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Executive Summary
On May 10 and 11, 2002, a workshop
entitled “Theory and Modeling in Nano-
science” was held in San Francisco to iden-
tify challenges and opportunities for theory,
modeling, and simulation in nanoscience
and nanotechnology and to investigate the
growing and promising role of applied
mathematics and computer science in meet-
ing those challenges. A broad selection of
university and national laboratory scientists
contributed to the workshop, which included
scientific presentations, a panel discussion,
breakout sessions, and short white papers.

Revolutionary New Capabilities in Theory,
Modeling, and Simulation
During the past 15 years, the fundamental
techniques of theory, modeling, and simula-
tion have undergone a revolution that paral-
lels the extraordinary experimental advances
on which the new field of nanoscience is
based. This period has seen the development
of density functional algorithms, quantum
Monte Carlo techniques, ab initio molecular
dynamics, advances in classical Monte Carlo
methods and mesoscale methods for soft
matter, and fast-multipole and multigrid al-
gorithms. Dramatic new insights have come
from the application of these and other new
theoretical capabilities. Simultaneously, ad-
vances in computing hardware increased
computing power by four orders of magni-
tude. The combination of new theoretical
methods together with increased computing
power has made it possible to simulate sys-
tems with millions of degrees of freedom.

Unmistakable Promise of Theory,
Modeling, and Simulation
The application of new and extraordinary
experimental tools to nanosystems has cre-
ated an urgent need for a quantitative under-
standing of matter at the nanoscale. The ab-

sence of quantitative models that describe
newly observed phenomena increasingly
limits progress in the field. A clear consen-
sus emerged at the workshop that without
new, robust tools and models for the quan-
titative description of structure and dynam-
ics at the nanoscale, the research community
would miss important scientific opportuni-
ties in nanoscience. The absence of such
tools would also seriously inhibit wide-
spread applications in fields of nanotechnol-
ogy ranging from molecular electronics to
biomolecular materials. To realize the un-
mistakable promise of theory, modeling, and
simulation in overcoming fundamental
challenges in nanoscience requires new
human and computer resources.

Fundamental Challenges and
Opportunities
With each fundamental intellectual and
computational challenge that must be met
in nanoscience comes opportunities for re-
search and discovery utilizing the ap-
proaches of theory, modeling, and simula-
tion. In the broad topical areas of (1) nano
building blocks (nanotubes, quantum dots,
clusters, and nanoparticles), (2) complex
nanostructures and nano-interfaces, and (3)
the assembly and growth of nanostructures,
the workshop identified a large number of
theory, modeling, and simulation challenges
and opportunities. Among them are:

• to bridge electronic through macroscopic
length and time scales

• to determine the essential science of
transport mechanisms at the nanoscale

• to devise theoretical and simulation ap-
proaches to study nano-interfaces, which
dominate nanoscale systems and are
necessarily highly complex and hetero-
geneous
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• to simulate with reasonable accuracy the
optical properties of nanoscale structures
and to model nanoscale opto-electronic
devices

• to simulate complex nanostructures in-
volving “soft” biologically or organi-
cally based structures and “hard” in-
organic ones as well as nano-interfaces
between hard and soft matter

• to simulate self-assembly and directed
self-assembly

• to devise theoretical and simulation ap-
proaches to quantum coherence, deco-
herence, and spintronics

• to develop self-validating and bench-
marking methods

The Role of Applied Mathematics
Since mathematics is the language in which
theory is expressed and advanced, develop-
ments in applied mathematics are central to
the success of theory, modeling, and simu-
lation for nanoscience, and the workshop
identified important roles for new applied
mathematics in the above-mentioned chal-
lenges. Novel applied mathematics is re-
quired to formulate new theory and to de-
velop new computational algorithms appli-
cable to complex systems at the nanoscale.

The discussion of applied mathematics
at the workshop focused on three areas that
are directly relevant to the central challenges
of theory, modeling, and simulation in nano-
science: (1) bridging time and length scales,
(2) fast algorithms, and (3) optimization and
predictability. Each of these broad areas has
a recent track record of developments from
the applied mathematics community. Recent
advances range from fundamental ap-
proaches, like mathematical homogenization
(whereby reliable coarse-scale results are
made possible without detailed knowledge

of finer scales), to new numerical algo-
rithms, like the fast-multipole methods that
make very large scale molecular dynamics
calculations possible. Some of the mathe-
matics of likely interest (perhaps the most
important mathematics of interest) is not
fully knowable at the present, but it is clear
that collaborative efforts between scientists
in nanoscience and applied mathematicians
can yield significant advances central to a
successful national nanoscience initiative.

The Opportunity for a New Investment
The consensus of the workshop is that the
country’s investment in the national nano-
science initiative will pay greater scientific
dividends if it is accelerated by a new in-
vestment in theory, modeling, and simula-
tion in nanoscience. Such an investment can
stimulate the formation of alliances and
teams of experimentalists, theorists, applied
mathematicians, and computer and compu-
tational scientists to meet the challenge of
developing a broad quantitative under-
standing of structure and dynamics at the
nanoscale.

The Department of Energy is uniquely
situated to build a successful program in
theory, modeling, and simulation in nano-
science. Much of the nation’s experimental
work in nanoscience is already supported by
the Department, and new facilities are being
built at the DOE national laboratories. The
Department also has an internationally re-
garded program in applied mathematics, and
much of the foundational work on mathe-
matical modeling and computation has
emerged from DOE activities. Finally, the
Department has unique resources and expe-
rience in high performance computing and
algorithms. The combination of these areas
of expertise makes the Department of En-
ergy a natural home for nanoscience theory,
modeling, and simulation.
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I. Introduction

A. The Purpose of the Workshop

On May 10 and 11, 2002, a workshop enti-
tled “Theory and Modeling in Nanoscience”
was held in San Francisco, California, sup-
ported by the offices of Basic Energy Sci-
ence and Advanced Scientific Computing
Research of the Department of Energy. The
Basic Energy Sciences Advisory Committee
and the Advanced Scientific Computing
Advisory Committee convened the work-
shop to identify challenges and opportunities
for theory, modeling, and simulation in
nanoscience and nanotechnology, and addi-
tionally to investigate the growing and
promising role of applied mathematics and
computer science in meeting those chal-
lenges. The workshop agenda is reproduced
in Appendix A.

A broad selection of university and na-
tional laboratory scientists were invited, and
about fifty were able to contribute to the
workshop. The participants are listed in Ap-
pendix B. There were scientific presenta-
tions, a panel discussion, and breakout ses-
sions, together with written contributions in
the form of short white papers from those

participants from the DOE labs. This report
is the result of those contributions and the
discussions at the workshop.

This workshop report should be read in
the context of other documents that define
and support the National Nanotechnology
Initiative. Those documents describe a broad
range of applications that will benefit the
principal missions of the Department of En-
ergy, ranging from new materials and the
energy efficiencies they make possible, to
improved chemical and biological sensing.
Key among those reports is the one from the
Office of Basic Energy Sciences entitled
“Nanoscale Science, Engineering and Tech-
nology Research Directions” (http://www.
sc.doe.gov/production/bes/nanoscale.html),
which points out the great need for theory
and modeling. Other nanoscience documents
from the Department of Energy can be
found at http://www.er.doe.gov/production/
bes/NNI.htm, and a number of reports from
other agencies and groups are linked to the
Web site of the National Nanotechnology
Initiative, http://www.nano.gov/.

B. Parallel Dramatic Advances in Experiment and Theory

The context of the workshop was apparent
at the outset. The rapid rise of the field of
nanoscience is due to the appearance over
the past 15 years of a collection of new ex-
perimental techniques that have made ma-
nipulation and construction of objects at the
nanoscale possible. Indeed, the field has
emerged from those new experimental tech-
niques.

Some of those experimental methods,
such as scanning tunneling microscopy, cre-

ated new capabilities for characterizing
nanostructures. The invention of atomic
force microscopy produced not only a tool
for characterizing objects at the nanoscale
but one for manipulating them as well. The
array of experimental techniques for con-
trolled fabrication of nanotubes and nano-
crystals, together with methods to fabricate
quantum dots and wells, produced an en-
tirely new set of elementary nanostructures.
Combinatorial chemistry and genetic tech-
niques have opened the door to the synthesis

http://www.sc.doe.gov/production/bes/nanoscale.html
http://www.sc.doe.gov/production/bes/nanoscale.html
http://www.er.doe.gov/production/bes/NNI.htm
http://www.er.doe.gov/production/bes/NNI.htm
http://www.nano.gov/
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of new biomolecular materials and the
creation of nano-interfaces and nano-
interconnects between hard and soft matter.
Nanoscience arose from the entire ensemble
of these and other new experimental tech-
niques, which have created the building
blocks of nanotechnology.

Over the same 15-year period, the fun-
damental techniques of theory, modeling,
and simulation that are relevant to matter at
the nanoscale have undergone a revolution
that has been no less stunning. The advances
of computing hardware over this period are
universally familiar, with computing power
increasing by four orders of magnitude, as
can be seen by comparing the Gordon Bell
Prizes in 1988 (1 Gflop/s) and 2001 (11
Tflop/s). But as impressive as the increase in
computing power has been, it is only part of
the overall advance in theory, modeling, and
simulation that has occurred over the same
period. This has been the period in which:

• Density functional theory (DFT) trans-
formed theoretical chemistry, surface
science, and materials physics and has
created a new ability to describe the
electronic structure and interatomic
forces in molecules with hundreds and
sometimes thousands of atoms
(Figure 1).

• Molecular dynamics with fast multipole
methods for computing long-range inter-
atomic forces have made accurate cal-
culations possible on the dynamics of
millions and sometimes billions of
atoms.

• Monte Carlo methods for classical
simulations have undergone a revolu-
tion, with the development of a range of
techniques (e.g., parallel tempering,
continuum configurational bias, and ex-
tended ensembles) that permit extraordi-
narily fast equilibration of systems with
long relaxation times.

• New mesoscale methods (including dis-
sipative particle dynamics and field-
theoretic polymer simulation) have been
developed for describing systems with
long relaxation times and large spatial
scales, and are proving useful for the
rapid prototyping of nanostructures in
multicomponent polymer blends.

• Quantum Monte Carlo methods now
promise to provide nearly exact descrip-
tions of the electronic structures of
molecules.

• The Car-Parrinello method for ab initio
molecular dynamics with simultaneous
computation of electronic wavefunctions
and interatomic forces has opened the
way for exploring the dynamics of mole-
cules in condensed media as well as
complex interfaces.

The tools of theory have advanced as
much as the experimental tools in nano-
science over the past 15 years. It has been a
true revolution.

The rise of fast workstations, cluster
computing, and new generations of mas-
sively parallel computers complete the pic-
ture of the transformation in theory, model-
ing, and simulation over the last decade and
a half. Moreover, these hardware (and basic
software) tools are continuing on the
Moore’s Law exponential trajectory of im-
provement, doubling the computing power
available on a single chip every 18 months.
Computational Grids are emerging as the
next logical extension of cluster and parallel
computing.

The first and most basic consensus of the
workshop is clear: Many opportunities for
discovery will be missed if the new tools of
theory, modeling, and simulation are not
fully exploited to confront the challenges of
nanoscience. Moreover, new investments by
the DOE and other funding agencies will be
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required to exploit and develop these tools
for effective application in nanoscience.

This consensus is not merely specula-
tion, but is based on recent experience of the
role of theory in the development of nano-
technology. Perhaps no example is more
celebrated than the role of calculations based
on density functional theory in the develop-
ment of giant magnetoresistance in magnetic
storage systems. The unprecedented speed
with which this discovery was exploited in
small hard disk drives for computers de-
pended on a detailed picture from theoretical
simulations of the electronic structure and
electron (spin) transport in these systems.
Some details of this remarkable story are
given in a sidebar to this report (page 11).

Figure 1. Nanotubes break by first forming a bond
rotation 5-7-7-5 defect. An application of density
functional theory and multigrid methods by
Buongiorno Nardelli, Yakobson, and Bernholc,
Phys. Rev. B and Phys. Rev. Letters (1998).

C. The Central Challenge

The discussions and presentations of the
workshop identified many specific funda-
mental challenges for theory, modeling, and
simulation in nanoscience. However, a cen-
tral and basic challenge became clear. Be-
cause of the rapid advance of experimental
investigations in this area, the need for
quantitative understanding of matter at the
nanoscale is becoming more urgent, and its
absence is increasingly a barrier to progress
in the field quite generally.

The central broad challenge that
emerged from discussions at the workshop
can be stated simply: Within five to ten
years, there must be robust tools for quan-
titative understanding of structure and dy-
namics at the nanoscale, without which the
scientific community will have missed many
scientific opportunities as well as a broad
range of nanotechnology applications.

