Water Resources Data Montana Water Year 2003 ## **Volume 1. Hudson Bay and Upper Missouri River Basins** Water-Data Report MT-03-1 Statement of cooperation with the State of Montana and other agencies ## **U.S. Department of the Interior** Gale A. Norton, Secretary ## **U.S. Geological Survey** Charles G. Groat, Director 2004 U.S. Geological Survey 3162 Bozeman Avenue Helena, Montana 59601 406-457-5900 Information about the USGS, Montana District is available on the Internet at http://mt.water.usgs.gov Information about all USGS reports and products is available by calling 1-888-ASK-USGS or on the Internet via the World Wide Web at http://www.usgs.gov/ Additional earth science information is available by accessing the USGS home page at http://www.usgs.gov/ #### **PREFACE** In the act that established the U.S. Geological Survey more than a century ago, the agency was charged by Congress with the responsibility for "...classification of the public lands, and examination of the geologic structure, mineral resources, and products of the national domain." This charge was simple recognition of the principle that factual information is essential to sound development and management decisions involving natural resources. In keeping with this principle, the Water Resources Division of the Survey publishes annually, by district, hydrologic records for water resources thought to be of particular usefulness to the public and to the scientific community. This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey, who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the collection, processing, and tabulation of the data: Donald A. Bischoff, Hydrologic Technician Bruce M. Bochy, Hydrologic Technician Craig L. Bowers, Hydrologic Technician Tyrel F. Brandt, Hydrologic Technician Rodney R. Caldwell, Hydrologist Thomas E. Cleasby, Hydrologist DeAnn M. Dutton, Hydrologic Technician James R. Finley, Hydrologic Technician Kari L. Finley, Hydrologic Technician James L. Fisher, Hydrologic Technician John J. French, Supervisory Hydrologic Technician Cynthia J. Harksen, Technical Editor Terry L. Heinert, Hydrologic Technician Kurt C. Jenewein, Scientific Illustrator Arthur W. Johnson, Hydrologic Technician Philip L. Karper, Hydrologic Technician Stacy M. Kinsey, Hydrologic Technician John H. Lambing, Hydrologist Robert G. Legare, Hydrologic Technician Stephen V. Lynn, Supervisory Hydrologic Technician Norman A. Midtlyng, Hydrologic Technician Evonne S. Mitton, Computer Assistant Timothy J. Morgan, Hydrologic Technician Steven W. Nichols, Hydrologic Technician Virginia L. Redstone, Hydrologic Technician virginia L. Redstone, Trydrologic Techniciai Kevin L. Sattler, Hydrologic Technician Todd C. Schmitt, Hydrologic Technician Ronald R. Shields, Scientist Emeritus Andrew A. Skerda, Hydrologic Technician William G. Stotts, Hydrologic Technician LaVerne G. Sultz, Hydrologic Technician Wayne A. Tice Greg R. Trunkle, Hydrologic Technician Peter R. Wright, Hydrologist This report is one of a series issued State by State under the general direction of R.M. Hirsch, Associate Director for Water. This report was prepared by the U.S. Geological Survey in cooperation with the State of Montana and with other agencies, under the supervision of R.E. Davis, District Chief, and W.J. Carswell, Jr., Regional Hydrologist, Central Region. ## REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. | 1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE March 26, 2004 | Annual, 1 Oct 2002 | | |---|--|--|---| | 4. TITLE AND SUBTITLE | , | <u> </u> | FUNDING NUMBERS | | Water Resources Data, Mont
Volume 1. Hudson Bay and | | is | | | 6. AUTHOR(S) W.R. Berkas, M.K. White, P | .B. Ladd, F.A. Bailey, and I | K.A. Dodge | | | 7. PERFORMING ORGANIZATION NAME | (S) AND ADDRESS(ES) | 8.1 | PERFORMING ORGANIZATION | | U.S. Geological Survey, Wat
3162 Bozeman Avenue
Helena, MT 59601 | er Resources Division | | REPORT NUMBER USGS-WDR-MT-03-1 | | 9. SPONSORING / MONITORING AGENCY | Y NAME(S) AND ADDRESS(ES) | 10. | SPONSORING / MONITORING | | U.S. Geological Survey, Wat
3162 Bozeman Avenue
Helena, MT 59601 | er Resources Division | | AGENCY REPORT NUMBER USGS-WDR-MT-03-1 | | 11. SUPPLEMENTARY NOTES | | | | | Prepared in cooperation with | the State of Montana and w | ith other agencies. | | | 12a. DISTRIBUTION / AVAILABILITY ST | | | b. DISTRIBUTION CODE | | This report may be purchased
National Technical Informati
Springfield, VA 22161 | | | No restriction on distribution | | and water quality of streams;
volume contains discharge re
reservoirs and content for 5 sr
7 ground-water wells. Additi
sites were collected but are no | stage, contents, and water quecords for 132 streamflow-gamaller reservoirs; and water-tonal water year 2003 data control published in this report. These data represent part | nality of lakes and reservoirs; aging stations; stage or content quality records for 66 streams ollected at crest-stage gage are these data are stored within the of the National Water Data | t of records of stage, discharge, and water levels in wells. This nt records for 5 lakes and large flow stations (34 ungaged), and and miscellaneous-measurement to District office files in Helena a System operated by the U.S. | | 14. SUBJECT TERMS | | | 15. NUMBER OF PAGES | | *Montana, *Hydrologic data, | *Surface water, *Ground w | ater, *Water quality, Flow rat | te, 407 | | Gaging stations, Lakes, Rese Sampling sites, Water levels, | | ediments, Water temperature | PS, 16. PRICE CODE | | 17. SECURITY CLASSIFICATION OF REPORT Unclassified | 18. SECURITY CLASSIFICATION
OF THIS PAGE | 19. SECURITY CLASSIFICATION
OF ABSTRACT | 20. LIMITATION OF ABSTRACT | | YON 5540 01 200 5500 | | • | C: 1 1E 200 (B 2.00) | ## **CONTENTS** | | Pag | |--|-----| | Preface | ii | | Reports documentation page | i | | List of surface-water and ground-water stations, in downstream order, for which records are published in this volume | vi | | Introduction | | | Cooperation | | | General hydrologic setting | | | Hydrologic-monitoring activity | | | Summary of hydrologic conditions | | | Temperature and Precipitation | | | Surface water | | | Streamflow | | | Water quality | | | Ground water | 1. | | Ground-water levels | 13 | | Explanation of the records | 1: | | Downstream order and station number. | 1: | | Numbering system for wells and miscellaneous sites | | | Special networks and programs | 1 | | Explanation of stage- and water-discharge records | 1' | | Data collection and computation | 1′ | | Data presentation | | | • | | | Station manuscript | | | Data table of daily mean values | | | Statistics of monthly mean data | | | Summary statistics | | | Identifying estimated daily discharge | | | Accuracy of field data and computed results | 2 | | Other data records available | | | Publications | | | Explanation of precipitation records | | | Data collection and computation | | | Data presentation | | | Explanation of water-quality records | 2 | | Collection and examination of data | 2 | | Water analysis | 2. | | Surface-water-quality records | 2 | | Classification of records | 2 | | Accuracy of the records | 2 | | Arrangement of records | 2 | | On-site measurements and sample collection | 2 | | Water temperature | 2: | | Sediment | 2 | | Laboratory measurements | 2 | | Data presentation | 2 | | Remark codes | 2 | | Water-quality control data | 2 | | Blank samples | 2 | | Reference samples | 2 | | Replicate samples | 2 | | Spike samples. 28 Publications 28 Explanation of ground-water-level records. 28 Site identification numbers. 28 Site identification numbers. 28 Data collection and computation. 28 Mater-level tables. 29 Hydrographs. 29 Ground-water-quality data. 29 Data collection and computation. 29 Laboratory measurements 31 Publications . 31 Access to USGS water data. 31 Definition of terms. 32 Definition of terms. 31 Definition of terms. 32 Definition of terms. 33 Definition of terms. 34 35 Definition of terms. 34 Definition of terms. 34 Definition of terms. 35 Definition of
terms. 35 Definition of terms. 34 Definition of terms. 35 Defini | | Page | |--|---|------| | Publications 28 Explanation of ground-water-level records 28 Size identification numbers 28 Data collection and computation 28 Data presentation 29 Water-level tables 29 Hydrographs 29 Hydrographs 29 Hydrographs 29 Ground-water-quality data 29 Data collection and computation 29 Laboratory measurements 39 Laboratory measurements 31 Publications 31 Access to USGS water data 31 Definition of terms 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniq | Spike samples | 28 | | Site identification numbers | | | | Data collection and computation | Explanation of ground-water-level records | 28 | | Data presentation | Site identification numbers | 28 | | Water-level tables | Data collection and computation | 28 | | Hydrographs | Data presentation | 28 | | Ground-water-quality data | Water-level tables | 29 | | Data collection and computation | Hydrographs | 29 | | Laboratory measurements | Ground-water-quality data | 29 | | Publications Access to USGS water data | Data collection and computation | 29 | | Access to USGS water data | Laboratory measurements | 31 | | Definition of terms. 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey. 45 Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations. 49 Station records, surface water and water quality. 107 Index. 391 ILLUSTRATIONS Figure 1. Map showing general geographic features of Montana. 2 Streamflow data for water year 2003 compared to long-term data at selected streamflow-gaging stations, Montana. 3 Annual departure from mean annual discharge at two streamflow-gaging stations on unregulated streams in Montana. 9 4 System for numbering wells and miscellaneous sites (latitude and longitude). 15 5 System for numbering wells and miscellaneous sites (township and range). 16 6-8 Maps showing location of: 6 Streamflow-gaging and selected reservoir stations in Montana and adjacent areas, water year 2003. 24 8 Ground-water observation wells in Montana and adjacent areas, water year 2003. 30 9 Schematic diagrams showing diversion from St. Mary River in Part 5 to Milk River in Part 6. 113 10-12 Schematic diagrams showing diversions and storage in: 10 Sun River Basin. 239 11 Lodge Creek Basin. 317 12 Battle Creek and Frenchman River Basins. 329 11 Lodge Creek Basin. 310 24 Percentage-of-normal water content of mountain snowpack in Montana, 2003. 36 Comparisons of instantaneous peak discharge for water year 2003 with instantaneous peak discharge for period of record at selected stations in Montana. 4 Comparisons of minimum daily mean discharge for water year 2003 with minimum daily mean discharge for period of record at selected stations in Montana. 4 Comparisons of minimum daily mean discharge for water year 2003 with instantaneous peak discharge for period of record at selected stations in Montana. 10 Statistical summaries of selected water-quality measurements for long-term water-quality stations in Montana for water year 2003 and the period of record through water year 2003 for selected major reservoirs in Montana for water year 2003 and the period of record thr | Publications | 31 | | Techniques of Water-Resources Investigations of the U.S. Geological Survey | Access to USGS water data | 31 | | Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations | Definition of terms | 31 | | Station records, surface water and water quality | Techniques of Water-Resources Investigations of the U.S. Geological Survey | 45 | | ILLUSTRATIONS Figure 1. Map showing general geographic features of Montana. 2. Streamflow data for water year 2003 compared to long-term data at selected streamflow-gaging stations, Montana. 3. Annual departure from mean annual discharge at two streamflow-gaging stations on unregulated streams in Montana. 4. System for numbering wells and miscellaneous sites (latitude and longitude). 5. System for numbering wells and miscellaneous sites (township and range). 6. Maps showing location of: 6 Streamflow-gaging and selected reservoir stations in Montana and adjacent areas, water year 2003. 7. Surface-water-quality stations in Montana and adjacent areas, water year 2003. 9. Schematic diagram showing diversion from St. Mary River in Part 5 to Milk River in Part 6. 113 10-12. Schematic diagrams showing diversions and storage in: 10. Sun River Basin. 239 11. Lodge Creek Basin. 239 12. Battle Creek and Frenchman River Basins. 239 TABLES Table 1. Precipitation and departure from normal, in inches, and percentage of normal, Montana, water year 2003. 6 2. Percentage-of-normal water content of mountain snowpack in Montana, 2003. 6 3. Comparisons of instantaneous peak discharge for water year 2003 with instantaneous peak discharge for period of record at selected stations in Montana. 10. 4. Comparisons of minimum daily mean discharge for period of record at selected stations in Montana. 11. S. Percentage-of-normal water content of mountain snowpack in Montana, 2003. 6 Statistical summaries of selected water-quality measurements for long-term water-quality stations in Montana for water year 2003 and the period of record through water year 2003 for selected major reservoirs in Montana for water year 2003 and the period of record through water year 2002 metal water-quality stations in Montana for water-supply Paper numbers and parts for water-quality stations, 1940-74. 11. Water-Supply Paper numbers and parts for water-quality stations, 1940-74. 12. Water-Supply Paper numbers and parts for water-quality | Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations | 49 | | Figure 1. Map showing general geographic features of Montana | Station records, surface water and water quality. | 107 | | Figure 1. Map showing general geographic features of Montana | Index | 391 | | 2. Streamflow data for water year 2003 compared to long-term data at selected streamflow-gaging stations, Montana | ILLUSTRATIONS | | | 2. Streamflow data for water year 2003 compared to long-term data at selected streamflow-gaging stations, Montana | Figure 1. Man showing general geographic features of
Montana | 3 | | 3. Annual departure from mean annual discharge at two streamflow-gaging stations on unregulated streams in Montana | 2. Streamflow data for water year 2003 compared to long-term data at selected streamflow-gaging stations, | | | 4. System for numbering wells and miscellaneous sites (latitude and longitude) | 3. Annual departure from mean annual discharge at two streamflow-gaging stations on unregulated streams | | | 5. System for numbering wells and miscellaneous sites (township and range) | | | | 6-8. Maps showing location of: 6 Streamflow-gaging and selected reservoir stations in Montana and adjacent areas, water year 2003 | | | | 6 Streamflow-gaging and selected reservoir stations in Montana and adjacent areas, water year 2003 | | 10 | | 7. Surface-water-quality stations in Montana and adjacent areas, water year 2003 | | 18 | | 8. Ground-water observation wells in Montana, water year 2003 | · · · · · · · · · · · · · · · · · · · | | | 9. Schematic diagram showing diversion from St. Mary River in Part 5 to Milk River in Part 6 | | | | 10-12. Schematic diagrams showing diversions and storage in: 10. Sun River Basin | | | | 10. Sun River Basin | | 113 | | 11. Lodge Creek Basin | | 230 | | TABLES Table 1. Precipitation and departure from normal, in inches, and percentage of normal, Montana, water year 2003 | | | | Table 1. Precipitation and departure from normal, in inches, and percentage of normal, Montana, water year 2003 | e e e e e e e e e e e e e e e e e e e | | | Table 1. Precipitation and departure from normal, in inches, and percentage of normal, Montana, water year 2003 | 12. Dattie Creek and Prenchinan River Dashis | 323 | | 2. Percentage-of-normal water content of mountain snowpack in Montana, 2003 | TABLES | | | of record at selected stations in Montana | | | | period of record at selected stations in Montana | | | | 5. Percentage-of-normal storage, by month, during water year 2003 for selected major reservoirs in Montana | | 11 | | 6. Statistical summaries of selected water-quality measurements for long-term water-quality stations in Montana for water year 2003 and the period of record through water year 2002 | | | | 7. Water-Supply Paper numbers and parts for surface-water stations, 1899-1970 | 6. Statistical summaries of selected water-quality measurements for long-term water-quality stations in Montana | | | 8. Water-Supply Paper numbers and parts for water-quality stations, 1947-70 | | | | 9. Water-Supply Paper numbers and parts for ground-water stations, 1940-74 | | | | 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations | | | | | | | | | | 49 | [Letter after station name designates types of data: (d) discharge, (c) chemical, (b) biological, (m) microbiological, (t) water temperature, (s) sediment, (e) elevations or contents] | | Station | Dogo | |--|-------------------|------------| | HUDSON BAY RIVER BASIN | number | Page | | SASKATCHEWAN RIVER BASIN Old Man River: | | | | St. Mary River: | | | | Swiftcurrent Creek above Swiftcurrent Lake, at Many Glacier (d) | 05014300 | 107 | | Swiftcurrent Creek at Many Glacier (d) | 05014500 | 108 | | Lake Sherburne at Sherburne (e) | 05015500 | 109 | | Swiftcurrent Creek at Sherburne (ds) | | 110 | | St. Mary River near Babb (d) | | 112 | | St. Mary Canal at Intake, near Babb (d) | 05018000 | 114 | | St. Mary Canal at St. Mary Crossing, near Babb (d) | | 115 | | St. Mary River at international boundary (d) | 03020300 | 116 | | RED ROCK RIVER BASIN | | | | Red Rock Creek above Lakes, near Lakeview (d) | 06006000 | 118 | | Red Rock River below Lima Reservoir, near Monida (d) | | 119 | | Clark Canyon Reservoir near Grant (e) | 06015300 | 120 | | Beaverhead River (continuation of Red Rock River): | | | | Beaverhead River at Barretts (d) | 06016000 | 121 | | Beaverhead River at Dillon (d) | | 123 | | Beaverhead River near Twin Bridges (dcts) | 06018500 | 124 | | RUBY RIVER BASIN | 06010500 | 120 | | Ruby River above reservoir, near Alder (d) | | 128 | | Ruby River below reservoir, near Alder (d) | | 129 | | BIG HOLE RIVER BASIN Big Hole River below Big Lake Creek, at Wisdom (dt) | 06024450 | 130 | | Big Hole River below Mudd Creek, near Wisdom (d) | 06024430 | 133 | | Big Hole River near Melrose (dt) | 06025500 | 134 | | Big Hole River near Glen (d) | | 137 | | Jefferson River (continuation of Beaverhead River): | | | | Jefferson River near Twin Bridges (d) | 06026500 | 138 | | BOULDER RIVER BASIN | | | | Boulder River above Kleinsmith Gulch, near Basin (cs) | | 139 | | Well 08N06W25AABB01(c) | | 140 | | Well 08N05W30BBCD01 (c) | | 141 | | Well 08N06W25ADAC02 (c) | | 142 | | Well 08N06W25ADAC01 (c) | 462500112172301 | 143
144 | | Basin Creek below Buckeye Mine near logging road, near Basin (cs) | 462347112180401 | 145 | | Unnamed Tributary to Grub Creek, SS No. 4, near Rimini (cs) | 462501112173501 | 146 | | Unnamed Tributary to Grub Creek, SS No. 5, near Rimini (cs) | . 462458112173201 | 148 | | Unnamed Tributary to Grub Creek at mouth, SS No. 6, near Rimini (cs) | | 150 | | Grub Creek above mouth of Unnamed Tributary, near Rimini (cs) | | 152 | | Jack Creek above Bullion Mine tributary, near Basin (cs) | | 153 | | Bullion Mine adit near Basin (cs) | | 154 | | Bullion Mine tributary at mouth, near Basin (cs) | 462153112181701 | 155 | | Jack Creek at mouth, near Basin (cs) | | 156 | | Basin Creek at Basin (cs) | | 157
158 | | Crystal Mine adit near Basin (cs) | | 159 | | Uncle Sam Gulch at mouth, near Basin (cs) | | 160 | | Cataract Creek at Basin (cs) | | 161 | | Boulder River below Little Galena Gulch, near Basin (cs) | 06032400 | 162 | | Boulder River near Boulder (d) | | 163 | | Jefferson River near Three Forks (dcts) | | 164 | | MADISON RIVER BASIN | | | | Firehole River near West Yellowstone (dt) | | 168 | | Gibbon River at Madison Junction (dt) | | 171 | | Madison River near West Yellowstone (d) | | 174 | | Madison River below Hebgen Lake, near Grayling (d) | | 175
176 | | madison Kivei at Kiloy Kanon, near Cameron (u) | | 1/0 | | | Station | | |--|----------------------|------------| | | number | Page | | MISSOURI RIVER BASINContinued | | | | GALLATIN RIVER BASIN Medican Piver shove Powerplant, poor Med Histor (d) | 06040800 | 177 | | Madison River above Powerplant, near McAllister (d) | | 177 | | Gallatin River near Gallatin Gateway (d) | 06043500 | 181 | | East Gallatin River below Bridger Creek, near Bozeman (d) | | 182 | | Gallatin River at Logan (dcts) | 06052500 | 183 | | Missouri River at Toston (dcts) | 06054500 | 187 | | Canyon Ferry Lake near Helena (e) | 06058500 | 191 | | Prickly Pear Creek near Clancy (cs) | 06061500 | 192 | | TENMILE CREEK BASIN Well 08N06W24DDCD02 (c) | 462522112172402 | 194 | | Well 08N06W24DDCD02 (c) | | 195 | | Tenmile Creek above Monitor Creek, near Rimini (c) | 462720112165101 | 196 | | Monitor Creek SS 12, near Rimini (c) | 462542112173101 | 198 | | Monitor Creek at mouth, near Rimini (c) | 462721112164801 | 199 | | Ruby Creek RC2A, above Scott Reservoir, near Rimini (c) | | 201 | | Banner Creek at bridge, 0.5 mile above City diversion, near Rimini (c) | 46265/112143501 | 202 | | Poison Creek at mouth, near Rimini (cs) | 462838112143901 | 204
206 | | Beaver Creek tributary No. 2 near Rimini (cs) | 462758112144101 | 208 | | Tenmile Creek below Spring Creek, at Rimini (cs) | 462922112145401 | 210 | | Moores Spring Creek at mouth, near Rimini (cs) | 462932112145801 | 212 | | Minnehaha Creek below Armstrong Mine, near Rimini (cs) | 462917112165601 | 214 | | Beattrice Mine tributary at mouth, near Rimini (cs) | 462918112170801 | 216 | | Minnehaha Creek above City Diversion, near Rimini (cs) | 463023112153701 | 218 | | Tenmile Creek near Rimini (d) | 06062500 | 220 | | Tenmile Creek at Tenmile Water Treatment Plant, near Rimini (cs) | 00062730 | 221
222 | | Tenmile Creek near Helena (cs) | 06063000 | 223 | | Sevenmile Creek at mouth near Helena (cs) | | 224 | | Tenmile Creek at Green Meadow Drive, at Helena (cs) | | 225 | | Missouri River below Hauser Dam, near Helena (d) | 06065500 | 226 | | Missouri River below Holter Dam, near Wolf Creek (dt) | | 227 | | Little Prickly Pear Creek at Wolf Creek (d) | | 230 | | Dearborn River near Craig (dcts) | 06073500 | 231 | | Smith River below Eagle Creek, near Fort Logan (dt) | 00077200 | 235
238 | | SUN RIVER BASIN | 00076200 | 230 | | Sun River at Simms (d) | 06085800 | 240 | | Muddy Creek: | | | | Muddy Creek near Vaughn (dcs) | 06088300 | 241 | | Muddy Creek at Vaughn (dcs) | 06088500 | 243 | | Sun River near Vaughn (dcts) | | 246 | | Missouri River near Great Falls (d) | 06090300 | 251 | | Lake Creek near Power (d) | 06090650 | 252 | | Missouri River at Fort Benton (d). | | 253 | | MARIAS RIVER BASIN | | | | Two Medicine River below South Fork, near Browning (d) | | 254 | | Badger Creek below Four Horns Canal, near Browning (d) | 06093200 | 255 | | Cut Bank Creek near Browning (d) | 06098500 | 257 | | Cut Bank Creek at Cut Bank (d) | | 258
260 | | Marias River near Shelby (d) | | 262 | | Marias River near Loma (d) | | 263 | | Teton River below South Fork, near Choteau (dcs) | | 264 | | Teton River near Dutton (dcs) | 06108000 | 266 | | Teton River at Loma (dcts) | 06108800 | 268 | | Missouri River at Virgelle (d) | 06109500 | 272 | | Judith River near mouth, near Winifred (dcts) | | 273 | | Missouri River near Landusky (ds) | 06115200 | 276
279 | | Armells Creek near Landusky (d) | 001132/U
06115300 | 219 | | Rock Creek near Landusky (d) | | 281 | | · · · · · · · · · · · · · · · · · · · | | | | Statio | on | | |---|------------|------------| | numb | er | Page | | MISSOURI RIVER BASINContinued MARIAS RIVER BASINContinued | | | | Fort Peck Lake: | | | | MUSSELSHELL RIVER
BASIN | | | | Musselshell River near Martinsdale (d) | 500 | 282 | | Musselshell River at Harlowton (d) | | 283 | | Musselshell River above Mud Creek, near Shawmut (d) | | 285 | | Musselshell River near Lavina (d) | | 286 | | Musselshell River near Roundup (d) |)00
)00 | 287
288 | | Willow Creek above Linga Reservoir, hear Roundup (d) | | 289 | | Musselshell River at Musselshell (d) | | 290 | | Musselshell River at Mosby (dcts) | | 291 | | Hell Creek near Jordan (d) | | 295 | | BIG DRY CREEK BASIN | | | | Big Dry Creek near Van Norman (d) |)00 | 296 | | Nelson Creek near Van Norman (d) | | 297 | | Fort Peck Lake at Fort Peck (e) | | 298
299 | | MILK RIVER BASIN | 100 | 299 | | South Fork Milk River near Babb (d) | 200 | 303 | | Milk River at western crossing of international boundary (d) | 000 | 304 | | North Fork Milk River above St. Mary Canal, near Browning (d) | 500 | 305 | | North Milk River near international boundary (d) |)00 | 306 | | Milk River at Milk River, Alberta (d) | 500 | 307 | | Verdigris Coulee near the mouth, near Milk River, Alberta (d) | 100 | 309 | | Milk River at eastern crossing of international boundary (d) | 100 | 310 | | Big Sandy Creek at reservation boundary, near Rocky Boy (d) | 100 | 311 | | Big Sandy Creek near Havre (d) | 500 | 312 | | Beaver Creek at reservation boundary, near Rocky Boy (d) | 900 | 313 | | Milk River at Havre (d) | 500 | 314 | | Clear Creek near Chinook (d) | 100 | 316 | | Lodge Creek: | | 210 | | Altawan Reservoir near Govenlock, Saskatchewan (e) | 260 | 318 | | Spangler Ditch near Govenlock, Saskatchewan (d) | 270
250 | 319
320 | | Middle Creek below Middle Creek Reservoir, near Govenlock, Saskatchewan (d) | | 320 | | Middle Creek near Govenlock, Saskatchewan (d) | | 322 | | Middle Creek above Lodge Creek, near Govenlock, Saskatchewan (d) | | 323 | | Lodge Creek below McRae Čreek, at international boundary (d) | 900 | 324 | | Battle Creek: | | | | Gaff Ditch near Merryflat, Saskatchewan (d) |)50
500 | | | Cypress Lake west inflow canal near West Plains, Saskatchewan (d) | | 327
328 | | Cypress Lake west inflow canal drain near Oxarat, Saskatchewan (d) | | 329 | | Vidora Ditch near Consul, Saskatchewan (d) | | 330 | | Richardson Ditch near Consul, Saskatchewan (d) | | 331 | | McKinnon Ditch near Consul, Saskatchewan (d) | | 332 | | Nashlyn Canal near Consul, Saskatchewan (d) | | 333 | | Battle Creek at international boundary (d) | | 334 | | Battle Creek near Chinook (d) | | 335 | | Milk River near Harlem (d) | .00 | 336 | | Peoples Creek near Hays (d) | 100 | 338 | | Little Peoples Creek near Hays (dcs) | 110 | 339 | | Peoples Creek below Kuhr Coulee, near Dodson (dcs) | 550 | 341 | | Milk River near Dodson (d) |)30 | 343 | | Milk River at Cree Crossing, near Saco (d) | 000 | 344 | | Belanger Creek (head of Frenchman River) | *00 | 245 | | Belanger Creek diversion canal near Vidora, Saskatchewan (d) | JUU | 345 | | Cypress Lake: Cypress Lake east outflow canal near Vidora, Saskatchewan (d) | 500 | 346 | | Of proof Dake out outfor outfill four victors, buskutchewan (d) | | 2 10 | | Station | | |---|------| | number | Page | | MISSOURI RIVER BASINContinued | | | MILK RIVER BASINContinued | | | Frenchman River: | | | Eastend Reservoir: | | | Eastend Canal at Eastend, Saskatchewan (d) | 347 | | Huff Lake: | | | Huff Lake pumping canal near Val Marie, Saskatchewan (d) | 348 | | Huff Lake gravity canal near Val Marie, Saskatchewan (d) | 349 | | Newton Lake: | | | Newton Lake Main Canal near Val Marie, Saskatchewan (d) | 350 | | Frenchman River at international boundary (d) | 351 | | Reservoirs in Frenchman River basin in Saskatchewan (e) | 352 | | Milk River at Juneberg Bridge, near Saco (d) | 354 | | Beaver Creek: | | | Beaver Creek below Guston Coulee, near Saco (d) | 355 | | ROCK CREEK BASIN | | | Rock Creek below Horse Creek, near international boundary (d) | 356 | | Milk River at Tampico (d) | 358 | | Milk River at Nashua (dcts) | 359 | | Missouri River near Wolf Point (dcts) | 362 | | REDWATER RIVER BASIN | | | Redwater River at Circle (d) | 366 | | POPLAR RIVER BASIN | | | Poplar River at international boundary (dcs) | 368 | | East Poplar River at international boundary (dcs) | | | Poplar River near Poplar (dcts) | 375 | | BIĠ MUDDY CREEK BASIŃ | | | Big Muddy Creek near Antelope (d)06183450 | 379 | | Big Muddy Creek diversion canal near Medicine Lake (d) | 380 | | Lake Creek near Dagmar (d) | | | Cottonwood Creek near Dagmar (d) | | | Sand Creek near Dagmar (d) | 383 | | Missouri River near Culbertson (dcts) | 384 | ## INTRODUCTION The U.S. Geological Survey (USGS), in cooperation with other Federal, State, and local agencies and Tribal governments, collects a large amount of data pertaining to the water resources of Montana each water year. These data, accumulated over many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually, by water year, in this report series entitled, "Water Resources Data, Montana." This report, volumes 1 and 2, includes records on both surface and ground water from stations within the State and selected stations near the Montana border in adjacent states and Canada. Specifically, it contains (1) discharge records for 246 streamflow-gaging stations; (2) stage or content records for 9 lakes and large reservoirs and content records for 31 smaller reservoirs; (3) water-quality records for 143 stream sites (45 ungaged), 7 ground-water wells, and 3 lake sites; (4) water-level records for 53 observation wells; and (5) precipitation and water-quality records for 2 atmospheric-deposition stations Volume 1 contains discharge records for 132 streamflow-gaging stations; stage or content records for 5 lakes and large reservoirs and content records for 5 smaller reservoirs; and water-quality records for 66 stream sites (34 ungaged) and 7 wells. Volume 2 contains discharge records for 114 streamflow-gaging stations; stage or content records for 4 lakes and large reservoirs and content records for 26 smaller reservoirs; water-quality records for 77 stream sites (11 ungaged) and 3 lake sites; water-level records for 53 observation wells; and precipitation and water-quality records for 2 atmospheric-deposition stations. Additional data for water year 2003 were collected at crest-stage gage and miscellaneous-measurement sites but are not published in this report. These data are stored within files in the USGS office in Helena and are available on request. The locations of streamflow-gaging stations are shown later in the report in figure 6, locations of water-quality stations are shown in figure 7, and locations of observation wells are shown in figure 8. Records of discharge or stage of streams and contents or stage of lakes and reservoirs were first published in a series of USGS Water-Supply Papers entitled "Surface Water Supply of the United States." These Water-Supply Papers were published in an annual series for water years 1899-1960 and then in a 5-year series for water years 1961-65 and 1966-70. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of Water-Supply Papers entitled "Quality of Surface Waters of the United States." Records of groundwater levels were published from 1935 to 1974 in a series of Water-Supply Papers entitled "Ground-Water Levels in the United States." Water-Supply Papers may be reviewed in the libraries of the principal cities of the United States or may be purchased from USGS, Branch of Information Services, Box 25286, Denver, Colorado 80225. For water years 1961 through 1970, streamflow data were published by the USGS in annual reports for each State. Water-quality records for water years 1964 through 1970 were similarly published either in separate reports or in conjunction with streamflow records. Beginning with the 1971 water year, data for streamflow, water quality, and ground water are published as a single or multi-volume USGS annual water-data report for each State. These reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report MT-03-1." These water-data reports are for sale, in paper copy or on microfiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161, telephone 1-800-553-6847. Water-resources information for Montana and the rest of the Nation are available through the World Wide Web as part of the USGS National Water-Information System (NWIS) at: http://waterdata.usgs.gov/nwis For Montana, this information includes surface-water, water-quality, and ground-water data. Surface-water information available from the USGS includes provisional real-time streamflow data for stations with satellite telemetry, provisional daily data for the previous 18 months, and daily data for the period of record at each site. Daily, monthly, and annual streamflow statistics also are available as well as annual peak streamflow data. In addition, flood-frequency and basin-characteristics information for selected sites in Montana is available at: http://mt.water.usgs.gov/freq Water-quality information available from the USGS includes provisional real-time specific-conductance and water-temperature data for selected sites with satellite telemetry and historical water-quality data for many surface-and ground-water sites in Montana. Ground-water information available from the USGS includes descriptive information for wells, springs, and test holes such as location (latitude and longitude), well depth, site use, water levels, and aquifer. Additional information, including current prices,
for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone at (406) 457-5900 or 1-888-ASK-USGS. 1 #### **COOPERATION** The USGS has had cooperative agreements with other agencies and organizations for the systematic collection of streamflow records since 1906, for water-quality records since 1946, and for ground-water levels since 1964. In water year 2003, agencies and organizations that supported data collection through cooperative agreements with the USGS are: ### Federal Agencies Bonneville Power Administration Bureau of Indian Affairs Bureau of Land Management Bureau of Reclamation Department of State, International Joint Commission National Park Service U.S. Army Corps of Engineers U.S.D.A. Forest Service U.S. Environmental Protection Agency U.S. Fish and Wildlife Service U.S. Geological Survey #### **Tribal Governments** **Blackfeet Nation** Chippewa Cree Tribe of the Rocky Boy's Reservation Confederated Salish and Kootenai Tribes of the Flathead Reservation Crow Tribe Fort Peck Tribes Northern Chevenne Tribe ## State Agencies Montana Bureau of Mines and Geology Montana Department of Environmental Quality Montana Department of Fish, Wildlife and Parks Montana Department of Natural Resources and Conservation Montana Department of Transportation Montana School of Technology of the University of Montana Wyoming Department of Environmental Quality Wyoming State Engineer Federal Energy Regulatory Commission Licensees Avista Corporation Pacific Power and Light #### Local Agencies Cascade County Conservation District City of Bozeman East Bench Irrigation District Lewis and Clark County Water Quality Protection Lower Musselshell Conservation District Lower Yellowstone Irrigation Project North Powell Conservation District **Teton County Conservation District** ### GENERAL HYDROLOGIC SETTING Montana, with an area of about 147,200 square miles (mi²), is the fourth largest State in the Union (fig. 1). The major drainage basins in the State are the Hudson Bay basin (465 mi²) and the upper Missouri River basin (120,700 mi²) east of the Continental Divide, and the upper Columbia River basin (26,000 mi²) west of the divide. The Hudson Bay and upper Missouri River basins drain about 82 percent of the State and provide slightly less than 50 percent of the total streamflow. The upper Columbia River basin drains about 18 percent of the State and provides about 50 percent of the total streamflow. The western and southwestern parts of the State are in the Northern and Middle Rocky Mountains physiographic provinces. The central and eastern parts are in the Great Plains physiographic province. The Northern and Middle Rocky Mountains are characterized by rugged mountains and intermontane valleys, whereas the Great Plains consists of rolling to dissected plains and small mountain ranges. Altitude in Montana ranges from more than 12,000 feet in the mountains northeast of Yellowstone National Park to about 1,850 feet where the Kootenai River flows from the northwestern part of the State. Climate and hydrologic conditions differ substantially across the State. Annual precipitation varies considerably throughout the basins, from about 100-120 inches along the Continental Divide in Glacier National Park to about 6-12 inches in parts of eastern and south-central Montana and in some of the western intermontane valleys. The diverse precipitation patterns in Montana result from the effects of geographic and topographic features on warm, moist air from either the Gulf of Mexico or the Pacific Ocean. In mountainous areas, much of the annual precipitation falls as snow during the winter. Although much of the annual precipitation on the Great Plains also falls as snow during the winter, intense rainstorms during the summer can add substantial quantities of precipitation to the annual totals in a short time. In areas east of the mountains, generally one-half of the annual precipitation falls from May through July. Peak runoff from the basins can result from spring snowmelt, snowmelt mixed with rain, or intense rainfall. In addition, backwater from ice jams commonly creates flooding in many rivers throughout the State. The record flood of April 1952 in northeastern Montana is an example of spring snowmelt flooding. The flood in May 1981 in west-central Montana is an example of flooding caused by snowmelt mixed with rain. The floods of June 1964, June 1975, and May 1978 are examples of flooding predominantly caused by intense rainfall. Flash floods, although restricted in areal extent, are at times numerous in the north-central and eastern parts of the State. In many areas, peak runoff is stored in reservoirs to decrease flooding. The stored water is used for irrigation (the predominant consumptive use of water statewide), power generation, and recreation. Figure 1. General geographic features of Montana. Surface water throughout the State generally is suitable for most uses except in parts of eastern Montana where, because of large concentrations of dissolved solids and some individual constituents, recommended standards or criteria for domestic and agricultural uses may be exceeded. The ionic composition of surface water is largely influenced by geology and can vary markedly between the western mountains and the eastern plains. In the western mountains, where the rocks generally are older and resistant to weathering, the streamflow characteristically is a calcium bicarbonate type. The dissolved-solids concentrations in mountain streams seldom exceed 500 milligrams per liter (mg/L), even during base-flow conditions. In the eastern plains, where sedimentary rocks are less resistant to weathering, streamflow commonly is a sodium sulfate type, with dissolved-solids concentrations ranging from about 100 to 8,000 mg/L. In the northeastern part of the State, streamflow typically is a sodium bicarbonate type. Snowmelt and intense rainstorms sometimes produce large quantities of runoff that can dilute concentrations of dissolved solids, modify chemical compositions, and increase concentrations of suspended sediment. The availability and quality of ground water in Montana are largely controlled by the hydraulic and geochemical properties of diverse rocks and sediments. In western Montana, ground water is available from alluvium along streams and rivers, from basin fill in intermontane valleys, from glacial deposits, and from fractured consolidated rocks. In eastern Montana, ground water is available from alluvial deposits along larger rivers and streams and from sedimentary Outside of the alluvial valleys, ground-water rocks. availability in sedimentary rock is variable. Throughout Montana, alluvial deposits along streams generally are the most productive aquifers, and yields to wells along the major streams may be several hundred gallons per minute. Alluvium can be readily recharged by precipitation, by streams during periods of high flow, and by applied irrigation water. The particle size distribution and sorting of glacial deposits largely determines their potential for yielding water to wells. Where coarse, well-sorted outwash gravels are present, the potential for developing large-yield wells is good, whereas yields from wells completed in poorly sorted glacial till generally are limited to a few gallons per minute. Many fractured consolidated-rock formations yield water but, because of the complexity of the geology, fractured rocks might not yield water in all areas. Wells completed in consolidated rocks generally yield only a few gallons per minute. However, several hundred gallons per minute can be obtained from highly fractured or cavernous formations in some areas. The well depth required to reach a given aquifer varies with location. ### HYDROLOGIC-MONITORING ACTIVITY Nine streamflow-gaging stations were established or reestablished during water year 2003 to aid in the assessment of the State's water resources. The stations are: 06036905 Firehole River near West Yellowstone 06037100 Gibbon River at Madison Junction, Yellowstone National Park 06119600 Musselshell River near Martinsdale 06190540 Boiling River at Mammoth, Yellowstone National Park 06327500 Yellowstone River at Glendive 12323700 Mill Creek at Opportunity 12323720 Willow Creek at Opportunity 12323850 Lost Creek near Galen 12351200 Bitterroot River near Florence Three water-quality stations were reestablished in the Tongue River and Rosebud Creek basins near the end of water year 2003 to supplement information in an area of potential coal-bed methane development. These stations are: 06295113 Rosebud Creek at reservation boundary, near Kirby 06307600 Hanging Woman Creek near Birney 06307740 Otter Creek at Ashland Nine miscellaneous surface-water-quality stations were established during water year 2003 to obtain data to characterize the baseline water-quality in an area with the potential for development of coal-bed methane resources. These stations are: 445729106573501 Ash Creek above mouth, near Acme, Wyo. 445832106551401 Youngs Creek above mouth, near Decker 450047106514201 Squirrel Creek above mouth, at Decker 450137106595101 Youngs Creek near reservation boundary, near Decker 450124106585101 Tanner Creek near mouth, near Decker 451302106583201 Rosebud Creek near Battlefield, near Kirby 451618106590001 Indian Creek at mouth, near Kirby 452800107001101 Thompson Creek near Busby 453021107000001 Davis Creek near Busby Water-quality sampling continued at surface-water sites and ground-water wells that were established in 2002 in the headwaters of Tenmile Creek and Basin Creek near a repository (Luttrell Repository) where mine wastes and mill tailings from nearby abandoned-mine sites are being placed for long-term storage. The sampling of streams and ground water in the area surrounding the repository is intended to detect potential migration of contaminants from the disposal area. Ten surface-water
stations and seven ground-water wells were sampled for this study during water year 2003. Seven new surface-water stations were established for the study in 2003: 462442112174601 Grub Creek above confluence with unnamed tributary, near Rimini 462442112174602 Unnamed Tributary to Grub Creek at mouth, SS No. 6, near Rimini 462458112173201 Unnamed Tributary to Grub Creek, SS No. 5, near Rimini 462542112173101 Monitor Creek, SS No. 12 (below SS No. 1), near Rimini 462544112162001 Ruby Creek, RC2A, above Scott Reservoir, near Rimini 462720112165101 Tenmile Creek above confluence with Monitor Creek, near Rimini 462721112164801 Monitor Creek at mouth, near Rimini Three new water-quality stations were established in the Clark Fork basin to gain additional information on metal sources. These stations are: 12323700 Mill Creek at Opportunity 12323720 Willow Creek at Opportunity 12323850 Lost Creek near Galen Water-quality sampling was reestablished at station 12335500, Nevada Creek above Reservoir, near Helmville, to supplement data collected at several other sites in the Blackfoot River basin for the purpose of watershed characterization. Five streamflow-gaging stations were discontinued during or at the end of water year 2003: 06139800 West Fork Beaver Creek near Rocky Boy 06139850 Beaver Creek above Elk Creek, near Rocky Boy 06212500 Red Lodge Creek below Cooney Reservoir, near Boyd 12323248 Silver Bow Creek above Wastewater Plant outflow, at Butte 12346500 Skalkaho Creek near Hamilton Twenty-one water-quality stations were discontinued: 06032300 High Ore Creek near Basin 06038800 Madison River at Kirby Ranch, near Cameron 06043500 Gallatin River near Gallatin Gateway 06048700 East Gallatin River below Bridge Creek, near Bozeman 06071300 Little Prickly Pear Creek at Wolf Creek 06154410 Little Peoples Creek near Hays 06191500 Yellowstone River at Corwin Springs 462508112173601 Unnamed Tributary of Grub Creek, SS No. 3, near Rimini 462505112173601 Unnamed Tributary of Grub Creek, SS No. 2, near Rimini 462503112173001 Unnamed Tributary of Grub Creek, SS No. 4A, near Rimini 462442112174901 Grub Creek near Rimini 462520112165601 Ruby Creek No. 1A above Scott Reservoir, near Rimini 462527112175201 Tenmile Creek at headwaters, near Rimini 462529112173301 Monitor Creek, SS No. 8, near Rimini 462531112172901 Monitor Creek, SS MS, near Rimini 462535112173601 Monitor Creek, SS No. 11, near Rimini 462537112173301 Monitor Creek, SS No. 10, near Rimini 462538112163301 Ruby Creek No. 2 above Scott Reservoir, near Rimini 462541112172001 Monitor Creek Adit near Rimini 462542112173301 Monitor Creek, 5-MC, near Rimini 462549112161401 Ruby Creek No. 3 above Scott Reservoir, near Rimini ## SUMMARY OF HYDROLOGIC CONDITIONS ## **Temperature and Precipitation** For most of Montana, temperatures from October through January were warmer than normal. During the end of February, below-average temperatures moved across Montana, but during March, temperatures generally rose to above normal. The above-normal temperatures in March caused valley and prairie snow to melt in some areas resulting in high flows in some of the streams. Early in May, record low temperatures were recorded in southwest Montana, but by the end of the month, record high temperatures were noted across the State. Temperatures generally remained above average across the State for the rest of the water year. Precipitation, departure from normal precipitation, and percentage of normal precipitation for seven climatological divisions of the State are listed in table 1. The precipitation data listed in table 1 are averages of the total monthly precipitation for the National Weather Service (NWS) reporting stations within each of the climatological divisions. No attempt was made to area-weight the division totals. As shown in table 1, for October 2002 through March 2003, precipitation ranged from 69 percent of normal in the southwestern division to 109 percent of normal in the southeastern division. For April 2003 through September 2003, precipitation ranged from 71 percent of normal in the western and southwestern divisions to 86 percent of normal in the northeastern division. Total precipitation for water year 2003 varied across the State from 70 percent of normal in southwestern Montana to 89 percent of normal in southeastern Montana. Overall, all climatological divisions received lessthan-normal precipitation through water year 2003. Total average precipitation amounts for climatological division for water year 2003 ranged from 10.45 inches for the north-central division to 15.45 inches for the western division. Most NWS stations in Montana measure precipitation in valley or non-mountainous locations. Data for precipitation falling as snow in the mountainous parts of the State during the winter are published by the U.S. Department of Agriculture, Natural Resources Conservation Service, in the report "Montana Water Supply Outlook." Percentages of normal water content of snowpack, by drainage basin, are listed in table 2. By March 1, 2003, the percentage-of-normal water content of mountain snowpack ranged from 54 to 94 percent. By April 1, the percentage-of-normal water content increased in most basins from the previous month and ranged from 34 to 115 percent. By May 1, the percentage-of-normal water content ranged from 0 to 99 percent. Overall, the percentage-of-normal water content in snowpack on May 1, 2003, was below normal in the Sun-Teton-Marias (62 percent), Milk (0 percent) and Powder (69 percent) River basins, and near normal (± 20 percent of average) in the remaining basins. **Table 1.** Precipitation and departure from normal, in inches, and percentage of normal, Montana, water year 2003¹ | | October 2 | 2002 through N | March 2003 | April th | rough Septem | nber 2003 | Water year 2003 | | | | |--|--|---|----------------------------|--|---|----------------------------|--|---|-------------------------|--| | Climatological
division
(number of stations) | Total
monthly
precipi-
tation | Departure
from
normal,
1971-2000 | Percentage
of
normal | Total
monthly
precipi-
tation | Departure
from
normal,
1971-2000 | Percentage
of
normal | Total
average
precipi-
tation | Departure
from
normal,
1971-2000 | Percentage
of normal | | | Western (45) | 8.59 | -1.74 | 83 | 6.86 | -2.77 | 71 | 15.45 | -4.51 | 77 | | | Southwestern (22) | 3.75 | -1.71 | 69 | 7.40 | -3.10 | 71 | 11.15 | -4.81 | 70 | | | North Central (42) | 2.56 | -0.75 | 77 | 7.89 | -2.13 | 79 | 10.45 | -2.88 | 78 | | | Central (35) | 3.72 | -0.52 | 88 | 8.60 | -2.20 | 80 | 12.32 | -2.72 | 82 | | | South Central (26) | 5.41 | -0.02 | 100 | 7.78 | -3.24 | 70 | 13.19 | -3.26 | 79 | | | Northeastern (27) | 2.29 | -0.35 | 87 | 8.77 | -1.52 | 86 | 11.06 | -1.87 | 86 | | | Southeastern (22) | 3.87 | 0.32 | 109 | 8.57 | -1.89 | 82 | 12.44 | -1.57 | 89 | | ¹Data from U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, 2003, Climatological Data, Montana, v. 105, no. 10 through v. 106, no. 8; Gina Loss, National Oceanic and Atmospheric Administration, written commun., 2003. Normals of precipitation are determined from the base period 1971-2000. **Table 2.** Percentage-of-normal water content of mountain snowpack in Montana, 2003¹ | Drainage basin | Jan. 1 | Feb. 1 | Mar. 1 | Apr. 1 | May 1 | |--------------------------|--------|-------------|--------|--------|-------| | | | Hudson Bay | y | | | | St. Mary | 70 | 73 | 71 | 88 | 82 | | | | Missouri | | | | | Upper Missouri | 62 | 74 | 86 | 93 | 95 | | Sun-Teton-Marias | 46 | 52 | 54 | 82 | 62 | | Smith-Judith-Musselshell | 68 | 74 | 94 | 98 | 94 | | Milk | 9 | 17 | 66 | 34 | 0 | | Upper Yellowstone | 69 | 85 | 92 | 103 | 96 | | Bighorn | 70 | 77 | 87 | 103 | 86 | | Tongue | 77 | 79 | 94 | 115 | 94 | | Powder | 67 | 66 | 82 | 104 | 69 | | | | Upper Colum | bia | | | | Kootenai | 73 | 71 | 69 | 86 | 86 | | Clark Fork | 60 | 72 | 79 | 100 | 99 | | Flathead | 59 | 69 | 69 | 86 | 81 | ¹Data from J. L. Ward, U.S. Department of Agriculture, Natural Resources Conservation Service, written commun., 2003. Normals for snowpack are determined from the base period 1971-2000. #### **SURFACE WATER** #### **Streamflow** Streamflow data for water year 2003 can be compared to long-term data for water years 1971-2000 and maximum and minimum monthly mean discharge for the period of record at seven streamflow-gaging stations (fig. 2). Compared to the mean annual discharge (average of the annual mean discharges) for water years 1971-2000, the annual mean discharge shown in figure 2 during water year 2003 was 78 percent of average at Middle Fork Flathead River near West Glacier (station 12358500); 90 percent of average at Clark Fork at St. Regis (station 12354500); 66 percent of average at Missouri River at Toston (station 06054500); 86 percent of average at Yellowstone River at Corwin Springs (station 06191500); 75 percent of average at Yellowstone River at Billings (station 06214500); 64 percent of average at Rock Creek below Horse Creek, near international boundary (station 06169500); and 71 percent of average at Marias River near Shelby (station 06099500). The annual departure from mean annual discharge at two streamflow-gaging stations on unregulated streams is shown in figure 3. At both Yellowstone River at Corwin Springs and Middle Fork Flathead River near West Glacier, the annual mean discharge during water year 2003 was less than the long-term average for the period of record. Extraordinary flooding did not occur in any major river basins in Montana during water year 2003. However, flash
flooding did occur in March in several small, ungaged drainages during a rapid snowmelt period across the northern and eastern plains and in west-central intermontane valleys in Montana. A comparison of peak discharges at 25 selected streamflow-gaging stations for water year 2003 to peak discharges for the period of record is presented in table 3. Record peak discharges were not recorded for any of these stations, although peak discharge could not be determined at three of the stations in water year 2003. The recurrence intervals for peaks during water year 2003 were less than 2 years at 10 stations, 2-5 years at 10 stations, 5-10 years at 1 station, and 20-50 years at 1 station. A comparison of minimum daily mean discharge for 24 selected long-term streamflow-gaging stations for water year 2003 to minimum daily mean discharge for the period of record is presented in table 4. Record minimum daily mean discharges were not recorded during water year 2003, although below-normal streamflow conditions prevailed through the year in Montana. Minimum daily discharges had recurrence intervals of less than 2 years at 10 sites, recurrence intervals of 2-5 years at 8 sites, recurrence intervals of 5-10 years at 5 sites, and recurrence intervals of 20-50 years at 1 site. The percentage-of-normal storage (based on water years 1971-2000), by month, for major reservoirs is listed in table 5. At the end of water year 2003, storage was normal or within 20 percent of normal in five of the six major reservoirs used to supply water primarily for hydroelectric-power generation, but storage was well below normal in all four reservoirs used to supply water primarily for irrigation. Figure 2. Streamflow data for water year 2003 compared to long-term data at selected streamflow-gaging stations, Montana. Figure 3. Annual departure from mean annual discharge at two streamflow-gaging stations on unregulated streams in Montana. **Table 3.** Comparisons of instantaneous peak discharge for water year 2003 with instantaneous peak discharge for period of record at selected stations in Montana [Symbols: <, less than; --, not determined; *, outside period of record] | Station | | Drainage | | eak discharge
nter year 200 | * | Peak discharge,
period of record
through water year 2002 | | | |----------|--|---------------------------|---------|--------------------------------|-----------------------------|--|-----------------------------|--| | number | Station name | area
(square
miles) | Date | Cubic feet
per
second | Recurrence interval (years) | Date | Cubic feet
per
second | | | 05014500 | Swiftcurrent Creek at Many Glacier | 30.9 | 05/27 | 1,180 | 2-5 | 06/08/64 | 6,700 | | | 05017500 | St. Mary River near Babb | 276 | 05/31 | 2,960 | <2 | 06/09/64 | 16,500 | | | 06025500 | Big Hole River near Melrose | 2,476 | 05/31 | 9,520 | 2-5 | 06/10/72 | 14,300 | | | 06054500 | Missouri River at Toston | 14,669 | 06/02 | 20,200 | 2-5 | 06/12/97 | 34,000 | | | 06089000 | Sun River near Vaughn | 1,854 | 05/27 | 3,620 | <2 | 06/09/64 | 53,500 | | | 06099500 | Marias River near Shelby | 3,242 | 03/15 | 4,180 | <2 | 06/09/64 | 241,000 | | | 06115200 | Missouri River near Landusky | 40,987 | 03/16 | unknown | | 06/03/53 | 137,000 | | | 06120500 | Musselshell River at Harlowton | 1,125 | 04/27 | 411 | <2 | 06/20/75 | 7,270 | | | 06154400 | Peoples Creek near Hays | 220 | 03/14 | 391 | 2-5 | 06/08/72 | 8,460 | | | 06174500 | Milk River at Nashua | 22,332 | 03/25 | 4,760 | <2 | 04/18/52 | 45,300 | | | 06181000 | Poplar River near Poplar | 3,174 | unknown | unknown | | 04/06/54 | 37,400 | | | 06191500 | Yellowstone River at Corwin Springs | 2,623 | 06/01 | 23,800 | 5-10 | 06/10/96
06/06/97 | 32,200
32,200 | | | 06200000 | Boulder River at Big Timber | 523 | 05/30 | 5,290 | 2-5 | 06/05/97 | 9,940 | | | 06214500 | Yellowstone River at Billings | 11,795 | 06/02 | 46,500 | 2-5 | 06/12/97 | 82,000 | | | 06289000 | Little Bighorn River at State Line, near Wyola | 193 | 05/31 | 1,460 | 2-5 | 06/03/44 | 2,730 | | | 06308500 | Tongue River at Miles City | 5,397 | 03/15 | 4,000 | 2-5 | 06/15/62 | 13,300 | | | 06329500 | Yellowstone River near Sidney | 69,103 | 06/05 | 49,100 | <2 | 06/21/21 | 159,000 | | | 12301300 | Tobacco River near Eureka | 440 | 05/30 | 908 | <2 | 05/13/91 | 3,180 | | | 12304500 | Yaak River near Troy | 766 | 05/26 | 3,440 | <2 | 05/17/97
* 05/54 | 12,600
*13,400 | | | 12332000 | Middle Fork Rock Creek near Philipsburg | 123 | 05/31 | 1,670 | 20-50 | 06/16/74 | 1,680 | | | 12335500 | Nevada Creek above Reservoir, near Helmville | 116 | unknown | unknown | | 06/02/53 | 1,800 | | | 12340000 | Blackfoot River near Bonner | 2,290 | 05/30 | 8,100 | <2 | 06/10/64 | 19,200 | | | 12354500 | Clark Fork at St. Regis | 10,709 | 06/02 | 44,300 | 2-5 | 05/24/48
05/18/97 | 68,900
68,900 | | | 12358500 | Middle Fork Flathead River near West Glacier | 1,128 | 05/26 | 19,800 | <2 | 06/09/64 | 140,000 | | | 12370000 | Swan River near Bigfork | 671 | 06/02 | 5,290 | 2-5 | 06/20/74 | 8,890 | | **Table 4.** Comparisons of minimum daily mean discharge for water year 2003 to minimum daily mean discharge for period of record at selected stations in Montana [Symbol: <, less than] | Station | | Drainage
area | Minimu | ım daily mean o
water year 200 | Minimum daily mean
discharge,
period of record
through water year 2002 | | | |----------|--|-------------------|--------|-----------------------------------|---|-------------|-----------------------------| | number | Station name | (square
miles) | Date | Cubic feet
per
second | Recurrence interval (years) | Date | Cubic feet
per
second | | 05014500 | Swiftcurrent Creek at Many Glacier | 30.9 | 01/19 | 17 | <2 | 11/14,16/76 | 0 | | 05017500 | St. Mary River near Babb | 276 | 12/25 | 59 | <2 | 01/03/53 | 27 | | 06025500 | Big Hole River near Melrose | 2,476 | 09/06 | 177 | 2-5 | 08/17/31 | 49 | | 06054500 | Missouri River at Toston | 14,669 | 08/24 | 1,180 | 2-5 | 01/12/63 | 700 | | 06089000 | Sun River near Vaughn | 1,854 | 09/07 | 173 | <2 | 05/26/41 | 23 | | 06099500 | Marias River near Shelby | 3,242 | 09/04 | 70 | 2-5 | 08/20/19 | 10 | | 06115200 | Missouri River near Landusky | 40,987 | 09/09 | 3,650 | 2-5 | 12/13/36 | 1,220 | | 06120500 | Musselshell River at Harlowton | 1,125 | 09/08 | 1.9 | 5-10 | $(^1)$ | 0 | | 06174500 | Milk River at Nashua | 22,332 | 07/05 | 44 | <2 | $(^1)$ | 0 | | 06181000 | Poplar River near Poplar | 3,174 | 08/28 | 2.8 | <2 | $(^1)$ | 0 | | 06191500 | Yellowstone River at Corwin Springs | 2,623 | 12/24 | 656 | <2 | 02/05/89 | 380 | | 06200000 | Boulder River at Big Timber | 523 | 02/24 | 55 | 2-5 | 08/26/61 | 12 | | 06214500 | Yellowstone River at Billings | 11,795 | 02/24 | 1,500 | <2 | 12/12/32 | 450 | | 06289000 | Little Bighorn River at State line, near Wyola | 193 | 02/24 | 20 | 20-50 | 02/02/89 | 18 | | 06308500 | Tongue River at Miles City | 5,397 | 10/01 | 35 | <2 | 07/09/40 | 0 | | 06329500 | Yellowstone River near Sidney | 69,103 | 08/30 | 1,720 | 5-10 | 05/17/61 | 570 | | 12301300 | Tobacco River near Eureka | 440 | 12/28 | 35 | 5-10 | 01/11/63 | 20 | | 12304500 | Yaak River near Troy | 766 | 09/07 | 33 | 5-10 | 09/19/01 | 49 | | 12332000 | Middle Fork Rock Creek near Philipsburg | 123 | 02/24 | 25 | <2 | 02/09/53 | 5.3 | | 12335500 | Nevada Creek above Reservoir, near Helmville | 116 | 08/03 | 3.6 | 2-5 | 01/11/44 | 2.0 | | 12340000 | Blackfoot River near Bonner | 2,290 | 01/10 | 300 | 2-5 | 01/04/50 | 200 | | 12354500 | Clark Fork at St. Regis | 10,709 | 01/12 | 1,800 | <2 | 02/03/89 | 800 | | 12358500 | Middle Fork Flathead River near West Glacier | 1,128 | 01/11 | 299 | 2-5 | 11/27/52 | 189 | | 12370000 | Swan River near Bigfork | 671 | 09/08 | 287 | 5-10 | 01/26-29/30 | 193 | ¹At various dates. | | Usable | Percentage-of-normal storage based on 1971-2000 period of record | | | | | | | | | | | | |------------------------|-------------|--|------|----------|----------|--------|------|------|-----|------|------|------|-------| | Reservoir | capacity | | 2002 | | | 2003 | | | | | | | | | | (acre-feet) | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | | | | Hydi | oelectri | c-power | genera | tion | | | | | | | | Canyon Ferry Lake | 2,043,000 | 97 | 96 | 98 | 102 | 105 | 108 | 112 | 106 | 101 | 96 | 95 | 92 | | Fort Peck Lake | 18,910,000 | 72 | 73 | 72 | 70 | 70 | 73 | 71 | 68 | 67 | 65 | 64 | 64 | | Bighorn Lake | 1,356,000 | 64 | 68 | 70 | 72 | 72 | 75 | 77 | 78 | 81 | 77 | 81 | 80 | | Lake Koocanusa | 5,748,000 | 109 | 122 | 119 | 149 | 178 | 167 | 160 | 145 | 120 | 103 | 92 | 92 | | Hungry Horse Reservoir | 3,451,000 | 103 | 103 | 105 | 110 | 115 | 125 | 136 | 115 | 108 | 100 | 97 | 100 | | Flathead Lake | 1,791,000 | 109 | 111 | 100 | 125 | 143 | 155 | 129 | 103 | 100 | 99 | 99 | 100 | | | | | | Ir | rigation | | | | | | | | | | Lima Reservoir | 84,050 | 20 | 25 | 31 | 34 | 39 | 43 | 49 | 49 | 9 | 9 | 12 | 16 | | Clark Canyon Reservoir | 255,600 | 19 | 25 | 31 | 36 | 39 | 43 | 44 | 40 | 25 | 11 | 9 | 13 | | Gibson Reservoir | 99,050 | 93 | 92 | 89 | 87 | 86 | 91 | 132 | 107 | 92 | 31 | 13 | 21 | | Fresno Reservoir | 103,000 | 88 | 94 | 98 | 98 | 93 | 101 | 96 | 101 | 63 | 61 | 41 | 53 | Table 5. Percentage-of-normal storage, by month, during water year 2003 for selected major reservoirs in Montana ## **Water Quality** The USGS operates a network of water-quality stations throughout Montana in cooperation with numerous Federal, State, and local agencies and Tribal governments. network changes from year to year as objectives are achieved or modified, or funding levels change. Some
stations are operated for only a few years and commonly are part of a short-term investigation to examine water quality related to a specific condition. Other stations have been in operation for many years and provide a basis for description of long-term water-quality conditions or trends that represent a wide range of hydrologic or land-use variability. Long-term stations typically are located on major streams that represent an important water resource in the area and require data on an ongoing basis for various management concerns. A statewide network of 37 water-quality stations established in 1999 continued in operation through 2003. The network supplements the long-term record of water quality across the State and provides a reference for trends over time. Waterquality sampling that was started in 2001 at four sites in southeastern Montana (Tongue and Powder River basins) continued in 2003 and was subsequently expanded to seven sites (including the Rosebud Creek basin) to assist the States of Montana and Wyoming with assessing the potential effects of coal-bed methane development on water resources in these basins. Various water-quality measurements are made, either onsite or by laboratory analysis of samples, depending on the objective of the investigation. Several types of water-quality data that describe physical and chemical characteristics are routinely obtained in many sampling programs. Examples of commonly measured water-quality characteristics are dissolved solids, dissolved oxygen, dissolved nitrite plus nitrate, total phosphorus, and suspended sediment. Guideline concentrations established by the State of Montana¹ serve to illustrate the general range of values protective of human health and aquatic organisms. The concentration of dissolved solids, which represents the mass (milligrams) of all constituents dissolved in a unit volume (liter) of water, can be determined either from the weight of dry residue that remains after evaporation of a known volume of water that has been filtered to remove particulate material, or estimated from the sum of the individual dissolved major-ion concentrations. An excessive concentration of dissolved solids can render the water unsuitable for certain uses such as human consumption, irrigation of crops, or livestock watering. Water-quality criteria established by the State of Montana² indicate that water might not be suitable when dissolved-solids concentrations exceed 500 mg/L if used for human consumption, 1,200 mg/L if used for crop irrigation, and 10,000 mg/L if used for livestock watering. Dissolved oxygen in surface water is essential for most aquatic organisms and is an indicator of the biochemical condition of the stream or lake. The solubility of oxygen in water is a function of water temperature and barometric pressure; therefore, the oxygen content in surface water is subject to considerable daily and seasonal change. Biological activities such as photosynthesis and decomposition also can cause rapid and large changes in dissolved-oxygen concentration. Dissolved-oxygen concentrations less than 5.0 ¹Montana Department of Health and Environmental Sciences, 1986, Montana water quality, 1986: Helena, Montana Department of Health and Environmental Sciences, 1986 Montana 305(b) Report, 198 p. ²Montana Department of Environmental Quality, 2002, Montana numeric water quality standards: Helena, Mont., Water Quality Division, Circular WBQ-7, 37 p. mg/L for warm-water fish or 8.0 mg/L for cold-water fish may be detrimental if sustained for extended periods of time.² Nitrogen (N) is an essential plant nutrient that occurs in several forms in surface water. Common sources of nitrogen are atmospheric deposition, soils, plant fertilizers, animal waste, and sewage or septic effluent. Nitrite and nitrate are forms of nitrogen that can occur in surface water, although nitrite is seldom present in large amounts in oxygenated water. Dissolved nitrate is a major nutrient for plants; consequently, large concentrations of nitrate in streams and lakes can cause rapid growth of aquatic plants. Nitrate concentrations in excess of 0.3 mg/L as N have the potential to cause nuisance growths of algae and other aquatic plants (Ivalou O'Dell, U.S. Geological Survey, written communication, 1994). In addition, human health can be adversely affected if the nitrate concentration exceeds 10 mg/L as N in drinking water.³ Phosphorus (P) is an essential plant nutrient that can stimulate excessive growth of aquatic plants. Total phosphorus includes the inorganic and organic forms of dissolved and suspended phosphorus and is commonly analyzed as an indicator of eutrophication potential. Although phosphorus can originate naturally from igneous and sedimentary rock formations, more common sources include sewage, detergents, fertilizer, and livestock waste. Total phosphorus in streams should not exceed 0.1 mg/L as P to prevent nuisance plant growth according to water-quality criteria established by the State of Montana. Water-quality criteria established by the EPA⁴ also indicate that total phosphorus should not exceed 0.05 mg/L as P in streams discharging directly to lakes or 0.025 mg/L as P within lakes. Suspended sediment is particulate material eroded from the land surface by either wind or water and maintained in suspension in streams by hydraulic energy. The quantity of suspended sediment in streams typically increases during periods of increased runoff, when large amounts of rainfall or snowmelt can rapidly erode soil and the increased streamflow can scour channel sediments. Although large suspendedsediment concentrations can occur naturally in areas underlain by easily erodible geologic materials, land use that disturbs soils also can contribute substantial quantities of sediment to streams and lakes. The quantity of sediment in suspension has important physical and chemical implications for aquatic life. Sediment in suspension during high flow may be deposited in stream channels or lakes where water velocities decrease. In areas of sediment deposition, aquatic insects or fish eggs can be smothered, thereby rendering the bottom habitat unsuitable for their survival. Many chemical constituents such as some metals, phosphorus, and some pesticides tend to sorb strongly to sediment. As a result, chemicals may be readily transported from land sources into river systems where aquatic organisms could be exposed to toxic concentrations. Statistical summaries of selected water-quality measurements made at eight long-term water-quality stations in Montana are presented in table 6. The range of values for each type of measurement is described by the minimum and maximum values. To compare current and long-term water-quality conditions, the range of values are summarized for both water year 2003 and the period of record through water year 2002. In addition, the central tendency of data collected over the period of record is described by the median (50th percentile). #### **GROUND WATER** #### **Ground-Water Levels** Water levels were measured in 53 observation wells during water year 2003. Water levels in most of these wells primarily reflect the response of the ground-water system in the area to natural climatic conditions. However, several wells are within the zone of influence of human activities, and water levels in these wells can be affected by pumping or infiltration of applied irrigation water. Seventeen of the observation wells are equipped with continuous water-level recorders and have varying lengths of record. One of the continuous recorders was converted to near real-time data delivery, with water-level data collected hourly and transmitted every 4 hours via satellite for display as part of the USGS National Water Information System program web site: #### http://waterdata.usgs.gov/nwis Individual data values from the continuous recorders are not presented in this report but are available at the Montana District Office in Helena. Hydrographs are included for the 17 wells equipped with recorders, and periodic water-level data for all 53 wells are presented in this report. Water levels commonly fluctuate throughout the year and from year to year as a result of changes in climatic conditions or human activities. Some of the hydrographs show the effects of the below-normal precipitation in many climatological divisions across Montana during water year 2003. ³U.S. Environmental Protection Agency, 1991, Maximum Contaminant Levels (section 141.62 of subpart G of part 141, National Revised Primary Drinking Water Regulations): U.S. Code of Federal Regulations Title 40, Parts 100 to 149, revised as of July 1, 1991, p. 673. ⁴U.S. Environmental Protection Agency, 1986, Quality criteria for water, 1986: Washington, D.C., Office of Water Regulations and Standards, EPA 440/5-86-001, unpaged. **Table 6.** Statistical summaries of selected water-quality measurements for long-term water-quality stations in Montana for water year 2003 and the period of record through water year 2002 [Symbols: <, less than; --, no data] | | | Water year 2003 | | | Period of record through water year 2002 | | | | | |---|---|-------------------------|--------------|--------------|--|--------------|--------------|--------|--| | Station
number | Station name | Number
of
samples | Mini-
mum | Maxi-
mum | Number
of
samples | Mini-
mum | Maxi-
mum | Median | | | Dissolved solids, in milligrams per liter | | | | | | | | | | | 06054500 | Missouri River near Toston | 2 | 176 | 197 | 167 | 123 | 299 | 238 | | | 06178500 | East Poplar River at International Boundary | 4 | 896 | 991 | 263 | 97 | 1,480 | 940 | | | 06185500 | Missouri River near Culbertson | 8 | 330 | 429 | 231 | 221 | 579 | 403 | | | | Yellowstone River near Livingston | 2 | 96 | 109 | 260 | 55 | 251 | 154 | | | 06326500 |
Powder River near Locate | 12 | 591 | 2,230 | 206 | 408 | 3,450 | 1,460 | | | 06329500 | Yellowstone River near Sidney | 2 | 158 | 465 | 295 | 142 | 863 | 469 | | | 12301933 | Kootenai River below Libby Dam, near Libby | 2 | 122 | 143 | 240 | 55 | 211 | 139 | | | 12388700 | Flathead River at Perma | 2 | 95 | 102 | 69 | 89 | 106 | 96 | | | | Dissolved | oxygen, in | milligrar | ns per liter | | | | | | | 06054500 | Missouri River near Toston | 0 | | | 321 | 6.2 | 13.8 | 9.6 | | | 06178500 | East Poplar River at International Boundary | 4 | 6.1 | 8.7 | 259 | .9 | 17.2 | 9.2 | | | | Missouri River near Culbertson | 8 | 7.8 | 12.8 | 277 | 6.0 | 14.2 | 9.3 | | | 06192500 | Yellowstone River near Livingston | 0 | | | 198 | 7.0 | 14.6 | 9.5 | | | | Powder River near Locate | 9 | 6.7 | 11.7 | 311 | 2.7 | 15.7 | 8.6 | | | 06329500 | Yellowstone River near Sidney | 11 | 6.3 | 14.0 | 490 | 4.4 | 15.0 | 8.7 | | | 12301933 | Kootenai River below Libby Dam, near Libby | 8 | 9.3 | 11.4 | 440 | 6.9 | 18.3 | 10.8 | | | 12388700 | Flathead River at Perma | 0 | | | 99 | 7.4 | 18.1 | 10.5 | | | | Dissolved nitrite plus | nitrate, in | milligran | ns per liter | as nitrogen | l | | | | | 06054500 | Missouri River near Toston | 4 | .015 | - | 97 | <.05 | .38 | .08 | | | | East Poplar River at International Boundary | 4 | <.022 | .149 | 61 | <.01 | .29 | .07 | | | | Missouri River near Culbertson | 8 | <.022 | | 157 | <.005 | | .007 | | | | Yellowstone River near Livingston | 4 | .017 | .238 | 239 | <.05 | 1.2 | .10 | | | | Powder River near Locate | 12 | <.022 | .814 | 144 | <.01 | 1.8 | .27 | | | 06329500 | Yellowstone River near Sidney | 11 | <.060 | .660 | 235 | <.005 | | .20 | | | | Kootenai River below Libby Dam, near Libby | 8 | .036 | | 302 | <.05 | .79 | .10 | | | | Flathead River at Perma | 4 | <.022 | .020 | 36 | <.005 | | .02 | | | | Total phosphorus, | in milligr | | | phorus | | | | | | 06054500 | Missouri River near Toston | 4 | .04 | .20 | 177 | <.01 | .44 | .04 | | | | East Poplar River at International Boundary | 4 | .05 | .12 | 265 | <.01 | .40 | .03 | | | | Missouri River near Culbertson | 8 | .08 | .35 | 217 | .01 | .93 | .08 | | | | Yellowstone River near Livingston | 4 | .02 | .23 | 117 | <.01 | 1.2 | .03 | | | | Powder River near Locate | 12 | .01 | 6.0 | 207 | .008 | | .17 | | | | Yellowstone River near Sidney | 11 | .02 | 1.4 | 366 | <.01 | 2.7 | .09 | | | | Kootenai River below Libby Dam, near Libby | 8 | <.004 | .012 | 515 | <.001 | .26 | .008 | | | | Flathead River at Perma | 4 | .002 | | 83 | <.008 | | .005 | | | 12300700 | Suspended s | | | | | <.000 | .27 | .003 | | | 06054500 | Missouri River near Toston | 4 | 13 | 146 | 231 | 4 | 491 | 18 | | | | East Poplar River at International Boundary | 4 | 75 | 121 | 229 | 4 | 322 | 54 | | | | Missouri River near Culbertson | 8 | 156 | 477 | 178 | 4
19 | 2,370 | 238 | | | | Yellowstone River near Livingston | 6
4 | | 290 | 160 | | 1,090 | 10 | | | | Powder River near Locate | 4
11 | 8
32 | 16,000 | 279 | 2
8 | 41,400 | 745 | | | | Yellowstone River near Sidney | 17 | 30 | 3,220 | 398 | 8
10 | 15,500 | 312 | | | | | | | | | | | | | | | Kootenai River below Libby Dam, near Libby | 6 | 1 | 2
70 | 17
72 | 1 | 3
