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Abstract: The increasing gap between processor and memory performance has 
lead to new architectural models for memory- intensive applications.  In this 
paper, we explore the performance of a set of memory-intensive benchmarks and 
use them to compare the performance of conventional cache-based 
microprocessors to a mixed logic and DRAM processor called VIRAM.  The 
benchmarks are based on problem statements, rather than specific 
implementations, and in each case we explore the fundamental hardware 
requirements of the problem, as well as alternative algorithms and data structures 
that can help expose fine-grained parallelism or simplify memory access patterns. 
The benchmarks are characterized by their memory access patterns, their basic 
control structures, and the ratio of computation to memory operation.   

1. Introduction 

Many high performance applications run well below the peak arithmetic performance of the 
underlying machine, and the inefficiency is often attributed in part to inadequate memory 
systems on individual processors.  This problem worsens every year as processor performance 
improves by about 60% each year while DRAM latency improves by only 7%.  In conventional 
processors, this problem is addressed by increasing the size of on-chip SRAM caches and by 
exploiting dynamically discovered instruction level parallelism to mask off-chip latencies.  An 
alternative is to place denser DRAM memory directly on the processor die, usually called 
Processor- in-Memory (PIM) or Intelligent RAM (IRAM) designs.  The VIRAM processor under 
development at U.C. Berkeley is one example of such a system—it combines mixed logic and 
DRAM with a vector instruction set, allowing the compiler to explicitly express fine-grained data 
parallelism [Koz99,KJG+01].  Other examples of processor- in-memory designs include the 
DIVA project [HKK+99], the HTMT project [Sterling] and the Mitsubishi M32R processor 
[M32R]. 
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The goal of our project was to understand the performance of memory- intensive applications by 
studying some of the algorithmic kernels in details.  In this paper we looked at various 
characteristics of the applications, such as memory access patterns, ratio of computation to 
memory operations, and degree of control irregularity to help understand the performance 
behavior across machines.  In particular, we look at the question of whether the performance is 
actually limited by memory bandwidth or by some other feature of the architecture.  We treat 
each benchmark as a black-box function and explore several alternative algorithms to improve 
performance, focusing mainly in the vector processing features of the VIRAM architecture.   

2. VIRAM Architecture  

The VIRAM architecture extends the MIPS instruction set with vector instructions that include 
integer and floating point operations, as well as memory operations for sequential, strided, and 
indexed (scatter/gather) access patterns.  The processor has 32 vector registers, each containing 
up to 32 64-bit values.  Logically, a vector operation specifies that the operation may be 
performed on all elements of a vector register in parallel.  The current micro-architecture is 
divided into 4 64-bit lanes, so a single vector instruction is executed by the hardware 4 elements 
at a time.  In contrast, SIMD extensions like Intel MMX or SSE have vector operations whose 
length matches that of the hardware resources.  The advantages of specifying longer vector 
operation in the instruction set are: 1) it expresses parallelism between groups of elements that 
can be exploited to overlap memory operations; 2) fewer instructions may be needed to express 
the same algorithm, thereby lowering instruction bandwidth requirements; and 3) the instruction 
set need not be changed when the number of lanes changes across processor generations. 
 
The hardware resources devoted to functional units and registers may be subdivided to operate 
on 8, 16, or 32-bit data.  For example, a vector register holds 2K bits, which corresponds to 32 
64-bit elements, 64 32-bit elements, or 128 16-bit elements. Similarly, when the data with is cut 
in half, the peak execution rate of arithmetic operations doubles.  The data width (known as the 
virtual processor width) may be set by the application software and changed as different data 
types are used in the application.  VIRAM is designed to run at 200 MHz, and there are two 
integer functional units and one floating point unit.  The instruction set specification allows for 
32 and 64-bit floating point as well as 8, 16, 32, and 64-bit integer operations, but the current 
VIRAM implementation will support only 32 bit floating point and 16, 32, and 64-bit integer 
operations.  The ISA also contains fused multiply-add instructions, but they are not generated by 
the current compiler and will therefore be omitted from consideration.  The resulting peak 
performance for VIRAM is 1.6 GFLOPS for 32-bit floating point, 3.2 GOPS for 32-bit integer 
operations, and 6.4 GOPS for 16-bit integer operations.   
 
The VIRAM implementation includes a simple in-order MIPS processor with a cache and 
floating point unit, a DMA engine for off-chip access, a memory crossbar, and a vector unit, 
which is managed as a co-processor.  The estimated transistor count is over 100 million, and the 
power estimate is 2 Watts.  There are 12 MB of on-chip DRAM organized into 8 banks, and all 
of the memory is directly accessible from both scalar and vector instructions.   