The workshop audience was reminded in
the opening presentation that the electronics
industry will not risk deploying billions of

Figure 2. Calculated current-voltage curve for a
novel memory-switchable resistor with 5µµµµ ×××× 5µµµµ
junctions. (Stan Williams, Hewlett-Packard)

devices based on molecular electronics, even
when they can be built, unless they are thor-
oughly understood (Figure 2) and manufac-
turing processes are made predictable and
controllable. The electronics industry must



6

have new simulations and models for nano-
technology that are at least as powerful and
predictive as the ones in use today for con-
ventional integrated circuits before it can
chance marketing molecular electronics de-
vices for a myriad of applications. It can be
argued that biological applications of nano-
technology will require the same level of
quantitative understanding before they are
widely applied.

The fundamental theory and modeling
on which industry will build those tools does
not exist. While it is the province of industry
to provide its own design tools, it is the role
of basic science to provide the fundamental
underpinnings on which they are based.
Those fundamental tools for quantitative
understanding are also necessary to the pro-
gress of the science itself.

D. Key Barriers to Progress in Theory and Modeling in
Nanoscience

Much of the current mode of theoretical
study in nanoscience follows the traditional
separation of the practice of experiment
from the practice of theory and simulation,
both separate from the underpinning applied
mathematics and computer science. This is
not a new observation, nor does it apply
only to theory, modeling, and simulation in
nanoscience. Nonetheless, it is a particularly
problematic issue for this field.

By its very nature, nanoscience involves
multiple length and time scales as well as
the combination of types of materials and
molecules that have been traditionally stud-
ied in separate subdisciplines. For theory,
modeling, and simulation, this means that
fundamental methods that were developed in
separate contexts will have to be combined
and new ones invented. This is the key rea-
son why an alliance of investigators in nano-
science with those in applied mathematics
and computer science will be necessary to
the success of theory, modeling, and simu-
lation in nanoscience. A new investment in
theory, modeling and simulation in nano-
science should facilitate the formation of
such alliances and teams of theorists, com-
putational scientists, applied mathemati-
cians, and computer scientists.

A second impediment to progress in
theory, modeling, and simulation in nano-

science arises because theoretical efforts in
separate disciplines are converging on this
intrinsically multidisciplinary field. The
specific barrier is the difficulty, given the
present funding mechanisms and policies, of
undertaking high-risk but potentially high-
payoff research, especially if it involves ex-
pensive human or computational resources.
At this early stage in the evolution of the
field, it is frequently not at all clear what
techniques from the disparate subdisciplines
of condensed matter physics, surface sci-
ence, materials science and engineering,
theoretical chemistry, chemical engineering,
and computational biology will be success-
ful in the new context being created every
week by novel experiments. The traditional
degree of separation of the practice of ex-
periment from the practice of theory further
intensifies the challenge.

For these reasons, opportunities will be
missed if new funding programs in theory,
modeling, and simulation in nanoscience do
not aggressively encourage highly specula-
tive and risky research. At least one experi-
mentalist at this workshop complained that
high-risk and speculative theoretical and
computational efforts are too rare in this
field, and that sentiment was echoed by a
number of theorists.
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E. Consensus Observations

A broad consensus emerged at the workshop
on several key observations.

• The role of theory, modeling, and simu-
lation in nanoscience is central to the
success of the National Nanotechnology
Initiative.

• The time is right to increase federal in-
vestment in theory, modeling, and
simulation in nanoscience to accelerate
scientific and technological discovery.

• While there are many successful theo-
retical and computational efforts yield-
ing new results today in nanoscience,
there remain many fundamental intel-

lectual and computational challenges
that must be addressed to achieve the
full potential of theory, modeling, and
simulation.

• New efforts in applied mathematics,
particularly in collaboration with theo-
rists in nanoscience, are likely to play a
key role in meeting those fundamental
challenges as well as in developing
computational algorithms that will be-
come mainstays of computational nano-
science in the future.

F. Opportunity for an Expanded Role for the Department of Energy

The time is ripe for an initiative in theory
and modeling of nanoscale phenomena not
only because of the magnitude of the poten-
tial payoff, but also because the odds of
achieving breakthroughs are rapidly im-
proving.

Computational simulation is riding a
hardware and software wave that has led to
revolutionary advances in many fields repre-
sented by both continuous and discrete mod-
els. The ASCI and SciDAC initiatives of the
DOE have fostered capabilities that make
simulations with millions of degrees of free-
dom on thousands of processors for tens of
days possible. National security decisions
and other matters of policy affecting the en-
vironment and federal investment in unique
facilities, such as lasers, accelerators, toka-
maks, etc. are increasingly being reliably
informed by simulation, as are corporate de-
cisions of similar magnitude, such as where
to drill for petroleum, what to look for in
new pharmaceuticals, and how to design
billion-dollar manufacturing lines. Universi-

ties have begun training a new generation of
computational scientists who understand
scientific issues that bridge disciplines from
physical principles to computer architecture.
Advances in extensibility and portability
make major investments in reusable soft-
ware attractive. Attention to validation and
verification has repaired credibility gaps for
simulation in many areas.

Nanotechnologists reaching toward
simulation to provide missing understanding
will find simulation technology meeting new
challenges with substantial power. However,
theorists and modelers working on the inter-
face of nanotechnology and simulation tech-
nology are required to make the connec-
tions.

The workshop focused considerable at-
tention on the role of applied mathematics in
nanoscience. In his presentation, one of the
scientists working on molecular dynamics
studies of objects and phenomena at the
nanoscale expressed the sentiment of the
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workshop effectively by saying that the role
of applied mathematics should be to “make
tractable the problems that are currently im-
possible.” As mathematics is the language in
which models are phrased, developments in
applied mathematics are central to the suc-
cess of an initiative in theory and modeling
for nanoscience. A key challenge in nano-
science is the range of length and time scales
that need to be bridged. It seems likely that
fundamentally new mathematics will be
needed to meet this challenge.

The diverse phenomena within nano-
science will lead to a plethora of models
with widely varying characteristics. For this
reason, it is difficult to anticipate all the ar-
eas of mathematics which are likely to con-
tribute, and serendipity will undoubtedly
play a role. As models and their supporting
mathematics mature, new algorithms will be
needed to allow for efficient utilization and
application of the models. These issues and
some significant areas of activity are dis-

cussed in Section 3 of this report. But this
discussion is not (and cannot be) fully com-
prehensive due to the breadth of nanoscience
and the unknowable paths that modeling will
follow.

The Department of Energy is uniquely
situated to build a successful program in
theory, modeling, and simulation in nano-
science. Much of the experimental work in
nanoscience is already supported by the De-
partment, and new facilities are being built.
The Department also has an internationally
regarded program in applied mathematics,
and much of the foundational work on
mathematical modeling and computation has
emerged from DOE activities. Finally, the
Department has unique resources and expe-
rience in high performance computing and
algorithms. The conjunction these areas of
expertise make the Department of Energy a
natural home for nanoscience theory and
modeling.

G. Need for Computational Resources and Readiness to Use Them

The collection of algorithms and computa-
tional approaches developed over the last 15
years that form the basis of the revolution in
modeling and simulation in areas relevant to
nanoscience have made this community in-
tense users of computing at all levels, in-
cluding the teraflop/s level. This field has
produced several Gordon Bell Prize winners
for “fastest application code,” most recently
in the area of magnetic properties of materi-
als. That work, by a team led by Malcolm
Stocks at Oak Ridge National Laboratory, is
only one example of computing at the tera-
scale in nanoscience.

The workshop did not focus much dis-
cussion specifically on the need for compu-
tational resources, since that need is ubiqui-
tous and ongoing. The presentations showed
computationally intensive research using the

full range of resources, from massively par-
allel supercomputers to workstation and
cluster computing. The sentiment that not
enough resources are available to the com-
munity, at all levels of computing power,
was nearly universally acknowledged. This
community is ready for terascale computing,
and it needs considerably more resources for
workstation and cluster computing.

A significant amount of discussion in the
breakout sessions focused on scalable algo-
rithms, meaning algorithms that scale well
with particle number or dimension as well as
with increasing size of parallel computing
hardware. The simulation and modeling
community in nanoscience is one of the
most computationally sophisticated in all of
the natural sciences. That fact was demon-
strated in the talks and breakout sessions of
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the workshop, and is displayed particularly
in the sections of this report devoted to fast

algorithms and well characterized nano
building blocks.

H. Summary of Specific Challenges and Opportunities

The sections that follow identify a large
number of challenges in theory, modeling,
and simulation in nanoscience together with
opportunities for overcoming those chal-
lenges. Because an assembly of 50 scientists
and applied mathematicians is too small a
number to represent all the active areas of
nanoscience and related mathematics, the
list compiled at the workshop is necessarily
incomplete. However, a summary of even
the partial catalog accumulated during the
workshop and described briefly in the fol-
lowing sections should make a compelling
case for investment in theory, modeling, and
simulation in nanoscience. The challenges
and opportunities include:

• To determine the essential science of
transport mechanisms, including electron
transport (fundamental to the functional-
ity of molecular electronics, nanotubes,
and nanowires), spin transport (funda-
mental to the functionality of spintron-
ics-based devices), and molecule trans-
port (fundamental to the functionality of
chemical and biological sensors, mo-
lecular separations/membranes, and
nanofluidics).

• To simulate with reasonable accuracy
the optical properties of nanoscale
structures and to model nanoscale opto-
electronic devices, recognizing that in
confined dimensions, optical properties
of matter are often dramatically altered
from properties in bulk.

• To devise theoretical and simulation ap-
proaches to study nano-interfaces, which
are necessarily highly complex and het-
erogeneous in shape and substance, and

are often composed of dissimilar classes
of materials.

• To simulate complex nanostructures in-
volving many molecular and atomic spe-
cies as well as the combination of “soft”
biological and/or organic structures and
“hard” inorganic ones.

• To devise theoretical and simulation ap-
proaches to nano-interfaces between
hard and soft matter that will play cen-
tral roles in biomolecular materials and
their applications.

• To address the central challenge of
bridging a wide range of length and time
scales so that phenomena captured in
atomistic simulations can be modeled at
the nanoscale and beyond.

• To simulate self-assembly, the key to
large-scale production of novel struc-
tures, which typically involves many
temporal and spatial scales and many
more species than the final product.

• To devise theoretical and simulation ap-
proaches to quantum coherence and de-
coherence, including tunneling phenom-
ena, all of which are central issues for
using nanotechnology to implement
quantum computing.

• To devise theoretical and simulation ap-
proaches to spintronics, capable of accu-
rately describing the key phenomena in
semiconductor-based “spin valves” and
“spin qubits.”

• To develop self-validating and bench-
marking methodologies for modeling
and simulation, in which a coarser-
grained description (whether it is
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atomistic molecular dynamics or meso-
scale modeling) is always validated
against more detailed calculations, since
appropriate validating experiments will
often be difficult to perform.

For each entry in this list, and the many
that can be added to it, there is an estab-
lished state of the art together with an array
of specific technical issues that must be
faced by researchers. For all of the chal-
lenges listed, there is also an array of fun-
damental questions to be addressed by re-
searchers in applied mathematics.

This report is a brief synthesis of the
effort of approximately 50 experts in the
nanosciences, mathematics, and computer
science, drawn from universities, industry,
and the national laboratories. Following the
scientific presentations and a panel discus-
sion on the roles of applied mathematics and
computer science, the principal recommen-
dations of the workshop were developed in

breakout sessions. Three of them focused on
nanoscience directly:

• Well Characterized Nano Building
Blocks

• Complex Nanostructures and Interfaces

• Dynamics, Assembly, and Growth of
Nanostructures

Three others focused on the role of ap-
plied mathematics and computer science:

• Crossing Time and Length Scales

• Fast Algorithms

• Optimization and Predictability
There were, of course, other possible

ways to organize the discussions, but the
outcome would likely have been the same
no matter what the organization of the top-
ics. Nevertheless, the structure of this report
reflects this particular selection of categories
for the breakout sessions.
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Giant Magnetoresistance in Magnetic Storage
The giant magnetoresistance (GMR) effect was
discovered in 1988 and within a decade was in
wide commercial use in computer hard disks
(Figure 3) and magnetic sensors. The technol-
ogy significantly boosted the amount of informa-
tion that could be recorded on a magnetic sur-
face (Figure 4). The unprecedented speed of
application (less than 10 years from discovery to
deployment) resulted largely from advances in
theory and modeling that explained the micro-
scopic quantum-mechanical processes respon-
sible for the GMR effect.