65 | 2 | | | 12308/00 | Flathead River at Perma | 4 | 2 | 70 | 72 | 1 | 65 | 4 | | #### **EXPLANATION OF THE RECORDS** The surface-water and ground-water records published in this report are for water year 2003 that began October 1, 2002, and ended September 30, 2003. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface and ground water, and ground-water-level data. The locations of the stations and wells where the data were collected are shown in figures 6 through 8. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation. ## DOWNSTREAM ORDER AND STATION NUMBER Since October 1, 1950, hydrologic-station records in USGS reports have been listed in order of downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary entering between two main-stream stations is listed between those stations. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is located with respect to the stream to which it is immediately tributary is indicated by an indention in that list of stations in the front of this report. Each indentation represents one rank. This downstream order and system of indentation indicates which stations are on tributaries between any two stations and the rank of the tributary on which each station is located. As an added means of identification, each hydrologic station and partial-record station has been assigned a station number. These station numbers are in the same downstream order used in this report. In assigning a station number, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list composed of both types of stations. Gaps are consecutive. The complete 8-digit (or 10-digit) number for each station such as 06090300, which appears just to the left of the station name, includes a 2digit part number "06" plus the 6-digit (or 8-digit) downstream order number "090300." In areas of high station density, an additional two digits may be added to the station identification number to yield a 10-digit number. The stations are numbered in downstream order as described above between stations of consecutive 8-digit numbers. ## NUMBERING SYSTEM FOR WELLS AND MISCELLANEOUS SITES The USGS well and miscellaneous site-numbering system is based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, and the next 7 digits denote degrees, minutes, and seconds of longitude; the last 2 digits are a sequential number for wells within a 1-second grid. In the event that the latitude-longitude coordinates for a well and miscellaneous site are the same, a sequential number such as "01," "02," and so forth, would be assigned as one would for wells (see fig. 4). The 8-digit, downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken. Coordinates for site A (464214110193701) **Figure 4.** System for numbering wells and miscellaneous sites (latitude and longitude). In addition to the well number that is based on latitude and longitude given for each well, another well number is given that is based on the Bureau of Land Management's system of land subdivision. This well number is familiar to the water users of Montana and shows the location of the well by quadrant, township, range section, and position within the section (see fig. 5). The capital letter at the beginning of the location number indicates the quadrant in which the well is located. Four quadrants are formed by the intersection of the base line and the principal meridian—A indicates the northeast quadrant, B the northwest, C the southwest, and D the southeast. The first numeral indicates the township, the second the range, and the third the section in which the well is located. Letters following the section number locate the well within the section. The first letter denotes the quarter section, the second the quarter-quarter section, and the third the quarter-quarterquarter section. The letters are assigned within the section in a counter-clockwise direction beginning with (a) in the northeast quarter of the section. Letters are assigned within each quarter section and quarter-quarter section in the same manner. Where two or more wells are located within the smallest subdivision, consecutive numbers beginning with 01 are added to the letters in the order in which the wells are inventoried. For example, 30N33W05ABAB01 is the first well inventoried in NW¹/₄NE¹/₄NW¹/₄NE¹/₄ sec. 5, T.30N.,R.33W (northwest quarter of the northeast quarter of the northwest quarter of the northwest quarter of section 5, in township 30 north, range 33 west). **Figure 5**. System for numbering wells and miscellaneous sites (township and range). #### SPECIAL NETWORKS AND PROGRAMS Hydrologic Benchmark Network is a network of 61 sites in small drainage basins in 39 States that was established in 1963 to provide consistent streamflow data representative of undeveloped watersheds nationwide, and from which data could be analyzed on a continuing basis for use in comparison and contrast with conditions observed in basins more obviously affected by human activities. At selected sites, water-quality information is being gathered on major ions and nutrients, primarily to assess the effects of acid deposition on stream chemistry. Additional information on the Hydrologic Benchmark Program may be accessed from: http://water.usgs.gov/hbn/ National Stream-Quality Accounting Network (NASQAN) is a network of sites used to monitor the water quality of large rivers within the Nation's largest river basins. From 1995 through 1999, a network of approximately 40 stations was operated in the Mississippi, Columbia, Colorado, and Rio Grande River basins. For the period 2000 through 2004, sampling was reduced to a few index stations on the Colorado and Columbia Rivers so that a network of 5 stations could be implemented on the Yukon River. Samples are collected with sufficient frequency that the flux
of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment (NAWQA) Program; (3) to characterize processes unique to large-river systems such as storage and remobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals. Additional information about the NASQAN Program may be accessed from: http://water.usgs.gov/nasqan/ The National Atmospheric Deposition Program/ National Trends Network (NADP/NTN) is a network of monitoring sites that provide continuous measurement and assessment of the chemical constituents in precipitation throughout the United States. As the lead Federal agency, the USGS works together with over 100 organizations to provide a long-term, spatial and temporal record of atmospheric deposition generated from this network of 250 precipitationchemistry monitoring sites. The USGS supports 74 of these 250 sites. This long-term, nationally consistent monitoring program, coupled with ecosystem research, provides critical information toward a national scorecard to evaluate the effectiveness of ongoing and future regulations intended to reduce atmospheric emissions and subsequent impacts to the Nation's land and water resources. Reports and other information on the NADP/NTN Program, as well as data from the individual sites, may be accessed from: http://bqs.usgs.gov/acidrain/ The USGS National Water-Quality Assessment (NAWQA) Program is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; to provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and to provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies. Assessment activities are being conducted in 42 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents is measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for water-resources managers to use in making decisions and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest. Communication and coordination between USGS personnel and other local, State, and Federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key Federal, State, and local water-resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies. Additional information about the NAWQA Program may be accessed from: http://water.usgs.gov/nawqa/ The USGS National Streamflow Information Program (NSIP) is a long-term program with goals to provide framework streamflow data across the Nation. Included in the program are creation of a permanent Federally funded streamflow network, research on the nature of streamflow, regional assessments of streamflow data and databases, and upgrades in the streamflow information delivery systems. Additional information about NSIP may be accessed from: http://water.usgs.gov/nsip/ ## EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS ### **Data Collection and Computation** The base data collected at gaging stations (fig. 6) consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and volume of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from a water-stage recorder that is either downloaded electronically in the field to a laptop computer or similar device or is transmitted using telemetry such as GOES satellite, land-line or cellular-phone modems, or by radio transmission. Measurements of discharge are made with a current meter or acoustic Doppler current profiler, using the general methods adopted by the USGS. These methods are described in standard textbooks, USGS Water-Supply Paper 2175, and the Techniques of Water-Resources Investigations of the United States Geological Survey (TWRIs), Book 3, Chapters A1 through A19 and Book 8, Chapters A2 and B2. The methods are consistent with the American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standards (ISO). For stream-gaging stations, discharge-rating tables for any stage are prepared from stage-discharge curves. If extensions to the rating curves are necessary to express discharge greater than measured, the extensions are made on the basis of indirect measurements of peak discharge (such as contracted-opening measurements, slope-area or computation of flow over dams and weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharges are computed from the daily values. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features of the stream channel, the daily mean discharge is computed by the shifting-control method in which correction factors based on individual discharge measurements and notes by engineers and observers are used when applying the gage heights to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the controlling section, the daily mean discharge is computed by the shiftingcontrol method. At some stations, stage-discharge relation is affected by changing stage. At these stations, the rate of change in stage is used as a factor in computing discharge. At some stream-gaging stations in the northern United States, the stage-discharge relation is affected by ice in the winter; therefore, computation of the discharge in the usual manner is impossible. Discharge for periods of ice effect is computed on the basis of gage-height record and occasional winter-discharge measurements. Consideration is given to the available information on temperature and precipitation, notes by gage observers and hydrologists, and comparable records of discharge from other stations in the same or nearby basins. For a lake or reservoir station, capacity tables giving the volume or contents for any stage are prepared from stage-area relation curves defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly changes are computed. If the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys, the computed contents may be increasingly in error due to the gradual accumulation of sediment. Figure 6. Location of streamflow-gaging and selected reservoir stations in Montana and adjacent areas, water year 2003. For some stream-gaging stations, periods of time occur when no gage-height record is obtained or the recorded gage height is faulty and cannot be used to compute daily discharge or contents. Such a situation can happen when the recorder stops or otherwise fails to operate properly, the intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated on the basis of recorded range in stage, prior and subsequent records, discharge measurements, weather records, and comparison with records from other stations in the same or nearby basins. Likewise, lake or reservoir volumes may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information. #### **Data Presentation** The records published for each continuous-record surface-water discharge station (stream-gaging station) consist of four parts: (1) the station manuscript or description; (2) the data table of daily mean values of discharge for the current water year with summary data; (3) a tabular statistical summary of monthly mean flow data for a designated period, by water year; and (4) a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration. #### **Station Manuscript** The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following
information, as appropriate, is provided with each continuous record of discharge or lake content. Comments follow that clarify information presented under the various headings of the station description. LOCATION.—Location information is obtained from the most accurate maps available. The location of the gaging station with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for most stations, were determined by methods given in Montana Department of Natural Resources and Conservation River Mile Index^{5,6,7}. DRAINAGE AREA.—Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available. PERIOD OF RECORD.—This term indicates the time period for which records have been published for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not and whose location was such that its flow reasonably can be considered equivalent to flow at the present station. REVISED RECORDS.—If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error. GAGE.—The type of gage in current use, the elevation of the current gage referred to a standard datum, and a condensed history of the types, locations, and elevations of previous gages are given under this heading. REMARKS.—All periods of estimated daily discharge are flagged in the daily discharge table. (See section titled Identifying Estimated Daily Discharge.) Information is presented relative to the accuracy of the records, to special methods of computation, and to conditions that affect natural flow at the station. In addition, information may be presented pertaining to average discharge data for the period of record; to extremes data for the period of record and the current year; and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, the outlet works and spillway, and the purpose and use of the reservoir. COOPERATION.—Records provided by a cooperating organization or obtained for the USGS by a cooperating organization are identified here. EXTREMES OUTSIDE PERIOD OF RECORD.—Information here documents major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the USGS. REVISIONS.—Records are revised if errors in published records are discovered. Appropriate updates are made in the USGS distributed data system, NWIS, and subsequently to its Web-based National data system, NWISWeb: http://water.usgs.gov/nwis/nwis Users are encouraged to obtain all required data from NWIS or NWISWeb to ensure that they have the most recent data updates. Updates to NWISWeb are made on an annual basis. Although rare, occasionally the records of a discontinued gaging station may need revision. Because no current or, possibly, future station manuscript would be published for these stations to document the revision in a REVISED RECORDS entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District Office (address given on the back of the title page of this report) to determine if the published records were revised after the station was discontinued. If, however, the data for a discontinued station were obtained by computer ⁵Montana Department of Natural Resources and Conservation, 1976, River mile index of the Yellowstone River: Helena, Mont., 61 p. ⁶Montana Department of Natural Resources and Conservation, 1979, River mile index of the Missouri River: Helena, Mont., 142 p. Montana Department of Natural Resources and Conservation, 1984, River mile index of the Columbia River basin: Helena, Mont., p. 1-76. retrieval, the data would be current. Any published revision of data is always accompanied by revision of the corresponding data in computer storage. Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the REMARKS and in the inclusion of a stage-capacity table when daily volumes are given. ## **Data Table of Daily Mean Values** The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary for the table, the line headed TOTAL gives the sum of the daily figures for each month; the line headed MEAN gives the arithmetic average flow in cubic feet per second for the month; and the lines headed MAX and MIN give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month is expressed in cubic feet per second per square mile (line headed CFSM); or in inches (line headed IN); or in acre-feet (line headed AC-FT). Values for cubic feet per second per square mile and runoff in inches or in acre-feet may be omitted if extensive regulation or diversion is in effect or if the drainage area includes large noncontributing areas. At some stations, monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversion data or reservoir volumes are given. These values are identified by a symbol and a corresponding footnote. ### **Statistics of Monthly Mean Data** A tabular summary of the mean (line headed MEAN), maximum (MAX), and minimum (MIN) of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those values. The designated period will be expressed as FOR WATER YEARS __-_, BY WATER YEAR (WY), and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. The designated period will consist of all of the station record within the specified water years, including complete months of record for partial water years, and may coincide with the period of record for the station. The water years for which the statistics are computed are consecutive, unless a break in the station record is indicated in the manuscript. #### **Summary Statistics** A table titled SUMMARY STATISTICS follows the statistics of monthly mean data tabulation. This table consists of four columns with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, WATER YEARS __-_, will consist of all of the station records within the specified water years, including complete months of record for partial water years, and may coincide with the period of record for the station. The water years for which the statistics are computed are consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (see line headings below), except for the ANNUAL 7-DAY MINIMUM statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years. The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When the dates of occurrence do not fall within the selected water years listed in the heading, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration-curve statistics and runoff data also are given. Runoff data may be omitted if extensive regulation or diversion of flow is in effect in the drainage basin. The following summary statistics data are provided with each continuous record of discharge. Comments that follow clarify information presented under the various line headings of the SUMMARY STATISTICS table. ANNUAL TOTAL.—The sum of the daily mean values of discharge for the year. ANNUAL MEAN.—The arithmetic mean for the individual daily mean discharges for the year noted or for the designated period. HIGHEST ANNUAL MEAN.—The maximum annual mean discharge occurring for the designated period. LOWEST ANNUAL MEAN.—The minimum annual mean discharge occurring for the designated period. HIGHEST DAILY MEAN.—The maximum daily mean discharge for the year or for the designated period. LOWEST DAILY MEAN.—The minimum daily mean discharge for the year or for the designated period. ANNUAL 7-DAY MINIMUM.—The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. This value should not be confused with the 7-day 10-year low-flow statistic. MAXIMUM PEAK FLOW.—The maximum instantaneous peak discharge occurring for the water year or designated period. Occasionally the maximum flow for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak flow is given in the table and the maximum flow may be
reported in a footnote or in the REMARKS paragraph in the manuscript. MAXIMUM PEAK STAGE.—The maximum instantaneous peak stage occurring for the water year or designated period. Occasionally the maximum stage for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak stage is given in the table and the maximum stage may be reported in the REMARKS paragraph in the manuscript or in a footnote. If the dates of occurrence of the maximum peak stage and maximum peak flow are different, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information. INSTANTANEOUS LOW FLOW.—The minimum instantaneous discharge occurring for the water year or for the designated period. ANNUAL RUNOFF.—Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data: Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters. Cubic feet per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area. Inches (INCHES) indicate the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it. 10 PERCENT EXCEEDS.—The discharge that has been exceeded 10 percent of the time for the designated period. 50 PERCENT EXCEEDS.—The discharge that has been exceeded 50 percent of the time for the designated period. 90 PERCENT EXCEEDS.—The discharge that has been exceeded 90 percent of the time for the designated period. ## **Identifying Estimated Daily Discharge** Estimated daily-discharge values published in the waterdischarge tables of annual State data reports are identified. This identification is shown either by flagging individual daily values with the letter "e" and noting in a table footnote, "e– Estimated," or by listing the dates of the estimated record in the REMARKS paragraph of the station description. ## **Accuracy of Field Data and Computed Results** The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements, and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records. The degree of accuracy of the records is stated in the REMARKS in the station description. "Excellent" indicates that about 95 percent of the daily discharges are within 5 percent of the true value; "good" within 10 percent; and "fair," within 15 percent. "Poor" indicates that daily discharges have less than "fair" accuracy. Different accuracies may be attributed to different parts of a given record. Values of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 ${\rm ft^3/s}$; to the nearest tenths between 1.0 and 10 ${\rm ft^3/s}$; to whole numbers between 10 and 1,000 ${\rm ft^3/s}$; and to 3 significant figures above 1,000 ${\rm ft^3/s}$. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharge values listed for partial-record stations. Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, values of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge. #### Other Data Records Available Information of a more detailed nature than that published for most of the stream-gaging stations such as discharge measurements, gage-height records, and rating tables is available from the District office. Also, most stream-gaging station records are available in computer-usable form and many statistical analyses have been made. Information on the availability of unpublished data or statistical analyses may be obtained from the District office (see address on the back of the title page of this report). ## **Publications** The annual series of Water-Supply Papers that give information on quantity of surface waters in Montana are given in table 7. Data for the Hudson Bay basin is given in Part 5, for the Missouri River basin in Part 6, and for the Columbia River basin in Part 12. **Table 7.** Water-Supply Paper numbers and parts for surface-water stations, 1899-1970 | Year | Part 5 | Part 6 | Part 12 | Year | Part 5 | Part 6 | Part 12 | |------|-----------|--------|---------|-------------|--------|--------|---------| | 1899 | | 36,37 | 38 | | | | | | 1900 | 49 | 49 | 51,52 | | | | | | 1901 | 66,75 | 66,75 | 66,75 | 1936 | 805 | 806 | 812 | | 1902 | 83,85 | 84 | 85 | 1937 | 825 | 826 | 832 | | 1903 | 98,99,100 | 99 | 100 | 1938 | 855 | 856 | 862 | | 1904 | 130 | 130 | 135 | 1939 | 875 | 876 | 882 | | 1905 | 171 | 172 | 178 | 1940 | 895 | 896 | 902 | | 1906 | 207 | 208 | 214 | 1941 | 925 | 926 | 932 | | 1907 | 245 | 246 | 252 | 1942 | 955 | 956 | 962 | | 1908 | 245 | 246 | 252 | 1943 | 975 | 976 | 982 | | 1909 | 265 | 266 | 272 | 1944 | 1005 | 1006 | 1012 | | 1910 | 285 | 286 | 292 | 1945 | 1035 | 1036 | 1042 | | 1911 | 305 | 306 | 312 | 1946 | 1055 | 1056 | 1062 | | 1912 | 325 | 326 | 332A | 1947 | 1085 | 1086 | 1092 | | 1913 | 355 | 356 | 362A | 1948 | 1115 | 1116 | 1122 | | 1914 | 385 | 386 | 392 | 1949 | 1145 | 1146 | 1152 | | 1915 | 405 | 406 | 412 | 1950 | 1175 | 1176 | 1182 | | 1916 | 435 | 436 | 442 | 1951 | 1208 | 1209 | 1216 | | 1917 | 455 | 456 | 462 | 1952 | 1238 | 1239 | 1246 | | 1918 | 475 | 476 | 482 | 1953 | 1278 | 1279 | 1286 | | 1919 | 505 | 506 | 512 | 1954 | 1338 | 1339 | 1346 | | 1920 | 505 | 506 | 512 | 1955 | 1388 | 1389 | 1396 | | 1921 | 525 | 526 | 532 | 1956 | 1438 | 1439 | 1446 | | 1922 | 545 | 546 | 552 | 1957 | 1508 | 1509 | 1516 | | 1923 | 565 | 566 | 572 | 1958 | 1558 | 1559 | 1566 | | 1924 | 585 | 586 | 592 | 1959 | 1628 | 1629 | 1636 | | 1925 | 605 | 606 | 612 | 1960 | 1708 | 1709 | 1716 | | 1926 | 625 | 626 | 632 | 1961-65 | 1913 | 1916 | 1933 | | 1927 | 645 | 646 | 652 | 1966-70 | 2113 | 2116 | 2133 | | 1928 | 665 | 666 | 672 | | | | | | 1929 | 685 | 686 | 692 | 1950 | 1308 | 1309 | 1316 | | 1930 | 700 | 701 | 707 | Compilation | | | | | 1931 | 715 | 716 | 722 | 1960 | 1728 | 1729 | 1736 | | 1932 | 730 | 731 | 737 | Compilation | 1,20 | 2,22 | 1,30 | | 1933 | 745 | 746 | 752 | Compilation | | | | | 1933 | 760 | 761 | 767 | | | | | | 1935 | 785 | 786 | 792 | | | | | ## EXPLANATION OF PRECIPITATION RECORDS ## **Data Collection and Computation** Rainfall data generally are collected using electronic data loggers that measure the rainfall in 0.01-inch increments every 15 minutes using either a tipping-bucket rain gage or a collection well gage. Twenty-four hour rainfall totals are tabulated and presented. A 24-hour period extends from just past midnight of the previous day to midnight of the current day. Snowfall-affected data can result during cold weather when snow fills the rain-gage funnel and then melts as temperatures rise. Snowfall-affected data are subject to errors. Missing values are indicated by this symbol "---" in the table. #### **Data Presentation** Precipitation records collected at surface-water gaging stations are identified with the same station number and name as the stream-gaging station. Where a surface-water daily-record station is not available, the precipitation record is published with its own name and latitude-longitude identification number. Information pertinent to the history of a precipitation station is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, period of record, and general remarks. The following information is provided with each precipitation station. Comments that follow clarify information presented under the various headings of the station description. LOCATION.—See Data Presentation in the EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS section of this report (same comments apply). PERIOD OF RECORD.—See Data Presentation in the EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS section of this report (same comments apply). INSTRUMENTATION.—Information on the type of rainfall collection system is given. REMARKS.—Remarks provide added information pertinent to the collection, analysis, or computation of records. ## EXPLANATION OF WATER-QUALITY RECORDS ## **Collection and Examination of Data** Surface-water samples for analysis usually are collected at or near stream-gaging stations. The quality-of-water records are given immediately following the discharge records at these stations. The descriptive heading for water-quality records gives the period of record for all water-quality data; the period of daily record for parameters that are measured on a daily basis (specific conductance, water temperature, sediment discharge, and so forth); extremes for the current year; and general remarks. For ground-water records, no descriptive statements are given; however, the well number, depth of well, sampling date, or other pertinent data are given in the table containing the chemical analyses of the ground water. ##
Water Analysis Most of the methods used for collecting and analyzing water samples are described in the TWRIs. A list of TWRIs is provided in this report. One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross-section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled at several verticals to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory. For chemical-quality stations equipped with digital monitors, the records consist of daily maximum and minimum values (and sometimes mean or median values) for each constituent measured, and are based on 15-minute or 1-hour intervals of recorded data beginning at 0000 hours and ending at 2400 hours for the day of record. ### SURFACE-WATER-QUALITY RECORDS Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because discharge data is useful in the interpretation of surface-water quality. Records of surface-water quality in this report involve a variety of types of data and measurement frequencies. ### **Classification of Records** Water-quality data for surface-water sites are grouped into one of three classifications. A *continuous-record station* is a site where data are collected on a regularly scheduled basis. Frequency may be one or more times daily, weekly, monthly, or quarterly. A *partial-record station* is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A *miscellaneous sampling site* is a location other than a continuous- or partial-record station, where samples are collected to give better areal coverage to define water-quality conditions in the river basin. A careful distinction needs to be made between continuous records as used in this report and continuous recordings that refer to a continuous graph or a series of discrete values recorded at short intervals. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 7. ## **Accuracy of the Records** One of four accuracy classifications is applied for measured physical properties at continuous-record stations on a scale ranging from poor to excellent. The accuracy rating is based on data values recorded before any shifts or corrections are made. Additional consideration also is given to the amount of publishable record and to the amount of data that have been corrected or shifted. Rating classifications for continuous water-quality records [\(\), less than or equal to; \(\pm \), plus or minus value shown; \(^\)C, degree Celsius; \(> \), greater than: \(% \), percent: \(mg/L \), milligram per liter; \(pH \) unit, standar greater than; %, percent; mg/L, milligram per liter; pH unit, standard pH unit] | Measured | Rating | | | | | | | |----------------------|------------------|-------------------------|-------------------------|------------------|--|--|--| | physical
property | Excellent | Good | Fair | Poor | | | | | Water
temperature | ≤ ±0.2 °C | > ±0.2 to
0.5 °C | $> \pm 0.5$ to 0.8 °C | >±0.8 °C | | | | | Specific conductance | ≤ ±3% | > ±3 to
10% | $> \pm 10$ to 15% | >±15% | | | | | Dissolved oxygen | \leq ±0.3 mg/L | $> \pm 0.3$ to 0.5 mg/L | $> \pm 0.5$ to 0.8 mg/L | $> \pm 0.8$ mg/L | | | | | pH | \leq ±0.2 unit | > ±0.2 to
0.5 unit | $> \pm 0.5$ to 0.8 unit | > ±0.8 unit | | | | | Turbidity | ≤ ±5% | > ±5 to
10% | > ±10 to
15% | >±15% | | | | ## **Arrangement of Records** Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites. ### **On-Site Measurements and Sample Collection** In obtaining water-quality data, a major concern is assuring that the data obtained represent the naturally occurring quality of the water. To ensure this, certain measurements, such as water temperature, pH, and dissolved oxygen, must be made on site when the samples are taken. To assure that measurements made in the laboratory also represent the naturally occurring water, carefully prescribed procedures must be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for on-site measurements and for collecting, treating, and shipping samples are given in TWRIs Book 1, Chapter D2; Book 3, Chapters A1, A3, and A4; and Book 9, Chapters A1-A9. These TWRIs are listed in this report. Also, detailed information on collecting, treating, and shipping samples can be obtained from the USGS District office (see address that is shown on the back of title page in this report). ### **Water Temperature** Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at the time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by wasteheat discharges. At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the District office. Figure 7. Location of surface-water-quality stations in Montana and adjacent areas, water year 2003. #### Sediment Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross section. During periods of rapidly changing flow or rapidly changing concentration, samples may be collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge. At other stations, suspended-sediment samples are collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observation, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream. In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations. ### **Laboratory Measurements** Samples for biochemical oxygen demand (BOD) and indicator bacteria are analyzed locally. All other samples are analyzed in the USGS laboratory in Lakewood, Colorado, unless otherwise noted. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chapter C1. Methods used by the USGS laboratories are given in the TWRIs, Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, and A4. These methods are consistent with ASTM standards and generally follow ISO standards. #### **Data Presentation** For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general
remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence. In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description. LOCATION.—See Data Presentation information in the EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS section of this report (same comments apply). DRAINAGE AREA.—See Data Presentation information in the EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS section of this report (same comments apply). PERIOD OF RECORD.—This indicates the time periods for which published water-quality records for the station are available. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually. INSTRUMENTATION.—Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station. REMARKS.—Remarks provide added information pertinent to the collection, analysis, or computation of the records. COOPERATION.—Records provided by a cooperating organization or obtained for the USGS by a cooperating organization are identified here. EXTREMES.—Maximums and minimums are given only for parameters measured daily or more frequently. For parameters measured weekly or less frequently, true maximums or minimums may not have been obtained. Extremes, when given, are provided for both the period of record and for the current water year. REVISIONS.—Records are revised if errors in published water-quality records are discovered. Appropriate updates are made in the USGS distributed data system, NWIS, and subsequently to its Web-based National data system, NWISWeb: http://waterdata.usgs.gov/nwis Users of USGS water-quality data are encouraged to obtain all required data from NWIS or NWISWeb to ensure that they have the most recent updates. Updates to the NWISWeb are made on an annual basis. The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence. #### **Remark Codes** The following remark codes may appear with the waterquality data in this section: | Printed
Output | Remark | |-------------------|---| | E | Estimated value. | | > | Actual value is known to be greater than the value shown. | | < | Actual value is known to be less than the value shown. | | K | Results based on colony count outside the acceptance range (non-ideal colony count). | | L | Biological organism count less than 0.5 percent (organism may be observed rather than counted). | | D | Biological organism count equal to or greater than 15 percent (dominant). | | S | Most probable value. | | V | Analyte was detected in both the environmental sample and the associated blanks. | | & | Biological organism estimated as dominant. | # **Water-Quality Control Data** The USGS National Water Quality Laboratory collects quality-control data on a continuing basis to evaluate selected analytical methods to determine long-term method detection levels (LT-MDLs) and laboratory reporting levels (LRLs). These values are re-evaluated each year on the basis of the most recent quality-control data and, consequently, may change from year to year. This reporting procedure limits the occurrence of false positive error. Falsely reporting a concentration greater than the LT-MDL for a sample in which the analyte is not present is 1 percent or less. Application of the LRL limits the occurrence of false negative error. The chance of falsely reporting a non-detection for a sample in which the analyte is present at a concentration equal to or greater than the LRL is 1 percent or less. Accordingly, concentrations are reported as less than LRL for samples in which the analyte was either not detected or did not pass identification. Analytes detected at concentrations between the LT-MDL and the LRL and that pass identification criteria are estimated. Estimated concentrations will be noted with a remark code of "E." These data should be used with the understanding that their uncertainty is greater than that of data reported without the E remark code. Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this District office are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples. These data are not presented in this report but are available from the District office. # **Blank Samples** Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated in the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank sample for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. Many types of blank samples are possible; each is designed to segregate a different part of the overall data-collection process. The types of blank samples collected in this district are: **Field blank**—A blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample. **Trip blank**—A blank solution that is put in the same type of bottle used for an environmental sample and kept with the set of sample bottles before and after sample collection. **Equipment blank**—A blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office). **Sampler blank**—A blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample. **Filter blank**—A blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample. **Splitter blank**—A blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample. **Preservation blank**—A blank solution that is treated with the sampler preservatives used for an environmental sample. # **Reference Samples** Reference material is a solution or material prepared by a laboratory. The reference material composition is certified for one or more properties so that it can be used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties. # **Replicate Samples** Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. Many types of replicate samples are possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this district are: Concurrent samples—A type of replicate sample in which the samples are collected simultaneously with two or more samplers or by using one sampler and alternating the collection of samples into two or more compositing containers. **Sequential samples**—A type of replicate sample in which the samples are collected one after the other, typically over a short time. **Split sample**—A type of replicate sample in which a sample is split into subsamples, each subsample contemporaneous in time and space. # **Spike Samples** Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis. # **Publications** The annual series of Water-Supply Papers that give information on quality of surface waters in Montana are shown in the following table. Data for Hudson Bay and Missouri River basins are given in parts 5-6 and data for Upper Columbia River basin are given in part 12. **Table 8.** Water-Supply Paper numbers and parts for water-quality
stations, 1947-70 | Year | Parts
5-6 | Part
12 | Year | Parts
5-6 | Part
12 | |------|--------------|------------|------|--------------|------------| | 1946 | 1050 | | 1961 | 1883 | 1885 | | 1947 | 1102 | | 1962 | 1943 | 1945 | | 1948 | 1132 | | 1963 | 1949 | 1951 | | 1949 | 1162 | 1163 | 1964 | 1956 | 1959 | | 1950 | 1187 | 1189 | 1965 | 1963 | 1966 | | 1951 | 1198 | 1200 | 1966 | 1993 | 1996 | | 1952 | 1251 | 1253 | 1967 | 2013 | 2016 | | 1953 | 1291 | 1293 | 1968 | 2094, | 2100 | | | | | | 2095 | | | 1954 | 1351 | 1353 | 1969 | 2145 | 2150 | | 1955 | 1401 | 1403 | 1970 | 2155 | 2160 | | 1956 | 1451 | 1453 | | | | | 1957 | 1521 | 1523 | | | | | 1958 | 1572 | 1574 | | | | | 1959 | 1643 | 1645 | | | | | 1960 | 1743 | 1745 | | | | # EXPLANATION OF GROUND-WATER-LEVEL RECORDS Generally, only ground-water-level data from selected wells with continuous recorders from a basic network of observation wells are published in this report (volume 2). This basic network contains observation wells located so that the most significant data are obtained from the fewest wells in the most important aquifers. #### **Site Identification Numbers** Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude and (2) a local number that is produced for local needs. # **Data Collection and Computation** Measurements are made in many types of wells, under varying conditions of access and at different temperatures; hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent. Most methods for collecting and analyzing water samples are described in the TWRIs referred to in the On-site Measurements and Sample Collection and the Laboratory Measurements sections in this report. In addition, TWRI Book 1, Chapter D2, describes guidelines for the collection and field analysis of ground-water samples for selected unstable constituents. Procedures for on-site measurements and for collecting, treating, and shipping samples are given in TWRIs Book 1, Chapter D2; Book 3, Chapters A1, A3, and A4; and Book 9, Chapters A1 through A9. The values in this report represent water-quality conditions at the time of sampling, as much as possible, and that are consistent with available sampling techniques and methods of analysis. These methods are consistent with ASTM standards and generally follow ISO standards. Trained personnel collected all samples. The wells sampled were pumped long enough to ensure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material, possibly metal, comprising the casings. Water-level measurements in this report are given in feet with reference to land-surface datum (lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. If known, the elevation of the land-surface datum above sea level is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (EOM). Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth of water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given only to a tenth of a foot or a larger unit. #### **Data Presentation** Water-level data are presented in alphabetical order by county. The primary identification number for a given well is the 15-digit site identification number that appears in the upper left corner of the table. The secondary identification number is the local or county well number. Well locations are shown in figure 8; each well is identified on the map by its local well or county well number. Each well record consists of three parts: the well description, the data table of water levels observed during the water year, and, for most wells, a hydrograph following the data table. Well descriptions are presented in the headings preceding the tabular data. The following comments clarify information presented in these various headings. LOCATION.—This paragraph follows the well-identification number and reports the hydrologic-unit number and a geographic point of reference. Latitudes and longitudes used in this report are reported as North American Datum of 1927 unless otherwise specified. HYDROGEOLOGIC UNIT.—This entry designates by name and geologic age the aquifer that the well taps. WELL CHARACTERISTICS.—This entry describes the well in terms of depth, casing diameter and depth or screened interval, method of construction, use, and changes since construction. INSTRUMENTATION.—This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on continuous, monthly, or some other frequency of measurement. DATUM.—This entry describes both the measuring point and the land-surface elevation at the well. The altitude of the land-surface datum is described in feet above the altitude datum; it is reported with a precision depending on the method of determination. The measuring point is described physically (such as top of casing, top of instrument shelf, and so forth), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above National Geodetic Vertical Datum of 1929 (NGVD 29); it is reported with a precision depending on the method of determination. REMARKS.—This entry describes factors that may influence the water level in a well or the measurement of the water level, when various methods of measurement were begun, and the network (climatic, terrain, local, or areal effects) or the special project to which the well belongs. PERIOD OF RECORD.—This entry indicates the time period for which records are published for the well, the month and year at the start of publication of water-level records by the USGS, and the words "to current year" if the records are to be continued into the following year. Time periods for which water-level records are available, but are not published by the USGS, may be noted. EXTREMES FOR PERIOD OF RECORD.—This entry contains the highest and lowest instantaneously recorded or measured water levels of the period of published record, with respect to land-surface datum or sea level, and the dates of occurrence. #### **Water-Level Tables** A table of water levels follows the well description for each well. Water-level measurements in this report are given in feet with reference to either sea level or land-surface datum (lsd). Missing records are indicated by dashes in place of the water-level value. For wells not equipped with recorders, water-level measurements were obtained periodically by steel or electric tape. Tables of periodic water-level measurements in these wells show the date of measurement and the measured water-level value. # **Hydrographs** Hydrographs are a graphic display of water-level fluctuations over a period of time. In this report, current water year and, when appropriate, period-of-record hydrographs are shown. Hydrographs that display periodic water-level measurements show points that may be connected with a dashed line from one measurement to the next. Hydrographs that display recorder data show a solid line representing the mean water level recorded for each day. Missing data are indicated by a blank space or break in a hydrograph. Missing data may occur as a result of recorder malfunctions, battery failures, or mechanical problems related to the response of the recorder's float mechanism to water-level fluctuations in a well. # **GROUND-WATER-QUALITY DATA** # **Data Collection and Computation** The ground-water-quality data in this report were obtained as a part of special studies in specific areas. Consequently, a number of chemical analyses are presented for some wells within a county but not for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality Statewide. Most methods for collecting and analyzing water samples are described in the TWRIs. Procedures for on-site measurements and for collecting, treating, and shipping samples are given in TWRI, Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, and A4. Also, detailed information on collecting, treating, and shipping samples may be obtained from the USGS District office (see address shown on back of title page in this report). # **Laboratory Measurements** Analysis for sulfide and measurement of alkalinity, pH, water temperature, specific conductance, and dissolved oxygen are performed on site. All other sample analyses are performed at the USGS laboratory in Lakewood, Colorado, unless otherwise noted. Methods used by the USGS laboratory are given in TWRI, Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, and A4. #### **Publications** Publication of ground-water level data for the United States in Water-Supply Papers was begun by the USGS in 1935. From 1935 through 1939, a single Water-Supply Paper for each year covering the entire nation was issued (Water-Supply Papers 777, 817, 840, 845, and 886). From 1940 through 1974, separate Water-Supply Papers were issued for 6 sections of the
United States. Water-level data for Montana are in the Water-Supply Papers listed in the following table, each report containing one or more calendar years (January-December) of data. Data in this report are for the 12-month water year ending September 30. Information about reports and other data on ground water in Montana may be obtained from the District office, at the address given on the back of the title page. **Table 9.** Water-Supply Paper numbers and parts for ground-water stations, 1940-74 | Year | WSP
No.
Pt. 5 | Year | WSP
No.
Pt. 5 | Year | WSP
No.
Pt.5 | |------|---------------------|------|---------------------|---------|--------------------| | 1940 | 910 | 1947 | 1100 | 1954 | 1325 | | 1941 | 940 | 1948 | 1130 | 1955 | 1408 | | 1942 | 948 | 1949 | 1160 | 1956-60 | 1760 | | 1943 | 990 | 1950 | 1169 | 1961-65 | 1845 | | 1944 | 1020 | 1951 | 1195 | 1966-70 | 1980 | | 1945 | 1027 | 1952 | 1225 | 1971-74 | 2161 | | 1946 | 1075 | 1953 | 1269 | | | #### ACCESS TO USGS WATER DATA The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the World Wide Web (WWW). These data may be accessed from: http://water.usgs.gov Water-quality data and ground-water data also are available through the WWW. In addition, data can be provided in various machine-readable formats on various media. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each Water Discipline District Office (See address that is shown on the back of the title page of this report.) **Figure 8**. Location of ground-water observation wells in Montana, water year 2003. #### **DEFINITION OF TERMS** Specialized technical terms related to streamflow, waterquality, and other hydrologic data, as used in this report, are defined below. Terms such as algae, water level, and precipitation are used in their common everyday meanings, definitions of which are given in standard dictionaries. Not all terms defined in this alphabetical list apply to every State. See also table for converting English units to International System (SI) Units. Other glossaries that also define water-related terms are accessible from: http://water.usgs.gov/glossaries.html Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity). Acre-foot (AC-FT, acre-ft) is a unit of volume, commonly used to measure quantities of water used or stored, equivalent to the volume of water required to cover 1 acre to a depth of 1 foot and equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. (See also "Annual runoff") Adenosine triphosphate (ATP) is an organic, phosphate-rich compound important in the transfer of energy in organisms. Its central role in living cells makes ATP an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter. **Adjusted discharge** is discharge data that have been mathematically adjusted (for example, to remove the effects of a daily tide cycle or reservoir storage). Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample. (See also "Biomass" and "Dry weight") **Alkalinity** is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample. Annual runoff is the total quantity of water that is discharged ("runs off") from a drainage basin in a year. Data reports may present annual runoff data as volumes in acre-feet, as discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. **Annual 7-day minimum** is the lowest mean value for any 7-consecutive-day period in a year. Annual 7-day minimum values are reported herein for the calendar year and the water year (October 1 through September 30). Most low-flow frequency analyses use a climatic year (April 1-March 31), which tends to prevent the low-flow period from being artificially split between adjacent years. The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day, 10-year low-flow statistic.) Aroclor is the registered trademark for a group of polychlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type, and the last two digits represent the percentage weight of the hydrogen-substituted chlorine. Artificial substrate is a device that is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is collected. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. (See also "Substrate") Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500°C for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²). (See also "Biomass" and "Dry mass") **Aspect** is the direction toward which a slope faces with respect to the compass. **Bacteria** are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, whereas others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants. **Bankfull stage,** as used in this report, is the stage at which a stream first overflows its natural banks formed by floods with 1- to 3-year recurrence intervals. **Base discharge** (for peak discharge) is a discharge value, determined for selected stations, above which peak discharge data are published. The base discharge at each station is selected so that an average of about three peak flows per year will be published. (See also "Peak flow") **Base flow** is sustained flow of a stream in the absence of direct runoff. It includes natural and human-induced streamflows. Natural base flow is sustained largely by ground-water discharge. **Bed material** is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed. (See also "Bedload" and "Sediment") **Bedload** is material in transport that is supported primarily by the streambed. In this report, bedload is considered to consist of particles in transit from the bed to an elevation equal to the top of the bedload sampler nozzle (ranging from 0.25 to 0.5 foot) that are retained in the bedload sampler. A sample collected with a pressure-differential bedload sampler also may contain a component of the suspended load. Bedload discharge (tons per day) is the rate of sediment moving as bedload, reported as dry weight, that passes through a cross section in a given time. NOTE: Bedload discharge values in this report may include a component of the suspended-sediment discharge. A correction may be necessary when computing the total sediment discharge by summing the bedload discharge and the suspended-sediment discharge. (See also "Bedload," "Dry weight," "Sediment," and "Suspended-sediment discharge") **Benthic organisms** are the group of organisms inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality. **Biochemical oxygen demand** (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria. **Biomass** is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat. **Biomass pigment ratio** is an indicator of the total proportion of periphyton that are autotrophic (plants). This is also called the Autotrophic Index. Blue-green algae (*Cyanophyta*) are a group of phytoplankton and periphyton organisms with a blue pigment in addition to a green pigment called chlorophyll. Blue-green algae can cause nuisance water-quality conditions in lakes and slow-flowing rivers; however, they are found commonly in streams throughout the year. The abundance of blue-green algae in phytoplankton samples is expressed as the number of cells per milliliter (cells/mL) or biovolume in cubic micrometers per milliliter (mm3/mL). The abundance of blue-green algae in periphyton samples is given in cells per square centimeter (cells/cm2) or biovolume per square centimeter (mm3/cm2). (See also "Phytoplankton" and "Periphyton") Bottom material (See "Bed material") **Bulk electrical conductivity** is the combined electrical conductivity of all material within a doughnut-shaped volume surrounding an induction probe. Bulk conductivity is affected by
different physical and chemical properties of the material including the dissolved solids content of the pore water and lithology and porosity of the rock. Canadian Geodetic Vertical Datum 1928 is a geodetic datum derived from a general adjustment of Canada's first order level network in 1928. Cell volume (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are frequently used in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume (μm³) is determined by obtaining critical cell measurements or cell dimensions (for example, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows: sphere $$4/3 \pi r^3$$ cone $1/3 \pi r^2 h$ cylinder $\pi r^2 h$. pi (π) is the ratio of the circumference to the diameter of a circle; pi = 3.14159.... From cell volume, total algal biomass expressed as biovolume ($\mu m^3/mL$) is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes for all species. Cells/volume refers to the number of cells of any organism that is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample volume, and generally are reported as cells or units per milliliter (mL) or liter (L). Cfs-day (See "Cubic foot per second-day") **Channel bars,** as used in this report, are the lowest prominent geomorphic features higher than the channel bed. Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. [See also "Biochemical oxygen demand (BOD)"] Clostridium perfringens (C. perfringens) is a spore-forming bacterium that is common in the feces of human and other warmblooded animals. Clostridial spores are being used experimentally as an indicator of past fecal contamination and presence of microorganisms that are resistant to disinfection and environmental stresses. (See also "Bacteria") - **Coliphages** are viruses that infect and replicate in coliform bacteria. They are indicative of sewage contamination of water and of the survival and transport of viruses in the environment. - **Color unit** is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale. - Confined aquifer is a term used to describe an aquifer containing water between two relatively impermeable boundaries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases, the water level can rise above the ground surface, yielding a flowing well. - **Contents** is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage. - **Continuous-record station** is a site where data are collected with sufficient frequency to define daily mean values and variations within a day. - **Control** designates a feature in the channel that physically affects the water-surface elevation and thereby determines the stage-discharge relation at the gage. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel. - **Control structure,** as used in this report, is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater. - Cubic foot per second (CFS, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second or approximately 449 gallons per minute, or 0.02832 cubic meters per second. The term "second-foot" sometimes is used synonymously with "cubic foot per second" but is now obsolete. - Cubic foot per second-day (CFS-DAY, Cfs-day, [(ft³/s)/d]) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.98347 acre-feet, 646,317 gallons, or 2,446.6 cubic meters. The daily mean discharges reported in the daily value data tables are numerically equal to the daily volumes in cfs-days, and the totals also represent volumes in cfs-days. - Cubic foot per second per square mile [CFSM, (ft³/s)/mi²] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area. (See also "Annual runoff") - **Daily mean suspended-sediment concentration** is the timeweighted concentration of suspended sediment passing a - stream cross section during a 24-hour day. (See also "Sediment" and "Suspended-sediment concentration") - **Daily record station** is a site where data are collected with sufficient frequency to develop a record of one or more data values per day. The frequency of data collection can range from continuous recording to periodic sample or data collection on a daily or near-daily basis. - **Data collection platform** (DCP) is an electronic instrument that collects, processes, and stores data from various sensors, and transmits the data by satellite data relay, line-of-sight radio, and/or landline telemetry. - **Data logger** is a microprocessor-based data acquisition system designed specifically to acquire, process, and store data. Data are usually downloaded from onsite data loggers for entry into office data systems. - **Datum** is a surface or point relative to which measurements of height and/or horizontal position are reported. A vertical datum is a horizontal surface used as the zero point for measurements of gage height, stage, or elevation; a horizontal datum is a reference for positions given in terms of latitude-longitude, State Plane coordinates, or UTM coordinates. (See also "Gage datum," "Land-surface datum," "National Geodetic Vertical Datum of 1929," and "North American Vertical Datum of 1988") - **Diatoms** are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton") - **Diel** is of or pertaining to a 24-hour period of time; a regular daily cycle. - Discharge, or flow, is the rate that matter passes through a cross section of a stream channel or other water body per unit of time. The term commonly refers to the volume of water (including, unless otherwise stated, any sediment or other constituents suspended or dissolved in the water) that passes a cross section in a stream channel, canal, pipeline, etc., within a given period of time (cubic feet per second). Discharge also can apply to the rate at which constituents, such as suspended sediment, bedload, and dissolved or suspended chemicals, pass through a cross section, in which cases the quantity is expressed as the mass of constituent that passes the cross section in a given period of time (tons per day). - **Dissolved** refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal and State agencies that collect water-quality data. Determinations of "dissolved" constituent concentrations are made on sample water that has been filtered. - **Dissolved oxygen** (DO) is the molecular oxygen (oxygen gas) dissolved in water. The concentration in water is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved-solids concentration. Photosynthesis and respiration by plants commonly cause diurnal variations in dissolved-oxygen concentration in water from some streams. Dissolved solids concentration in water is the quantity of dissolved material in a sample of water. It is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. In the mathematical calculation, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to convert it to carbonate. Alternatively, alkalinity concentration (as mg/L CaCO₃) can be converted to carbonate concentration by multiplying by 0.60. **Diversity index** (H) (Shannon index) is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is: $$\bar{d} = -\sum_{i \approx 1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n} ,$$ where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different. **Drainage area** of a stream at a specific location is that area upstream from the location, measured in a horizontal plane, that has a common outlet at the site for its
surface runoff from precipitation that normally drains by gravity into a stream. Drainage areas given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified. **Drainage basin** is a part of the Earth's surface that contains a drainage system with a common outlet for its surface runoff. (See "Drainage area") **Dry mass** refers to the mass of residue present after drying in an oven at 105°C, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. (See also "Ash mass," "Biomass," and "Wet mass") **Dry weight** refers to the weight of animal tissue after it has been dried in an oven at 65°C until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue. (See also "Wet weight") **Embeddedness** is the degree to which gravel-sized and larger particles are surrounded or enclosed by finer-sized particles. (See also "Substrate embeddedness class") Enterococcus bacteria are commonly found in the feces of humans and other warmblooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at 41°C on mE agar (nutrient medium for bacterial growth) and subsequent transfer to EIA medium. Enterococci include Streptococcus feacalis, Streptococcus feacium, Streptococcus avium, and their variants. (See also "Bacteria") **EPT Index** is the total number of distinct taxa within the insect orders Ephemeroptera, Plecoptera, and Trichoptera. This index summarizes the taxa richness within the aquatic insects that are generally considered pollution sensitive; the index usually decreases with pollution. Escherichia coli (E. coli) are bacteria present in the intestine and feces of warmblooded animals. E. coli are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5°C on mTEC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") Estimated (E) value of a concentration is reported when an analyte is detected and all criteria for a positive result are met. If the concentration is less than the method detection limit (MDL), an E code will be reported with the value. If the analyte is identified qualitatively as present, but the quantitative determination is substantially more uncertain, the National Water Quality Laboratory will identify the result with an E code even though the measured value is greater than the MDL. A value reported with an E code should be used with caution. When no analyte is detected in a sample, the default reporting value is the MDL preceded by a less than sign (<). For bacteriological data, concentrations are reported as estimated when results are based on non-ideal colony counts. **Euglenoids** (*Euglenophyta*) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark. (See also "Phytoplankton") **Extractable organic halides** (EOX) are organic compounds that contain halogen atoms such as chlorine. These organic compounds are semivolatile and extractable by ethyl acetate from air-dried streambed sediment. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of the streambed sediment. **Fecal coliform bacteria** are present in the intestines or feces of warmblooded animals. They often are used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5°C plus or minus 0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") Fecal streptococcal bacteria are present in the intestines of warmblooded animals and are ubiquitous in the environment. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at 35°C plus or minus 1.0°C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") **Fire algae** (*Pyrrhophyta*) are free-swimming unicells characterized by a red pigment spot. (See also "Phytoplankton") **Flow-duration percentiles** are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates. **Gage datum** is a horizontal surface used as a zero point for measurement of stage or gage height. This surface usually is located slightly below the lowest point of the stream bottom such that the gage height is usually slightly greater than the maximum depth of water. Because the gage datum itself is not an actual physical object, the datum usually is defined by specifying the elevations of permanent reference marks such as bridge abutments and survey monuments, and the gage is set to agree with the reference marks. Gage datum is a local datum that is maintained independently of any national geodetic datum. However, if the elevation of the gage datum relative to the national datum (North American Vertical Datum of 1988 or National Geodetic Vertical Datum of 1929) has been determined, then the gage readings can be converted to elevations above the national datum by adding the elevation of the gage datum to the gage reading. Gage height (G.H.) is the water-surface elevation, in feet above the gage datum. If the water surface is below the gage datum, the gage height is negative. Gage height often is used interchangeably with the more general term "stage," although gage height is more appropriate when used in reference to a reading on a gage. **Gage values** are values that are recorded, transmitted, and/or computed from a gaging station. Gage values typically are collected at 5-, 15-, or 30-minute intervals. **Gaging station** is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained. Gas chromatography/flame ionization detector (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride. Geomorphic channel units, as used in this report, are fluvial geomorphic descriptors of channel shape and stream velocity. Pools, riffles, and runs are types of geomorphic channel units considered for National Water-Quality Assessment (NAWQA) Program habitat sampling. Green algae (*Chlorophyta*) are unicellular or colonial algae with chlorophyll pigments similar to those in terrestrial green plants. Some forms of green algae produce mats or floating "moss" in lakes. The abundance of green algae in phytoplankton samples is expressed as the number of cells per milliliter (cells/mL) or biovolume in cubic micrometers per milliliter (mm³/mL). The abundance of green algae in periphyton samples is given in cells per square centimeter (cells/cm²) or biovolume per square centimeter (mm³/cm²). (See also "Phytoplankton" and "Periphyton") Habitat, as used in this report, includes all nonliving (physical) aspects of the aquatic ecosystem, although living components like aquatic macrophytes and riparian vegetation also are usually included. Measurements of habitat are typically made over a wider geographic scale than are measurements of species distribution. **Habitat quality index** is the qualitative description (level 1) of instream habitat and riparian conditions surrounding the reach sampled. Scores range from 0 to 100 percent with higher scores indicative of desirable habitat conditions for aquatic life. Index only applicable to wadable streams. **Hardness** of water is a physical-chemical characteristic that commonly is recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations (primarily calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO₃). **High tide** is the maximum height reached by each rising tide. The high-high and low-high tides are the higher and lower of the two high tides, respectively, of each tidal day. See NOAA web site: http://www.co-ops.nos.noaa.gov/tideglos.html **Hilsenhoff's Biotic Index** (HBI) is an indicator of organic pollution that uses tolerance values to weight taxa abundances; usually increases with pollution. It is calculated as follows: $$HBI = sum \frac{(n)(a)}{N} ,$$ where n is the number of individuals of each taxon, a is the tolerance value of each taxon, and N is the total number of organisms in the sample. Horizontal datum (See "Datum") **Hydrologic index stations** referred to in this report are continuous-record gaging stations that have been selected as representative of streamflow patterns for their respective regions. Station locations are shown on index maps. **Hydrologic unit** is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of
Water Data Coordination and delineated on the State Hydrologic Unit Maps by the USGS. Each hydrologic unit is identified by an 8-digit number. Inch (IN., in.), as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were uniformly distributed on it. (See also "Annual runoff") **Instantaneous discharge** is the discharge at a particular instant of time. (See also "Discharge") International Boundary Commission Survey Datum refers to a geodetic datum established at numerous monuments along the United States-Canada boundary by the International Boundary Commission. **Island,** as used in this report, is a mid-channel bar that has permanent woody vegetation, is flooded once a year on average, and remains stable except during large flood events. Laboratory reporting level (LRL) generally is equal to twice the yearly determined long-term method detection level (LT-MDL). The LRL controls false negative error. The probability of falsely reporting a nondetection for a sample that contained an analyte at a concentration equal to or greater than the LRL is predicted to be less than or equal to 1 percent. The value of the LRL will be reported with a "less than" (<) remark code for samples in which the analyte was not detected. The National Water Quality Laboratory (NWQL) collects quality-control data from selected analytical methods on a continuing basis to determine LT-MDLs and to establish LRLs. These values are reevaluated annually on the basis of the most current quality-control data and, therefore, may change. The LRL replaces the term 'non-detection value' (NDV). **Land-surface datum** (lsd) is a datum plane that is approximately at land surface at each ground-water observation well. Latent heat flux (often used interchangeably with latent heatflux density) is the amount of heat energy that converts water from liquid to vapor (evaporation) or from vapor to liquid (condensation) across a specified cross-sectional area per unit time. Usually expressed in watts per square meter. **Light-attenuation coefficient,** also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation: $$I = I_o e^{-\lambda L} ,$$ where I_o is the source light intensity, I is the light intensity at length L (in meters) from the source, λ is the light-attenuation coefficient, and e is the base of the natural logarithm. The light-attenuation coefficient is defined as $$\lambda = -\frac{1}{L} \log_e \frac{I}{I}.$$ **Lipid** is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic. Long-term method detection level (LT-MDL) is a detection level derived by determining the standard deviation of a minimum of 24 method detection limit (MDL) spike sample measurements over an extended period of time. LT-MDL data are collected on a continuous basis to assess year-to-year variations in the LT-MDL. The LT-MDL controls false positive error. The chance of falsely reporting a concentration at or greater than the LT-MDL for a sample that did not contain the analyte is predicted to be less than or equal to 1 percent. Low tide is the minimum height reached by each falling tide. The high-low and low-low tides are the higher and lower of the two low tides, respectively, of each tidal day. See NOAA web site: http://www.co-ops.nos.noaa.gov/tideglos.html. Macrophytes are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that usually are arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline. Mean concentration of suspended sediment (Daily mean suspended-sediment concentration) is the time-weighted concentration of suspended sediment passing a stream cross section during a given time period. (See also "Daily mean suspended-sediment concentration" and "Suspended-sediment concentration") **Mean discharge** (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. (See also "Discharge") **Mean high** or **low tide** is the average of all high or low tides, respectively, over a specific period. **Mean sea level** is a local tidal datum. It is the arithmetic mean of hourly heights observed over the National Tidal Datum Epoch. Shorter series are specified in the name; for example, monthly mean sea level and yearly mean sea level. In order that they may be recovered when needed, such datums are referenced to fixed points known as benchmarks. (See also "Datum") **Measuring point** (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level. **Megahertz** is a unit of frequency. One megahertz equals one million cycles per second. **Membrane filter** is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water. Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult. Method detection limit (MDL) is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. It is determined from the analysis of a sample in a given matrix containing the analyte. At the MDL concentration, the risk of a false positive is predicted to be less than or equal to 1 percent. **Method of Cubatures** is a method of computing discharge in tidal estuaries based on the conservation of mass equation. **Methylene blue active substances** (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds. **Micrograms per gram** (UG/G, μg/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed. Micrograms per kilogram (UG/KG, μ g/kg) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion. Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. One microgram per liter is equivalent to 1 part per billion. Microsiemens per centimeter (US/CM, μ S/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms. Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in milligrams per liter and is based on the mass of dry sediment per liter of water-sediment mixture. **Minimum reporting level** (MRL) is the smallest measured concentration of a constituent that may be reliably reported by using a given analytical method. **Miscellaneous site,** miscellaneous station, or miscellaneous sampling site is a site where streamflow, sediment, and/or water-quality data or water-quality or sediment samples are collected once, or more often on a random or discontinuous basis to provide better areal coverage for defining hydrologic and water-quality conditions over a broad area in a river basin. Most probable number (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes. **Multiple-plate samplers** are artificial substrates of known surface area used for obtaining benthic invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt. Nanograms per liter (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter. National Geodetic Vertical Datum of 1929 (NGVD 29) is a fixed reference adopted as a standard geodetic datum for elevations determined by leveling. It was formerly called "Sea Level Datum of 1929" or "mean sea level." Although the datum was derived from the mean sea level at 26 tide stations, it does not necessarily represent local mean sea level at any particular place. See NOAA web site: http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88. (See "North American Vertical Datum of 1988") **Natural substrate** refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives. (See also "Substrate") **Nekton** are the consumers in the aquatic environment and consist of large free-swimming organisms that are capable of sustained, directed mobility. **Nephelometric turbidity unit** (NTU) is the measurement for reporting turbidity that is based on use