3. Benchmark Applications  



Our benchmarks are chosen to stress the limits of a processor’s memory system, but they 
represent the kernels of real applications of interest in large scale scientific computing. Most of 
them are taken from the DARPA Data Intensive Systems (DIS) stressmark suite [DIS00].  In 
general, data- intensive applications are characterized by large data sets, significant data 
movement between processors and memory, and relatively low arithmetic operation counts 
relative to data access.  Many of the problems are further complicated by either irregular memory 
access patterns or irregular control structures.  These characteristics often lead to performance 
scaling problems when run in parallel and to memory bottlenecks on single processors.   

3.1 Transitive Closure  

The first benchmark is an algorithm to compute the transitive closure of a graph, and is from the 
DIS stressmark suite.  Rather than simply computing whether a path exists, the problem is to 
compute the length shortest path between all pairs of graph nodes, based on the Floyd-Warshall 
algorithm.  An important feature of this problem is that the input and output are both expressed 
as an adjacency matrix, i.e., given a graph with n vertices, the input and output are both nxn 
matrices.  Other algorithms that work on a sparse representation of the graph would have very 
different memory characteristics.  The algorithm runs in O(n3) time, and does 2*n operations per 
element.  It is similar to a matrix-vector multiplication, except that each step involves an addition 
(adding the length of two know n paths) and a comparison (to choose the minimum of the sum 
and the previously computed path length).  The original version of the code (taken from a DIS 
reference implementation) involved running through the rows of a column-major matrices, so the 
memory operations involved strided load.  Through a simple loop transformation, we 
reorganized this to use a unit-stride load.  This benchmark is memory-intensive, in the sense that 
each step performs only 2 arithmetic operations, while is does 3 loads and 1 store. 

3.2 GUPS 

The second benchmark is a simple, synthetic problem known as the GUPS benchmark, which 
measures Giga-updates-per-second.  This benchmark repeatedly reads and updates distinct, 
pseudo-random memory locations.  It reflects the kind of memory access pattern that might 
occur when inserting elements into a large hash table, or from sorting or building a histogram of 
a large data set.  Our implementation is freely available for download [Gae01].  The updates are 
simple arithmetic/logical operations, in our case adding 1 to the result of the read.  The memory 
locations are specified as indexed into a large array, and they are precomputed using a pseudo-
random number generator based on an LFSR (linear feedback shift register) whose feedback 
term is chosen to provide a maximal- length period [Koo00].  In our study, we parameterized the 
runs over three variables: number of iterations of the update loop, the size of the array in which 
updates are performed, and the width of the data type (8-, 16-, 32-, or 64-bit integer).   

The memory addresses are selected a priori, so there is no random number generation overhead 
in the inner loop.  Furthermore, since the locations are chosen to be independent of one another, 
accesses can proceed in parallel.   Each step of the GUPS algorithm performs only one addition, 
along with two memory reads, and one memory write.  The write and one of the reads are 
indexed operations (scatter/gather), and the remaining read is unit stride.  On a cache-based 
machine, the unit stride read will perform reasonably well, but the index read is essentially 
random, while the indexed write should hit in a cache.  The very low arithmetic operation count 
and poor spatial locality will make this benchmark a challenge for any memory system.   



3.3 Sparse Matrix-Vector Multiplication (SPMV) 

Sparse matrix-vector multiplication is a very common kernel in scientific simulations, and like 
the GUPS problem, is has random memory access patterns and a low number of arithmetic 
operations, in this case floating point operations. The DIS stressmarks and the NAS Parallel 
benchmarks include a Conjugate Gradient (CG) problem, for which the running time is 
dominated by a SPMV.  We have run a full implementation of CG on IRAM, but in this paper 
we discuss only the SPMV kernel, since it highlights the memory behavior of the system.   

A matrix vector multiplication is to compute a vector y = A*x, given a matrix A and vector x.  A 
sparse matrix contains mostly zero elements (a nonzero fraction below .001 is typ ical), so the 
matrix is stored in a “compressed” form by storing the nonzero values along with their indices.  
SPMV multiplies such a matrix times a dense vector (all elements are stored explicitly in x and 
y), and the vectors will be accesses using the indexes of the nonzero elements (not simply unit 
stride).  Assuming A is nxn and has m nonzeros, the total number of floating-point operations for 
SPMV is 2*m.  Each step of the algorithm requires one addition, one multiplication and at least 
three memory operations.  The exact nature and count of the memory operations depends on the 
storage format and algorithm organization.  Sparse storage schemes usually allocate contiguous 
memory only for the nonzero elements of the matrix, and sometimes for a limited number of 
zeros.  Some auxiliary index arrays are used to map each nonzero into the full matrix.  We 
briefly describe the different storage schemes used in our study, some of which are specifically 
designed for vector architectures.  