Figure 3. GMR and MR head structures. (IBM)

Figure 4. Magnetic head evolution. (IBM)

The effect is observed in a pair of ferromag-
netic layers separated by a (generally) nonmag-
netic spacer. It occurs when the magnetic mo-
ment in one ferromagnetic layer is switched from
being parallel to the magnetic moment of the
other layer to being antiparallel (Figure 5). When
a read head senses a magnetic “bit” on the stor-
age medium, it switches the magnetic moment
on one layer and measures the resistance, thus
sensing the information on the disk.

Soon after the discovery of GMR, the phe-
nomenon was seen to be related to the different
“resistances” of electrons having different spins

ia
Rantiparallelip

Rparallel ia
Rantiparallel ia
Rantiparallelip

Rparallel ip
Rparallel

Figure 5. Schematic of GMR indicating change in
resistance accompanying magnetization reversal
upon sensing an opposing bit. (IBM)

(up or down). In fact, the magnetic moment itself
results from an imbalance in the total number of
electrons of each spin type. Modern quantum-
mechanical computational methods based on
density functional theory (for which Walter Kohn
was awarded the 1998 Nobel Prize) then pro-
vided a detailed picture of the electronic struc-
ture and electron (spin) transport in these sys-
tems. Indeed, some unexpected effects, such as
spin-dependent channeling, were first predicted
on the basis of first-principles calculations and
were only later observed experimentally.

In fact, GMR is only one aspect of the rich
physics associated with the magnetic multilayers
now used in read heads. Equally important are
oscillatory exchange coupling (which is used to
engineer the size of the magnetic field required
to switch the device) and exchange bias (which
is used to offset the zero of the switching field in
order to reduce noise). In exchange coupling, a
detailed understanding of the mechanisms re-
sponsible has been obtained on the basis of
first-principles theory. Less is known about ex-
change bias, but significant progress has been
made on the basis of simplified models and with
first-principles calculations of the magnetic struc-
ture at the interface between a ferromagnet and
an antiferromagnet.

Impressive as these advances in theory and
modeling have been, their application to nano-
magnetism has only just begun. New synthesis
techniques have been discovered for magnetic
nanowires, nanoparticles, and molecular mag-
nets; magnetic semiconductors with high Curie
temperatures have been fabricated; and spin-
polarized currents have been found to drive
magnetic-domain walls. When understood
through theory and modeling, these findings also
are likely to lead to technological advances and
commercial applications.
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II. Theory, Modeling, and Simulation in Nanoscience
The challenges presented by nanoscience
and nanotechnology are not simply re-
stricted to the description of nanoscale sys-
tems and objects themselves, but extend to
their design, synthesis, interaction with the
macroscopic world, and ultimately large-
scale production. Production is particularly
important if the technology is to become
useful in society. Furthermore, the experi-
ence of the participants in the workshop
from the engineering community strongly
suggests that a commercial enterprise will
not commit to large-scale manufacture of a
product unless it can understand the material
to be manufactured and can control the pro-
cess to make products within well-defined
tolerance limits.

For macroscopic systems—such as the
products made daily by the chemical, mate-
rials, and pharmaceutical industries—that
knowledge is often largely or exclusively
empirical, founded on an experimental char-
acterization over the ranges of state condi-
tions encountered in a manufacturing proc-
ess, since macroscopic systems are intrinsi-
cally reproducible. Increasingly, however,
this characterization is based on molecular
modeling, including all of the tools relevant
to modeling nanoscale systems, such as
electronic structure, molecular simulation,
and mesoscale modeling methods. Indeed,
the report Technology Vision 2020: The U.S.
Chemical Industry1 has identified molecular
modeling as one of the key technologies that
the chemical industry needs to revolutionize
its ability to design and optimize chemicals
and the processes to manufacture them.

Molecular modeling already plays a
major role in the chemical, materials, and

                                                
1 American Chemical Society et al., 1996, http://
membership.acs.org/i/iec/docs/chemvision2020.pdf.

pharmaceutical industries in the design of
new products, the design and optimization
of manufacturing processes, and the trouble-
shooting of existing processes. However, the
exquisite dependence on details of molecu-
lar composition and structures at the nano-
scale means that attempting to understand
nanoscale systems and control the processes
to produce them based solely on experi-
mental characterization is out of the ques-
tion.

The field of nanoscience is quite broad
and encompasses a wide range of yet-to-be-
understood phenomena and structures. It is
difficult to define nanoscience precisely, but
a definition consistent with the National
Nanotechnology Initiative is:

The study of structures, dynamics,
and properties of systems in which
one or more of the spatial dimen-
sions is nanoscopic (1–100 nm),
thus resulting in dynamics and
properties that are distinctly differ-
ent (often in extraordinary and un-
expected ways that can be favora-
bly exploited) from both small-
molecule systems and systems mac-
roscopic in all dimensions.

Rational fabrication and integration of
nanoscale materials and devices offers the
promise of revolutionizing science and tech-
nology, provided that principles underlying
their unique dynamics and properties can be
discovered, understood, and fully exploited.
However, functional nanoscale structures
often involve quite dissimilar materials (for
example, organic or biological in contact
with inorganic), are frequently difficult to
characterize experimentally, and must ulti-
mately be assembled, controlled, and util-
ized by manipulating quantities (e.g., tem-
perature, pressure, stress) at the macroscale.
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This combination of features puts un-
precedented demands on theory, modeling,
and simulation: for example, due to nano-
scale dimensionality, quantum effects are
often important, and the usual theories valid
either for bulk systems or for small mole-
cules break down. Qualitatively new theo-
ries are needed for this state of matter inter-
mediate between the atomic scale and a
large-enough scale for collective behavior to
take over, as well as methods for connecting
the nanoscale with finer and coarser scales.

Within the context of this definition of
nanoscience and the need for significant ad-
vances in our understanding of the nano-
scale, three breakout sessions on theory,
modeling, and simulation in nanoscale sci-
ence considered three broad classes of nano-
systems:

• The first class consisted of nano building
blocks (such as nanotubes, quantum
dots, clusters, and nanoparticles), some
of which can be synthesized quite repro-
ducibly and well characterized experi-
mentally.

• The second class consisted of complex
nanostructures and nano-interfaces,2
reflecting the importance of nano-
interfaces in a wide variety of nanoscale
systems. This session was specifically
asked to consider steady-state properties
of complex nanostructures and nano-
interfaces.

                                                
2 We can distinguish between interfaces in general
and nano-interfaces as follows: Typically, an inter-
face separates two bulk phases; we define, consistent
with the above definition, a nano-interface as one in
which the extent of one or more of the phases being
separated by the interfaces is nanoscopic. In nano-
interfaces we include nano-interconnects, which join
two or more structures at the nanoscale. For nano-
interfaces, traditional surface science is generally not
applicable.

• The focus of the third session was dy-
namics, assembly, and growth of nano-
structures, and so was concerned with
the dynamical aspects of complex nano-
structures. Hence, transport properties
(such as electron and spin transport and
molecular diffusion) of complex nano-
structures, as well as the dynamic proc-
esses leading to their creation, particu-
larly self-assembly, were central to this
session.

The reports presented below are summa-
ries drafted by the session chairs. Given the
ostensibly different charges presented to
each group, there is remarkable unanimity in
their conclusions with respect to the out-
standing theory, modeling, and simulation
needs and opportunities. Among the com-
mon themes are:

• the need for fundamental theory of dy-
namical electron structure and transport

• algorithmic advances and conceptual
understanding leading to efficient elec-
tronic structure calculations of large
numbers of atoms

• new theoretical treatments to describe
nano-interfaces and assembly of nano-
structures

• fundamentally sound methods for
bridging length and time scales and their
integration into seamless modeling envi-
ronments

• commitment to an infrastructure for
community-based open-source codes.

These common themes have been incor-
porated into the recommendations and chal-
lenges outlined in Section I of this report.
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A. Nano Building Blocks

Well characterized building blocks for nano-
science need to be created and quantitatively
understood for a number of crucial reasons.
A key aspect of construction, whether at the
macroscopic or microscopic scale, is the no-
tion of a “building block.” Office buildings
are often made from bricks and girders,
molecular components from atoms. Just as
knowledge of the atom allows us to make
and manipulate molecular species, knowl-
edge of bricks and mortar allows us to con-
struct high-rise buildings.

Well-characterized nano building blocks
will be the centerpiece of new functional
nanomechanical, nanoelectronic, and nano-
magnetic devices. A quantitative under-
standing of the transport, dynamics, elec-
tronic, magnetic, thermodynamic, and me-
chanical properties is crucial to building at
the nanoscale. As an example, current theo-
retical approaches to nanoelectronics often
cannot accurately predict I-V curves for the
simplest molecular systems. Without a co-
herent and accurate theoretical description
of this most fundamental aspect of devices,
progress in this area will necessarily be lim-
ited.

Theoretical studies for these systems
will necessarily have to be based on ap-
proximate methods; the systems are simply
too large and too complex to be handled
purely by ab initio methods. Even if the
problems are tractable, we will make much
greater progress with well-validated ap-
proximate models. Thus a variety of bench-
marking methodologies and validation test-
ing are needed to establish the accuracy and
effectiveness of new models and approxi-
mate theory.

At the nanoscale, what are the nano
building blocks that would play an analo-
gous role to macro building blocks? Several

units come to mind which range from clus-
ters less than 1 nm in size to nanoparticles,
such as aerosols and aerogels much larger
than 100 nm. However, we believe the best-
characterized and most appropriate building
blocks are:

• clusters and molecular nanostructures

• nanotubes and related systems

• quantum wells, wires, films and dots.
These blocks are well defined by ex-

periment and frequently tractable using
contemporary theory. Moreover, they have
been demonstrated to hold promise in exist-
ing technology. We believe that building
blocks would have an immediate impact in
the five areas described below.

Transport in Nanostructures:
Electronic Devices
Any electronic device needs to control and
manipulate current. At the nanoscale, new
phenomena come into play. Classical de-
scriptions become inoperable compared to
quantum phenomena such as tunneling,
fluctuations, confined dimensionality, and
the discreteness of the electric charge. At
these dimensions, the system will be domi-
nated entirely by surfaces. This presents
further complications for electronic materi-
als, which often undergo strong and com-
plex reconstructions. Defining accurate
structure at the interface will be difficult.
However, without an accurate surface
structure, it will be even more difficult to
compute any transport properties. Moreover,
current-induced changes within the structure
may occur. This situation will require the
complexity, but not intractable approach, of
a careful self-consistent solution in a non-
equilibrium environment.
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Optical Properties on the Nanoscale:
Optoelectronic Devices
At confined dimensions, optical properties
of matter are often dramatically altered. For
example, silicon is the dominant electronic
material, but it has poor optical properties
for optoelectronic devices such as solar cells
or lasers. However, at small dimensions the
properties of silicon can be dramatically al-
tered; the band gap in silicon can be blue-
shifted from the infrared to the optical re-
gion. One of the first manifestations of this
effect occurs in porous silicon, which ex-
hibits remarkable room temperature lumi-
nescence. To properly capitalize on such
phenomena, a deeper quantitative under-
standing of the optical properties of matter
will be required.

Optical excitations are especially chal-
lenging because most commonly used meth-
ods for structural energies, such as density
functional theory, are not well suited for ex-
cited state properties. The problem is exac-
erbated for nanoscale systems, where the
many-body effects are enhanced by the
physical confinement of the excitation.

Coherence/Decoherence Tunneling:
Quantum Computing
While silicon dominates electronic devices,
there is a fundamental limit to this technol-
ogy. As the size of a transistor is reduced
each year, eventually one will approach the
new size regimes where traditional elec-
tronics must be viewed in different terms.
The approach to this regime will happen in
the not too distant future. Current litho-
graphic techniques can create semiconductor
chips with characteristic lengths of only a
few hundred nanometers; quantum effects
are likely to dominate at tens of nanometers.
At this latter length scale, transistor technol-
ogy will be solidly in the regime of quantum
phenomena.

Components will eventually function
solely through quantum effects, for which
we will need the capability to accurately
simulate or predict in order to control. It has
been suggested that new computers can be
devised at nanoscales that will function by
using the creation of coherent quantum
states. By creating and maintaining such co-
herent states, it should be possible to store
enormous amounts of information with un-
precedented security. In order to construct
such new quantum computers, new fabrica-
tion methods will need to be found and
guided by theory. Current technology is far
removed from the routine generation of
quantum logic gates and quantum networks.
Without a better quantitative description of
the science at the nanoscale, the emergence
of quantum computing will not happen.