of a standard suspension of formazin. Turbidity measured in NTU uses nephelometric methods that depend on passing specific light of a specific wavelength through the sample. **North American Datum of 1927** (NAD 27) is the horizontal control datum for the United States that was defined by a location and azimuth on the Clarke spheroid of 1866. North American Datum of 1983 (NAD 83) is the horizontal control datum for the United States, Canada, Mexico, and Central America that is based on the adjustment of 250,000 points including 600 satellite Doppler stations that constrain the system to a geocentric origin. NAD 83 has been officially adopted as the legal horizontal datum for the United States by the Federal government. North American Vertical Datum of 1988 (NAVD 88) is a fixed reference adopted as the official civilian vertical datum for elevations determined by Federal surveying and mapping activities in the United States. This datum was established in 1991 by minimum-constraint adjustment of the Canadian, Mexican, and United States first-order terrestrial leveling networks. **Open** or **screened interval** is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface. **Organic carbon** (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediment. May be reported as dissolved organic carbon (DOC), particulate organic carbon (POC), or total organic carbon (TOC). Organic mass or volatile mass of a living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass. (See also "Ash mass," "Biomass," and "Dry mass") **Organism count/area** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m²), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms. **Organism count/volume** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms. Organochlorine compounds are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds. **Parameter code** is a 5-digit number used in the USGS computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property. **Partial-record station** is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded. Particle size is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method utilizes the principle of Stokes law to calculate sediment particle sizes. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube, sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling). Particle-size classification, as used in this report, agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows: | Classification | Size (mm) | Method of analysis | |----------------|------------------|---------------------| | Clay | >0.00024 - 0.004 | Sedimentation | | Silt | >0.004 - 0.062 | Sedimentation | | Sand | >0.062 - 2.0 | Sedimentation/sieve | | Gravel | >2.0 - 64.0 | Sieve | | Cobble | >64 - 256 | Manual measurement | | Boulder | >256 | Manual measurement | The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. For the sedimentation method, most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis. **Peak flow (peak stage)** is an instantaneous local maximum value in the continuous time series of streamflows or stages, preceded by a period of increasing values and followed by a period of decreasing values. Several peak values ordinarily occur in a year. The maximum peak value in a year is called the annual peak; peaks lower than the annual peak are called secondary peaks. Occasionally, the annual peak may not be the maximum value for the year; in such cases, the maximum value occurs at midnight at the beginning or end of the year, on the recession from or rise toward a higher peak in the adjoining year. If values are recorded at a discrete series of times, the peak recorded value may be taken as an approximation of the true peak, which may occur between the recording instants. If the values are recorded with finite precision, a sequence of equal recorded values may occur at the peak; in this case, the first value is taken as the peak. - **Percent composition** or **percent of total** is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, mass, or volume. - **Percent shading** is a measure of the amount of sunlight potentially reaching the stream. A clinometer is used to measure left and right bank canopy angles. These values are added together, divided by 180, and multiplied by 100 to compute percentage of shade. - **Periodic-record station** is a site where stage, discharge, sediment, chemical, physical, or other hydrologic measurements are made one or more times during a year but at a frequency insufficient to develop a daily record. - **Periphyton** is the assemblage of microorganisms attached to and living upon submerged solid surfaces. Although primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality. - **Pesticides** are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. - pH of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7.0 standard units are termed "acidic," and solutions with a pH greater than 7.0 are termed "basic." Solutions with a pH of 7.0 are neutral. The presence and concentration of many dissolved chemical constituents found in water are affected, in part, by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms also are affected, in part, by the hydrogen-ion activity of water. - Phytoplankton is the plant part of the plankton. They are usually microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and commonly are known as algae. (See also "Plankton") - **Picocurie** (PC, pCi) is one trillionth (1 x 10⁻¹²) of the amount of radioactive nuclide represented by a curie (Ci). A curie is the quantity of radioactive nuclide that yields 3.7 x 10¹⁰ radioactive disintegrations per second (dps). A picocurie yields 0.037 dps, or 2.22 dpm (disintegrations per minute). - **Plankton** is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample. - **Polychlorinated biphenyls** (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having - various percentages of chlorine. They are similar in structure to organochlorine insecticides. - **Polychlorinated naphthalenes** (PCNs) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations. - **Pool,** as used in this report, is a small part of a stream reach with little velocity, commonly with water deeper than surrounding areas. - **Primary productivity** is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants. - **Primary productivity (carbon method)** is expressed as milligrams of carbon per area per unit time [mg C/(m²/time)] for periphyton and macrophytes or per volume [mg C/(m³/time)] for phytoplankton. The carbon method defines the amount of carbon dioxide consumed as measured by radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use with unenriched water samples. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity") - Primary productivity (oxygen method) is expressed as milligrams of oxygen per area per unit time [mg O/(m²/time)] for periphyton and macrophytes or per volume [mg O/(m³/time)] for phytoplankton. The oxygen method defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and
dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity") - Radioisotopes are isotopic forms of elements that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes. - **Reach,** as used in this report, is a length of stream that is chosen to represent a uniform set of physical, chemical, and biological conditions within a segment. It is the principal sampling unit for collecting physical, chemical, and biological data. Recoverable from bed (bottom) material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. (See also "Bed material") **Recurrence interval,** also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or nonexceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most of the times being less than the average and a few being substantially greater than the average. For example, the 100-year flood is the flow rate that is exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost two-thirds of all exceedances of the 100year flood occur less than 100 years after the previous exceedance, half occur less than 70 years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day, 10-year low flow $(7Q_{10})$ is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-thirds of the nonexceedances of the $7Q_{10}$ occur less than 10 years after the previous nonexceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous nonexceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100-year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10percent chance in any year that the annual minimum 7-daymean flow will be less than the $7Q_{10}$. **Replicate samples** are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition. Return period (See "Recurrence interval") **Riffle**, as used in this report, is a shallow part of the stream where water flows swiftly over completely or partially submerged obstructions to produce surface agitation. **River mileage** is the curvilinear distance, in miles, measured upstream from the mouth along the meandering path of a stream channel in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council and typically is used to denote location along a river. **Run**, as used in this report, is a relatively shallow part of a stream with moderate velocity and little or no surface turbulence. Runoff is the quantity of water that is discharged ("runs off") from a drainage basin during a given time period. Runoff data may be presented as volumes in acre-feet, as mean discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. (See also "Annual runoff") **Sea level**, as used in this report, refers to one of the two commonly used national vertical datums (NGVD 1929 or NAVD 1988). See separate entries for definitions of these datums. Sediment is solid material that originates mostly from disintegrated rocks; when transported by, suspended in, or deposited from water, it is referred to as "fluvial sediment." Sediment includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are affected by environmental and landuse factors. Some major factors are topography, soil characteristics, land cover, and depth and intensity of precipitation. Sensible heat flux (often used interchangeably with latent sensible heat-flux density) is the amount of heat energy that moves by turbulent transport through the air across a specified cross-sectional area per unit time and goes to heating (cooling) the air. Usually expressed in watts per square meter. **Seven-day, 10-year low flow** $(7Q_{10})$ is the discharge below which the annual 7-day minimum flow falls in 1 year out of 10 on the long-term average. The recurrence interval of the $7Q_{10}$ is 10 years; the chance that the annual 7-day minimum flow will be less than the $7Q_{10}$ is 10 percent in any given year. (See also "Annual 7-day minimum" and "Recurrence interval") **Shelves,** as used in this report, are streambank features extending nearly horizontally from the flood plain to the lower limit of persistent woody vegetation. **Sodium adsorption ratio** (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Sodium hazard in water is an index that can be used to evaluate the suitability of water for irrigating crops. **Soil heat flux** (often used interchangeably with soil heat-flux density) is the amount of heat energy that moves by conduction across a specified cross-sectional area of soil per unit time and goes to heating (or cooling) the soil. Usually expressed in watts per square meter. **Soil-water content** is the water lost from the soil upon drying to constant mass at 105°C; expressed either as mass of water per unit mass of dry soil or as the volume of water per unit bulk volume of soil. Specific electrical conductance (conductivity) is a measure of the capacity of water (or other media) to conduct an electrical current. It is expressed in microsiemens per centimeter at 25°C. Specific electrical conductance is a function of the types and quantity of dissolved substances in water and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water. **Stable isotope ratio** (per MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific water, to evaluate mixing of different water, as an aid in determining reaction rates, and other chemical or hydrologic processes. Stage (See "Gage height") **Stage-discharge relation** is the relation between the watersurface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time. **Streamflow** is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation. **Substrate** is the physical surface upon which an organism lives. **Substrate embeddedness class** is a visual estimate of riffle streambed substrate larger than gravel that is surrounded or covered by fine sediment (<2mm, sand or finer). Below are the class categories expressed as the percentage covered by fine sediment: 0 no gravel or larger substrate 3 26-50 percent 1 > 75 percent 4 5-25 percent 2 51-75 percent 5 < 5 percent</td> **Surface area of a lake** is that area (acres) encompassed by the boundary of the lake as shown on USGS topographic maps, or other available maps or photographs. Because surface area changes with lake stage, surface areas listed in this report represent those determined for the stage at the time the maps or photographs were obtained. **Surficial bed material** is the upper surface (0.1 to 0.2 foot) of the bed material that is sampled using U.S. Series Bed-Material Samplers. **Surrogate** is an analyte that behaves similarly to a target analyte, but that is highly unlikely to occur in a sample. A surrogate is added to a sample in known amounts before extraction and is measured with the same laboratory procedures used to measure the target analyte. Its purpose is to monitor method performance for an individual sample. **Suspended** (as used
in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is defined operationally as the material retained on a 0.45-micrometer filter. **Suspended, recoverable** is the amount of a given constituent that is in solution after the part of a representative suspended water-sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by directly analyzing the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. (See also "Suspended") **Suspended sediment** is the sediment maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. (See also "Sediment") Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 foot above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The analytical technique uses the mass of all of the sediment and the net weight of the water-sediment mixture in a sample to compute the suspended-sediment concentration. (See also "Sediment" and "Suspended sediment") Suspended-sediment discharge (tons/d) is the rate of sediment transport, as measured by dry mass or volume, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft³/s) x 0.0027. (See also "Sediment," "Suspended sediment," and "Suspended-sediment concentration") Suspended-sediment load is a general term that refers to a given characteristic of the material in suspension that passes a point during a specified period of time. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration. (See also "Sediment") Suspended solids, total residue at 105°C concentration is the concentration of inorganic and organic material retained on a filter, expressed as milligrams of dry material per liter of water (mg/L). An aliquot of the sample is used for this analysis. Suspended, total is the total amount of a given constituent in the part of a water-sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by directly analyzing portions of the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total concentrations of the constituent. (See also "Suspended") Synoptic studies are short-term investigations of specific water-quality conditions during selected seasonal or hydrologic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources. **Taxa (Species) richness** is the number of species (taxa) present in a defined area or sampling unit. **Taxonomy** is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata*, is the following: Kingdom: Animal Phylum: Arthropoda Class: Insecta Order: Ephemeroptera Family: Ephemeridae Genus: Hexagenia Species: Hexagenia limbata **Thalweg** is the line formed by connecting points of minimum **Thalweg** is the line formed by connecting points of minimum streambed elevation (deepest part of the channel). **Thermograph** is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table descriptions and refers to any instrument that records temperature whether on a chart, a tape, or any other medium. **Time-weighted average** is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water resulting from the mixing of flow proportionally to the duration of the concentration. **Tons per acre-foot** (T/acre-ft) is the dry mass (tons) of a constituent per unit volume (acre-foot) of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136. **Tons per day** (T/DAY, tons/d) is a common chemical or sediment discharge unit. It is the quantity of a substance in solution, in suspension, or as bedload that passes a stream section during a 24-hour period. It is equivalent to 2,000 pounds per day, or 0.9072 metric tons per day. Total is the amount of a given constituent in a representative whole-water (unfiltered) sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a watersuspended sediment mixture and that the analytical method determined at least 95 percent of the constituent in the sample.) Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warmblooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gramnegative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35°C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35°C plus or minus 1.0°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milliliters of sample. (See also "Bacteria") **Total discharge** is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on. Total in bottom material is the amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material." **Total length** (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together. **Total load** refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load. **Total organism count** is the number of organisms collected and enumerated in any particular sample. (See also "Organism count/volume") Total recoverable is the amount of a given constituent in a whole-water sample after a sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data for whole-water samples, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures may produce different analytical results. **Total sediment discharge** is the mass of suspended-sediment plus bed-load transport, measured as dry weight, that passes a cross section in a given time. It is a rate and is reported as tons per day. (See also "Bedload," "Bedload discharge," "Sediment," "Suspended sediment," and "Suspended-sediment concentration") Total sediment load or Total load is the sediment in transport as bedload
and suspended-sediment load. The term may be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It differs from total sediment discharge in that load refers to the material, whereas discharge refers to the quantity of material, expressed in units of mass per unit time. (See also "Sediment," "Suspended-sediment load," and "Total load") **Transect**, as used in this report, is a line across a stream perpendicular to the flow and along which measurements are taken, so that morphological and flow characteristics along the line are described from bank to bank. Unlike a cross section, no attempt is made to determine known elevation points along the line. **Turbidity** is the reduction in the transparency of a solution due to the presence of suspended and some dissolved substances. The measurement technique records the collective optical properties of the solution that cause light to be scattered and attenuated rather than transmitted in straight lines; the higher the intensity of scattered or attenuated light, the higher the value of the turbidity. Turbidity is expressed in nephelometric turbidity units (NTU). Depending on the method used, the turbidity units as NTU can be defined as the intensity of light of a specified wavelength scattered or attenuated by suspended particles or absorbed at a method specified angle, usually 90 degrees, from the path of the incident light. Currently approved methods for the measurement of turbidity in the USGS include those that conform to U.S. EPA Method 180.1, ASTM D1889-00, and ISO 7027. Measurements of turbidity by these different methods and different instruments are unlikely to yield equivalent values. Ultraviolet (UV) absorbance (absorption) at 254 or 280 nanometers is a measure of the aggregate concentration of the mixture of UV absorbing organic materials dissolved in the analyzed water, such as lignin, tannin, humic substances, and various aromatic compounds. UV absorbance (absorption) at 254 or 280 nanometers is measured in UV absorption units per centimeter of pathlength of UV light through a sample. **Unconfined aquifer** is an aquifer whose upper surface is a water table free to fluctuate under atmospheric pressure. (See "Water-table aquifer") Vertical datum (See "Datum") Volatile organic compounds (VOCs) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings. VOC contamination of drinking-water supplies is a human health concern because many are toxic and are known or suspected human carcinogens. **Water table** is that surface in a ground-water body at which the water pressure is equal to the atmospheric pressure. Water-table aquifer is an unconfined aquifer within which the water table is found. Water year in USGS reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 2003, is called the "2003 water year." **WDR** is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.) Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir. Wet mass is the mass of living matter plus contained water. (See also "Biomass" and "Dry mass") Wet weight refers to the weight of animal tissue or other substance including its contained water. (See also "Dry weight") **WSP** is used as an acronym for "Water-Supply Paper" in reference to previously published reports. **Zooplankton** is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and often are large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. (See also "Plankton") # TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY The USGS publishes a series of manuals, the Techniques of Water-Resources Investigations, describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. Reports in the Techniques of Water-Resources Investigations series, which are listed below, are online at: http://water.usgs.gov/pubs/twri/ Printed copies are for sale by the USGS, Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office), telephone 1-888-ASK-USGS. Please telephone 1-888-ASK-USGS for current prices, and refer to the title, book number, chapter number, and mention the "U.S. Geological Survey Techniques of Water-Resources Investigations." Products can then be ordered by telephone, or online at: http://www.usgs.gov/sales.html, or by FAX to (303)202-4693 of an order form available online at: http://mac.usgs.gov/isb/pubs/forms/ Prepayment by major credit card or by a check or money order payable to the "U.S. Geological Survey" is required. # **Book 1. Collection of Water Data by Direct Measurement** # Section D. Water Quality - *1–D1.* Water temperature—Influential factors, field measurement, and data presentation, by H.H. Stevens, Jr., J.F. Ficke, and G.F. Smoot: USGS–TWRI book 1, chap. D1. 1975. 65 p. - 1–D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W.W. Wood: USGS–TWRI book 1, chap. D2. 1976. 24 p. #### **Book 2. Collection of Environmental Data** #### Section D. Surface Geophysical Methods - 2–D1. Application of surface geophysics to ground-water investigations, by A.A.R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS–TWRI book 2, chap. D1. 1974. 116 p. - 2–D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS–TWRI book 2, chap. D2. 1988. 86 p. # Section E. Subsurface Geophysical Methods - 2–E1. Application of borehole geophysics to water-resources investigations, by W.S. Keys and L.M. MacCary: USGS–TWRI book 2, chap. E1. 1971. 126 p. - 2–E2. Borehole geophysics applied to ground-water investigations, by W.S. Keys: USGS–TWRI book 2, chap. E2. 1990. 150 p. #### Section F. Drilling and Sampling Methods 2–F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS–TWRI book 2, chap. F1. 1989. 97 p. # **Book 3. Applications of Hydraulics** ## Section A. Surface-Water Techniques - 3–A1. General field and office procedures for indirect discharge measurements, by M.A. Benson and Tate Dalrymple: USGS–TWRI book 3, chap. A1. 1967. 30 p. - 3–A2. *Measurement of peak discharge by the slope-area method*, by Tate Dalrymple and M.A. Benson: USGS–TWRI book 3, chap. A2. 1967. 12 p. - 3–A3. *Measurement of peak discharge at culverts by indirect methods*, by G.L. Bodhaine: USGS–TWRI book 3, chap. A3. 1968. 60 p. - 3–A4. Measurement of peak discharge at width contractions by indirect methods, by H.F. Matthai: USGS-TWRI book 3, chap. A4. 1967. 44 p. - 3–A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS–TWRI book 3, chap. A5. 1967. 29 p. - 3–A6. *General procedure for gaging streams*, by R.W. Carter and Jacob Davidian: USGS–TWRI book 3, chap. A6. 1968. 13 p. - 3–A7. *Stage measurement at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A7. 1968. 28 p. - 3–A8. *Discharge measurements at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A8. 1969. 65 p. - 3–A9. *Measurement of time of travel in streams by dye tracing*, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS–TWRI book 3, chap. A9. 1989. 27 p. - 3–Al0. *Discharge ratings at gaging stations*, by E.J. Kennedy: USGS–TWRI book 3, chap. Al0. 1984. 59 p. - 3–A11. *Measurement of discharge by the moving-boat method,* by G.F. Smoot and C.E. Novak: USGS–TWRI book 3, chap. A11. 1969. 22 p. - 3–A12. *Fluorometric procedures for dye tracing*, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS–TWRI book 3, chap. A12. 1986. 34 p. - 3–A13. *Computation of continuous records of streamflow*, by E.J. Kennedy: USGS–TWRI book 3, chap. A13. 1983. 53 p. - 3–A14. *Use of flumes in measuring discharge*, by F.A. Kilpatrick and V.R. Schneider: USGS–TWRI book 3, chap. A14. 1983. 46 p. - 3–A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS–TWRI book 3, chap. A15. 1984. 48 p. - 3–A16. *Measurement of discharge using tracers*, by F.A. Kilpatrick and E.D. Cobb:
USGS–TWRI book 3, chap. A16. 1985. 52 p. - 3–A17. Acoustic velocity meter systems, by Antonius Laenen: USGS–TWRI book 3, chap. A17. 1985. 38 p. - 3–A18. *Determination of stream reaeration coefficients by use of tracers*, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS–TWRI book 3, chap. A18. 1989. 52 p. - 3–A19. *Levels at streamflow gaging stations*, by E.J. Kennedy: USGS–TWRI book 3, chap. A19. 1990. 31 p. - 3–A20. Simulation of soluble waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS–TWRI book 3, chap. A20. 1993. 38 p. 3–A21. *Stream-gaging cableways*, by C. Russell Wagner: USGS–TWRI book 3, chap. A21. 1995. 56 p. #### Section B. Ground-Water Techniques - 3–B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS–TWRI book 3, chap. B1. 1971. 26 p. - 3–B2. Introduction to ground-water hydraulics, a programed text for self-instruction, by G.D. Bennett: USGS–TWRI book 3, chap. B2. 1976. 172 p. - 3–B3. Type curves for selected problems of flow to wells in confined aquifers, by J.E. Reed: USGS–TWRI book 3, chap. B3. 1980. 106 p. - 3–B4. *Regression modeling of ground-water flow,* by R.L. Cooley and R.L. Naff: USGS–TWRI book 3, chap. B4. 1990. 232 p. - 3–B4. Supplement 1. Regression modeling of ground-water flow—Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS–TWRI book 3, chap. B4. 1993. 8 p. - 3–B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS–TWRI book 3, chap. B5. 1987. 15 p. - 3–B6. The principle of superposition and its application in ground-water hydraulics, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI book 3, chap. B6. 1987. 28 p. - 3–B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS–TWRI book 3, chap. B7. 1992. 190 p. - 3–B8. System and boundary conceptualization in ground-water flow simulation, by T.E. Reilly: USGS–TWRI book 3, chap. B8. 2001. 29 p. #### Section C. Sedimentation and Erosion Techniques - 3–C1. *Fluvial sediment concepts*, by H.P. Guy: USGS–TWRI book 3, chap. C1. 1970. 55 p. - 3–C2. Field methods for measurement of fluvial sediment, by T.K. Edwards and G.D. Glysson: USGS–TWRI book 3, chap. C2. 1999. 89 p. - *3–C3.* Computation of fluvial-sediment discharge, by George Porterfield: USGS–TWRI book 3, chap. C3. 1972. 66 p. #### **Book 4. Hydrologic Analysis and Interpretation** # Section A. Statistical Analysis - 4–A1. *Some statistical tools in hydrology*, by H.C. Riggs: USGS–TWRI book 4, chap. A1. 1968. 39 p. - 4–A2. *Frequency curves*, by H.C. Riggs: USGS–TWRI book 4, chap. A2. 1968. 15 p. 4–A3. Statistical methods in water resources, by D.R. Helsel and R.M. Hirsch: USGS–TWRI book 4, chap. A3. 1991. Available only online at http://water.usgs.gov/pubs/twri/twri4a3/. (Accessed August 30, 2002.) # Section B. Surface Water - 4–B1. *Low-flow investigations*, by H.C. Riggs: USGS–TWRI book 4, chap. B1. 1972. 18 p. - 4–B2. *Storage analyses for water supply*, by H.C. Riggs and C.H. Hardison: USGS–TWRI book 4, chap. B2. 1973. 20 p. - 4–B3. Regional analyses of streamflow characteristics, by H.C. Riggs: USGS–TWRI book 4, chap. B3. 1973. 15 p. # Section D. Interrelated Phases of the Hydrologic Cycle 4–D1. Computation of rate and volume of stream depletion by wells, by C.T. Jenkins: USGS–TWRI book 4, chap. D1. 1970. 17 p. #### **Book 5. Laboratory Analysis** #### Section A. Water Analysis - 5–A1. Methods for determination of inorganic substances in water and fluvial sediments, by M.J. Fishman and L.C. Friedman, editors: USGS–TWRI book 5, chap. A1. 1989. 545 p. - 5–A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.: USGS–TWRI book 5, chap. A2. 1971. 31 p. - 5–A3. *Methods for the determination of organic substances in water and fluvial sediments*, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS–TWRI book 5, chap. A3. 1987. 80 p. - 5–A4. *Methods for collection and analysis of aquatic biological and microbiological samples*, by L.J. Britton and P.E. Greeson, editors: USGS–TWRI book 5, chap. A4. 1989. 363 p. - 5–A5. Methods for determination of radioactive substances in water and fluvial sediments, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS–TWRI book 5, chap. A5. 1977. 95 p. - 5–A6. *Quality assurance practices for the chemical and biological analyses of water and fluvial sediments*, by L.C. Friedman and D.E. Erdmann: USGS–TWRI book 5, chap. A6. 1982. 181 p. # Section C. Sediment Analysis 5–C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS–TWRI book 5, chap. C1. 1969. 58 p. # **Book 6. Modeling Techniques** ## Section A. Ground Water - 6–A1. A modular three-dimensional finite-difference ground-water flow model, by M.G. McDonald and A.W. Harbaugh: USGS–TWRI book 6, chap. A1. 1988. 586 p. - 6–A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS–TWRI book 6, chap. A2. 1991. 68 p. - 6–A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS–TWRI book 6, chap. A3. 1993. 136 p. - 6–A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS–TWRI book 6, chap. A4. 1992. 108 p. - 6–A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS–TWRI book 6, chap. A5. 1993. 243 p. - 6–A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler: USGS–TWRI book 6, chap. A6. 1996. 125 p. - 6–A7. User's guide to SEAWAT: A computer program for simulation of three-dimensional variable-density groundwater flow, by Weixing Guo and Christian D. Langevin: USGS–TWRI book 6, chap. A7. 2002. 77 p. #### **Book 7. Automated Data Processing and Computations** #### Section C. Computer Programs - 7–C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS–TWRI book 7, chap. C1. 1976. 116 p. - 7–C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L.F. Konikow and J.D. Bredehoeft: USGS–TWRI book 7, chap. C2. 1978. 90 p. - 7–C3. A model for simulation of flow in singular and interconnected channels, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS–TWRI book 7, chap. C3. 1981. 110 p. #### **Book 8. Instrumentation** #### Section A. Instruments for Measurement of Water Level 8–A1. *Methods of measuring water levels in deep wells,* by M.S. Garber and F.C. Koopman: USGS–TWRI book 8, chap. A1. 1968. 23 p. 8–A2. *Installation and service manual for U.S. Geological Survey manometers*, by J.D. Craig: USGS–TWRI book 8, chap. A2. 1983. 57 p. # Section B. Instruments for Measurement of Discharge 8–B2. Calibration and maintenance of vertical-axis type current meters, by G.F. Smoot and C.E. Novak: USGS–TWRI book 8, chap. B2. 1968. 15 p. #### **Book 9. Handbooks for Water-Resources Investigations** # Section A. National Field Manual for the Collection of Water-Quality Data - 9–A1. National field manual for the collection of water-quality data: Preparations for water sampling, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A1. 1998. 47 p. - 9–A2. National field manual for the collection of water-quality data: Selection of equipment for water sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A2. 1998. 94 p. - 9–A3. National field manual for the collection of waterquality data: Cleaning of equipment for water sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A3. 1998. 75 p. - 9–A4. National field manual for the collection of water-quality data: Collection of water samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A4. 1999. 156 p. - 9–A5. National field manual for the collection of water-quality data: Processing of water samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A5. 1999, 149 p. - 9–A6. National field manual for the collection of water-quality data: Field measurements, edited by F.D. Wilde and D.B. Radtke: USGS–TWRI book 9, chap. A6. 1998. Variously paginated. - 9–A7. National field manual for the collection of water-quality data: Biological indicators, edited by D.N. Myers and F.D. Wilde: USGS–TWRI book 9, chap. A7. 1997 and 1999. Variously paginated. - 9–A8. National field manual for the collection of waterquality data: Bottom-material samples, by D.B. Radtke: USGS–TWRI book 9, chap. A8. 1998. 48 p. - 9–A9. National field manual for the collection of water-quality data: Safety in field activities, by S.L. Lane and R.G. Fay: USGS–TWRI book 9, chap. A9. 1998. 60 p. # **Other USGS Methods Report:** OFR 93-125. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory--Determination of inorganic and organic constituents in water and fluvial sediments, by M.J. Fishman, ed., 1993. 217 p. **Table 10**. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print) [P, present;--, no data] | · | | | | | Per | iod of record | l (by water ye | ar) | | _ | |----------
---|--|--------------------------------|-----------------------------|----------|---------------|----------------|-----------|----------|---------| | | Part S-Hudson Bay Basin Part S-Hudson Part S-Hudson Part | | | | | | | | | | | Station | Station name | Station name Drainage area (square miles) Daily or monthly Daily or monthly Daily or monthly Part Specific conduct area condu | | | | | | | | | | number | | ` • | • | | conduct- | tempera- | Sediment | Chemistry | Sediment | Biology | | | | Part 5 | 5Hudson B | ay Basin | | | | | | | | 05010000 | Belly River at international boundary | 74.8 | 1947-64 | 1948-64 | | | | | | | | 05010500 | North Fork Belly River at international boundary | 10.1 | 1947-55 | 1948-55 | | | | | | | | 05010700 | Mountain View Irrigation District Canal near Mtn. View, Alberta | | 1935-78 | | | | | | | | | 05011000 | Belly River near Mountain View, Alberta | 121 | 1912-78 | 1912-78 | | | | | | | | 05011500 | Waterton River near international boundary | 61.0 | 1947-64 | 1948-64 | | | | | | | | 05012000 | Street Creek at international boundary | 6.0 | 1948-55 | | | | | | | | | 05012500 | Boundary Creek at international boundary | 21.0 | 1948-64 | 1948-64 | | | | | | | | 05013000 | Waterton River near Waterton Park, Alberta | 238 | | 1933, | | | | | | | | 05013500 | St. Mary Lake near St. Mary | 130 | 1929-61 | | | | | | | | | 05013600 | St. Mary River near St. Mary | 130 | 1961-62 | | | | | | | | | 05013700 | St. Mary River above Swiftcurrent Creek, near Babb | 173 | 1902-15 | 1902-15 | | | | | | | | 05013900 | Grinnell Creek at Grinnell Glacier, near Many Glacier | 1.1 | 1959-71 | 1965-66, | | | | | | | | 05014000 | Grinnell Creek near Many Glacier | 3.32 | 1949-78 | 1950-78 | | | | | | | | 05014300 | Swiftcurrent Creek above Swiftcurrent Lake, nr Many Glacier | | 2003 | 2003 | | | | | | | | 05014500 | Swiftcurrent Creek at Many Glacier | 30.9 | 1912-P | 1913-P | | 1966-69 | | | 1966 | | | 05015000 | Canyon Creek near Many Glacier | 7.1 | 1918-37 | 1921-27,
1929-31, | | | | | | | | 05015500 | Lake Sherburne at Sherburne | 64.1 | 1915-P | | | | | | | | | 05016000 | Swiftcurrent Creek at Sherburne | 64.6 | | 1913-P | | | | 1990-92 | 1996-P | | | 05016400 | Swiftcurrent Creek at mouth, near Babb | | | | | | | | 1996 | | | 05016500 | Swiftcurrent Creek near Babb | 98.6 | 1902-10 | 1904-07, | | | | | | | | 05017000 | Lower St. Mary Lake near Babb | 276 | 1929-55 | | | | | | | | | 05017500 | St. Mary River near Babb | 276 | 1901-02,
1910-25,
1950-P | 1902,
1911-25,
1951-P | | | | 1965 | | | | 05018000 | St. Mary Canal at intake, near Babb | | 1918-50,
1997-P | | | | | | | | | 05018500 | St. Mary Canal at St. Mary Crossing, near Babb | | 1918-P | | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | d (by water ye | ar) | | | |--|---|------------------------------------|---|--|-------------------|---------------------------|----------------|------------------|--------------|--------------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct- | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 5Huc | lson Bay Bas | sinContinue | <u>d</u> | | | | | | | 05019000 | St. Mary Canal at Hudson Bay Divide, near Browning | | 1917-66 | | | | | 1965,
1981-83 | | | | 05019500 | St. Mary River below St. Mary Canal, near Babb | 286 | 1929-50 | 1929-33,
1935-50 | | | | | | | | 05020000
05020500 | Kennedy Creek near Babb St. Mary River at international boundary | 60.8
465 | 1905
1902-P | 1964,1975
1903-P |
1978-81 |
1978-79 | |
1978-93 |
1978-93 |
1978-93 | | | | Part 6- | -Missouri Ri | iver Basin | | | | | | | | 06006000
06007000
06008000
06010000
06010500 | Red Rock Creek above Lakes, near Lakeview Tom Creek near Lakeview Odell Creek above Taft Ranch, near Lakeview Red Rock River near Lakeview Red Rock River at Metzel Fork, near Monida | 39.2
6.43
17.7
237
264 | 1997-P
1989
1993-98
1933-37
1925-29 | 1997-P
1989
1994-98
 |

 |

 |

 |

 |

 |

 | | 06010600 | Red Rock River at Brundage Bridge, near Lakeview | 277 | 1988-89 | 1989 | | | | | | | | 06011000 | Red Rock River at Kennedy Ranch, near Lakeview | 323 | 1936-67 | 1937-42,
1945-54,
1956-67,
1984 | | | | | | | | 06011400 | Long Creek near Lakeview | 36 | | 1960-67,
1969,1984 | | | | | | | | 06011500 | Red Rock River above Lima Reservoir, near Monida | 431 | 1911,
1914-18,
1925,1930 | | | | | | | | | 06011900 | Red Rock River tributary near Monida | 0.37 | | 1960-67,
1984 | | | | | | | | 06012000 | Lima Reservoir near Monida | 570 | 1940-P | | | | | | | | | 06012500 | Red Rock River below Lima Reservoir, near Monida | 570 | 1911-19,
1925-69,
1974-82,
1985-P | 1912-18,
1926-69,
1974-82,
1985-P | | | | | | | | 06013000 | Red Rock River at Lima | 602 | 1907-11 | | | | | | | | | 06013200 | Traux Creek near Lima | 4.06 | | 1960-74,
1984 | | | | | | | | 06013400 | Muddy Creek near Dell | 63.4 | | 1960-74,
1984 | | | | | | | | 06013500 | Big Sheep Creek below Muddy Creek, near Dell | 278 | 1936,
1946-53,
1977-79 | 1946-53,
1960-91 | | 1977-79 |
1977-79 | | 1977-79 | | | 06013900 | Sage Creek tributary near Dell | 0.34 | | 1959-67 | | | | | | | | 06014000 | Red Rock River near Dell | 1,421 | 1942-67 | 1943-67 | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | _ | | | | | Per | iod of record | l (by water yea | ar) | | | |----------|---|-------------------|---|--|-----------------------|---------------------------|-----------------|---|----------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 6Misso | ouri River B | asinContinu | <u>ied</u> | | | | | | | 06014500 | Red Rock River at Red Rock | 1,548 | 1890,
1951-52,
1974-83 | 1974-83 | | | | | | | | 06015000 | Horse Prairie Creek near Grant | 325 | 1946-53 | 1946-53 | | | | | | | | 06015300 | Clark Canyon Reservoir near Grant | 2,321 | 1964-P | | | | | | | | | 06015400 | Beaverhead River near Grant | 2,322 | 1962-83 | 1963-83 | | | | | | | | 06015430 | Clark Canyon near Dillon | 18.0 | | 1969,
1974-P | | | | | | | | 06015500 | Grasshopper Creek near Dillon | 348 | 1921-33,
1946-54,
1955-58,
1960-61 | 1921-32,
1946-53,
1955-58,
1960-73,
1975 | | | | 1986 | | | | 06016000 | Beaverhead River at Barretts | 2,737 | 1907-P | 1908-P | 1965-78 | 1965-78 | | 1965-78,
1986 | | | | 06016500 | Rattlesnake Creek near Dillon | 23.9 | 1946-49 | | | | | | | | | 06016900 | Beaverhead River tributary near Dillon | 0.93 | | 1960-74 | | | | | | | | 06017000 | Beaverhead River at Dillon | 2,895 | 1950-52,
1963-71
2002-P | 1951-52,
1964-71
2002-P | | | | | | | | 06017500 | Blacktail Deer Creek near Dillon | 312 | 1946-54,
1955-66 | 1946-53,
1955-66,
1984 | | | | | | | | 06017600 | Blacktail Deer Creek at Dillon | | | | | | | 1986 | | | | 06018000 | Beaverhead River near Dillon | 3,484 | 1951-52,
1963-83 | 1951-52,
1964-83 | | | | | | | | 06018200 | Beaverhead River tributary No. 2 near Dillon | 0.88 | | 1958-65 | | | | | | | | 06018500 | Beaverhead River near Twin Bridges | 3,619 | 1935-P | 1936-44,
1946-P | | 2001-P | 1962-74 | 1950-51,
1962-81,
1986,
1999-P | 1999-P | | | 06019000 | Ruby River above Warm Springs Creek, near Alder | 145 | 1948-53 | 1948-53 | | | | | | | | 06019400 | Sweetwater Creek near Alder | 81.5 | | 1974-91 | | | | | | | | 06019500 | Ruby River above Reservoir, near Alder | 534 | 1938-P | 1939-P | | | | | 1994 | | | 06019800 | Idaho Creek near Alder | 11.0 | | 1960-85 | | | | | | | | 06020000 | Ruby River at damsite, near Alder | 592 | 1911-14,
1935-37 | | | | | | | | | 06020600 | Ruby River below Reservoir, near Alder | 596 | 1962-P | 1963-P | | | | | 1994 | | | 06021000 | Ruby River near Alder | 614 | 1929-39,
1946-61 | 1929-39,
1947-60 | | | | | | | | 06021500 | Ruby River at Laurin | 650 | 1946-61 | 1947-60 | | | | | | | | 06022000 | Ruby River below Ramshorn Creek, near Sheridan | 843 | 1946-53 | 1947-53 | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | Period of record (by water year) | | | | | | | | | | |----------|---|-------------------|----------------------------------|---------------------------------|-------------------|---------------------------|---------------------|---------------------------|----------|---------|--|--| | | | Drainage | Discharge | or contents | | | Water | quality | | | | | | Station | Station name | area | | | | Daily | | | Periodic | | | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct- | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | | | Part 6Misse | ouri River B | asinContinu | <u>ied</u> | | | | | | | | | 06022500 | Ruby River near Sheridan | 863 | 1946-51 | | | | | | | | | | | 06023000 | Ruby River near Twin Bridges | 935 | 1940-43,
1946-65,
1979-81 | 1942-73,
1947-65,
1980-81 | | 1979-81 | | 1986 | 1965 | | | | | 06023500 | Big Hole River near Jackson | 44.0 | 1948-54 | 1948-53 | | | | | | | | | | 06024000 | Miner Creek near Jackson | 17.6 | 1948-54 | 1948-53 | | | | | | | | | | 06024450 | Big Hole River below Big Lake Creek, at Wisdom | 575 | 1988-P | 1988-P | | 1988-P | | | | | | | | 06024470 | Swamp Creek near Wisdom | 66.1 | 1995-96 | 1995-96 | | | | | | | | | | 06024500 | Trail Creek near Wisdom | 71.4 | 1948-54,
1966-72 | 1948-53,
1967-72 | | | | | | | | | | 06024510 | West Fork Ruby Creek near Wisdom | 13.4 | 1995-96 | 1995-96 | | | | | | | | | | 06024540 | Big Hole River below Mudd Creek, near Wisdom | 1,267 | 1997-P | 1998-P | | | | | | | | | | 06024580 | Big Hole River near Wise River | 1,611 | 1979-81 | 1980-81 | | | | | | | | | | 06024590 | Wise River near Wise River | 214 | 1973-85 | 1973-85 | | | | | | | | | | 06025000 | Big Hole River near Dewey | 1,990 | 1910-13 | | | | | | | | | | | 06025100 | Quartz Hill Gulch near Wise River | 14.3 | | 1974-P | | | | | | | | | | 06025250 | Big Hole River at Maiden Rock, near Divide | 2,199 | 1997-2002 | 1998-2002 | | | | | | | | | | 06025270 | Moose Creek above McClean Creek, near Divide | 31.9 | 1998-99 | 1998-99 | | | | | | | | | | 06025300 | Moose Creek near Divide | 42.3 | | 1960-74 | | | | | | | | | | 06025480 | Rock Creek below Browns Lake, near Glen | 23.0 | 1998-99 | 1998-99 | | | | | | | | | | 06025500 | Big Hole River near Melrose | 2,476 | 1923-P | 1924-40,
1942-P | | 1960-64,
1977-P | 1960-64 | 1957,
1961,
1961-64 | | | | | | 06025700 | Willow Creek diversions to Birch Creek, near Glen | | 1946-53,
1955-66 | | | | | | | | | | | 06025800 | Willow Creek near Glen | 35.6 | 1962-66,
1997-99 | 1998-99 | | | | 1963-65 | 1964-65 | | | | | 06026000 | Birch Creek near Glen | 36.0 | 1946-53,
1955-76 | 1946-53,
1955-76 | | | | 1959-62 | 1960-61 | | | | | 06026210 | Big Hole River near Glen | 2,655 | 1997-P | 1998-P | | | | | | | | | | 06026400 | Big Hole River near Twin Bridges | 2,762 | 1979-81 | 1980-81 | | | | 1986 | | | | | | 06026500 | Jefferson River near Twin Bridges | 7,632 | 1940-43,
1958-72,
1994-P | 1942-43,
1958-72,
1994-P | | 1994-2002 | 1960-62,
1965-72 | 1958-62,
1965-72 | 1971-72 | | | | | 06027000 | Jefferson River near Silver Star | 7,683 | 1910-16,
1920-39 | 1911-16,
1921-39,
1966 | | | | | | | | | | 06027200 | Jefferson River at Silver Star | 7,683 | 1972-74 | 1973-74 | | | | 1973-74 | 1974 | | | | | 06027500 | Bell Creek near Waterloo | 5.63 | 1941-42 | | | | | | | | | | | 06027700 | Fish Creek near Silver Star | 38.9 | 1959-91 | 1959-91 | | | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of recor | l (by water ye | ar) | | | |----------|--|-------------------|------------------------------|-----------------------------------|-----------------------|---------------------------|----------------|-----------|-----------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 6Misso | ouri River Ba | asinContinu | <u>ed</u> | | | | | | | 06028000 | Big Pipestone Creek near Whitehall | 108 | 1910-11 | | | | | | | | | 06028500 | Little Pipestone Creek near Whitehall | 30.7 | 1935-40 | 1935-40 | | | | | | | | 06028700 | Big Pipestone Creek at Whitehall | | | | | | | 1986 | | | | 06029000 | Whitetail Creek near Whitehall | 30.8 | 1949-68 | 1950-53,
1955-68,
1981 | | | | | | | | 06029500 | Little Whitetail Creek near Whitetail | 91.0 | 1911 | | | | | | | | | 06030000 | Whitetail Creek at Whitehall | 179 | 1911 | | | | | | | | | 06030200 | Jefferson River tributary near Whitehall | 1.85 | | 1960-75 | | | | | | | | 06030300 | Jefferson River tributary No. 2 near Whitehall | 4.50 | | 1958-P | | | | | | | | 06030500 | Boulder River above Rock Creek, near Basin | 19.4 | 1936,
1946-53,
1955-57 | 1947-53,
1955-57,
1975,1981 | | | | | | | | 06031000 | Rock Creek at CCC Camp, near Bernice | 9.87 | 1936 | | | | | | | | | 06031450 | Boulder River above Kleinsmith Gulch, near Basin | | | | | | | 1997-P | 1997-P | | | 06031500 | Boulder River at Basin | 219 | 1921-23 | | | | | 1997-99 | 1997-99 | | | 06031600 | Basin Creek at Basin | | | | | | | 1997-P | 1997-P | | | 06031950 | Cataract Creek near Basin | 30.6 | | 1973-P | | | | 1997-99 | 1997-99 | | | 06031960 | Cataract Creek at Basin | | | | | | | 1997-P | 1997-P | | | 06032000 | Boulder River near Basin | 292 | 1919-20 | | | | | 1997-99 | 1997-99 | | | 06032300 | High Ore Creek near Basin | 8.86 | 1997 | 1997 | | | 1997 | 1997-2002 | 1997-2002 | | | 06032400 | Boulder River below Little Galena Gulch near Boulder | 318 | 1997 | 1997 | | | 1997 | 1997-P | 1997-P | | | 06032500 | Muskrat Creek near Boulder | 6.09 | 1912-14 | | | | | | | | | 06033000 | Boulder River near Boulder | 381 | 1929-72,
1985-P | 1929-72,
1975,1981,
1985-P | | | | 1997-99 | 1997-99 | | | 06033500 | North Fork Little Boulder River near Boulder | 18.8 | 1926-27 | | | | | | | | | 06033900 | Boulder River near Cardwell | 756 | | | | | | 1986 | 1997 | | | 06034000 |
South Boulder River near Jefferson Island | 27.5 | 1926-33 | 1926-33 | | | | | | | | 06034300 | South Boulder River near Cardwell | | | | | | | 1986 | | | | 06034500 | Jefferson River at Sappington | 9,277 | 1895-1905,
1938-69 | 1895-1905,
1939-69,
1975 | | | | | | | | 06034700 | Sand Creek at Sappington | 9.41 | | 1960-74 | | | | | | | | 06034800 | Jefferson River tributary No. 3 near Sappington | 1.14 | | 1960-74 | | | | | | | | 06035000 | Willow Creek near Harrison | 83.8 | 1938-2002 | 1938-2002 | | 2002 | | | | | | 06035500 | Norwegian Creek near Harrison | 22.4 | 1938-43,
1946-51 | 1938-43,
1947-51 | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | /ear) | | | | | | | | | |----------|--|-------------------|---------------------------------|---|-----------------------|---------------------------|----------------|--------------------|--------------------|---------|--|--|--|--|--|--| | | | Drainage | Discharge | or contents | | | Water | quality | | | | | | | | | | Station | Station name | area | | | | Daily | | | Periodic | | | | | | | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | | | | | | | Part 6Miss | ouri River B | asinContinu | <u>ıed</u> | | | | | | | | | | | | | 06036500 | Willow Creek near Willow Creek | 165 | 1919-33,
1946-53,
1955-57 | 1920-29,
1931-32,
1947-53,
1955-56 | | | | 1986 | | | | | | | | | | 06036600 | Jefferson River tributary No. 4 near Three Forks | 0.53 | | 1960-74,
1982-83 | | | | | | | | | | | | | | 06036650 | Jefferson River near Three Forks | 9,532 | 1978-P | 1979-P | | 1980-81
2000-P | | 1986-87,
1999-P | 1999-P | | | | | | | | | 06036700 | Jefferson River tributary No. 5 near Three Forks | 3.69 | | 1960-73,
1980,
1982-83 | | | | | | | | | | | | | | 06036800 | Firehole River near Old Faithful, Yellowstone National Park | | | | | | | 1958 | | | | | | | | | | 06036905 | Firehole River near West Yellowstone | 282 | 1984-96
2003 | 1984-96
2003 | 1983-88 | 1983-93
2003 | | 1987,1989 | | | | | | | | | | 06037000 | Gibbon River near West Yellowstone | 118 | 1913-16,
1984-96 | 1984-96 | 1983-88 | 1983-93 | | 1987,
1989 | | | | | | | | | | 06037100 | Gibbon River at Madison Junction, Yellowstone Nat'l Park | 126 | 2003 | 2003 | | 2003 | | | | | | | | | | | | 06037500 | Madison River near West Yellowstone | 420 | 1913-73,
1983-86,
1989-P | 1914-17,
1919-73,
1984-86,
1989-P | 1983-86 | 1983-86 | | 1959,
1986-95 | 1989-90
1992-95 | | | | | | | | | 06037600 | Madison River above Hebgen Lake, near West Yellowstone | | | | | | | 1993-94 | 1993-94 | | | | | | | | | 06037700 | South Fork Madison River above Denny Creek, near West
Yellowstone | | | | | | | 1987-88 | | | | | | | | | | 06038000 | Hebgen Lake near Grayling | 904 | 1936-P | | | | | | | | | | | | | | | 06038500 | Madison River below Hebgen Lake, near Grayling | 905 | 1909-P | 1940-P | | | | 1986-95 | 1992-95 | | | | | | | | | 06038550 | Cabin Creek near West Yellowstone | 30.3 | | 1974-P | | | | | | | | | | | | | | 06038800 | Madison River at Kirby Ranch, near Cameron | 1,065 | 1959-63,
1978-P | 1960-61,
1963,
1985-P | | 1995-2002 | 1960 | 1959 | 1959-60 | | | | | | | | | 06039000 | West Fork Madison River near Lakeview | 11.9 | 1936 | | | | | | | | | | | | | | | 06039200 | West Fork Madison River near Cameron | 220 | 1965-67 | 1966-67 | | | | 1986-88 | | | | | | | | | | 06039500 | Madison River at Lyon | 1,346 | 1928-32 | | | | | 1959 | | | | | | | | | | 06040000 | Madison River near Cameron | 1,669 | 1952-63,
1968-70 | 1952-58,
1960-63,
1968-70 | | | | 1988,
1993-95 | 1993-95 | | | | | | | | | 06040010 | Blaine Spring Creek near Cameron | 3.42 | 1971-72 | | | | | | | | | | | | | | | 06040300 | Jack Creek near Ennis | 51.5 | 1973-86,
1992 | 1974-86,
1991-92 | | | | 1980 | | | | | | | | | | 06040400 | Meadow Creek near McAllister | | | | | | | 1986 | | | | | | | | | | 06040500 | Ennis Lake near McAllister | 2,181 | 1936-P | | | | | | | | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | (by water ye | ar) | | | |----------------------|--|-------------------|--|-----------------------------------|-----------------------|---------------------------|--------------|---------------------------------|------------------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 6Misso | ouri River Ba | asinContinu | ed | | | | | | | 06040800
06041000 | Madison River above Powerplant, near McAllister
Madison River below Ennis Lake, near McAllister | 4,690
2,186 | 2002-P
1901-P | 2002-P
1943-P | |
1977-P | | 1972-73,
1986-87,
1991-95 |
1991-95 | 1972-73 | | 06041300 | Hot Springs Creek near Norris | 72.5 | | | | | | 1986-87,
1993-94 | 1993-94 | | | 06041500 | Madison River near Norris | 2,288 | 1890-93,
1910 | | | | | 1993-95 | 1993-95 | | | 06041700 | Cherry Creek near Norris | | | | | | | 1986-87,
1993-94 | 1993-94 | | | 06042000 | Madison River below Cherry Creek, near Norris | 2,387 | 1897-1905 | 1898-1905 | | | | | | | | 06042500 | Madison River near Three Forks | 2,511 | 1893-97,
1928-32,
1941-50 | 1894-96
1929-32,
1942-50 | | | | | | | | 06042600 | Madison River at Three Forks | 2,531 | | | | | | 1986-87
1990,
1993-95 | 1990,
1993-95 | | | 06043000 | Taylor Creek near Grayling | 98.0 | 1946-54,
1955-57,
1966-67 | 1947-53,
1955-57,
1967 | | | | | | | | 06043200 | Squaw Creek near Gallatin Gateway | 40.4 | | 1959-75 | | | | | | | | 06043300 | Logger Creek near Gallatin Gateway | 2.48 | | 1959-P | | | | | | | | 06043500 | Gallatin River near Gallatin Gateway | 825 | 1889-94,
1930-69,
1971-81,
1985-P | 1890-94,
1931-81,
1985-P | | 2001-2002 | | 1949-51,
1986-87,
1998 | | 1998 | | 06044000 | Gallatin River near Salesville | 833 | 1895-1905,
1910-13,
1921-23 | 1896-1905,
1912-13,
1921-23 | | | | | | | | 06044100 | Wilson Creek near Gallatin Gateway | 5.33 | 1952-53 | | | | | | | | | 06044200 | West Fork Wilson Creek near Gallatin Gateway | 3.81 | 1952-53 | | | | | | | | | 06044300 | Big Bear Creek near Gallatin Gateway | 13.2 | 1952-53 | | | | | | | | | 06044400 | Little Bear Creek near Gallatin Gateway | 3.87 | 1952-53 | | | | | | | | | 06044500 | South Cottonwood Creek near Gallatin Gateway | 21.9 | 1951-53 | | | | | | | | | 06045000 | Gallatin River at Axtell Bridge, near Gallatin Gateway | 927 | 1950-54 | | | | | | | | | 06045200 | Fish Creek near Gallatin Gateway | | 1952-53 | | | | | | | | | 06045300 | Yellow Dog Creek near Belgrade | 6.85 | 1952-53 | | | | | | | | | 06045350 | Godfrey Creek near Belgrade | 6.32 | 1952-53 | | | | | | | | | 06045400 | Baker Creek near Manhattan | | 1952-53 | | | | | | | | | 06045500 | Gallatin River near Belgrade | 965 | 1950-54 | | | | | 1949 | | | | 06046000 | Gallatin River near Manhattan | 970 | 1950-54 | | | | | 1949 | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | Period of record (by water year) | | | | | | | | | | | |----------|---|-------------------|---|-----------------------------------|-------------------|---------------------------|----------|-----------|----------|---------|--|--|--| | | | Drainage | Discharge | or contents | | | Water | quality | | | | | | | Station | Station name | area | | _ | | Daily | | | Periodic | | | | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct- | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | | | | Part 6Miss | ouri River Ba | asinContinu | <u>ied</u> | | | | | | | | | | 06046100 | Ridgley Creek near Manhattan | | 1952-53 | | | | | | | | | | | | 06046200 | Gallatin River above Camp Creek, near Manhattan | | | | | | | 1949 | | | | | | | 06046300 | Camp Creek near Belgrade | 34.5 | 1952-53 | | | | | | | | | | | | 06046400 | Randall Creek near Manhattan | | 1952-53 | | | | | | | | | | | | 06046500 | Rocky Creek near Bozeman | 50.5 | 1951-53 | 1952-53,
1959-91 | | | | 1949 | | | | | | | 06046520 | Unnamed Creek near Bozeman | 2.63 | | 1997 | | | | | | | | | | | 06046700 | Pitcher Creek near Bozeman | 2.33 | | 1960-75,
1981 | | | | | | | | | | | 06047000 | Bear Canyon near Bozeman | 17.0 | 1951-53 | 1952-53,
1959-73,
1975,1981 | | | | | | | | | | | 06047500 | Sourdough Creek near Bozeman | 28.2 | 1951-53 | | | | | | | | | | | | 06048000 | East Gallatin River at Bozeman | 148 | 1939-61 | 1940-61,
1981 | | | | 1949,1951 | | | | | | | 06048500 | Bridger Creek near Bozeman | 62.5 | 1946-69,
1971-72,
1987 | 1946-69,
1971-72,
1981,1987 | | | | 1949 | | | | | | | 06048600 | Lyman Creek near Bozeman | 1.75 | 1952-53 | | | | | 1949 | | | | | | | 06048700 | East Gallatin River below Bridger Creek, near Bozeman | 226 | 2002-P | 2002-P | | 2002 | | | | | | | | | 06048800 | Deer Creek near Bozeman | | 1953 | | | | | | |
 | | | | 06048900 | East Gallatin River near Belgrade | | 1952-53 | | | | | | | | | | | | 06049000 | Middle Cottonwood Creek near Bozeman | 4.25 | 1951-53 | | | | | | | | | | | | 06050000 | Hyalite Creek at Hyalite Ranger Station, near Bozeman | 48.2 | 1895-96,
1898-1900,
1902,1904,
1935-95 | 1898-1899,
1902,
1935-95 | | | | 1949 | | | | | | | 06050100 | Hyalite Creek near Belgrade | | 1952 | | | | | | | | | | | | 06050200 | Bostwick Creek near Belgrade | 5.04 | 1952-53 | | | | | 1949 | | | | | | | 06050400 | Thompson Creek near Belgrade | | 1952-53 | | | | | | | | | | | | 06050450 | Ben Hart Creek near Belgrade | | 1952-53 | | | | | | | | | | | | 06050500 | Ross Creek near Belgrade | 1.25 | 1951-53 | | | | | 1949,1951 | | | | | | | 06050700 | Truman Creek near Belgrade | 2.94 | 1952-53 | | | | | | | | | | | | 06051000 | Reese Creek near Belgrade | 21.5 | 1951-53 | | | | | | | | | | | | 06051200 | Bear Creek near Belgrade | 4.30 | 1952-53 | | | | | | | | | | | | 06051300 | Foster Creek near Belgrade | | 1953 | | | | | | | | | | | | 06051500 | Dry Creek at Andrus Ranch, near Manhattan | 96.2 | 1952-53 | | | | | | | | | | | | 06051700 | Reynolds (Quagle) Creek near Manhattan | | 1953 | | | | | | | | | | | | 06052000 | Dry Creek at Brownell Ranch, near Manhattan | 104 | 1951 | | | | | | | | | | | | 06052050 | Story Creek near Manhattan | | 1952-53 | | | | | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | |----------|--|-------------------|--|--|-----------------------|---------------------------|----------------|------------------------------------|---|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment 1965, 1999-P 1965, 1973-95, 1999-P | Biology | | | | Part 6Misso | ouri River Ba | asinContinu | <u>ed</u> | | | | | | | 06052100 | Cowan Creek near Manhattan | | 1952-53 | | | | | | | | | 06052200 | Gibson Creek near Manhattan | | 1952-53 | | | | | 1949,1951 | | | | 06052300 | Bull Run Creek near Manhattan | | 1952-53 | | | | | | | | | 06052500 | Gallatin River at Logan | 1,795 | 1893-1905,
1928-P | 1895-1900,
1902-1905,
1929-33,
1935-P | | 1979-85,
2001-P | | 1949,1951,
1957,1986,
1999-P | | | | 06053000 | Sixteenmile Creek at Ringling | 79.0 | 1950-55 | 1951-55 | | | | | | | | 06053050 | Lost Creek near Ringling | 9.59 | | 1974-P | | | | | | | | 06053400 | Sixteenmile Creek near Toston | | | | | | | 1986 | | | | 06053500 | Broadwater East Canal near Toston | | 1941-49 | | | | | | | | | 06054000 | Broadwater West Canal near Toston | | 1941-49 | | | | | | | | | 06054500 | Missouri River at Toston | 14,669 | 1890-91,
1910-16,
1941-P | 1890,
1910-16,
1941-P | 1973-81 | 1949-53
1973-P | 1949-53 | 1949-51,
1972-95,
1999-P | 1973-95, | 1972-94 | | 06055000 | Crow Creek near Townsend | 48.6 | 1912-13 | | | | | 1950,1986,
1988-91 | 1989-90 | | | 06055500 | Crow Creek near Radersburg | 76.6 | 1901,
1919-29,
1966-72,
1989-90 | 1901,
1920-29,
1966-72,
1975,1981,
1989-90 | | | | | | | | 06056200 | Castle Creek tributary near Ringling | 2.51 | | 1960-74,
1981,
1989-90 | | | | | | | | 06056300 | Cabin Creek near Townsend | 11.8 | | 1960-P | | | | | | | | 06056500 | Deep Creek near Townsend | 65.4 | 1910-15 | | | | | | | | | 06056600 | Deep Creek below North Fork Deep Creek, near Townsend | 87.7 | | 1959-73,
1975,1981,
1989-90 | | | | | | | | 06057000 | Missouri River near Townsend | 15,343 | 1891-1904 | 1892-1903,
1964 | | | | | | | | 06057400 | Beaver Creek above Weasel Creek, near Winston | 21.5 | | | | | | 1950,
1988-91 | 1989-90 | | | 06057500 | Lake Sewell near Helena | 15,894 | 1936-53 | | | | | | | | | 06058000 | Missouri River at Canyon Ferry | 15,894 | 1889 | | | | | | | | | 06058500 | Canyon Ferry Lake near Helena | 15,904 | 1953-P | | | | | | | | | 06058502 | Missouri River below Canyon Ferry Dam, near Helena | 15,904 | | | 1968-87 | | | 1968-87 | | | | 06058700 | Mitchell Gulch near East Helena | 8.09 | | 1959-2002 | | | | | | | | 06058900 | Prickly Pear Creek below Anderson Gulch, near Jefferson City | 14.0 | | 1989-90 | | | | 1988-90 | 1989-90 | | | 06059000 | Dutchman Creek near Alhambra | 9.78 | 1921-24 | | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | | | |----------|--|-------------------|---|--|-----------------------|---------------------------|----------------|-------------------------------|--|---------|--|--| | | | Drainage | Discharge or contents | | Water quality | | | | | | | | | Station | Station name | area | | | | Daily | | | Periodic Sediment 1999-P 1989-90 1997-99 1997-98 2002-P 2002-P | | | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | | Biology | | | | | <u> </u> | art 6Misso | ouri River Ba | asinContinu | ed | | | | | | | | | 06059500 | Warm Springs Creek at Alhambra | 20.6 | 1921-24 | | | | | | | | | | | 06060000 | Clancy Creek at Clancy | 33.1 | 1921-23 | | | | | | | | | | | 06060500 | Lump Gulch at Foley's Ranch, near Clancy | 33.0 | 1921-24 | | | | | | | | | | | 06061000 | Lump Gulch at Zastrow's Ranch, near Clancy | 43.4 | 1908-13 | 1909-13,
1981 | | | | | | | | | | 06061500 | Prickly Pear Creek near Clancy | 192 | 1908-16,
1921-33,
1945-69,
1978-2002 | 1911-16,
1923-33,
1946-53,
1955-69,
1975,
1979-2002 | | | | 1950,
1999-P | 1999-P | | | | | 06061700 | Jackson Creek near East Helena | 3.44 | | 1961-75,
1981,
1989-90 | | | | | | | | | | 06061800 | Crystal Creek near East Helena | 3.77 | | 1961-75,
1981,
1989-90 | | | | | | | | | | 06061900 | McClellan Creek near East Helena | 33.2 | | 1961-75,
1981,
1989-90 | | | | 1988-90 | 1989-90 | | | | | 06062000 | Prickly Pear Creek at East Helena | 251 | 1908-13 | | | | | 1995 | | | | | | 06062010 | Prickly Pear Creek below East Helena | | | | | | | 1971 | | | | | | 06062500 | Tenmile Creek near Rimini | 30.9 | 1914-94,
1997-P | 1915-94,
1997-P | | | | 1981,
1997-99 | 1997-99 | | | | | 06062700 | Little Porcupine Creek tributary near Helena | 0.39 | | 1959-73,
1981,1989 | | | | | | | | | | 06062750 | Tenmile Creek at Tenmile Water Treatment Plant, near Rimini | 51.1 | 1997-P | 1997-P | | | | 1999-P | 1999-P | | | | | 06063000 | Tenmile Creek near Helena | 96.5 | 1908-54,
1997-98 | 1909-54,
1975,1981,
1997-98 | | | | 1950-51,
1997-98
2002-P | | | | | | 06063500 | Sevenmile Creek at Birdseye | 31.9 | 1908-13 | | | | | | | | | | | 06064000 | Sevenmile Creek near Helena | | 1908 | | | | | | | | | | | 06064100 | Tenmile Creek at Green Meadow Drive, at Helena | 161 | 1997-98 | 1997-98 | | | | 2002-P | 2002-P | | | | | 06064150 | Tenmile Creek above Prickly Pear Creek, near Helena | 188 | 1997-98 | 1997-98 | | | | | | | | | | 06064500 | Lake Helena near Helena | 610 | 1945-P | | | | | | | | | | | 06065000 | Hauser Lake near Helena | 16,876 | 1936-P | | | | | | | | | | | 06065500 | Missouri River below Hauser Dam, near Helena | 16,876 | 1923-42
1995-P | 1923-42,
1995-P | | | | | | | | | | 06066000 | Holter Lake near Wolf Creek | 17,149 | 1936-P | | | | | | | | | | | 06066500 | Missouri River below Holter Dam, near Wolf Creek | 17,149 | 1945-P | 1946-P | | 2000-P | | | | | | | | 06067000 | Little Prickly Pear Creek above Deadman Creek, near Marysville | 20.1 | 1909-11 | | | | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | Period of recor | | | | | | ord (by water year) | | | | | |----------|---|-------------------|---------------------|----------------------------------|-----------------------|---------------------------|----------|---------------------|----------|---------|--|--| | | | Drainage | Discharge | or contents | | | Water | quality | | | | | | Station | Station name | area | | | | Daily | | | Periodic | | | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | | Biology | | | | | | Part 6Misso | ouri River B | asinContinu | <u>ed</u> | | | | | | | | | 06067500 | Deadman Creek near Marysville | 9.52 | 1909-11 | | | | | | | | | | | 06068000 | Lost Horse Creek near Marysville | 13.1 | 1909-11 | | | | | | | | | | | 06068500 | Little Prickly Pear Creek near Marysville | 44.4 | 1913-33 | 1913-32 | | | | | | | | | | 06069000 | Marsh Creek near Marysville | 6.07 | 1909-12 | | | | | | | | | | | 06070000 | Canyon Creek near Canyon Creek | 73.8 | 1921-23 | | | | | | | | | | | 06070500 | Cottonwood Creek near Canyon Creek | 16.5 | 1921-22 | | | | | | | | | | | 06071000 | Little Prickly Pear Creek near Canyon Creek | 183 | 1909-11,
1913-24 | 1909-11,
1913-24 | | | | | | | | | | 06071080 | Sieben Ranch ditch below Clark Creek, near Wolf Creek | | | | | | | | 1964-67 | | | | |
06071100 | Little Prickly Pear Creek at Sieben Ranch, near Wolf Creek | 270 | 1962-67 | 1962-67 | | | 1962-67 | 1964 | 1966 | | | | | 06071130 | Little Prickly Pear Creek above Medicine Rock Creek, near Wolf
Creek | | | | | | | | 1964-67 | | | | | 06071180 | Medicine Rock Creek near Wolf Creek | | | | | | | | 1964-67 | | | | | 06071200 | Lyons Creek near Wolf Creek | 29.9 | | 1959-73,
1975 | | | | | 1964-67 | | | | | 06071220 | Little Prickly Pear Creek below Lyons Creek, near Wolf Creek | | | | | | | | 1965-67 | | | | | 06071230 | Little Prickly Pear Creek above Sheep Creek, near Wolf Creek | | | | | | | | 1964 | | | | | 06071240 | Sheep Creek near Wolf Creek | | | | | | | | 1964-67 | | | | | 06071290 | Wolf Creek at Wolf Creek | | | | | | | | 1964-64 | | | | | 06071300 | Little Prickly Pear Creek at Wolf Creek | 381 | 1962-67,
1992-P | 1962-65,
1967,1975,
1992-P | | 2001-2002 | 1962-67 | 1964 | 1964-67 | | | | | 06071400 | Dog Creek near Craig | 15.7 | | 1960-75 | | | | | | | | | | 06071500 | Missouri River at Craig | 17,739 | 1890-92 | | | | | | | | | | | 06071600 | Wegner Creek at Craig | 35.7 | | 1960-91 | | | | | | | | | | 06072000 | Dearborn River above Falls Creek, near Clemons | 69.6 | 1908-12 | | | | | | | | | | | 06072500 | Falls Creek near Clemons | 37.6 | 1908-12 | | | | | | | | | | | 06073000 | Dearborn River near Clemons | 123 | 1921-23,
1929-53 | 1921-23
1929-53,
1964,1975 | | | | | | | | | | 06073500 | Dearborn River near Craig | 325 | 1946-69,
1994-P | 1946-69,
1975,
1994-P | | 1993-P | | 1991,
1999-P | 1999-P | | | | | 06073600 | Black Rock Creek near Augusta | 5.54 | | 1974-P | | | | | | | | | | 06074000 | Missouri River at Cascade | 18,493 | 1902-15,
1953 | 1903-15 | | | | | | | | | | 06074500 | Smith River near White Sulphur Springs | 30.7 | 1923-31,
1934-36 | 1923-31,
1934-36 | | | | | | | | | | 06075500 | Smith River above Fivemile Creek, near White Sulphur Springs | 73.2 | 1934-43 | 1934-43 | | | | | | | | | | 06075600 | Fivemile Creek near White Sulphur Springs | 6.42 | | 1960-74 | | | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | Period of record (by water year) | | | | | | | | | | | |----------|---|----------------------------------|---------------------------------|---------------------------------|-------------------|---------------------------|----------|-----------|----------|------------------|--|--| | | | Drainage | Discharge | or contents | Water quality | quality | | | | | | | | Station | Station name | area | | | • | Daily | | | Periodic | | | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct- | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | | | Part 6Misso | ouri River B | asinContinu | <u>ied</u> | | | | | | | | | 06075700 | North Fork Smith River near mouth, near White Sulphur Springs | 185 | | | | | | 1993-95 | 1993-95 | 1993-95 | | | | 06075800 | South Fork Smith River at mouth, near White Sulphur Springs | 174 | | | | | | 1993-95 | 1993-95 | 1993-95 | | | | 06075900 | Big Birch Creek at mouth, near White Sulphur Springs | 49.6 | | | | | | 1993-95 | 1993-95 | 1993-95 | | | | 06076000 | Newlan Creek near White Sulphur Springs | 7.27 | 1946-54 | 1946-53,
1960-73 | | | | | | | | | | 06076500 | Newlan Creek near damsite, near White Sulphur Springs | 44.8 | 1950-57 | 1951-57 | | | | | | | | | | 06076550 | Newlan Creek at mouth, near White Sulphur Springs | | | | | | | 1993-95 | 1993-95 | 1993-95 | | | | 06076600 | Camas Creek at mouth, near White Sulphur Springs | | | | | | | 1993-95 | 1993-95 | 1992-95 | | | | 06076650 | Benton Gulch at mouth, near White Sulphur Springs | 57.6 | | | | | | 1993-95 | 1993-95 | 1993-95 | | | | 06076690 | Smith River near Fort Logan | 846 | 1978-96 | 1978-96 | | | | 1993-95 | 1993-95 | 1993-95 | | | | 06076700 | Sheep Creek near Neihart | 5.22 | | 1960-91 | | | | | | | | | | 06076800 | Nugget Creek near Neihart | 1.50 | | 1959-73 | | | | | | | | | | 06077000 | Sheep Creek near White Sulphur Springs | 42.8 | 1941-72 | 1942-72,
1975,1981 | | | | 1956,1980 | 1980 | | | | | 06077090 | Sheep Creek near mouth, near White Sulphur Springs | 192 | | | | | | 1993-95 | 1993-95 | 1991,
1993-95 | | | | 06077200 | Smith River below Eagle Creek, near Fort Logan | 1,088 | 1996-P | 1997-P | | 1997-P | | | | | | | | 06077300 | Trout Creek near Eden | 13.2 | | 1974-84 | | | | | | | | | | 06077500 | Smith River near Eden | 1,594 | 1951-69 | 1951-69,
1975,1981 | | | | | | | | | | 06077700 | Smith River tributary near Eden | 1.44 | | 1960-73,
1975 | | | | | | | | | | 06077800 | Goodman Coulee near Eden | 22.1 | | 1959-82 | | | | | | | | | | 06078000 | Smith River at Truly | 2,006 | 1905-07,
1929-32 | 1905-07,
1929-32,
1953 | | | | 1991 | | | | | | 06078200 | Missouri River near Ulm | 20,941 | 1957-P | 1948,1953,
1958-P | | | | | | | | | | 06078230 | Sand Coulee Creek above Cottonwood Creek, at Centerville | 78.8 | 1995-96 | 1995-96 | | | | 1994-96 | | | | | | 06078250 | Cottonwood Creek near Stockett | | 1995-96 | 1995-96 | | | | 1994-96 | | | | | | 06078260 | Number Five Coulee below Giffen Spring, near Stockett | 16.7 | 1995-96 | 1995-96 | | | | 1994-96 | | | | | | 06078270 | Sand Coulee at Sand Coulee | 6.36 | 1995-96 | 1995-96 | | | | 1994-96 | | | | | | 06078500 | North Fork Sun River near Augusta | 258 | 1911-12,
1946-68,
1989-93 | 1911-12,
1946-68,
1989-93 | | | | | 1989-93 | | | | | 06079000 | South Fork Sun River near Augusta | 252 | 1911-12 | | | | | | | | | | | 06079500 | Gibson Reservoir near Augusta | 575 | 1930-P | | | | | 1951 | | | | | | 06079600 | Beaver Creek at Gibson Dam, near Augusta | 20.8 | | 1959-73 | | | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | |----------|---|-------------------|-----------------------------|-----------------------------|-----------------------|---------------------------|----------------|--------------------|--------------------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic Sediment | | | number | 2-11-11-1 | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | | Biology | | | | Part 6Misso | ouri River B | asinContinu | ed | | | | | | | 06080000 | Sun River near Augusta | 609 | 1889-91,
1904-40 | 1890,
1905-29,
1964 | | | | | | | | 06080500 | Pishkun Reservoir near Augusta | | 1936-95 | | | | | 1951 | | | | 06080700 | Spring Valley Canal below Spring Valley drop, near Fairfield | | 1967-68 | | | | | | | | | 06080800 | Spring Valley Canal above Upper Turnbull drop, near Fairfield | | 1967-68 | | | | | | | | | 06080900 | Sun River below diversion dam, near Augusta | 609 | 1967-80 | 1964,
1968-80 | 1968-79 | | | 1968-79 | | | | 06081000 | Floweree Big Canal near Augusta | | 1912 | | | | | | | | | 06081500 | Willow Creek near Augusta | 96.1 | 1905-25 | 1905-1910,
1912-25 | | | | | | | | 06082000 | Willow Creek Reservoir near Augusta | | 1936-95 | | | | | | | | | 06082200 | Sun River below Willow Creek, near Augusta | 827 | 1967-74 | 1964,
1968-75 | | | | | | | | 06082500 | Smith Creek near Augusta | 25.0 | 1906-13 | 1906-12 | | | | | | | | 06083000 | Nilan Reservoir near Augusta | | 1951-95 | | | | | | | | | 06083500 | Ford Creek near Augusta | 19.4 | 1906-13 | 1906-12,
1964 | | | | | | | | 06084000 | Smith Creek below Ford Creek, near Augusta | 74.0 | 1946-52 | 1946-52,
1964,1975 | | | | 1951 | | | | 06084500 | Elk Creek at Augusta | 157 | 1905-25 | 1905-24,
1964,1975 | | | | | | | | 06085000 | Crown Butte Canal at Riebling | | 1912 | | | | | | | | | 06085500 | Crown Butte Canal near Simms | | 1912 | | | | | | | | | 06085800 | Sun River at Simms | 1,320 | 1953,
1966-79.
1997-P | 1964,
1966-79,
1997-P | | | | 1996-98 | 1996-98 | | | 06086000 | Sun River at Fort Shaw | 1,417 | 1912-28 | 1913-28 | | | | | | | | 06086500 | Sun River Canal at Sun River | ´ | 1912 | | | | | | | | | 06087000 | Sun River Canal at Vaughn | | 1912 | | | | | | | | | 06087500 | Sun River at Sun River | 1,454 | 1905-12 | 1906-12 | | | | | | | | 06087900 | Muddy Creek tributary near Power | 3.15 | | 1963-78,
1986 | | | | | | | | 06088000 | Muddy Creek near Power | 137 | 1935-40,
1982-83 | 1982-83 | | | | 1992 | | | | 06088100 | Spring Coulee near Power | 30.4 | 1982-83 | 1982 | | | | 1992 | | | | 06088200 | Tank Coulee near Power | 31.0 | 1982-83 | 1982 | | | | 1992 | | | | 06088300 | Muddy Creek near Vaughn | 282 | 1968-87,
1996-P | 1968-87,
1996-P | 1968-82 | 1968-79 | 1968-82 | 1968-82,
1992-P | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | Q | | | | | Period of record (by water year) | | | | | | | | |----------|---|-------------------|---------------------------------|--|----------------------------------|---------------------------|----------|-----------------------------|---|--------------------|--|--| | | | Drainage | Discharge | or contents | | | Water | quality | | | | | | Station | Station name | area | | | | Daily | | | Periodic | | | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct- | Water
tempera-
ture | Sediment | Chemistry |
1968,
1971-81,
1993-P
1987-94
1996-P

1994-95 | Biology | | | | | | Part 6Miss | ouri River B | asinContinu | <u>ed</u> | | | | | | | | | 06088500 | Muddy Creek at Vaughn | 314 | 1925-26.