CRS format:  Compressed Row Storage (CRS) is one of the most general and widely used 
compact representations for sparse matrices.  This format stores the nonzeros of the matrix rows 
in contiguous memory locations.  Three vectors are used to represent a matrix:  one with m 
floating-point entries (val), one with the m column indices of the nonzeros (colind), and a third 
with n+1 pointers to the beginning of each row in val and colind (rowptr).  

The CRS format leads to a simple algorithm, in which a one takes a dot product of x with each 
row of A, and writes the result into y.  The reads into the x vector are indexed, so this algorithm 
has 3 loads (2 unit stride on A and 1 indexed on x) and two arithmetic operations on each step.  
There is only one store per row, which is amortized over the entire dot product and so is not 
counted.  The CRS has some disadvantages for the VIRAM-1 architecture, in addition to the 
indexed loads and stores on x, because the row length varies from row to row, and is usually not 
very long.  A dot product computation requires a reduction operation, which perform poorly for 
short vectors, because once the reduced vector fits in a register, the vector length is halved on 
each step.  Therefore, we studied some other formats and optimization techniques that can 
overcome these difficulties.   

CRS with narrow band: In this format, we attempt to mimic the effect of bandwidth reduction 
orderings, such as reverse Cuthill-McKee (RCM) [CM69,Geo71].  The advantage is that 
accessing the vector x requires a much smaller stride.  In our experiments, we modified the 
matrix generation algorithm to confine the non-zero entries to a prescribed bandwidth.  

Ellpack format: The Ellpack (or Itpack) format forces all rows to have the same length as the 
longest row by padding them with zeros.  Thus, after padding, we get a matrix of dimension nxk, 



where k is the length of the longest row (k is usually much less than n).  SPMV can then be 
effectively vectorized by expressing it as a series of operations along the columns of the new 
matrix, which have long vectors of exactly the same length.  The Ellpack format is efficient for 
matrices with the longest row close to the average row size.  Otherwise, the efficiency can be 
arbitrarily bad for matrices with general sparsity patterns, because of wasted computation and 
storage for the padded zeros.  

Segmented-sum: This representation was first proposed in [BHZ93] for the Cray PVP vector 
architecture.  The data structure is an augmented form of the CRS format.  The computational 
structure is similar to Ellpack, because we can vectorize along many rows at the same time.  In 
short, a sparse matrix is represented as a segmented vector by treating each row as a segment.  
This segmented vector is conceptually laid out as a two-dimensional array (in column-major 
order) of size s*l ~= m. The parameter l is chosen to approximate the hardware vector length so 
that the SPMV operation can be expressed in terms of vectorizable row operations.  The 
Segmented-sum is then performed bottom-up, with each ``row-sum'' of A*x stored at the 
beginning of each segment.  

The advantages of this format are that it allows long vector lengths and that the parameter l can 
be adjusted depending on the size of the hardware vector registers.  Furthermore, all the vectors 
are of the same length.  However, the existing Cray code did not show much performance 
improvement, mainly because some data structures in the inner loop are accessed with a large 
stride.  On Cray vector machines, performance is acceptable as long as the stride is not a power 
of two.  Unfortunately, such big strides can slow data accesses on the VIRAM by as much as a 
factor of four.  We therefore modified the Cray code so that the inner loop contains mostly unit 
stride data access.  

3.4 Histogram 

Computing a histogram of a set of integers is a class problem that can be used as a subroutine in 
sorting, but also occurs in an image processing problem in the DIS stressmark suite called the 
“Neighborhood” problem, which approximates the gray- level co-occurrence matrix (GLCM 
[Par97])  entropy and energy descriptors of an input image.  These approximations are computed 
through sum and difference histograms of neighboring pixel values.  Two important 
considerations govern the algorithmic choice for computing histograms—the number of buckets, 
b, in the resulting histogram, and the likelihood of duplicates in the data.  For the neighborhood 
problem, the number of bits per pixel determines the number of buckets, and collisions in the 
histogram calculation are very common, because there are typically many occurrences of some 
colors (white) in an image.   

The characteristics of the histogram problem are nearly identical to those of the GUPS 
benchmark: there is 1 arithmetic operation (an increment) per step, along two loads and one 
store.  As in SPMV, some of the memory operations will be indexed, but exactly which ones will 
depend on the algorithm.  We attempted three optimizations of the histogram calculation—the 
straightforward implementation of a histogram is not vectorizable because of the possibility of 
having duplicates in the input data array.  The first optimization (denoted as vcc hereafter) is the 
default provided by Cray's vcc compiler.  It attempts to vectorize the histogram computation by 
detecting and compensating for duplicates.  This required almost no changes to the source code 



as the compiler performed the optimization automatically.  The second method uses array 
privatization to ensure that updates to the histogram are independent: each strip of 16 data 
elements updates 16 different histogram copies (the number 16 was obtained empirically) that 
are summed at the end.  

