David H. Bailey and David Broadhurst, “Parallel Integer Relation Detection:
Techniques and Applications,” to appear in Mathematics of Computation,
available from the URL
http://www.nersc.gov/~dhbailey/dhbpapers

[4] David H. Bailey, Yozo Hida, Xiaoye S. Li and Brandon Thompson, “ARPREC:
An Arbitrary Precision Computation Package,” software and documentation

14

available from the URL
http://www.nersc.gov/~dhbailey/mpdist

[5] David H. Bailey, “Multiprecision Translation and Execution of Fortran
Programs,” ACM Transactions on Mathematical Software, vol. 19 (1993), pg.
288–319.

[6] David H. Bailey, “A Fortran-90 Based Multiprecision System,” ACM
Transactions on Mathematical Software, vol. 21 (1995), pg. 379–387.

[7] Jonathan M. Borwein and Roland Girgensohn, “Evaluations of Binomial
Series,” manuscript, 2002, available from
http://www.cecm.sfu.ca/preprints/2002pp.html.

[8] C. Chiarella and A. Reichel, “On the Evaluation of Integrals Related to the
Error Function,” Mathematics of Computation, vol. 22 (1968), pg. 137–143.

[9] Richard E. Crandall, Topics in Advanced Scientific Computation, Springer-
Verlag, 1996.

[10] G. H. Golub and J. H. Welsch, “Calculation of Gauss Quadrature Rules,”
Mathematics of Computation, vol. 22 (1969), pg. 221–230.

[11] M. Mori, “Developments in the Double Exponential Formula for Numerical
Integration,” Proceedings of the International Congress of Mathematicians,
Springer-Verlag, 1991, pg. 1585–1594.

[12] William H. Press, Brian P. Flannery, Saul A. Teukolsky and William T.
Vetterling, Numerical Recipes, Cambridge University Press, 1986.

[13] H. Takahasi and M. Mori, “Double Exponential Formulas for Numerical
Integration,” Publications of RIMS, Kyoto University, vol. 9 (1974), pg. 721–
741.

15