1934-68,
1971-P | 1925,
1934-37,
1939-68,
1971-P | 1968,
1972-82 | 1968,
1971-79 | 1971-82 | 1968,
1972-82,
1992-P | 1971-81, | | | | | 06089000 | Sun River near Vaughn | 1,849 | 1897,
1934-P | 1934-Р | 1969-P | 1969-79
1999-P | | 1969-P | | 1987-94 | | | | 06089300 | Sun River tributary near Great Falls | 21.0 | | 1956-73,
1975,
1979-80 | | | | | | | | | | 06090100 | Missouri River at Black Eagle Dam, at Great Falls | | | | | | | 1951 | | | | | | 06090130 | Missouri River below Rainbow Dam, near Great Falls | | | | | | | 1971 | | | | | | 06090300 | Missouri River near Great Falls | 23,292 | 1953,
1956-P | 1952-P | | | | 1994-95 | 1994-95 | | | | | 06090500 | Belt Creek near Monarch | 368 | 1951-82 | 1952-82 | | 1977-81 | | | | | | | | 06090550 | Little Otter Creek near Raynesford | 39.5 | | 1974-P | | | | | | | | | | 06090570 | Big Otter Creek near Belt | 197 | 1994-98 | 1994-98 | | | | | | | | | | 06090590 | Anaconda Drain at Belt | 0.05 | 1995-96 | 1995-96 | | | | 94-96 | | | | | | 06090600 | Belt Creek near Belt | 700 | 1905-07 | | | | | | | | | | | 06090610 | Belt Creek near Portage | 799 | 1980-83 | 1981-83 | | 1981-83 | | 1981-83 | 1981-83 | | | | | 06090650 | Lake Creek near Power | 83.8 | 1990-P | 1990-P | 1992-96 | 1992-95 | 1992-95 | 1990-96 | | | | | | 06090700 | Highwood Creek near Highwood | 57.8 | 1905-06 | | | | | | | | | | | 06090720 | Highwood Creek near Portage | 122 | 1980-83 | 1981-83 | | 1981-83 | | 1981-83 | 1981-83 | 1981 | | | | 06090800 | Missouri River at Fort Benton | 24,749 | 1890-P | 1891-1899,
1901-P | | 1981-82 | 1980 | 1969-73
1981-86 | 1965,
1980-86 | 1969-73
1981-86 | | | | 06090810 | Ninemile Coulee near Fort Benton | 16.9 | | 1972-73,
1975-90 | | | | | | | | | | 06091000 | Two Medicine River near East Glacier | 51.1 | 1912-13,
1918-24,
1962-64 | 1912,
1918-21,
1923-24,
1963-64 | | | | | | | | | | 06091500 | Two Medicine River at Midvale | | 1902-03 | | | | | | | | | | | 06091700 | Two Medicine River below South Fork, near Browning | 250 | 1977-P | 1977-P | | | | 1988-89 | | | | | | 06091850 | Two Medicine Canal wasteway to Mission Lake, near Blackfoot | | | | | | | 1971 | | | | | | 06091852 | Mission Lake near Blackfoot | | | | | | | 1971-75 | | | | | | 06091853 | Spring Creek at Mission Lake outlet, near Cut Bank | | | | | | | 1971 | | | | | | 06091900 | Two Medicine Canal near Cut Bank | | | | | | | 1956 | | | | | | 06092000 | Two Medicine River near Browning | 317 | 1907-25,
1951-77 | 1907,
1909-12,
1914-24,
1951-77 | | | | 1956 | | | | | | 06092500 | Badger Creek near Browning | 133 | 1951-73 | 1951-73 | | | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water yea | ar) | | | |----------|--|-------------------|--|---|-----------------------|---------------------------|-----------------|------------------------------|----------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 6Misso | ouri River B | asinContinu | <u>ied</u> | | | | | | | 06093200 | Badger Creek below Four Horns Canal, near Browning | 152 | 1973-P | 1974-P | | | | 1988-89 | | | | 06093300 | Badger Canal near Dupuyer | | | | | | | 1956 | | | | 06093500 | Badger Creek near Family | 239 | 1907-25 | 1910-13,
1915-24 | | | | | | | | 06093600 | Two Medicine River near Cut Bank | | | | | | | 1982-84 | | | | 06094000 | Swift Reservoir near Dupuyer | 75.3 | 1916,
1936-64,
1967-95 | | | | | | | | | 06094500 | Birch Creek at Swift Dam, near Dupuyer | 75.3 | 1913-29 | 1913-26,
1929 | | | | | | | | 06095000 | Birch Creek near Dupuyer | 105 | 1907-37 | 1909-37,
1964 | | | | | | | | 06095500 | Lake Frances near Valier | | 1936-95 | | | | | | | | | 06096000 | Birch Creek at Nelson's Ranch, near Dupuyer | 111 | 1914-26 | 1914-15,
1917-21,
1923-26 | | | | | | | | 06096500 | Birch Creek at Hall's Ranch, near Dupuyer | 122 | 1913-20 | 1913-15,
1917-20 | | | | | | | | 06097000 | Birch Creek at Robare | 128 | 1914-26 | 1915,
1917-23,
1925-26 | | | | | | | | 06097100 | Blacktail Creek near Heart Butte | 16.4 | | 1975-91 | | | | | | | | 06097200 | Blacktail Creek near Dupuyer | | | | | | | 1982-84 | | | | 06097500 | Dupuyer Creek at Dupuyer | 65.7 | 1908-13 | | | | | | | | | 06098000 | Dupuyer Creek near Valier | 137 | 1912-37 | 1913-29,
1932-37,
1948,1964 | | | | | | | | 06098100 | Birch Creek near Valier | 471 | 1978-83 | 1978-83 | | | | 1955,
1978-83 | | | | 06098500 | Cut Bank Creek near Browning | 123 | 1918-25,
1991-P | 1918,
1920-24,
1991-P | | | | 1991-92 | | | | 06098700 | Powell Coulee near Browning | 12.7 | | 1974-P | | | | | | | | 06098900 | Big Rock Coulee near Santa Rita | 185 | | | | | | 1982-84,
1991-92 | | | | 06099000 | Cut Bank Creek at Cut Bank | 1,041 | 1905-20,
1922-24,
1951-73,
1982-P | 1906-12,
1914-17,
1919-20,
1922-24,
1951-73,
1975,
1982-P | | | | 1951,
1982-89,
1991-92 | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | |----------|--|-------------------|-----------------------------|--|-----------------------|---------------------------|----------------|------------------------------|----------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 6Misso | ouri River B | asinContinu | ed | | | | | | | 06099100 | Spring Creek near Cut Bank | 91 | | | | | | 1982-84,
1991-92 | | | | 06099300 | Cut Bank Creek at mouth, near Cut Bank | 1,213 | | | | | | 1991-92 | | | | 06099500 | Marias River near Shelby | 3,242 | 1902-08,
1911-P | 1902-04,
1906-07,
1911-46,
1948-P | | 1950-51 | 1950-51 | | | | | 06099700 | Middle Fork Dry Fork Marias River near Dupuyer | 20.2 | | 1960-74,
1986 | | | | | | | | 06100000 | Dry Fork Marias River near Valier | 131 | 1911-15 | | | | | | 1980 | | | 06100200 | Heines Coulee tributary near Valier | 0.60 | | 1960-75,
1986 | | | | | | | | 06100300 | Lone Man Coulee near Valier | 14.1 | | 1960-P | | | | | | | | 06100500 | Dry Fork Marias River at Fowler | 314 | 1921-31 | 1920-31 | | | | | | | | 06101000 | Willow Creek near Devon | 310 | 1921-25 | | | | | | | | | 06101200 | Willow Creek near Galata | 839 | 1977-82 | 1978-82 | | | | | | | | 06101300 | Lake Elwell near Chester | 4,923 | 1956-95 | | | | | | | | | 06101500 | Marias River near Chester | 4,927 | 1921,
1945-47,
1955-P | 1921,1946,
1956-P | | 1994-P | | 1964-72,
1978-86,
1991 | 1978-86 | 1978-86 | | 06101520 | Favot Coulee tributary near Ledger | 0.86 | | 1974-P | | | | | | | | 06101560 | Pondera Coulee near Chester | 598 | 1976-85 | 1964,
1976-85 | | | | | | | | 06101600 | Marias River tributary No. 3 near Chester | 0.26 | | 1962-76,
1978 | | | | | | | | 06101700 | Fey Coulee tributary near Chester | 2.47 | | 1963-91 | | | | | | | | 06101800 | Sixmile Coulee near Chester | 30.3 | | 1963-77,
1979,1986 | | | | | | | | 06101900 | Dead Indian Coulee near Fort Benton | 2.73 | | 1963-77,
1986 | | | | | | | | 06102000 | Marias River near Brinkman | 6,425 | 1922-56 | 1908,
1922-56 | | | | | | | | 06102050 | Marias River near Loma | 7,137 | 1960-72
2001-P | 1960-72 | | | | | 1965 | | | 06102100 | Dry Fork Coulee tributary near Loma | 0.84 | | 1959-73 | | | | | | | | 06102200 | Marias River tributary at Loma | 1.62 | | 1956-60,
1962-73 | | | | | | | | 06102300 | Maris River tributary No. 2 at Loma | 0.25 | | 1956-60,
1962-73 | | | | | | | | 06102500 | Teton River below South Fork, near Choteau | 105 | 1947-55
1998-P | 1948-54,
1964,
1998-P | | | | 1998-P | 1998-P | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | |----------|--|-------------------|---------------------|------------------------------|-----------------------|---------------------------|----------------|-----------------|------------------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | 5 | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 6Misso | ouri River B | asinContinu | <u>ed</u> | | | | | | | 06103000 | Teton River at Strabane | 128 | 1904-06,
1908-25 | 1908-25 | | | | | | | | 06103500 | McDonald Creek near Strabane | 5.17 | 1913-14,
1917-20 | | | | | | | | | 06104000 | McDonald Creek near Choteau | 10.4 | 1917-20 | | | | | | | | | 06104500 | Teton River near Choteau | 221 | 1906,
1913-19
 | | | | | | | | 06105000 | Deep Creek at Frazer's Ranch, near Choteau | 37.7 | 1912 | | | | | | | | | 06105500 | Willow Creek near Choteau | 88.2 | 1912-17 | | | | | | | | | 06105800 | Bruce Coulee tributary near Choteau | 1.70 | | 1963-2002 | | | | | | | | 06106000 | Deep Creek near Choteau | 223 | 1911-25 | 1911-24,
1964 | | | | | | | | 06106500 | Muddy Creek near Bynum | 71.1 | 1912-25 | 1913-18,
1920,
1922-24 | | | | | | | | 06107000 | North Fork Muddy Creek near Bynum | 61.3 | 1912-24 | 1913-17,
1919-24 | | | | | | | | 06107500 | Muddy Creek near Agawam | 274 | 1917 | | | | | | | | | 06108000 | Teton River near Dutton | 1,307 | 1954-P | 1955-P | | | | 1998-P | 1998-P | | | 06108200 | Kinley Coulee near Dutton | 9.67 | | 1963-78 | | | | | | | | 06108300 | Kinley Coulee tributary near Dutton | 2.65 | | 1963-78 | | | | | | | | 06108500 | Teton River near Fort Benton | 1,989 | 1929-32 | | | | | 1991 | | | | 06108800 | Teton River at Loma | 2,010 | 1998-P | 1999-P | | 2000-Р | | 1998-P | 1965,
1998-P | | | 06109000 | Missouri River at Loma | 34,221 | 1935-53 | | | | | | | | | 06109500 | Missouri River at Virgelle | 34,379 | 1935-P | 1935-P | | | | 1975-85
1991 | 1975-85,
1991 | 1975-85 | | 06109530 | Little Sandy Creek tributary near Virgelle | 0.80 | | 1972,
1974-2002 | | | | | | | | 06109560 | Alkali Coulee tributary near Virgelle | 0.96 | | 1974-P | | | | | | | | 06109750 | Middle Fork Judith River below Lost Fork, near Utica | 108 | 1972-75 | 1972-75 | | | | | | | | 06109775 | Middle Fork Judith River at Ranger Station, near Utica | | | | | | | 1964 | | | | 06109780 | Middle Fork Judith River near Utica | 160 | 1972-79 | 1972-79 | | | | | | | | 06109800 | South Fork Judith River near Utica | 58.7 | 1958-79 | 1959-79 | | | | | | | | 06109900 | Judith River tributary near Utica | 7.15 | | 1960-74 | | | | | | | | 06109950 | Judith River tributary No. 2, near Utica | 6.97 | | 1959-67 | | | | | | | | 06110000 | Judith River near Utica | 328 | 1920-75 | 1920-32,
1934-75 | | | | | | | | 06110500 | Ackley Lake near Hobson | | 1938-95 | | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | riod of record | l (by water ye | ar) | | | |----------|---|-------------------|---------------------|---|-------------------|---------------------------|----------------|-----------|----------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | Station manie | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct- | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 6Miss | ouri River B | asinContinu | <u>ied</u> | | | | | | | 06111000 | Ross Fork Creek near Hobson | 337 | 1946-54,
1955-62 | 1947-53,
1955-62,
1975 | | | | | | | | 06111500 | Big Spring Creek near Lewistown | 20.9 | 1932-57 | 1932-40 | | | | | | | | 06111700 | Mill Creek near Lewistown | 3.14 | | 1960-91 | | | | | | | | 06112000 | Cottonwood Creek near Lewistown | 45.6 | 1946-51 | | | | | | | | | 06112100 | Cottonwood Creek near Moore | 47.9 | 1957-63 | 1958-73,
1975,1978 | | | | | | | | 06112500 | Sage Creek at Windham | 58.6 | 1920-22 | | | | | | | | | 06112800 | Bull Creek tributary near Hilger | 0.99 | | 1974-P | | | | | | | | 06113000 | Judith River near Lewistown | 1,939 | 1910-11 | | | | | | | | | 06113500 | Judith River near Winifred | 2,160 | 1929-32 | | | | | 1991 | | | | 06114000 | Wolf Creek at Neubert Ranch, near Stanford | 79.2 | 1920-26 | 1920-26 | | | | | | | | 06114500 | Wolf Creek near Stanford | 112 | 1950-53,
1955-62 | 1950-53,
1955-58,
1960-62,
1975,1978 | | | | | | | | 06114550 | Wolf Creek tributary near Coffee Creek | 1.73 | | 1974-P | | | | | | | | 06114700 | Judith River near mouth, near Winifred | 2,731 | 2001-P | 2001-P | | 2001-P | | 2001-P | 2001-P | | | 06114900 | Taffy Creek tributary near Winifred | 2.95 | | 1974-2002 | | | | | | | | 06115000 | Missouri River at Power Plant Ferry, near Zortman | 40,763 | 1934-68 | 1934-67 | | | | | | | | 06115200 | Missouri River near Landusky | 40,987 | 1934-P | 1934-P | | | 1972-P | 1976-94 | 1972-P | 1979-94 | | 06115270 | Armells Creek near Landusky | | 2000-P | 2000-P | | | | | | | | 06115300 | Duval Creek near Landusky | 3.31 | 2000-P | 1963-P | | | | | | | | 06115350 | Rock Creek near Landusky | | 2000-P | 2000-P | | | | | | | | 06115500 | North Fork Musselshell River near Delpine | 31.4 | 1940-79 | 1941-79 | | | | | | | | 06116000 | North Fork Musselshell River at Delpine | 48.6 | 1909-12,
1922-32 | 1909-11,
1922-32 | | | | | | | | 06116500 | Bair Reservoir near Delpine | 48.6 | 1939-95 | | | | | | | | | 06116900 | Checkerboard Creek near Delpine | 21.1 | 1909-15 | | | | | | | | | 06117000 | Checkerboard Creek at Delpine | 23.9 | 1922-32 | 1922-30,
1932 | | | | | | | | 06117500 | Spring Creek near Martinsdale | 32.5 | 1922-24 | | | | | | | | | 06117800 | Big Coulee near Martinsdale | 2.86 | | 1972,
1974-2002 | | | | | | | | 06118000 | North Fork Musselshell River near Martinsdale | 233 | 1907-14 | 1908-14 | | | | | | | | 06118500 | South Fork Musselshell River above Martinsdale | 287 | 1942-79 | 1942-79 | | | | | | | | 06119000 | Martinsdale Reservoir near Martinsdale | | 1939-95 | | | | | | | | | 06119500 | South Fork Musselshell River near Martinsdale | 300 | 1907-15,
1930-32 | 1908-14,
1930,1932 | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | (by water ye | ar) | | | |----------|---|-------------------|---------------------|---------------------------------------|-----------------------|---------------------------|--------------|------------------|------------------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 6Misso | ouri River B | asinContinu | ed | | | | | | | 06119600 | Musselshell River at Martinsdale | 538 | 2003 | 2003 | | | | | | | | 06120000 | Big Elk Creek at Twodot | 89.1 | 1953-56 | | | | | | | | | 06120500 | Musselshell River at Harlowton | 1,125 | 1907-P | 1909-P | | 2001-2002 | | 1988-91 | 1988-91 | | | 06120600 | Antelope Creek tributary near Harlowton | 0.47 | | 1956-73 | | | | | | | | 06120700 | Antelope Creek tributary near mouth, near Harlowton | 1.92 | | 1956-73 | | | | | | | | 06120800 | Alkali Creek near Harlowton | 21.2 | | 1956-91 | | | | | | | | 06120900 | Antelope Creek at Harlowton | 88.7 | | 1950,
1954-73,
1976,
1978-80 | | | | | | | | 06121000 | American Fork near Harlowton | 94.6 | 1907-14,
1924-32 | 1908-11,
1913,
1924-30,
1932 | | | | | | | | 06121500 | Lebo Creek near Harlowton | 59.1 | 1907-14,
1924-32 | 1910,1913,
1924-32 | | | | | | | | 06122000 | American Fork below Lebo Creek, near Harlowton | 166 | 1946-67 | 1947-67,
1975 | | | | | | | | 06122500 | Deadmans Basin Reservoir near Shawmut | | 1941-95 | | | | | | | | | 06122800 | Musselshell River near Shawmut | 1,479 | 1986-98 | 1986-97 | | | | | | | | 06123000 | Musselshell River at Shawmut | 1,496 | 1902-07 | | | | | | | | | 06123030 | Musselshell River above Mud Creek, near Shawmut | · | 1998-P | 1998-P | | | | | | | | 06123200 | Sadie Creek near Harlowton | 2.10 | | 1971,
1973-P | | | | | | | | 06123500 | Musselshell River near Ryegate | 1,979 | 1946-79 | 1947-79 | | | | | | | | 06124000 | Careless Creek near Living Springs | 21.2 | 1920-23 | | | | | | | | | 06124500 | West Careless Creek near Living Springs | 23.5 | 1920-21 | | | | | | | | | 06124600 | East Fork Roberts Creek tributary near Judith Gap | 0.74 | | 1974-P | | | | | | | | 06125000 | Roberts Creek at Hedgesville | 322 | 1920-23 | | | | | | | | | 06125500 | Careless Creek at Wallum | 471 | 1934-42 | 1934-37,
1939-42 | | | | | | | | 06125520 | Swimming Woman Creek tributary near Living Springs | 1.27 | | 1974-P | | | | | | | | 06125680 | Big Coulee Creek tributary near Cushman | 1.23 | | 1974-P | | | | | | | | 06125700 | Big Coulee Creek near Lavina | 232 | 1957-72 | 1958-72 | | | | | | | | 06126000 | Musselshell River at Lavina | 2,928 | 1906 | | | | | | | | | 06126050 | Musselshell River near Lavina | 2,970 | 1992-P | 1992-P | | | | | | | | 06126300 | Currant Creek near Roundup | 220 | | 1958-59,
1961-73 | | | | | | | | 06126470 | Halfbreed Creek near Klein | 53.2 | 1978-91 | 1978-91 | | | | 1978-81,
1984 | 1978-81,
1984 | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | <u> </u> | | Per | iod of record | l (by water ye | ar) | | | |----------|---|-------------------|---------------------------------|--|-------------------|---------------------------|----------------|-----------|----------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | 2- | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct- | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 6Miss | ouri River B | asinContinu | <u>ıed</u> | | | | | | | 06126500 | Musselshell River near Roundup | 4,023 | 1946-P | 1946-48,
1950-P | | | | 1978-81 | 1978-81 | | |
06127000 | South Willow Creek near Roundup | | 1922-23 | | | | | | | | | 06127020 | Willow Creek above LMGA Reservoir, near Roundup | 124 | 1995-P | 1996-P | | | | | | | | 06127060 | Willow Creek at U.S. Canal, near Roundup | 141 | 1995-P | 1996-P | | | | | | | | 06127100 | South Willow Creek tributary near Roundup | 1.38 | | 1962-76 | | | | | | | | 06127150 | East Parrot Creek near Roundup | 20.2 | | | | | | 1979-80 | 1979-80 | | | 06127160 | West Parrot Creek near Roundup | 20.5 | | | | | | 1978-81 | 1978-81 | | | 06127200 | Musselshell River tributary near Musselshell | 10.8 | | 1963-77,
1991 | | | | | | | | 06127300 | Fattig Creek near Delphia | 22.9 | | | | | | 1978-81 | 1978-81 | | | 06127500 | Musselshell River at Musselshell | 4,568 | 1928-32,
1945-79,
1983-P | 1929-30,
1932,
1946-79,
1983-P | | | | 1988-91 | 1988-91 | | | 06127505 | Fishel Creek near Musselshell | 16.5 | | 1974-P | | | | | | | | 06127520 | Home Creek near Sumatra | 1.98 | | 1973-P | | | | | | | | 06127570 | Butts Coulee near Melstone | 6.71 | | 1963-P | | | | | | | | 06127585 | Little Wall Creek tributary near Flatwillow | 9.77 | | 1974-P | | | | | | | | 06127600 | Musselshell River near Mosby | 5,941 | 1963-66 | | | | 1963-66 | 1963-66 | 1964-66 | | | 06127900 | Flatwillow Creek near Flatwillow | 188 | 1911-32,
1934-56 | 1911-32,
1934-36,
1938-56 | | | | | | | | 06128200 | Flatwillow Creek near Winnett | 642 | 1921-32,
1948-51 | 1923-29,
1931-32,
1948-51 | | | | | | | | 06128400 | South Fork Bear Creek near Roy | 39.6 | | 1962-76 | | | | | | | | 06128500 | South Fork Bear Creek tributary near Roy | 5.40 | | 1962-P | | | | | | | | 06128900 | Box Elder Creek tributary near Winnett | 16.2 | | 1955-73 | | | | | | | | 06129000 | Box Elder Creek near Winnett | 684 | 1930-33,
1934-38,
1958-72 | 1931-32,
1934-38,
1959-71,
1978 | | | | | | | | 06129100 | North Fork McDonald Creek tributary near Heath | 2.24 | | 1960-75 | | | | | | | | 06129200 | Alkali Creek near Heath | 3.76 | | 1960-74 | | | | | | | | 06129400 | South Fork McDonald Creek tributary near Grassrange | 0.51 | | 1963-77 | | | | | | | | 06129500 | McDonald Creek at Winnett | 421 | 1930-32,
1934-45,
1953-56 | 1931-32,
1934-45,
1953-73,
1975 | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | |----------|--|-------------------|---------------------|--|-----------------------|---------------------------|----------------|-----------------------------|----------------------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 6Misso | ouri River B | asinContinu | ed | | | | | | | 06129700 | Gorman Coulee near Cat Creek | 2.32 | | 1955-59,
1962-73,
1977,1980,
1991-P | | | | | | | | 06129800 | Gorman Coulee tributary near Cat Creek | 0.81 | | 1955-2002 | | | | | | | | 06130000 | Flatwillow Creek near Mosby | 1,855 | 1964-66 | | | | 1964-66 | 1964-66 | 1964-66 | | | 06130500 | Musselshell River at Mosby | 7,846 | 1929-35,
1934-P | 1929,
1931-32,
1934-P | | 2000-Р | 1983-95 | 1975-95,
1999-P | 1975-1997,
1999-P | 1975-95 | | 06130600 | Cat Creek near Cat Creek | 36.5 | | 1958-73,
1977,1980 | | | | | | | | 06130610 | Bair Coulee near Mosby | 1.79 | | 1974-P | | | | | | | | 06130620 | Blood Creek tributary near Valentine | 1.97 | | 1974-P | | | | | | | | 06130650 | Hell Creek near Jordan | 70.6 | 2000-P | 2000-P | | | | | | | | 06130680 | Big Dry Creek at Jordan | 521 | | | | | | 1976-77 | 1976-77 | | | 06130700 | Sand Creek near Jordan | 317 | 1957-67 | 1958-67,
1986 | | | | | | | | 06130800 | Second Creek tributary near Jordan | 0.52 | | 1954,
1958-73 | | | | | | | | 06130850 | Second Creek tributary No. 2 near Jordan | 2.08 | | 1958-90 | | | | | | | | 06130900 | Second Creek tributary No. 3 near Jordan | 0.72 | | 1958-72 | | | | | | | | 06130915 | Russian Coulee near Jordan | 3.45 | | 1974-P | | | | | | | | 06130925 | Thompson Creek tributary near Cohagen | 1.23 | | 1974-95 | | | | | | | | 06130935 | Crow Rock Creek near Cohagen | 213 | | | | | | 1978-80 | 1978-80 | 1978-80 | | 06130940 | Spring Creek tributary near Van Norman | 1.39 | | 1974-P | | | | | | | | 06130950 | Little Dry Creek near Van Norman | 1,224 | 1980 | 1958-75,
1986,1995 | | | | 1976-77 | 1976-77 | | | 06131000 | Big Dry Creek near Van Norman | 2,554 | 1939-P | 1940-P | | | | 1978,1981 | 1978 | | | 06131100 | Terry Coulee near Van Norman | 0.48 | | 1974-P | | | | | | | | 06131120 | Timber Creek near Van Norman | 287 | 1982-85,
1988 | 1982-85,
1988 | | | | 1976-79 | 1976-80 | | | 06131200 | Nelson Creek near Van Norman | 100 | 1976-85,
2000-P | 1976-85,
1991,
2000-P | | | | 1976-79 | 1976-79 | | | 06131300 | McGuire Creek tributary near Van Norman | 0.79 | | 1974-P | | | | | | | | 06131500 | Fort Peck Lake at Fort Peck | 57,500 | 1938-P | | | | | | | | | 06132000 | Missouri River below Fork Peck Dam, at Fort Peck | 57,556 | 1936-P | 1934-P | | 2002-Р | | 1964,
1975-87,
2002-P | 1975-87,
2002-P | 1975-86 | | 06132200 | South Fork Milk River near Babb | 70.4 | 1961-P | 1961-P | | | | 1990-92 | | | | 06132250 | Livermore Creek near Babb | 25.0 | | 1962-67 | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | |----------|--|-------------------|---------------------|---|-----------------------|---------------------------|----------------|---|----------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | <u>P</u> | art 6Miss | ouri River B | asinContinu | <u>ıed</u> | | | | | | | 06132400 | Dry Fork Milk River near Babb | 17.9 | | 1962-91 | | | | | | | | 06132500 | South Fork Milk River near international boundary, near Browning | 287 | 1905-31 | | | | | 1964 | | | | 06132700 | Milk River near Del Bonita | 325 | 1962-65 | 1906-08,
1911,
1913-17,
1919,
1923-24,
1927,
1929-30,
1962-67 | | | | | | | | 06133000 | Milk River at western crossing of international boundary | 401 | 1931-P | 1931-38,
1940-P | | | | 1960,1973,
1984-86,
1993 | | | | 06133500 | North Fork Milk River above St. Mary Canal, near Browning | 60.2 | 1911-12,
1919-P | 1911-12,
1924,
1926-27,
1937,
1941-42,
1944-45,
1948,
1950-51,
1953-P | | | | 1960,1965,
1973-74,
1982-83,
1990-92 | | | | 06134000 | North Milk River near international boundary | 91.8 | 1909-P | 1911,
1913-P | | | | 1960,1965,
1973-74,
1981,
1984-86,
1993 | | | | 06134500 | Milk River at Milk River, Alberta | 1,050 | 1909-P | 1909,
1913-P | | | | 1960,1965 | | | | 06134600 | Red River at international boundary | 138 | | | | | | 1995 | | | | 06134700 | Verdigris Coulee near the mouth, near Milk River, Alberta | 137 | 1985-P | 1985-P | | | | | | | | 06134800 | Van Cleeve Coulee tributary near Sunburst | 10.8 | | 1963-91 | | | | | | | | 06134850 | Milk River near Writing-on-Stone Provincial Park, Alberta | 1,690 | 1978-83 | 1978-82 | | | | | | | | 06134890 | Miners Coulee near international boundary | | 1966-94 | | | | | | | | | 06134930 | Bear Creek near international boundary | | 1966-94 | | | | | | | | | 06134950 | Milk River near Pendant D'Oreille | 2,330 | 1978-83 | 1978-82 | | | | | | | | 06135000 | Milk River at eastern crossing of international boundary | 2,525 | 1910-P | 1910-11,
1913-15,
1917,
1919-P | | | | 1960,1965,
1974,
1984-86,
1993-94 | | | | 06135500 | Sage Creek at Q Ranch, near Wild Horse, Alberta | 175 | 1935-83 | 1936-41,
1943,
1946-83 | | | | 1965 | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | |----------|---|-------------------|---------------------|--|-----------------------|---------------------------|----------------|-----------------------------|------------------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 6Miss | ouri River Ba | asinContinu | ed | | | | | | | 06136000 | Sage Creek at international boundary | 220 | 1946-84 | 1946-83 | | | | 1965 | | | | 06136400 | Spring Coulee tributary near Simpson | 2.49 | | 1972,
1974-2002 | | | | | | | | 06136500 | Fresno Reservoir near Havre | 3,766 | 1940-P | | | | | | | | | 06136700 | Milk River below Fresno Dam, near Havre | 3,400 | 1952-53 | | | | | 1950-53 | | | | 06137000 | Milk River above Havre | 3,826 | 1928-33 | | | | | | | | | 06137400 | Big Sandy Creek at reservation boundary, near Rocky
Boy | 24.7 | 1982-P | 1982-P | | | | 1982-84,
1987-89 | | | | 06137500 | Big Sandy Creek near Big Sandy | 83.3 | 1946-51 | | | | | | | | | 06137540 | Duck Creek near Box Elder | | | | | | | 1982-84 | | | | 06137550 | Camp Creek near Box Elder | 7.2 | | | | | | 1983-84 | | | | 06137570 | Boxelder Creek near Rocky Boy | 48.2 | 1975-97 | 1976-97 | | | | 1977-81
1983-84,
1993 | 1977-81,
1993 | 1977-81 | | 06137575 | Boxelder Creek at Box Elder | 67.1 | | | | | | 1983 | | | | 06137580 | Sage Creek near Whitlash | 7.26 | 1976-82,
1985-90 | 1977-82,
1985-90 | | | | | | | | 06137600 | Sage Creek tributary No. 2 near Joplin | 2.21 | | 1974-P | | | | | | | | 06137900 | England Coulee at Hingham | 0.93 | | 1960-74 | | | | | | | | 06138000 | Sage Creek near Kremlin | 914 | 1946-51 | 1946-48,
1950-52 | | | | | | | | 06138500 | Big Sandy Creek near Box Elder | 1,629 | 1927-39 | 1927-32,
1934-36,
1938 | | | | | | | | 06138570 | Big Sandy Creek above Gravel Coulee, near Laredo | 1,639 | | | | | | 1982-84 | | | | 06138700 | South Fork Spring Coulee near Havre | 6.47 | | 1960-P | | | | | | | | 06138800 | Spring Coulee near Havre | 17.8 | | 1959-73 | | | | | | | | 06139000 | Big Sandy Creek near Laredo | 1,752 | 1918-20 | | | | | | | | | 06139500 | Big Sandy Creek near Havre | 1,805 | 1946-53,
1984-P | 1946-53,
1955-67,
1969,1978,
1984-P | | | | 1986-90 | 1986-90 | | | 06139800 | West Fork Beaver Creek near Rocky Boy | 2.92 | 2001-2002 | | | | | | | | | 06139850 | Beaver Creek above Elk Creek, near Rocky Boy | 7.63 | 2001-2002 | | | | | | | | | 06139900 | Beaver Creek at reservation boundary, near Rocky Boy | 16.1 | 2001-P | | | | | 1982-84 | | | | 06140000 | Beaver Creek near Havre | 87.4 | 1918-21 | 1919-21,
1966-86 | | | | | | | | 06140400 | Bullhook Creek near Havre | 39.6 | | 1960-71,
1973-75,
1986 | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | |----------|--|-------------------|----------------------|---|-------------------|---------------------------|----------------|-----------|----------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct- | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | <u>I</u> | Part 6Miss | ouri River Ba | asinContinue | <u>ed</u> | | | | | | | 06140500 | Milk River at Havre | 5,785 | 1898-1923,
1954-P | 1899-1922,
1952-53,
1955-P | | | | 1964-72 | | | | 06141000 | Boxelder Creek near Havre | 23.7 | 1919-22 | | | | | | | | | 06141500 | Boxelder Creek at P.X. Ranch, near Havre | 33.3 | 1918 | | | | | | | | | 06141600 | Little Boxelder Creek at mouth, near Havre | 95.9 | 1986-92,
1994-96 | 1986-92,
1994-96 | | | | | | | | 06141900 | Milk River tributary near Lohman | 0.11 | | 1960-74 | | | | | | | | 06142000 | Clear Creek near Bearpaw | 69.6 | 1918-22 | | | | | | | | | 06142400 | Clear Creek near Chinook | 135 | 1984-P | 1984-P | | | | | | | | 06142500 | Fort Belknap Canal near Chinook | | 1903-21 | | | | | | | | | 06143000 | Milk River at Lohman | 6,166 | 1918-26,
1934-51 | 1919,1923,
1925,
1934-48,
1950-52 | | | | | | | | 06144000 | Paradise Valley Canal near headgate, near Chinook | | 1906-08,
1920-21 | | | | | | | | | 06144100 | Walburger Coulee below diversion, near Govenlock, Sask. | 32.6 | 1963-79 | 1963-78 | | | | | | | | 06144250 | Lodge Creek at Alberta boundary | 342 | 1951,
1963-67 | | | | | 1960 | | | | 06144260 | Altawan Reservoir near Govenlock, Saskatchewan | 373 | 1966-P | | | | | | | | | 06144270 | Spangler Ditch near Govenlock, Saskatchewan | | 1966-P | | | | | | | | | 06144300 | Lodge Creek below Spangler Project, near Govenlock, Sask. | | 1963-66 | | | | | | | | | 06144350 | Middle Creek near Saskatchewan boundary | 118 | 1963-P | 1952,
1963-P | | | | | | | | 06144360 | Middle Creek Reservoir near Govenlock | 130 | 1966-95 | | | | | | | | | 06144395 | Middle Creek below Middle Creek Reservoir, near Govenlock,
Saskatchewan | 149 | 1972-P | 1974-78,
1983,
1986-87 | | | | | | | | 06144400 | Middle Creek near Battle Creek, Saskatchewan | 177 | 1963-72 | 1963-71,
1994 | | | | | | | | 06144440 | Middle Creek near Govenlock, Saskatchewan | 253 | 1986-P | 1986-P | | | | | | | | 06144450 | Middle Creek above Lodge Creek, near Govenlock, Sask. | 276 | 1962-66,
1986-P | 1986-Р | | | | | | | | 06144500 | Lodge Creek at international boundary | 753 | 1910-52 | 1911-15,
1917-52 | | | | | | | | 06145000 | McRae Creek at international boundary | 59.0 | 1927-52 | 1927-28,
1930-33,
1935-47,
1950-52 | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water yea | ar) | | | |----------|---|-------------------|---------------------|--|-----------------------|---------------------------|-----------------|--|----------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 6Misso | ouri River B | asinContinu | <u>ied</u> | | | | | | | 06145500 | Lodge Creek below McRae Creek, at international boundary | 825 | 1951-P | 1952-P | | | | 1960,1964,
1973,
1977-80,
1987-89 | | | | 06146000 | North Chinook Canal near Havre | | 1921-24,
1928-68 | | | | | | | | | 06146500 | Reser Ditch near Chinook | | 1905-06 | | | | | | | | | 06147000 | West Fork Ditch near Chinook | | 1905-07 | | | | | | | | | 06147500 | Lodge Creek at Chinook | 1,175 | 1906-08 | | | | | | | | | 06147950 | Gaff Ditch near Merryflat, Saskatchewan | | 1972-P | | | | | | | | | 06148000 | Battle Creek above Cypress Lake west inflow canal, near West Plains, Saskatchewan | 270 | 1939-66 | 1939-66 | | | | 1960 | | | | 06148500 | Cypress Lake west inflow canal near West Plains, Sask. | | 1939-P | | | | | | | | | 06148700 | Cypress Lake west inflow canal drain near Oxarat, Sask. | | 1963-P | | | | | | | | | 06149000 | Cypress Lake west outflow near West Plains, Sask. | | 1940-P | | | | | 1960 | | | | 06149100 | Vidora Ditch near Consul, Saskatchewan | | 1963-P | | | | | | | | | 06149200 | Richardson Ditch near Consul, Saskatchewan | | 1963-P | | | | | | | | | 06149300 | McKinnon Ditch near Consul Saskatchewan | | 1963-P | | | | | | | | | 06149400 | Nashlyn Canal near Consul, Saskatchewan | | 1963-P | | | | | | | | | 06149500 | Battle Creek at international boundary | 997 | 1917-P | 1917-P | | | | 1960,1964,
1972-74,
1987-89 | | 1972 | | 06150000 | Woodpile Coulee near international boundary | 60.2 | 1927-77 | 1927-30,
1932-47,
1950-63,
1965-76,
1986 | | | | | | | | 06150500 | East Fork Battle Creek near international boundary | 89.5 | 1927-76 | 1927-33,
1935-63,
1965-67,
1969,
1971-76,
1986 | | | | | | | | 06151000 | Lyons Creek at international boundary | 66.7 | 1927-94 | 1927-30,
1932,
1934-47,
1950-52,
1954-63,
1965-94 | | | | | | | | 06151500 | Battle Creek near Chinook | 1,623 | 1905-21,
1984-P | 1905-14,
1917-21,
1952,
1984-P | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | <u> </u> | | Per | iod of record | l (by water ye | ar) | | <u> </u> | |----------|---|-------------------|---------------------------------|--------------------------------------|-----------------------|---------------------------|----------------|------------------------------|----------------------|----------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 6Misse | ouri River Ba | asinContinu | <u>ied</u> | | | | | | | 06152000 | Cook Canal near Chinook | | 1905-19 | | | | | | | | | 06152500 | Matheson Canal near Chinook | | 1905-21,
1928-49,
1951-56 | | | | | | | | | 06153000 | Paradise Valley Canal near Chinook | | 1903-19 | | | | | | | | | 06153400 | Fifteenmile Creek tributary near Zurich | 1.60 | | 1974-P | | | | | | | | 06153500 | Harlem Canal near Zurich | | 1904-21 | | | | | | | | | 06154000 | Milk River Canal A near Harlem | | 1905,
1910-20,
1986-87 | | | | | | | | | 06154100 | Milk River near Harlem | 9,822 | 1959-69,
1983-P | 1952,
1960-69,
1978,
1983-P | | | | 1959-69
1994 | | | | 06154140 | Fifteenmile Creek tributary near Harlem | 2.31 | 1983-92 | 1983-92 | | | | | | | | 06154150 | White Bear Creek below Fifteenmile Creek, near Dodson | | | | | | | 1982-84 | | | | 06154350 | Peoples Creek tributary near Lloyd | 2.51 | | 1974-P | | | | | | | | 06154390 | Peoples Creek near Cleveland | | | | | | | 1982-84 | | | | 06154400 | Peoples Creek near Hays | 220 | 1966-P | 1967-P | | | | 1960-61,
1963,1994 | | | | 06154410 | Little Peoples Creek near Hays | 13 | 1973-P | 1973-P | | | | 1977-2002 | 1977-85
1988-2002 | 1977-85 | | 06154430
 Lodge Pole Creek at Lodge Pole | 19.5 | 1987-2000 | 1987-2000 | | | | 1982-84,
1988-92,
1994 | 1988-92 | | | 06154490 | Willow Creek near Dodson | 5.16 | 1983-92 | 1983-92 | | | | | | | | 06154500 | Peoples Creek near Dodson | 670 | 1918-22,
1951-73,
1982-88 | 1952-66,
1968-73,
1982-88 | | | | 1982-88 | | | | 06154510 | Kuhr Coulee tributary near Dodson | 1.25 | 1983-92 | 1983-P | | | | | | | | 06154550 | Peoples Creek below Kuhr Coulee, near Dodson | 675 | 1918-21,
1951-73,
1982-P | 1989-P | | | | 1989-92,
1994,
1999-P | | | | 06155000 | Nelson Reservoir near Saco | | 1928-95 | | | | | | | | | 06155005 | Dodson North Canal near Dodson | | | | | 1973 | | | | | | 06155030 | Milk River near Dodson | 11,192 | 1983-P | 1983-P | | | | 1994 | | | | 06155100 | Black Coulee near Malta | 6.64 | | 1956-67,
1986 | | | | | | | | 06155200 | Alkali Creek near Malta | 162 | | 1956-59,
1961-73,
1986 | | | | | | | | 06155300 | Disjardin Coulee near Malta | 4.84 | | 1956-2002 | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | |----------|---|-------------------|---|--|-----------------------|---------------------------|----------------|------------------|----------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | , | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 6Miss | ouri River B | asinContinu | <u>ied</u> | | | | | | | 06155400 | South Fork Taylor Coulee near Malta | 5.08 | | 1956-73,
1986 | | | | | | | | 06155500 | Milk River at Malta | 11,762 | 1902-22,
1952 | 1903-09,
1911-13,
1915-22,
1952 | | | | | | | | 06155600 | Murphy Coulee tributary near Hogeland | 2.62 | | 1974-P | | | | | | | | 06155900 | Milk River at Cree Crossing, near Saco | 13,118 | 2000-P | 2000-P | | | | | | | | 06156000 | Whitewater Creek near international boundary | 458 | 1927-80 | 1927-33,
1935-79 | | | | 1965,
1977-80 | | | | 06156100 | Lush Coulee near Whitewater | 9.58 | | 1972,
1974-P | | | | | | | | 06156500 | Belanger Creek diversion canal near Vidora, Saskatchewan | | 1946-P | | | | | | | | | 06157000 | Cypress Lake near Vidora, Saskatchewan | 107 | 1939-P | | | | | | | | | 06157500 | Cypress Lake east outflow canal near Vidora, Saskatchewan | | 1940,
1943-P | | | | | | | | | 06158000 | Frenchman River above Eastend Reservoir, near Ravenscrag,
Saskatchewan | 601 | 1912-18,
1937-67 | 1913-15,
1917,
1937-66 | | | | 1960 | | | | 06158500 | Eastend Canal at Eastend, Saskatchewan | | 1937-P | | | | | | | | | 06159000 | Eastend Reservoir at Eastend, Saskatchewan | 619 | 1937-P | | | | | | | | | 06159500 | Frenchman River below Eastend Reservoir, near Eastend,
Saskatchewan | 619 | 1909-16,
1918-31,
1935-36,
1939-91 | 1909,
1911-15,
1918-31,
1940-91 | | | | | | | | 06160500 | Frenchman River at Morrison's, near Eastend, Saskatchewan | 800 | 1937-55 | 1939-52 | | | | 1960 | | | | 06160600 | Frenchman River below Eastern Irrigation Project, near Eastend,
Saskatchewan | 835 | 1937-55,
1962-75 | 1939-52,
1962-75 | | | | | | | | 06161000 | Frenchman River at 50-mile, near Bracken, Saskatchewan | 1,248 | 1914-31,
1935-55 | 1914-17,
1919-31,
1936-52 | | | | | | | | 06161300 | Huff Lake pumping canal near Val Marie, Saskatchewan | | 1963-P | | | | | | | | | 06161500 | Huff Lake gravity canal near Val Marie, Saskatchewan | | 1946-P | | | | | | | | | 06162000 | Huff Lake near Val Marie, Saskatchewan | 1,274 | 1940-P | | | | | | | | | 06162500 | Newton Lake main canal near Val Marie, Saskatchewan | | 1937-P | | | | | | | | | 06163000 | Newton Lake near Val Marie, Saskatchewan | 1,349 | 1937-P | | | | | | | | | 06163050 | Frenchman River below Newton Lake, near Val Marie, Sask. | 1,349 | 1976-94 | | | | | | | | | 06163400 | Denniel Creek near Val Marie, Saskatchewan | 251 | 1963-77 | 1963-76 | | | | | | | | 06163500 | Frenchman River below Val Marie, Saskatchewan | 1,725 | 1937-53,
1963-76 | 1937-52,
1962-67,
1969-75 | | | | 1960 | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | <u> </u> | | | Per | iod of record | l (by water ye | ar) | | | |----------|---|-------------------|---------------------|---------------------------------------|-----------------------|---------------------------|----------------|-------------------------------|----------|--| | | | Drainage | Discharge | or contents | | | Water | quality | | <u>, </u> | | Station | Station name | area | | | • | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 6Misso | ouri River B | asinContinu | <u>ied</u> | | | | | | | 06164000 | Frenchman River at international boundary | 2,120 | 1917-P | 1917-P | | | | 1960,1964
1973,
1987-89 | | | | 06164500 | Frenchman Canal near Saco | | 1921,
1928-68 | | | | | | | | | 06164510 | Milk River at Juneburg Bridge, near Saco | 17,670 | 1978-P | 1978-P | | | | 1978-96 | | | | 06164590 | Beaver Creek near Zortman | 10.1 | 1983-92 | 1984-92 | | | | 1984,1994 | | | | 06164600 | Beaver Creek tributary near Zortman | 3.89 | | 1974-P | | | | | | | | 06164615 | Little Warm Creek at reservation boundary, near Zortman | 6.31 | 1983-92 | 1983-92 | | | | 1983-90 | | | | 06164620 | Little Warm Creek near Lodge Pole | | | | | | | 1982-83 | | | | 06164623 | Little Warm Creek tributary near Lodge Pole | 2.42 | 1983-92 | 1983-P | | | | 1994 | | | | 06164630 | Big Warm Creek near Zortman | 8.58 | 1983-87 | 1983-87 | | | | 1983-84 | | | | 06164640 | Big Warm Creek near Lodge Pole | | | | | | | 1982-83 | | | | 06164800 | Beaver Creek above Dix Creek, near Malta | 929 | 1967-69,
1976-82 | 1967-69,
1974,
1976-82,
1986 | | | | | | | | 06165000 | Beaver Creek near Malta | 1,010 | 1917-21 | | | | | | | | | 06165200 | Guston Coulee near Malta | 2.06 | | 1974-P | | | | | | | | 06165500 | Beaver Creek overflow near Bowdoin | | 1903-13 | 1903-06,
1909,
1912 | | | | | | | | 06166000 | Beaver Creek below Guston Coulee, near Saco (Beaver Creek near Bowdoin) | 1,208 | 1920-21,
1981-P | 1982-93,
1995-P | | | | 1980-85 | | | | 06166500 | Beaver Creek near Saco | 1,224 | 1903-06,
1908-13 | | | | | | | | | 06167000 | Beaver Creek near Brady's Ranch, at Ashfield | 1,327 | 1918 | | | | | | | | | 06167100 | Beaver Creek above dam, near Saco | 1,338 | | | | | | 1982-83,
1985 | | | | 06167500 | Beaver Creek near Hinsdale | 1,785 | 1918-21,
1952 | | | | | | | | | 06168000 | Bowray Ditch near Barnard | | 1914 | | | | | | | | | 06168500 | Rock Creek at international boundary | 241 | 1914-16,
1927-62 | 1927-61 | | | | | | | | 06169000 | Horse Creek at international boundary | 73.5 | 1914-62 | 1915-33,
1935-61 | | | | | | | | 06169500 | Rock Creek below Horse Creek, near international boundary | 328 | 1916-26,
1956-P | 1917,
1919-26,
1952,
1957-P | | | | 1964,1965,
1977-96 | 1979-96 | 1979-96 | | 06169600 | South Creek tributary near Opheim | 2.15 | 1983-87 | 1983-87 | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | d (by water ye | ar) | | | |----------|---|-------------------|------------------------------|---------------------------------------|-----------------------|---------------------------|----------------|------------------|----------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | |] | Part 6Misso | ouri River B | asinContinu | ed | | | | | | | 06169700 | South Creek tributary No. 2 near Opheim | 1.62 | 1983-87 | 1983-87 | | | | | | | | 06169800 | South Creek tributary No. 3 near international boundary | .32 | 1983-87 | 1983-87 | | | | | | | | 06170000 | McEachern Creek at international boundary | 182 | 1924-77 | 1924-76 | | | | 1965,
1978-80 | | | | 06170050 | Rock Creek below McEachern Creek, near international boundary | 650 | 1983-87 | 1983-87 | | | | | | | | 06170080 | Starbuck Coulee near international boundary | 4.16 | 1983-87 | 1983-87 | | | | | | | | 06170200 | Willow Creek near Hinsdale | 283 | 1965-73 | 1965-73,
1979 | | | | | | | | 06170500 | Rock Creek Canal near Hinsdale | | 1918-20 | | | | | | | | | 06171000 | Rock Creek near Hinsdale | 1,313 | 1906-07,
1912-20 | 1906-07,
1912,
1914-20,
1952 | | | | | | | | 06171500 | Milk River at Hinsdale | 20,897 | 1908-14,
1952 | | | | | | | | | 06172000 | Milk River near Vandalia | 20,926 | 1915-25,
1928-39,
1952 | 1915,
1917-25,
1929-39,
1952 | | | | 1970-73 | | | | 06172000 | Milk River at Vandalia | 20,944 | 1970-73,
1983-86 | 1970-73,
1983-87 | | | | | | | | 06172200 | Buggy Creek near Tampico | 105 | 1958-67 | 1958-67,
1972,
1982 | | | | | | | | 06172300 | Unger Coulee near Vandalia | 11.1 | | 1958-P | | | | | | | |
06172310 | Milk River at Tampico | 21,078 | 1973-77,
1987-P | 1974-77,
1988-P | | | | 1974-77 | | | | 06172350 | Mooney Coulee near Tampico | 14.3 | | 1961-75,
1982 | | | | | | | | 06172400 | Milk River tributary No. 2 near Glasgow | 1.79 | | 1958-60 | | | | | | | | 06172500 | Sheepshed Reservoir | 11.3 | 1955-67 | | | | | | | | | 06173000 | Halfway Reservoir | 16.2 | 1955-62 | | | | | | | | | 06173300 | Willow Creek tributary near Fort Peck | 0.86 | | 1972,
1974-91 | | | | | | | | 06173500 | Burnett Northwest Reservoir | 5.0 | 1954-59,
1960-67 | | | | | | | | | 06174000 | Willow Creek near Glasgow | 538 | 1954-87 | 1954-87,
1993 | | | | | 1960-64 | | | 06174200 | Milk River near Glasgow | 21,965 | 1952 | | | | | 1969-73 | | 1969-73 | | 06174300 | Milk River tributary No. 3 near Glasgow | 1.82 | | 1974-P | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | |----------|---|-------------------|---------------------------------|---|-------------------|---------------------------|----------------|---|--------------------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | - 11-1-1 | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct- | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 6Miss | ouri River B | asinContinu | <u>ied</u> | | | | | | | 06174500 | Milk River at Nashua | 22,332 | 1939-P | 1940-P | | 2000-Р | | 1950-53,
1959-94,
1999-P | 1974-94,
1999-P | 1974-94 | | 06174550 | Middle Fork Porcupine Creek near Baylor | | | | | | | 1982-83 | | | | 06174600 | Snow Coulee at Opheim | 3.11 | | 1972,
1974-P | | | | | | | | 06174700 | West Fork Porcupine Creek near Baylor | | | | | | | 1982-83 | | | | 06175000 | Porcupine Creek at Nashua | 725 | 1908-24,
1982-92 | 1909,
1912-21,
1923-24,
1939,
1982-93 | | | | 1982-89 | | | | 06175400 | Frazer Reservoir outlet near Frazer | | | | | | | 1960-63
1966-97,
1969-72 | | | | 06175500 | Little Porcupine Creek at Frazer | 280 | 1909-16,
1918-19 | | | | | | | | | 06175505 | Little Porcupine Creek below diversion, at Frazer | | | | | | | 1982-83 | | | | 06175540 | Prairie Elk Creek near Oswego | 352 | 1975-85 | 1976-85 | | | | 1976-79 | 1976-79 | | | 06175550 | East Fork Sand Creek near Vida | 8.51 | | 1963-77 | | | | | | | | 06175580 | Sand Creek near Wolf Point | 201 | | | | | | 1976-77 | 1976-77 | | | 06175600 | West Fork Wolf Creek near Lustre | 6.57 | | 1956-67 | | | | | | | | 06175700 | East Fork Wolf Creek near Lustre | 9.61 | | 1956-2002 | | | | | | | | 06175800 | Wolf Creek tributary near Wolf Point | 2.46 | | 1955-67 | | | | | | | | 06175900 | Wolf Creek tributary No. 2 near Wolf Point | 6.10 | | 1955-84 | | | | | | | | 06176000 | Wolf Point ditch at Wolf Point | | 1909-10 | | | | | | | | | 06176500 | Wolf Creek near Wolf Point | 251 | 1908-14,
1950-53,
1982-92 | 1910-12,
1950-54,
1956-70,
1972-73,
1982-93 | | | | 1982-84 | | | | 06176950 | Missouri River tributary No. 6 near Wolf Point | 0.53 | | 1973-91 | | | | | | | | 06177000 | Missouri River near Wolf Point | 82,290 | 1928-P | 1929-P | | 1979-85
2002-P | | 1949-51,
1961-62,
1965-68,
1970-73
2002-P | 2002-P | | | 06177020 | Tule Creek tributary near Wolf Point | 1.91 | | 1974-P | | | | | | | | 06177025 | Tule Creek near Poplar | | | | | | | 1982 | | | | 06177050 | East Fork Duck Creek near Brockway | 12.4 | | 1955-2002 | | | | | | | | 06177100 | Duck Creek near Brockway | 54.0 | | 1957-73 | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water yea | ar) | | | |----------|--|-------------------|---------------------|---------------------------------|-----------------------|---------------------------|-----------------|---------------------|----------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 6Misso | ouri River B | asinContinu | <u>ed</u> | | | | | | | 06177150 | Redwater River at Brockway | 216 | | 1957-73,
1986 | | | | 1980-83 | | | | 06177200 | Tusler Creek near Brockway | 90.2 | | 1957-72 | | | | | | | | 06177250 | Tusler Creek tributary near Brockway | 3.17 | | 1957-73,
1986 | | | | | | | | 06177300 | Redwater River tributary near Brockway | 0.29 | | 1954,1957,
1959-73 | | | | | | | | 06177350 | South Fork Dry Ash Creek near Circle | 5.74 | | 1955-60,
1962-72,
1986 | | | | | | | | 06177400 | McCune Creek near Circle | 29.9 | 1982-85 | 1955-58,
1960-73,
1982-86 | | | | | | | | 06177500 | Redwater River at Circle | 547 | 1929-72,
1974-P | 1929-30,
1932-72,
1975-P | | | | 1975-85 | 1975-85 | | | 06177520 | Horse Creek near Circle | 101 | | | | | | 1977-79,
1982 | 1977-79 | | | 06177650 | Redwater River near Richey | 1,071 | 1982-86 | 1983-85 | 1982-85 | | | 1982-85 | 1982-84 | | | 06177700 | Cow Creek tributary near Vida | 1.71 | 1982-85 | 1963-P | | | | | | | | 06177720 | West Fork Sullivan Creek near Richey | 14.8 | | 1972,
1974-92 | | | | | | | | 06177800 | Gady Coulee near Vida | 0.91 | | 1962-91 | | | | | | | | 06177820 | Horse Creek tributary near Richey | 0.63 | | 1974-P | | | | | 1076.05 | | | 06177825 | Redwater River near Vida | 1,974 | 1975-85 | 1976-85 | | | | 1976-85 | 1976-85 | 1077.79 | | 06178000 | Poplar River at international boundary | 358 | 1931-P | 1931,
1933-P | | | | 1964-65,
1976-P | 1977-P | 1977-78 | | 06178150 | Poplar River near Scobey | 572 | | | | | | 1975-80 | 1977-79 | 1977-78 | | 06178500 | East Poplar River at international boundary | 541 | 1931-P | 1931-32,
1935-43,
1945-P | 1982-P | | | 1964-65,
1975-P | 1975-P | 1977-81 | | 06179000 | East Fork Poplar River near Scobey | 722 | 1935-40,
1975-79 | 1975-79 | | | | 1975-95 | 1977-95 | 1977-78 | | 06179100 | Butte Creek tributary near Four Buttes | 1.60 | | 1972,
1974-P | | | | | | | | 06179200 | Poplar River above West Fork, near Bredette | 1,745 | | | | | | 1976-81,
1985-93 | 1977-81 | 1977-78 | | 06179500 | West Fork Poplar River at international boundary | 139 | 1931-53 | 1931-33,
1935-37,
1939-52 | | | | 1976-83 | 1977-79 | 1977-78 | | 06180000 | West Fork Poplar River near Richland | 428 | 1935-49 | 1935-49,
1990,1994 | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | |----------|--|-------------------|--|---|-----------------------|---------------------------|----------------|--------------------------------|--------------------------------|---------------------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | , | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 6Misso | ouri River B | asinContinu | <u>ed</u> | | | | | | | 06180200 | West Fork Poplar River near Four Buttes | 732 | | | | | | 1975-76 | | | | 06180400 | West Fork Poplar River near Bredette | 1,010 | | | | | | 1976-93 | 1977-84 | 1977-78 | | 06180500 | Poplar River near Bredette | 2,940 | 1934-47 | 1934-47 | | | | | | | | 06180600 | Poplar River above Slims Coulee, near Poplar | | | | | | | 1991-93 | | | | 06181000 | Poplar River near Poplar | 3,174 | 1908-24,
1947-69,
1975-79,
1982-P | 1909,1915,
1921,1923,
1946,
1948-63,
1965-69,
1975-79,
1982-P | | 2000-Р | | 1975-81,
1987-94,
1999-P | 1975-81,
1987-94,
1999-P | 1975-78,
1987-94 | | 06181200 | Missouri River tributary No. 2 near Brockton | 1.60 | | 1962-76 | | | | | | | | 06181500 | Big Muddy Creek at international boundary | 29.0 | 1949-52 | | | | | | | | | 06181995 | Beaver Creek at international boundary | 149 | 1977-94 | 1978-94 | | | | 1977-91 | 1977-91 | 1977-78 | | 06182000 | Beaver Creek near international boundary | 224 | 1949-53 | | | | | | | | | 06182500 | Big Muddy Creek at Daleview | 279 | 1947-72 | 1948-72,
1975 | | | | | | | | 06182700 | Middle Fork Big Muddy Creek near Flaxville | 3.12 | | 1972,
1974-83 | | | | | | | | 06183000 | Big Muddy Creek at Plentywood | 850 | 1948-53 | 1948-53,
1955-67 | | | | | | | | 06183100 | Box Elder Creek near Plentywood | 9.40 | | 1956-73,
1976 | | | | | | | | 06183200 | Box Elder Creek at dam site, near Plentywood | 19.9 | | 1953,1955,
1957-63 | | | | | | | | 06183300 | Marron Creek tributary near Plentywood | 6.08 | | 1955-2002 | | | | | | | | 06183400 | Spring Creek at Highway 16, near Plentywood | 16.9 | | 1956-73,
1976 | | | | | | | | 06183450 | Big Muddy Creek near Antelope | 967 | 1979-P | 1979-P | | | | 1979-93 | 1979-87 | | | 06183500 | Big Muddy Creek at Reserve | 1,044 | 1920-25,
1950-53 | 1920-21,
1923-24,
1950-53 | | | | | | | | 06183700 | Big Muddy Creek diversion canal near Medicine Lake | | 1985-P | | | | | | | |
| 06183750 | Lake Creek near Dagmar | 101 | 1985-89,
1995-P | 1986-89,
1996-P | | | | | | | | 06183800 | Cottonwood Creek near Dagmar | 126 | 1985-89,
1995-P | 1986-89,
1996-P | | | | | | | | 06183850 | Sand Creek near Dagmar | 122 | 1985-89,
1995-P | 1986-89,
1995-P | | | | | | | | 06183900 | Wolf Creek near Reserve | | | | | | | 1982-84 | | | | 06184000 | Wolf Creek near Medicine Lake | 165 | 1918-19 | | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | |----------|---|-------------------|--------------------------------|--------------------------------|-----------------------|---------------------------|---------------------|--------------------------------|----------------------|------------------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | <u> </u> | Part 6Misso | ouri River B | asinContinu | <u>ied</u> | | | | | | | 06184200 | Lost Creek tributary near Homestead | 1.90 | | 1972,
1974-P | | | | | | | | 06184400 | Smoke Creek near Flaxville | | | | | | | 1982 | | | | 06184500 | Smoke Creek near Poplar | 283 | 1918 | | | | | | | | | 06185000 | Big Muddy Creek near Culbertson | 2,447 | 1908-21 | 1909-14,
1916-21 | | | | | | | | 06185100 | Big Muddy Creek tributary near Culbertson | 7.38 | | 1963-77 | | | | | | | | 06185110 | Big Muddy Creek near mouth, near Culbertson | 2,684 | 1982-92 | 1982-92 | | | | 1982-89 | | | | 06185150 | Hardscrabble Creek near Culbertson | 121 | | | | | | 1981-83 | 1981-83 | | | 06185200 | Missouri River tributary No. 3 near Culbertson | 1.23 | | 1963-77 | | | | | | | | 06185300 | Missouri River tributary No. 4 near Bainville | 11.6 | | 1963-77 | | | | | | | | 06185400 | Missouri River tributary No. 5 at Culbertson | 3.67 | | 1963-P | | | | | | | | 06185500 | Missouri River near Culbertson | 91,557 | 1941-51,
1958-P | 1942-51,
1959-P | | 2002-P | 1972-76 | 1965-86,
1992-94,
1997-P | 1972-86,
1997-P | 1969-86,
2003 | | | | Part 6Y | Yellowstone | River Basin | | | | | | | | 06186000 | Yellowstone Lake at Bridge Bay, Yellowstone National Park | 1,006 | 1921-86 | | | | | | | | | 06186500 | Yellowstone River at Yellowstone Lake outlet, Yellowstone
National Park | 991 | 1922-82,
1984-86,
1989-P | 1923-86,
1989-P | 1984-85 | 1984-85 | | | | | | 06187000 | Yellowstone River near Canyon Hotel, Yellowstone National Park | 1,157 | 1913-51 | 1913-18,
1821-51 | | | | | | | | 06187500 | Tower Creek at Tower Falls, Yellowstone National Park | 50.4 | 1922-43 | 1923-43 | | | | | | | | 06187550 | Yellowstone River at Tower Junction, Yellowstone National Park | 1,342 | 1984-86 | 1984-86 | 1984-85 | 1984-85 | | | | | | 06187915 | Soda Butte Creek at park boundary, at Silver Gate | 31.2 | 1999-P | 1999-P | | | | 1999-2001 | 1999-2001 | 2000-2001 | | 06187950 | Soda Butte Creek near Lamar Ranger Station, Yellowstone
National Park | 99 | 1989-P | 1989-P | | | | 1989 | | | | 06188000 | Lamar River near Tower Falls Ranger Station, Yellowstone
National Park | 660 | 1922-69,
1985-86,
1988-P | 1923-69,
1985-86,
1989-P | | | 1985-86,
1989-92 | 1989 | 1985-86,
1988-92, | | | 06188500 | East Fork Blacktail Deer Creek near Mammoth, Yellowstone
National Park | 10.3 | 1938-41 | | | | | | | | | 06189000 | Blacktail Deer Creek near Mammoth, Yellowstone National Park | 15 | 1938-45,
1989-93 | 1938-45,
1989-93 | | | | 1989 | | | | 06189500 | Bear Creek at Jardine | 40.8 | 1946-49 | | | | | | | | | 06190000 | Lupine Creek near Mammoth, Yellowstone National Park | 4.67 | 1938-41 | | | | | | | | | 06190370 | Gardner River above Mammoth Springs Outflow, near Mammoth,
Yellowstone National Park | | | | | | | 1988-93 | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | riod of record | d (by water ye | ar) | | | |----------|---|-------------------|----------------------------------|----------------------------------|-----------------------|-----------------------------|----------------|--|-------------------------------|----------------------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | _ | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | <u>P</u> | art 6Yellow | stone River | BasinConti | nued | | | | | | | 06190415 | Mammoth Springs Outflow at Mammoth, Yellowstone National Park | | | | | | | 1988-94 | | | | 06190500 | Gardner River at Mammoth, Yellowstone National Park | 200 | 1922-39 | 1923-38 | | | | | | | | 06190525 | Gardner River Sinkhole Diversion at Mammoth, Yellowstone
National Park | | | | | | | 1989-92 | | | | 06190530 | Clematis Creek at Mammoth, Yellowstone National Park | 2.71 | | | | | | 1990-92 | | | | 06190540 | Boiling River at Mammoth, Yellowstone National Park | | 1989-94
2003 | 1989-95
2003 | 1989-90 | 1989-90
2003 | | 1967,
1988-94 | | | | 06191000 | Gardner River near Mammoth, Yellowstone National Park | 202 | 1938-72,
1984-P | 1939-72,
1984-P | 1985 | 1985 | | 1988-93 | 1989 | | | 06191400 | LaDuke Hot Springs near Corwin Springs | | | | | | | 1988-94 | | | | 06191500 | Yellowstone River at Corwin Springs | 2,619 | 1889-93,
1910-P | 1890-93,
1911-P | 1984-85 | 1977-81,
1984-85
2002 | 1985-92 | 1956-57,
1969-74,
1988-90
1999-2001 | 1965,
1985-92
1999-2001 | 1969-74
2000-2001 | | 06191800 | Big Creek near Emigrant | 60.9 | 1973-79,
1983-85 | 1974-79,
1983-85 | | | | | | | | 06192000 | Mill Creek near Pray | 148 | 1951-56 | 1951-56 | | | | | | | | 06192500 | Yellowstone River near Livingston | 3,551 | 1897-1905,
1928-32,
1937-P | 1897-1905,
1929-32,
1938-P | | 2000-Р | 1985-86 | 1970-94,
1999-P | 1965,
1979-94,
1999-P | 1979-94 | | 06193000 | Shields River near Wilsall | 87.8 | 1935-57 | 1936-57 | | | | | | | | 06193500 | Shields River at Clyde Park | 543 | 1921-23,
1929-32,
1934-67 | 1921-23,
1929-32,
1934-67 | | | | | 1965 | | | 06194000 | Brackett Creek near Clyde Park | 57.9 | 1921-23,
1934-57 | 1921-23,
1934-57 | | | | | | | | 06194500 | Canyon Creek near Chadbourn | 21.5 | 1923 | | | | | | | | | 06195000 | Bangtail Creek at Chadbourn | 13.3 | 1923 | | | | | | | | | 06195500 | Willow Creek near Chadbourn | 29.7 | 1923 | | | | | | | | | 06195600 | Shields River near Livingston | 852 | 1979-P | 1979-P | | 2000-P | | 1999-P | 1999-P | | | 06196000 | North Fork Big Timber Creek near Big Timber | 36.6 | 1907-12 | | | | | | | | | 06196500 | South Fork Big Timber Creek near Big Timber | 28.1 | 1907-11 | | | | | | | | | 06197000 | Big Timber Creek near Big Timber | 74.9 | 1912-24 | 1912-16,