The third technique is the most sophisticated.  It uses the sort-diff- find-diff algorithm [Math00] 
that makes use of the fact that it is relatively simple to update a histogram on a vector processor 
when the input data elements are already sorted.  It therefore sorts 64 elements (the size of a 
VIRAM register of integers) at a time and performs the histogram update.  This may seem 
counter- intuitive as histograms are usually functions in sorting codes [Zag91], but the approach 
is viable if it can be quickly implemented (without using histograms, of course) [Jan95].  Our 
strategy uses the permutations provided by the vector instruction set to implement a fast parallel 
sort in registers.  Bitonic sort [Bat68] was used because the communication requirements are 
very regular and it proved to be a good match for VIRAM's ``butterfly'' permutation instructions, 
which were designed primarily for reductions and FFTs [TY99]. 

3.5 Unstructured Mesh Adaptation 

The final benchmark is a two-dimensional unstructured mesh adaptation algorithm [OB00].  
Unstructured meshes allow automatic grid generation around highly complex geometries and 
facilitate dynamic adaptation to efficiently capture physical features of interest that evolve with 
time. The resulting simulations benefit from improved efficiency when compared to a uniform 
grid, but the adaptive unstructured remeshing is challenging for single processors.  Our 
benchmark involves a two-dimensional 2D_TAG unstructured mesh adaptation algorithm based 
on triangular elements; complete details are given for the three-dimensional procedure in [BS94]. 
Briefly, local mesh adaptation involves adding points to the existing grid in regions where some 
specified error indicator is high, and removing points from regions where the indicator is low.  
The advantage of such strategies is that relatively few mesh points need to be added/deleted at 
each refinement/coarsening step.  However, complicated logic and data structures are required to 
keep track of the mesh objects that are inserted and removed. It involves a great deal of pointer 
chasing, leading to irregular and dynamic data access patterns.  

In 2D_TAG, all edges of the unstructured mesh are first marked to indicate whether or not they 
need to be bisected, either based on geometric information or solution-driven error tolerance.  In 
this work, every edge was bisected to eliminate propagation and simplify vectorization.  The 
process of subdividing each triangular element isotropically into four smaller triangles is easily 
vectorized since there are no dependencies and the calculations are performed in a regular 
fashion.  For example, when bisecting edges, the ids of all the new edges are precomputed and 
explicitly inserted into the code instead of calculating them on the fly, allowing effective 
vectorization.  Also, mesh coarsening has not been tested at this time.  

To give an indication of how vectorization and unstructured mesh adaptation are algorithmically 
at odds, consider the event when an edge is bisected. Every vertex in the mesh has a linked list of 
pointers to all the edges that are incident upon it.  When an edge is bisected, the vertex pointers 
to the parent edge have to be updated to the newly-created child edges.  To vectorize this 
operation, the underlying code in the reference implementation had to be rewritten.  Instead of 
using a complex while loop to determine the position of the parent edge, a temporary array is 



used to copy the ids of the first edge (lets call them l1 edges) that each vertex points.  A 
vectorized operation then scans all the l1 edges and appropriately replaces those that are found.  
The next iteration then similarly stores all the l2 edges in the temporary array (from those vertices 
whose edges have not yet been replaced), and so on.  The increased level of complexity for 
performing such a simple operation is now obvious.  

Note that a similar (but much easier) strategy was implemented when adding a new pointer from 
a vertex to an edge.  By assuming that the combined array representation of all the linked lists is 
densely packed, new pointers can be inserted in the correct positions by precomputing.  This 
routine is then easily vectorized.  However, our assumption would not hold true if the 
computational mesh were coarsened; a packing phase would then be required before inserting 
new pointers.  

Before refining the triangular elements, they are colored to form independent sets, where two 
triangles have different colors if they share a vertex.  This graph coloring guarantees that the data 
structures will not be updated inconsistently within vectorized sections of the code.  It should be 
noted that a vectorized graph coloring algorithm was not developed; thus, the time to color the 
mesh is not reported.  Since only one level of mesh refinement was performed, the initial 
coloring scheme requiring eight colors was sufficient.  Note that the serial version of 2D_TAG 
does not require graph coloring.  

The data structures are then reordered by element color (and by subdivision type within each 
color).  This allows all the elements of a given color and subdivision pattern to be easily 
vectorized, since blocks of elements that have the same refinement type without any 
dependencies can safely be processed concurrently.  Recall that in the current vectorized version 
of the code, the mesh is refined isotropically; thus, all triangular elements are subdivided into 
four smaller triangles.  (In general, this 1:4 operation is respons ible for over 90% of the total 
refinement overhead).  Note that this data reordering section of the code has not yet been 
vectorized, since vectorizing data reshuffle is a difficult task.  As a result, reordering is 
responsible for over 50% of the cycles during the simulation.  Again, the serial implementation 
of 2D_TAG does not require this reordering overhead.  