Soft/Hard Matter Interfaces: Biosensors
Nanotechnology has the potential to make
great advances in medical technology and
biosecurity. The technologies for controlling
and processing materials for semiconductor
devices can be used to make types of nano-
interfaces. Nanostructure synthesis and
joining of biological or soft matter with tra-
ditional semiconductors like silicon would
offer new pathways to the construction of
novel devices. For example, one could gain
the ability to develop new types of sensors
directly integrated into current device tech-
nology. A number of clear applications such
as biosensors for national security, drug de-
livery and monitoring, and disease detection
are plausible.

However, numerous complex and diffi-
cult issues must be addressed. These include
quantitative descriptions of nanofluids, re-
action kinetics, and a selectivity to particular
biological agents. Perhaps no systems are as
complex at the nanoscale as these, because
they require the understanding of the details
of interactions between quite diverse sys-
tems, i.e., soft, biological materials inter-
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faced with semiconductors or other in
organic solids.

Spintronics: Information Technology
Spintronics centers on controlling the spin of
electrons in addition to controlling other
transport properties. For example, dilute
magnetic semiconductors have attracted
considerable attention, because they hold the
promise of using electron spin, in addition to
charge, for creating a new class of spintronic
semiconductor devices with unprecedented
functionality. Suggested applications include
spin field effect transistors, which could al-
low for software reprogramming of the mi-
croprocessor hardware during run time;
semiconductor-based spin valves, which
would result in high-density, non-volatile
semiconductor memory chips; and even spin
qubits, to be used as the basic building block
for quantum computing.

At the nanoscale, spintronic devices of-
fer special challenges owing to the enhanced
exchange terms arising from quantum con-
finement. Few quantitative studies exist on
magnetic properties of quantum dots and the
evolution of ferromagnetic properties with
size.

Implications for Theory and Modeling
These five areas of research offer great
promise but will require new theories (ap-
proximate models) and computationally in-
tensive studies. Current algorithms must be
made more efficient and sometimes more
accurate, or new algorithms must emerge in
order to address the challenges highlighted
above. For example, ab initio methods can
address systems with hundreds of atoms,
and empirical methods can handle tens of
thousands of atoms. To fully exploit these
approaches, algorithms need to be made
scalable and take full advantage of current
computer technology, i.e., highly parallel
environments. Fully ab initio methods are

especially useful in providing benchmarks
for these building blocks, where experi-
mental data is lacking or is unreliable due to
unknown variability or uncontrolled critical
function characteristics. Embedding meth-
ods whereby one can take the best features
of a particular approach will be crucial.

Algorithms for particular aspects of
nanoscale systems need to be developed. For
example, ab initio methods for optical prop-
erties such as GW and Bethe-Salpeter meth-
ods are known to be accurate and robust, yet
these systems are limited in their applicabil-
ity to rather small systems, e.g., to systems
of less than 50 atoms. The essential physical
features of these methods need to be adapted
to address much larger systems.

Nonequilibrium and quantum dynamics
present special problems. These systems of-
ten lack clear prescriptions for obtaining re-
liable results. Some recent attempts to match
experiments on electron transport through
molecular systems often get the correct
transport trends, but not quantitative num-
bers. A number of entanglements exist: Is
the experimental data reliable owing to
problems with contacts? Or is there some
fundamental component missing from our
understanding? New experiments will need
to be designed to ensure reproducibility and
the validity of the measurements. New theo-
ries will need to be constructed and cross-
checked by resorting to the fundamental
building blocks.

A chronic and continuing challenge
arising in most nanosystems concerns a lack
of understanding of structural relationships.
Often nanosystems have numerous degrees
of freedom that are not conducive to simple
structural minimizations. Simulated anneal-
ing, genetic algorithms, and related tech-
niques can be used for some systems, but in
general it will require new optimization
techniques in order to obtain a quantitative
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description of the structure of nanoscale
systems.

While great strides have been made in
simulation methods, a number of funda-
mental issues remain. The diversity of time
and length scales remains a great challenge
at the nanoscale. Rare event simulation
methods will be essential in describing a
number of phenomena such as crystal
growth, surface morphologies, and diffu-
sion. Of course, the transcription of quantum
force fields to classical interatomic poten-
tials is a difficult task. Intrinsic quantum at-

tributes like hybridization and charge trans-
fer remain a challenge to incorporate into
classical descriptions. At best, current clas-
sical-like descriptions can be used for tar-
geted applications.

In order to facilitate dissemination of
new algorithms and numerical methods,
open-source software should be encouraged
and made widely available. Toolkits and ef-
ficient codes should be offered without re-
strictions for distribution to as wide an audi-
ence as possible.

B. Complex Nanostructures and Interfaces

Central to nanoscience is the assembly and
manipulation of fundamental building
blocks on the nanoscale to create functional
structures, materials, and devices (Figure 6).
Unlike traditional materials, nanostructured
materials that will enable the nanotechnol-
ogy revolution will be highly complex and
heterogeneous in shape and substance, com-
posed of dissimilar materials, and dominated
by nano-interfaces (Figure 7). These char-
acteristics require that new theoretical ap-
proaches and computational tools be devel-
oped to provide a fundamental understand-
ing of complexity at the nanoscale, the
physics and chemistry of nano-interfaces,
and how interfaces and complexity at the
nanoscale control properties and behavior at
larger scales.

Nano-interfaces and complexity at the
nanoscale play a central role in nearly all
aspects of nanoscience and nanotechnology.
For example, in molecular electronic de-
vices, DNA and other biomolecules such as
proteins are being explored both as assem-
blers of molecular components like carbon
nanotubes and semiconductor quantum dots
(Figure 8), and as active components them-
selves (Figures 9 and 10). In such devices,
soft biomolecular matter and hard matter

will come together at complex nano-
interfaces across which transport of charge
may occur, or which may provide structural
stability. In new spintronic devices, the
nano-interfaces between ferromagnetic and
antiferromagnetic domains may control the
speed of switching needed for faster com-
puters. In polymer nanocomposites, where
nanoscopic particles are added to a polymer,
interactions at the polymer/particle nano-
interface can have profound effects on bulk
properties, leading to stronger yet lighter-
weight structural and other materials. The
manipulation of interfaces in soft matter
systems at the nanoscale provides a wealth
of opportunities to design functional, nano-
structured materials for templating, scaffolds
for catalysis or tissue growth, photonic de-
vices, and structural materials (Figure 11).

The high surface-to-volume ratio result-
ing from the prevalence of nano-interfaces,
combined with the complexity of these
nano-interfaces and of nanostructures, pro-
vides much of the challenge in developing
predictive theories in nanoscience. In this
respect, materials designed at the nanoscale
are distinctly different from traditional bulk
materials. One of the largest driving forces
behind the need for new theory and simula-
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Figure 6. Three-dimensional view of Charles
Lieber's concept for a suspended crossbar array
shows four nanotube junctions (device elements),
with two of them in the “on” (contacting) state and
two in the “off” (separated) state. The bottom nano-
tubes lie on a thin dielectric layer (for example,
SiO2) on top of a conducting layer (for example,
highly doped silicon). The top nanotubes are sus-
pended on inorganic or organic supports (gray
blocks). Each nanotube is contacted by a metal elec-
trode (yellow blocks). (IBM)

Figure 7. Schematic of an assembled structure of
nanoscopic building blocks tethered by organic
“linkers.” The structure is dominated by interfacial
connections. (S. C. Glotzer, 2002)

Figure 8. Top: Schematic of nanoscale building
blocks tethered by DNA. The “soft/hard” interface
in this complex nanostructure controls the transport
of information through the structure. Bottom:
Schematic of nanoscopic gold nanoparticles assem-
bled onto a surface with DNA. Such guided assem-
bly can be used, e.g., to position the nanoparticles
for fabrication into a nanowire.

Figure 9. Atomistic simulation of a nanostructure
composed of polyhedral oligomeric silsesquioxane
cages. (J. Kieffer, 2002)

Figure 10. Simulation of organic oligomers attracted
to the surface of a nanoscopic quantum dot. (F. W.
Starr and S. C. Glotzer, 2001)

Figure 11. Simulation of nanostructured domains in
a polymer blend where the interfaces are controlled
at the nanoscale. (S. C. Glotzer, 1995)
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tion in nanoscience is the fact that there are
few experimental techniques capable of di-
rectly imaging or probing nano-interfaces.
Typically, those techniques having atomic-
scale resolution require extensive theory to
produce more than qualitative information.
Indeed, it is likely that the fundamental in-
terfacial and spatial information required to
predict the behavior and performance of
nanostructures will come from simulation
and theory in many cases.

Focused theory and simulation at a wide
range of scales is needed to develop a quan-
titative understanding of nano-interfaces and
their consequent influence on properties and
emergent behavior of nanoscale materials
and devices. Breakthroughs in theory and
simulation will also be necessary in order to
describe and predict the complexity of na-
nostructures and the relationship between
structural complexity and emergent proper-
ties and behavior.

A major challenge for nanoscience in
which theory, modeling, and simulation will
play a pivotal role lies in the definition of
the nano-interface, which is nontrivial be-
cause the definition may depend upon the
properties or behavior of interest. For exam-
ple, the relevant nano-interface leading to a
particular mechanical behavior may be dif-
ferent than that for transport properties, such
as electrical transport. Strategies for ad-
dressing nano-interfaces will also be needed.
With an appropriate definition of nano-
interfaces, new approaches can be developed
that characterize relevant nano-interfaces in
order to construct quantitatively predictive
theories that relate the nano-interfaces to
interesting nanoscale properties and behav-
ior.

To develop theories and quantitative un-
derstanding of nano-interfaces, it will be
necessary to obtain information on the or-
ganization of matter at nano-interfaces, that
is, the arrangement, composition, conforma-

tion, and orientation of matter at hard-hard,
hard-soft, and soft-soft nano-interfaces.
Much of this information may only be ac-
cessible by simulation, at least for the fore-
seeable future. The geometry and topology
of nano-interfaces, bonding at nano-
interfaces, structure and dynamics at or near
a nano-interface, transport across nano-
interfaces, confinement at nano-interfaces,
deformation of nano-interfaces, activity and
reactivity at nano-interfaces, etc. must all be
investigated by simulation. Such informa-
tion is needed before very accurate theories
relating all of these to material and device
operations and behavior will be fully for-
mulated and validated.

For example, to properly design, opti-
mize and fabricate molecular electronic de-
vices and components, we must quantita-
tively understand transport across soft/hard
contacts, which in turn will likely depend on
the arrangement of components on the sur-
face and the complexity of structures that
can be assembled in one, two, and three di-
mensions. Comprehending transport will
likely require a quantitative understanding
of the nature of nano-interfaces between
biological matter and hard matter, between
synthetic organic matter and hard matter,
and between biological matter and synthetic
organic matter. It will also require optimiza-
tion of structures and tailoring of nano-
interfaces, which in turn will require a
quantitative understanding of the stability of
nano-interfaces.

As we move towards the goal of first-
principles-based fully theoretical prediction
of the properties of nanoscale systems, there
is an urgent need to critically examine the
application of bulk thermodynamic and sta-
tistical mechanical theories to nanostructures
and nano-interfaces, where violations of the
second law of thermodynamics have been
predicted and observed, and where mechani-
cal behavior is not described by continuum
theories.
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Theories are required that abstract from
behavior at a specific nano-interface to pre-
dict the behavior of extended structures or
material that is comprised of primarily nano-
interfaces. Additionally, when describing
nanostructures that are collections of a
countable number of fundamental building
blocks, one must question whether the con-
cept of temperature has the same meaning as
in a bulk system. An important task for theo-
reticians and simulationists will be to iden-
tify what can be brought to nanoscience
from traditional methods of investigation
and description, and then determine what
new theories or approaches must be invoked
at the nanoscale.

When materials or devices are domi-
nated by nano-interfaces, new physics is
likely to result. Examples of nano-interface-
dominated physics include the electric field
at surfaces, luminescence of rare-earth
orthosilicates, surface-enhanced Raman
scattering, and deformation of nanocrystal-
line materials. Nanocomposites and nano-
assemblies are just two examples of nano-
structures where nano-interfaces are preva-
lent and may dominate behavior at larger
scales. The high surface-to-volume ratio of
complex nanostructures may also lead to
novel collective or emergent phenomena,
which would require new theory and simu-
lation efforts to address and understand.

Because of the present lack of theories
to fully describe nano-interfaces at the
nanoscale and the ramifications of nano-
interfaces on larger scales, and the lack of
experimental data on nano-interfaces, simu-
lations will play a pivotal role in advancing
knowledge in this area. Ab initio calcula-
tions in particular will be required, but the

present state of the art limits the number of
atoms to numbers too small to obtain
meaningful data in many instances. Conse-
quently, breakthroughs in methodologies
will be required to push ab initio simulations
to larger scales. Ab initio simulations con-
taining of the order of 10,000 atoms would
enable, for example, the study of spin
structure at antiferromagnetic-ferromagnetic
nano-interfaces.