1918-24,
1971 | | | | | | | | 06197020 | Big Timber Creek near mouth, near Big Timber | | | | | | | | 1965 | | | | - · · · · · · · · · · · · · · · · · · · | | | | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | riod of record | l (by water ye | ar) | | | |----------|---|-------------------|--|--|-----------------------|---------------------------|----------------|-----------------|-----------------------------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | - 11-1 | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | <u>Pa</u> | rt 6Yellow | stone River | BasinContin | <u>ued</u> | | | | | | | 06197500 | Boulder River near Contact | 226 | 1910-16,
1929,
1950-69,
1970-74,
1981-83 | 1910-16,
1929,
1951-69,
1971-75,
1982-83 | | | 1972 | 1971-73 | 1971-73
1981-83 | | | 06197800 | East Boulder River below Dry Fork Creek, near McLeod | | | | | | | | 1981-83 | | | 06198000 | East Fork Boulder River near McLeod | 85.6 | 1907-10,
1981-83 | 1908-09,
1982-83 | | | | | 1981-83 | 1982-83 | | 06198450 | West Fork Boulder River at West Boulder Reservoir near McLeod | | | | | | | | 1981-83 | | | 06198500 | West Fork Boulder River near Bruffeys | 91.6 | 1904-10 | 1904-1908,
1910 | | | | | | | | 06199000 | West Boulder River at McLeod | 135 | 1907-14 | 1907-14 | | | | | 1981-83 | | | 06199500 | Boulder River near McLeod | 476 | 1912-14 | | | | | | | | | 06200000 | Boulder River at Big Timber | 523 | 1947-53,
1955-P | 1947-53,
1955-P | | 2000-Р | | 1965,
1999-P | 1965,
1981-83,
1999-P | | | 06200400 | Sweet Grass Creek near Melville | 46.3 | 1907-12 | | | | | | | | | 06200500 | Sweet Grass Creek above Melville | 63.8 | 1913-25,
1937-69 | 1914-24,
1937-69,
1971,1975 | | | | | | | | 06201000 | Sweet Grass Creek below Melville | 143 | 1907-24,
1937-43,
1946-52 | 1907-16,
1918-24,
1937-42,
1946-52 | | | | | | | | 06201500 | Sweet Grass Creek near Greycliff | 368 | 1941-42 | | | | | | | | | 06201550 |
Yellowstone River tributary near Greycliff | 2.72 | | 1960-74 | | | | | | | | 06201600 | Bridger Creek near Greycliff | 61.5 | | 1960-75 | | | | | | | | 06201650 | Work Creek near Reed Point | 32.5 | | 1959-73,
1978 | | | | | | | | 06201700 | Hump Creek near Reed Point | 7.61 | | 1960-P | | | | | | | | 06201750 | Berry Creek near Columbus | 23.5 | | 1958-73,
1978 | | | | | | | | 06201800 | Stillwater River above Woodbine Creek, near Nye | 160 | 1924-27 | | | | | | | | | 06202000 | Woodbine Creek near Nye | 19.4 | 1924-27 | | | | | | | | | 06202500 | Stillwater River near Nye | 180 | 1929-32 | | | | | | | | | 06202510 | Stillwater River above Nye Creek, near Nye | 193 | 1980-91 | 1980-91 | | | | | 1981-83 | 1982-83 | | 06202530 | Stillwater River above West Fork, at Nye | 193 | | | | | | | 1971-73 | | | 06202590 | West Fork Stillwater River above Cathedral Creek, near Nye | | | | | | | | 1981-83 | | | 06202597 | Castle Creek near Nye | | | | | | | | 1973 | | | 06202598 | West Fork Stillwater River below Castle Creek, near Nye | 122 | | | | | | | 1971-73
1981-83 | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | riod of record | (by water ye | ar) | | | |----------|--|-------------------|---------------------|--------------------|-----------------------|---------------------------|------------------|---------------------|------------------------------------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 6Yellow | stone River | BasinContin | <u>nued</u> | | | | | | | 06202600 | Stillwater River at Nye | 337 | 1969-77 | 1970-76 | | | | | | | | 06202610 | Stillwater River at Beehive | 371 | | | | | 1972-73 | 1971-73,
1982-83 | 1973,
1982-83 | 1982-83 | | 06203000 | East Rosebud Creek near Roscoe | 105 | 1920-21 | | | | | | | | | 06203500 | East Rosebud Creek at Roscoe | 125 | 1921-24 | | | | | | | | | 06204000 | Mystic Lake near Roscoe | 46.9 | 1936-P | | | | | | | | | 06204050 | West Rosebud Creek near Roscoe | 52.1 | 1965-P | 1966-P | | | | | | | | 06204150 | Fishtail Creek near Dean | | | | | | | | 1981-83 | | | 06204220 | Butcher Creek near Luther | 9.69 | | | | | | 1960 | 1960-61 | | | 06204240 | Butcher Creek near Roscoe | | | | | | | | 1960-61 | | | 06204260 | Butcher Creek near Fishtail | | | | | | | | 1960-61 | | | 06204300 | Butcher Creek near Absarokee | 39.6 | 1960-62 | | | | | 1960 | | | | 06204500 | Rosebud Creek near Absarokee | 394 | 1935-69 | 1935-69 | | | | | | | | 06204700 | Rosebud Creek at Absarokee | 401 | 1910-14 | | | | | | | | | 06205000 | Stillwater River near Absarokee | 975 | 1910-14,
1935-P | 1911-14,
1935-P | | 2001-2002 | | 1999-P | 1965,1981,
1999-P | | | 06205050 | Stillwater River near Columbus | | | | | | | | 1982-83 | | | 06205100 | Allen Creek near Park City | 7.17 | | 1961-2002 | | | | | | | | 06205200 | Yellowstone River at Laurel | 8,189 | | | | | | 1951-52,
1974-79 | 1975-78 | 1974-79 | | 06207500 | Clarks Fork Yellowstone River near Belfry | 1,154 | 1921-P | 1922-P | | | 1984 | 1966-88 | 1965,1971
1984 | | | 06207510 | Big Sand Coulee at Wyoming-Montana State line | 134 | 1973-81 | 1973-80 | | | 1973-81 | | | | | 06207520 | Silver Tip Creek below Amoco dam, near Belfry | | | | | | | 1972 | | | | 06207523 | Silver Tip Creek below Sinclair oil field, near Belfry | | | | | | | 1972 | | | | 06207530 | Silver Tip Creek above Gobblers Draw, near Belfry | | | | | | | 1971 | | | | 06207540 | Silver Tip Creek near Belfry | 88.0 | 1968-75 | 1968-75 | | | 1969-72,
1974 | 1969-75 | 1970-75 | | | 06207600 | Jack Creek tributary near Belfry | 0.85 | | 1975-91 | | | | | | | | 06207700 | North Fork Bluewater Creek near Bridger | 8.1 | | | | | | | 1960-61,
1964-68 | | | 06207800 | Bluewater Creek near Bridger | 28.1 | 1960-70 | 1960-70,
1978 | | | 1962-70 | 1960 | 1964-65 | | | 06207850 | Bluewater Creek at Sanford Ranch | 43.9 | | | | | 1964-70 | | 1960-61
1964-70 | | | 06207870 | Bluewater Creek near Fromberg | 46.6 | | | | | 1964-70 | 1960 | 1960-61,
1964-68 | | | 06207900 | Bluewater Creek at Fromberg | 53.2 | 1961-64 | | | | 1962-64 | 1960,1980 | 1960-761,
1964-68,
1970,1980 | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | (by water ye | ar) | | | |----------|--|-------------------|---------------------------------|---|-----------------------|---------------------------|--------------|--------------------|----------------------------|-------------------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 6Yellow | stone River | BasinConti | <u>nued</u> | | | | | | | 06208000 | Clarks Fork Yellowstone River at Fromberg | 1,940 | 1905-14 | 1905-13 | | | | | | | | 06208400 | Elbow Creek near Joliet | 48.6 | 1984 | 1984 | | | | 1984 | 1984 | | | 06208500 | Clarks Fork Yellowstone River at Edgar | 2,022 | 1921-69,
1987-P | 1922-32,
1934-69,
1987-P | | 2000-P | 1972-73 | 1964-65,
1999-P | 1965,1973,
1999-P | 2000-Р | | 06208800 | Clarks Fork Yellowstone River near Silesia | 2,093 | 1970-87 | 1970-86 | | | 1984 | 1984 | 1984 | | | 06209000 | Glacier Lake near Red Lodge | 3.77 | 1939-47,
1960-64 | | | | | | | | | 06209010 | Rock Creek below Glacier Lake, near Red Lodge | 3.89 | 1960-64 | | | | | | | | | 06209500 | Rock Creek near Red Lodge | 105 | 1932-82,
1985-86,
2000-P | 1932,
1934-82,
1985-86,
2000-P | | 2001-2002 | | | | | | 06210000 | West Fork Rock Creek below Basin Creek, near Red Lodge | 63.1 | 1937-57 | 1938-56 | | | | | | | | 06210500 | West Fork Rock Creek near Red Lodge | 66.9 | 1932-44 | 1932,
1934-44 | | | | | | | | 06211000 | Red Lodge Creek above Cooney Reservoir, near Boyd | 143 | 1937-P | 1937-P | | | | | | | | 06211500 | Willow Creek near Boyd | 53.3 | 1937-P | 1937-P | | | | | | | | 06212000 | Cooney Reservoir near Boyd | 206 | 1937-95 | | | | | | | | | 06212500 | Red Lodge Creek below Cooney Reservoir, near Boyd | 210 | 1937-P | 1938-P | | | | | | | | 06213000 | Red Lodge Creek near Boyd | 234 | 1932-37 | | | | | | | | | 06213500 | Rock Creek at Joliet | 539 | 1946-53 | 1946-53 | | | | | | | | 06214000 | Rock Creek at Rockvale | 569 | 1920-22,
1952-40,
1984-90 | 1921-22,
1932,1934,
1935-40,
1985-90 | | | | | | | | 06214050 | Clarks Fork Yellowstone River near Laurel | 2,783 | | | | | | 1969-73 | | 1969-73 | | 06214100 | Yellowstone River near Laurel | 11,036 | | | | | | 1969-72 | | 1969-72 | | 06214150 | Mills Creek at Rapelje | 3.32 | | 1974-2002 | | | | | | | | 06214500 | Yellowstone River at Billings | 11,805 | 1904-05,
1928-P | 1904-05,
1918,
1929-P | | 2001-2002 | 1977-81 | 1963-93
1999-P | 1965,
1975-93
1999-P | 1975-93
2000-P | | 06215000 | Pryor Creek above Pryor | 39.6 | 1921-24,
1967-74 | 1921-24,
1967-74 | | | | 1987-90 | | | | 06215500 | Lost Creek near Pryor | 9.72 | 1921-24 | 1922-24 | | | | | | | | 06216000 | Pryor Creek at Pryor | 117 | 1921-24,
1966-P | 1922-24,
1967-P | | | | | | | | 06216200 | West Wets Creek near Billings | 8.80 | | 1955-P | | | | | | | | 06216300 | West Buckeye Creek near Billings | 2.64 | | 1955-73,
1978 | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | |-----------------------------|---|-------------------|---------------------------------|--|-----------------------|---------------------------|----------------|------------------------------|----------|-------------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | <u>Pa</u> | art 6Yellow | stone River | BasinConti | nued | | | | | | | 06216500 | Pryor Creek near Billings | 440 | 1911-24,
1938-54 | 1912-24,
1938-53,
1955-73,
1978 | | | | | | | | 06216900 | Pryor Creek near Huntley | 582 | 1979-99 | 1978-99 | | | | | | | | 06217000 | Pryor Creek at Huntley | 606 | 1904-17 | 1905-06,
1908,
1910-15,
1978 | | | | | | | | 06217300 | Twelvemile Creek near Shepherd | 9.05 | | 1973-P | | | | | | | | 06217500 | Yellowstone River at Huntley | 12,840 | 1908-16 | 1908-16 | | | | 1951-52,
1971-81 | 1975-81 | 1972-81 | | 06217700 | North Fork Crooked Creek tributary near Shepherd | 6.85 | | 1962-P | | | | | | | | 06217750 | Fly Creek at Pompeys Pillar | 285 | 1969-81 | 1969-81 | | | | 1969-81 | | | | 06217800 | Yellowstone River tributary No. 2 near Pompeys Pillar | 0.70 | | 1962-73 | | | | | | | | 06217950 | Buffalo Creek near Custer | 221 | 1980-83 | 1980-83 | | | | | | | | 06218000 | Yellowstone River at Junction (at Custer) | 14,427 | 1906-08 | | | | | 1969-70 | | 1969-70 | | 06286258 | Big Coulee near Lovell, Wyoming | 30.1 | 1970-78 | | | | | | | | | 06286270 | Porcupine Creek
near Lovell, Wyoming | 135 | 1964-67 | | | | | | | | | 06286340 | Dry Head Creek near Pryor | 58.0 | 1965-66 | | | | | | | | | 06286350 | Dry Head Creek above Hoodoo Creek, near Pryor | 80.0 | 1966-68 | 1966-67 | | | | | | | | 06286370 | Big Bull Elk Creek near St. Xavier | 35.0 | 1965-68 | | | | | | | | | 06286390 | Black Canyon Creek near St. Xavier | 52.0 | 1965-66 | 1965-66 | | | | | | | | 06286395 | Black Canyon Creek below Three Springs Creek, near St. Xavier | 75.0 | 1966-68 | 1966-67 | | | | | | | | 06286400 | Bighorn Lake near St. Xavier | 19,626 | 1965-P | | | | | | | | | 06286490 | Bighorn Canal near St. Xavier | | 1966-P | | | | | | | | | 06286500
06287000 | Bighorn Canal below wasteway, near St. Xavier | 10.667 | 1947-52
1934-P |
1935-P | |
1970-79 | | 1067.91 | |
1969-70 | | | Bighorn River near St. Xavier | 19,667
98.3 | 193 4- F
1911-14, | 1935-F
1939-53, | | 1970-79 | | 1967-81 | | 1909-70 | | 06287500 | Soap Creek near St. Xavier | 98.3 | 1911-14,
1939-53,
1968-72 | 1939-33,
1963,
1968-72,
1978 | | | | | | | | 06287700 | Soap Creek near mouth, near St. Xavier | 111 | 1914-24 | 1914-18,
1920-24 | | | | | | | | 06288000 | Rotten Grass Creek near St. Xavier | 147 | 1911-22,
1968-73 | 1914-17,
1968-72,
1978 | | | | | | | | 06288200 | Beauvais Creek near St. Xavier | 100 | 1967-77 | 1968-78 | | | | 1967-78 | 1968-78 | 1969-78 | | 06288500 | Bighorn River near Hardin | 20,722 | 1904-25,
1928-33 | 1904-24,
1929-33 | | 1968-74 | | 1951,
1969-73,
1987-89 | | 1970-73 | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | |----------|--|-------------------|---------------------------------|--|-----------------------|---------------------------|----------------|-----------------------------------|--------------------------------|-----------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | <u>Pa</u> | rt 6Yellow | stone River | BasinConti | <u>nued</u> | | | | | | | 06288960 | Little Bighorn River near Parkman, Wyoming | 137 | 1970-72 | 1972 | | | | | | | | 06288990 | West Fork Little Bighorn River near Parkman, Wyoming | 38.2 | 1970-72,
1983-87 | | | | | | | | | 06289000 | Little Bighorn River at State line, near Wyola | 182 | 1939-P | 1939-P | | | | 1993-2001 | 1993-2001 | 1993-2001 | | 06289500 | Little Bighorn River near Wyola | 251 | 1912-24 | 1912-24 | | | | 1993-2001 | 1993-2001 | 1993-2001 | | 06290000 | Pass Creek near Wyola | 111 | 1935-56,
1983-P | 1935-56,
1978,
1983-P | | | | | | | | 06290200 | Little Bighorn River tributary near Wyola | 4.43 | | 1973-86 | | | | | | | | 06290500 | Little Bighorn River below Pass Creek, near Wyola | 428 | 1939-75,
1977-P | 1939-P | | | 1970-73 | 1970-75,
1977 | 1970-73 | | | 06291000 | Owl Creek near Lodge Grass | 163 | 1939-45,
1980-92 | 1939-42,
1944-45,
1980-92 | | | | | | | | 06291200 | Lodge Grass Creek at State Line, near Wyola | 16.7 | 1983-84 | 1983-89 | | | | | | | | 06291500 | Lodge Grass Creek above Willow Creek Diversion, near Wyola | 80.7 | 1939-74,
1983-P | 1939-74,
1978,
1983-P | | | | | | | | 06292000 | Lodge Grass Creek near Wyola | 88.9 | 1921-24 | | | | | | | | | 06292500 | Lodge Grass Creek near Lodge Grass | 143 | 1912-16,
1921-24 | 1912-15,
1921-24 | | | | | | | | 06293000 | Lodge Grass Creek at Lodge Grass | 170 | 1916-20 | | | | | | | | | 06293300 | Long Otter Creek near Lodge Grass | 11.7 | | 1973-P | | | | | | | | 06293500 | Little Bighorn River near Crow Agency | 1,181 | 1912-24,
1928-33,
1938-60 | 1912,
1914-24,
1929-32,
1938-60 | | | | | | | | 06293900 | Little Bighorn River at Crow Agency | 1,190 | 1905-06 | | | | | | | | | 06294000 | Little Bighorn River near Hardin | 1,294 | 1953-P | 1953-P | | | 1970-77 | 1970-79,
1987-89,
1993-2001 | 1971-75,
1977,
1993-2001 | 1993-2001 | | 06294400 | Andresen Coulee near Custer | 2.35 | | 1963-P | | | | | | | | 06294500 | Bighorn River above Tullock Creek, near Bighorn | 22,414 | 1982-P | 1982-P | | 2000-P | | 1999-P | 1999-P | | | 06294600 | East Cabin Creek tributary near Hardin | 8.63 | 1982-85 | 1973-P | | | | | | | | 06294690 | Tullock Creek near Bighorn | 446 | 1975-82 | 1975-82 | | | | | | | | 06294700 | Bighorn River at Bighorn | 22,885 | 1945-81 | 1945-81 | | | 1960-72 | 1960-92 | 1960-72,
1975-92 | 1975-92 | | 06294800 | Unknown Creek near Bighorn | 14.6 | | 1962-76,
1979,1991 | | | | | | | | 06294840 | Yellowstone River at Myers | 37,674 | | | | | | 1974-77 | | 1975-77 | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | d (by water ye | ar) | | | |----------|---|-------------------|---------------------|--|-------------------|---------------------------|----------------|----------------------|----------------------|----------------------------------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | 2 | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct- | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 6Yellow | stone River | BasinContir | nued | | | | | | | 06294850 | Buckingham Coulee near Myers | 2.63 | | 1962-76,
1979,1991 | | | | | | | | 06294900 | Middle Fork Froze to Death Creek tributary near Ingomar | 1.36 | | 1962-76 | | | | | | | | 06294920 | East Fork Sarpy Creek near Colstrip | 79.2 | | | | | | 1981-83 | 1981-83 | | | 06294930 | Sarpy Creek tributary near Colstrip | 4.44 | | 1972-P | | | | | | | | 06294940 | Sarpy Creek near Hysham | 453 | 1973-84 | 1974-84 | | | | 1975-84 | 1975-84 | | | 06294950 | Starved to Death Creek near Sanders | 36.9 | 1980-85 | 1980-85 | | | | | | | | 06294960 | Anderson Creek at Vananda | 5.71 | | 1973-84,
1991 | | | | | | | | 06294980 | East Fork Armells Creek near Colstrip | 97.3 | | | | | | 1975-85 | 1975-85 | | | 06294985 | East Fork Armells Creek tributary near Colstrip | 1.87 | | 1973-P | | | | | | | | 06294991 | West Fork Armells Creek near Forsyth | 148 | | | | | | 1975-77 | 1975-77 | | | 06294995 | Armells Creek near Forsyth | 370 | 1974-84,
1988-95 | 1975-84,
1988-95 | | | | 1975-86,
1988-95 | 1975-86,
1988-95 | | | 06295000 | Yellowstone River at Forsyth | 40,146 | 1921-23,
1977-P | 1921-23,
1978-P | | | 1978-81 | 1974-82
1999-2001 | 1975-82
1999-2001 | 1975,1978,
1979,
2000-2001 | | 06295020 | Short Creek near Forsyth | 3.23 | | 1962-P | | | | | | | | 06295050 | Little Porcupine Creek near Forsyth | 614 | | 1958-73,
1975,1978,
1986,1993 | | | | | | | | 06295100 | Rosebud Creek near Kirby | 35.5 | 1982-85,
1988 | 1960-74,
1982-2002 | | | | | | | | 06295110 | Rosebud Creek at Kirby | | | | | | | 1978-79 | 1978-79 | | | 06295113 | Rosebud Creek at reservation boundary, near Kirby | 123 | 1980-P | 1980-P | | | | 1980-84
2003 | 1980-84
2003 | 2003 | | 06295130 | Rosebud Creek tributary near Busby | 1.14 | | 1963-77 | | | | | | | | 06295200 | Whitedirt Creek near Lame Deer | 1.58 | | 1959-73 | | | | | | | | 06295250 | Rosebud Creek near Colstrip | 799 | 1974-P | 1975-P | | | | 1975-85 | 1975-84 | | | 06295350 | Greenleaf Creek near Colstrip | 30.5 | | | | | | 1975 | 1975 | | | 06295380 | Cow Creek near Colstrip | 27.2 | | | | | | 1980-85 | 1980-85 | | | 06295400 | Rosebud Creek above Pony Creek, near Colstrip | 961 | | | | | | 1975-78 | 1975-77 | | | 06295420 | Snider Creek near Brandenberg | 11.9 | | | | | | 1978 | 1978 | | | 06295500 | Rosebud Creek near Rosebud | 1,193 | 1938-43 | 1938-43 | | | | 1975-77 | 1975-77 | | | 06296000 | Rosebud Creek near Forsyth | 1,279 | 1947-54 | 1948-53,
1655-57,
1959,
1961-67,
1969,1978 | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | |----------|--|-------------------|-----------------------------|-----------------------------|-----------------------|---------------------------|----------------|--------------------------------|--------------------------------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | <u> </u> | Part 6Yellow | stone River | BasinConti | <u>nued</u> | | | | | | | 06296003 | Rosebud Creek at mouth, near Rosebud | 1,302 | 1974-P | 1975-P | | | | 1975-86,
1988-93,
1999-P | 1975-86,
1988-93,
1999-P | | | 06296100 | Snell Creek near Hathaway | 10.5 | 1982-85 | 1963-77,
1979,
1982-P | | | | | | | | 06296115 | Reservation Creek near Miles City | 6.29 | | 1973-P | | | | | | | | 06296120 | Yellowstone River near Miles City | 42,847 | | | 1969-84 | | | 1969-84 | 1975-84 | 1974-81 | | 06306000 | Tongue River near Acme, Wyoming | 894 | 1939-57 | | | | | | | | | 06306100 | Squirrel Creek near Decker | 33.6 | 1975-85 | 1976-85 | | | | 1976-85 | 1976-85 | | |
06306250 | Prairie Dog Creek near Acme, Wyoming | 358 | 1971-79 | | | | | | | | | 06306300 | Tongue River at State line, near Decker | 1,453 | 1960-P | 1961-P | 1983-87
2001-P | 1966-76
2001-P | | 1966-P | | 1986-88 | | 06306500 | Tongue River near Decker | 1,585 | 1928-38 | 1928-38 | | | | | | | | 06306800 | Deer Creek near Decker | 47.7 | | | | | | 1975-77 | 1975-76 | | | 06306900 | Spring Creek near Decker | 34.7 | | 1958-86 | | | | 1978,1980 | 1978,1980 | | | 06306950 | South Fork Leaf Rock Creek near Kirby (Leaf Rock Creek near Kirby) | 4.53 | 1982-85 | 1958,
1960-96 | | | | | | | | 06307000 | Tongue River Reservoir near Decker | 1,770 | 1938-P | | | | | | | | | 06307500 | Tongue River at Tongue River Dam, near Decker | 1,770 | 1939-P | 1939-P | 1981-87 | | | 1951,
1976-95 | 1976-96 | | | 06307510 | Fourmile Creek near Birney | 22.3 | | | | | | 1975 | 1975 | | | 06307520 | Canyon Creek near Birney | 50.2 | | 1972-91 | | | | | | | | 06307525 | Prairie Dog Creek above Jack Creek, near Birney | 6.57 | 1979-83 | 1979-83 | | | | 1978-81,
1983 | 1978-83 | | | 06307528 | Prairie Dog Creek near Birney | 19.6 | 1979-84 | 1979-84 | | | | 1978-80,
1983 | 1978-83 | | | 06307530 | Bull Creek near Birney | 45.8 | | | | | | 1975 | 1975 | | | 06307540 | Hanging Woman Creek at State line, near Otter | 90.2 | | | | | | 1980,
1982-83 | 1980,
1982-83 | | | 06307560 | East Trail Creek near Otter | 31.3 | 1976-81 | 1977-81 | | | | 1977-80 | 1977-78,
1980 | | | 06307563 | Corral Creek near Otter | 26.5 | | | | | | 1980-83 | 1980-83 | | | 06307567 | Horse Creek near Birney | 16.0 | | | | | | 1983 | 1983 | | | 06307570 | Hanging Woman Creek below Horse Creek, near Birney | 321 | | | | | | 1978-83,
1986-87 | 1978-83,
1986-87 | | | 06307600 | Hanging Woman Creek near Birney | 470 | 1974-84,
1986-95
2003 | 1974-84,
1986-95
2003 | 1981-83,
1986-87 | | | 1975-95
2003 | 1975-95
2003 | 2003 | | 06307610 | Tongue River below Hanging Woman Creek, near Birney | 2,533 | | | | | | 1974-79 | 1975-79 | 1975-79 | | 06307615 | Cook Creek near Birney | 62.6 | | | | | | 1975-77 | 1975-77 | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | |----------|--|-------------------|-----------------------------|-----------------------------|-------------------|---------------------------|----------------|-----------------------------|-----------------------------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct- | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 6Yellow | stone River | BasinConti | nued | | | | | | | 06307616 | Tongue River at Birney Day School, near Birney | 2,621 | 1980-P | 1980-P | | | | 1980-93 | 1980-86 | | | 06307620 | Tie Creek near Birney | 18.7 | | 1973-84,
1991 | | | | | | | | 06307640 | Spring Creek near Ashland | 1.56 | | 1962-76 | | | | | | | | 06307660 | Walking Horse Creek near Ashland | 3.33 | | 1963-78 | | | | | | | | 06307665 | Otter Creek near Otter | 40.9 | | | | | | 1978-84 | 1978-84 | | | 06307670 | Bear Creek at Otter | 90.4 | | | | | | 1975-76 | 1975-76 | | | 06307700 | Cow Creek near Fort Howes Ranger Station, near Otter | 8.37 | | 1972-P | | | | | | | | 06307717 | Otter Creek below Fifteenmile Creek, near Otter | 453 | 1982-86 | 1982-85 | 1983-85 | | | 1982-85 | 1982-85 | | | 06307720 | Brian Creek near Ashland | 8.03 | | 1973-P | | | | | | | | 06307725 | Otter Creek above Tenmile Creek, near Ashland | 466 | | | | | | 1978-81 | 1978-81 | | | 06307730 | Threemile Creek near Ashland | 51.5 | | | | | | 1975 | 1975 | | | 06307735 | Home Creek near Ashland | 58.7 | | | | | | 1977-84 | 1977-84 | | | 06307740 | Otter Creek at Ashland | 707 | 1973-85,
1988-95
2003 | 1973-85,
1988-95
2003 | 1981-85 | | | 1975-85,
1988-95
2003 | 1975-85,
1988-95
2003 | 2003 | | 06307760 | Stebbins Creek near Ashland | 5.41 | | 1963-77 | | | | | | | | 06307780 | Stebbins Creek at mouth, near Ashland | 20.8 | | 1963-91 | | | | | | | | 06307800 | Tongue River near Ashland | 3,830 | 1956-73 | 1967-72 | | | | | | | | 06307810 | Beaver Creek near Ashland | 92.3 | | | | | | 1975-76 | 1975-76 | | | 06307830 | Tongue River below Brandenberg Bridge, near Ashland | 3,948 | 1973-84,
2000-P | 1974-84,
2000-P | 2001-P | 2001-P | 1975-81 | 1974-81,
2000-P | 1975,
1978-81,
2000-P | 2003 | | 06307840 | Liscom Creek near Ashland | 47.6 | | | | | | 1975,1977 | 1975,1977 | | | 06307890 | Foster Creek near Volborg | 116 | | | | | | 1975-77 | 1975-77 | | | 06307930 | Jack Creek near Volborg | 5.47 | | 1973-2002 | | | | | | | | 06308000 | Tongue River near Miles City | 4,539 | 1929-33 | | | | | | | | | 06308100 | Sixmile Creek tributary near Epsie | 0.80 | | 1972-91 | | | | | | | | 06308160 | Pumpkin Creek near Loesch | 102 | | | | | | 1976-79 | 1976-79 | | | 06308170 | Little Pumpkin Creek near Volborg | 101 | | | | | | 1976-77 | 1976-77 | | | 06308190 | Pumpkin Creek near Volborg | 386 | | | | | | 1976-77 | 1976-77 | | | 06308200 | Basin Creek tributary near Volborg | 0.14 | | 1955-P | | | | | | | | 06308300 | Basin Creek near Volborg | 11.1 | | 1955-73 | | | | | | | | 06308330 | Deer Creek tributary near Volberg | 1.65 | | 1973-P | | | | | | | | 06308340 | LaGrange Creek near Volberg | 3.66 | | 1973-P | | | | | | | | 06308400 | Pumpkin Creek near Miles City | 697 | 1972-85 | 1973-85 | | | | 1976-85 | 1976-85 | | | 06308500 | Tongue River at Miles City | 5,379 | 1938-42,
1946-P | 1938-41,
1946-P | | 2000-P | 1978-86 | 1949-94,
1999-P | 1975-94,
1999-P | 1975-94 | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of recor | l (by water ye | ar) | | | |----------|--|-------------------|---------------------|------------------------------|-----------------------|---------------------------|----------------|--|----------------------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 6Yellow | stone River | BasinConti | <u>nued</u> | | | | | | | 06309000 | Yellowstone River at Miles City | 48,253 | 1922-23,
1928-P | 1923,
1929-P | | | | 1948-52,
1965 | 1965 | | | 06309020 | Rock Springs Creek tributary at Rock Springs | 0.96 | | 1963-78,
1987 | | | | | | | | 06309040 | Dry House Creek near Angela | 38.6 | | 1963-77,
1987 | | | | | | | | 06309060 | North Fork Sunday Creek tributary No. 2 near Angela | 0.22 | | 1962-91 | | | | | | | | 06309075 | Sunday Creek near Miles City | 714 | 1975-84 | 1975-84 | | | | | | | | 06309078 | Tree Coulee near Kinsey | 4.13 | | 1972,
1974-2002 | | | | | | | | 06309079 | Muster Creek near Kinsey | 28.5 | | | | | | 1978-80 | 1978-80 | 1978-80 | | 06309080 | Deep Creek near Kinsey | 11.5 | | 1962-P | | | | | | | | 06309090 | Ash Creek near Locate | 6.23 | | 1962-76 | | | | | | | | 06309145 | Custer Creek near Kinsey | 151 | | | | | | 1978-80 | 1978-80 | 1978-80 | | 06324500 | Powder River at Moorhead | 8,086 | 1929-72,
1974-P | 1923,
1929-72,
1975-P | 1986-89
2001-P | | 1975-96 | 1949,
1951-53,
1956-57,
1969-72,
1975-92
2001-P | 1975-1997
2001-P | 1969-72 | | 06324700 | Sand Creek near Broadus | 10.2 | | 1955-84 | | | | | | | | 06324710 | Powder River at Broadus | 8,748 | 1975-92 | 1976-92 | | | 1976-92 | 1979,
1988-90 | 1976-92,
1995 | | | 06324995 | Badger Creek at Biddle | 6.06 | | 1972-P | | | | | | | | 06325000 | Little Powder River at Biddle | 1,541 | 1938-43 | | | | | | | | | 06325400 | East Fork Little Powder River tributary near Hammond | 3.45 | | 1974-84 | | | | | | | | 06325500 | Little Powder River near Broadus | 1,974 | 1947-53,
1957-72 | 1947-53,
1956-72,
1978 | | | | 2002-P | 2002-P | | | 06325550 | Little Powder River at mouth, near Broadus | | | | | | | 1978-79,
1988-90
2001-2002 | 1988-89
2001-2002 | | | 06325650 | Powder River near Powderville | | | | | | | 1978-90 | 1988 | | | 06325700 | Deep Creek tributary near Powderville | 3.00 | | 1973-P | | | | | | | | 06325950 | Cut Coulee near Mizpah | 2.23 | | 1973-P | | | | | | | | 06326000 | Powder River near Mizpah | 12,132 | 1928-33 | | | | | 1989 | | | | 06326050 | Mizpah Creek at Olive | 129 | | | | | | 1976-79 | 1976-79 | | | 06326200 | Mizpah Creek near Volberg | 510 | | | | | | 1976-79 | 1976-77 | | | 06326300 | Mizpah Creek near Mizpah | 797 | 1975-86 | 1975-86 | | | | 1976-84,
1989-90 | 1976-84 | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | |----------|--|-------------------|-------------------------------|-----------------------------|---------------------------------|---------------------------|----------------|--------------------------------|----------------------------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture |
Sediment | Chemistry | Sediment | Biology | | | <u>P</u> : | art 6Yellow | stone River | BasinConti | nued | | | | | | | 06326400 | Meyers Creek near Locate | 9.42 | | 1962-76,
1982 | | | | | | | | 06326500 | Powder River near Locate | 13,068 | 1938-P | 1938-P | 1951-62,
1975-81,
1988-90 | | 1975-84 | 1948-63,
1975-94,
1999-P | 1965,
1974-94
1999-P | 1975-94 | | 06326507 | Locate Creek near Ismay | | | | | | | 1982-83 | 1982-83 | | | 06326510 | Locate Creek tributary near Locate | 0.91 | | 1973-91 | | | | | | | | 06326520 | Powder River at mouth, near Terry | 13,512 | | | | | | 1978,1989 | | | | 06326530 | Yellowstone River near Terry | 63,447 | | | | | | 1974-83 | 1975-83 | 1975-80 | | 06326550 | Cherry Creek tributary near Terry | 2.52 | | 1973-91 | | | | | | | | 06326555 | Cherry Creek near Terry | 358 | 1980-81,
1990-94 | 1980-81,
1990-94 | 1990-94 | | 1990-94 | 1978-81 | 1978-81,
1990-94 | | | 06326580 | Lame Jones Creek tributary near Willard | 0.51 | | 1974-P | | | | | | | | 06326600 | O'Fallon Creek near Ismay | 669 | 1978-92 | 1962-92 | | | | 1978-84 | 1978-84 | 1978-80 | | 06326650 | O'Fallon Creek tributary near Ismay | 0.16 | | 1962-76 | | | | | | | | 06326700 | Deep Creek near Baker | 3.79 | | 1962-76,
1978 | | | | | | | | 06326800 | Pennel Creek tributary near Baker | 0.86 | | 1962-91 | | | | | | | | 06326850 | O'Fallon Creek at Mildred | 1,396 | 1975-78 | 1976-78 | | | | | | | | 06326900 | Yellowstone River tributary No. 4 near Fallon | 0.67 | | 1962-76 | | | | | | | | 06326940 | Spring Creek tributary near Fallon | 3.10 | | 1972-P | | | | | | | | 06326950 | Yellowstone River tributary No. 5 near Marsh | 0.87 | | 1962-P | | | | | | | | 06326952 | Clear Creek near Lindsay | 101 | 1982-85,
1988 | 1982-86 | | | | | | | | 06326953 | Clear Creek near Hoyt | 138 | | 1980 | | | | 1978-80 | 1978-80 | 1978-80 | | 06326960 | Timber Fork Upper Sevenmile Creek tributary near Lindsay | 1.13 | | 1974-P | | | | | | | | 06326995 | Upper Sevenmile Creek near Lindsay | 137 | | | | | | 1978-80 | 1978-80 | 1978-80 | | 06327000 | Upper Sevenmile Creek near Glendive | | 1921-22 | | | | | | | | | 06327450 | Cains Coulee at Glendive | 3.72 | | 1991-P | | | | | | | | 06327500 | Yellowstone River at Glendive | 66,788 | 1898-1911,
1932-34
2003 | 1903-10,
1932-34
2003 | | | | 1950 | | | | 06327550 | South Fork Horse Creek tributary near Wibaux | 1.34 | | 1973-P | | | | | | | | 06327700 | Griffith Creek near Glendive | 15.5 | | 1955-63,
1965-67 | | | | | | | | 06327720 | Griffith Creek tributary near Glendive | 3.48 | | 1965,
1974-P | | | | | | | | 06327790 | Krug Creek tributary No. 2 near Wibaux | 0.44 | | 1974-P | | | | | | | | 06327800 | Krug Creek tributary near Wibaux | 1.74 | | 1955-61 | | | | | | | | 06327850 | Glendive Creek near Glendive | 300 | | | | | | 1978-81 | 1978-81 | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | |----------|---|-------------------|---------------------------------|---------------------------------|-----------------------|---------------------------|--------------------|-----------------------|-----------------------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 6Yellow | stone River | BasinConti | nued | | | | | | | 06328000 | Deer Creek near Glendive | 198 | 1921-22 | | | | | 1978-80 | 1978-80 | 1978-80 | | 06328100 | Yellowstone River tributary No. 6 near Glendive | 2.93 | | 1974-P | | | | | | | | 06328200 | Lower Sevenmile Creek near Bloomfield | 25.2 | 1982-85 | 1983-87 | | | | | | | | 06328400 | Thirteenmile Creek tributary near Bloomfield | 0.67 | | 1972,
1974-91 | | | | | | | | 06328700 | Linden Creek at Intake | 4.20 | | 1958-73,
1980 | | | | | | | | 06328800 | Indian Creek at Intake | 0.46 | | 1958-73 | | | | | | | | 06328900 | War Dance Creek near Intake | 3.69 | | 1958-73,
1980 | | | | | | | | 06329000 | Cottonwood Creek near Intake | 85.3 | | | | | | 1978-81 | 1978-81 | | | 06329200 | Burns Creek near Savage | 233 | 1958-67,
1975-84,
1986 | 1958-67,
1975-84,
1986 | | | | 1976-79,
1984,1986 | 1976-79,
1984,1986 | | | 06329350 | Alkali Creek near Sidney | 0.49 | | 1974-P | | | | | | | | 06329500 | Yellowstone River near Sidney | 69,083 | 1910-31,
1933-P | 1911-31,
1934-P | | | 1972-81,
1983-P | 1948-P | 1965,
1972-P | 1970-95 | | 06329510 | Fox Creek tributary near Lambert | 5.01 | | 1972,
1974-96 | | | | | | | | 06329520 | Fox Creek near Lambert | 183 | | | | | | 1981-83 | 1981-83 | | | 06329540 | Lone Tree Creek near Sidney | 39.4 | | | | | | 1981-83 | 1981-83 | | | 06329570 | First Hay Creek near Sidney | 29.1 | | 1963-P | | | | | | | | 06333500 | Little Missouri River at Alzada | 671 | 1904-07 | | | | | 1949-51 | | | | 06333850 | North Creek near Alzada | 1.25 | 1951 | 1951-52,
1956-77 | | | | | | | | 06333900 | North Creek spreader diversion near Alzada | 1.29 | 1952-56 | | | | | | | | | 06334000 | Little Missouri River near Alzada | 904 | 1911-25,
1928-32,
1935-69 | 1912-25,
1929-32,
1935-69 | | | | | | | | 06334100 | Wolf Creek near Hammond | 10.1 | | 1955-2002 | | | | | | | | 06334200 | Willow Creek near Alzada | 122 | | 1958-73 | | | | | | | | 06334330 | Little Missouri River tributary near Albion | 1.49 | | 1972-P | | | | | | | | 06334610 | Hawks Nest Creek tributary near Albion | 0.92 | | 1973-2002 | | | | | | | | 06334625 | Coal Creek tributary near Mill Iron | 0.64 | | 1974-P | | | | | | | | 06334630 | Boxelder Creek at Webster | 1,092 | 1959-73 | 1960-73,
1975 | | | | 1972-73 | | | | 06334640 | North Fork Coal Bank Creek near Mill Iron | 15.6 | | 1962-76 | | | | | | | | 06334720 | Soda Creek tributary near Webster | 2.22 | | 1962-91 | | | | | | | | 06336447 | Duck Creek near Wibaux | 46.5 | 1978-85 | 1978-85 | | | | 1979 | 1978-79 | | | 06336450 | Spring Creek near Wibaux | 4.00 | 1955-73 | 1956-73 | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | |----------|--|-------------------|---------------------|--|-------------------|---------------------------|----------------|-----------|----------|------------------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct- | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 12 | Kootenai R | iver Basin | | | | | | | | 06336500 | Beaver Creek at Wibaux | 351 | 1938-69,
1979-83 | 1872,1921,
1929,
1938-69,
1979-83 | | | | 1979-84 | 1979-84 | | | 06336510 | Upper Hay Creek tributary No. 2 near Wibaux | 4.1 | 1978-82 | 1978-82 | | | | | | | | 06336515 | Hay Creek near Wibaux | 11.4 | 1978-82 | 1978-82 | | | | | | | | 06336545 | Little Beaver Creek near Wibaux | 96.2 | 1978-81 | 1978-81 | | | | 1979-80 | 1979-80 | | | 06336550 | Beaver Creek near Wibaux | | 1958-64 | | | | | | | | | 12300000 | Kootenay River at Newgate, British Columbia | 7,660 | 1931-72 | 1931-71 | | | | 1949,1965 | | | | 12300110 | Lake Koocanusa at international boundary | | | | | | | 1972-P | | 1972-82,
2003 | | 12300200 | Young Creek near Rexford | 36.0 | 1973-75 | 1974-75 | | | | | | | | 12300400 | Cayuse Creek near Trego | 5.29 | | 1972-84 | | | | | | | | 12300500 | Fortine Creek near Trego | 110 | 1947-53 | 1947-54,
1958,
1960-73 | | | | | | | | 12300800 | Deep Creek near Fortine | 18.9 | | 1954-91 | | | | | | | | 12301000 | Grave Creek near Fortine | 54.9 | 1923-24 | | | | | | | | | 12301300 | Tobacco River near Eureka | 440 | 1958-P | 1948,
1959-P | | 1971-85 | | 1971-76 | | 1974-76 | | 12301500 | Kootenai River near Rexford | 8,420 | 1929-40,
1968-71 | 1929-40,
1948,
1968-71 | | | 1968-71 | 1967-72 | 1968-71 | | | 12301550 | Pinkham Creek near Rexford | 75.7 | 1973-81 | 1973-81 | | | | | | | | 12301600 | Lake Koocanusa below Pinkham Creek, near Rexford | | | | | | | 1972-76 | | 1972-76 | | 12301700 | Kootenai River tributary near Rexford | 0.86 | | 1959-70 | | | | | | | | 12301800 | Gold Creek near Rexford | 6.12 | | 1959-69 | | | | | | | | 12301810 | Big Creek near Rexford | 137 | 1972-81 | 1973-82 | | | | | | | | 12301830 | Lake Koocanusa at Tenmile Creek, near Libby | | | | | | | 1972-P | | 1972-P | | 12301850 | Kootenai River at Worland Bridge, near Libby | 8,892 | 1961-71 | 1961-71 | | | | | | | | 12301900 | Little Jackson Creek near Libby | 2.60 | | 1961-69 | | | | | | | | 12301919 | Lake Koocanusa at Forebay, near Libby | | | | | | | 1972-P | | 1972-82,
2003 | | 12301920 | Lake Koocanusa near Libby | 8,985 | 1972-P | | | | | | | | | 12301921 | Libby Dam near Libby | | | | | | | 1964 | | | | 12301933 | Kootenai River below Libby Dam, near Libby | 8,985 | 1972-P | 1972-P | | 2001-P | 1968-76 | 1967-P | 1968-71 | 1973-82 | | 12301990 | Fisher River above Wolf Creek, near Libby | 768 | | | | | | 1967-70 | 1968-70 | | | 12301993 | Wolf Creek tributary near Libby | 2.76 | | 1974-84 | | | | | | | | 12301997 | Richards Creek near Libby | 9.50 | | 1973-91 | | | | | | | | 12301999 | Wolf Creek near Libby | 216 | 1967-77 | 1967-77 | | | 1968-70 | 1967-70 | 1969-70 | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage
stations (active stations in bold print)--Continued | | | | | | Per | iod of record | d (by water yea | ar) | | | |----------|--|-------------------|---------------------------------|---|-----------------------|---------------------------|-----------------|--------------------|--------------------------------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 12Koot | enai River B | asinContinu | <u>ued</u> | | | | | | | 12302000 | Fisher River near Jennings | 780 | 1951-69 | 1948,
1951-69,
1974 | | - | | | | | | 12302050 | Peoples Creek near Libby | 2.54 | | 1961-67,
1976 | | | | | | | | 12302055 | Fisher River near Libby | 838 | 1967-P | 1948,
1969-P | | 1968-85 | 1968-76 | 1967-76,
1999-P | 1969-72,
1974-76,
1999-P | 1974-76 | | 12302400 | Shaughnessy Creek near Libby | 1.16 | | 1959-91 | | | | | | | | 12302500 | Granite Creek near Libby | 23.6 | 1933-34,
1936-44,
1960-69 | 1933,
1937-44,
1948,1954,
1959-69,
1974 | | | | | | | | 12303000 | Kootenai River at Libby | 10,240 | 1911-91 | 1911-91 | | | | 1969-72,
1978 | | 1969-73 | | 12303100 | Flower Creek near Libby | 11.1 | 1960-92 | 1960-92 | | | | | | | | 12303400 | Ross Creek near Troy | 23.8 | | 1972-91 | | | | 1971,
1976-78 | 1976-78 | | | 12303430 | Stanley Creek near Troy | 12.8 | | | | | | 1976-78 | 1976-78 | | | 12303440 | Camp Creek near Troy | 11.3 | | 1972-91 | | | | | | | | 12303490 | Lake Creek near Troy | 179 | | | | | | 1976-78 | 1976-78 | | | 12303500 | Lake Creek at Troy | 210 | 1945-57,
1983-95 | 1945-57,
1974,
1983-96 | | | | | | | | 12304000 | Callahan Creek at Troy | 85.8 | 1911-12,
1914-16 | | | | | | | | | 12304040 | Basin Creek near Yaak | 27.4 | 1990-2000 | 1990-2000 | | | | | | | | 12304060 | Blacktail Creek near Yaak | 8.66 | | 1964,
1972-84 | | | | | | | | 12304120 | Zulu Creek near Yaak | 5.27 | | 1972-84 | | | | | | | | 12304200 | Yaak River near Yaak | 493 | 1957-62 | 1956-62 | | | | | | | | 12304250 | Whitetail Creek near Yaak | 2.48 | | 1960-74 | | | | | | | | 12304300 | Cyclone Creek near Yaak | 5.73 | | 1960-91 | | | | | | | | 12304400 | Fourth of July Creek near Yaak | 7.84 | | 1960-74 | | | | | | | | 12304500 | Yaak River near Troy | 766 | 1910-16,
1956-P | 1948,1954,
1956-P | | 1963-85
2000-P | | 1999-P | 1999-P | | | | | Part 12 | Pend Oreille | River Basin | | | | | | | | 12323170 | Silver Bow Creek above Blacktail Creek, at Butte | | 1984-94 | 1984-94 | | | | | | | | 12323200 | Blacktail Creek near Butte | 14.7 | 1984-88 | 1984-88 | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | (by water ye | ar) | | | |----------|---|-------------------|---------------------|-----------------------------|-----------------------|-----------------------------------|--------------|-----------------------------|--------------------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | _ | | Station | Station name | area | | | | Daily | | | Periodic | | | number | 2 | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 12Pend (| Oreille River | BasinConti | nued | | | | | | | 12323220 | Basin Creek near Butte | 37.6 | 1984-86 | | | | | | | | | 12323230 | Blacktail Creek at Harrison Avenue, at Butte | | | | | | | 1993-95,
1997-P | 1993-95,
1997-P | | | 12323240 | Blacktail Creek at Butte | 95.4 | 1988-P | 1989-P | | | | | | | | 12323248 | Silver Bow Creek above Wastewater Plant Outflow, at Butte | | 1999-2002 | 2000-2002 | | | | | | | | 12323250 | Silver Bow Creek below Blacktail Creek, at Butte | 105 | 1984-P | 1984-P | | | | 1993-95,
1997-P | 1993-95,
1997-P | | | 12323300 | Smith Gulch near Silver Bow | 4.36 | | 1959-2002 | | | | | | | | 12323500 | German Gulch Creek near Ramsay | 40.6 | 1955-69 | 1955-69,
1975 | | | | | | | | 12323600 | Silver Bow Creek at Opportunity | 284 | 1988-P | 1989-P | | | 1993-95 | 1993-95,
1997-P | 1993-95,
1997-P | | | 12323700 | Mill Creek at Opportunity | 43.2 | 2003 | 2003 | | | | 2003 | 2003 | | | 12323720 | Willow Creek at Opportunity | | 2003 | 2003 | | | | 2003 | 2003 | | | 12323750 | Silver Bow Creek at Warm Springs | 394 | 1972-79,
1994-P | 1972-79,
1989,
1993-P | | | 1993-95 | 1971,
1993-P | 1993-P | | | 12323760 | Warm Springs Creek near Anaconda | 157 | 1998-P | 1998-P | | | | | | | | 12323770 | Warm Springs Creek at Warm Springs | 163 | 1984-P | 1984-P | | 2000-P | | 1993-P | 1993-P | | | 12323800 | Clark Fork near Galen | 572 | 1988-P | 1989-P | | 1991-2002 | | 1971-74
1988-P | 1988-P | 1971-74 | | 12323850 | Lost Creek near Galen | 60.5 | 2003 | 2003 | | | | 2003 | 2003 | | | 12324000 | Racetrack Creek near Anaconda | 39.5 | 1911-13 | | | | | | | | | 12324100 | Racetrack Creek below Granite Creek, near Anaconda | 39.5 | 1914-17,
1957-73 | 1958-73,
1975 | | | | | | | | 12324200 | Clark Fork at Deer Lodge | 916 | 1979-P | 1979-P | | 1979-83,
1992-98,
2001-2002 | 1985-P | 1963,
1969-71,
1985-P | 1985-P | 1969-71 | | 12324250 | Cottonwood Creek at Deer Lodge | 45.4 | | 1964,
1975-91 | | | | | | | | 12324300 | Clark Fork near Garrison | 1,139 | 1961-62 | | | | | | | | | 12324590 | Little Blackfoot River near Garrison | 407 | 1973-P | 1973-P | | 2000-Р | | 1963,
1985-P | 1985-P | | | 12324600 | Clark Fork at Garrison | 1,550 | | | | | | 1963,
1969-71 | | 1970-71 | | 12324660 | Gold Creek at Goldcreek | 64.1 | 1964-66 | | | | | | | | | 12324680 | Clark Fork at Goldcreek | 1,704 | 1978-P | 1978-P | | 1992-98 | | 1992-P | 1993-P | | | 12324700 | Clark Fork tributary near Drummond | 4.61 | | 1958-95 | | | | | | | | 12324800 | Morris Creek near Drummond | 12.6 | | 1960-74,
1980 | | | | | | | | 12325000 | Georgetown Lake near Philipsburg | 50.1 | 1939-97 | | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | riod of record | l (by water ye | ar) | | | |----------|---|-------------------|---------------------|-----------------------------------|-----------------------|---------------------------|----------------|--------------------|----------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 12Pend (| Oreille River | BasinConti | nued | | | | | | | 12325500 | Flint Creek near Southern Cross | 52.6 | 1940-98,
2000-P | 1941-98 | | | | | | | | 12326000 | Trout Creek above main canal, near Philipsburg | 4.09 | 1946-49 | | | | | | | | | 12326500 | Trout Creek near Southern Cross | 36.1 | 1946-51 | | | | | | | | | 12327000 | Trout Creek near Philipsburg | 34.9 | 1939-43,
1945-46 | | | | | | | | | 12327090 | Flint Creek above Fred Burr Creek, near Philipsburg | 108 | 1994-98 | 1994-98 | | | | | | | | 12327100 | Fred Burr Creek near Philipsburg | 15.7 | 1994-96 | 1994-96 | | | | | | | | 12327500 | Marshall Creek near Philipsburg | 22.8 | 1942-43 | | | | | | | | | 12328000 | Marshall Creek at mouth, near Philipsburg | 23.2 | 1939-42 | | | | | | | | | 12328500 | Flint Creek near Philipsburg | 192 | 1939-41 | | | | | 1972-73 | | 1972-73 | | 12329000 | Flint Creek above Maxville Siding, at Maxville | 207 | 1939-41 | | | | | | | | | 12329500 | Flint Creek at Maxville | 208 | 1941-P | 1942-P | | | | | | | | 12330000 | Boulder Creek at Maxville | 71.3 | 1939-P | 1940-P | | | | | | | | 12330100 | Flint Creek below Boulder Creek, near Maxville | | | | | | | 1971 | | | | 12330500 | Flint Creek near Maxville | 325 | 1946-49 | | | | | | | | | 12331000 | Flint Creek near Hall | 325 | 1939 | | | | | | | | | 12331100 | Flint Creek below Douglas Creek, near Hall | 339 | 1994-98 | 1995-98 | | | | | | | | 12331500 | Flint Creek near Drummond | 490 | 1990-P | 1991-P | | | | 1972-73,
1985-P | 1985-P | 1972-73 | | 12331600 | Clark Fork at Drummond | 2,378 | 1967-68,
1973-83 | 1967,
1973-83 | | | | 1971-74 | | 1971-74 | | 12331700 | Edwards Gulch at Drummond | 4.69 | | 1960-62,
1974-91,
1996-2002 | | | | | | | | 12331800 | Clark Fork near Drummond | 2,501 | 1993-P | 1993-P | | | | 1993-P | 1993-P | | | 12331900 | Clark Fork near Clinton | 2,629 | 1979-90,
1992-94 | 1980-90,
1992-94 | | | | 1963 | | | | 12332000 | Middle Fork Rock Creek near Philipsburg | 123 | 1937-P | 1938-P | | | | | | | | 12332500 | East Fork Rock Creek Reservoir near Philipsburg | 30.3 | 1939-95 | | | | | | | | | 12333000 | East Fork Rock Creek near Philipsburg | 30.3 | 1935-43 | | | | | | | | | 12333500 | Rock Creek near Quigley | 749 | 1922-27 | 1922 | | | | | | | | 12334000 | Ranch Creek near Quigley | 42.7 | 1922-27 | 1922-27 | | | | | | | | 12334500 | Rock Creek below Ranch Creek, near Quigley | 794 | 1911-12 | | | | | | | | | 12334510 | Rock Creek near Clinton | 885 | 1972-P | 1972-P | | 1979-83,
1995-2002 | | 1985-P | 1985-P | | | 12334550 | Clark Fork at Turah Bridge, near Bonner | 3,641 | 1985-P | 1986-P | | 1992-98 | 1985-P | 1985-P | 1985-P | | | 12334600 | Blackfoot River near Lincoln | 15.1 | 1969-70 | 1969-70,
1975 | | | | 1969-70 | | | |
12334620 | Blackfoot River below First Gulch, near Lincoln | 25.9 | | | | | | 1995-97 | 1995-97 | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | riod of record | l (by water ye | ar) | | | |----------|--|-------------------|---------------------|------------------------------|-----------------------|---------------------------|----------------|---------------------|-------------------------|------------------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | <u>Pa</u> | rt 12Pend (| Oreille River | BasinCont | <u>inued</u> | | | | | | | 12334650 | Blackfoot River below Alice Creek, near Lincoln | 96.9 | 1971-75 | 1971-75 | | | | 1971-74,
1995-97 | 1971-73,
1995-97 | 1973 | | 12334680 | Landers Fork near Lincoln | 130 | | | | | | 1995-97 | 1995-97 | | | 12334700 | Blackfoot River below Seven-up Pete Creek, near Lincoln | 255 | | | | | | 1973,
1995-97 | 1995-97 | 1973,
1995-97 | | 12334800 | Blackfoot River at Dalton Mountain Road Bridge, near Lincoln | 399 | | | | | | 1973,
1995-97 | 1995-97 | 1973,
1995-97 | | 12334900 | Blackfoot River at Blackfoot Canyon Campground, near Lincoln | 437 | | | | | | 1973 | | 1973
1995-97 | | 12335000 | Blackfoot River near Helmville | 481 | 1940-54 | 1941-53,
1964,
1974-75 | | | | | | | | 12335100 | Blackfoot River above Nevada Creek, near Helmville | 494 | 2000-P | | | 2000-2002 | | 1995-97
2003 | 1995-97
2003 | | | 12335500 | Nevada Creek above Reservoir, near Helmville | 116 | 1939-P | 1940-P | | | | 1980, 2003 | 1980,1994-
2000,2003 | | | 12336000 | Nevada Creek near Finn | 144 | 1934-39 | | | | | | | | | 12336500 | Nevada Creek Reservoir near Finn | 142 | 1939-95 | | | - | | | | | | 12337000 | Nevada Creek near Helmville | 165 | 1946-49 | | | | | | | | | 12337500 | Douglas Creek near Helmville | 84.8 | 1946-47 | | | | | | | | | 12337800 | Nevada Creek at mouth, near Helmville | | 2002-P | | | | | 2002-P | 2002-P | | | 12338000 | North Fork Blackfoot River near Ovando | 228 | 1921-23 | | | | | | | | | 12338100 | Rock Creek above Salmon Creek, near Ovando | 7.60 | 1998 | 1998 | | | | | | | | 12338300 | North Fork Blackfoot River above Dry Gulch, near Ovando | 314 | 1998-P | 1998-P | | 2001-2002 | | 1995-97 | 1995-97 | | | 12338500 | Blackfoot River near Ovando | 1,274 | 1940-63 | 1941-64,
1975 | | | | | | | | 12338540 | Monture Creek above Dunham Creek, near Ovando | 64.7 | | 1978-91 | | | | | | | | 12338550 | Dunham Creek at mouth, near Ovando | 31.7 | | 1978-91 | | | | | | | | 12338600 | Monture Creek at Forest Service boundary, near Ovando | 105 | | 1964,
1974-91 | | | | | | | | 12338690 | Monture Creek near Ovando | 140 | 1973-83 | 1974-83 | | | | | | | | 12338700 | Blackfoot River at Scotty Brown Bridge, near Ovando | 1,428 | | | | | | 1995-97 | 1995-97 | 1995-97 | | 12339000 | Blackfoot River at Clearwater | 1,550 | 1921-23 | | | | | | | | | 12339300 | Deer Creek near Seeley Lake | 19.8 | | 1974-91 | | | | | | | | 12339450 | Clearwater River near Clearwater | 345 | 1975-92 | 1975-92,
1997 | | | | 1995-97 | 1995-97 | | | 12339500 | Clearwater River at Clearwater | 391 | 1921-23 | | | | | | | | | 12339800 | Blackfoot River near Potomac | 2,046 | 1957-65 | 1957-65 | | | | | | | | 12339900 | West Twin Creek near Bonner | 7.33 | | 1959-91 | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | |----------|--|-------------------|--|---|-----------------------|---------------------------|----------------|----------------------------|-------------------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 12Pend C | Oreille River | BasinConti | nued | | | | | | | 12340000 | Blackfoot River near Bonner | 2,290 | 1898-99,
1901,
1903-05
1939-P | 1899-1901,
1903-05,
1940-P | | 2000-Р | 1986-95 | 1963,
1985-P | 1985-P | | | 12340200 | Marshall Creek near Missoula | 5.63 | | 1959-73,
1980 | | | | | | | | 12340500 | Clark Fork above Missoula | 5,999 | 1929-P | 1908,
1930-P | | 1977-83 | 1986-P | 1969-71
1986-P | 1986-P | 1969-71 | | 12341000 | Rattlesnake Creek at Missoula | 79.7 | 1899-1901,
1958-67 | 1899,1948,
1958-59,
1961-64,
1966-67 | | | | | | | | 12341500 | Clark Fork at Missoula | 6,084 | 1898-1907 | 1899-1907 | | | | 1963 | | | | 12342000 | Painted Rocks Lake near Conner | 317 | 1940-95 | | | | | | | | | 12342500 | West Fork Bitterroot River near Conner | 317 | 1941-P | 1941-P | | | | 2001-P | 2001-P | | | 12342950 | Trapper Creek near Conner | 28.5 | | 1974-91 | | | | | | | | 12343000 | West Fork Bitterroot River near Darby | 552 | 1910-17 | 1911-17 | | | | | | | | 12343400 | East Fork Bitterroot River near Conner | 381 | 1956-72
2001-P | 1956-72
2001-P | | | | 2001-P | 2001-P | | | 12343500 | East Fork Bitterroot River at Conner | 405 | 1910-16,
1937-57 | 1937-57 | | | | | | | | 12344000 | Bitterroot River near Darby | 1,049 | 1937-P | 1938-P | | 2001-P | | 1956,
1997-98
2001-P | 1997-98
2001-P | | | 12344300 | Burke Gulch near Darby | 6.50 | | 1958-82 | | | | | | | | 12344500 | Lake Como near Darby | 54.6 | 1939-99 | | | | | 1956 | | | | 12345000 | Rock Creek near Darby | 55.4 | 1946-53,
1957-59 | 1948-53,
1958-59 | | | | | | | | 12345500 | Rock Creek Canal near Darby | | 1946,
1948-53 | | | | | | | | | 12345800 | Camas Creek near Hamilton | 5.05 | | 1958-73 | | | | | | | | 12345850 | Sleeping Child Creek near Hamilton | 65.2 | 1973-77 | 1972-91 | | | | 1956 | | | | 12346000 | Bitterroot River near Grantsdale | 1,414 | 1902-07 | | | | | | | | | 12346500 | Skalkaho Creek near Hamilton | 87.8 | 1949-53,
1957-79,
2001-P | 1948-54,
1958-79,
2001-P | | | | 1956,1980,
2001-P | 1980,
2001-P | | | 12347000 | Skalkaho Creek at Brennan's ranch, near Hamilton | 96.2 | 1920-24 | 1920-24,
1948 | | | | | | | | 12347360 | Bitterroot River at Hamilton | | | | | | | 1997-98 | 1997-98 | | | 12347500 | Blodgett Creek near Corvallis | 25.9 | 1947-69 | 1947-69,
1972 | | | | 1956 | | | | 12348000 | Blodgett Creek near Hamilton | 28.3 | 1938-43 | 1938-43 | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | riod of record | d (by water ye | ar) | | | |----------|--|-------------------|----------------------------------|----------------------------------|-----------------------|---------------------------|----------------|------------------|----------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 12Pend (| Oreille River | BasinConti | <u>nued</u> | | | | | | | 12348200 | Bitterroot River near Corvallis | 1,711 | 1959-63 | | | | | | | | | 12348500 | Willow Creek near Corvallis | 21.9 | 1920-24,
1957-66 | 1920-22,
1958-73 | | | | 1956 | | | | 12349000 | Willow Creek at Anfinson Ranch, near Corvallis | 23.2 | 1938-43 | 1938-43 | | | | | | | | 12349500 | Fred Burr Creek near Victor | 17.7 | 1947-51 | | | | | | | | | 12350000 | Bear Creek near Victor | 26.8 | 1938-55,
1957-59 | 1938-54,
1958-59 | | | | 1956 | | | | 12350200 | Gash Creek near Victor | 3.37 | | 1958-73 | | | | | | | | 12350250 | Bitterroot River at Bell Crossing, near Victor | 1,963 | 1987-P | 1987-P | | | | 1997-98 | 1997-98 | | | 12350300 | Big Creek near Victor | | | | | | | 1956 | | | | 12350500 | Kootenai Creek near Stevensville | 28.9 | 1949-53,
1957-63 | 1948-53,
1958-73 | | | | 1956 | | | | 12351000 | Burnt Fork Bitterroot River near Stevensville | 73.2 | 1920,
1922-24,
1938-62 | 1920,
1922-24,
1938-73 | | | | 1956 | 1965 | | | 12351200 | Bitterroot River near Florence | 2,354 | 1957-66
2003 | 1958-66,
1974,1982
2003 | | | | 1956,
1997-98 | 1997-98 | | | 12351400 | Eightmile Creek near Florence | 19.5 | 1957-63 | 1958-73 | | | | 1956 | | | | 12351500 | Lolo Creek near Lolo | 231 | 1911-15 | | | | | | | | | 12352000 | Lolo Creek above Sleeman Creek, near Lolo | 250 | 1951-60 | 1951-60,
1972,1974 | | | | | | | | 12352200 | Hays Creek near Missoula | 4.16 | | 1959-66,
1968-74,
1980 | | | | | | | | 12352500 | Bitterroot River near Missoula | 2,814 | 1898-1901,
1903-04,
1989-P | 1899-1901,
1903-04,
1990-P | | 2000-Р | | 1997-P | 1997-P | | | 12352980 | Bitterroot River at Maclay Bridge, near Missoula | 2,850 | | | | | | 1970-73 | | 1970-73 | | 12353000 | Clark Fork below Missoula | 9,003 | 1929-P | 1930-P | | 1977-82 | | 1979-95 | 1979-95 | 1979-95 | | 12353250 | Ninemile Creek near Alberton | 50.2 | | 1972,
1974-82 | | | | | | | | 12353280 | Ninemile Creek near Huson | 170 | 1973-83 | 1974-83 | | | | | | | | 12353300 | Clark Fork near Alberton | 9,272 | 1959-63 | | | | | 1969-71 | | 1970-71 | |
12353400 | Negro Gulch near Alberton | 8.02 | | 1959-73,
1984-91 | | | | | | | | 12353450 | Fish Creek below West Fork, near Tarkio | 242 | | | | 1985-91 | | | | | | 12353500 | Clark Fork at Tarkio | 9,882 | 1945-49 | | | | | | | | | 12353650 | Clark Fork at Superior | 10,210 | | | | 1985-91 | | | | | | 12353800 | Thompson Creek near Superior | 12.2 | | 1961-79,
1982 | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | |----------|--|-------------------|--------------------------------|---|-----------------------|---------------------------|----------------------|--|---------------------------------|------------------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | • | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | <u>Par</u> | t 12Pend (| Oreille River | BasinConti | nued | | | | | | | 12353820 | Dry Creek near Superior | 46.3 | 1982-86 | 1982-91 | | | | | | | | 12353850 | East Fork Timber Creek near Haugan | 2.72 | | 1961-75,
1979 | | | | | | | | 12353900 | St. Regis River tributary near St. Regis | 1.16 | 1959-61 | | | | | | | | | 12354000 | St. Regis River near St. Regis | 303 | 1910-17,
1958-75,
2002-P | 1911-17,
1934,1948,
1954,
1959-75,
2002-P | | 1985-91 | | | | | | 12354100 | North Fork Little Joe Creek near St. Regis | 14.7 | | 1960-74 | | | | | | | | 12354500 | Clark Fork at St. Regis | 10,709 | 1910-P | 1911-23,
1929-P | | 2002 | | 1999-P | | | | 12354700 | Clark Fork near Paradise | 10,794 | | | | 1985-91 | | | | | | 12355000 | Flathead River at Flathead, British Columbia | 427 | 1929-95,
1999-P | 1929-94,
2000-P | | 1975-91 | 1975-79,
1985-91, | 1949-50,
1965,1970,
1975-93,
1999-P | 1965,1970,
1975-93
1999-P | 1970,
1975-93 | | 12355100 | Starvation Creek near Flathead, British Columbia | 16.4 | 1986-87 | 1986-87 | | | | | | | | 12355150 | Tuchuck Creek near Flathead, British Columbia | 10.1 | 1986-88 | 1986-88 | | | | | | | | 12355350 | Big Creek at Big Creek Ranger Station, near Columbia Falls | 82.1 | | 1964,
1973-91 | | | | 1980 | 1980 | | | 12355500 | North Fork Flathead River near Columbia Falls | 1,548 | 1910-17,
1929-P | 1911-17,
1929-P | 1976-79 | 1976-P | 1976-79 | 1950,1970,
1976-79
1999-P | 1976-79,
1999-P | 1970,
1976-79 | | 12355600 | Middle Fork Flathead River at Schafer Ranger Station, near Essex | | | | | | | 1970 | | 1970 | | 12355700 | Middle Fork Flathead River near Essex | 408 | 1957-61 | 1942-43,
1945-53,
1956-61,
1964 | | | | | | | | 12355900 | Middle Fork Flathead River above Bear Creek, near Essex | | | | | | | 1970 | | 1970 | | 12356000 | Skyland Creek near Essex | 8.09 | 1946-52 | 1946-52,
1954,