Many other modifications are also required to vectorize the individual element subdivision 
routines.  First, several global variables have to be precomputed (instead of dynamic assignment 
that is used in the original serial code) to help the compiler understand that there are no 
dependencies.  We handle dependency analysis explicitly through graph coloring.  

Second, the compiler does not allow functions to be included in a vectorized code segment, and 
cannot perform inlining correctly.  Thus, all function calls (and any functions that are 
subsequently called) had to be hand unrolled.  The body of the main loop over elements for each 
subdivision type was quite large; as a result, the compiler was unable to effectively vectorize it.  
This is probably due to register spilling, and the high complexity of performing dependency and 
flow analysis for such a large loop body.  As a result, the loops needed to be reduced to small 
chunks.  The 1:4 loop body was divided into 12 separate subloops, where each subloop processes 
all the colors before proceeding to the next subloop.  It was only in this manner that the 1:4 
subdivisions could be effectively vectorized.  



3.6 Summary of Benchmark Characteristics 

The following table summarizes the key features of each of the benchmarks.  All of these 
benchmarks are memory- intensive in the following sense: the number of arithmetic or logical 
operations per step of the algorithm (Ops/step) is never more than the number of memory 
operations per step (Mem/step).  Most of them involve some amount of irregular memory access, 
indicated in the table as indexed, although in the case of SPMV and histogram, the number and 
kind of indexed memory operation differs across different versions.  Although not shown in the 
table, the algorithms also different in the degree of data-parallelism, which may limit the vector 
length on VIRAM.  For the sparse matrix algorithms, it is typically a function of the number of 
nonzeros per row, while in something like GUPS, it is the total data set size.  For histogram, 
while there may be parallelism across the data set, we cannot know that without knowing the 
data is free of duplicate elements.  Finally, we note that the mesh adaptation code is the only 
benchmark in this set with significant control irregularity, since there are several different cases 
for subdividing triangles, based on their shape.   Like histogram, mesh has some limits to 
parallelism, since triangles may shared vertices.   

 

 Data type  Memory access Data size  Total Ops Ops/step Mem/step 
 Transitive  32-bit int  unit  n2  n3  2 (min, +)  2 ld  
 GUPS  8,16,32,64-bit int  indexed + unit  2n  2n  1 (+)  2 ld, 1st 
 SPMV  32-bit float  indexed + unit  2m + 2n  2m  2 (*, +)  3 ld 
 Histogram 16,32-bit int  indexed + unit  n + b  n  1 (+)  2 ld, 1 st 
Mesh  32-bit int, float  indexed + unit  1000n  NA  NA  NA 

 

4. Simulation Results 

In the course of evaluating our benchmarks and the VIRAM simulation, we also used several 
commercial platforms, generally of the workstation or small server variety, for comparison.  
Hardware and software details of these machines are listed below:  

 Architecture  UltraSPARC IIi   MIPS R10000             Pentium III                      Pentium 4          Alpha EV6 

Make  Sun Ultra 10      SGI Origin2000          Intel Mobile                      Dell               Compaq DS10 

Clock speed     333 MHz           180 MHz                  600 MHz                       1.5 GHz            466 MHz 

L1 cache        16 KB + 16 KB  32 KB + 32 KB         None                       12 KB + 8KB      None 

L2 cache        2 MB              1 MB                     256 KB                       256 KB             256 KB 

Memory          256 MB            1 GB                     128 MB                       1 GB               512 MB 

Operating       SunOS  5.8         IRIX64  6.5              Debian GNU/Linux                      Red Hat Linux     Red Hat Linux 

system      2.2r3 Kernel 2.2.19                      7.1 Kernel 2.4.7   6.0 Kernel 2.2.19 

Compiler        Sun Workshop   MIPSpro                  Debian GNU/Linux                      Intel              Compaq 

                  6 v 1C5.2           v 7.2.1.3m               v 2.95.2                       v 5.0.1 beta       v C.6.4-005 

Compiler        cc -fast          cc -O3 -n32 -mips4      gcc -O2 -funroll_loops                      icc -X -O3 -tpp7   ccc -arch ev6 

options                       
 -TARG: 
processor=r10000   -march=pentiumpro                      -xW -unroll        -fast -tune ev6 



 
The VIRAM compiler is based on Cray’s vectorizing compiler, which is based on over 20 years 
of experience in automatic vectorization and is used on supercomputers like the Cray C90 and 
T90.  The VIRAM version has its own backend that generates a mixture of MIPS scalar 
instructions and VIRAM vector instructions.  While the vectorizer is quite sophisticated, the 
code generator has not gone through the kind of rigorous performance tuning that we would 
expect from a commercial compiler.  In particular, there are cases in which the compiler 
generates extra boundary checks and redundant loads.  The extra boundary checking mainly 
involved generating strip-mining code for loops where it was provably not necessary.  The 
redundant loads (i.e., reloading the same value to a register which had not been overwritten or 
otherwise killed) were of unknown origin; probably they represent some bug in the register 
allocation or spill handling.  The VIRAM chip is scheduled for fabrication near the end of this 
year, so numbers reported here are based on a cycle-accurate simulator of the chip.  
 