New or improved computational meth-
ods are needed to simulate also the dynam-
ics of nano-interfaces from first principles.
Such simulations will be needed to predict,
for example, electronic transport across
nano-interfaces, as well as to provide vali-
dation or benchmarks for coarser-grained
theoretical descriptions of nano-interfaces in
which electronic structure is not explicitly
considered. For molecular dynamics meth-
ods and other classical, particle-based meth-
ods, new (for many purposes reactive) force
fields capable of describing nano-interfaces
between dissimilar materials are urgently
needed. For some problems, further coarse-
graining will be required to capture com-
plexity on all relevant length and time
scales, and thus new mesoscale theories and
computational methods will be needed. To
connect the properties and behavior of com-
plex nanostructures and/or nano-interfaces
to properties and behavior at the macroscale,
it may be necessary to develop new consti-
tutive laws (and ask if it is even appropriate
to talk about constitutive laws in systems
where properties and behavior are domi-
nated by nano-interfaces) and then develop
and integrate theories at different levels.
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C. Dynamics, Assembly, and Growth of Nanostructures

The focus of this section is the time-
dependent properties of nanostructures (such
as transport properties) and the time-
dependent processes used to produce nano-
structures and nanostructured materials
(such as directed self assembly, nucleation
and growth, and vapor deposition methods).

The primary route to manufacturable
functional nanoscale systems is universally
conceded to be self-assembly, which may
be directed or not. Self-assembly of nano-
structured materials is scalable to industrial
levels of production because it does not re-
quire control at the nanoscale (such as, for
example, manipulation via AFM tip). There
is a wide variety of transport mechanisms
relevant to nanoscience, including electron
transport (relevant to molecular electronics,
nanotubes, and nanowires), spin transport
(relevant to spintronics-based devices, see
Figure 12), and molecule transport (relevant
to chemical and biological sensors, molecu-
lar separations/membranes, and nanoflu-
idics).

Examples of nanostructures and nano-
structured systems formed by (or capable of
formation by) self-assembly include quan-
tum dot arrays, nano- and microelectrome-
chanical systems (NEMS and MEMS),
nanoporous adsorbents and catalytic materi-
als (produced by templated self-assembly,
see Figure 13), nanocrystals, and biomimetic
materials. This list is by no means exhaus-
tive.

The role that mathematics and computer
science researchers can play is to apply
mathematical and computational tools de-
veloped in other contexts to the understand-
ing, control, design, and optimization of
nanostructured materials and functional
systems based on nanoscale structures. Each
of these elements—understanding, control,
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Figure 12. Spintronics devices utilize an elec-
tron’s spin rather than its charge. Shown here
is an artist’s depiction of a proposal by Bruce
Kane of the University of Maryland for a
quantum computer based on the nuclear spin
of phosphorus atoms (green), which interact by
means of spin-polarized electrons (red). The
quantum properties of superposition and en-
tanglement may someday permit quantum
computers to perform certain types of compu-
tations much more quickly using less power
than is possible with conventional charge-
based devices. (From S. Das Sarma, “Spin-
tronics,” American Scientist 89, 516 (2001))
gure 13. Templated self assembly of nano-
rous material—in this case, MCM-41. (From

. S. Zhao, “Synthesis, modification, characteri-
tion and application of MCM-41 for VOC
ontrol,” Ph.D. thesis, University of Queensland,
98)
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design, and optimization—is essential to the
manufacturability of systems composed of
nanoscale objects, as noted by Stan Wil-
liams of Hewlett-Packard in the opening talk
of the workshop.

Among the major challenges facing
theory, modeling, and simulation (TMS)
in the dynamics, assembly, and growth of
nanostructures is simulation of self-
assembly (which typically involves many
temporal and spatial scales, and many more
species than the final product), methods for
calculating electron and spin transport prop-
erties in nanoscale systems, and the proc-
essing and control (particularly to achieve
more uniform size distribution) of self-
assembly of heterostructures composed of
hard materials (such as group IV semicon-
ductors, obtained by combined ion and mo-
lecular beam epitaxial growth).

The TMS methods needed to faithfully
model the dynamics, assembly, and growth
of nanostructures consist of the usual meth-
ods we associate with TMS (electronic
structure methods, atomistic simulation,
mesoscale and macroscale methods) but
with additional variations specific to these
problems. These variations include:

• Hybrid electronic structure/molecular
dynamics methods scalable to very large
systems are needed to model combined
reaction and structure evolution.

• Coarse graining/time spanning methods
are crucial, owing to the large times as-
sociated with self-assembly and the large
microscopic and mesoscopic domains
that exist in many systems.

• Since many self-assembly processes take
place in solution, electronic structure
methods incorporating solvation are nec-
essary.

• Molecular and nanoscale methods that
incorporate phase equilibria and non-

equilibrium multiphase systems (in-
cluding interfaces) are required.

Participants also saw the necessity of
traditional finite element elastic/plastic
codes for stress/strain description at the
macroscale, since ultimately nanostructured
materials must connect with the macro-
scopic world. It was noted that upscaling
(going to coarser length and time scales)
typically results in the introduction of sto-
chastic terms to reflect high-frequency mo-
tion at smaller scales; thus, more rigorous
methods for including stochasm and more
effective methods for characterizing and
solving stochastic differential equations are
required.

New developments in nonequilibrium
statistical mechanics, both of classical and
quantum systems, are needed. For example,
the recent discovery by nonequilibrium mo-
lecular dynamics, confirmed by nonlinear
response theory, of violations of the second
law of thermodynamics for nanoscale sys-
tems indicates the importance of new theo-
retical developments focused on nanoscale
systems. Quantifying errors in calculated
properties was identified as a significant
problem that consists of two parts—charac-
terization of uncertainty due to inaccuracies
inherent in the calculation (such as limita-
tions of a force field in molecular dynamics
or of a basis set in electronic structure cal-
culations) and performing useful sensitivity
analyses.

The important aspect of nanoscale sys-
tems that makes them such a TMS challenge
is that the characterization of uncertainty
will often have to be done in the absence of
experimental data, since many of the prop-
erty measurement experiments one would
like to perform on nanoscale systems are
impossible in many cases or unlikely to be
done in cases where they are possible.
Hence, the concept of self-validating TMS
methods arises as a significant challenge in
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nanoscience. By self-validating TMS meth-
ods we mean that a coarser-grained descrip-
tion (whether it be atomistic molecular dy-
namics or mesoscale modeling, for example)
is always validated against more detailed
calculations (e.g., electronic structure cal-
culations in the case of atomistic molecular
dynamics, and atomistic molecular dynam-
ics in the case of mesoscale modeling).

Various computational issues were iden-
tified as important for computational nano-
science. In particular, an open source soft-
ware development framework for multiscale
modeling was identified as a real need. The
OCTA project in Japan (http://octa.jp) may
point the way towards development of such
an open source software development
framework, or may indeed be the appropri-
ate framework on which to expand simula-
tion capabilities. Visualization of nanoscale
systems is challenging, since the spatio-
temporal scales cover such large orders of
magnitude. Truly effective parallelization of
Monte Carlo was identified as an important
issue. Specifically, efficient domain decom-
position parallelization of Monte Carlo on
very large systems with long range forces
was seen as an unsolved problem with rami-
fications for computational nanoscience.
Finally, parallel codes for any TMS method
that scales efficiently to tens of thousands of
processors were targeted. This is because the
highest-performance computers are headed
towards this number of processors, yet it is
not clear that any scalable codes exist at this
point for such large machines.

We identified three grand-challenge-
scale problems within self-assembly that
would require theoretical, algorithmic, and
computational advances, and which might
be specifically targeted in any future pro-
gram in computational nanoscience. These
are the simulation of self-assembly of tem-
plated nanoporous materials, self-assembly
of nanostructures directed by DNA and

DNA-like synthetic organic macromole-
cules, and directed self-assembly of quan-
tum dot arrays and other nanoscale building
blocks using physical synthesis and assem-
bly methods. Each of these problems has
clear relevance to the DOE mission, creating
possible paradigm shifts in low-energy sepa-
rations, catalysis, sensors, electronic de-
vices, structural and functional hybrid mate-
rials, and computing. Each involves signifi-
cantly different chemical and physical sys-
tems, so that the range of TMS methods
needed varies with each problem: the first
involves self-assembly from solution; the
second the use of biologically or bio-
inspired directed self-assembly, again in
solution; while the third generally does not
involve solutions.

In a related example, Figure 14 shows a
new computational method for producing
random nanoporous materials by mimicking
the near-critical spinodal decomposition
process used to produce controlled-pore
glasses (CPGs). While producing model
CPGs which have similar pore distributions
and sizes to actual CPGs, the method is not a
fully detailed simulation of CPG synthesis.
Refinement of such techniques to the point
where new nanoporous materials can be dis-
covered and synthesized computationally
would be a paradigm-altering step forward
in nanostructured materials synthesis.

Figure 14. Schematic of controlled-pore glass
model preparation. The phase separation process
used to prepare real materials is imitated via mo-
lecular dynamics simulation, resulting in molecu-
lar models with realistic pore networks and struc-
tures. (After Gelb et al., Reports On Progress in
Physics, Vol. 62, 1999, p. 1573–1659)

http://octa.jp/
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III. The Role of Applied Mathematics and Computer Science
in Nanoscience

“I am never content until I have
constructed a mechanical model of
what I am studying. If I succeed in
making one, I understand; other-
wise I do not. . . . When you meas-
ure what you are speaking about
and express it in numbers, you
know something about it, but when
you cannot express it in numbers
your knowledge about it is of a
meagre and unsatisfactory kind.”
—William Thompson (Lord
Kelvin), 1824–1907

Kelvin’s mathematical triumphalism is from
a pre-quantum-mechanical era and must be
discounted as chauvinistic in view of the
immense understanding of complex phe-
nomena that can be accumulated prior to
satisfactory mathematization. Such hard-
won understanding of phenomena, in fact,
leads eventually to their mathematization.
Nevertheless, Kelvin’s agenda of quantita-
tive understanding remains as a prerequisite
for simulation and predictive extrapolation
of a system, if not for substantial under-
standing.

Given the enormous power of computa-
tional simulation to transform any science or
technology supported by a mathematical
model, the mathematization of any new field
is a compelling goal. The very complexity
and breadth of possibilities in nanoscience
and technology cry out for an increasing role
for computational simulation today. This
section, organized around three themes, in-
dicates some of the directions this increasing
role might take: in bridging time and length
scales, in fast algorithms, and in optimiza-
tion and predictability. In each of these rep-

resentative areas, there are instances of
“low-hanging fruit,” of problems that are
reasonably well defined but whose solutions
present significant technical challenges, and
of phenomena that are not yet at all well de-
fined by Kelvinistic standards.

In a complementary way, mathematics
and simulation would be enormously stimu-
lated by the challenges of nanoscale model-
ing. While some rapidly developing areas of
mathematics, such as fast multipole and
multigrid algorithms, are ready to apply (in
fact, are already being used) in nanoscale
modeling, there is much work to do just to
get to the frontier of the science in other
areas.

It is important to keep in mind that no
one can predict where the next mathematical
breakthrough of consequence to nanoscience
will come from: it could be from computa-
tional geometry or from graph theory; it
might come from changing the mathematical
structure of existing models. Changing the
mathematical structure creates a new lan-
guage, which often can expose an emergent
simplicity in a seemingly complex land-
scape. For instance, no one could have pre-
dicted the significance of space-filling
curves (a topological fancy) to the optimal
layout of data in computer memories.

However, it is predictable that the for-
ward progress of mathematical modeling
will carry first one, then another area of
nanoscience forward with it—provided that
the minds of nanoscientists and mathemati-
cians alike are prepared to experiment, to
look for the points of connection, and to
recognize opportunities as they arise. The
many obvious connections described below
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should not overshadow the potential for the
emergence of perhaps more important con-
nections between nanoscience and other ar-
eas of mathematics in the near future.

Hence, it will be important at this early
stage not to define too narrowly what forms
of applied mathematics will be important to
nanoscience applications. Furthermore,
the collaborative infrastructure and cross-
fertilization between projects that can be
facilitated in a DOE initiative fosters crea-
tivity while making recognition of otherwise
non-obvious connections and opportunities
more likely.