1959-75 | | | | | | | | 12356500 | Bear Creek near Essex | 20.4 | 1946-52 | 1946-52,
1964,
1975-91 | | | | | | | | 12357000 | Middle Fork Flathead River at Essex | 510 | 1940-53,
1956-64 | 1940-54,
1956-64 | | | | | | | | 12357300 | Moccasin Creek near West Glacier | 2.38 | | 1959-75 | | | | | | | | 12357400 | Middle Fork Flathead River tributary at West Glacier | 0.14 | | 1960-74 | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | |----------|---|-------------------|---------------------------------|---------------------------------|-----------------------|--------------------------------|----------------|--|-----------------------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | <u>Par</u> | t 12Pend (| Oreille River | BasinCont | <u>inued</u> | | | | | | | 12357500 | Middle Fork Flathead River at West Glacier | 943 | 1911-23,
1929-33,
1943-48 | 1911-23,
1929-33,
1944-48 | | | | | | | | 12358000 | McDonald Creek at Apgar | 175 | 1912-14 | | | | | | | | | 12358500 | Middle Fork Flathead River near West Glacier | 1,128 | 1939-P | 1940-P | | | | 1949-50,
1970,
1998-P | 1999-P | 1970 | | 12358900 | South Fork Flathead River above Harrison Creek, near Swan Lake | | | | | | | 1970 | | 1970 | | 12359000 | South Fork Flathead River at Spotted Bear Ranger Station, near Hungry Horse | 958 | 1948-57,
1959-67 | 1948-57,
1960-67 | | | | | | | | 12359500 | Spotted Bear River near Hungry Horse | 184 | 1949-56 | 1948-56,
1964 | | | | | | | | 12359800 | South Fork Flathead River above Twin Creek, near Hungry
Horse | 1,160 | 1964-82,
1985-P | 1964-82,
1985-P | | | | 1970 | | 1970 | | 12360000 | Twin Creek near Hungry Horse | 47.0 | 1948-56,
1965-67 | 1948-56,
1964-67 | | | | | | | | 12360500 | Lower Twin Creek near Hungry Horse | 22.4 | 1948-56 | 1948-56 | | | | | | | | 12360600 | Soldier Creek near Hungry Horse | 4.77 | 1965-67 | 1965-66 | | | | | | | | 12361000 | Sullivan Creek near Hungry Horse | 71.3 | 1948-56,
1959-76 | 1948-56,
1960-76 | | | | | | | | 12361500 | Graves Creek near Hungry Horse | 27.0 | 1948-56,
1965-67 | 1948-56,
1964-67 | | | | | | | | 12361600 | Canyon Creek near Hungry Horse | 5.8 | 1965-67 | 1965-66 | | | | | | | | 12361700 | Goldie Creek near Hungry Horse | 3.29 | 1965-67 | 1966 | | | | | | | | 12361880 | Wounded Buck Creek near Hungry Horse | 13.6 | 1965-67 | 1965-66 | | | | | | | | 12361950 | Hungry Horse Creek near Hungry Horse | 23.3 | 1969-72 | 1970 | | | | | | | | 12361960 | Emery Creek near Hungry Horse | 26.4 | 1965-67 | 1965-66 | | | | | | | | 12362000 | Hungry Horse Reservoir near Hungry Horse | 1,654 | 1951-P | | | | | | | | | 12362500 | South Fork Flathead River near Columbia Falls | 1,663 | 1910-16,
1923-P | 1911-P | | 1964-68,
1979-P | | 1949-50 | | | | 12363000 | Flathead River at Columbia Falls | 4,464 | 1922-23,
1928-P | 1894,
1922-23,
1928-P | 1996-67,
1979-81 | 1949-50,
1963-67,
1979-P | 1965-67 | 1949-50,
1963-67,
1970,
1979-94 | 1965,1967,
1979-94 | 1979-94 | | 12363500 | Flathead River near Kalispell | 4,500 | | | | | 1968-69 | | 1968 | | | 12363900 | Rock Creek near Olney | 3.61 | | 1961-75 | | | | | | | | 12363920 | Stillwater River at Olney | 146 | 1973-82 | 1973-82 | | | | | | | | 12364000 | Logan Creek at Tally Lake, near Whitefish | 183 | 1931-34,
1936-42,
1945-47 | 1936-42,
1945-47 | | | | | | | | 12364500 | Logan Creek near Whitefish | 199 | 1931 | | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | |----------|--|-------------------|---------------------------------|---------------------------------------|-----------------------|---------------------------|----------------|-----------|----------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 12Pend C | Oreille River | BasinConti | inued | | | | | | | 12365000 | Stillwater River near Whitefish | 524 | 1930-50,
1972-P | 1931-50,
1964,
1973-P | | | | | | | | 12365500 | Stillwater River near Kalispell | 338 | 1907,1922,
1928-31 | | | | | | | | | 12365800 | Swift Creek near Whitefish | 78.0 | 1973-81 | 1973-81 | | | | | | | | 12366000 | Whitefish River near Kalispell | 170 | 1928-50,
1972-P | 1929-50,
1964,
1973-P | | | | 1999-P | 1999-P | | | 12366100 | Trumbull Creek near Columbia Falls | 9.0 | | 1997-P | | | | | | | | 12367000 | Ashley Creek near Kila | 44.2 | 1916 | | | | | | | | | 12367500 | Ashley Creek near Kalispell | 201 | 1931-50,
1972-74 | 1931-32,
1935-50,
1973-74 | | | | 1969-70 | | 1969-70 | | 12367800 | Ashley Creek below Kalispell | | | | | | | 1969-70 | | 1969-70 | | 12368500 | Flathead River at Therriault Ferry, near Kalispell | | 1934-45 | | | | | | | | | 12369000 | Flathead River near Bigfork | 6,300 | 1909-12,
1928-37,
1939-45 | | | | | | | 1969-71 | | 12369200 | Swan River near Condon | 69.1 | 1973-92 | 1973-92 | | | | | | | | 12369250 | Holland Creek near Condon | 22.3 | | 1974-91 | | | | | | | | 12369650 | North Fork Lost Creek near Swan Lake | 13.0 | | 1982-91 | | | | | | | | 12370000 | Swan River near Bigfork | 671 | 1910-11,
1922-P | 1922-P | | 2000-Р | | 1999-P | 1999-P | | | 12370500 | Dayton Creek near Proctor | 18.5 | | 1959-91 | | | | | | | | 12370900 | Teepee Creek near Polson | 2.18 | 1983-87 | 1960-74,
1980,
1983-87 | | | | 1983-85 | 1983-85 | | | 12371000 | Turtle Lake near Polson | | 1939-P | | | | | | | | | 12371100 | Hell Roaring Creek near Polson | 6.22 | 1917-32 | 1917-32,
1948,
1959-67,
1980 | | | | | | | | 12371500 | Flathead Lake at Somers | 7,086 | 1900,
1908-98 | | | | | | | | | 12371550 | Flathead Lake at Polson | 7,086 | 1999-P | | | | | 1969-71 | | 1969-71 | | 12372000 | Flathead River near Polson | 7,096 | 1907-P |
1894,
1908-P | | 1977-83 | | | | | | 12372500 | Little Bitterroot Lake near Marion | 31.8 | 1939-P | | | | | | | | | 12373000 | Little Bitterroot River near Marion | 31.8 | 1910-16 | | | | | | | | | 12373500 | Hubbart Reservoir near Niarada | 114 | 1939-P | | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | Station | | | | | Per | iod of record | l (by water ye | ar) | | | |----------------------|--|-------------------|---------------------|---------------------|-------------------|---------------------------|----------------|-------------|-------------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct- | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 12Pend (| Oreille River | BasinCont | inued_ | | | | | | | 12374000 | Little Bitterroot River near Hubbart | 134 | 1909-16 | | | | | | | | | 12374250 | Mill Creek above Bassoo Creek, near Niarada | 19.6 | 1983-P | 1983-P | | | | 1983-85 | 1983-85 | | | 12374300 | Mill Creek near Niarada | 28.2 | | 1959-73 | | | | | | | | 12374500 | Little Bitterroot River near Niarada | 223 | 1908-10,
1916-17 | | | | | | | | | 12374800 | Cromwell Creek near Niarada | 14.3 | 1983-89 | 1983-89 | | | | 1983-85 | 1983-85 | | | 12374900 | Garden Creek near Hot Springs | 3.57 | | 1959-73 | | | | | | | | 12375000 | Upper Dry Fork Reservoir near Lonepine | 8.53 | 1940-P | | | | | | | | | 12375500 | Dry Fork Reservoir near Lonepine | 17.8 | 1939-P | | | | | | | | | 12375800 | Little Bitterroot River near Perma | | | | | | | 1987-92 | 1987-92 | | | 12375900 | South Crow Creek near Ronan | 7.57 | 1982-P | 1983-P | | | | 1983-85 | 1983-85 | | | 12376000 | Crow Creek near Ronan | 46.1 | 1906-17 | 1907-11,
1913-17 | | | | | | | | 12376500 | Mud Creek near Ronan | 30.4 | 1908-11 | | | | | | | | | 12376700 | Lower Crow Reservoir near Charlo | | 1939-P | | | | | | | | | 12376900 | Crow Creek at mouth, near Ronan | | | | | | | 1987-92 | 1987-92 | | | 12377000 | Crow Creek at Lozeaus ranch, near Ronan | 139 | 1911-16 | | | | | | | | | 12377150 | Mission Creek above reservoir, near St. Ignatius | 12.4 | 1982-P | 1982-P | | | | 1983-85 | 1983-86 | | | 12377200 | Mission Reservoir near St. Ignatius | | 1939-P | | | | | | | | | 12377300 | St. Mary's Lake near St. Ignatius | | 1939-P | | | | | | | | | 12377500 | Dry Creek near St. Ignatius | 24.7 | 1908-16 | 1909-16 | | | | | | | | 12377900 | Pablo Reservoir near Polson | | 1939-P | | | | | | | | | 12378000 | Mission Creek near St. Ignatius | 74.8 | 1906-17 | 1907-17 | | | | | | | | 12378200 | McDonald Reservoir near Charlo | | 1939-P | | | | | | | | | 12378300 | Kicking Horse Reservoir near Charlo | | 1939-P | | | | | | | | | 12378400 | Ninepipe Reservoir near Charlo | | 1939-P | | | | | | | | | 12378500
12379000 | Post Creek at Fitzpatrick's ranch, near Ronan | 28.4
29.7 | 1906-11 | | | | | | | | | | Post Creek at Deschamp's ranch, near Ronan | 47.6 | 1911
1911-17 | | | | | | | | | 12379500
12379600 | Post Creek near St. Ignatius
Mission Creek at National Bison Range, at Moiese | 236 | 1911-17 | | | | |
1987-92 |
1987-92 | | | 12379000
12380000 | Upper Jocko Lake near Arlee | 2.99 | 1968-P | | | | | 1967-92 | 1907-92 | | | 12380500 | Lower Jocko Lake near Arlee | 7.39 | 1906-F
1939-P | | | | | | | | | 12381000 | Jocko River above South Fork, near Jocko | 14.9 | 1939-1 | | | | | | | | | 12381000 | South Fork Jocko River near Arlee | 56.0 | 1912-10
1982-P | 1983-P | | | | 1983-86 | 1983-86 | | | 12381500 | Jocko River below South Fork, near Jocko | 72.3 | 1912-16 | | | | | 1705-00 | | | | 12382000 | Middle Fork Jocko River near Jocko | 19.5 | 1912-16 | | | | | | | | | 12382500 | Falls Creek near Jocko | 3.57 | 1912-16 | | | | | | | | | 12383000 | Jocko River near Jocko | 140 | 1918-19 | | | | | | | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | l (by water ye | ar) | | | |----------|--|-------------------|---------------------|---------------------|-----------------------|---------------------------|----------------|-------------------------------|--------------------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | <u>Pa</u> | rt 12Pend (| Dreille River | BasinConti | nued | | | | | | | 12383500 | Big Knife Creek near Arlee | 6.88 | 1910-16,
1983-P | 1982-P | | | | 1983-85 | 1983-85 | | | 12384000 | Big Knife Creek near Jocko | 7.44 | 1909-11 | | | | | | | | | 12384500 | Jocko River below Big Knife Creek, near Jocko | 154 | 1909-16 | | | | | | | | | 12386000 | East Finley Creek near Jocko | 5.48 | 1909-16 | | | | | | - | | | 12386500 | Indian Ditch near Jocko | | 1909-16 | | | | | | | | | 12387000 | Finley Creek near Jocko | 36.7 | 1909-16 | | | | | | | | | 12387100 | Agency Creek near Jocko | 4.00 | 1909-16 | | | | | | | | | 12387200 | Blodgett Creek near Jocko | 5.48 | 1909 | | | | | | | | | 12387450 | Valley Creek near Arlee | 15.3 | 1983-P | 1983-P | | | | 1983-85 | 1983-85 | | | 12387500 | Valley Creek near Ravalli | 64.1 | 1909-10 | | | | | | | | | 12388000 | Jocko River at Ravalli | 348 | 1907-11 | | | | | | | | | 12388200 | Jocko River at Dixon | 380 | 1990-P | 1990-P | | | | 1987-92 | 1987-92 | | | 12388400 | Revais Creek below West Fork, near Dixon | 23.4 | 1983-P | 1983-P | | | | 1983-85,
1991-92 | 1983-85
1991-92 | | | 12388500 | Revais Creek near Dixon | 26.3 | 1911-19 | 1911-16,
1918-19 | | | | | | | | 12388650 | Camas Creek near Hot Springs | 4.46 | 1983-87 | 1983-87 | | | | 1983-85 | 1983-85 | | | 12388700 | Flathead River at Perma | 8,795 | 1984-P | 1984-P | | 2000-Р | | 1971-73,
1984-92
1997-P | 1984-92,
1999-P | 1971-73 | | 12389000 | Clark Fork near Plains | 19,958 | 1910-P | 1912-P | | | | 1969-70 | | 1969-70 | | 12389150 | McGregor Creek tributary near Marion | 2.55 | | 1972-82 | | | | | | | | 12389200 | Thompson River near Marion | 104 | | | | | | 1975-76 | 1975-76 | 1975-76 | | 12389300 | Thompson River ab Little Thompson River, near Thompson Falls | 321 | | | | | | 1975-76 | 1975-76 | 1975-76 | | 12389400 | Little Thompson River near Thompson Falls | 129 | | | | | | 1975-76 | 1975-76 | 1975-76 | | 12389450 | West Fork Thompson River near Thompson Falls | 35.7 | | | | | | 1975-76 | 1975-76 | 1975-76 | | 12389500 | Thompson River near Thompson Falls | 642 | 1911-16,
1956-P | 1948,
1956-P | | | | 1975-76 | 1975-76 | 1975-76 | | 12390000 | Thompson Falls Reservoir at Thompson Falls | 20,968 | 1939-P | | | | | | | | | 12390500 | Prospect Creek near Thompson Falls | 145 | 1911 | | | | | | | | | 12390700 | Prospect Creek at Thompson Falls | 182 | 1956-P | 1956-P | | | | | | | | 12391000 | Clark Fork at Thompson Falls | 21,113 | 1952-59 | 1952-59 | | | | 1963,
1969-73 | | 1970-73 | | 12391100 | White Pine Creek near Trout Creek | 8.75 | | 1974-84 | | | | | | | | 12391200 | Canyon Creek near Trout Creek | 8.64 | | 1972,
1974-91 | | | | | | | | 12391300 | Noxon Rapids Reservoir near Noxon | 21,833 | 1959-P | | | | | | | | | 12391400 | Clark Fork below Noxon Rapids Dam, near Noxon | 21,833 | 1960-P | 1960-P | | | | | | | | 12391420 | Rock Creek near Noxon | 32 | | | | | | 1998 | 1998 | | Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued | | | | | | Per | iod of record | d (by water ye | ar) | | | |----------|---------------------------|-------------------|---------------------|----------------|-----------------------|---------------------------|----------------|-----------|----------|---------| | | | Drainage | Discharge | or contents | | | Water | quality | | | | Station | Station name | area | | | | Daily | | | Periodic | | | number | | (square
miles) | Daily or
monthly | Annual
peak | Specific conduct-ance | Water
tempera-
ture | Sediment | Chemistry | Sediment | Biology | | | | Part 12Pend C | Oreille Rive | r BasinCont | <u>inued</u> | | | | | | | 12391430 | Skeleton Creek near Noxon | 2.10 | | 1973-84 | | | | | | | | 12391500 | Bull River near Heron | 45.7 | | | | | | 1971 | | | | 12391525 | Snake Creek near Noxon | 3.11 | | 1972-84 | | | | | | | | 12391550 | Bull River near Noxon | 139 | 1973-82 | 1973-82 | | | | | | | ## WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 STATION RECORDS, SURFACE WATER AND WATER QUALITY SASKATCHEWAN RIVER BASIN #### 05014300 SWIFTCURRENT CREEK ABOVE SWIFTCURRENT LAKE, AT MANY GLACIER, MT $LOCATION.--Lat~48^{\circ}47'43'', long~113^{\circ}40'45''~(NAD~27), in~NE^{1}/_{4}~sec.15, T.35~N., R.16~W., Glacier~County, Hydrologic~Unit~10010002, Glacier~National~Park, on left~bank~.7~mi~upstream~of~inlet~to~Swiftcurrent~Lake~at~Many~Glacier, and~12~mi~southwest~of~Babb.$ DRAINAGE AREA.--14.5 mi². PERIOD OF RECORD.--May 1, 2003 to October 31, 2003. GAGE.--Water-stage recorder. Elevation of gage is 4,920 ft (NGVD 29). REMARKS.--Seasonal records good. No regulation or diversion upstream from station. Several observations of water temperature and specific conductance were made during the year. ## DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | | | | | | D/1 | ill i will i | · VILLOLO | • | | | | |
--------------------------------------|---|-----------|-----------|------|--|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----|-----| | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | | 1
2
3
4
5 | | | | | e90
e90
e95
e100
e90 | 331
319
245
197
175 | 128
125
112
92
86 | 38
37
36
36
33 | 12
12
12
11 | 8.1
7.5
7.2
7.1
6.9 | | | | 6
7
8
9
10 | | | | | e85
e80
e75
e70
e65 | 174
167
196
243
231 | 77
71
71
67
67 | 31
28
27
26
26 | 10
12
13
15 | 6.9
6.9
6.6
7.0
6.7 | | | | 11
12
13
14
15 | | | | | e60
e60
e70
e90
e150 | 289
285
261
237
202 | 68
72
78
73
65 | 25
24
22
20
20 | 14
14
13
12 | 6.6
8.3
8.7
7.8
7.2 | | | | 16
17
18
19
20 | | | | | e200
e160
e130
e100
e80 | 183
179
203
222
220 | 62
64
67
61
60 | 20
21
21
22
21 | 12
12
11
9.4
9.8 | 9.9
11
7.7
7.7
13 | | | | 21
22
23
24
25 | | | | | e75
e75
e100
e200
e300 | 188
149
130
117
105 | 61
59
58
58
55 | 20
18
16
14
15 | 9.4
9.8
8.7
9.1 | 52
46
39
32
29 | | | | 26
27
28
29
30
31 | | | | | e700
e450
395
476
422
287 | 110
129
133
128
125 | 52
47
45
42
40
39 | 15
13
13
15
15 | 8.2
7.9
8.3
8.0
8.3 | 24
20
28
32
27
23 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | | 5420
175
700
60
10750 | 5873
196
331
105
11650 | 2122
68.5
128
39
4210 | 701
22.6
38
13 | 327.9
10.9
15
7.9
650 | 510.8
16.5
52
6.6
1010 | | | | STATIST | CICS OF MO | NTHLY MEA | N DATA FO | 2003 | SEASON | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | | | | 175
175
2003
175
2003 | 196
196
2003
196
2003 | 68.5
68.5
2003
68.5
2003 | 22.6
22.6
2003
22.6
2003 | 10.9
10.9
2003
10.9
2003 | 16.5
16.5
2004
16.5
2004 | | | | SUMMARY | STATISTI | CS | | | FOR 200 | 3 SEASON | | | | | | | | LOWEST
MAXIMUM | DAILY ME
DAILY MEA
PEAK FLO
PEAK STA | N
W | | | 700
6.6
a900
a3.76 | May 26
Oct 8
May 26
May 26 | | | | | | | a--About, from highwater mark. e--Estimated. #### 05014500 SWIFTCURRENT CREEK AT MANY GLACIER, MT LOCATION.--Lat 48°47'57", long 113°39'21" (NAD 27), in SE¹/₄ sec.11, T.35 N., R.16 W., Glacier County, Hydrologic Unit 10010002, Glacier National Park, on right bank 100 ft upstream from outlet of Swiftcurrent Lake at Many Glacier, and 11 mi southwest of Babb. DRAINAGE AREA.--30.9 mi². PERIOD OF RECORD.--June 1912 to current year (records incomplete most years prior to 1959). Published as "at McDermott Lake" 1912-14. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 1508: 1918(M), 1943. WDR MT-75-1: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 4,876.78 ft (NGVD 29). Prior to May 23, 1916, nonrecording gage on left bank of lake opposite present gage and at present elevation, and May 23, 1916, to June 15, 1918, nonrecording gage at present site and elevation. REMARKS.--Records good. No regulation or diversion upstream from station. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | DAIL | I MEAN | VALUES | | | | | | |--|--|---|--------------------------------------|--|---|---|---|--|--|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 41
43
41
41
43 | 25
25
23
22
22 | 34
34
33
30
29 | 28
24
28
32
32 | 58
57
51
46
43 | 24
21
22
20
21 | 212
186
143
119
102 | 132
133
151
155
146 | 653
701
617
515
439 | 308
294
262
223
207 | 109
105
101
98
96 | 37
36
35
34
34 | | 6
7
8
9
10 | 47
51
57
64
61 | 21
21
23
25
26 | 28
26
26
25
23 | 28
26
25
23
21 | 40
35
35
31
30 | 22
23
24
26
28 | 90
79
71
71
85 | 136
124
116
107
99 | 417
397
420
525
506 | 197
182
180
171
170 | 92
87
84
83
82 | 35
37
40
45
44 | | 11
12
13
14
15 | 64
64
57
53
52 | 27
27
29
30
28 | 24
21
22
31
44 | 20
21
22
21
21 | 28
27
26
26
25 | 30
32
34
50
59 | 106
139
154
158
154 | 94
96
112
154
269 | 567
576
540
516
461 | 171
177
190
185
173 | 78
77
72
67
64 | 42
44
44
38
35 | | 16
17
18
19
20 | 51
47
42
39
38 | 27
24
23
22
28 | 50
49
44
35
33 | 19
19
18
17 | 24
26
26
23
24 | 64
65
71
71
62 | 145
135
127
122
122 | 349
295
236
190
160 | 421
409
436
494
502 | 167
166
167
163
154 | 63
64
65
68
69 | 35
35
31
28
27 | | 21
22
23
24
25 | 37
36
34
33
32 | 36
42
47
47
41 | 33
31
30
26
24 | 17
17
19
18
19 | 24
24
23
21
21 | 56
60
73
73
66 | 133
163
216
272
336 | 149
150
205
422
723 | 456
369
313
278
252 | 151
148
144
145
142 | 66
62
57
51
50 | 27
27
24
25
23 | | 26
27
28
29
30
31 | 31
31
28
27
25
24 | 42
41
38
36
35 | 26
30
30
33
29
30 | 28
43
48
42
39
43 | 22
24
23
 | 60
57
52
48
46
105 | 353
299
230
185
152 | 1120
933
786
879
926
651 | 253
288
311
309
304 | 137
126
119
116
113
111 | 48
47
47
46
43
39 | 21
23
25
25
24 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 1334
43.0
64
24
2650
1.39
1.61 | 903
30.1
47
21
1790
0.97
1.09 | 963 31.1 50 21 1910 1.01 1.16 | 795
25.6
48
17
1580
0.83
0.96 | 863
30.8
58
21
1710
1.00
1.04 | 1465
47.3
105
20
2910
1.53
1.76 | 4859
162
353
71
9640
5.24
5.85 | 10198
329
1120
94
20230
10.6
12.28 | 13245
442
701
252
26270
14.3
15.95 | 5359
173
308
111
10630
5.59
6.45 | 2180
70.3
109
39
4320
2.28
2.62 | 980
32.7
45
21
1940
1.06
1.18 | | STATIST | ICS OF MC | ONTHLY MEA | N DATA FO | OR WATER Y | YEARS 1912 | - 2003, | BY WATER | YEAR (WY) | * | | | | | MEAN
MAX
(WY)
MIN
(WY) | 83.9
243
1948
19.5
1988 | 71.2
237
2000
13.0
1988 | 36.9
99.8
1981
13.6
1979 | 32.7
177
1918
10.1
1979 | 26.8
68.4
1995
6.93
1985 | 30.3
96.2
1986
9.71
1975 | 105
340
1934
16.9
1975 | 376
656
1928
205
1955 | 489
822
1975
193
1926 | 260
519
1916
114
1944 | 117
207
1916
57.4
1988 | 85.7
236
1968
32.5
2001 | | SUMMARY | STATISTI | ICS | FOR 2 | 2002 CALEN | IDAR YEAR | F | OR 2003 WA | TER YEAR | | WATER YEARS | 1912 - | 2003** | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL ANNUAL 10 PERC 50 PERC | | EAN EAN AN (MINIMUM DW AGE AC-FT) EFSM) ENCHES) EDS | | 57137
157
1200
15
15
113300
5.07
68.79
494
52
22 | | | 43144
118
1120
17
18
1180
4.90
85580
3.83
51.94
308
47
23 | - | | 141
184
86.4
4130
a0.00
4.6
b6700
c10.00
101900
4.55
61.87
389
64 | Nov 14
Nov 13
Jun 8 | 1976 | ^{*--}Only for complete months of operation (records incomplete most years prior to 1959). ^{**--}For complete water years only. a--Result of pumping operations, Nov. 14-16, 1976. b--From rating curve extended above 1,100 ft³/s, on basis of flow-over-dam computation. c--From floodmarks. #### 05015500 LAKE SHERBURNE AT SHERBURNE, MT (International gaging station) LOCATION.--Lat 48°49'42", long 113°31'16" (NAD 27), in SE¹/₄SE¹/₄SE¹/₄sec.35, T.36 N., R.15 W., Glacier County, Hydrologic Unit 10010002, Blackfeet Indian Reservation, in gatehouse at dam on Swiftcurrent Creek, 4.5 mi southwest of Babb. DRAINAGE AREA.--64.1 mi². PERIOD OF RECORD.--May 1915 to September 1923 (fragmentary), May 1924 to September 1925, November 1925 to June 1926 September 1926 to March 1936 (no winter records some years), May 1936 to September 1952 (monthend contents and daily
elevations). October 1952 to current year (monthend contents only). Monthend contents for some periods, published in WSP 1308. Published as Sherburne Lake Reservoir at Sherburne 1915, 1917-28, 1931-52, and as Sherburne Lake Reservoir near Babb 1929-30. REVISED RECORDS.--W 1983: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 4,709.45 ft (NGVD 29). Prior to May 7, 1931, nonrecording gage at present site, and May 8, 1931, to Sept. 30, 1974, water-stage recorder at present site, all at elevation 9.45 ft lower. REMARKS.--Reservoir is formed on a natural lake by earthfill dam completed in 1921. Prior to 1919, flashboards on a temporary dam provided limited storage. Storage behind main dam began in 1919. The following capacity figures are from capacity table effective Jan. 1, 1983; see previous reports for superseded figures. Usable capacity, 64,790 acre-ft between gage height 29.3 ft, 9.3 ft, above lowest outlet gage sill, and 88.00 ft, spillway crest. Streambed above gates prevents withdrawal of storage to sill elevation. Dead storage, 3,060 acre-ft below gage height, 29.30 ft. Figures given herein represent usable contents. Water is used for irrigation on Milk River project of Bureau of Reclamation. Bureau of Reclamation satellite telemeter at station. COOPERATION .-- This is one of a number of stations which are maintained jointly by the United States and Canada. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 65,480 acre-ft, June 30, 1986, gage height, 88.40 ft; no usable contents at times. EXTREMES FOR CURRENT YEAR.--Maximum contents, 56,800 acre-ft, June 30, gage height, 83.11 ft; minimum, 895 acre-ft, Oct. 15, gage height, 30.88 ft. #### MONTHEND ELEVATION AND CONTENTS AT 2400 HOURS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Elevation
(feet) | Contents (acre-feet) | Change in
Contents
(acre-feet) | |----------|---------------------|----------------------|--------------------------------------| | Sept. 30 | 41.07 | 8,120 | | | Oct. 31 | 34.51 | 3,220 | -4,900 | | Nov. 30 | 38.16 | 5,850 | +2,630 | | Dec. 31 | 41.38 | 8,370 | +2,520 | | CALEND | AR YEAR 2002 | | -3,550 | | Jan. 31 | 44.14 | 10,680 | +2,310 | | Feb. 28 | 46.48 | 12,740 | +2,060 | | Mar. 31 | 51.66 | 17,590 | +4,850 | | Apr. 30 | 50.20 | 16,180 | -1,410 | | May 31 | 63.45 | 30,210 | +14,030 | | June 30 | 83.05 | 56,720 | +26,510 | | July 31 | 69.52 | 37,460 | -19,260 | | Aug. 31 | 43.83 | 10,410 | -27,050 | | Sept. 30 | 36.72 | 4,780 | -5,630 | | WATER Y | YEAR 2003 | | -3,340 | #### 05016000 SWIFTCURRENT CREEK AT SHERBURNE, MT LOCATION.--Lat 48°49'49", long 113°30'59" (NAD 27), in NW¹/₄SW¹/₄SW¹/₄ sec.36, T.36 N., R.15 W., Glacier County, Hydrologic Unit 10010002, Blackfeet Indian Reservation, on left bank 1,200 ft downstream from outlet of Lake Sherburne Dam at Sherburne and 4.2 mi southwest of Babb. DRAINAGE AREA.--64.6 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--July 1912 to November 1915 (no winter records), March 1916 to October 1923, May 1924 to September 1981 (no winter records), March 1984 to current year (seasonal records only). Monthly discharge only for some periods, published in WSP 1308, 1728. Published as "at Sherburne Lake" 1912-14. REVISED RECORDS.--WSP 1388: Drainage area. WSP 1508: 1935. GAGE.--Water-stage recorder. Elevation of gage is 4,730.26 ft (NGVD 29). Prior to Aug. 10, 1920, nonrecording gages at two sites within 1,000 ft of present site at different elevations. Aug. 10, 1920, to May 17, 1921, nonrecording gage at present site and May 18, 1921, to Sept. 30, 1975, waterstage recorder at present site, all at elevation 9.45 ft lower. REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. Flow regulated by Lake Sherburne (see preceding page). U.S. Geological Survey satellite telemeter at station. AVERAGE DISCHARGE.--7 years (1916-23), 199 ft³/s, 144,200 acre-ft/yr, unadjusted. #### DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | | | | | | 2 | | | | | | | | |--------------------------------------|---|----------|--------------------------------------|--------------------------------------|------------------------------------|------------------------------------|--|--|---|---|-------------------------------------|--------------------------------------| | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | | 1
2
3
4
5 | | | e2.0
e2.0
e2.0
e2.0
e1.7 | e3.0
15
15
43
66 | 184
166
167
167
191 | 44
44
45
45
46 | 407
405
406
405
405 | 594
589
584
580
601 | 367
360
352
344
321 | e0.30
e0.30
e0.30
e0.30
e0.30 | | | | 6
7
8
9
10 | | | e1.7
e1.3
e1.3
e1.3
e1.5 | 104
131
178
213
212 | 223
240
253
252
251 | 46
46
46
47
47 | 406
405
460
494
549 | 610
605
599
592
585 | 303
296
291
284
278 | e0.30
e0.30
e0.30
e0.25
e0.25 | | | | 11
12
13
14
15 | | | e1.5
e1.7
e5.0
e4.0
e3.5 | 270
305
303
359
416 | 249
207
181
181
182 | 48
48
48
48 | 634
669
665
662
603 | 625
640
631
625
616 | 258
206
154
153
123 | e0.25
e0.25
e0.25
e0.25
e0.25 | | | | 16
17
18
19
20 | | | e3.0
e3.0
e3.0
e3.0 | 429
425
422
419
417 | 226
253
255
294
319 | 49
49
49
49
50 | 563
570
519
517
512 | 605
594
584
576
549 | 104
101
e0.50
e0.50
e0.50 | e0.25
e0.25
e0.25
e0.25
e0.25 | | | | 21
22
23
24
25 | | | e3.5
e3.0
e3.0
e3.0
e3.0 | 414
411
410
409
409 | 316
335
384
379
323 | 50
50
50
75
186 | 535
574
611
627
625 | 527
518
509
500
413 | e0.50
e0.50
e0.40
e0.40
e0.40 | e0.20
e0.20
e0.20
e0.20
e0.20 | | | | 26
27
28
29
30
31 | | | e3.0
e3.0
e3.0
e3.0
e3.0 | 411
377
302
240
215 | 295
199
80
41
42
43 | 217
304
357
357
386 | 621
617
613
608
603
599 | 344
380
396
390
383
376 | e0.40
e0.40
e0.40
e0.40
e0.40 | e0.20
e0.20
703
801
590
330 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | 8343.0
278
429
3.0
16550 | 6878
222
384
41
13640 | | 16889 | 16720
539
640
344
33160 | 4300.70
143
367
0.40
8530 | 2430.80
78.4
801
0.20
4820 | | | | STATIS | TICS OF MONT | THLY MEA | AN DATA | FOR SEASON | S 1924 - 2 | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | | 78.1
407
1981
0.000
1954 | 220
644
1963
0.54
1967 | | 373
973
1975
17.9
1963 | 435
970
1982
134
1956 | 526
756
1937
76.1
1988 | 362
792
1975
0.16
1992 | 98.2
477
1951
0.011
1975 | a169
495
2000
4.91
2002 | b86.1
172
2000
.048
1966 | | SUMMAR | Y STATISTICS | 3 | | FOR | 2003 SEASO | ON | | | SEASONS 1 | 924 - 2003* | | | | LOWEST
MAXIMU | T DAILY MEAN
DAILY MEAN
M PEAK FLOW
M PEAK STAGH | N
E | | 801
0
1630
7 | Oct .20 Sep Jul .48 Jul | 29
21
17
17 | | | 2340
0.00
2510
8.63 | Jun 12 1964
Oct 3 1935
Jun 7 1995
Jun 7 1995 | | | ^{*--}During periods of seasonal operation (May 1924 to September 1981, March 1984 to current year). a-Based upon 4 years of record (water years 1966, 1998, 2000, and 2002). b-Based upon 2 years of record (water years 1966 and 2000). e-Estimated. # 05016000 SWIFTCURRENT CREEK AT SHERBURNE, MT--Continued WATER-QUALITY RECORDS PERIOD OF RECORD.--1990-92, 1996 to current year. REMARKS.--Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office. ### WATER QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | Suspnd. sedi- ment, sieve diametr percent <.063mm (70331) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | |----------------|------|---|--|---|---|---|--|---| | OCT 2002 | | | | | | | | | | 03 | 1105 | 437 | 131 | 7.5 | 6.5 | 86 | 15 | 18 | | APR 2003
08 | 1315 | 214 | 138 | 9.5 | 1.5 | 67 | 77 | 44 | | MAY | 1315 | 214 | 138 | 9.5 | 1.5 | 67 | 7.7 | 44 | | 22 | 1105 | 316 | 137 | 8.0 | 8.0 | 93 | 9 | 7.7 | | JUN | | | | | | | | | | 17 | 1320 | 49 | 96 | 25.0 | 13.0 | 99 | 4 | .53 | | JUL | | | | | | | | | | 01 | 1300 | 410 | 138 | 30.0 | 13.5 | 75 | 7 | 7.7 | | 29 | 1520 | 607 | 111 | 25.0 | 18.5 | 59 | 4 | 6.6 | | SEP | | | | | | | | | | 17 | 1330 | 104 | 88 | 8.5 | 8.0 | 82 | 4 | 1.1 | #### 05017500 ST. MARY RIVER NEAR BABB, MT LOCATION.--Lat 48°50'00", long 113°25'08" (NAD 27), in NW¹/4NW¹/4SE¹/4 sec.34, T.36 N., R.14 W., Glacier County, Hydrologic Unit 10010002, Blackfeet Indian Reservation, on right bank 0.7 mi upstream from outlet of Lower St. Mary Lake and 2.0 mi
southeast of Babb. DRAINAGE AREA.--276 mi². PERIOD OF RECORD.--July 1901 to October 1902, May 1910 to September 1925, October 1950 to current year. Monthly discharge only for some periods, published in WSP 1308. Published as "at Main" in 1901-02, and as "below Swiftcurrent Creek, at Babb" 1910-15. Records published as "near Babb" for April 1902 to September 1915, May 1929 to September 1950 at sites about 1.5 mi downstream not equivalent because flow of Swiftcurrent Creek not included 1902-15 and because diversion by St. Mary Canal not included 1929-50. REVISED RECORDS.--WSP 1308: 1913-14, 1920, 1922-24. WSP 1508: 1902. GAGE.--Water-stage recorder. Elevation of gage is 4,468.13 ft (NGVD 29). Prior to Oct. 1, 1915, water-stage recorder or nonrecording gages at several sites about 3.8 mi downstream at different elevations. Oct. 1, 1915, to Sept. 30, 1925, water-stage recorder or nonrecording gages at several sites within 1.5 mi downstream at different elevations. REMARKS.--Records good. Entire flow of Swiftcurrent Creek below Lake Sherburne is diverted into Lower St. Mary Lake upstream from station. Flow of Swiftcurrent Creek regulated by Lake Sherburne (station number 05015500) since 1919. October 1950 to September 1976, monthly discharge and runoff figures adjusted for change in contents in Lake Sherburne. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY ОСТ NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 77 73 77 171 843 62 ___ TOTAL 77.6 MEAN 76.0 98.3 MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA WATER YEARS 1951 2003, BY WATER YEAR (WY) FOR MEAN MAX (WY) 37.2 MTN 67.4 45.0 33.5 33.8 38.6 85.0 (WY) FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1951 - 2003* SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN Jun 30 May Jun LOWEST DAILY MEAN Jan Dec Jan Dec 21 ANNUAL SEVEN-DAY MINIMUM Jan Dec 30 MAXIMUM PEAK FLOW a16500 May Jun 4.98 MAXIMUM PEAK STAGE May b12.96 INSTANTANEOUS LOW FLOW Jan ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS ^{*--}During periods of operation 1951 to current. a--From rating curve extended above $6,000 \text{ ft}^3/\text{s}$ on basis of slope-area measurement of peak flow. b--From highwater mark in well. Figure 9. Schematic diagram showing diversion from St. Mary River in Part 5 to Milk River in Part 6. #### 05018000 ST. MARY CANAL AT INTAKE, NEAR BABB, MT LOCATION.--Lat 48°51'10", long 113°24'57" (NAD 27), in SE¹/₄NW¹/₄NE¹/₄ sec.27, T.36 N., R.14 W., Glacier County, Hydrologic Unit 10010002, Blackfeet Indian Reservation, on right bank of canal 500 ft upstream from St. Mary intake structure, and 1.0 mi east of Babb. PERIOD OF RECORD.--July 1918 to November 1951, May 1997 to current season (seasonal records only). GAGE.--Water-stage recorder. Elevation of gage is 4,470 ft (NGVD 29). Prior to April 17, 1919, staff gage at site 300 ft upstream at different elevation. REMARKS.--Records good except those for estimated daily discharges, which are poor. Canal diverts water from left bank of St. Mary River near Babb and discharges into North Fork Milk River. This water flows in the natural channel of Milk River through Canada and then back into Montana where it is used for irrigation in Milk River Valley downstream from Havre, Montana. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 871 ft³/s, May 26, 27, 1936; no flow at times most seasons. ## DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |-----------------------|-----|-----|-----------|---------|-------|-------|-------|-------|------|------|-----|-----| | 1 | | | e1.0 | 6.2 | 623 | 714 | 708 | 687 | 430 | 11 | | | | 2 | | | e1.5 | 6.2 | 618 | 711 | 711 | 686 | 406 | 11 | | | | 2 | | | e1.2 | 5.7 | 616 | 709 | 711 | 686 | 372 | 10 | | | | 3 | | | e1.2 | 5.6 | 614 | 706 | 710 | 685 | 371 | 9.6 | | | | 1
2
3
4
5 | | | | | | | | | | | | | | 5 | | | e1.0 | 5.4 | 613 | 700 | 708 | 685 | 342 | 9.2 | | | | 6
7 | | | e1.0 | 5.3 | 570 | 694 | 706 | 685 | 306 | 8.9 | | | | 7 | | | e1.0 | 152 | 493 | 688 | 704 | 684 | 305 | 5.7 | | | | 8 | | | e1.0 | 431 | 354 | 680 | 702 | 683 | 305 | e1.5 | | | | 9 | | | e1.0 | 489 | 272 | 648 | 702 | 682 | 305 | e1.4 | | | | 10 | | | e1.0 | 495 | 270 | 648 | 701 | 682 | 304 | e1.2 | | | | 10 | | | C1.0 | 400 | 270 | 040 | 701 | 002 | 304 | C1.2 | | | | 11 | | | e1.0 | 467 | 267 | 650 | 703 | 677 | 291 | e1.1 | | | | 12 | | | e1.2 | 445 | 315 | 679 | 706 | 679 | 219 | e1.1 | | | | 13 | | | e2.0 | 456 | 354 | 701 | 705 | 679 | 138 | e1.0 | | | | 14 | | | e5.0 | 457 | 386 | 700 | 699 | 679 | 138 | e1.1 | | | | 15 | | | e4.0 | 456 | 419 | 699 | 699 | 679 | 138 | e1.1 | | | | | | | | | 117 | | | 075 | 150 | C1.1 | | | | 16 | | | 3.1 | 455 | 420 | 696 | 698 | 672 | 138 | e1.0 | | | | 17 | | | 3.3 | 456 | 422 | 697 | 700 | 677 | 137 | e1.3 | | | | 18 | | | 2.5 | 456 | 427 | 711 | 698 | 676 | 74 | e1.1 | | | | 19 | | | 2 5 | 457 | 427 | 714 | 695 | 670 | 17 | e1.0 | | | | 20 | | | 2.5 | 458 | 427 | 727 | 694 | 643 | 16 | e1.0 | | | | | | | | 450 | | | | | 10 | C1.0 | | | | 21 | | | 8.0
12 | 490 | 427 | 728 | 693 | 605 | 16 | e1.0 | | | | 22 | | | 12 | 511 | 456 | 725 | 693 | 592 | 15 | e1.0 | | | | 23 | | | 10 | 512 | 571 | 721 | 692 | 584 | 15 | e1.0 | | | | 24 | | | 9.6 | 512 | 599 | 713 | 694 | 583 | 14 | e1.0 | | | | 25 | | | 7.0 | 514 | 607 | 708 | 694 | 550 | 13 | e1.0 | | | | | | | | | | | | | 13 | C1.0 | | | | 26 | | | 6.0 | 520 | 623 | 704 | 694 | 467 | 13 | e1.1 | | | | 27 | | | 7.7 | 540 | 657 | 701 | 693 | 440 | 12 | e1.0 | | | | 28 | | | 7.1 | 597 | 700 | 702 | 692 | 438 | 12 | e1.0 | | | | 29 | | | 6.9 | 630 | 710 | 705 | 690 | 436 | 11 | e1.3 | | | | 30 | | | 7.3 | 627 | 712 | 705 | 689 | 434 | 11 | e1.0 | | | | 31 | | | 7.8 | | 717 | | 688 | 431 | | e1.0 | | | | 31 | | | 7.0 | | /1/ | | 000 | 431 | | e1.0 | | | | TOTAL | | | 127.2 | 11617.4 | 15686 | 20984 | 21672 | 19136 | 4884 | 91.7 | | | | MEAN | | | 4.10 | 387 | 506 | 699 | | 617 | 163 | 2.96 | | | | MAX | | | 12 | 630 | 717 | 728 | 711 | 687 | 430 | 11 | | | | MIN | | | 1.0 | 5.3 | 267 | 648 | 688 | 431 | 11 | 1.0 | | | | | | | 252 | 23040 | 31110 | 41620 | 42990 | 37960 | 9690 | | | | | AC-FT | | | 252 | 23040 | 31110 | 41020 | 42990 | 3/900 | 9090 | 182 | | | e--Estimated. #### 05018500 ST. MARY CANAL AT ST. MARY CROSSING, NEAR BABB, MT (International gaging station) LOCATION.--Lat 48°56′50″, long 113°22′28″ (NAD 27), in NE¹/₄SW¹/₄sec.19, T.37 N., R.13 W., Glacier County, Hydrologic Unit 10010002, Blackfeet Indian Reservation, on left bank 50 ft upstream from inlet of St. Mary siphon, 6.6 mi northeast of Babb, and 9 mi downstream from intake. PERIOD OF RECORD.--July 1918 to current season (seasonal records only). Monthly discharge only for some periods, published in WSP 1308, 1728. GAGE.--Water-stage recorder and concrete control. Elevation of gage is 4,450 ft (NGVD 29). Prior to June 14, 1951, water-stage recorder at several sites 0.8 mi downstream at different elevations. REMARKS.--Records excellent. Canal diverts water from left bank of St. Mary River near Babb and discharges into North Fork Milk River. This water flows in the natural channel of Milk River through Canada and then back into Montana where it is used for irrigation in Milk River Valley downstream from Havre, Mt. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. COOPERATION .-- This is one of a number of stations which are maintained jointly by the United States and Canada. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 767 ft³/s, June 19, 28, 1936; no flow at times each season. ## DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |---|-----|-----|---------------------------------------|---|--|---------------------------------------|--|--|---|--|-----|-----| | 1
2
3
4
5 | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 569
569
565
562
562 | 643
639
636
632
629 | 636
636
639
639
636 | 618
614
614
614 | 403
392
345
343
326 | 0.00
0.00
0.00
0.00
0.00 | | | | 6
7
8
9
10 | | | 0.00
0.00
0.00
0.00 | 0.00
60
357
441
445 | 537
470
357
247
244 | 625
622
618
593
586 | 632
632
632
629
629 | 611
611
607
607
607 | 278
277
277
275
275 | 0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | | 0.00
0.00
0.00
0.00 | 431
399
413
413 | 242
268
321
339
385 | 586
600
629
629
625 | 629
629
629
625
625 | 607
604
604
604 | 271
226
138
135
134 | 0.00
0.00
0.00
0.00
0.00 | | | | 16
17
18
19
20 | | | 0.00
0.00
0.00
0.00 | 413
413
413
413 | 385
385
392
396
392 | 625
622
636
639
646 | 625
625
625
622
622 | 600
600
604
597
583 | 134
133
105
18
3.4 | 0.00
0.00
0.00
0.00
0.00 | | | | 21
22
23
24 | | | 0.00
0.00
0.00
0.00 |
434
466
466
470 | 392
406
509
547 | 650
650
646
643 | 618
622
622
618 | 544
537
526
526 | 2.0
1.7
1.1
0.92 | 0.00
0.00
0.00
0.00 | | | | 25
26
27
28
29 | | | 0.00
0.00
0.00
0.00 | 470
473
484
530
569 | 554
565
593
629
639 | 636
632
632
632 | 618
618
618
618 | 512
445
413
410
410 | 0.71
0.28
0.14
0.04
0.00 | 0.00
0.00
0.00
0.00 | | | | 30
31
TOTAL
MEAN
MAX
MIN | | | 0.00
0.00
0.00
0.000
0.00 | 572

10375.00
346
572
0.00 | 639
643
14303
461
643
242 | 636

18849
628
650
586 | 614
618
19398
626
639
614 | 410
406
17260
557
618
406 | 0.00

4495.29
150
403
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | | | | AC-FT | | | 0.00 | 20580 | 28370 | 37390 | 38480 | 34240 | 8920 | 0.00 | | | #### 05020500 ST. MARY RIVER AT INTERNATIONAL BOUNDARY (International gaging station) LOCATION.--Lat 49°00'43", long 113°17'57" (NAD 27), in NE¹/₄ sec.5, T.1, R.25 W., fourth meridian, in Alberta, Hydrologic Unit 10010002, on left bank 1.0 mi north of international boundary, 3.6 mi downstream from Boundary Creek, 6.5 mi southwest of Kimball, Alberta, and 13 mi northeast of Babb, MT. DRAINAGE AREA.--465 mi². PERIOD OF RECORD.--September 1902 to current year. Monthly discharge only for some periods, published in WSP 1308. Published as "near Cardston, Alberta" and "at Cook's Ranch, Alberta" 1902-12 and as "near Kimball, Alberta" 1913-55. REVISED RECORDS.--WSP 1308: 1902, 1908-12. WSP 1508: 1902, 1908-9. W 1983: Drainage area. GAGE.--Water-stage recorder. elevation of gage is 4,087.40 ft (NGVD 29) based upon levels from elevation established at previous site 1.1 mi upstream by Prairie Farm Rehabilitation Administration. Prior to Jan. 1, 1913, nonrecording gages at two sites within 0.3 mi of previous site at different elevations. Jan. 1, 1913, to Oct. 25, 1955, water-stage recorder at several sites about 7 mi downstream from present site at various elevations. Oct. 26, 1955, to Mar. 23, 1965, water-stage recorder at site 200 ft upstream from previous site at elevation 2 ft higher. Mar. 24, 1965, to Sept. 8, 1975, water-stage recorder at site 100 ft upstream from previous site at same elevation. Water-stage recorder at site 1.1 miles upstream June 22, 1975 to Oct. 31, 1999. REMARKS.--Records good except those for estimated daily discharges, which are poor. Since 1917, St. Mary Canal has diverted water from the river near Babb, MT, to North Fork Milk River. Some regulation by Lake Sherburne on Swiftcurrent Creek. Bureau of Reclamation satellite telemeter at station COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States. ### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | DAIL | 1 IVILIA | VALUES | | | | | | |------------------|-------------------|----------------------|----------------------|-------------------|----------------------|----------------------|--------------------|-------------------|----------------------|--------------------------------------|-------------------|-------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3 | 235
235
270 | e160
e150
e150 | e110
e110
e100 | e86
e82
e80 | e95
e100
e105 | e90
e86
e90 | 373
370
423 | 749
647
556 | 2740
2640
2500 | 972
1020
1020 | 447
425
418 | 188
184
225 | | 4
5 | 338
393 | e140
e150 | e100
e110 | e80
e80 | e110
e115 | e90
e90 | 472
513 | 507
465 | 2250
2040 | 972
901 | 407
387 | 214
217 | | 6
7 | 384
411 | e160
e150 | e110
e110 | e78
e74 | e120
e120 | e110
e120 | 559
513 | 490
571 | 1850
1670 | 855
801 | 378
364 | 249
235 | | 8
9
10 | 469
472
478 | e140
e140
160 | e100
e100
e95 | e70
e72
e74 | e125
e125
e125 | e130
e140
e150 | 226
195
218 | 702
830
836 | 1540
1690
1770 | 760
744
727 | 347
337
329 | 233
234
225 | | 11
12 | 453
451 | 155
153 | e95
e95 | e78
e78 | e125
e125 | e200
e600 | 248
332 | 812
718 | 1810
1760 | 741
786 | 316
321 | 217
250 | | 13
14 | 434
414 | 153
151 | e100
e95 | e80
e80 | e120
e120 | e900
e800 | 399
464 | 603
527 | 1670
1600 | 802
820 | 323
311 | 303
284 | | 15 | 387 | 148 | e90 | e82 | e120 | 712 | 525 | 489 | 1540 | 813 | 297 | 265 | | 16
17 | 344
313 | 143
e140 | e85
e80 | e82
e82 | e115
e110 | 534
396 | 606
639 | 567
650 | 1490
1440 | 754
705 | 291
281 | 238
215 | | 18 | 293 | e140 | e75 | e80 | e110 | 344 | 644 | 775 | 1390 | 649 | 269 | 212 | | 19
20 | 278
263 | e130
e130 | e75
e75 | e80
e78 | e105
e110 | 306
284 | 648
626 | 831
856 | 1420
1500 | 606
575 | 257
254 | 247
238 | | 21 | 248 | e130 | e70 | e76 | e110 | 269 | 600 | 856 | 1550 | 551 | 278 | 222 | | 22
23 | e230
e220 | e120
e120 | e70
e70 | e76
e76 | e110
e105 | 262
288 | 570
603 | 822
694 | 1470
1320 | 552
560 | 264
261 | 210
197 | | 24 | 211 | e110 | e70 | e76 | e100 | 262 | 655 | 785 | 1120 | 575 | 239 | 184 | | 25 | 210 | e110 | e65 | e74 | e95 | 262 | 764 | 1120 | 953 | 570 | 234 | 176 | | 26
27 | 204
197 | e100
e100 | e65
e70 | e80
e84 | e96
e94 | 243
247 | 928
1060 | 1790
2220 | 853
791 | 576
557 | 245
236 | 170
159 | | 28 | e190 | e100 | e70 | e85 | e90 | 245 | 1030 | 2440 | 843 | 531 | 218 | 154 | | 29
30 | e175
e170 | e110
e110 | e80
e80 | e85
e85 | | 239
253 | 936
837 | 2560
2820 | 902
942 | 510
487 | 213
204 | 145
147 | | 31 | e160 | | e80 | e90 | | 374 | | 2840 | | 463 | 199 | | | TOTAL
MEAN | 9530
307 | 4053
135 | 2700
87.1 | 2463
79.5 | 3100
111 | 9116
294 | 16976
566 | 32128
1036 | 47054
1568 | 21955
708 | 9350
302 | 6437
215 | | MAX | 478 | 160 | 110 | 90 | 125 | 900 | 1060 | 2840 | 2740 | 1020 | 447 | 303 | | MIN
AC-FT | 160
18900 | 100
8040 | 65
5360 | 70
4890 | 90
6150 | 86
18080 | 195
33670 | 465
63730 | 791
93330 | 463
43550 | 199
18550 | 145
12770 | | | | | | | | | , BY WATER | | | | | | | MEAN | 451 | 339 | 202 | 154 | 151 | 190 | 472 | 1673 | 2598 | 1326 | 597 | 488 | | MAX
(WY) | 1588
1952 | 1423
2000 | 844
1996 | 729
1918 | 411
1934 | 516
1916 | 1330
1934 | 3565
1928 | 7499
1908 | 3463
1916 | 1460
1909 | 1511
1927 | | MIN | 88.4 | 80.3 | 64.3 | 55.5 | 41.6 | 54.7 | 136 | 678 | 694 | 496 | 246 | 153 | | (WY) | 2002
Y STATIST | 1988 | 2001 | 1944 | 1936
NDAR YEAR | 2001 | 1975
FOR 2003 W | 1941 | 1941 | 1988
WATER YEA | 1988 | 1988 | | ANNUAL | | ICS | FOR | 351442 | NDAR ILAR | | 164862 | VAIER IEAR | · | WAILK ILA | KS 1902 - | 2003 | | ANNUAL
HIGHES | | | | 963 | | | 452 | | | 719
1353
316 | | 1908
1941 | | HIGHES | r daily Mi | EAN | | 6970 | Jun 30 | | 2840 | May 3 | 31 | 28000 | Jun 5 | 1908 | | | DAILY MEA | AN
Y MINIMUM | | 65
69 | Dec 25
Dec 21 | | 65
69 | Dec 2
Dec 2 | 15
21 | 28000
16
27
c40000
d13.4 | Nov 29
Nov 26 | | | | M PEAK FLO | | | | | | a2890
b9.9 | May 3 | 31 | c40000 | Jun 5
6 Jun 21 | | | ANNUAL | RUNOFF (| AC-FT) | | 697100 | | | 327000 | o Mar 1 | | 320000 | o oun 21 | 19/3 | | | CENT EXCE | | | 3410
253 | | | 972
247 | | | 1820
360 | | | | | CENT EXCE | | | 99 | | | 81 | | | 110 | | | ### 05020500 ST. MARY RIVER AT INTERNATIONAL BOUNDARY--Continued | SUMMARY STATISTICS | WATER YEARS 1902 - 1916* | WATER YEARS 1917 - 2003** | |--------------------------|--------------------------|---------------------------| | ANNUAL MEAN | 1002 | 673 | | HIGHEST ANNUAL MEAN | 1353 | 1285 1927 | | LOWEST ANNUAL MEAN | 646 | 316 1941 | | HIGHEST DAILY MEAN | 28000 Jun 5 1908 | 17000 Jun 9 1964 | | LOWEST DAILY MEAN | 70 Feb 5 1914 | 16 Nov 29 1936 | | ANNUAL SEVEN-DAY MINIMUM | 75 Feb 1 1914 | 27 Nov 26 1936 | | MAXIMUM PEAK FLOW | c40000 Jun 5 1908 | 23300 Jun 21 1975 | | MAXIMUM PEAK STAGE | f12.75 Jun 5 1908 | d13.46 Jun 21 1975 | | ANNUAL RUNOFF (AC-FT) | 726000 | 491600 | | 10 PERCENT EXCEEDS | 2470 | 1700 | | 50 PERCENT EXCEEDS | 538 | 338 | | 90 PERCENT EXCEEDS | 150 | 106 | ^{*--}Before St. Mary Canal diversions. **--Post operation of St. Mary Canal. a--Gage height, 6.35 ft. b--Backwater from ice jam. c--Gage height, 12.75 ft, from rating curve extended above 6,000 ft³/s.d--From floodmarks e--Estimated. f--From floodmarks at site and datum then in use. #### RED ROCK RIVER BASIN ### 06006000 RED ROCK CREEK ABOVE LAKES, NEAR LAKEVIEW, MT $LOCATION.--Lat\ 44^{\circ}36'56", long\ 111^{\circ}37'42"\ (NAD\ 27), in\ NE^{1}/_{4}SE^{1}/_{4}NW^{1}/_{4}\ sec.\ 17, T.14\ S., R.1\ E., Beaverhead\ County,\ Hydrologic\ Unit\ 10020001, on\ right\ bank\ 0.2\ mi\ downstream\ from\ Red\ Rock\ Lakes\ National\ Wildlife\ Refuge\ boundary,\ 9.1\ mi\ east\ of\ Lakeview,\ and\ at\ river\ mile\ 2,602.2.$ DRAINAGE AREA.--39.2 mi². PERIOD OF RECORD.--July 1997 to current year (seasonal records only). GAGE.--Water-stage recorder. Elevation of gage is 6,670 ft (NGVD 29). REMARKS.--Seasonal records good. Diversion for use by Wildlife Refuge about 1.5 mi upstream from station. Several observations of water temperature and specific conductance were made during the year. U.S. Geological Survey satellite telemeter at station. #### DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | | | | | | | | | - | | | | | |---|-----------------------------------|----------
----------|--------------------------------------|---------------------------------------|--|-------------------------------------|--------------------------------------|--|---|-----|-----| | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | | 1
2
3
4
5 | | | | 20
21
15
13 | 18
17
21
25
22 | 112
103
91 | 34
33
30
30
30 | 25
25
24
25
25 | 18
18
18
18 | 17
17
17
17
17 | | | | 6
7
8
9
10 | | | | 14
14
14
17
22 | 22
20
18
18
18 | 73
71
73 | 29
29
29
28
27 | 24
23
23
23
22 | 19
18
19
18 | 17
17
17
17
19 | | | | 11
12
13
14
15 | | | | 26
25
22
22
24 | 18
20
21
20
20 | 64
56
55 | 27
26
26
26
25 | 22
21
21
21
21 | 18
18
18
18 | 17
18
18
17
17 | | | | 16
17
18
19
20 | | | | 18
17
18
17 | 23
24
26
23
22 | 47
46
47 | 24 | 22 | 19
19
19
19 | 17
17
17
17
17 | | | | 21
22
23
24
25 | | | | 16
16
23
18
20 | 22
23
28
42
70 | 45
44
45 | 24
23 | 20
19 | 18
18
18
18 | 17
17
17
16
16 | | | | 26
27
28
29
30
31 | | | | 20
18
19
21
21 | 97
108
117
135
129
129 | 39
38
36
35 | 31
28 | 19
19 | 18
17
17
17
17 | 16
16
16
17
12
e12 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | 561
18.7
26
13
1110 | 1316
42.5
135
17
2610 | 60.7
122
35 | 835
26.9
34
23
1660 | 664
21.4
25
19
1320 | 544
18.1
19
17
1080 | 516
16.6
19
12
1020 | | | | STATISTICS | S OF MONT | HLY MEAN | DATA FOR | | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | | | 26.9
35.6
2000
18.7
2003 | 57.4
90.3
1998
37.8
2002 | 192
1999
30.5 | 58.2
110
1999
24.7
2001 | 36.4
56.7
1999
19.3
2001 | 29.6
43.0
1997
17.4
2001 | 26.0
37.6
1998
16.3
2002 | | | | SUMMARY S | TATISTICS | | | I | FOR 2003 | SEASON | | SI | EASONS 199 | 7 - 2003 | | | | HIGHEST DA
LOWEST DA
MAXIMUM PI
MAXIMUM PI
INSTANTANI | ILY MEAN
EAK FLOW
EAK STAGE | | | | 135
12
149
4.19
a9.2 | May 31
Oct 30
May 31
May 31
Oct 30 | | 25
b29 | 70 Jun
12 Oct
93 Jun
5.34 Jun
28.9 Oct | 22 1999
30 2003
10 1997
22 1999
25 2001 | | | a--Gage height, 2.43 ft, result of freezeup. b--Gage height, 3.93 ft, from crest-stage gage at miscellaneous site downstream. c--Gage height, 2.48 ft, result of freezeup. e--Estimated. #### RED ROCK RIVER BASIN #### 06012500 RED ROCK RIVER BELOW LIMA RESERVOIR, NEAR MONIDA, MT LOCATION.--Lat 44°39'22", long 112°22'14" (NAD 27), in NE¹/₄SE¹/₄SE¹/₄ sec. 31, T.13 S., R.6 W., Beaverhead County, Hydrologic Unit 10020001, on right bank just downstream from Lima Reservoir, 7 mi northwest of Monida, and at river mile 2,542.1. DRAINAGE AREA.--570 mi². PERIOD OF RECORD.--January 1911 to December 1918, April 1919, May 1925 to October 1933, April 1934 to September 1935, May 1936 to October 1938, May 1939 to September 1969, seasonal records only June 1974 to September 1982 and April 1985 to current year. Monthly discharge only for some periods, published in WSP 1309. Prior to October 1950, published as "below Red Rock Reservoir". REVISED RECORDS.--WSP 1309: 1935. WSP 1389: 1912, 1934. WSP 1559: Drainage area. GAGE.--Water-stage recorder and sharp-crested weir. Elevation of gage is 6,530 ft (NGVD 29), estimated from spillway elevation based on Montana Department of Natural Resources and Conservation elevation. Prior to Oct. 1, 1978, at elevation 1.00 ft higher. See WSP 1709 for history of nonrecording gage changes prior to May 8, 1939. REMARKS.--Seasonal records good. Flow regulated by Lima Reservoir (station number 06012000). No storage during 1934. Diversions for irrigation of about 10,000 acres upstream from reservoir. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of May 1984 reached a discharge of 1,500 ft³/s, gage height, 5.15 ft, from floodmarks. #### DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|---|--------------------------------------|--------------------------------------|--|--|--|--|--|------------------------------------|--|---|--------------------------------------| | 1
2
3
4
5 | | | | 0.00
0.00
0.00
0.00 | 27
28
28
28
28 | 614
612
610
609
608 | 123
77
24
25
27 | 22
21
21
21
21 | 5.0
4.9
4.1
3.0
2.5 | 3.6
3.6
4.2
4.5
4.6 | | | | 6
7
8
9
10 | | | | 0.00
0.00
0.00
0.00 | 27
27
27
27
27 | 607
601
596
594
590 | 28
28
30
30
30 | 20
19
18
19 | 2.1
1.6
1.9
2.6
3.1 | 4.8
4.9
4.9
4.9
5.0 | | | | 11
12
13
14
15 | | | | 0.00
0.00
0.00
0.00 | 27
27
27
27
27 | 586
583
576
571
567 | 30
30
29
29
29 | 11
7.0
6.5
7.1
7.8 | 3.5
3.4
3.6
3.5
3.1 | 5.1
5.5
5.5
5.6
5.2 | | | | 16
17
18
19
20 | | | | | | 551
541
540
532
522 | | | | | | | | 21
22
23
24
25 | | | | 0.00
0.00
0.00
0.00
e15 | 130
130
192
250
332 | 514
504
493
484
473 | 28
26
24
23
23 | 7.9
7.9
7.4
7.1
7.5 | 2.3
2.5
2.5
2.7
2.8 | 5.6
5.7
5.8
5.8
5.9 | | | | 26
27
28
29
30
31 | | | | 27
27
27
27
27
27 | 372
373
371
455
503
583 | 460
444
426
294
127
 | 23
22
22
23
23
22 | 7.3
7.1
6.6
6.3
6.3
5.7 | 3.0
3.6
3.6
3.7 | 5.9
6.0
6.6
6.4
6.3
6.4 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | 150.00
5.00
27
0.00
298 | 4267
138
583
27
8460 | 15829
528
614
127
31400 | 971
31.3
123
22
1930 | 356.6
11.5
22
5.7
707 | 89.2
2.97
5.0
1.6
177 | 168.0
5.42
6.6
3.6
333 | | | | | CICS OF MO | NTHLY MEA | N DATA FO | R WATER Y | EARS 191 | 1 - 1969 AM | ND SEASO | NS 1974 - | 2003* | | | | | MEAN
MAX
(WY)
MIN
(WY) | 21.5
57.9
1928
0.00
1932 | 19.9
55.3
1928
0.00
1932 | 18.8
48.0
1918
0.00
1932 | 91.7
571
1913
0.00
1980 | 337
948
1917
26.2
1934 | 460
754
1917
4.62
1934 | 288
652
1982
0.63
1934 | 192
513
1982
0.00
1934 | 133
384
1995
0.00
1937 | 79.7
430
1917
0.00
1932 | 54.0
353
1913
0.00
1932 | 28.0
97.6
1926
0.00
1932 | | | STATISTI | CS | FOR 2 | 003 SEASO | N | WATER Y | EARS 191 | 1 - 1969* | | SEASONS | 3 1974 - 20 | | | 30 I DICO | MEAN ANNUAL ME ANNUAL ME DAILY ME DAILY MEA SEVEN-DAY I PEAK FLO I PEAK STA RUNOFF (A ENT EXCEE ENT EXCEE | 20 | 614
.0
641
3.5 | Jun 1
0 Apr 1
May 31
7 May 31 | | 143
271
59.5
a2500
0.00
a2500
6.40
103300
449
56
8.0 | May 15
Oct 1
Oct 1
May 15
May 15 | 1913
1935
1933
1931
1931
1933
1933 | | 946
.00
b946
4.00 | May 28 197
Oct 9 197
May 28 197
Jun 26 198 | 5
8
5
1 | ^{*--}During periods of operation (January 1911 to December 1918, April 1919, May 1925 to October 1933, April 1934 to September 1935, May 1936 to October 1938, May 1939 to September 1969, June 1974 to September 1982, April 1985 to current year; seasonal records beginning water year 1974). a--Observed, estimated by dam tender; released to prevent dam failure. b--Gage height, 3.38 ft, datum then in use. e--Estimated. #### 06015300 CLARK CANYON RESERVOIR NEAR GRANT, MT LOCATION.--Lat 45°00'06", long 112°51'27" (NAD 27), in SE¹/₄SW¹/₄ sec 32, T.9 S., R.10 W., Beaverhead County, Hydrologic Unit 10020001, in shaft house near left end of dam on Beaverhead River, 1.5 mi upstream from Clark Canyon Creek, 10 mi east of Grant, and at river mile 2,483.9. DRAINAGE AREA.--2,321 mi². PERIOD OF RECORD.--May 1964 to current year (monthend contents only). Records of daily elevations are in files of Helena district. GAGE.--Water-stage recorder in shaft house. Elevation of gage is 5,455 ft (NGVD 29) (levels by Bureau of Reclamation). REMARKS.--Reservoir is formed by zoned earthfill dam with concrete control works and spillway completed in October 1964. Storage began Aug. 28, 1964 (uncontrolled storage began June 10, 1964). Capacity table effective Oct. 1, 2001. Elevations are referenced to the National Geodetic Vertical Datum of 1929. Usable capacity, 253,400 acre-ft between elevation 5,470.60 ft, invert of outlet works, and 5,560.40 ft, top of flood control. Dead storage, 1,060 acre-ft, below elevation 5,470.60 ft. Normal operating level, 174,400 acre-ft at elevation 5,546.10 ft. Minimum operating level, 1,060 acre-ft at elevation 5,470.60 ft. Figures given
herein represent usable contents. Total contents published in previous water-supply papers and annual reports for May 1964 to September 1975. Water is used for irrigation, flood control, and recreation. COOPERATION .-- Elevations and capacity table furnished by Bureau of Reclamation. EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 283,000 acre-ft, June 25, 1984, elevation, 5,564.70 ft; minimum since normal operating level was reached, 9,660 acre-ft, Aug. 18, 19, 2003, elevation, 5,490.01 ft EXTREMES FOR CURRENT YEAR.--Maximum contents, 71,940 acre-ft, May 15, elevation, 5,522.15 ft; minimum, 9,660 acre-ft, Aug. 18, 19, elevation, 5,490.01 ft. #### MONTHEND ELEVATION AND CONTENTS AT 2400 HOURS, SEPTEMBER 2002 TO SEPTEMBER 2003 | Date | Elevation (feet) | Contents (acre-feet) | Change in
Contents