4.1 Transitive Closure  

The following graph shows the performance of the transitive closure benchmark in MOPS.  On 
all machines, the version shown uses the unit stride memory access.  Although transitive closer is 
an O(n3) algorithm on O(n2), similar in may ways to matrix multiply, the cache-based machines 
perform well below their peak performance.  This is consistent with results we have sense on 
dense matrix-vector multiplication, and demonstrates the advantage of the IRAM architecture for 
a problem with abundant parallelism and low arithmetic/memory operation ratio. 
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4.2 GUPS Benchmark 

The graph belows shows a comparison of all our machines against VIRAM-1 for the GUPS 
benchmark.  Notice that the VIRAM simulations obtain about 0.12 more GUPS than its closest 
competitor (Pentium-4), and that most machines perform their best when using 16- or 32-bit 
integers.  



To evaluate the effectiveness of the benchmarks themselves as measures of memory system 
performance, we were able to look at various statistics from the VIRAM simulation.  One salient 
characteristic of each benchmark is the fraction of memory bandwidth used compared to the 
theoretical maximum.  GUPS achieves 1.77, 2.36, 3.54, and 4.87 GB/s memory bandwidth on 
the VIRAM-1 simulator at 8-, 16-, 32-, and 64-bit data widths, respectively.  Given other 
instruction overhead, this is close to the peak memory bandwidth of 6.4 GB/s, showing that 
GUPS.   
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For the GUPS benchmark, we tidied up the compiler-generated assembly instructions for the 
inner loops by hand.  The resulting code was usually about 20--25% faster, but was 60% faster in 
the 64-bit case.  We believe that the correct approach is to use the C compiler for benchmark 
codes, and to resort to assembly language only when code generation problems significantly 
impede progress.  

As with the Transitive Closure benchmark, GUPS shows off the benefits of VIRAM for this 
problem that is truly memory-intensive, especially for 64-bit data.  This problem is much more 
challenging for both classes of machines due to the nearly random memory access pattern within 
the data vector.  None of these machines show significant scaling when the data width is 
decreased.  On IRAM, at least, one might expect the subdivision of lanes could double the 
performance as the width is halved.  This has been demonstrated for arithmetically intensive 
problems, and also for unit stride applications.  A limitation of the VIRAM microarchitecture is 
as single address generation unit per lane, so at any data width, only 4 distinct addresses can be 
generated per cycle.  This was a conscious design choice in VIRAM, because of the hardware 
costs of parallel address generation would have incurred significant costs in both chip area and 
design complexity.  

4.3 Sparse Matrix Stressmark 

In our simulations, the matrix A and the right-hand side vector y are not read from a file.  
Instead, they are generated at runtime based on the dimension n, the number of nonzero elements 
m, and a seed value for the random number generator.  All the entries of A and b are therefore 
random.  Care is taken to make A symmetric positive definite, thereby ensuring termination of 



the algorithm.  Furthermore, A is populated such that its nonzero values yield a strictly 
diagonally dominant matrix.  The detailed matrix generation algorithm can be found in the DIS 
Stressmark specification [DIS00].  

For our benchmark matrix, we set n=10000 and m=177782, i.e., there were about 18 nonzeros 
per row.  The graph below shows the peformance of SPMV using our different matrix formats 
and algorithms.  When using a bandwidth reduction ordering (simulated by the CRS-banded 
format), the x vector is still accessed using indexed loads, so address generation bandwidth is a 
problem, but because the elements are nearby, bank conflicts are not a problem.  (Other data that 
varies the bank structure of the memory system confirm this.)   The performance for the Ellpack 
format is divided into observed and effective (eff).  Recall that the Ellpack format adds a 
significant number of zeros to the matrix: the observed MFLOP rates counts operations on those 
zeros, while the effective rate does not.  The Ellpack format is best suited to vectorization, but 
for this randomly constructed DIS matrix, the additional zeros make it impractical.  Many 
matrices that occur in practice have less variance in the number of nonzeros per row, so the 
Ellpack algorithm may prove useful. For this matrix, Segmented-sum consistently delivers the 
best performance.  This is not surprising, since Segmented-sum vectorizes well and does not 
incur the overhead of Ellpack.  
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Performance on the superscalar cache-based architectures differs significantly from that on the 
VIRAM.  The Segmented-sum format is the worst among all four formats.  On the Pentium 4 
and Alpha EV6, it is more than an order of magnitude poorer than the CRS-banded format.  This 
is because in the SPMV inner- loop when using Segmented-sum, there are ``if- then-else'' tests for 
detecting each segment's boundary, which severely limits the utilization of the floating-point 
pipeline.  The vector architectures, such as the Cray PVP and VIRAM, usually have vector mask 
instructions that can execute conditional statements very efficiently.  The CRS-banded format 
(simulating the use of a bandwidth reduction ordering) is always better than CRS.  This is 
because the source vector is accessed with much better spatial locality, leading to better cache 
line utilization. We notice a surprisingly low performance for Ellpack on the Pentium 4 and EV6, 