One of the simplest initial objectives of a
collaborative dialog between scientists of
the nanoscale regime and mathematical
modelers is to be sure that the low-hanging
fruit is regularly plucked. Mathematical re-
sults and software libraries to implement
them—many sponsored by the Department
of Energy—arrive in a steady stream and
readily find application in fields that tradi-
tionally engage applied mathematicians,
such as engineering mechanics, semicon-
ductor device physics, signal processing,
and geophysical modeling. The differential
and integral operator equations underlying
mathematical physics have been placed on a
firm foundation. Issues of existence and
uniqueness, convergence and stability of
numerical approximation, accuracy and al-
gorithmic complexity, and efficiency and
scalability of implementation on the
agency’s most powerful computers are well
understood in many scientific areas.

The variety of simulation tools available
is enormous and includes Eulerian-type and
Lagrangian-type adaptive methods for the
evolution of fields, level sets, and particles.
Complex multiscale algorithms have been
developed for optimal solution of equilib-
rium and potential problems. Wonderful
tools exist for creating low-dimensional rep-
resentations of apparently high-information

content phenomena. Stochastic modeling
techniques pull averages and higher mo-
ments from intrinsically nondeterministic
systems. Moreover, the limits of applicabil-
ity of these tools and techniques are well
understood in many cases, permitting their
use in a cost-effective way, given a require-
ment for accuracy. Sensitivity and stability
analyses can accompany solutions.

The interaction of scientists and engi-
neers with applied mathematicians leads to
continual improvement in scientific and
mathematical understanding, computational
tools, and the interdisciplinary training of
the next generation of each. Due to the nov-
elty of nanoscale phenomena, such interac-
tion with applied mathematicians is often
missing. Interactions must be systematically
improved in existing and new areas.

At the next level of objectives for a na-
noscience-mathematics collaboration lie the
problems that are apparently well defined by
nanoscientists but for which there are no
routinely practical mathematical solutions
today. The number of particles that interact,
the number of dimensions in which the
problem is set, the range of scales to be re-
solved, the density of local minima in which
the solution algorithm may be trapped, the
size of the ensemble that needs to be exam-
ined for reliable statistics, or some other
feature puts the existing model beyond the
range of today’s analysts and the capacities
of today’s computers. In these areas, some
fundamentally new mathematics may be re-
quired.

Finally, there exists a set of problems for
which mathematicians must come alongside
nanoscientists to help define the models
themselves. A critical issue for revolutionary
nanotechnologies is that the components and
systems are in a size regime about whose
fundamental behavior we have little under-
standing. The systems are too small for
easily interpreted direct measurements, but
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too large to be described by current first-
principles approaches. They exhibit too
many fluctuations to be treated monolithi-
cally in time and space, but are too few to be
described by a statistical ensemble. In many
cases, they fall between the regimes of ap-
plicability of trusted models. Perhaps exist-
ing theories can be stretched. More likely,
new theories and hence new mathematical
models will be required before robust fun-
damental understandings will emerge.

Once a theoretical model becomes a
trusted companion to experiment, it can
multiply the effectiveness of experiments
that are difficult to instrument or interpret,
take too long to set up, or are simply too ex-
pensive to perform. Powerful computational
engines of simulation can be called upon to
produce, to twist the words of R. W. Ham-
ming, not just insight, but numbers as well.

Those numbers are the essence of con-
trol and predictability.

A. Bridging Time and Length Scales

Most phenomena of interest in nanoscience
and nanotechnology, like many phenomena
throughout science and engineering, demand
that multiple scales be represented for
meaningful modeling. However, phenomena
of interest at the nanoscale may be extreme
in this regard because of the lower end of
the scale range. Many phenomena of im-
portance have an interaction with their envi-
ronment at macro space and time scales, but
must be modeled in any first-principles
sense at atomistic scales.

The time scale required to resolve
quantum mechanical oscillations may be as
small as a femtosecond (10-15 s), whereas
protein folding requires microseconds (a
range of 109), and engineered nanosystems
may require still longer simulation periods,
e.g., creep of materials relevant to reliability
considerations may be measured in years.
Counting trials in probabilistic analyses
contributes another time-like factor to the
computational complexity, although this
latter factor comes with welcome, nearly
complete algorithmic concurrency, unlike
evolutionary time. Meanwhile, spatial scales
may span from angstroms to centimeters (a
range of 108). The cube of this would be
characteristic of a three-dimensional contin-
uum-based analysis. Counting atoms or
molecules in a single physical ensemble

easily leads to the same range; Avogadro’s
number is about 1024.

Exploiting the concurrency available
with multiple independent ensembles multi-
plies storage requirements. Space-time re-
source requirements are staggering for many
simulation scenarios. Therefore, nano-
science poses unprecedented challenges to
the mathematics of multiscale representation
and analysis and to the mathematics of syn-
thesizing models that operate at different
scales.

Existing techniques may certainly yield
some fruit, but we are undoubtedly in need
of fundamental breakthroughs in the form of
new techniques. Faced with similar types of
challenges in macroscopic continuum prob-
lems, applied mathematicians have devised a
wide variety of adaptive schemes (adapta-
tion in mesh, adaptation in discretization
order, adaptation in model fidelity, etc.).
Bringing these schemes to a “science” has
required decades, and is not complete in the
sense of predictable error control for a given
investment, e.g., for some hyperbolic prob-
lems. Probably the greatest range of scales
resolved purely by mesh adaptivity to date is
about 10 decades in cosmological gravita-
tion problems. Of course, this range is prac-
tical only when the portion of the domain
demanding refinement is small compared to
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the domain size required to include all of the
objects of interest or, what is often the more
demanding requirement, to graft on to relia-
bly posed boundary conditions in the far
field. Migrating such adaptive schemes into
production software (typically through
community models, sometimes in commer-
cial analysis packages) lags their scientific
development by at least an academic gen-
eration and usually more. The challenge for
nanoscience is therefore not only great, but
also urgent. Applied mathematicians being
trained today can acquire a doctoral degree
without ever having been exposed to nano-
scale phenomena.

The mathematical models and algo-
rithms of nanoscience cover the gamut of
continuous and discrete, deterministic and
random. Ultimately, all simulations are exe-
cuted by deterministic programs (at least, to
within the limits of race conditions on par-
allel processors) on discrete data. The most
capable computer platforms of 2002 (costing
in excess of $100M) execute at most tens of
teraflop/s (1013 floating point operations per
second) and store in fast memory at most
tens of terabytes and in disk farms at most
hundreds of terabytes. Moreover, these ma-
chines do not perform efficiently for models
at these capability extremes. A typical ex-
treme problem in computational science to-
day encompasses only billions of discrete
degrees of freedom (filling storage larger
than this with auxiliary data, including ge-
ometry, physical constitutive data, and linear
algebra workspaces) and runs for days at
tens to hundreds of gigaflop/s. Routine
problems encompass only millions of de-
grees of freedom and run for hours at around
1 gigaflop/s.

The wildest extrapolations of Moore’s
Law for silicon cannot sate the appetite for
cycles and memory in nanoscience model-
ing. It is clear that a brute force, first-
principles approach to nanoscale phenomena
will not succeed in bridging scales—or per-

haps, given the promise of nanotechnology,
we should say that it can only succeed
through some “spiral” process, whereby
nanotechnology yields superior computers,
which yield superior nanoscale models,
leading to improved nanotechnology and
better computers, and so forth.

We begin with a brief inventory of suc-
cessful scale-bridging models in applied
mathematics today.

Mathematical homogenization (or “up-
scaling”)—whereby reliable coarse-scale
results are derived from systems with unre-
solvable scales, without the need to generate
the (out of reach) fine scale results as inter-
mediates—is a success story with extensive
theory (dating at least to the 1930s) and ap-
plications. The trade-off between accuracy
and efficiency is well understood. It is par-
ticularly fruitful, for instance, in simulating
flows through inhomogeneous porous media
or wave propagation through inhomogene-
ous transmissive media with multiple scat-
terers. One begins by considering just two
scales. Given a 2 × 2 matrix of interactions:
“coarse-coarse,” “coarse-fine,” “fine-
coarse,” and “fine-fine,” where the first
member denotes the scale of an output be-
havior and the second member the scale of
the input that drives the behavior, one can
formally solve to eliminate the “fine-fine”
block. (If the interactions are all linear, for
instance, this can be done with block Gaus-
sian elimination.) This leaves a Schur com-
plement system for the “coarse-coarse”
block, where the interaction matrix is the
original “coarse-coarse” block and a triple
product term with the “fine-fine” inverse in
the middle. The effect of the triple-product
term can often be reliably approximated,
yielding a model for coarse scales that in-
corporates the dynamics of both scales.

In principle, this process can be repeated
recursively. The standard theory succeeds
when there is good separation of scales be-
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tween the inhomogeneous structure to be
“homogenized” and the scales of interest in
the solution. When there is significant inter-
action across length scales (when the
“coarse-fine” and the “fine-coarse” interac-
tions are large), the computation of effective
properties at the coarse scales becomes more
difficult. Work continues on such concepts
as “multilevel renormalization,” and ho-
mogenization should certainly be studied for
fruitful approaches to nanoscale science.

Another successful and now quotidian
means of bridging scales in modeling is the
concept of “space sharing” of different mod-
els, with different resolution requirements.
For instance, crack propagation in a solid
can be effectively modeled with adaptive
finite elements for linear elasticity in the
mid and far fields, grafted onto molecular
dynamics models at and immediately sur-
rounding the crack tip and the newly ex-
posed surface. As another example, the
Richtmyer-Meshkov instability in fluid me-
chanics has been studied with a conventional
computational fluid dynamics analysis for
Navier-Stokes in the mid and far fields and
direct simulation Monte Carlo on “lumped”
fluid particles at the mixing interface. At-
mospheric reentry problems have similarly
been successfully modeled with sparse con-
tinuum models away from the body and
Boltzmann models in the boundary layer at
the body surface.

Very significant scientific and engi-
neering progress can be made with such
models on today’s high-end computers with
such two-physics scale bridging. Less dra-
matically, one can also cite a multitude of
successful dual-continuum model ap-
proaches with different asymptotic forms of
the governing equations in different regimes,
e.g., classical boundary layer theory, in
which viscosity terms are computed only in
regions of steep gradients. In all of these ex-
amples, it is important that the dual models
have a regime of overlap, where their solu-

tions can be simultaneously represented and
joined. In this sense, these approaches are
somewhat complementary to that of homog-
enization. An even less dramatic example,
still, is the scenario in which the physical
model remains the same throughout the do-
main, but the mathematical representation of
it changes for computational efficiency. The
classic example of this is a combination of
finite elements to resolve the geometry
around a complex object (e.g., scatterer) in a
differential equation approach and boundary
elements to resolve the far field in an inte-
gral equation approach. These space-sharing
approaches sometimes (depending upon the
difficulty of the application) lack the
mathematical rigor of adaptive approaches
within a single physical and mathematical
formulation, but with care to monitor and
enforce conservation properties at the inter-
face, they are practical and possibly to be
emulated in nanoscale phenomena.

A somewhat more trivial instance of
bridging scales is what we might call “time
sharing” of models, in analogy to “space
sharing.” In such cases, different dynami-
cally relevant physics “turns on” at different
points in the simulation, so that it is accept-
able to step over fast scales during one pe-
riod, but necessary to resolve them in an-
other. Modeling ignition in a combustion
system provides one industrially important
example. Cosmology enters again here with
vastly different physics relevant in the very
early universe (e.g., first three minutes) than
in the long-term evolution.

It is conceivable, with good software en-
gineering, to marry the concepts of space
sharing and time sharing of multiple physics
models in a large and complex system, so
that each region of space-time adaptively
chooses the most cost-effective model and
advancement algorithm. One concept in the
continuum modeling of multirate systems
whose applicability to nanoscale multirate
systems should be explored is that of im-
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plicit integration methods to “step over” fast
time scales that are not dynamically relevant
to the result, even though they are timestep
limiting, due to stability considerations, in
explicit integration. Examples abound, in-
cluding acoustic waves in aerodynamics,
gravity waves in climate modeling, Alfven
waves in magnetohydrodynamics, and fast
reactions between intermediate species in
detailed kinetics of combustion.

In these and many other cases, accepta-
bly accurate results on slower (dynamically
relevant) time scales can be achieved by
making some equilibrium assumption about
the fine dynamics in order to filter out the
fast scales, enabling the integration to take
place in coarse timesteps. The price for this
transformation of the equations to be inte-
grated is usually an implicit solve, where a
mathematical balance is enforced on each
timestep. The algorithmic cost of an implicit
integrator is much higher per step than that
of an explicit integrator, but one can take
many fewer steps to get to a desired point in
simulation time. Whether this trade-off is a
winning one for the overall simulation de-
pends upon the cost of the implicit solve. As
a rule of thumb in large-scale partial differ-
ential equations (PDEs), if the fast scales are
two orders of magnitude or more faster than
the dynamical scales of interest, implicit
methods usually pay off. If the ratio of
scales is 10 or less, they likely do not. It may
be that many ranges of time scales required
by nanoscientists (e.g., integration intervals
lasting billions of quantum mechanical os-
cillation periods) can be condensed by im-
plicit algorithmics without loss of any rele-
vant physics, following some statistical or
equilibrium assumptions.