(acre-feet) | |----------|------------------|----------------------|--------------------------------------| | Sept. 30 | 5,595.69 | 15,840 | | | Oct. 31 | 5,501.38 | 23,910 | +8,070 | | Nov. 30 | 5,506.90 | 33,670 | +9,760 | | Dec. 31 | 5,510.90 | 41,990 | +8,320 | | CALENI | DAR YEAR 2002 | | -17,570 | | Jan. 31 | 5,514.14 | 49,550 | +7,560 | | Feb. 28 | 5,516.78 | 56,290 | +6,740 | | Mar. 31 | 5,520.05 | 65,510 | +9,220 | | Apr. 30 | 5,521.63 | 70,320 | +4,810 | | May 31 | 5,519.47 | 63,810 | -6,510 | | June 30 | 5,509.77 | 39,540 | -24,270 | | July 31 | 5,494.64 | 14,560 | -24,980 | | Aug. 31 | 5,490.48 | 10,100 | -4,460 | | Sept. 30 | 5,494.82 | 14,780 | +4,680 | | WATER | YEAR 2003 | | -1,060 | #### 06016000 BEAVERHEAD RIVER AT BARRETTS, MT LOCATION.--Lat 45°06′59", long 112°44′59" (NAD 27), in SE¹/₄SW¹/₄SE¹/₄ sec.19, T.8 S., R.9 W., Beaverhead County, Hydrologic Unit 10020002, on left bank 1.4 mi upstream from Barretts, 2.2 mi downstream from Grasshopper Creek, 8.9 mi southwest of Dillon, and at river mile 2,469.2. DRAINAGE AREA.--2,737 mi². PERIOD OF RECORD.--August 1907 to September 1986, October 1986 to current year (seasonal records only). Monthly discharge only for some periods, published in WSP 1309. Prior to October 1963, published as "at Barratts". REVISED RECORDS.--WSP 1279: 1908(M), 1910-12(M), 1929(M), 1935-36. WSP 1559: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 5,268.17 ft (NGVD 29). Prior to Oct. 19, 1934, nonrecording gages at same site and elevation. REMARKS.—Seasonal records good. Some regulation by Lima Reservoir (station number 06012000) and nearly complete regulation by Clark Canyon Reservoir (station number 06015300) since August 1964. Diversions for irrigation of about 90,000 acres above station. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. ### DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | \ DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|--|-------------------------------------|-----------------------------------|--|------------------------------------|-------------------------------------|--------------------------------------|--|-------------------------------------|--|---|---| | 1
2
3
4
5 | | | 91
89
90
90
91 | 126
131
120
109
105 | 155
155
153
173
170 | 804 | 399
432
470
511
517 | 411
407
413
421
382 | 132
122
91
80
78 | 88
81
78
78
79 | | | | 6
7
8
9
10 | | | 92
92
94
95
101 | 107
105
102
106
120 | 148
135
129
125
122 | 772
794
786
801
847 | 516
521
543
569
605 | 357
362
375
369
366 | 78
78
79
79
79 | 80
80
82
83
87 | | | | 11
12
13
14
15 | | | 194 | 128
130
137
147
142 | 114
114
122
121
140 | 860
858
845
820
809 | 651
705
727
746
759 | 355
333
318
303
262 | 78
77
77
78
77 | 85
88
88
89
90 | | | | 16
17
18
19
20 | | | 222
183
146
119
111 | 129
121
124
121
115 | 175
218
220
241
283 | 796
769
748
737
738 | 774
773
768
745
667 | 211
191
184
169
155 | 77
79
81
81
81 | 93
95
95
95
92 | | | | 21
22
23
24
25 | | | 111
110 | | 330
376
428
475
514 | | 590
584
580
583
577 | | 81
80
80
81
83 | 94
92
94
95
94 | | | | 26
27
28
29
30
31 | | | 104
95
98
97
101 | | | 387
372
353
356
373 | | 136
134
133
132
132
132 | | | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 3804
123
271
89 | | 9479
306
806
114 | 20510
684
860
353
40680 | | | 2507
83.6
132
77 | 2786
89.9
110
78 | | | | STATIST | | | | | | - 1986 AN | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 293.2
547
1984
120
1932 | 289.7
513
1984
132
1975 | 325
934
1910
111
2002 | 441
1347
1913
123
1934 | 613
1913
1917
131
1934 | 804
2608
1908
146
1934 | 567
2147
1984
95.5
1934 | 461
1929
1984
96.1
1934 | 345
1645
1984
76.2
2002 | 352
1093
1985
76.8
2003 | 408.7
889
1913
138
1975 | 345.8
645
1984
133
1975 | | SUMMARY | | | | | | SEASONS | | | | WATER YEA | | | | 10 PERCI | MEAN ANNUAL ME ANNUAL ME DAILY ME BALLY MEA SEVEN-DAY PEAK STA ANEOUS LO RUNOFF (A ENT EXCEE ENT EXCEE | DS
DS | 860
77
871
2.21
a73 | Jun 11
Sep 12
May 30
May 30
Sep 04 | | 1640
64
1650
3.25 | Jul 26
Sep 11
Jul 25
Jul 25 | 5 1995
1 2002
5 1995
5 1995 | | 441
1101
168
3640
64
64
3720
6.10
b61
319200
836
347
182 | Jun :
Sep :
Jun :
Jun :
Sep : | 1984
1934
19 1908
11 2002
2002
20 1908
20 1908
15 2002 | ### 06016000 BEAVERHEAD RIVER AT BARRETTS, MT--Continued | SUMMARY STATISTICS | WATER YEARS | 1908-1986** | WATER YEARS 1908-1964*** | WATER YEARS | 1965-1986**** | |--------------------------|-------------|-------------|--------------------------|-------------|---------------| | ANNUAL MEAN | 441 | | 401 | 543 | | | HIGHEST ANNUAL MEAN | 1101 | 1984 | 738 1913 | 1101 | 1984 | | LOWEST ANNUAL MEAN | 168 | 1934 | 168 1934 | 293 | 1967 | | HIGHEST DAILY MEAN | 3640 | Jun 19 1908 | 3640 Jun 23 1908 | 2930 | Jun 23 1984 | | LOWEST DAILY MEAN | 80 | Jan 22 1962 | 80 Jan 22 1962 | 110 | Jan 29 1975 | | ANNUAL SEVEN-DAY MINIMUM | 81 | Sep 11 1934 | 81 Sep 11 1934 | 119 | Jan 28 1975 | | MAXIMUM PEAK FLOW | 3720 | Jun 2 1908 | 3720 Jun 20 1908 | 3000 | Jun 22 1984 | | MAXIMUM PEAK STAGE | 6.10 | Jun 2 1908 | 6.10 Jun 20 1908 | 5.04 | Jun 22 1984 | | INSTANTANEOUS LOW FLOW | b69 | Jan 30 1939 | b69 Jan 30 1939 | | | | ANNUAL RUNOFF (AC-FT) | 319200 | | 290500 | 3933700 | | | 10 PERCENT EXCEEDS | 830 | | 676 | 1000 | | | 50 PERCENT EXCEEDS | 344 | | 330 | 454 | | | 90 PERCENT EXCEEDS | 177 | | 179 | 190 | | ^{*--}Seasonal records after 1986 water year. **--Annual record. ***--Prior to Clark Canyon Dam construction. ****--After Clark Canyon Dam construction. a--Gage height, 0.41 ft. b--Gage height, 0.33 ft. #### 06017000 BEAVERHEAD RIVER AT DILLON, MT LOCATION.--Lat 45°13'05", long 112°39'18" (NAD 27), in NW¹/₄NE¹/₄NW¹/₄ sec.24, T.7 S., R.9 W., Beaverhead County, Hydrologic Unit 10020002, on right bank 0.2 mi downstream from West Side Canal and county road bridge, at Dillon, and at river mile 2,456.1. DRAINAGE AREA.--2.895 mi². PERIOD OF RECORD.--August to September 1907 (gage heights only), October 1950 to September 1952, September 1963 to September 1971, April 2002 to current year (seasonal records only). GAGE.--Water-stage recorder. Elevation of gage is 5,100 ft (NGVD 29). Prior to Sept. 30, 1952, nonrecording gages at same site at different elevation. REMARKS.--Seasonal records good. Some regulation by Lima Reservoir (station number 06012000) and nearly complete regulation by Clark Canyon Reservoir (station number 06015300) since August 1964. Diversions for irrigation of about 125,500 acres, of which about 23,000 acres lies downstream from station. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. ## DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--|---|-------------------------------------|-----------------------------------|--------------------------------------|--|------------------------------------|--|-----------------------------------|------------------------------------|--|--|-----------------------------------| | 1
2
3
4
5 | | | | 140
149
144
135
129 | 107
126
120
125
126 | 235
231
184
195
181 | 114
119
114
165
183 | 164
164
168
197
182 | 85
98
109
100
95 |
91
84
89
95
84 | | | | 6
7
8
9
10 | | | | 126
126
119
84
99 | 105
96
91
88
85 | 195
221
203
189
219 | 182
178
174
154
178 | 152
134
139
129
114 | 93
94
94
95
94 | 77
81
82
91
99 | | | | 11
12
13
14
15 | | | | 116
118
118
131
131 | 82
83
95
90
82 | 222
240
248
226
223 | 184
217
220
216
212 | 127
126
130
120
139 | 94
88
88
93
89 | 97
96
98
100
104 | | | | 16
17
18
19
20 | | | | 124
108
85
76
69 | 78
89
88
89
105 | 227
243
227
221
234 | 213
217
222
243
271 | 133
126
130
120
110 | 89
88
93
87
86 | 107
109
111
108
108 | | | | 21
22
23
24
25 | | | | 68
68
74
74
77 | 96
103
128
211
153 | 277
240
200
172
130 | 288
251
234
237
251 | 99
98
94
93
95 | 88
82
76
74
75 | 106
109
107
114
113 | | | | 26
27
28
29
30
31 | | | | 90
83
71
78
79 | 180
169
173
200
226
234 | 115
108
88
84
87 | 239
208
176
173
170
164 | 93
88
88
86
88
85 | 82
82
83
82
87 | 112
114
114
116
125
124 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | 3089
103
149
68
6130 | 3823
123
234
78
7580 | 5865
196
277
84
11630 | 6167
199
288
114
12230 | 3811
123
197
85
7560 | 2663
88.8
109
74
5280 | 3165
102
125
77
6280 | | | | STATIST | rics of Moi | NTHLY MEAN | I DATA | FOR WATER | YEARS 195 | 1 - 1971 2 | AND SEASO | NS 2002 - | 2003* | | | | | MEAN
MAX
(WY)
MIN
(WY) | 372
462
1971
221
1967 | 385
539
1971
218
1967 | 388
606
1969
204
1967 | 1078 | 295
742
1969
110
2002 | 372
1157
1964
126
2002 | 245
493
1971
67.1
1951 | 232
475
1965
123
2003 | 315
796
1965
88.8
2003 | 297
680
1966
102
2004 | 457
700
1966
230
1965 | 429
613
1966
226
1967 | | SUMMARY | Y STATISTI | CS | | FOR 2003 S | EASON | SEASONS | 3 2002 - | 2003 | WATER Y | EARS 1951 | L - 1971* | | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MINSTANT ANNUAL 10 PERC 50 PERC | MEAN I ANNUAL ME ANNUAL ME ANNUAL ME DAILY DE | AN AN N MINIMUM S E W FLOW C-FT) OS | | 288 Ju
68 Ap
317 Ju
4.56 Ju | r 21 | 288
52
317
4.56 | | | 2.0 | Jun Jun Jun Jun Jun Jun Jun Jun Jun | 1971
1967
21 1964
19 1952
27 1951
21 1964
21 1964
19 1952 | | ^{*--}During periods of operation (October 1950 to September 1952, September 1963 to September 1971, April 2002 to current year (seasonal records only). a--Observed. #### 06018500 BEAVERHEAD RIVER NEAR TWIN BRIDGES, MT LOCATION.--Lat 45°23'01", long 112°27'07" (NAD 27), in SW¹/4NW¹/4SE¹/4 sec.22, T.5 S., R.7 W., Madison County, Hydrologic Unit 10020002, on left bank at downstream side of bridge on State Highway 41, 11.5 mi upstream from Ruby River, 12.7 mi southwest of Twin Bridges, 14.5 mi northeast of Dillon, and at river mile 2,430.4. DRAINAGE AREA.--3,619 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--August 1935 to current year. Prior to October 1968, published as "at Blaine." REVISED RECORDS.--WSP 1309: 1938(M), 1945(M). WSP 1559: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 4,809.15 ft (NGVD 29). Prior to Feb. 17, 1949, nonrecording gage at bridge 0.5 mi upstream at different elevation. Feb. 17, 1949, to June 28, 1951, nonrecording gage at present site and elevation. REMARKS.--Water-discharge records good. Flow partly regulated by Lima Reservoir (station number 06012000) and Clark Canyon Reservoir (station number 06015300) since August 1964. Diversions upstream from station for irrigation of about 135,400 acres of which about 5,000 acres are irrigated by imported water from Birch and Willow Creeks and of which about 9,200 acres lies downstream from station including 600 acres in Ruby River drainage. Bureau of Reclamation satellite telemeter at station. ### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|---|--|--
---|--|---------------------------------|--|--------------------------------|---|--
--| | 164 | 219 | 238 | 204 | 231 | 214 | 227 | 185 | 112 | 87 | 87 | 87 | | 169 | 220 | 238 | 203 | 247 | 202 | 246 | 228 | 129 | 101 | 81 | 80 | | 175 | 227 | 242 | 213 | 243 | 213 | 246 | 226 | 102 | 82 | 93 | 89 | | 171 | 237 | 244 | 211 | 228 | 202 | 226 | 222 | 78 | 90 | 111 | 83 | | 170 | 235 | 244 | 212 | 211 | 208 | 217 | 241 | 76 | 105 | 119 | 81 | | 171 | 227 | 243 | 206 | 211 | 216 | 212 | 215 | 63 | 92 | 115 | 100 | | 183 | 231 | 228 | 204 | 201 | 221 | 211 | 197 | 78 | 91 | 98 | 93 | | 186 | 237 | 210 | 201 | 222 | 217 | 199 | 183 | 79 | 81 | 94 | 102 | | 185 | 242 | 210 | 184 | 209 | 221 | 184 | 159 | 64 | 62 | 99 | 119 | | 188 | 240 | 220 | 171 | 215 | 230 | 166 | 154 | 63 | 37 | 107 | 123 | | 184 | 238 | 218 | 187 | 212 | 248 | 180 | 146 | 76 | 49 | 91 | 134 | | 180 | 235 | 216 | 206 | 209 | 272 | 179 | 143 | 80 | 68 | 102 | 134 | | 174 | 237 | 220 | 210 | 215 | 300 | 177 | 151 | 94 | 67 | 87 | 125 | | 181 | 239 | 227 | 207 | 215 | 376 | 197 | 136 | 104 | 71 | 84 | 118 | | 189 | 240 | 235 | 209 | 212 | 416 | 217 | 122 | 100 | 71 | 81 | 117 | | 191 | 242 | 236 | 190 | 214 | 345 | 214 | 113 | 114 | 63 | 92 | 114 | | 190 | 242 | 236 | 183 | 216 | 337 | 195 | 109 | 97 | 70 | 92 | 127 | | 194 | 241 | 201 | 194 | 213 | 297 | 186 | 107 | 100 | 67 | 102 | 143 | | 192 | 239 | 186 | 203 | 211 | 275 | 170 | 105 | 90 | 80 | 132 | 160 | | 195 | 241 | 181 | 211 | 212 | 258 | 157 | 111 | 93 | 91 | 123 | 170 | | 195 | 246 | 210 | 209 | 210 | 251 | 144 | 92 | 220 | 120 | 93 | 148 | | 196 | 248 | 208 | 185 | 214 | 247 | 138 | 78 | 257 | 115 | 93 | 136 | | 206 | 253 | 208 | 210 | 163 | 247 | 139 | 65 | 248 | 112 | 83 | 121 | | 213 | 252 | 190 | 208 | 166 | 251 | 145 | 119 | 227 | 105 | 76 | 101 | | 212 | 230 | 131 | 205 | 166 | 239 | 147 | 90 | 193 | 119 | 69 | 102 | | 208
207
209
226
203
203 | 222
238
241
251
244 | 151
199
220
214
194
212 | 206
219
220
214
219
220 | 198
197
198
 | 236
226
219
215
213
221 | 181
171
151
145
167 | 94
87
82
84
80
116 | 164
161
143
124
99 | 149
153
119
114
104
91 | 70
62
59
60
81
87 | 101
104
113
124
135 | | 5910 | 7134 | 6610 | | 5859 | 7833 | 5534 | 4240 | 3628 | 2826 | 2823 | 3484 | | 191 | 238 | 213 | | 209 | 253 | 184 | 137 | 121 | 91.2 | 91.1 | 116 | | 226 | 253 | 244 | | 247 | 416 | 246 | 241 | 257 | 153 | 132 | 170 | | 164 | 219 | 131 | | 163 | 202 | 138 | 65 | 63 | 37 | 59 | 80 | | 11720 | 14150 | 13110 | | 11620 | 15540 | 10980 | 8410 | 7200 | 5610 | 5600 | 6910 | | TICS OF M | ONTHLY ME | AN DATA | FOR WATER | YEARS 1935 | - 2003 | , BY WATE | R YEAR (WY) | | | | | | 445 | 549 | 484 | 409 | 423 | 473 | 476 | 313 | 385 | 281 | 247 | 382 | | 1328 | 1065 | 852 | 725 | 707 | 799 | 1251 | 1117 | 1615 | 1586 | 1581 | 1691 | | 1985 | 1985 | 1984 | 1976 | 1984 | 1972 | 1969 | 1984 | 1984 | 1984 | 1984 | 1984 | | 32.4 | 238 | 208 | 173 | 199 | 207 | 95.5 | 40.8 | 24.2 | 28.0 | 25.8 | 28.1 | | 1938 | 2003 | 2002 | 1937 | 2002 | 2002 | 1961 | 1937 | 1940 | 1937 | 1937 | 1937 | | Y STATIST | ICS | FOR | 2002 CAL | ENDAR YEAR | I | FOR 2003 | WATER YEAR | | WATER YEARS | 3 1935 - | 2003 | | MEAN T ANNUAL M ANNUAL M T DAILY ME SEVEN-DA M PEAK FL M PEAK ST TANEOUS L CENT EXCE CENT EXCE | EAN EAN AN Y MINIMUM OW AGE OW FLOW AC-FT) EDS EDS | | | Nov 23
Jun 20
Jun 16 | | 186 | Mar 15
Jul 10
Jul 9
Mar 15
95 Mar 15
Jul 10 | | 386 | | 1940
1954
1944
1984 | | | 164 169 175 171 170 171 183 186 185 188 184 180 174 181 189 191 190 194 192 195 195 196 206 213 212 208 207 209 226 203 203 5910 191 226 164 11720 TICS OF Me 445 1328 1985 32.4 1938 Y STATIST TOTAL MEAN T DAILY ME. SEVEN-DA M PEAK STL TOTAL ANNUAL M T DAILY ME. SEVEN-DA M PEAK STL TANEOUS L' RUNOFF (CENT EXCE: CENT EXCE: CENT EXCE: CENT EXCE: CECETT EXCE: | 164 219 169 220 175 227 171 237 170 235 171 227 183 231 186 237 185 242 188 240 184 238 180 235 174 237 181 239 189 240 191 242 190 242 194 241 192 239 195 241 195 246 196 248 206 253 213 252 212 230 208 222 207 238 209 241 226 251 203 244 203 5910 7134 191 238 226 253 164 219 11720 14150 TICS OF MONTHLY ME. 445 549 1328 1065 1985 1985 1985 1985 32.4 238 1938 2003 Y STATISTICS TOTAL MEAN T ANNUAL DAILY M | 164 219 238 169 220 238 175 227 242 171 237 244 170 235 244 171 227 243 183 231 228 186 237 210 185 242 210 188 240 220 184 238 218 180 235 216 174 237 220 181 239 227 189 240 235 191 242 236 190 242 236 194 241 201 192 239 186 194 241 201 192 239 186 194 241 201 195 241 181 195 246 210 196 248 208 206 253 208 213 252 190 212 230 131 208 222 151 207 238 199 209 241 220 226 251 214 203 244 194 203 212 5910 7134 6610 191 238 213 226 253 244 203 244 194 203 212 5910 7134 6610 191 238 213 226 253 244 104 203 244 194 203 212 5910 7134 6610 191 238 213 226 253 244 104 203 244 194 203 212 5910 7134 6610 191 238 213 226 253 244 164 219 131 11720 14150 13110 TICS OF MONTHLY MEAN DATA 445 549 484 1328 1065 852 1985 1985 1984 32.4 238 208 1938 2003 2002 Y STATISTICS FOR TOTAL MEAN T DAILY MEAN DAILY MEAN DAILY MEAN T DA | 164 219 238 204 169 220 238 203 175 227 242 213 171 237 244 211 170 235 244 212 171 227 243 206 183 231 228 204 186 237 210 201 185 242 210 184 188 240 220 171 184 238 218 187 180 235 216 206 174 237 220 210 181 239 227 207 189 240 235 209 191 242 236 190 190 242 236 183 194 241 201 194 192 239 186 203 195 241 181 211 195 246 210 209 196 248 208 185 206 253 208 210 213 252 190 208 212 230 131 205 208 222 151 206 207 238 199 209 241 220 220 226 251 214 214 203 244 194 219 203 212 220 5910 7134 6610 6324 191 238 213 204 226 253 244 220 226 251 214 214 203 244 194 219 203 212 220 5910 7134 6610 6324 191 238 213 204 226 253 244 220 226 251 214 214 203 244 194 219 203 212 220 5910 7134 6610 6324 191 238 213 204 226 253 244 220 226 251 214 214 203 244 194 219 203 212 220 5910 7134 6610 6324 191 238 213 204 226 253 244 220 226 251 214 214 203 244 194 219 203 212 220 5910 7134 6610 6324 191 238 213 204 226 253 244 220 226 251 214 214 203 244 194 219 203 212 220 5910 7134 6610 6324 191 238 213 204 226 253 244 220 226 251 214 214 203 244 194 219 203 212 220 5910 7134 6610 6324 191 238 203 2002 1937 TICS OF MONTHLY MEAN DATA FOR WATER 445 549 484 409 1328 1065 852 725 1985 1985 1984 1976 32.4 238 208 173 1938 2003 2002 1937 Y STATISTICS FOR 2002 CALI TOTAL 60546 MEAN 7 1066 TANNUAL MEAN 7 1070 ANNUAL | 164 219 238 204 231 169 220 238 203 247 175 227 242 213 243 170 235 244 211 228 170 235 244 212 211 171 227 243 206 211 183 231 228 204 201 186 237 210 201 222 185 242 210 184 209 188 240 220 171 215 184 238 218 187 212 180 235 216 206 209 174 237 220 210 215 181 239 227 207 215 181 239 227 207 215 181 239 227 207 215 189 240 235 209 212 191 242 236 183 216 194 241 201 194 213 192 239 186 203 211 195 241 181 211 212 195 246 210 209 210 196 248 208 185 214 206 253 208 210 163 213 252 190 208 166 212 230 131 205 166 208 222 151 206 198 207 238 199 219 197 209 241 220 220 198 217 209 241 220 220 198 226 253 208 210 163 213 252 190 208 166 212 230 131 205 166 208 222 151 206 198 207 238 199 219 197 209 241 220 220 198 207 238 199 219 197 209 241 220 220 198 207 238 199 219 197 209 241 220 220 198 216 251 214 214 203 212 220 5910 7134 6610 6324 5859 191 238 213 204 209 226 253 244 194 219 203 244 194 219 203 244 194 219 203 244 194 219 212 220 5910 7134 6610 6324 5859 1911 238 213 204 209 247 164 219 131 171 163 11720 14150 13110 12540 11620 TICS OF MONTHLY MEAN DATA FOR WATER YEARS 1935 445 549 484 409 423 1328 1065 852 725 707 1985 1985 1984 1976 1984 32.4 238 208 173 199 1938 2003 2002 1937 2002 Y STATISTICS FOR 2002 CALENDAR YEAR TOTAL 60546 MEAN 7ANNUAL MEAN ANNUAL ANU | 164 | 164 219 238 204 231 214 227 169 220 238 203 247 202 246 175 227 242 213 243 213 245 171 237 244 211 228 202 226 170 235 244 212 211 208 202 226 170 235 244 212 211 208 217 171 227 243 206 211 216 212 183 231 228 204 201
221 211 186 237 210 201 222 217 199 185 242 210 184 209 221 184 188 240 220 171 215 230 166 184 238 218 187 212 248 180 180 235 216 206 209 272 179 174 237 220 210 215 300 177 181 239 227 207 215 300 177 181 239 227 207 215 376 197 189 240 235 209 212 416 217 190 242 236 190 214 345 214 190 242 236 183 216 337 195 194 241 201 194 213 297 186 192 239 186 203 211 275 170 195 241 181 211 212 258 157 195 246 210 209 210 251 144 206 253 208 210 163 247 138 206 253 208 210 163 247 138 207 238 199 219 197 226 171 208 222 151 206 198 236 181 207 238 199 219 197 226 171 208 222 151 206 198 236 181 207 238 199 219 197 226 171 208 222 151 206 198 236 181 207 238 199 219 197 226 171 208 222 151 206 198 236 181 207 238 199 219 197 226 171 208 222 151 206 198 236 181 207 238 199 219 197 226 171 208 222 151 206 198 236 181 207 238 199 219 197 226 171 208 222 151 206 198 236 181 207 238 199 219 197 226 171 208 222 151 206 198 236 181 207 238 199 219 197 226 171 208 224 253 244 220 247 416 246 246 251 214 214 215 145 203 212 220 221 5910 7134 6610 6324 5859 7833 5534 4 | 164 | 164 219 238 204 231 214 227 185 112 169 220 238 203 247 202 246 228 129 175 227 242 213 243 213 2246 226 129 1710 237 244 211 228 202 226 222 78 1710 235 244 212 211 208 217 241 76 1711 237 244 211 228 202 226 222 78 1710 235 244 212 211 208 217 241 76 1711 237 243 206 211 216 212 215 63 183 231 228 204 201 221 216 212 215 63 186 237 210 201 222 217 199 183 79 185 242 210 184 209 221 184 159 64 188 240 220 171 215 230 166 154 63 184 238 218 187 212 248 180 146 76 180 235 216 206 209 272 179 143 80 174 237 220 210 215 300 177 151 94 181 239 227 207 215 376 197 136 194 189 240 235 209 212 416 217 122 100 191 242 236 190 214 345 214 113 114 194 241 239 247 207 215 376 197 136 104 199 240 235 209 212 416 217 122 100 191 242 236 183 216 216 337 195 109 97 191 242 236 190 214 345 214 113 144 194 241 251 183 211 212 258 157 111 93 195 241 181 211 212 225 170 105 90 195 241 181 211 212 225 170 105 90 195 241 181 211 212 225 170 105 90 195 241 181 211 212 225 170 105 90 195 246 210 209 210 251 144 92 220 196 248 208 185 214 247 138 78 257 206 253 208 210 163 247 138 78 257 213 252 190 208 166 251 144 92 220 196 248 208 185 214 247 138 78 257 212 230 131 205 166 239 147 190 195 27 228 222 151 206 198 236 181 94 167 190 27 228 222 151 206 198 236 181 94 167 190 27 228 222 151 206 198 236 181 94 164 27 220 220 220 220 220 220 220 220 220 220 | 164 219 238 204 231 214 227 185 112 87 169 220 238 203 247 202 246 228 129 101 175 227 242 213 243 213 243 226 226 102 80 171 235 244 211 228 203 226 222 77 99 170 235 244 211 212 211 208 227 241 76 108 171 237 242 213 243 206 211 216 212 215 63 92 171 227 243 206 211 216 212 215 63 92 183 231 228 204 201 221 211 197 78 91 186 237 210 201 222 217 199 183 79 81 185 242 210 184 209 221 184 159 64 62 188 240 220 171 215 230 166 154 63 37 180 235 216 206 209 272 199 143 80 68 174 238 218 187 212 248 180 146 76 49 180 235 216 206 209 272 179 143 80 68 174 237 220 210 215 376 197 136 104 71 189 240 235 209 212 216 197 136 104 71 189 240 235 209 212 216 107 107 100 67 181 239 227 207 215 376 197 136 104 71 190 242 236 183 216 217 122 100 71 191 242 236 183 216 217 122 100 71 191 242 236 183 216 217 129 109 97 70 194 241 201 194 213 297 186 107 100 67 194 241 201 194 213 297 186 107 100 67 195 249 186 203 211 275 170 105 90 80 195 241 181 211 212 258 157 111 93 91 156 246 210 209 210 215 376 197 116 107 100 67 192 239 186 203 211 275 170 105 90 80 195 241 181 211 212 258 157 111 93 91 156 246 210 209 210 251 144 92 220 120 159 246 210 209 210 251 144 92 220 120 159 246 210 209 209 210 251 144 92 220 120 239 186 203 211 275 170 105 90 80 195 241 181 211 212 258 157 111 93 91 156 246 210 209 210 251 144 92 220 210 159 246 210 209 210 251 144 92 220 200 120 239 186 203 211 275 170 105 90 80 195 241 181 211 212 258 157 111 93 91 156 246 210 209 210 163 247 138 98 257 126 206 253 208 210 166 239 147 90 193 169 207 238 199 208 166 239 147 90 193 199 208 222 151 206 198 236 181 947 190 193 109 208 222 151 206 198 236 181 94 173 195 199 190 190 190 190 190 190 190 190 190 | 164 219 238 204 231 214 227 185 112 87 87 169 220 238 203 247 203 246 228 119 102 81 117 277 244 213 248 202 246 228 119 282 81 117 277 244 212 211 208 202 236 222 102 283 200 211 170 235 244 212 211 208 217 241 76 105 119 171 227 243 206 211 216 212 215 63 92 115 183 231 228 204 201 227 211 193 78 91 98 186 247 210 204 229 227 119 119 37 78 91 98 188 242 210 244 232 227 119 184 159 64 62 29 188 240 220 171 215 230 166 154 63 37 107 181 184 238 218 187 212 248 180 146 76 49 91 180 235 216 200 209 272 179 143 80 68 102 180 249 240 225 209 212 416 217 122 100 71 81 189 240 225 209 212 416 217 122 100 71 81 191 242 236 180 241 345 241 131 14 63 92 199 241 241 261 183 213 227 184 137 14 63 92 199 241 261 183 216 237 155 109 97 70 92 230 166 237 155 109 97 70 92 230 156 241 241 242 236 183 216 237 155 109 97 70 92 230 199 241 242 236 183 216 237 155 109 97 70 92 230 195 241 181 24 | #### 06018500 BEAVERHEAD RIVER NEAR TWIN BRIDGES, MT--Continued | SUMMARY STATISTICS | FOR WATER | YEARS 1935-1964* | WATER YEAR | RS 1965-2003** | |--------------------------|-----------|------------------|------------|----------------| | ANNUAL MEAN | 391 | | 416 | | | HIGHEST ANNUAL MEAN | 642 | 1948 | 1097 | 1984 | | LOWEST ANNUAL MEAN | 170 | 1937 | 165 | 2002 | | HIGHEST DAILY MEAN | b3130 | Jun 12 1944 | 2180 | Jun 25 1984 | | LOWEST DAILY MEAN | 7.0 | May 25 1940 | 28 | Jun 24 1990 | | ANNUAL SEVEN-DAY MINIMUM | 8.7 | May 13 1974 | 31 | Jun 23 1990 | | MAXIMUM PEAK FLOW | b3130 | Jun 12 1944 | 2200 | Jun 25 1984 | | MAXIMUM PEAK STAGE | 6.76 | Jun 12 1944 | 7.88 | Jun 25 1984 | | INSTANTANEOUS LOW FLOW | c7.0 | May 25 1940 | d28 | Jun 24 1990 | | ANNUAL RUNOFF (AC-FT) | 283100 | | 301500 | | | 10 PERCENT EXCEEDS | 648 | | 780 | | | 50 PERCENT EXCEEDS | 410 | | 362 | | | 90 PERCENT EXCEEDS | 60 | | 124 | | ^{*--}Prior to construction of Clark Canyon Dam. #### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1950-51, 1962-81, 1986, May 1999 to current year. PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: July 1962 to September 1979, October 1999 to current year. SUSPENDED-SEDIMENT DISCHARGE: July 1962 to September 1974. INSTRUMENTATION: Temperature probe installed Aug. 18, 1999. REMARKS.--Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office. EXTREMES FOR PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: Maximum, 27.0°C, July 20, 2003; minimum, 0.0°C on many days during winter months. SEDIMENT CONCENTRATION: Maximum daily mean, 670 mg/L, June 8, 1964; minimum daily mean, 5 mg/L, Sep. 22, 23, 1964, May 17, 18, 1973. SEDIMENT LOAD: Maximum daily, 1,200 tons, June 8, 1964; minimum daily 1.6 tons, July 28, 1968. EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: Maximum, 27.0°C, July 20; minimum, 0.0°C on many days October through March. #### WATER-OUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | unfltrd
field,
std
units | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | | Temper- | Ammonia + org-N, water, unfltrd mg/L as N (00625) | fltrd,
mg/L
as N | Nitrite
water,
fltrd,
mg/L
as N
(00613) | |----------------|------|---|--|---|---------------------------|---|---|------------------------|--| | APR 2003
24 | 2015 | 145 | 8.2 | 743 | 13.0 | 14.0 | . 49 | .712 | .013 | | MAY
20 | 0930 | 104 | 8.4 | 712 | 5.0 | 9.0 | .28 | .233 | .007 | | JUN
05 | 0915 | 82 | 7.8 | 701 | 18.0 | 15.0 | .40 | .040 | E.002 | | JUL
29 | 1045 | 114 | 8.4 | 746 | 23.0 | 20.0 | .45 | .025 | .003 | | | | 20
JN
05 | Ortho phosphate water fltrd mg/L as P (00671 E.006 <.007 <.007 | , Phos-
, phorus,
, water
unfltro
mg/L
) (00665)
.041
.011 | sieve
diamet
percen | pended
sedi-
ment
r concen-
t tration
m mg/L | pended
sedi-
ment
load, | | | ^{**--}After construction of Clark Canyon Dam. a--Gage height, 3.11 ft. b--Observed gage height, 6.76 ft, site and datum then in use. c--Observed, site and datum then in use. d--Gage height, 3.01 ft. # 06018500 BEAVERHEAD RIVER NEAR TWIN BRIDGES, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | Time | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | ide,
water, | ide,
water, | Silica,
water,
fltrd,
mg/L
(00955) | |----------------|--|---|--|--
--|---|---|---|--|--|--| | MAY 2003 | | | | | | | | | | | | | 20
JUL | 0930 | 320 | 75.7 | 32.0 | 6.76 | . 8 | 32.5 | 218 | 25.7 | .5 | 18.5 | | 29 | 1045 | 370 | 76.4 | 43.5 | 7.56 | .7 | 32.2 | 222 | 23.2 | .6 | 28.8 | | Date | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d
(70302) | Arsenic
water
unfltrd
ug/L
(01002) | Cadmium
water,
unfltrd
ug/L
(01027) | Chrom-
ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Nickel,
water,
unfltrd
recover
-able,
ug/L
(01067) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | | MAY 2003
20 | 131 | 454 | .62 | 128 | 5 | <.2 | <.8 | 2.4 | .07 | .99 | E1 | | JUL
29 | 140 | 486 | .66 | 150 | 6 | E.02 | <.8 | 2.4 | .12 | 1.92 | E2 | E--Estimated. ### WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|---------------------------------|------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--| | | | OCTOBER | | NO | VEMBER | | DE | CEMBER | | | JANUARY | | | 1
2
3
4
5 | 9.5
9.5
9.0
11.0
10.5 | 6.0
4.0
6.5
7.5
8.5 | 7.5
7.0
7.5
9.5
9.0 | 0.5
0.5
0.5
1.0 | 0.0
0.0
0.0
0.5
0.5 | 0.0
0.0
0.5
0.5 | 3.0
4.5
3.5
3.5 | 0.5
2.0
3.0
2.5
1.0 | 1.5
3.0
3.5
3.0
2.0 | 1.0
1.0
1.0
1.0
3.0 | 0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5
2.0 | | 6
7
8
9
10 | 13.0
11.5
11.5
12.0
11.0 | 8.5
8.0
7.0
7.5
7.5 | 10.5
10.0
9.0
10.0
9.5 | 3.5
4.0
5.0
4.0
4.5 | 0.5
2.0
2.5
3.0
2.5 | 2.0
3.0
3.5
3.5 | 3.0
1.5
0.5
0.5 | 1.0
0.5
0.5
0.5 | 2.0
1.0
0.5
0.5 | 2.0
1.5
1.0
0.5 | 0.5
0.0
0.0
0.0 | 1.0
0.5
0.5
0.5 | | 11
12
13
14
15 | 9.5
9.0
9.0
9.5
9.5 | 7.0
4.5
4.0
5.0 | 8.0
6.5
6.5
7.5 | 4.5
3.5
5.5
4.0
3.5 | 2.0
2.0
3.0
2.5
1.5 | 3.0
3.0
4.0
3.5
2.5 | 1.5
2.0
2.5
4.0
4.0 | 0.5
0.5
1.0
2.5
2.0 | 1.0
1.5
1.5
3.0
3.5 | 0.5
0.5
1.0
2.0
2.5 | 0.0
0.5
0.5
0.5 | 0.5
0.5
0.5
1.0 | | 16
17
18
19
20 | 9.5
9.5
9.5
9.0
10.0 | 5.5
5.0
5.5
4.5
6.0 | 7.5
7.5
7.5
7.0
8.0 | 4.0
4.5
3.0
4.0
6.5 | 2.0
2.0
1.5
1.5
3.5 | 3.0
3.0
2.5
2.5
5.0 | 2.5
3.0
1.0
0.5 | 1.5
1.0
0.5
0.5 | 2.0
2.0
0.5
0.5 | 0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0
0.5 | 0.5
0.5
0.5
0.5 | | 21
22
23
24
25 | 10.5
9.0
5.0
6.5 | 6.5
3.5
2.0
2.0 | 8.5
6.0
3.5
4.5 | 6.5
6.5
5.5
1.5
0.5 | 3.5
4.5
1.5
0.0
0.0 | 5.0
5.5
3.5
1.0 | 0.5
0.5
1.0
0.5
0.5 | 0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5 | 1.5
0.5
1.0
1.0 | 0.0
0.0
0.5
0.5 | 1.0
0.5
0.5
0.5
2.0 | | 26
27
28
29
30
31 | 6.0
5.5
6.0
4.5
0.0 | 2.0
1.5
4.0
0.0
0.0 | 4.0
4.0
5.0
2.0
0.0 | 0.5
1.5
3.0
3.5
3.0 | 0.0
0.0
0.5
1.5 | 0.0
1.0
2.0
2.5
2.0 | 0.5
1.0
1.0
1.0
1.0 | 0.0
0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5
0.5 | 4.5
4.5
4.0
2.5
4.5
5.0 | 2.5
3.5
2.0
1.0
1.5
3.0 | 3.5
4.0
3.0
2.0
3.0
4.0 | | MONTH | 13.0 | 0.0 | 6.5 | 6.5 | 0.0 | 2.5 | 4.5 | 0.0 | 1.5 | 5.0 | 0.0 | 1.0 | # 06018500 BEAVERHEAD RIVER NEAR TWIN BRIDGES, MT--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | DAY | MAX | MIN | MEAN | |---|--|---|--|--|---|--|--|--|--|--|--|--| | | 1 | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 5.0
3.5
3.0
3.0 | 3.5
2.5
1.0
0.5
0.0 | 4.5
3.0
1.5
1.5 | 1.5
1.0
0.5
1.5 | 0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5 | 9.5
8.0
9.0
9.5
9.0 | 7.0
6.0
4.0
3.0
3.5 | 8.5
7.0
6.0
6.0
6.5 | 13.0
13.0
11.0
12.5
12.5 | 9.0
8.0
8.5
7.0
7.5 | 11.0
10.5
9.5
9.5
10.0 | | 6
7
8
9 | 0.5
0.5
1.5
1.5 | 0.0
0.0
0.0
0.0
0.5 | 0.5
0.5
0.5
0.5 | 1.5
1.5
1.5
5.5
7.0 | 0.0
0.0
0.0
1.0
3.5 | 0.5
0.5
0.5
3.0
5.5 |
10.0
10.5
13.0
13.0
14.5 | 4.5
4.0
5.0
7.0
8.0 | 7.0
7.0
9.0
10.0
11.0 | 13.0
15.5
14.5
11.5
14.5 | 8.0
8.0
9.5
7.0
6.5 | 10.5
11.5
11.5
9.0
10.0 | | 11
12
13
14
15 | 3.5
3.5
2.0
4.0
6.0 | 0.0
0.0
0.5
1.5
2.5 | 2.0
1.5
1.0
2.5
4.0 | 8.0
7.5
9.5
8.5
6.5 | 4.0
4.5
4.5
6.0
4.0 | 6.0
6.0
7.0
7.5
5.5 | 14.0
14.5
12.5
11.5
10.0 | 8.0
8.5
9.0
8.5
8.0 | 11.0
11.5
11.0
10.0
9.0 | 14.5
13.5
17.0
18.5
18.5 | 8.5
9.0
9.0
10.5
13.0 | 11.5
11.5
13.0
14.5
15.5 | | 16
17
18
19
20 | 4.0
4.5
4.0
3.5
3.0 | 1.5
1.0
1.0
0.0 | 3.0
2.5
2.5
2.0
2.0 | 8.0
6.5
6.0
8.5
9.5 | 5.5
4.0
3.0
2.5
3.5 | 6.5
5.0
4.5
5.5
6.5 | 12.0
10.0
10.5
14.5
15.5 | 5.0
6.5
7.0
6.5
8.0 | 8.5
8.5
8.5
10.0
11.5 | 16.0
16.5
13.0
14.5
15.5 | 11.0
9.0
8.5
6.0
8.5 | 14.0
12.5
10.0
10.0
12.0 | | 21
22
23
24
25 | 4.0
5.0
1.5
0.5 | 1.0
1.5
0.0
0.0 | 2.5
3.5
0.0
0.0 | 8.5
9.0
10.0
8.0
6.0 | 5.0
5.0
6.0
3.5
3.5 | 6.5
7.0
8.0
6.0
5.0 | 14.5
15.5
13.5
14.5
13.0 | 8.5
10.0
10.5
9.5
8.5 | 12.0
13.0
11.5
12.0
10.5 | 16.0
18.5
21.5
22.5
20.0 | 11.5
10.5
13.5
14.5
15.5 | 13.5
14.5
17.0
18.5
18.0 | | 26
27
28
29
30
31 | 0.5
1.0
1.5
 | 0.0
0.0
0.0
 | 0.0
0.5
0.5
 | 5.5
5.5
9.0
10.5
10.0 | 4.0
2.5
2.0
4.0
6.0
7.0 | 4.5
4.0
5.5
7.5
8.0
9.0 | 8.5
13.0
11.5
8.0
15.5 | 6.5
4.0
7.5
6.0
6.0 | 7.5
8.0
9.0
7.0
10.0 | 21.0
22.5
24.0
23.5
21.5
21.5 | 14.5
14.5
16.0
17.5
17.0
14.5 | 18.0
18.5
20.0
21.0
19.0
18.0 | | MONTENT | 6.0 | 0.0 | 1.5 | 10.5 | 0.0 | 4.5 | 15.5 | 3.0 | 9.5 | 24.0 | 6.0 | 13.5 | | MONTH | 0.0 | 0.0 | 1.5 | 10.5 | 0.0 | 4.5 | 13.3 | 5.0 | 5.5 | 24.0 | 0.0 | 13.3 | | MONTH | 0.0 | 0.0 | 1.5 | 10.5 | 0.0 | 4.5 | 13.3 | 3.0 | J.3 | 24.0 | 0.0 | 13.3 | | | | JUNE | | | JULY | | 2 | AUGUST | | Š | SEPTEMBE | R | | 1
2
3
4
5 | 20.5
19.5
20.0
19.5
20.0 | | 17.5
17.0
16.0
17.0
16.5 | 24.5
23.5
23.5
23.0
23.5 | | 21.5
20.5
20.0
20.0
20.0 | | | 21.5
22.0
21.0
20.5
20.0 | | | | | 1
2
3
4 | 20.5
19.5
20.0
19.5 | JUNE 15.0 14.0 12.5 14.0 | 17.5
17.0
16.0
17.0 | 24.5
23.5
23.5
23.0 | JULY 18.0 17.5 16.0 16.5 | 21.5
20.5
20.0
20.0 | 25.0
24.5
23.0
24.0 | AUGUST
17.5
18.5
20.0
17.5 | 21.5
22.0
21.0
20.5 | 21.0
20.5
20.5
19.5 | SEPTEMBE
14.5
14.5
14.0
14.0 | R
18.0
17.5
17.5
17.0 | | 1
2
3
4
5
6
7
8
9 | 20.5
19.5
20.0
19.5
20.0
17.0
19.0
20.5
22.0 | JUNE 15.0 14.0 12.5 14.0 12.5 14.0 12.5 | 17.5
17.0
16.0
17.0
16.5
14.5
14.0
17.0
18.0 | 24.5
23.5
23.5
23.0
23.5
24.0
24.5
23.0
23.5 | JULY 18.0 17.5 16.0 16.5 16.5 16.5 16.0 | 21.5
20.5
20.0
20.0
20.0
20.0
20.5
20.5
20 | 25.0
24.5
23.0
24.0
23.0
22.5
23.5
21.0
23.0 | 17.5
18.5
20.0
17.5
17.5
16.5
16.5
16.5 | 21.5
22.0
21.0
20.5
20.0
19.5
20.0
19.5 | 21.0
20.5
20.5
19.5
18.5
17.5
20.0
18.5 | SEPTEMBE 14.5 14.5 14.0 14.0 15.5 15.5 13.5 13.5 10.5 | 18.0
17.5
17.5
17.0
17.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 20.5
19.5
20.0
19.5
20.0
17.0
19.0
20.5
22.0
22.0
22.0
22.5
21.0
21.0 | JUNE 15.0 14.0 12.5 14.0 12.5 14.0 12.5 14.0 14.5 13.0 14.0 14.5 14.5 16.0 14.5 | 17.5
17.0
16.0
17.0
16.5
14.5
14.0
17.0
18.0
18.0
18.5
19.0
18.5
17.5 | 24.5
23.5
23.5
23.0
23.5
24.0
24.5
23.0
23.5
25.5 | JULY 18.0 17.5 16.0 16.5 16.5 16.0 17.5 16.0 17.0 18.0 19.0 19.0 17.0 | 21.5
20.5
20.0
20.0
20.0
20.5
20.5
20.5
20 | 25.0
24.5
23.0
24.0
23.0
22.5
23.5
21.0
23.0
24.0
22.0
21.5
23.5
23.5 | AUGUST 17.5 18.5 20.0 17.5 17.5 16.5 16.5 16.5 16.0 17.0 17.5 17.5 17.5 17.5 | 21.5
22.0
21.0
20.5
20.0
19.5
20.0
19.5
20.5 | 21.0
20.5
20.5
19.5
18.5
17.5
20.0
18.5
15.5
14.5 | SEPTEMBE 14.5 14.0 14.0 15.5 15.5 13.5 13.5 10.5 12.0 11.0 9.0 9.5 | R 18.0 17.5 17.5 17.0 17.5 16.5 17.0 16.0 13.5 13.5 13.0 | | 1 2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | 20.5
19.5
20.0
19.5
20.0
17.0
19.0
20.5
22.0
22.0
22.0
21.0
21.0
21.0
22.0
23.5
23.5
23.0
21.5 | JUNE 15.0 14.0 12.5 14.0 12.5 12.0 9.5 13.0 15.0 14.5 14.5 14.5 14.5 16.0 14.5 17.0 | 17.5
17.0
16.0
17.0
16.5
14.5
14.0
17.0
18.0
18.0
18.5
19.0
18.5
17.5
18.0 | 24.5
23.5
23.5
23.0
23.5
24.0
24.5
23.0
23.5
25.5
26.0
26.5
24.5
25.5
25.0
23.5 | JULY 18.0 17.5 16.0 16.5 16.5 16.0 17.5 16.0 17.0 18.0 19.0 17.0 18.5 18.5 19.5 19.5 20.0 | 21.5
20.5
20.0
20.0
20.0
20.5
20.5
20.5
21.0
22.0
21.5
22.0
21.5
22.0
21.5
22.3 | 25.0
24.5
23.0
24.0
23.0
22.5
23.5
21.0
23.0
24.0
22.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.0 | AUGUST 17.5 18.5 20.0 17.5 17.5 16.5 16.5 16.0 17.0 17.5 17.5 18.0 18.0 15.0 14.5 16.0 | 21.5
22.0
21.0
20.5
20.0
19.5
20.0
19.5
20.5
20.5
20.5
20.5
20.5
20.5 | 21.0
20.5
20.5
19.5
18.5
17.5
20.0
18.5
15.5
14.5
15.5
14.5
15.5
14.0
14.0
12.0
13.0 | SEPTEMBE 14.5 14.0 14.0 15.5 15.5 13.5 13.5 10.5 12.0 11.0 9.0 9.5 10.5 11.0 8.5 7.5 8.0 | R 18.0 17.5 17.5 17.5 17.0 17.5 16.5 13.0 12.5 13.0 12.5 13.0 12.5 13.0 12.5 | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | 20.5
19.5
20.0
19.5
20.0
17.0
19.0
20.5
22.0
22.0
22.0
21.0
21.0
21.0
21.5
21.0
21.5
21.5
21.5
21.5 | JUNE 15.0 14.0 12.5 14.0 12.5 12.0 9.5 13.0 15.0 14.0 14.5 14.5 16.0 14.5 17.0 17.0 17.0 17.0 15.5 | 17.5
17.0
16.0
17.0
16.5
14.5
14.0
17.0
18.0
18.0
18.5
19.0
18.5
17.5
18.0
18.5
17.5
18.0
18.5
17.5
18.0 | 24.5
23.5
23.5
23.0
23.5
24.0
24.5
23.0
23.5
25.5
26.0
26.5
25.5
25.0
27.0
26.0
27.0
26.5
26.0
27.0
26.5
26.0
27.0
26.5
26.0
27.0
26.0
27.0
26.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27 | JULY 18.0 17.5 16.0 16.5 16.5 16.5 17.5 16.0 17.0 18.0 19.0 19.0 17.0 18.5 18.5 19.5 19.5 19.5 19.5 19.6 | 21.5
20.5
20.0
20.0
20.0
20.5
20.5
20.5
21.0
21.0
22.0
21.5
22.0
21.5
22.0
23.0
23.0
23.5 |
25.0
24.5
23.0
24.0
23.0
22.5
23.5
21.0
22.0
24.0
22.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5
23.5 | AUGUST 17.5 18.5 20.0 17.5 17.5 16.5 16.5 16.5 16.0 17.0 17.5 18.0 18.0 15.0 14.5 16.0 17.5 16.5 16.0 17.5 | 21.5
22.0
21.0
20.5
20.0
19.5
20.0
19.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20 | 21.0
20.5
20.5
19.5
18.5
17.5
20.0
18.5
15.5
14.5
15.5
14.5
15.5
12.0
14.0
12.0
12.0
13.0
15.0
15.5 | SEPTEMBE 14.5 14.0 14.0 15.5 15.5 13.5 10.5 10.0 11.0 9.0 9.5 10.5 11.0 8.5 7.5 8.0 9.0 9.0 9.5 10.0 10.0 | R 18.0 17.5 17.5 17.0 17.5 16.5 17.0 16.0 13.5 13.5 13.0 12.5 12.5 13.0 10.5 12.0 10.5 12.0 10.5 12.0 10.5 12.0 | #### RUBY RIVER BASIN #### 06019500 RUBY RIVER ABOVE RESERVOIR, NEAR ALDER, MT LOCATION.--Lat 45°11'33", long 112°08'30" (NAD 27), in NW¹/₄SE¹/₄SW¹/₄ sec.30, T.7 S., R.4 W., Madison County, Hydrologic Unit 10020003, on right bank at county road bridge, 0.7 mi downstream from Mormon Creek, 4.2 mi upstream from Ruby Dam, 9.3 mi south of Alder, and at river mile 52.1. DRAINAGE AREA.--534 mi². PERIOD OF RECORD.--May 1938 to current year. Monthly discharge only for May 1938, published in WSP 1309. REVISED RECORDS.--WSP 1309: 1938(M). WSP 1559: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 5,400 ft (NGVD 29). Prior to Oct. 1, 1938, nonrecording gage at bridge 2.0 mi upstram at different elevation. Oct. 1, 1938, to Aug. 5, 1955, water-stage recorder at site 2.2 mi upstream at different elevation. Aug. 6, 1955 to Sept. 30, 1997, waterstage recorder 2.3 mi upstream at different elevation. REMARKS.--Records good except those for estimated daily discharges, which are poor. Diversion for irrigation of about 3,000 acres upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. | the year | • | | | | | | | | | | | | |--|---------------------------------------|---|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|--|------------------------------------|--|--|------------------------------------| | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
DAILY MEAN VALUES | | | | | | | | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4 | 110
109
107
108 | e80
e85
e88
91 | 96
98
97
98 | e90
e92
e95
e95 | 99
97
90
e85 | e85
e88
e92
e90 | 113
121
115
104 | 167
175
166
187 | 901
689
525
445 | 148
148
146
141 | 79
78
85
114 | 94
92
90
91 | | 5 | 108 | 92 | 96 | e92 | e85 | e90 | 104 | 199 | 399 | 138 | 110 | 90 | | 6
7
8
9
10 | 106
103
102
100
98 | 93
96
97
97
97 | 95
89
89
90
88 | e90
e90
e88
e85
e80 | e87
e90
93
95
94 | e95
94
96
96
100 | 109
101
101
102
114 | 196
181
175
179
177 | 369
334
309
314
323 | 142
141
135
132
132 | 99
93
91
95
95 | 91
96
96
99 | | 11
12
13
14 | 97
98
96
98 | 96
96
97
96 | 88
89
91
93 | e85
89
84
86 | 94
92
95
99 | 123
155
187
173 | 128
140
154
167 | 173
180
193
203 | 293
264
249
249 | 122
127
125
119 | 95
87
85
85 | 102
102
100
101 | | 15
16 | 98
97 | 96
95 | 95 | 89
89 | 98
97 | 134 | 178
154 | 239 | 240 | 115
113 | 91
102 | 100 | | 17
18
19
20 | 97
96
95
94 | 96
95
96
97 | e85
e80
e82
e85 | e85
e80
86
89 | 95
96
95
95 | 115
114
106
103 | 141
149
144
143 | 295
302
264
232 | 219
218
216
207 | 111
104
100
99 | 101
96
93
93 | 106
114
109
103 | | 21
22
23
24 | 95
97
95
92 | 97
99
104
97 | e88
e90
e85
e80 | 90
89
91
90 | 98
98
97
e90 | 107
105
107
101 | 141
148
167
185 | 220
225
281
406 | 262
230
208
193 | 93
90
89
92 | 92
93
90
86 | 92
92
93
95 | | 25
26 | 91
90 | 88
91 | e75
e80 | 91
92 | e70
e80 | 102
106 | 196
219 | 592
803 | 192
182 | 98
111 | 87
89 | 95
96 | | 27
28
29
30
31 | 89
96
96
84
e82 | 95
99
99
97
 | e90
e95
e92
e90
e92 | 95
94
90
93
94 | e85
e85

 | 100
100
98
102
105 | 186
182
166
161 | 920
905
1010
1080
1110 | 176
171
165
159 | 110
103
101
96
82 | 96
102
102
103
98 | 96
98
95
88 | | TOTAL
MEAN
MAX | 3024
97.5
110 | 2842
94.7
104 | 2774
89.5
98 | 2768
89.3
95 | 2574
91.9
99 | 3402
110
187 | 4333
144
219 | 11719
378
1110 | 8932
298
901 | 3603
116
148 | 2905
93.7
114 | 2915
97.2
114 | | MIN
AC-FT | 82
6000 | 80
5640 | 75
5500 | 80
5490 | 70
5110 | 85
6750 | 101
8590 | 166
23240 | 159
17720 | 82
7150 | 78
5760 | 88
5780 | | | | | | | | | , BY WATER Y | | | 104 | 101 | 115 | | MEAN
MAX
(WY)
MIN
(WY) | 122
185
1984
83.4
1940 | 122
177
1984
87.8
1940 | 111
170
1948
80.3
1940 | 103
158
1948
69.8
1943 | 102
135
1971
79.2
1942 | 110
181
1960
84.3
1945 | 165
288
1962
94.6
1945 | 418
1010
1984
187
2002 | 471
1117
1984
136
1987 | 194
482
1975
74.8
1961 | 121
235
1975
59.3
1940 | 115
171
1984
73.3
1988 | | SUMMARY | STATIST | ICS | FOR | 2002 CALE | NDAR YEAR | I | FOR 2003 WAS | TER YEAR | | WATER YEARS | 1938 - | 2003 | | LOWEST | MEAN
'ANNUAL I
ANNUAL M | EAN | | 44605
122 | _ | | 51791
142 | | | 180
336
119 | | 1984
1961 | | LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT | I PEAK FLO
I PEAK ST
CANEOUS LO | AN
Y MINIMUM
OW
AGE
OW FLOW | | 784
70
74 | Jun 2
Aug 2
Aug 15 | | 1110
70
83
1260
5.55 | May 31
Feb 25
Dec 20
May 31
May 31 | | 2940
35
38
3810
a6.24
b34 | May 16
Jan 23
Aug 14
May 16
May 16
Aug 14 | 1962
1992
1984
1984 | | 10 PERC | RUNOFF (| EDS
EDS | | 88470
201
96 | | | 102700
219
98 | | | 130300
352
119 | | | 90 PERCENT EXCEEDS a--Site and datum then in use. b--Gage height, 1.99 ft, site and datum then in use. e--Estimated. #### RUBY RIVER BASIN #### 06020600 RUBY RIVER BELOW RESERVOIR, NEAR ALDER, MT LOCATION.--Lat 45°14'32", long 112°06'36" (NAD 27), in SE¹/₄SE¹/₄NE¹/₄ sec.8, T.7 S., R.4 W., Madison County, Hydrologic Unit 10020003, on right bank 0.2 mi downstream from Ruby Dam, 5.7 mi south of Alder,
and at river mile 47.8. DRAINAGE AREA.--596 mi². PERIOD OF RECORD.--December 1962 to current year. REVISED RECORDS .-- 1985 (M). GAGE.--Water-stage recorder. Elevation of gage is 5,286.63 ft (NGVD 29) (levels by U.S. Army Corps of Engineers). REMARKS.--Records good except those for December to February, which are fair. Flow regulated by Ruby River Reservoir (station number 06020500). Diversions for irrigation of about 3,500 acres upstream from station. U. S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | | |--|--|-------------------------------------|--|---|--------------------------------------|-------------------------------------|---|--|-------------------------------------|--|--|------------------------------------| | | | | | | DAIL | Y MEAN | VALUES | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 65
56
56
55
47 | 34
31
28
28
28 | 29
29
26
23
23 | e23
e23
e23
e23
e23 | 22
22
22
22
22 | 23
24
24
24
24 | 28
28
28
28
28 | 140
156
162
169
182 | 978
805
634
503
396 | 266
287
321
333
333 | 356
353
351
348
334 | 300
297
294
290
286 | | 6
7
8
9
10 | 45
45
45
42
37 | 28
28
28
28
28 | 23
23
24
24
24 | e23
e23
e23
e23
e23 | 22
22
22
22
22 | 24
25
25
25
25 | 29
29
29
29
29 | 189
184
174
170
171 | 376
347
316
468
443 | 333
332
366
364
362 | 324
323
320
320
318 | 281
275
271
266
247 | | 11
12
13
14
15 | 37
37
37
38
38 | 28
28
28
29
29 | 24
23
23
23
23 | e23
e23
e23
e23
e23 | 22
22
22
22
22 | 25
27
26
26
26 | 29
29
29
29
30 | 171
174
178
187
204 | 437
442
438
437
436 | 361
359
358
358
358 | 314
301
299
272
256 | 134
127
128
128
129 | | 16
17
18
19
20 | 38
38
38
37
37 | 29
29
29
29
29 | e23
e23
e23
e23
e23 | e23
e23
e23
e23
23 | 23
23
23
23
23 | 26
26
26
27
27 | 30
30
30
30
29 | 237
271
286
287
261 | 435
434
432
432
431 | 356
355
354
352
351 | 262
286
284
281
304 | 117
107
103
93
94 | | 21
22
23
24
25 | 37
34
34
34
34 | 29
29
29
29
29 | e23
e23
e23
e23
e23 | 23
22
22
22
22 | 23
23
23
23
23 | 27
27
27
27
27 | 29
37
42
41
42 | 239
230
484
508
528 | 410
395
344
339
337 | 350
385
382
381
378 | 325
326
323
321
319 | 95
95
96
96
87 | | 26
27
28
29
30
31 | 34
34
34
34
34 | 29
29
29
29
29 | e23
e23
e23
e23
e23
e23 | 22
22
22
22
22
22
22 | 23
23
23
 | 27
27
27
27
28
28 | 43
44
52
88
119 | 634
788
778
831
952
1030 | 322
307
307
284
241 | 375
373
370
368
361
358 | 316
313
309
307
304
302 | 69
63
63
63
 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1245
40.2
65
34
2470 | 866
28.9
34
28
1720 | 732
23.6
29
23
1450 | 703
22.7
23
22
1390 | 629
22.5
23
22
1250 | 804
25.9
28
23
1590 | 1117
37.2
119
28
2220
BY WATER | 10955
353
1030
140
21730 | 12906
430
978
241
25600 | 10940
353
385
266
21700 | 9671
312
356
256
19180 | 4757
159
300
63
9440 | | MEAN
MAX
(WY)
MIN
(WY) | 121
244
1965
38.0
1986 | 73.1
222
1985
28.9
2003 | 54.7
142
1984
23.6
2003 | 50.6
139
1984
20.9
1989 | 45.6
92.4
1971
21.4
1991 | 56.8
174
1998
19.3
1991 | 90.2
192
1965
30.5
1991 | 419
1035
1984
189
1963 | 590
1209
1984
281
1987 | 352
559
1975
197
1992 | 354
473
1970
222
1985 | 249
399
1975
59.4
1994 | | SUMMARY | SUMMARY STATISTICS FOR 2002 CALENDAR YEA | | | | | | OR 2003 WA | TER YEAR | | WATER YEAR | RS 1963 - | 2003 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 46199
127
455
23
23
91640
323
34
28 | May 22
Dec 4
Dec 12 | | 55325
152
1030
22
22
1100
5.46
109700
369
37
23 | May 31
Jan 22
Jan 22
May 31
May 31 | | 206
352
128
2500
15
16
3010
a8.52
b1.4
149600
450
110 | May 17
Feb 17
Jan 3
May 16
2 May 16
Dec 5 | 1995
1989
1984
1984 | a--From floodmark. b--Dam closure; result of discharge measurement. e--Estimated. #### 06024450 BIG HOLE RIVER BELOW BIG LAKE CREEK, AT WISDOM, MT $LOCATION.--Lat\ 45^{\circ}37'07'', long\ 113^{\circ}27'25''\ (NAD\ 27), in\ SW^{1}/_{4}SW^{1}/_{4}NE^{1}/_{4}\ sec.\ 33, T.2\ S., R.15\ W., Beaverhead\ County,\ Hydrologic\ Unit\ 10020004, on\ downstream\ side\ of\ State\ Highway\ 43\ bridge,\ 0.3\ mi\ west\ of\ Wisdom,\ 0.6\ mi\ downstream\ from\ Big\ Lake\ Creek,\ and\ at\ river\ mile\ 116.0.$ DRAINAGE AREA.--575 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May 1988 to current year (seasonal records only). REVISED RECORDS .-- WDR-MT-95-1: 1991 (M). GAGE.--Water-stage recorder. Elevation of gage is 6,040 ft (NGVD 29). REMARKS.--Seasonal water-discharge records good. Diversions for irrigation of about 66,900 acres upstream from station. U.S. Geological Survey satellite telemeter at station. | DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003
DAILY MEAN VALUES | | | | | | | | | | | | | |---|-----------------------------|----------|---------|-------------------------------------|--|--|------------------------------------|-------------------------------------|--------------------------------------|--|-----|-----| | DAY J | AN F | EB. | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | | 1
2
3
4
5 | | | | 470
461
324
235
201 | 439
453
446
525
454 | 1680
1470
1190
900
653 | 22
16
14
14
13 | 19
19
19
21
22 | 11
10
9.6
9.4
9.4 | 18
18
19
19 | | | | 6
7
8
9
10 | | | | 189
154
161
245
437 | 351
301
272
252
235 | 501
437
397
418
441 | 13
20
25
28
28 | 22
21
18
16
14 | 9.5
10
11
11
12 | 20
20
21
21
21 | | | | 11
12
13
14
15 | | | | 598
725
850
717
676 | 221
262
281
253
242 | 443
425
369
333
299 | 40
39
37
38
30 | 12
11
11
9.9
9.7 | 13
13
14
13
13 | 22
25
26
27
27 | | | | 16
17
18
19
20 | | | | 455
425
412
345
369 | 253
257
252
264
212 | 274
230
187
206
348 | 26
27
30
32
30 | 9.4
11
12
12
11 | 14
14
14
16
17 | 28
28
28
27
26 | | | | 21
22
23
24
25 | | | | 412
440
491
554
606 | 183
160
139
157
269 | 487
441
417
280
183 | 30
28
24
23
26 | 10
12
14
16
14 | 19
19
18
18 | 26
26
26
25
24 | | | | 26
27
28
29
30
31 | | | | 632
454
387
349
426 | 458
613
723
835
1010
1450 | 121
93
65
47
36 | 32
39
33
28
24
22 | 13
13
13
13
12
11 | 18
17
17
17
18 | 25
27
28
e25
e20
e15 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | 13200
440
850
154
26180 | 12222
394
1450
139
24240 | 13371
446
1680
36
26520 | 831
26.8
40
13
1650 | 441.0
14.2
22
9.4
875 | 422.9
14.1
19
9.4
839 | 727
23.5
28
15
1440 | | | | STATISTICS | OF MONTHI | Y MEAN I | ATA FOR | SEASONS | 3 1988 - | 2003 | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | | | 404
614
1996
259
2001 | 491
1476
1997
71.2
1992 | 574
1797
1997
68.9
1994 | 216
739
1995
21.4
1988 | 63.0
215
1997
1.11
1988 | 37.7
95.4
1997
2.42
1988 | 65.5
139
1998
23.5
2004 | | | | SUMMARY STA | TISTICS | | | FOR 20 | 03 SEASC | ON | | SE | ASONS 198 | 8 - 2003 | | | | HIGHEST DAIL LOWEST DAIL MAXIMUM PEA MAXIMUM PEA INSTANTANEO | Y MEAN
K
FLOW
K STAGE | .WO: | | 1680
9.4
1780
5.3
a8.5 | Au
Ju
30 Ju | n 01
ng 16
n 01
n 01
ng 19 | | 3830
b0.
4200
6.
b0. | 00 Aug
Jun
37 Jun | 7 1991
28 1988
6 1995
6 1995
28 1988 | | | a--Gage height, 2.03 ft. b--No flow many days in August and September 1988. e--Estimated. ## 06024450 BIG HOLE RIVER BELOW BIG LAKE CREEK, AT WISDOM, MT--Continued WATER-QUALITY RECORDS PERIOD OF RECORD .-- Water years 1988 to current year. #### PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: May 1988 to current year (seasonal records only). INSTRUMENTATION.--Temperature recorder since Apr. 27, 1988. REMARKS.--Daily water temperatures record good except when flows were very low and the higher recorded temperatures were not representative of those of a well-mixed cross section; maximum daily values for Aug. 14-16 and Sept 2-6 were deleted due to the unreliable data. Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office. #### EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE (seasonal records): Maximum, 26.5°C, July 12, 2002, minimum, 0.0°C many days during winter period. #### EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: During period of seasonal operation, maximum, 25.5°C, July 12, 18-21; minimum, 0.0°C, several days in April and October #### WATER TEMPERATURE, DEGREES CELSIUS, APRIL 2003 TO OCTOBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|------------------------------------|---------------------------------|---------------------------------|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--| | | | APRIL | | | MAY | | | JUNE | | | JULY | | | 1
2
3
4
5 | 4.0
2.5
3.5
4.5
5.5 | 0.5
0.5
0.0
0.0 | 2.0
1.0
1.5
2.0
2.5 | 7.5
9.5
7.0
8.0
9.0 | 5.5
4.0
5.5
4.5
3.5 | 6.5
6.5
6.0
6.0 | 19.0
17.0
17.0
17.5 | 12.0
12.5
10.0
10.5
11.0 | 15.5
14.5
13.5
14.0
14.0 | 23.0
23.0
22.5
22.5
22.5 | 14.5
13.5
13.0
13.5
13.0 | 19.0
18.0
17.5
18.0
17.5 | | 6
7
8
9
10 | 5.5
7.5
10.0
10.5
8.5 | 0.5
0.0
1.5
3.0 | 3.0
3.5
5.5
6.5
5.5 | 9.5
12.0
11.5
8.0
10.0 | 4.0
4.0
5.0
4.5
4.0 | 6.5
8.0
8.0
6.0
6.5 | 17.5
18.0
18.0
20.0
20.0 | 12.0
11.0
12.0
12.5
14.5 | 14.5
14.5
15.0
16.0
17.0 | 23.5
24.5
21.0
23.5
24.5 | 13.5
14.0
15.0
13.5
14.0 | 18.0
19.0
18.0
18.5
19.5 | | 11
12
13
14
15 | 7.5
7.5
6.0
6.0
4.5 | 1.5
1.5
2.5
2.0
2.5 | 5.0
5.0
4.5
4.0
3.5 | 9.5
8.0
14.0
15.0
14.5 | 5.0
5.0
5.0
7.0
8.5 | 7.5
6.5
8.5
11.0
11.5 | 18.0
19.5
17.5
18.0
18.0 | 13.0
12.5
14.5
12.5
13.0 | 15.5
16.0
16.0
15.5
16.0 | 25.0
25.5
23.0
24.0
24.5 | 16.0
16.0
16.0
14.5
15.5 | 20.5
21.0
20.0
19.0
19.5 | | 16
17
18
19
20 | 6.0
8.0
6.0
10.0
11.5 | 1.0
3.0
3.5
1.5
4.0 | 3.5
5.0
4.5
5.5
7.5 | 14.0
13.0
9.0
12.5
13.5 | 7.0
6.5
5.0
3.0
5.5 | 10.5
9.5
6.5
7.5
9.5 | 21.0
22.0
22.5
20.0
17.0 | 14.0
15.0
15.5
15.5 | 17.5
18.5
18.5
17.5
15.0 | 23.5
24.0
25.5
25.5
25.5 | 15.0
16.0
15.5
16.5
17.0 | 19.5
20.0
20.5
20.5
21.0 | | 21
22
23
24
25 | 10.5
11.0
8.5
11.0
8.5 | 5.0
5.5
6.5
5.0
4.5 | 7.5
8.0
7.5
8.0
6.5 | 11.5
16.0
19.5
21.0
18.5 | 8.5
7.5
10.0
11.5
13.0 | 10.0
11.5
14.5
16.0
15.5 | 15.0
13.0
15.0
14.0
16.5 | 11.5
9.5
8.5
10.0
10.0 | 13.5
11.5
12.0
12.0
13.0 | 25.5
24.5
23.0
22.5
24.0 | 16.0
16.0
16.0
16.5
17.5 | 20.5
20.0
19.5
19.5
20.0 | | 26
27
28
29
30
31 | 6.0
9.5
8.0
6.0
9.5 | 2.5
1.0
3.5
3.5
2.5 | 4.0
5.0
5.5
5.0
5.5 | 16.0
19.0
20.5
21.0
18.5
18.0 | 11.5
11.0
13.0
14.5
15.0
12.0 | 14.0
15.0
16.5
18.0
16.5 | 19.5
21.5
22.0
23.0
24.5 | 10.5
12.5
13.5
14.0
14.5 | 15.0
17.0
17.5
18.5
19.0 | 22.5
24.5
24.0
24.0
24.0
24.5 | 17.0
15.0
15.5
15.0
14.5 | 19.5
19.5
19.5
19.5
19.0
19.5 | | MONTH | 11.5 | 0.0 | 5.0 | 21.0 | 3.0 | 10.0 | 24.5 | 8.5 | 15.5 | 25.5 | 13.0 | 19.5 | # 06024450 BIG HOLE RIVER BELOW BIG LAKE CREEK, AT WISDOM, MT--Continued WATER TEMPERATURE, DEGREES CELSIUS, APRIL 2003 TO OCTOBER 2003--Continued | DAY | MAX | MIN | MEAN | MAX | MIN | MEAN | MAX | MIN | MEAN | |----------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|---------------------------------|--------------------------------------| | | | AUGUS | AUGUST | | SEPTEMBE | ER | | OCTOBER | | | 1
2
3
4
5 | 24.5
23.0
22.0
24.0
22.0 | 15.5
17.0
16.5 | 19.5
19.0
19.5
19.5
18.0 | 20.5 | 12.0
12.0
12.0
12.0
14.0 | 16.5
16.5
16.5
16.0
16.5 | 15.5
14.5
14.5
14.5
14.5 | 8.0
6.5
6.5 | 11.5
11.0
10.0
10.5
10.5 | | 6
7
8
9
10 | 22.5
22.5
22.0
23.5
24.5 | | 18.0
18.0
18.0
18.5
19.5 | 19.5
17.0
16.0
14.0 | 12.5
12.0
12.5
9.5
11.0 | 15.5
15.5
14.5
13.0
12.5 | 14.5
11.5
13.0
12.5
9.0 | 8.5
8.0
8.5
7.5
5.5 | 11.0
10.0
10.5
10.0
7.0 | | 11
12
13
14
15 | 22.5
21.5
22.5
 | 14.0
15.0
14.0
14.5
16.0 | 18.5
18.0
18.5
19.0
19.5 | 15.0
13.5
16.0
16.0
12.5 | 10.5
9.5
8.0
7.0
9.0 | 12.5
11.5
11.5
11.5
11.5 | 6.5
8.0
7.5
7.0
6.0 | 2.0
4.5
4.5
3.0
3.0 | 4.5
6.0
5.5
4.5
5.0 | | 16
17
18
19
20 | 20.0
22.5
23.5
24.0 | | 19.0
17.0
17.5
18.5
19.5 | 12.5
12.0
12.0
14.0
15.5 | 9.0
7.0
4.5
6.0
7.5 | 10.5
9.0
8.0
9.5
11.0 | 6.5
11.5
11.5
11.5
11.5 | 4.5 | 4.5
7.5
8.0
8.5
8.5 | | 21
22
23
24
25 | 20.5
20.5
21.0
22.0
23.0 | 14.0
16.0
14.0
13.0
13.5 | 17.5
18.0
17.5
17.5 | 14.5
15.5
15.0
16.0
16.0 | 7.0
7.0
7.5
7.5
8.0 | 11.0
11.0
11.0
11.5 | 13.0
10.0
8.5
6.0 | 6.5
5.5
5.0
1.5
0.0 | 9.5
7.5
6.0
4.0
3.0 | | 26
27
28
29
30
31 | 20.5
20.5
21.5
21.0
21.5
21.5 | 13.5
15.0
13.0
12.0
12.0 | 17.0
17.5
17.0
16.5
16.5 | 16.5
16.5
16.5
15.5
15.0 | 8.5
8.0
8.0
8.0
6.5 | 12.0
12.0
12.0
11.5 | 7.5
7.5
9.0
8.0
0.5
0.5 | 1.0
4.0
6.0
0.5
0.0 | 4.0
6.0
7.0
5.0
0.0 | | MONTH | | 12.0 | 18.0 | | 4.5 | 12.5 | 15.5 | 0.0 | 7.0 | #### 06024540 BIG HOLE RIVER BELOW MUDD CREEK, NEAR WISDOM, MT $LOCATION.--Lat~45^{\circ}48'27'', long~113^{\circ}18'45''~(NAD~27), in~SE^{1}/_{4}SW^{1}/_{4}NW^{1}/_{4}~sec.~26, T.1N., R.~14~W., Beaverhead~County, Hydrologic~Unit~10020004, on right bank at bridge on Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom, 17.3 mi west of Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom, 17.3 mi west of Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom, 17.3 mi west of Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom, 17.3 mi west of Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom, 17.3 mi west of Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom, 17.3 mi west of Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom, 17.3 mi west of Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom, 17.3 mi west of Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom, 17.3 mi west of Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom, 17.3 mi west of Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom, 17.3 mi west of Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom~All Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom~All Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom~All Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom~All Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom~All Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom~All Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom~All Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom~All Montana Highway~43, 0.5 mi downstream from Mudd~Creek$ Wise River, and at river mile 91.6. DRAINAGE AREA.--1,267 mi². PERIOD OF RECORD.--October 1997 to current year (seasonal records only). GAGE.--Water-stage recorder. Elevation of gage
is 5,880 ft (NGVD 29). REMARKS.--Seasonal records good except those from July to September, which are fair, and those for estimated daily discharges, which are poor. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductances were made during the year. ## DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--|---|------------------------------|----------|---------------------------------------|--|---------------------------------------|---------------------------------------|------------------------------------|---------------------------------------|--|-----|-----| | 1
2
3
4
5 | | | | 1470
1260
886
685
600 | 1170
1200
1180
1310
1310 | 4810
4650
3980
3240
2610 | 285
241
215
200
187 | 88
84
85
88 | 54
52
51
51
50 | 107
109
106
105
104 | | | | 6
7
8
9
10 | | | | 541
473
469
624
947 | 1080
934
857
809
778 | 2150
1820
1630
1570
1620 | 176
165
163
166
168 | 110
97
93
85
79 | 51
53
59
60
65 | 105
104
104
103
101 | | | | 11
12
13
14
15 | | | | 1220
1500
1720
1610
1480 | 739
793
891
897
937 | 1620
1480
1310
1240
1140 | 164
166
158
156
154 | 73
69
68
66
64 | 66
70
71
74
76 | 101
106
106
108
111 | | | | 16
17
18
19
20 | | | | 1110
933
921
859
849 | 1060
1240
1270
1250
1080 | 1050
954
831
762
1000 | 149
139
127
124
122 | 65
64
64
66 | 77
79
81
91
102 | 117
117
115
113
109 | | | | 21
22
23
24
25 | | | | 908
1010
1190
1400
1520 | 979
963
966
1160
1640 | 1330
1280
1210
1020
827 | 117
111
102
100
105 | 61
59
92
77
70 | 107
101
101
99
100 | 106
105
105
102
99 | | | | 26
27
28
29
30
31 | | | | 1660
1410
1160
1050
1100 | 2360
2910
3170
3450
3850
4410 | 646
527
444
374
324 | 117
132
133
118
104
96 | 65
64
64
61
58
55 | 99
97
100
99
102 | 98
102
107
e100
e80
e60 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | 32565
1086
1720
469
64590 | 46643
1505
4410
739
92520 | 47449
1582
4810
324
94120 | 4660
150
285
96
9240 | 2285
73.7
110
55
4530 | 2338
77.9
107
50
4640 | 3215
104
117
60
6380 | | | | STATIS | TICS OF MO | NTHLY MEA | N DATA F | OR SEASON | S 1997 - | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | | | 843
1086
2003
521
2001 | 1299
2306
1998
709
2001 | 1466
2272
1999
506
2000 | 352
961
1998
113
2000 | 124
244
1998
48.5
2000 | 104
151
1998
75.6
2000 | 159
258
1998
104
2004 | | | | | Y STATISTI | CS | | FOR 2 | 003 SEASO | N | | SEASO | NS 1997 | - 2003 | | | | HIGHES
LOWEST
MAXIMU
MAXIMU
INSTAN | T DAILY ME DAILY MEA M PEAK FLO M PEAK STA TANEOUS LO | AN
N
W
GE
W FLOW | | 4810
50
4900
5.