even when observed performance is used.  Ellpack performs more stores than the other version, 
which partially explains this data, although the drop relative to other formats is higher than we 
would expect.  

Comparisons with the VIRAM runtimes also demonstrate that the performance of the 
Segmented-sum and Ellpack formats are always much worse than that for the VIRAM.  The CRS 
and CRS-banded formats exhibit better performance on the two newer machines with much 
higher clock rates, Pentium 4 and Alpha EV6; but they are much worse on the UltraSPARC IIi 
and MIPS R10000.  

4.4 Histogram Benchmark 

Our performance data for the histogram problem varies the number of buckets in the histogram 
(which is expressed as log base 2, namely the bit depth in an image).   
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This impacts the size of the histogram and hence, computation time.  We present two different 
timings for the sort-based optimization method, one that work for data in this image processin 
problem, where the pixels are always less than 16bits, and another for data that is upt ot 32-bits 
wide.  When the narrower width, we can exploit the fact that vector operations on “shorts” are 
usually twice the speed of vector operations on “ints” on VIRAM.  We also present results on 
our five other comparable architectures.  

Results show that on the VIRAM-1, the sort-based and privatization optimization methods 
consistently give the best performance over the range of bit depths.  It also demonstrates the 
improvements that can be obtained when the algorithm is tailored to shorter bit depths.  The Cray 
default compiler optimization performs poorly primarily because of the presence of many 
duplicates.  The code to compensate for duplicates essentially executes in scalar mode and thus 
degrades performance.  Note that, unlike all the other results, the vcc optimization improved 
performance as the bit depth increased due to fewer duplicates in the sum and difference data 



arrays.  The privatization code suffers because it needs to sum up the histogram copies at the end 
and so requires more operations as the size of the histogram increases.  

On superscalar cache-based machines, duplicates are not much of an issue.  In fact, they may 
register a cache hit when updated a second or third time.  We therefore see excellent timings for 
the histogram computation on these machines without any special optimizations.  For larger 
histograms that do not fit entirely in cache, VIRAM's performance compares well with the faster 
microprocessors.  The VIRAM logarithm routine vectorized well and provided excellent 
performance resulting in low overall execution times.  However, this was only an issue for the 
largest bit depth (largest histogram).  

4.5 Unstructured Mesh Adaptation 

The computational mesh used for our experiments consisted of 4802 triangular elements, 2500 
vertices, and 7301 edges.  Only one level of isotropic refinement was performed that increased 
the mesh to 19208 elements, 9801 vertices, and 29008 edges.  A large fraction of 2D_TAG has 
been successfully vectorized, and the results below show that, in general, the simulated runtimes 
are significantly lower than on cache-based systems.  
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This performance gain is due to several reasons.  Since mesh adaptation has irregular and 
dynamic data structures, these relatively small cache sizes are insufficient to hold the working 
set, and as a result must go off-chip to access main memory.  The on-chip DRAM of the VIRAM 
greatly improves the bandwidth and latency characteristics of memory.  In addition, more than 
77% of the operations are vectorized, enabling VIRAM to take advantage of multiple vector 
functional units which allow up to eight parallel 32-bit arithmetic operations and load/stores per 
cycle.  Finally, there are many conditional branches within the subdivision phase of 2D_TAG.  
VIRAM handles these by processing each branch separately using bit masks.  However, the 
cache-based systems use speculative branch predictions, with the penalty for branch 
mispredictions growing with deeper pipelines and wider issue rates.  Since branching in 
2D_TAG is quite unpredictable, it reduces the effectiveness of speculative prediction.  



Notice that there is little performance degradation when reducing the number of vector lanes 
from four to two.  Since 2D_TAG mostly performs indexed addressing and VIRAM can generate 
a maximum of four independent addresses per cycle, it cannot use all eight functional units (for 
32-bit operations) in a cycle.  However, there is more than a 40% slowdown between four lanes 
and one lane since fewer vector operations are performed with the narrow one lane 
configuration.  This is also seen in the memory bandwidth to/from the vector units, which 
decreases with fewer vector lanes.  Finally, increasing the number of subbanks to four in the 
simulation does not have a dramatic impact. This ind icates that memory-bank conflicts are a 
significant bottleneck for our dynamic adaptation code.  