Retreating further into simple, but often
adequate, scale-bridging scenarios, there are
many examples of one-way cascades of
models, whereby a fine-scale problem is
solved off-line to develop constitutive laws

or material properties for a coarser-scale
problem.

It is increasingly practical, for instance,
to simulate properties of novel alloys or ex-
plosives—materials with simple structure
compared to fiber composites or nanotube
networks—and then to employ these prop-
erties as proxies for experimental data in
continuum simulations. Sometimes the
properties are quite ad hoc, for instance,
eddy models in turbulence, to account for
mixing at larger scales than molecular by an
enhancement of the molecular viscosity in
turbulent regimes. Of course, the turbulence
simulation community, reflecting a time-
honored specialty with a modeling history
far too complex to summarize in the scope
of this section, copes with multiple scales
through as many different means as there are
modeling groups. Large-eddy simulation, a
fairly rigorous approximation, is emerging
as very popular, and its practitioners may
have fresh ideas when faced with nanoscale
phenomena. Source terms in turbulent re-
acting flows attempt to account for addi-
tional reaction intensity along fractally
wrinkled flame fronts by parameterizing
smoother, resolvable flame front area. Both
deterministic and probabilistic tools have
proved fruitful in tuning to experiments and
linking up with the fundamental conserva-
tion principles. This is a very application-
specific technology, as will be, undoubtedly,
many of those appropriate for bridging
nanoscales.

Although it is not a modeling technique
but a solution technique, one should also
mention multigrid as a paradigm. Multigrid
has already found success in molecular dy-
namics and in electronic structure algo-
rithms and is likely to be embraced across a
wider range of nanoscale applications.
Multigrid has the beautiful property of con-
quering numerical ill conditioning (essen-
tially caused by the presence of too many
scales in view of the numerics all at once)
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by treating each scale on its own terms. This
improves linear conditioning and nonlinear
robustness of the solution method, and often
leads to physical insight as well. For in-
stance, problems in geometric design are
often best approached by resolving large-
wavelength geometric parameters on coarse
grids, and small-wavelength geometric pa-
rameters on finer ones. Multigrid depends
on a (usually purely mathematical) decom-
position into ranges of scales, and on the
ability to construct intergrid transfer opera-
tors and coarsened versions of the funda-
mental fine-scale operator on coarser scales.

Another mathematical paradigm that
may prove to have a resonance with the
nanoscale community is the method known
variously as proper orthogonal decomposi-
tion or principal component analysis. In both
linear and nonlinear problems, it is often
possible to represent the underlying dynam-
ics of interest with a relatively small number
of dynamical coefficients representing the
weight of complex, system-dependent
modes. The challenge is to discover the
modes of interest, which are almost never as
numerous as the number of characteristic
basis functions in the finest grid. The finely
resolved setting may be required to deter-
mine the principal modes, but once found,
production computing can be done in a re-
duced basis.

Some degree of stochasticity is intrinsic
at atomistic scales; hence, a Monte Carlo
simulation will yield a fluctuation with sta-
tistics that must be carried to larger length
scales. The numerical analysis of stochastic
partial differential equations could enter
here, the goal being a coarse solution with
the right statistics. The theory of large de-
viation for stochastic PDEs allows the de-
signing of sampling methods for so-called
“rare events.” The long time integrations
that are burdensome to the accuracy of de-
terministic models may actually be a benefit
to the accuracy of statistical models.

It is axiomatic to a mathematician that
there are better ways than brute-force propa-
gation of fine scales to attack a multiscale
problem. A mathematician would argue that
anyone requiring a billion degrees of free-
dom for a week of wall clock execution time
is running the wrong algorithm. Indeed, the
nanoscale community must learn to compute
“smarter” and not just “harder.” Part of this
will come from optimal algorithmics (e.g.,
linear scaling in DFT), but a larger and yet
unknown portion of it will come from intrin-
sically multiscale models, created collabo-
ratively with mathematical scientists. It is
easy to construct scenarios in which such
modeling is attractive, and probably neces-
sary. We mention here an example that ap-
pears to demand vast bridging of scales for
unified scientific understanding, the opera-
tion of a biosensor to detect trace quantities
of a biologically active molecule.

• At the smallest scale, a molecule can be
sensed by the luminescence characteris-
tic of an optical energy gap. Quantum
Monte Carlo could be used for a high-
accuracy comparison with experiment.

• At the next scale, where one needs to
gain a quantitative understanding of sur-
face structure and interface bonding,
DFT and first-principles molecular
dynamics could be employed.

• At the next higher scale, one would need
to gain a quantitative understanding of
the atomistic coupling of the molecule to
be detected with the solvent that trans-
ports it to the sensor. This modeling
could be modeled with classical mo-
lecular dynamics at finite temperature
and classical Monte Carlo.

• Finally, at the macroscale, the solvent
itself could be characterized with a con-
tinuous model, based on finite elements.

Each phenomenon depends upon the
phenomenon at the scale above and the scale
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below, which means that there is two-way
coupling between mathematically different
models at different scales.

The Holy Grail of nanoscale modeling is
a seamless bridging of scales with tight bi-
directional coupling between every scale-
adjacent pair of a sequence of models, from
nano through micro and meso to macro. This
bridging necessarily must involve scale-
appropriate algorithmics at each scale, with

well-understood error dependence on the
computational resolution in each model, and
with error control for information transfer
between scales. For optimality, algorithms
should be prudent in their use of fine-scale
information—using the coarsest scale suit-
able for obtaining the requisite error in each
result.

B. Fast Algorithms

Due to the inherent complexity of nano-
structures, theoretical models will generally
need to be instantiated as computational
simulations. Many such simulations will in-
volve intensive computation, requiring so-
phisticated algorithms and software running
on state-of-the-art parallel computers. Algo-
rithmic advances can be a critical enabling
component for progress in nanoscience
modeling. New and more efficient algo-
rithms advance scientific frontiers in several
ways:

• Larger simulations can be performed.
For example, more atoms or basis func-
tions can be included in a model, in-
creasing fidelity and accuracy. Or dy-
namical models of the same size can be
run for longer physical times. Enabling
larger simulations is particularly impor-
tant in the nanosciences to allow meth-
ods at one time or length scale to extend
into the range of applicability of other,
more coarse-grained methodologies in
order to validate or pass information to
the coarser-grained methodologies.

• Physical models with more detailed sci-
ence can be simulated, increasing accu-
racy and reliability and hence confidence
that simulation results represent reality.

• With faster kernel computations, new
types of analysis become tractable. For

instance, fast linear solvers enable the
solution of nonlinear systems. Efficient
modeling of forward problems allows
for the solution of inverse problems.
Hence, faster kernel computations en-
able a sufficient number of simulations
to be performed in order to improve the
statistical sampling.

The potential benefits from new capa-
bilities in modeling in the nanosciences re-
quire continuous advances in the key algo-
rithms that underlie nanoscale computations.
This progress may come about in any num-
ber of ways. Many of the key algorithms
(fast transforms, eigensolvers, etc.) have ap-
plications in other settings, but their impact
in the nanosciences alone could justify con-
tinued development. Entirely new ap-
proaches for some of these problems are dif-
ficult to anticipate but could have tremen-
dous impact on not only the feasibility of the
computations, but also what will be learned
from the computations. For example, wave-
lets or other new bases might be able to re-
duce the complexity of some nanoscience
calculations and may expose features of the
science in new ways. An alternative ap-
proach for making progress is to specialize a
general algorithm to the precise needs of an
application. This approach is the most com-
mon way to advance the application of algo-
rithms and often allows for dramatic im-
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provements in performance. Recent progress
in linear scaling methods for electronic
structure provides one such example.

Developments in electronic structure
calculations provide a particularly telling
illustration of the enabling power of algo-
rithmic advances. First-principles DFT
methods for this problem traditionally scale
as the cube of the system size, N. This rapid
growth with system size limits applications
of these powerful techniques to systems
containing a few hundred atoms on tradi-
tional computers. More efficient cubic algo-
rithms and parallel implementations have
allowed larger systems to be simulated, but
substantial progress is still limited by the N3

complexity. Recent algorithmic progress is
removing this barrier. For system sizes of up
to a thousand electrons, ab initio plane wave
electronic structure codes using fast Fourier
transforms now effectively scale as N2logN.
Developments using local representations
are close to achieving linear scaling for very
large systems, at least in some application
domains.

A second important example comes
from molecular dynamics simulations,
where advances in fast multipole methods
have reduced the time for computing Cou-
lombic or other long-range forces from N2 to
NlogN or N. Recent innovations in time in-
tegration for molecular dynamics are ena-
bling simulations for much longer physical
times. Continued developments and ad-
vances will be needed to enable the neces-
sary simulations for complex nanoscale dy-
namics.

These types of advances generate new
challenges. The asymptotically more effi-
cient algorithms are generally more complex
than their antecedents, and in order to have
high fidelity and enough accuracy, some
may only be more efficient for very large
problems. High-quality implementations are
a significant undertaking, and parallel ver-

sions will likely require additional algo-
rithmic advances. Modern software practices
and open-source parallel libraries can have
an enormous impact in easing the develop-
ment of new functionality and then deliver-
ing that new capability to scientists in a
timely and efficient manner. More generally,
the asymptotic complexity of an algorithm is
only one of several aspects relevant to an
algorithm’s potential impact in nanoscience.
Algorithmic researchers must also consider
ease of implementation, parallelizability,
memory locality, and robustness.

In an area as diverse as nanoscience, an
enormous range of computational techniques
and algorithms have a role to play, and the
workshop was able to touch on only a subset
of them. The following areas were identified
as particularly important. Many of them are
generally applicable for a wide range of ap-
plications; however, they will be particularly
important to enabling discoveries and quan-
titative understanding in the nanosciences.

Linear Algebra in Electronic Structure
Calculations
Simulation methods based on ab initio elec-
tronic structure will unquestionably be criti-
cal in future investigations of the properties
of matter at the nanoscale. The capability of
such methods to predict structural and elec-
tronic properties without prior empirical
knowledge or experimental input makes
them very attractive. It is therefore an im-
portant priority to accelerate the develop-
ment and the deployment of fundamental
algorithms used in large-scale electronic
structure calculations.

Electronic structure calculations based
on DFT and extension to first-principles
molecular dynamics (FPMD) have tradition-
ally benefited greatly from advances in fast
algorithms. An example is the fast Fourier
transform, which essentially lies at the root
of the efficiency of the plane-wave elec-
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tronic structure method, and thus of the fea-
sibility of plane-wave-based FPMD. De-
pending on the numerical approach taken,
the solution of the Kohn-Sham equations is
either cast as an eigenvalue problem—in
which case the non-linearity due to the
Coulomb and exchange-correlation interac-
tions is included as an outer loop—or as a
constrained optimization problem—in which
case the non-linear Kohn-Sham energy
functional is directly minimized with respect
to all degrees of freedom describing the
electronic wavefunctions, with the constraint
that one-particle wavefunctions must remain
orthogonal.

Thus the development of efficient eigen-
value solvers on one hand, and of con-
strained optimization algorithms on the
other, directly impacts the efficiency of
electronic structure codes. Optimization is
discussed elsewhere in this report, but the
need for fast eigensolvers is pervasive.
Some applications require the k lowest
eigenpairs where k is large—perhaps in the
thousands. But there is also a need for codes
that compute “interior” eigenvalues (eigen-
values inside the spectrum), typically near
the Fermi level. Also in time-dependent
DFT (TDDFT), a large dense matrix is
sometimes diagonalized (in which case all
eivenvalues/vectors are computed).

Electronic structure calculations will
also likely benefit from all advances that
enhance our capability to solve PDEs nu-
merically. In particular, the development of
grid-based methods, adaptive mesh refine-
ment approaches, grid partitioning methods,
non-linear multigrid solvers, domain de-
composition methods, etc. may play an im-
portant role in future scalable Kohn-Sham
solvers. Specifically, the version of TDDFT
that uses ordinary differential equation
(ODE) schemes requires the solution of
hundreds or thousands (one for each ground
state) of systems of ODEs (actually time-
dependent Schrödinger equation) which are

coupled by the potential. Potentially enor-
mous gains are possible if specialized meth-
ods are developed for solving such systems.

A problem shared by all electronic
structure methods is that of efficiently solv-
ing the Poisson equation. Algorithms for
solving this problem are widespread and
well developed, although further progress in
the complex geometries relevant to nano-
science applications would be welcome. The
community of theorists/modelers involved in
nanoscience would benefit from better (and
publicly available) software for this prob-
lem.

Linear scaling methods and related tech-
niques avoid the eigenvalue problem alto-
gether. Although this allows for a great re-
duction in asymptotic complexity, current
methods can lack accuracy and/or be nar-
rowly applicable. A wealth of algorithms
have been proposed and explored, and the
opportunities for fruitful collaborative inter-
actions are abundant.

Monte Carlo Techniques
Monte Carlo methods are a class of stochas-
tic optimization techniques that are particu-
larly faithful to the transition probabilities
inherent in statistical mechanics or quantum
physics. This faithfulness to the underlying
physics allows them to be applied to many
problems, not just those commonly consid-
ered as optimization problems. Improve-
ments in the applicability and (especially)
the efficiency of Monte Carlo techniques
could have a big impact on several aspects
of nanoscience modeling.

Quantum Monte Carlo is currently the
most accurate method for electronic struc-
ture that can be extended to systems in the
nanoscience range. It serves as a benchmark
and a source of insight. It is capable of
highly accurate numerical solution of the
Schrödinger equation. This progress has re-
quired resolution of the “fermion sign prob-
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lem,” a challenge to computational mathe-
matics. That resolution has recently been
made in principle, but substantially more
development is needed to make it practical.

Kinetic Monte Carlo (KMC) methods
are an important class of techniques that
treat a range of atomistic and aggregate par-
ticle phenomena above that of electronic
structure. Essentially they use “Metropolis-
Hasting” stochastic dynamics, ascribing
physical time intervals to the moves. A fun-
damental question that needs mathematical
attention is the relationship of the time scale
to the form of the moves used. If this can be
solved, then KMC will be both more reliable
and much more widely applicable.

Additional important technical issues
connected with KMC include the need for
efficient scalably parallel approaches, multi-
scale methods, and efficient quantitative
methods for estimating the probabilities and
rates of rare events. In many of the applica-
tions, the a priori probability of a rate con-
trolling event is very small; appropriate im-
portance sampling or other techniques need
to be developed to make such studies practi-
cal.

Monte Carlo methods are also widely
used in statistical mechanical studies of
nanosystems. All of these variants of Monte
Carlo can be made more powerful and use-
ful by incorporating developments in com-
putational geometry and by a theory of op-
timal moves—that is, by mathematical in-
vestigation of the dependence of the spec-
trum of the Markov transition matrix upon
the form of trial moves in dynamics of the
Metropolis-Hasting. In addition, since many
nanosystems are driven more by entropy
than by energy, methods that are entropy or
free-energy friendly are badly needed: cur-
rent methodologies for free energy are usu-
ally rather awkward.

Equally important is the promise from a
recent development in an O(N) Monte Carlo

method which merits substantial additional
development. Other deep technical problems
include the need for developments in pertur-
bation methods and techniques for treating
relativistic effects.

Finally, continued advances and devel-
opment in embedding, that is, for using a
hierarchy of methods of varying accuracy
and computational complexity to treat larger
systems, are urgently needed.

Data Exploration and Visualization
Large simulations can generate copious
quantities of data. A physical scientist is of-
ten interested in exploring these large data-
sets for interesting features. This process is
difficult to automate, since often the most
important features are unexpected and they
tend to be very application specific. Such
explorations are valuable because they gen-
erally reveal deficiencies in the simulation
itself or unanticipated and interesting as-
pects of the physics. This kind of data-
driven exploring requires rich and easy-to-
use environments for visualization and data
interactivity. Good tools will hide the com-
plexity of the data management from the
user and will respond in real time to user
interactivity, even though the data analysis
may be occurring on a distant parallel ma-
chine.

Although there is considerable research
activity in this general area, there will be
significant benefit from customization to
effectively impact the research of specific
nanoscientists. On the other extreme, strate-
gies for deriving maximal information from
a limited data environment are needed, since
experiments may be difficult or expensive to
conduct. This will be critical, for example,
in getting a handle on management of un-
certainty. In both these contexts, strategies
that include experiments for the purpose of
supporting the theoretical objective are
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needed, in contrast, say, to modeling for the
purpose of explaining experiments.

Computational Geometry
Considerable geometric complexity is an
inherent aspect of many objects from the
atomistic to the nanoscale. Examples include
the potential energy isosurfaces of a polymer
and the structure of a self-assembled nano-

composite. Efficient methodologies for rep-
resenting and manipulating such geometries
can have a significant impact on the overall
performance of some computations. Com-
putational geometry is a mature area of algo-
rithmic computer science, but the specific
geometries arising in nanoscience would
benefit from specialized algorithms.

C. Optimization and Predictability

In virtually every branch of science, there is
a need for calculations to estimate the pa-
rameters of a system, to find the extremum
of an objective function such as minimum
energy or maximum entropy states of a sys-
tem, and to design and control systems.
Since mathematical models are often used to
guide experimentation and to predict or
adapt to behaviors, there is an equally strong
need to understand the errors in these mod-
els and to be able to make mathematically
sound and precise statements regarding the
accuracy and precision of the predictions.

Since all of these needs pervade science,
it is natural to ask in what way nanoscience
is special. Why, for example, cannot exist-
ing techniques be used for the models in
nanoscience? The short answer to this ques-
tion is implicit in the earlier sections of this
report: the degree of detail and dynamic
complexity including wide-ranging, non-
separable scales in both space and time
make the formulation and solution of prob-
lems in this area fundamentally more chal-
lenging than most and arguably all problems
successfully tackled to date. The payoff to
developing a new set of computational mod-
els and tools would be better understanding,
prediction, design, optimization, and control
of complex nanosystems with confidence in
the reliability of the results. Successes in this
field would almost certainly have impact on
other fields that share the complexity of a

large range of complex behavior on non-
separable temporal and spatial scales.

Optimization
Many of the problems mentioned above rely
on formulating and solving optimization
problems. For example, in order to gain a
quantitative understanding of nanosystems
at a fundamental level, it is essential to have
the capability to calculate the ground state of
the system. This can be formulated as a
minimum energy problem where the solu-
tion gives the configuration of the particles
of the system at the lowest energy, given an
energy functional. Complicated nanosystems
of interest can have millions to billions of
particles, resulting in huge optimization
problems characterized by an equally huge
number of local minima with energy levels
close to the ground state. There is no hope of
solving this problem with brute force meth-
ods. To make any headway on such prob-
lems requires careful formulation of the ob-
jective function and the constraints. For ex-
ample, progress in the protein-folding prob-
lem has been achieved by understanding that
certain sequences of amino acids in the un-
folded molecule almost always end up in a
standard form, e.g., an alpha helix. By in-
ducing the optimization path towards this
conformation, better results have been at-
tained. Constraints, based on additional
knowledge, can also be formulated to further
reduce the search space.
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Optimization methods that exploit
physical insight could have a dramatic im-
pact on efficiency. Monte Carlo methods are
discussed elsewhere in this report, but other
stochastic or deterministic optimization
methods can also be accelerated by domain
knowledge. For example, when trying to
simulate a novel material, knowledge about
the structural properties and energetics of
related materials could be used to preferen-
tially steer the computation towards prom-
ising regions of the state space. Such meth-
ods are likely to be much more efficient than
general optimization strategies, but quite
limited in their applicability.

Self-assembly is a central feature of
nanoscience. Understanding, predicting, and
controlling this process is crucial for the de-
sign and manufacture of viable nanosystems.
Clearly the subsystems involved in this pro-
cess are assembling themselves according to
some minimum energy principle. Once an
understanding of the underlying physics is
attained, optimization problems can be for-
mulated to predict the final configurations.
Since these systems are also huge and likely
to have many local minima, a careful devel-
opment of the models, the constraints, and
the algorithms will also be required here.

Given the necessity to create models that
incorporate many scales, it has been sug-
gested that a hierarchy of models be created
to span this range, i.e., a connected set of
models that capture the quantum effects
through the micromorphic effects. In this
case, the parameters at a given level should
be attainable from the next lowest level
using parameter-determining techniques.
Optimization formulations for such parame-
ter estimation problems are ubiquitous, but
constructing the correct error models and the
associated optimization problem is not obvi-
ous. Simply using least squares may not be
appropriate; more general maximum-
likelihood estimators will likely be required.

As alluded to above, the design and
control of nanosystems is vital to the even-
tual manufacture of products. The problem
here is to optimize the design to achieve a
desired characteristic or to control the proc-
ess so that a given state is reached. In these
cases, the constraints of the optimization
problem contain the hierarchy of models de-
scribing these systems. In particular, the
constraints contain coupled systems of par-
tial differential equations (PDE). There is
considerable interest in such problems in
other fields, e.g., aerodynamics, and some
efficient algorithms have been created, but
the number of levels involved in nano-
science is far higher than in other fields.

Progress has been made by understand-
ing that these coupled systems of PDEs do
not have to be satisfied at each step of the
optimization process, but only need to be
satisfied in the limit. This has resulted in an
optimized solution in a modest multiple of
the time required for one nonlinear solve.
Such approaches, however, require that the
formulation of the optimization problem in-
corporate some or all of the state variables in
addition to the control variables. Effective
optimization methods in these cases must
have more control over the PDE software
than is typically the case, e.g., gradients
and/or adjoints must be computed along
with other quantities. Thus, the formulation
of the models, the algorithms, and the soft-
ware with the ultimate goal of design and
optimization is crucial.

One can easily envision optimization
problems arising in many other aspects of
nanoscience. For example, methods for
shape optimization for determining the op-
timal geometry of both tools and products,
non-smooth optimization due to derivative
discontinuities between the models at ad-
joining levels, and discrete optimization for
particles restricted to discrete locations will
be needed. All of the developments in these
areas, as with those mentioned above,
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should be done collaboratively between
optimizers and nanoscientists.

Predictability
Although part of the predictability problem
can be addressed using optimization tech-
niques (e.g., maximum likelihood), other
statistical methodologies will be necessary
to develop a final statement of confidence in
the answers. First, however, it is important
to recognize all of the possible sources of
errors in the process. This starts with the
recognition that none of our models is exact.
And, since most of the models are based on
PDEs, these equations cannot be solved ex-
actly. There will be a combination of discre-
tization errors in the formation of the alge-
braic systems that the computer sees and
roundoff errors in the actual computation.
There are errors associated with the physical
models and errors related to parameters and
initial conditions that define these models.
Some of these errors are observational, re-
lated to field or laboratory data, and some
are numerical or modeling errors, related to
simulation data. These two types of errors
are actually of a similar form, as laboratory
errors are often the result of a simulation
needed to interpret the experiment. Further-
more, errors at one scale will be propagated
to other scales in ways that will be difficult
to track and manage.

It is important to develop methods for
determining comprehensive and inclusive
bounds on the final errors. Such methods
include sampling technologies for develop-
ing sensitivities to parameters, analytic tech-
niques for propagation of errors, and prob-
ability models for numerical or modeling
errors in simulations. The predictions of sci-
ence are not a simple forward map of an in-
put to an output in a simulation. Parameters
and input values needed in the forward
simulation are determined as an inverse

problem through statistical inference based
on measurements of outputs. Thus propaga-
tion of errors and uncertainty is mapped
both ways, from input to output in direct
simulation and from output to input in pa-
rameter determination. Statistical inference
is the tool that connects the two. This infer-
ence can be conveniently formulated in a
Bayesian framework, so that the inverse
problem acquires a probabilistic expression,
and disparate data collected from different
sources can then be used to reduce uncer-
tainty and to aid in the predictions. The ul-
timate goal of such an approach is the de-
termination of error bars or confidence in-
tervals associated with a prediction, based
on all sources (data and simulation) on
which the prediction is based. A necessary
intermediate goal is the association of error
bars or other measures of quantified uncer-
tainty with simulations. In analogy to error
bars, which indicate the precision of an ex-
perimental measurement, error bars should
be used to quantify the precision and accu-
racy of a simulation.

Software
Elsewhere in this report, the issue of soft-
ware has been raised. The need for well-
designed, object-oriented, open-source
codes that can be used on a variety of plat-
forms is essential to the overall success of
the nanoscale initiative. There are simply
too many modules necessary for simulation
and analysis than can be developed in one
place. Modular optimization and statistical
algorithms and software need to be devel-
oped in such a framework to provide tools
for scientific understanding leading to ad-
vanced engineering and analysis tools with
guaranteed accuracy for design and manu-
facture.
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DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is
believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of
the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal re-
sponsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, proc-
ess, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its en-
dorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the
University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof or The Regents of the University of California.
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