4.6 Summarizing VIRAM Results 

One of our underlying questions in this work was what would prove to be the limiting factor in 
these memory- intensive benchmarks.  The following two graphs give some indication of this.  
The first summarizes the MOPS rate achieved on each of the benchmarks using the best 
algorithm on VIRAM.  (We include the observed performance of Ellpack in addition to 
segmented scan for SPMV, because we believe Ellpack may be of practical interest for other 
matrices.)   

It is interesting to note that the GUPS and histogram applications are nearly identical in their 
memory behavior and in their arithmetic operations; the difference in running time is entirely due 
to the lack of parallelism in the specification of histogram (duplicates must be preserved) and the 
large number of duplicates that occur in the particular dataset.  Thus, histogram is entirely 
limited by lack of fine-grained parallelism for this data set, not by memory system performance. 

 

 

 

 

 

 

 

 

 

 

In terms of actual memory bandwidth limitations, we see that both transitive and GUPS are near 
the peak VIRAM bandwidth of 6.4 GB/s.   None of the other applications appear to be limited by 
memory bandwidth per se.  Instead, because all of these involved indexed operations on data less 
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than 64-bits wide, all of them are probably limited in part by address generation bandwidth.  In 
addition, there are some limits to the fine-grained parallelism in all of these applications, which 
may appear as masked operations which waste processing resources, short vector lengths, or 
unnecessary computation.   

 

 

 

 

 

 

 

 

 

 

5. Conclusions and Future Work 

Our experience with these memory- intensive benchmarks suggest that VIRAM-1 is significantly 
faster than the cache-based machines for problems that are limited only by DRAM bandwidth 
and latency.  Because IRAM achieves its high performance through parallelism, rather than 
clock rate, the advantages are even larger if one is interested in building a energy efficient 
system for scientific computation: compare hundreds of Watts for a Pentium based processing 
node, compared with 2 Watts for VIRAM.    

The dependence on fine-grained data parallelism also limits the VIRAM advantage when the 
problem does not exhibit these characteristics.  Although the histogram and mesh adaptation 
problem are both parallelizable, the potential for data sharing even within the vector operations 
limits performance.  The need to statically specify parallelism also requires algorithms that are 
highly regular.  In SPMV this lead to data structure padding, and in both mesh adaptation and 
histogram there was some level of sorting to group uniform data elements together.   

The complexity of vectorizing implicitly parallel C codes so that they may be run efficiently on a 
vector architecture like VIRAM remains high in the sense that while certain codes yield quickly 
to vectorization techniques, it can be quite challenging for many others.  As a result, a 
conscientious programmer cannot expect the compiler to do a satisfactory job when performance 
is critical, simply because some instruction sequences are not generated by the compiler (and 
their non-vectorized alternatives are quite a bit more costly). However, the Cray compiler 
technology for VIRAM does a better job of vectorization than existing workstation competitors, 
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e.g., the Intel C compiler for the Pentium III and Pentium 4. Our experience on VIRAM has been 
that typical codes yield 20% better performance with a small amount of human attention to the 
generated assembly code output from the compiler, but this figure varies wildly depending on the 
algorithm and the data structures used.  More hand-optimizing of generated assembly code may 
be required, depending on progress made on the compiler.   

Moreover, the memory subsystem interfaces for vector instructions (indexed and variable-stride 
loads/stores, in addition to the usual unit-stride operations) make VIRAM assembly language 
programming much simpler and more flexibly than the Intel MMX/SSE extensions.  A caveat is 
that indexed and variable stride operations are very costly in terms of address generation and 
conflict resolution, which becomes especially noticeable for narrow data types.  Codes that 
significantly depend on these capabilities may find tremendous performance improvements when 
they are reorganized to use unit stride; data structures optimized to support unit stride may need 
to be substituted for more traditional data structures in such codes.  

In our work so far, we have concentrated on comparing a simulated VIRAM system with modern 
workstation-class machines, although VIRAM is designed for hand-held, low power devices.  
Comparisons with other processor- in-memory chips and with stream computation machines such 
as Stanford's Imagine chip will help place our performance results in better perspective.  In 
addition, this study has explored the performance of computations that fit on a single chip 
VIRAM, without addressing the problems that arise when either the data set size or the 
computational demands are too large for a single chip.  The DIVA effort at ISI is exploring the 
space of multiprocessor PIM systems.  Short of building a multiprocessor VIRAM system, we 
believe that insight into these performance issues can be gained by combining the kind of 
parallel benchmarking results they have published [HKK+99] with our own detailed single 
processor numbers.  Finally, of course, it will be indispensable to re-run our benchmarks on the 
real VIRAM hardware once the system is available.   
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