a43 | Jun
Jun
97 Jun
Sep | 1
1
1
5 | | 4810
38
4900
5.9
b36 | Jun
Aug 2
Jun
7 Jun
Aug 2 | 1 2003
8 2000
1 2003
1 2003
7 2000 | | | a--Gage height, 2.22 ft. b--Gage height, 2.31 ft. #### 06025500 BIG HOLE RIVER NEAR MELROSE, MT $LOCATION.--Lat\ 45^{\circ}31'36'', long\ 112^{\circ}42'03''\ (NAD\ 27), in\ SE^{1}/_{4}SE^{1}/_{4}SW^{1}/_{4}\ sec. 34,\ T.3\ S.,\ R.9\ W.,\ Madison\ County,\ Hydrologic\ Unit\ 10020004,\ on\ Madison\ County,\ Madiso$ left bank 50 ft downstream from bridge, on frontage road east of Interstate 15, 0.1 mi downstream from Rock Creek, 7 mi south of Melrose, and at river mile 31.1. DRAINAGE AREA.--2,476 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1923 to current year. Monthly discharge only for some periods, published in WSP 1309. GAGE.--Water-stage recorder. Elevation of gage is 5,032.87 ft (NGVD 29). Prior to June 14, 1927, water-stage recorder, and July 17, 1927, to Sept. 30, 1931, nonrecording gage, at site 1.7 mi upstream at different elevation. REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. Diversions for irrigation of about 136,000 acres upstream from station. Bureau of Reclamation satellite telemeter at station. | upstrea | m irom sta | ttion. Burea | au of Recia | amation sat | ellite telemet | er at stati | on. | | | | | | | |---|--|--|--|---|--------------------------------------|--|--|---|--|--|---|------------------------------------|--| | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP | | | | | | | | | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 327
332
334
343
340 | e220
e260
e250
e270
e290 | 394
401
388
393
391 | e310
e320
e330
e310
e330 | 463
477
475
491
452 | e290
e300
e310
e300
e300 | 1490
1860
1460
1020
838 | 1810
1910
1820
1950
2050 | 9110
8430
7040
5740
4740 | 882
803
736
682
651 | 250
235
233
256
252 | 187
181
180
179
178 | | | 6
7
8
9 | 345
346
342
335
335 | e310
e330
358
367
386 | 378
332
265
245
250 | e310
e290
e270
e260
e250 | e400
e360
e360
e350
e350 | e310
e310
e310
312
315 | 772
698
639
693
1060 | 1840
1570
1420
1340
1260 | 4090
3550
3230
3220
3400 | 606
579
549
545
513 | 249
259
261
243
234 | 177
178
181
181
184 | | | 11
12
13
14
15 | 333
330
326
317
320 | 393
389
396
400
408 | 264
302
323
350
356 | e250
e260
e270
e270
e260 | e340
e340
e330
e330
e320 | 334
383
443
591
514 | 1460
1880
2270
2410
2160 | 1200
1200
1350
1440
1550 | 3490
3230
2930
2870
2710 | 470
443
424
408
370 | 230
225
212
203
189 | 184
188
191
194
195 | | | 16
17
18
19
20 | 327
330
329
330
324 | 399
403
386
401
397 | 348
367
306
273
e240 | e250
e250
e260
e270
e280 | e310
e320
e320
e320
e320 | 693
949
1090
995
892 | 1850
1470
1400
1310
1280 | 1770
1940
2040
1970
1820 | 2560
2420
2320
2180
2300 | 362
359
336
325
314 | 185
189
192
188
184 | 197
200
212
218
223 | | | 21
22
23
24
25 | 330
327
328
329
319 | 435
457
479
438
338 | e240
e260
e280
e270
e260 | e270
e260
e270
e280
e290 | e320
e320
e280
e220
e240 | 833
779
813
818
841 | 1410
1580
1920
2240
2460 | 1630
1560
1660
2150
2940 | 2660
2540
2320
2100
1860 | 303
300
299
281
294 | 184
184
203
232
222 | 229
234
237
239
239 | | | 26
27
28
29
30
31 | 304
298
325
347
217
194 | 292
358
402
422
409 | e270
e300
e330
e320
e290
e320 | e310
e330
e350
e340
e350
e370 | e260
e280
e290
 | 800
657
572
528
574
709 | 2480
2280
1930
1710
1670 | 4040
5100
5750
6630
8020
8990 | 1580
1340
1170
1070
975 | 333
322
320
304
289
272 | 205
205
209
207
197
190 | 236
233
225
226
223 | | | TOTAL
MEAN
MAX
MIN
AC-FT | 9963
321
347
194
19760 | 11043
368
479
220
21900 | 9706
313
401
240
19250 | 9020
291
370
250
17890 | 9638
344
491
220
19120 | 17865
576
1090
290
35440 | 47700
1590
2480
639
94610 | 81720
2636
8990
1200
162100 | 97175
3239
9110
975
192700 | 13674
441
882
272
27120 | 6707
216
261
184
13300 | 6129
204
239
177
12160 | | | STATIST | rics of M | ONTHLY ME | AN DATA I | FOR WATER | YEARS 1924 | - 2003 | , BY WATER | YEAR (WY |) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 492
1109
1947
184
1936 | 491
1037
1928
255
1938 | 391
763
1976
223
1933 | 347
716
1928
143
1937 | 361
800
1971
143
1937 | 475
958
1986
247
1937 | 1490
3515
1943
490
1975 | 3267
8294
1976
1108
1977 | 3936
8380
1965
814
1992 | 1297
4120
1975
254
1931 | 463
1457
1975
87.6
1988
 371
870
1965
114
1988 | | | SUMMARY | Z STATIST | ICS | FOR | 2002 CALI | ENDAR YEAR | 1 | FOR 2003 W | ATER YEAR | | WATER YEAR | RS 1924 - | 2003 | | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
INSTANT
ANNUAL
10 PERC | MEAN C ANNUAL ANNUAL ANNUAL M DAILY ME SEVEN-DA M PEAK FL M PEAK ST CANEOUS L RUNOFF (CENT EXCE | EAN EAN AN Y MINIMUM OW AGE OW FLOW AC-FT) EDS | | 263838
723
5240
194
214
523300
1910 | Jun 3
Oct 31
Aug 16 | | 320340
878
9110
177
179
9520
6.7
a154
635400
2170 | Jun 1
Sep 6
Sep 2
May 31
4 May 31
Oct 31 | | 1116
2024
486
13800
b49
55
c23000
d14.00
b49
808400
2990 | Jun 4
Aug 17
Aug 30
Jun 14
Jun 14
Aug 17 | 1931
1988
1927
1927 | | | 10 PERC | CENT EXCE | EDS
EDS | | | | | | | | | | | | 215 255 90 PERCENT EXCEEDS a--Gage height,0.97 ft, result of freezeup. b--Observed, gage height, 0.70 ft, site and datum then in use. c--When Wise River Reservoir dam failed; maximum discharge unaffected by dam failure, 14,300 ft³/s, June 10 1972. $d--From\ floodmark$, site and datum then in use. e--Estimated. #### BIG HOLE RIVER BASIN # 06025500 BIG HOLE RIVER NEAR MELROSE, MT--Continued WATER-QUALITY RECORDS #### PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: August 1956 to September 1957, August 1960 to September 1964, June 1977 to current year. SUSPENDED-SEDIMENT DISCHARGE: August 1956 to September 1957, August 1960 to September 1964. INSTRUMENTATION.--Temperature recorder since June 1977. REMARKS--Daily water temperature record good for the season. Unpublished records of instantaneous specific conductance and water temperature are available in files of the District office. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: Maximum, 24.0°C, June 25, 1988, July 12, and 19-22, 2003; minimum, 0.0°C on many days during winter most years. SEDIMENT CONCENTRATION (water years 1956-57, 1960-64): Maximum daily mean, 200 mg/L, June 29, 1961; minimum daily mean, 1 mg/L, on many days in 1960-64. SEDIMENT LOAD (water years 1956-57, 1960-64): Maximum daily, 4,300 tons, June 9, 1964; minimum daily, less than 0.5 ton on several days in 1961. #### EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: Maximum, 24.0°C, July 12, 19-22; minimum, 0.0°C many days October through March. # WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | | |----------------------------------|-------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--| | | OCTOBER | | | NO | VEMBER | | DE | CEMBER | | | JANUARY | | | | 1
2
3
4
5 | 8.0
8.5
7.5
10.0
9.5 | 6.0
4.5
6.0
6.5
7.0 | 7.0
6.5
6.5
8.0
8.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 1.0
1.5
1.5
2.0
2.0 | 0.0
0.0
1.0
1.0 | 0.5
1.0
1.0
1.5 | 0.0
0.0
0.0
0.0
0.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | | 6
7
8
9
10 | 11.0
11.0
11.0
11.0
9.5 | 7.5
7.5
7.5
7.0
6.5 | 9.0
9.0
9.5
9.0
8.0 | 0.0
0.5
2.0
2.5
2.5 | 0.0
0.0
0.0
0.5
1.0 | 0.0
0.0
1.0
1.5 | 1.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.5
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | | 11
12
13
14
15 | 8.0
7.5
7.5
8.0
8.0 | 6.0
3.5
3.5
4.0
4.5 | 7.0
5.5
5.5
6.0 | 2.5
2.0
3.0
2.5
2.5 | 1.0
0.5
1.5
1.0
0.5 | 2.0
1.5
2.5
1.5 | 0.0
0.0
0.0
1.0 | 0.0
0.0
0.0
0.0
0.5 | 0.0
0.0
0.0
0.5
1.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | | 16
17
18
19
20 | 8.0
8.0
8.0
7.5 | 4.5
4.0
4.5
4.0 | 6.5
6.0
6.0
5.5
6.0 | 2.0
2.5
2.0
2.5
5.0 | 0.0
1.0
1.0
1.0
2.0 | 1.0
1.5
1.5
1.5
3.5 | 0.5
1.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.5
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | | 21
22
23
24
25 | 8.0
7.0
4.5
5.0
4.0 | 5.0
4.5
3.0
2.0
1.0 | 6.5
5.5
4.0
3.5
3.0 | 4.5
4.0
3.5
1.0 | 2.5
2.0
1.0
0.0 | 3.5
3.0
2.5
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | | 26
27
28
29
30
31 | 4.0
3.5
4.0
3.5
0.0 | 0.5
0.5
2.5
0.0
0.0 | 2.5
2.0
3.5
1.0
0.0 | 0.0
0.0
0.5
1.5
1.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.5
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 1.0
1.5
0.5
2.0
3.0 | 0.0
0.5
0.0
0.0
0.5 | 0.5
1.0
0.5
0.0
1.0 | | | MONTH | 11.0 | 0.0 | 5.5 | 5.0 | 0.0 | 1.0 | 2.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | | # BIG HOLE RIVER BASIN # 06025500 BIG HOLE RIVER NEAR MELROSE, MT--Continued # WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | DAY | MAX | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | |--|--|--|--|--|--|--|--|--|--|--
---|--| | 1
2
3
4
5 | 2.5
2.0
0.5
0.5 | 1.0
0.0
0.0
0.0
0.0 | 2.0
1.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 6.0
2.5
3.5
4.5
5.0 | 2.5
1.0
0.5
1.0 | 4.0
2.0
2.0
2.5
3.0 | 8.5
8.5
8.0
8.0 | 7.0
6.0
7.0
6.5
6.5 | 8.0
7.5
7.0
7.0 | | 6
7
8
9
10 | 0.0
0.0
0.0
0.0
1.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.5 | 0.5
0.5
1.5
3.5
5.0 | 0.0
0.0
0.0
0.5
2.5 | 0.0
0.0
0.5
2.0
3.5 | 6.0
7.5
10.0
12.0
10.5 | 2.0
2.5
3.5
5.5
6.5 | 4.0
5.0
6.5
8.5 | 8.0
10.5
10.0
8.5
9.0 | 6.5
6.0
7.0
7.0
5.5 | 7.0
8.0
8.5
7.5
7.0 | | 11
12
13
14
15 | 1.0
1.0
0.0
2.5
3.0 | 0.0
0.0
0.0
0.0 | 0.5
0.5
0.0
1.0
2.0 | 6.5
5.5
8.0
6.0
5.5 | 3.0
3.5
3.0
3.5
2.5 | 4.5
4.5
5.5
4.5
4.0 | 9.0
9.5
8.5
7.5
6.0 | 6.5
6.5
7.0
5.5
4.5 | 7.5
8.0
7.5
6.5
5.5 | 10.0
10.0
12.0
14.0
14.5 | 6.0
6.5
7.0
9.0
11.0 | 8.0
8.0
9.5
11.0
12.0 | | 16
17
18
19
20 | 2.0
2.5
2.5
2.0
1.5 | 0.5
0.0
0.0
0.0 | 1.5
1.0
1.0
1.0 | 4.5
3.0
3.5
4.5
5.0 | 3.0
0.5
1.0
0.5
1.0 | 4.0
1.5
2.0
2.5
3.0 | 6.5
7.0
8.5
9.5
11.0 | 3.5
4.5
5.0
5.0 | 5.0
5.5
6.5
7.0
8.0 | 13.5
12.0
9.5
9.5
11.0 | 10.0
9.0
7.5
6.0
6.5 | 11.5
10.0
8.5
7.5
8.5 | | 21
22
23
24
25 | 3.0
3.0
1.0
0.0 | 0.5
1.0
0.0
0.0 | 1.5
2.0
0.0
0.0 | 4.0
5.0
5.5
4.0
3.5 | 2.0
2.0
3.0
1.0
0.5 | 3.0
3.5
4.0
2.5
2.0 | 11.0
11.5
10.0
10.0
8.5 | 7.0
8.5
7.5
7.5 | 9.0
9.5
9.0
8.5
8.0 | 11.0
13.0
16.0
16.0
14.5 | 9.5
9.0
11.0
13.0 | 10.0
11.0
13.5
14.5
14.0 | | 26
27
28
29
30
31 | 0.0
0.0
0.0
 | 0.0
0.0
0.0 | 0.0
0.0
0.0
 | 3.5
2.0
5.5
7.5
9.0
8.5 | 1.0
0.0
0.0
1.5
3.5
5.0 | 2.0
1.0
2.5
4.5
6.0
6.5 | 7.0
7.5
7.0
6.5
9.0 | 5.0
3.5
5.0
5.0
4.5 | 6.0
5.0
6.0
6.0
6.5 | 13.5
14.0
15.0
15.5
15.0 | 11.5
11.5
12.0
13.5
13.0
12.0 | 12.5
12.5
13.5
14.5
14.0
12.0 | | MONTH | 3.0 | 0.0 | 0.5 | 9.0 | 0.0 | 2.5 | 12.0 | 0.5 | 6.0 | 16.0 | 5.5 | 10.0 | | | | | | | | | | | | | | | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4
5 | 12.5
13.5
13.0
14.0
13.5 | JUNE 11.5 12.0 11.0 11.5 11.0 | 12.0
12.5
12.0
12.5
12.5 | 21.0
20.5
20.0
20.5
20.5 | JULY 16.0 15.5 14.5 14.5 14.5 | 18.0
18.0
17.0
17.5
17.5 | 23.0
22.5
21.5
22.5
20.5 | AUGUST
17.0
17.5
18.0
17.0
16.5 | 20.0
20.5
19.5
19.5
18.5 | 19.5
19.0
19.0
18.5
18.0 | SEPTEMBE
14.0
14.0
14.0
14.0
14.0 | 17.0
16.5
16.5
16.5
16.0 | | 1
2
3
4 | 13.5
13.0
14.0 | 11.5
12.0
11.0
11.5 | 12.5
12.0
12.5 | 20.5
20.0
20.5 | 16.0
15.5
14.5
14.5 | 18.0
17.0
17.5 | 23.0
22.5
21.5
22.5 | 17.0
17.5
18.0
17.0 | 20.5
19.5
19.5 | 19.0
19.0
18.5 | 14.0
14.0
14.0
14.0 | 17.0
16.5
16.5
16.5 | | 1
2
3
4
5
6
7
8
9 | 13.5
13.0
14.0
13.5
13.0
13.5
14.5
15.0 | 11.5
12.0
11.0
11.5
11.0
11.0
11.0 | 12.5
12.0
12.5
12.5
12.0
12.0
13.0
14.0 | 20.5
20.0
20.5
20.5
21.0
21.0
19.5
21.0 | 16.0
15.5
14.5
14.5
14.5
14.5
14.5
14.5 | 18.0
17.0
17.5
17.5
17.5
17.5
18.0
17.5
17.5 | 23.0
22.5
21.5
22.5
20.5
22.0
21.0
20.5
22.0 | 17.0
17.5
18.0
17.0
16.5
15.5
15.5
16.0 | 20.5
19.5
19.5
18.5
18.5
18.5
18.5
18.0
18.5 | 19.0
19.0
18.5
18.0
17.0
18.5
17.0
15.0 | 14.0
14.0
14.0
14.0
14.5
15.0
13.5
13.5 | 17.0
16.5
16.5
16.5
16.0
16.0
15.0 | | 1 2 3 4 5 5 6 6 7 8 9 10 11 12 13 14 | 13.5
13.0
14.0
13.5
13.0
13.5
14.5
15.0
15.0
15.0
15.0
14.5 | 11.5
12.0
11.0
11.5
11.0
11.0
11.5
13.0
13.0
12.5
12.0
12.5 | 12.5
12.0
12.5
12.5
12.0
12.0
14.0
14.0
14.0
13.5
13.5
13.5 | 20.5
20.0
20.5
20.5
21.0
21.0
21.0
22.0
23.0
24.0
22.5
23.0 | 16.0
15.5
14.5
14.5
14.5
14.5
14.5
15.5
14.5
17.0
16.0
17.0
16.5 | 18.0
17.0
17.5
17.5
17.5
18.0
17.5
18.5
19.5
20.0
20.0 | 23.0
22.5
21.5
22.5
20.5
22.0
21.0
20.5
22.0
22.5
20.5
20.5
20.5 | 17.0
17.5
18.0
17.0
16.5
15.5
15.5
16.0
16.0 | 20.5
19.5
19.5
18.5
18.5
18.5
18.0
18.5
19.5 | 19.0
19.0
18.5
18.0
17.0
15.0
14.0
14.5
14.5
14.5 | 14.0
14.0
14.0
14.0
14.5
15.0
13.5
13.5
11.0
11.5 | 17.0
16.5
16.5
16.5
16.0
16.0
15.0
13.0
12.5 | | 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | 13.5
13.0
14.0
13.5
13.5
14.5
15.0
15.0
15.0
15.0
14.5
15.5 | 11.5
12.0
11.0
11.5
11.0
11.5
13.0
13.0
12.5
13.0
12.5
13.0
12.5
13.0 | 12.5
12.0
12.5
12.5
12.0
13.0
14.0
14.0
13.5
14.0
15.0
15.0
16.0
16.0 | 20.5
20.0
20.5
20.5
21.0
21.0
21.0
22.0
23.0
22.5
23.0
22.5
22.0
22.5
22.0
22.5 | 16.0
15.5
14.5
14.5
14.5
14.5
15.5
14.5
15.0
16.0
17.0
16.5
16.5 | 18.0
17.0
17.5
17.5
17.5
18.0
17.5
18.5
19.5
20.0
20.0
19.5
19.5
19.5
20.0
20.0 | 23.0
22.5
21.5
22.5
20.5
22.0
21.0
20.5
22.0
22.5
20.5
21.5
22.0
21.5
22.0
21.5 | 17.0
17.5
18.0
17.0
16.5
15.5
15.5
16.0
16.0
16.5
16.0
17.5
17.5
14.5
14.5 | 20.5
19.5
19.5
18.5
18.5
18.5
18.5
19.5
18.5
19.5
19.5
19.0
17.0
17.0
17.5
18.5 | 19.0
19.0
19.0
18.5
18.0
17.0
15.0
15.0
14.0
14.5
14.5
13.5
11.5
11.5 | 14.0
14.0
14.0
14.0
14.5
15.0
13.5
11.0
11.5
11.0
9.5
9.5
10.5 | 17.0
16.5
16.5
16.5
16.0
16.0
15.0
13.0
12.5
12.5
12.5
12.0
12.0
10.0
9.5 | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | 13.5
13.0
14.0
13.5
14.5
15.0
15.0
15.0
15.0
16.0
17.0
18.0
17.0
18.0
18.0
18.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0 |
11.5
12.0
11.0
11.5
11.0
11.5
13.0
13.0
12.5
13.0
12.5
13.0
12.5
13.0
12.5
13.0
12.5
13.0 | 12.5
12.0
12.5
12.5
12.0
13.0
14.0
14.0
13.5
14.0
15.0
15.0
16.0
14.5
13.0
11.5
11.5 | 20.5
20.0
20.5
20.5
21.0
21.0
21.0
22.0
22.0
23.0
22.5
23.0
22.5
22.0
22.5
24.0
24.0
24.0
24.0
24.0 | 16.0
15.5
14.5
14.5
14.5
14.5
15.5
14.5
15.5
16.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17 | 18.0
17.0
17.5
17.5
17.5
18.0
17.5
18.5
19.5
20.0
20.0
19.5
19.5
20.0
20.5
21.0
20.5
21.0 | 23.0
22.5
21.5
22.5
20.5
22.0
21.0
20.5
22.0
21.5
22.0
21.5
21.5
22.0
21.5
22.0
21.5
22.0
21.5 | 17.0
17.5
18.0
17.0
16.5
15.5
15.5
16.0
16.0
17.5
16.0
17.5
14.5
15.5
14.5
17.0
16.0 | 20.5 19.5 19.5 18.5 18.5 18.0 18.5 19.5 18.0 19.5 19.0 17.5 18.5 19.5 17.5 18.0 18.5 | 19.0
19.0
19.0
18.5
18.0
17.0
18.5
17.0
15.0
14.0
14.5
14.5
14.5
13.5
11.5
11.0
12.0
14.0 | 14.0
14.0
14.0
14.0
14.5
15.0
13.5
11.0
11.5
11.0
9.5
9.5
10.5
10.5
9.0
8.0
8.0
8.5
9.5
9.5
9.5 | 17.0
16.5
16.5
16.5
16.0
16.0
15.0
13.0
12.5
12.5
12.5
12.0
12.5
12.0
11.0
11.5
11.5
11.5 | # BIG HOLE RIVER BASIN #### 06026210 BIG HOLE RIVER NEAR GLEN, MT LOCATION.--Lat 45°26′26", long 112°33′20" (NAD 27), in NW¹/₄SW¹/₄SE¹/₄ sec. 35, T.4 S, R.8 W, Madison County, Hydrologic Unit 10020004, on left bank 50 ft downstream from private suspension bridge, 0.1 mi downstream from Sandy Hollow, 7.0 mi southeast of Glen, and at river mile 17.2. DRAINAGE AREA.--2,655 mi². PERIOD OF RECORD.--October 1997 to current year (seasonal records only). GAGE.--Water-stage recorder. Elevation of gage is 4,850 ft (NGVD 29). REMARKS.—Seasonal records good. Figures of discharge for seasons 1998-99 are the sum of river flow, Fred Bryan Ditch on left bank, and Upper and Lower Raffety Ditches on right bank. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. # DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |------------|---|-----------|----------|------------|--------------|---------------|---------------------|----------------------------|------------|--|-----|-----| | 1 | | | | 1320 | 1780 | 10000 | 1020 | 292 | 230 | 244 | | | | 2 | | | | 1840 | 1880 | 9400 | 944 | 271 | 225 | 250 | | | | 3 | | | | 1520 | 1820 | 7890 | 879 | 258 | 218 | 246 | | | | 4 | | | | 1100 | 1900 | 6360 | 827 | 299 | 221 | 250 | | | | 5 | | | | 907 | 2020 | 5180 | 787 | 296 | 216 | 270 | | | | 6 | | | | 832 | 1850 | 4390 | 733 | 293 | 215 | 287 | | | | 7 | | | | 760 | 1590 | 3770 | 705 | 289 | 223 | 285 | | | | 8 | | | | 694 | 1440 | 3340 | 672 | 324 | 226 | 278 | | | | 9
10 | | | | 710
997 | 1360
1290 | 3280
3460 | 656
619 | 303
276 | 227
225 | 279
287 | | | | 10 | | | | | 1290 | 3400 | 019 | 2/6 | 225 | 287 | | | | 11 | | | | 1400 | 1230 | 3570 | 582 | 271 | 216 | 294 | | | | 12 | | | | 1780 | 1220 | 3350 | 542 | 277 | 191 | 299 | | | | 13 | | | | 2140 | 1330 | 3010 | 516 | 260 | 202 | 307 | | | | 14 | | | | 2360 | 1410 | 2910 | 498 | 243 | 209 | 313 | | | | 15 | | | | 2140 | 1480 | 2780 | 462 | 222 | 213 | 323 | | | | 16 | | | | 1860 | 1670 | 2620 | 439 | 209 | 217 | 339 | | | | 17 | | | | 1500 | 1850 | 2510 | 436 | 218 | 218 | 353 | | | | 18
19 | | | | 1410 | 1970 | 2410 | 417
406 | 225 | 241
249 | 359
357 | | | | 20 | | | | 1320 | 1940
1810 | 2280
2360 | 394 | 217
200 | 249 | 354 | | | | 20 | | | | 1200 | 1010 | 2300 | 394 | 200 | 231 | 354 | | | | 21 | | | | 1370 | 1620 | 2800 | 363 | 201 | 256 | 350 | | | | 23 | | | | 1810 | 1600 | 2460 | 320 | 223 | 270 | 341 | | | | 24 | | | | 2170 | 2000 | 2230 | 299 | 252 | 274 | 346 | | | | 25 | | | | 2380 | 2760 | 2000 | 323 | 265 | 276 | 341 | | | | 26 | | | | 2440 | 3980 | 1730 | 425 | 240 | 273 | 336 | | | | 27 | | | | 2290 | 5230 | 1500 | 386 | 239 | 268 | 348 | | | | 28 | | | | 1940 | 6130 | 1330 | 368 | 250 | 259 | 353 | | | | 29 | | | | 1720 | 7020 | 1230 | 337 | 250 | 249 | 376 | | | | 30 | | | | 1660 | 8430 | 1140 | 320 | 243 | 229 | 426 | | | | 31 | | | | | 9680 | | 307 | 236 | | 332 | | | | TOTAL | | | | 47170 | 82840 | | 16288 | 7853 | 7046 | 9867 | | | | MEAN | | | | 1572 | 2672 | 3465 | 525 | 253 | 235 | 318 | | | | MAX
MIN | | | | 2440 | 9680
1220 | 10000
1140 | 1020 | 324 | 276
191 | 426 | | | | AC-FT | | | | 93560 | 164300 | 206200 | 299
32310 | 253
324
200
15580 | 13980 | 244
19570 | | | | | | | | | | | 32310 | 13300 | 13700 | 19370 | | | | STATIS | STICS OF MO | NTHLY MEA | N DATA 1 | FOR SEASOI | NS 1997 - | | | | | | | | | MEAN | | | | 1276 | 2284 | 2967 | 905
2138 | 318 | 283 | 454 | | | | MAX | | | | 1572 | 3829 | 4432 | 2138 | 565 | 393 | 708 | | | | (WY) | | | | 2003 | 1998 | 1999 | 1998 | 1998 | 1998 | 1998 | | | | MIN | | | | 874 | 1360 | 1310 | 1998
399
2000 | 1998
149
2000 | 207 | 318 | | | | (WY) | | | | 2001 | 2002 | 2000 | 2000 | 2000 | 2001 | 2004 | | | | SUMMAR | RY STATISTI | CS | | FOR 2 | 2003 SEAS | | | 5 | SEASONS 1 | 1997 - 2003 | | | | HIGHES | ST DAILY ME
T DAILY MEA
JM PEAK FLO
JM PEAK STA
TTANEOUS LO | AN | | 10000 | Jun | 1 | | 10 | 0000 | Jun 1 2003
Aug 29 2000
May 31 2003
May 31 2003
Aug 28 2000 | | | | LOWEST | DAILY MEA | ΔN | | 191 | Sep | 12 | | | 122 | Aug 29 2000 | | | | JMIXAM | JM PEAK FLO | W | | 10500 | May | 31 | | 10 | 0500 | May 31 2003 | | | | MAXIMU | JM PEAK STA | GE | | 7 | .05 May | 31 | | | 7.05 | May 31 2003 | | | | INSTAN | TANEOUS LO | W FLOW | | a188 | Sep | 12 | | | 119 | Aug 28 2000 | | | a--Gage height, 1.96 ft. #### 06026500 JEFFERSON RIVER NEAR TWIN BRIDGES, MT LOCATION.--Lat 45°36'45", long 112°19'47" (NAD 27), in SE¹/₄SE¹/₄SW¹/₄ sec. 34, T.2 S., R.6 W., Madison County, Hydrologic Unit 10020005, on left bank 0.4 mi upstream from Hells Canyon Creek, 4.8 mi north of Twin Bridges, and at river mile 2,399.7. DRAINAGE AREA.--7,632 mi². PERIOD OF RECORD.--August 1940 to September 1943, October 1957 to September 1972, May 1994 to current year. GAGE.--Water-stage recorder. Elevation of gage is 4,560 ft (NGVD 29). August 1940 to September 1943, nonrecording gage at site 500 ft downstream at different elevation. October 1957 to June 3, 1972, water-stage recorder at site 250 ft downstream and June 4 to September 30, 1972, nonrecording gage 6.5 mi downstream at different elevations. REMARKS.--Records good except those for estimated daily discharges, which are poor. Some regulation by Clark Canyon, Lima and Ruby River Reservoirs. Diversion for irrigation of about 310,000 acres upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of specific conductance and water temperature were made during the year. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | Ditti | 71 11112711 | · VALUED | | | | | | |--|--
--|--|---|--|--
--|--|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 675
676
692
710
703 | 610
708
742
746
741 | 846
854
846
835
834 | 732
721
744
728
748 | 844
890
861
877
832 | e700
e750
e750
e700
e700 | 1400
2310
2190
1700
1390 | 2290
2500
2500
2550
2830 | 10500
10200
8830
7140
5730 | 1110
998
893
817
788 | 321
321
315
369
375 | 343
319
289
291
289 | | 6
7
8
9
10 | 690
689
699
708
709 | 745
776
796
801
798 | 822
782
728
713
702 | 718
708
699
671
610 | 804
749
807
763
798 | e750
e800
e700
e750
770 | 1170
1050
1010 | 2340
2130
1970 | 4760
4040
3460
3370
3510 | 754
718
696
680
647 | 374
363
364
387
387 | 302
310
310
336
351 | | 11
12
13
14
15 | 715
706
706
718
717 | 812
813
817
815
826 | 730
714
736
773
793 | 584
638
711
735
717 | 753
748
738
787
765 | 782
820
874
1060
1150 | 1690
2080
2510
2930
2780 | 1770
1720
1780
1870
1900 | 3670
3540
3180
3060
3000 | 600
572
559
530
506 | 372
381
370
337
319 | 367
367
368
374
378 | | 16
17
18
19
20 | 731
732
729
730
731 | 821
817
810
820
838 | 787
795
721
646
624 | 654
643
635
675
711 | 756
755
750
733
740 | 1150
1430
1560
1580
1440 | | | 2840
2710
2590
2480
2520 | 462
445
439
430
418 | 308
314
333
347
373 | 385
389
418
444
461 | | 21
22
23
24
25 | 739
742
742
751
748 | 849
883
925
914
812 | 706
700
714
696
571 | e680
e650
e600
e650
e700 | 745
753
e600
e500
e450 | 1310
1250
1230
1240
1260 | 1720
1860
2120
2590
2850 | 2030
1800
1700
1990
2780 | 3430
3450
3230
2900
2570 | 418
391
369
360
389 | 350
353
335
321
330 | 472
459
465
467
450 | | 26
27
28
29
30
31 | 739
712
725
775
658
550 | 735
813
840
876
861 | 553
668
777
758
714
715 | 739
788
796
757
772
798 | e500
e600
e650
 | 1220
1120
991
933
907
956 | 3070
2950
2540
2240
2170 | 3950
5350
6490
7300
8500
9760 | 2220
1870
1640
1470
1300 | 482
502
458
413
370
344 | 323
326
327
322
341
350 | 457
463
456
468
476 | | TOTAL
MEAN
MAX
MIN
AC-FT | 22047
711
775
550
43730 | 24160
805
925
610
47920 | 22853
737
854
553
45330 |
21712
700
798
584
43070 | 20548
734
890
450
40760 | 31633
1020
1580
700
62740 | 60700
2023
3070
1010
120400 | 95760
3089
9760
1700
189900 | 115210
3840
10500
1300
228500 | 17558
566
1110
344
34830 | 10708
345
387
308
21240 | 11724
391
476
289
23250 | | STATIST | ICS OF M | ONTHLY ME | AN DATA | FOR WATER | YEARS 1940 | - 2003 | , BY WATER | YEAR (WY | ?)* | | | | | MEAN
MAX
(WY)
MIN
(WY) | 1324
2052
1966
711
2003 | 1464
2025
1966
805
2003 | 1242
1864
1996
708
2002 | 1058
1424
1996
641
1995 | 1130
1690
1971
627
2002 | 1297
2092
1972
622
2002 | 2333
4634
1943
927
1961 | 3783
7025
1997
1503
2002 | 5657
9816
1997
1296
1994 | 1995
4477
1995
527
1966 | 831
1700
1995
208
1961 | 989
2114
1965
288
1994 | | SUMMARY | STATIST | ICS | FOR | 2002 CALE | ENDAR YEAR | 1 | FOR 2003 W | ATER YEAR | 2 | WATER YEARS | 3 1940 - | 2003* | | ANNUAL I HIGHEST LOWEST LOWEST ANNUAL MAXIMUM AXIMUM INSTANTI ANNUAL 10 PERC 50 PERC | MEAN ANNUAL M DAILY M DAILY ME SEVEN-DA PEAK FL PEAK ST ANEOUS L RUNOFF (L ENT EXCE | EAN EAN AN Y MINIMUM OW AGE OW FLOW AC-FT) EDS EDS | | 749300
2030
735
498 | Jun 3
Aug 20
Aug 17 | | 289
301
10800 | Sep 3
Sep 2
Jun 1
1 Jun 1
Sep 4 | 3
2
<u>-</u>
1 | 1954
2824
955
14900
165
176
b16500
12.60
c82
1416000
4250
1310
706 | Jun 9
Aug 19
Aug 16
Jun 10
Jun 8
Aug 17 | 1961
1961
1964
1995 | | | 1 2 3 3 4 4 5 5 6 7 7 8 9 9 10 10 11 12 13 14 15 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 10 TOTAL MEAN MAX MIN MAX (WY) MIN (WY) MIN (WY) SUMMARY ANNUAL HIGHEST LOWEST ANNUAL HIGHEST LOWEST ANNUAL HARMING MAXIMUM MINSTANT LOWEST ANNUAL HARMING MAXIMUM MINSTANT LOWEST ANNUAL TANNUAL TANNUAL TANNUAL TANNUAL TO PERC 50 PERC TO PERC TO TO THE TANNUAL T | 1 675 2 676 3 692 4 710 5 703 6 690 7 689 8 699 9 708 10 709 11 715 12 706 13 706 14 718 15 717 16 731 17 732 18 729 19 730 20 731 21 739 22 742 24 751 25 748 26 739 27 742 24 751 25 748 26 739 27 742 28 725 29 775 30 658 31 550 FOTAL 22047 MEAN 711 MAX 775 MIN 550 AC-FT 43730 STATISTICS OF M MEAN 1324 MAX 775 MIN 550 AC-FT 43730 STATISTICS OF M MEAN 1324 MAX 775 MIN 711 MAX 775 MIN 550 AC-FT 43730 STATISTICS OF M MEAN 1324 MAX 775 MIN 711 MAX 775 MIN 711 MAX 775 MIN 711 MAX 775 MIN 711 MAX 775 MIN 750 MIN 711 MAY 775 711 MAY 775 MIN 71 | 1 675 610 2 676 708 3 692 742 4 710 746 5 703 741 6 690 745 7 689 776 8 699 796 9 708 801 10 709 798 11 715 812 12 706 813 13 706 817 14 718 815 15 717 826 16 731 815 15 717 826 16 731 821 17 732 817 18 729 810 19 730 820 20 731 838 21 739 840 20 731 838 21 739 840 20 731 838 21 739 840 20 731 838 21 739 840 20 731 838 21 739 840 20 731 838 21 739 840 20 731 838 21 739 840 22 742 883 23 742 925 24 751 914 25 748 812 26 739 755 840 29 775 876 30 658 861 31 550 TOTAL 22047 24160 MEAN 711 805 MEAN 711 805 MEAN 711 805 MEAN 711 805 MEAN 1324 1464 MEAN 1324 1460 MEAN 1324 1460 MEAN 711 805 MEAN 711 805 MEAN 1324 1460 MEAN 1324 1460 MEAN 1324 1460 MEAN 711 805 MEAN 711 805 MEAN 1324 1460 M | 1 675 610 846 2 676 708 854 3 692 742 846 4 710 746 835 5 703 741 834 6 690 745 822 7 689 776 782 8 699 796 728 9 708 801 713 10 709 798 702 11 715 812 730 12 706 813 714 13 706 817 736 14 718 815 773 15 717 826 793 16 731 821 787 17 732 817 795 18 729 810 721 19 730 820 646 20 731 838 624 21 739 849 706 22 742 883 700 23 742 925 714 24 751 914 696 25 748 812 571 26 739 735 553 27 712 813 668 28 725 840 777 29 775 876 758 30 658 861 714 31 550 715 FOTAL 22047 24160 22853 MEAN 711 805 737 MAX 775 925 854 MIN 550 610 553 AC-FT 43730 47920 45330 STATISTICS OF MONTHLY MEAN DATA MEAN 1324 1464 1242 MAX 2052 2025 1864 MIN 711 805 737 MAX 775 925 854 MIN 550 610 553 AC-FT 43730 47920 45330 SUMMARY STATISTICS FOR ANNUAL TOTAL ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK FLOW MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RENOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 1 675 610 846 732 2 676 708 854 721 3 692 742 846 744 4 710 746 835 728 5 703 741 834 748 6 690 745 822 718 7 689 776 782 708 8 699 796 728 699 9 708 801 713 671 10 709 798 702 610 11 715 812 730 584 12 706 813 714 638 13 706 817 736 711 14 718 815 773 735 15 717 826 793 717 16 731 821 787 654 17 732 817 795 643 18 729 810 721 635 19 730 820 646 675 20 731 838 624 711 21 739 849 706 6680 22 742 883 700 6650 23 742 925 714 6600 24 751 914 696 6650 23 742 925 714 6600 24 751 914 696 6650 25 748 812 571 6700 26 739 735 553 739 27 712 813 668 788 28 725 840 777 796 29 775 876 758 757 30 658 861 714 772 31 550 715 798 FOTAL 22047 24160 22853 21712 MEAN 711 805 737 700 MAX 775 925 854 798 MIN 550 610 553 584 MIN 550 610 553 584 MIN 711 805 737 700 MAX 775 925 854 798 MIN 550 610 553 584 MIN 711 805 737 700 MAX 775 925 854 798 MIN 550 610 553 584 MIN 711 805 737 700 MAX 775 925 854 798 MIN 550 610 553 584 MIN 711 805 737 700 MAX 775 925 854 798 MIN 550 610 553 584 MIN 711 805 737 700 MIN 750 925 854 798 MIN 750 925 854 798 MIN 750 925 854 798 MIN 750 925 864 1424 MIN 711 805 737 708 MIN 750 925 864 1424 MIN 711 805 737 700 MAX 775 925 854 798 MIN 550 610 553 584 MIN 711 805 737 700 MAX 775 925 854 798 MIN 550 610 553 584 MIN 711 805 737 700 MIN 750 925 864 1424 MIN 711 805 737 708 MIN 550 610 553 584 MIN 711 805 737 708 MIN 550 610 553 584 MIN 711 805 737 708 MIN 750 925 854 798 MIN 550 610 553 584 MIN 711 805 737 708 MIN 750 925 854 798 MIN 550 610 553 584 MIN 711 805 737 700 MAX 775 925 854 798 MIN 550 610 553 584 MIN 711 805 737 700 MIN 750 925 854 798 MIN 550 610 553 584 MIN 711 805 737 700 MIN 750 925 854 798 MIN 550 610 553 584 MIN 711 805 737 700 MIN 750 925 854 798 | 1 675 610 846 732 844 813 668 749 801 711 738 745 812 730 584 753 812 730 584 753 812 730 584 753 812 730 584 753 812 730 584 753 812 730 584 753 813 706 813 714 638 748 815 777 755 812 731 821 732 817 765 812 732 817 765 812 730 681 733 741 834 748 832 817 763 812 730 584 753 812 730 6817 736 711 738 715 717 826 793 717 765 812 730 735 787 717 765 812 730 820 646 675 733 813 714 638 748 815 773 735 787 818 729 810 721 635 750 819 730 820 646 675 733 820 646 675 733 820 646 675 733 820 646 675 733 820 646 675 733 820 646 675 733 820 646 675 733 820 646 675 733 820 646 675 733 820 646 675 733 820 640 675 733 820 640 675 733 820 640 675 733 820 640 675 733 820 640 675 733 820 640 675 733 820 640 675 733 820 640 777 796 6650 753 823 742 925 748 812 571 6700 6450 6600 6600 6600 6600 6600 6600 66 | DAY OCT NOV DEC JAN FEB MAR 1 675 610 846 732 844 e700 2 676 708 854 721 890 e750 3 692 742 846 744 861 e750 4 710 746 835 728 877 e700 5 703 741 834 748 832 e700 6 690 745 822 718 804 e750 8 699 776 782 708 749 880 8 699 776 782 708 749 880 9 708 801 713 671 763 e750 10 709 798 702 610 798 770 11 715 812 730 584 753 782 12 706 813 714 638 748 820 13 706 817 736 711 738 874 14 718 815 773 735 787 1060 15 771 826 793 717 765 1150 16 731 821 787 654 756 1150 16 731 821 787 654 756 1150 17 732 817 795 643 755 1430 19 730 820 646 675 733 1580 19 730 820 646 675 733 1580 22 742 883 700 e650 753 1250 23 742 925 714 e600 e600 1240 24 751 914 696 e650 e500 1240 25 748 812 571 e700 e450 1260 26 739 735 553 739 e500 1220 27 712 813 668 788 e600 1240 28 725 840 777 796 e650 991 30 658 861 714 772 907 30 658 861 714 772 907 30 658 861 714 772 907 30 658 861 714 772 907 30 658 861 714 772 907 31 836 624 711 740 1440 21 739 849 706 e650 e500 1240 22 742 883 700 e650 753 1250 24 751 914 e600 e600 1230 24 751 914 e966 e650 e500 1240 25 748 812 571 e700 e450 1260 26 739 735 553 739 e500 1220 27 712 813 668 788 e600 1120 28 725 840 777 796 e650 991 30 658 861 714 772 907 30 658 861 714 772 907 30 658 861 714 772 907 31 836 624 711 740 1440 32 775 925 840 777 796 e650 991 30 658 861 714 772 907 31 805 737 700 734 1020 31 550 715 798 956 31 550 715 798 956 31 550 715 798 956 31 550 715 798 957 31 855 570 864 1424 1690 292 32 741 805 737 700 734 1020 34 741 805 737 700 734 1020 34 742 925 744 678 890 1580 31 550 715 798 7 933 30 658 861 714 772 907 31 805 737 700 734 1020 31 550 715 798 957 31 850 747 796 6650 670 734 1020 31 550 715 798 957 31 850 747 74920 45330 43070 40760 62740 31 850 747 749300 740760 62740 31 805 747 749300 740760 62740 31 805 708 641 627 622 31 742 925 744 841 174 772 907 31 815 747 749300 749300 749300 749300 749300 749300 749300 749300 749300 749300 749300 749300 749300 749300 749300 749300 749300 749300 7493 | DAY OCT NOV DEC JAN FEB MAR APR 1 675 610 846 732 844 e700 1400 2 676 708 854 721 890 e750 2310 3 692 742 846 744 861 e750 2190 4 710 746 835 728 877 e700 1700 5 703 741 834 748 832 e700 1390 6 690 745 822 718 804 e750 1270 7 689 776 782 708 749 e800 1170 8 699 796 728 699 807 e700 1050 9 708 801 713 661 763 e750 1010 10 709 798 702 610 798 770 1180 11 715 812 730 584 753 782 1690 12 706 813 714 638 748 820 2080 13 706 817 736 711 738 874 2510 14 718 815 773 735 787 1060 2930 15 717 826 793 717 765 1150 2780 16 731 821 787 654 756 1150 2780 16 731 821 787 654 756 1150 2780 16 731 821 787 654 756 1150 2780 17 732 817 795 643 755 1430 2060 18 729 810 721 635 750 1560 1880 19 730 820 646 675 733 1580 1810 20 731 838 624 711 740 1440 1700 21 739 849 706 e680 745 1310 1720 22 742 883 700 e650 753 1250 1880 19 730 820 646 675 733 1580 1810 22 742 883 700 e650 753 1250 1880 22 742 883 700 e650 753 1250 1820 24 751 914 6660 e650 1230 2120 25 748 812 571 e700 e450 1220 3070 27 712 813 668 788
e600 1120 2950 28 725 840 777 796 e550 e500 1240 2550 26 739 735 553 739 e500 1220 3070 27 712 813 668 788 e600 120 2850 28 725 840 777 796 e550 e500 1240 2550 28 725 840 777 796 e550 e500 1240 2550 28 725 840 777 796 e550 e500 1240 2550 28 725 840 777 796 e550 e500 1240 2550 28 725 840 777 796 e550 e500 1240 2023 30 658 861 714 772 933 2240 31 550 715 798 956 DOTAL 2047 24160 22853 21712 20548 3163 60700 29 775 876 758 777 700 734 1020 2023 30 658 861 714 772 933 2240 31 550 715 798 956 DOTAL 2047 24160 22853 21712 20548 3163 60700 30 658 861 714 777 796 e500 991 2500 292 4634 30 658 861 714 777 796 e500 991 2500 292 4634 30 658 861 714 777 796 e500 991 2500 292 4634 30 658 861 714 772 933 2240 30 658 861 714 777 796 e500 991 290 24634 30 658 861 714 777 796 e500 991 290 292 4634 30 658 861 714 777 796 e500 991 290 292 4634 30 658 861 714 777 796 e500 991 290 292 4634 30 658 861 714 777 796 e500 991 290 290 290 290 290 290 290 290 290 290 | DAY OCT NOV DEC JAN FEB MAR APR MAY 1 675 610 846 732 844 e700 1400 2290 2 676 708 854 721 890 e750 2310 2500 3 692 742 846 744 861 e750 2190 2500 4 710 746 835 728 877 e700 1700 2550 5 703 741 834 748 832 e700 1390 2300 6 6 690 745 822 718 804 e750 1270 2680 6 690 745 822 718 804 e750 1270 2680 8 669 776 762 708 699 841 e800 1170 2340 8 669 776 762 699 749 e800 1170 2340 9 708 801 776 702 610 798 770 1180 1860 11 715 812 730 584 753 782 1690 1770 12 706 813 714 638 748 820 2090 1730 13 706 817 736 711 738 874 2510 1780 14 718 815 773 735 787 1060 2930 1870 15 717 826 793 717 765 1150 2780 1900 16 731 821 787 654 756 1150 2780 1900 16 731 821 787 654 756 1150 2240 1900 17 732 817 795 643 756 1150 2240 2240 19 733 889 624 771 740 1440 1700 2220 21 733 889 700 e650 733 1250 1880 2420 22 742 883 700 e650 733 1250 1880 2420 21 731 838 624 771 740 1440 1700 2220 22 742 883 700 e650 733 1250 1880 2420 22 742 883 700 e650 733 1250 1880 2420 24 751 914 696 e660 230 1240 2590 1990 24 751 813 668 788 e600 1220 3070 3950 25 774 812 577 796 850 1200 1200 3089 27 712 813 668 686 745 1310 1720 2300 28 775 876 777 976 850 1990 29 778 870 779 779 779 779 779 779 779 779 779 7 | OCT NOV DEC JAN FEB MAR APR MAY JUN | 1 675 610 846 732 844 e700 1400 2290 10500 1110 2 G766 708 854 7214 890 e750 2110 2500 10200 998 | OCT NOV DEC JAN FEB MAR AFR MAY JUN JUL AUG 1 675 510 846 732 844 770 1400 2220 10500 1110 321 2 675 703 844 774 861 675 211 890 6750 1210 2250 10500 1020 999 321 3 692 742 846 744 861 6750 2190 2590 8830 893 315 4 710 746 835 778 877 6700 1700 2550 7140 817 369 5 703 741 834 748 832 270 1390 2830 5730 788 375 6 6 690 745 822 718 804 6750 1210 2240 4040 718 363 8 699 776 722 708 749 6800 1170 2340 4040 718 363 8 699 796 728 6699 807 6700 1050 2130 3460 666 364 9 708 801 713 671 763 6750 1010 1970 3370 680 387 10 709 798 702 610 798 770 1100 1850 3130 3460 667 387 11 715 812 730 584 753 782 1690 1770 3500 3370 680 387 11 715 812 730 584 753 782 1690 1770 3500 572 381 13 706 813 714 638 748 820 2080 1720 3540 572 381 13 706 817 736 711 738 874 2510 1780 3180 559 370 14 78 815 773 735 787 1060 2230 1870 360 590 370 15 717 826 793 717 765 1150 2780 1900 3000 506 319 16 731 821 787 654 755 1150 2780 1900 3000 506 319 16 731 821 787 654 755 1150 2780 1900 3000 506 319 16 731 821 787 654 755 1150 2880 2400 2710 445 314 18 729 810 721 6680 783 1150 1200 2300 2240 402 308 17 732 817 795 643 755 1430 2060 2240 2710 445 314 18 729 810 721 6680 783 1550 1800 2420 2590 418 371 22 742 883 700 8650 753 1550 1880 2420 2590 418 373 19 730 820 646 675 733 1550 1800 2420 2590 418 373 19 730 820 646 675 733 1550 1800 2420 2590 418 373 22 742 883 700 8650 753 1250 1860 1800 3450 391 353 23 742 883 714 8600 680 748 8600 120 3070 3950 2220 488 373 24 742 883 700 8650 753 1250 1860 1800 3450 391 353 25 748 812 668 788 6600 120 2300 8780 2480 4482 323 26 739 735 553 739 8600 120 3070 3950 2220 482 323 26 739 735 553 739 8600 120 3070 3950 220 1994 1966 1961 28 800 11 800 11 11 605 11 600 11 10 10 10 10 10 10 10 10 10 10 10 1 | ^{*--}During periods of operation (August 1940 to September 1943, October 1957 to September 1972, May 1994 to current year). a--Gage height, 3.08 ft. b--Gage height, 9.04 ft, site and datum than in use. c--Gage height, 1.61 ft, site and datum than in use. e--Estimated. # 06031450 BOULDER RIVER ABOVE KLEINSMITH GULCH, NEAR BASIN, MT $LOCATION.--Lat\ 46°16'11",\ long\ 112°16'43"\ (NAD\ 27),\ in\ SW^1/_4NE^1/_4SW^1/_4\ sec.\ 18,\ T.6\ N.,\ R.5\ W.,\ Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ 0.5\ mi\ upstream\ from\ Kleinsmith\ Gulch\ and\ 0.9\ mi\ southwest\ of\ Basin.$ DRAINAGE AREA.--218 mi². PERIOD OF RECORD.--October 1996 to current year. GAGE.--None. Elevation at site is 5,380 ft (NGVD 29). # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | |-----------------------|--|---|---|--|--|--|---|--|---|--|---| | FEB 2003
20
MAY | 1240 | 15 | 7.8 | 144 | -2.0 | 0.0 | 55 | 16.2 | 3.40 | 1.48 | .5 | | 12 | 0830 | 243 | 8.1 | 103 | 7.0 | 4.5 | 44 | 13.5 | 2.61 | | | | JUN
03 | 0840 | 390 | 7.8 | 53 | 12.0 | 7.5 | 21 | 6.31 | 1.23 | | | | AUG
20 | 0930 | 7.4 | 7.7 | 162 | 19.0 | 15.5 | 58 | 17.8 | 3.23 | | | | Date | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d
(70302) | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | | FEB 2003
20
MAY | 8.53 | 59 | 3.33 | .12 | 20.4 | 15.2 | 104 | .14 | 4.10 | 1.7 | E2 | | 12
JUN | | | | | | | | | | 3.2 | 4 | | 03
AUG | | | | | | | | | | 3.5 | 5 | | 20 | | | | | | | | | | 3.8 | 4 | | Date | Cadmium
water,
fltrd,
ug/L
(01025) | Cadmium
water,
unfltrd
ug/L
(01027) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Lead,
water,
fltrd,
ug/L
(01049) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | Suspnd. sedi- ment, sieve diametr percent <.063mm (70331) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | | FEB 2003
20 | <.04 | E.02 | 2.3 | 3.4 | .11 | .19 | 6 | 7 | 76 | 4 | .16 | | MAY
12 | < .04 | .05 | 3.5 | 5.8 | .12 | 1.19 | 7 | 12 | 28 | 53 | 35 | | JUN
03 | <.04 | E.03 | 3.8 | 5.7 | E.06 | 1.11 | 4 | 8 | 40 | 38 | 40 | | AUG
20 | <.04 | < .04 | 2.5 | 2.6 | E.05 | .20 | 2 | 3 | 67 | 3 | .06 | $\mathtt{E--Estimated}.$ #### 462517112173001 08N06W25AABB01 $LOCATION.--Lat\ 46^{\circ}25'16.6", long\ 112^{\circ}17'29.8"\ (NAD\ 83), in\ NW^{1}/_{4}NE^{1}/_{4}NE^{1}/_{4}sec.\ 25, T.8\ N., R.6\ W., Jefferson\ County,\ Hydrologic\ Unit\ 10030101.\ HYDROGEOLOGIC\ UNIT.--Tertiary\ volcanics.$ WELL CHARACTERISTICS.--Drilled in May 1999, casing diameter 4 in., depth 108 ft. DATUM.--Measuring point, top of PVC casing, 1.20 ft above land surface datum. Elevation of land-surface datum is 7,565.63 ft (NGVD 29). PERIOD OF RECORD.--October 2001 to current year. REMARKS.--All water levels are reported as distance, in feet below land-surface datum. Well was pumped extensively on June 30 and Aug. 8 in an attempt to remove sediment and standing water from the well casing. # MEASURED WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 2002 THROUGH SEPTEMBER 2003 | DA | ГΕ | WATER
<u>LEVEL</u> | |-----|----|-----------------------| | Jun | 30 | 59.60 | | Jul | 2 | 60.18 | | Aug | 8 | 65.54 | | Aug | 28 | 68.20 | # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date JUL 2003 02 AUG 28 | Time 1300 1300 | Flow rate, instantaneous gal/min (00059) | Pump
or flow
period
prior
to sam-
pling,
minutes
(72004) | Sam-
pling
depth,
feet
(00003) | Tur-
bidity,
water,
unfltrd
field,
NTU
(61028) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
us/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) | Hard-ness, water, unfltrd mg/L as CaCO3 (00900) | Calcium water, fltrd, mg/L (00915) | |-----------------------------
--|--|---|---|--|---|---|--|--|---|---| | Date | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | sium,
water, | Sodium
adsorp-
tion
ratio
(00931) | Sodium,
water,
fltrd,
mg/L
(00930) | field,
mg/L as
CaCO3 | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | ide,
water, | Silica,
water,
fltrd,
mg/L | Sulfate
water,
fltrd,
mg/L
(00945) | Alum-
inum,
water,
fltrd,
ug/L
(01106) | Anti- mony, water, fltrd, ug/L (01095) | | JUL 2003
02
AUG
28 | .113 | 4.79
3.84 | 1 | 3.32
2.58 | .0 | .60 | <.2
<.2 | 51.7
17.7 | 56.5
52.4 | 4580
3940 | <.30
<.30 | | Date | Arsenic
water,
fltrd,
ug/L
(01000) | water, | Cadmium
water,
fltrd,
ug/L
(01025) | Chrom-
ium,
water,
fltrd,
ug/L
(01030) | Cobalt
water,
fltrd,
ug/L
(01035) | Copper,
water,
fltrd,
ug/L
(01040) | water, | fltrd,
ug/L | Mangan-
ese,
water,
fltrd,
ug/L
(01056) | Nickel,
water,
fltrd,
ug/L
(01065) | Selen-
ium,
water,
fltrd,
ug/L
(01145) | | JUL 2003
02
AUG
28 | .3
E.2 | .66 | .57 | <.8 | .876
.897 | .3 | 266
210 | 9.71
5.61 | 9.4 | 1.34 | 1.8 | | | | | Date
JUL 2 | e : | ilver,
water, v
fltrd, :
ug/L | ium,
water,
fltrd,
ug/L | water,
fltrd,
ug/L | Zinc,
water,
fltrd,
ug/L
01090) | | | | | | | | 02
AUG | 2003 | <.2 | .56 | <.1 | 204
174 | | | | #### 462507112170601 08N05W30BBCD01 LOCATION.--Lat 46°25′06.8", long 112°17′05.6" (NAD 83), in SW¹/₄NW¹/₄NW¹/₄ sec. 30, T.8 N., R.5 W., Lewis and Clark County, Hydrologic Unit 10020006 HYDROGEOLOGIC UNIT.--Boulder batholith quartz monzonite. WELL CHARACTERISTICS.--Drilled in June 2000, casing diameter 4 in., depth 84.5 ft. DATUM.--Measuring point, top of PVC casing, 2.60 ft above land surface datum. Elevation of land-surface datum is 7,689.44 ft (NGVD 29). PERIOD OF RECORD.--June 2000 to current year. REMARKS.--All water levels are reported as distance, in feet below land-surface datum. Well was pumped extensively on Aug. 8 in an attempt to remove sediment and standing water from the well casing. # MEASURED WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 2002 THROUGH SEPTEMBER 2003 | DA | TE | WATER
<u>LEVEL</u> | |-----|----|-----------------------| | Jul | 2 | 30.61 | | Aug | 8 | 33.70 | | Aug | 29 | 35.29 | # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Flow
rate,
instan-
taneous
gal/min
(00059) | Pump
or flow
period
prior
to sam-
pling,
minutes
(72004) | Sam- | NTU | solved
oxygen,
mg/L | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | |-----------------------|--|---|---|---|---|--|---|--|---|--|--| | JUL 2003 | 1500 | .50 | 72 | 8.0 | 8.3 | . 4 | 6.5 | 110 | 11.0 | 43 | 10.6 | | AUG | | | · - | | | | | | | | | | 29 | 1000 | .30 | 62 | 80 | 8.7 | . 2 | 6.3 | 112 | 7.5 | 38 | 9.40 | | Date | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | sium,
water,
fltrd,
mg/L | Sodium
adsorp-
tion
ratio | fltrd,
mg/L | lab,
mg/L as
CaCO3 | wat flt
inc tit
field,
mg/L as
CaCO3 | wat flt
incrm.
titr.,
field,
mg/L | ate,
wat flt
incrm.
titr.,
field,
mg/L | Chlor-
ide,
water,
fltrd,
mg/L | ide,
water,
fltrd,
mg/L | Silica,
water,
fltrd,
mg/L | | JUL 2003 | 2 02 | 1.65 | . 3 | 4.26 | 43 | 48 | 59 | . 0 | . 39 | . 3 | 0.7. 6 | | 02
AUG | 3.93 | | | | | | | | | | 27.6 | | 29 | 3.58 | 1.54 | .3 | 4.08 | 44 | 45 | 55 | .0 | .41 | .3 | 26.0 | | Date | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Alum-
inum,
water,
fltrd,
ug/L
(01106) | Anti-
mony,
water,
fltrd,
ug/L
(01095) | Arsenic
water,
fltrd,
ug/L
(01000) | Beryll-
ium,
water,
fltrd,
ug/L
(01010) | Cadmium
water,
fltrd,
ug/L
(01025) | Chrom-
ium,
water,
fltrd,
ug/L
(01030) | Cobalt
water,
fltrd,
ug/L
(01035) | Copper,
water,
fltrd,
ug/L
(01040) | | JUL 2003
02
AUG | 8.8 | 92 | .12 | E1 | <.30 | E.1 | .16 | <.04 | <.8 | 4.78 | <.2 | | 29 | 8.7 | 85 | .12 | <1 | <.30 | E.1 | .19 | < .04 | <.8 | 5.27 | <.2 | | | Date | Iron,
water,
fltrd,
ug/L
(01046) | fltrd,
ug/L | fltrd,
ug/L | Nickel,
water,
fltrd,
ug/L | fltrd,
ug/L | Silver, | water,
fltrd,
ug/L | ium,
water,
fltrd,
ug/L | Zinc,
water,
fltrd,
ug/L | | | | JUL 2003 | 4710 | .11 | 328 | 2.71 | <.5 | <.2 | <.04 | E.1 | 2 | | | | AUG | | | | | | <.2 | <.04 | | 2 | | | | 29 | 3970 | <.08 | 360 | 2.50 | <.5 | <.2 | <.04 | E.1 | 2 | | #### 462503112172302 08N06W25ADAC02 $LOCATION.--Lat\ 46^{\circ}25'02.7", long\ 112^{\circ}17'22.8"\ (NAD\ 83), in\ NE^{1}/_{4}SE^{1}/_{4}NE^{1}/_{4}\ , sec.\ 25, T.8\ N., R.6\ W., Jefferson\ County,\ Hydrologic\ Unit\ 10020006.\ HYDROGEOLOGIC\ UNIT.--Tertiary\ volcanics.$ WELL CHARACTERISTICS.--Drilled in June 2000, casing diameter 2 in., depth 98.5 ft. DATUM.--Measuring point, top of PVC casing, 1.60 ft above land surface datum. Elevation of land-surface datum is 7,521.47 ft (NGVD 29). PERIOD OF RECORD.--June 2000 to current year. REMARKS.--All water levels are reported as distance, in feet below land-surface datum. Well was pumped extensively on Aug. 8 in an attempt to remove sediment and standing water from well casing. # MEASURED WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 2002 THROUGH SEPTEMBER 2003 | DA | TE | WATER
<u>LEVEL</u> | |-----|----|-----------------------| | Jun | 30 | 17.46 | | Aug | 8 | 19.93 | | Aug | 28 | 26.42 | #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date JUN 2003 30 AUG 28 | Time
1300
1500 | Flow rate, instantaneous gal/min (00059) | Pump
or flow
period
prior
to sam-
pling,
minutes
(72004) | Sam-
pling
depth,
feet
(00003) | Tur-
bidity,
water,
unfltrd
field,
NTU
(61028) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium water, fltrd, mg/L (00915) 1.53 .79 | |-----------------------------|--|---|---|---|---|---|---|---|---|--|--| | Date | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | sium,
water,
fltrd,
mg/L | | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat fly
fxd end
lab,
mg/L as
CaCO3
(29801) | Alka-
linity,
wat flt
inc tit
field,
mg/L as
CaCO3
(39086) | Bicar-
bonate,
wat flt
incrm.
titr.,
field,
mg/L
(00453) | Carbon-
ate,
wat flt
incrm.
titr.,
field,
mg/L
(00452) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | | JUN 2003
30
AUG
28 | .163 | 3.85
4.28 | .8 | 3.79
7.81 | <2
3 | <1
2 | 2 | .0 | 3.62
4.07 | <.2 | 30.6
34.5 | | Date | Sulfate
water,
fltrd,
mg/L
(00945) | consti-
tuents
mg/L | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Alum-
inum,
water,
fltrd,
ug/L
(01106) | Anti-
mony,
water,
fltrd,
ug/L
(01095) | Arsenic
water,
fltrd,
ug/L
(01000) | Beryll-
ium,
water,
fltrd,
ug/L
(01010) | Cadmium
water,
fltrd,
ug/L
(01025) |
Chrom-
ium,
water,
fltrd,
ug/L
(01030) | Cobalt
water,
fltrd,
ug/L
(01035) | Copper,
water,
fltrd,
ug/L
(01040) | | JUN 2003
30
AUG
28 | 14.9
14.9 | 60
68 | .08 | 317
81 | <.30 | <.3
<.3 | .27 | .11 | E.5
E.5 | .616 | 2.7 | | | Date | Iron,
water
fltrd
ug/L
(01046 | , fltrd,
ug/L | fltrd
ug/L | Nickel,
, water,
, fltrd,
ug/L | water,
fltrd,
ug/L | Silver
water
fltrd
ug/L | , water
, fltrd
ug/L | ium,
, water,
, fltrd,
ug/L | Zinc,
water,
fltrd,
ug/L | | | | JUN 2003
30
AUG
28 | 24
31 | 59.1
28.7 | 15.5
8.6 | 3.31 | E.3 | <.2 | .52 | <.1
<.1 | 97
66 | | #### 462503112172301 08N06W25ADAC01 $LOCATION.--Lat\ 46^{\circ}25'02.7'', long\ 112^{\circ}17'22.8''\ (NAD\ 83), in\ NE^{1}/_{4}SE^{1}/_{4}NE^{1}/_{4}\ sec.\ 25, T.8\ N.,\ R.6\ W.,\ Jefferson\ County,\ Hydrologic\ Unit\ 10020006.$ HYDROGEOLOGIC UNIT.--Boulder batholith quartz monzonite. WELL CHARACTERISTICS.--Drilled in May 1999, casing diameter 4 in., depth 170 ft. DATUM.--Measuring point, top of PVC casing, 0.0 ft above land surface datum. Elevation of land-surface datum is 7,521.1 ft (NGVD 29). PERIOD OF RECORD.--October 2001 to current year. REMARKS.--All water levels are reported as distance, in feet below land-surface datum. Well was pumped extensively on June 30 and Aug. 8 in an attempt to remove sediment and standing water from the well casing. #### MEASURED WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 2002 THROUGH SEPTEMBER 2003 | DA | TE | WATER
<u>LEVEL</u> | |-----|----|-----------------------| | Jun | 30 | 32.85 | | Aug | 8 | 35.63 | | Aua | 28 | 35.70 | # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Flow rate, instantaneous gal/min (00059) | Pump
or flow
period
prior
to sam-
pling,
minutes
(72004) | Sam-
pling
depth,
feet
(00003) | Tur-
bidity,
water,
unfltrd
field,
NTU
(61028) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | |-----------------------|--|---|---|--|---|---|---|--|---|--|--| | JUN 2003
30 | 1200 | 1.0 | 160 | E165 | 76 | . 2 | 6.6 | 123 | 9.5 | 39 | 10.9 | | AUG
28 | 1600 | .30 | 95 | 165 | 32 | .3 | 6.5 | 129 | 8.5 | 38 | | | 28 | 1600 | .30 | 95 | 165 | 32 | . 3 | 6.5 | 129 | 8.5 | 38 | 10.6 | | Date | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp- | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | inc tit
field, | | ate,
wat flt
incrm. | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | | JUN 2003
30 | 2.78 | 6.35 | . 3 | 4.36 | 18 | 20 | 24 | . 0 | .50 | . 2 | 38.7 | | AUG
28 | 2.77 | 6.18 | . 4 | 5.70 | 21 | 21 | 26 | . 0 | .52 | . 2 | 36.1 | | Date | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Alum-
inum,
water,
fltrd,
ug/L
(01106) | Anti-
mony,
water,
fltrd,
ug/L
(01095) | Arsenic
water,
fltrd,
ug/L
(01000) | Beryll-
ium,
water,
fltrd,
ug/L
(01010) | Cadmium
water,
fltrd,
ug/L
(01025) | Chrom-
ium,
water,
fltrd,
ug/L
(01030) | Cobalt
water,
fltrd,
ug/L
(01035) | Copper,
water,
fltrd,
ug/L
(01040) | | JUN 2003
30
AUG | 32.4 | 110 | .15 | <2 | <.30 | 1.5 | .09 | E.03 | <.8 | .985 | .3 | | 28 | 34.1 | 111 | .15 | <2 | <.30 | 1.5 | .15 | .06 | <.8 | 1.15 | . 4 | | | Date | Iron,
water,
fltrd,
ug/L
(01046) | Lead,
water,
fltrd,
ug/L
(01049) | Mangan-
ese,
water,
fltrd,
ug/L
(01056) | Nickel,
water,
fltrd,
ug/L
(01065) | Selen-
ium,
water,
fltrd,
ug/L
(01145) | Silver,
water,
fltrd,
ug/L
(01075) | Thall-
ium,
water,
fltrd,
ug/L
(01057) | Vanad-
ium,
water,
fltrd,
ug/L
(01085) | Zinc, | | | | JUN 2003
30 | 2030 | .17 | 111 | 1.36 | <.5 | <.2 | .07 | <.1 | 9 | | | | AUG 28 | 2030 | <.08 | 123 | 1.74 | <.5 | <.2 | .07 | <.1 | 9 | | | | ۷0 | 2030 | \.UU | 143 | 1./1 | \ | \.4 | .07 | `.⊥ | J | | #### 462500112170701 08N05W30BCBD01 $LOCATION.--Lat\ 46^{\circ}24'59.6",\ long\ 112^{\circ}17'06.6\ (NAD\ 83)",\ in\ NW^{1}/_{4}SW^{1}/_{4}NW^{1}/_{4}\ sec.\ 30,\ T.8\ N.,\ R.5\ W.,\ Jefferson\ County,\ Hydrologic\ Unit\ 10020006$ HYDROGEOLOGIC UNIT.--Boulder batholith quartz monzonite. WELL CHARACTERISTICS.--Drilled in June 1999, casing diameter 4 in., depth 110 ft. DATUM.--Measuring point, top of PVC casing, 0.8 ft above land surface datum. Elevation of land-surface datum is 7,577.99 ft (NGVD 29). PERIOD OF RECORD.--October 2001 to current year. REMARKS.--All water levels are reported as distance, in feet below land-surface datum. Well was pumped extensively on Aug. 8 in an attempt to remove sediment and standing water from the well casing. # MEASURED WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 2002 THROUGH SEPTEMBER 2003 | DA | TE | WATER
<u>LEVEL</u> | |-----|----|-----------------------| | Jul | 3 | 26.35 | | Aug | 8 | 28.49 | | Aug | 28 | 29.93 | # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Flow
rate,
instan-
taneous
gal/min
(00059) | Pump
or flow
period
prior
to sam-
pling,
minutes
(72004) | | Tur-
bidity,
water,
unfltrd
field,
NTU
(61028) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | |-----------------------|--|---|---|--|---|---|---|---|--|--|--| | JUL 2003 | 1200 | 1.5 | 100 | 95.0 | 18 | 3.6 | 6.2 | 68 | 6.0 | 21 | 3.83 | | AUG | | | | | | | | | | | | | 28 | 1900 | 1.6 | 70 | 105 | 44 | 1.2 | 6.1 | 67 | 5.5 | 17 | 2.99 | | Date | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Alka-
linity,
wat flt
inc tit
field,
mg/L as
CaCO3
(39086) | incrm.
titr.,
field,
mg/L | Carbon-
ate,
wat flt
incrm.
titr.,
field,
mg/L
(00452) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | | JUL 2003 | 2.87 | 1.11 | . 6 | 5.87 | 26 | 24 | 29 | . 0 | .43 | .3 | 32.7 | | AUG | | | | | | | | | | | | | 28 | 2.40 | 1.13 | .6 | 5.42 | 24 | 20 | 25 | .0 | .41 | .3 | 31.4 | | Date | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Alum-
inum,
water,
fltrd,
ug/L
(01106) | Anti-
mony,
water,
fltrd,
ug/L
(01095) | Arsenic
water,
fltrd,
ug/L
(01000) | Beryll-
ium,
water,
fltrd,
ug/L
(01010) | Cadmium
water,
fltrd,
ug/L
(01025) | Chrom-
ium,
water,
fltrd,
ug/L
(01030) | Cobalt
water,
fltrd,
ug/L
(01035) | Copper,
water,
fltrd,
ug/L
(01040) | | JUL 2003
03
AUG | 7.7 | 69 | .09 | 2 | <.30 | E.2 | <.06 | <.04 | <.8 | 1.09 | . 4 | | 28 | 7.7 | 64 | .09 | 2 | <.30 | .3 | <.06 | < .04 | <.8 | .767 | .3 | | | Date JUL 2003 03 AUG 28 | Iron,
water,
fltrd,
ug/L
(01046) | Lead,
water,
fltrd,
ug/L
(01049)
<.08 | Mangan-
ese,
water,
fltrd,
ug/L
(01056) | Nickel,
water,
fltrd,
ug/L
(01065)
1.14 | Selen-
ium,
water,
fltrd,
ug/L
(01145) |
Silver,
water,
fltrd,
ug/L
(01075) | Thall- ium, water, fltrd, ug/L (01057) <.04 <.04 | Vanad-
ium,
water,
fltrd,
ug/L
(01085)
E.1 | Zinc,
water,
fltrd,
ug/L
(01090) | | | | | | | | | | | | | | | # 462347112180401 BASIN CREEK BELOW BUCKEYE MINE NEAR LOGGING ROAD, NEAR BASIN, MT $LOCATION. --Lat\ 46^{\circ}23'47'', long\ 112^{\circ}18'04''\ (NAD\ 27), in\ SW^{1}/_{4}SE^{1}/_{4}NW^{1}/_{4}\ sec.\ 36, T.8\ N., R.6\ W., Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ at\ old\ logging\ road\ crossing,\ 0.5\ mi\ downstream\ from\ the\ Buckeye\ Mine,\ and\ 8.7\ mi\ north\ of\ Basin.$ DRAINAGE AREA.--2.54 mi². PERIOD OF RECORD.--January 2000 to current year. GAGE.--None. Elevation at site is 6,940 ft (NGVD 29). # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instar
taneou
dis-
charge
cfs
(0006 | us unflt
- fiel
e, std
unit | r, wate
rd unflt
d, lab
std
s unit | rd tand
, wat u
uS/d
s 25 de | ic-
ee, Tempe
inf atur
im air
egC deg | e, atur
, wate
C deg | e, unflt
r, mg/L
C CaCC | s,
er, Calci
erd wate
as fltr
03 mg/ | r, water
d, fltro
L mg/l | sium
, wate:
d, fltr
L mg/ | , Sodium
r, adsorp-
d, tion
L ratio | |----------------------|------|--|---|---|--|---|--|---|--|---|--|---| | MAR 2003
24 | 1230 | . 48 | 3 | 7.5 | 83 | 1.5 | 0.0 | 43 | 12.3 | 3.02 | 1.5 | 7 .2 | | MAY
14 | 1030 | 1.9 | 7.5 | | 72 | 7.5 | 0.5 | 35 | 10.4 | 2.14 | | | | JUN
03 | 1050 | 11 | 7.3 | | 37 | 9.0 | 5.0 | 17 | 4.9 | 9 1.10 | | | | AUG
21 | 1255 | . 3! | 5 7.4 | | 86 | 14.5 | 13.0 | 41 | 12.3 | 2.40 | | | | | | | | | | | | | | | | | | Date | | Sodium,
water,
fltrd,
mg/L
00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d
(70302) | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | | MAR 200
24
MAY | | 2.43 | 43 | .45 | .08 | 14.5 | 8.7 | 69 | .09 | .09 | 19.1 | 24 | | 14
JUN | | | | | | | | | | | 44.3 | 67 | | 03
AUG | | | | | | | | | | | 13.4 | 20 | | 21 | | | | | | | | | | | 34.7 | 37 | | Date | | Cadmium
water,
fltrd,
ug/L
01025) | Cadmium
water,
unfltrd
ug/L
(01027) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Lead,
water,
fltrd,
ug/L
(01049) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | Suspnd. sedi- ment, sieve diametr percent <.063mm (70331) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | | MAR 200
24
MAY | | . 23 | .24 | 2.7 | 3.0 | .50 | 1.02 | 50 | 52 | 64 | 2 | <.01 | | 14 | | .91 | .97 | 10.2 | 12.0 | 1.24 | 5.18 | 187 | 192 | 67 | 2 | .01 | | JUN
03 | | .29 | .32 | 4.5 | 5.2 | 1.00 | 4.32 | 49 | 54 | 70 | 6 | .18 | | AUG
21 | | .15 | .14 | 2.1 | 2.2 | 1.27 | 1.45 | 23 | 22 | 83 | 1 | <.01 | # 462501112173501 UNNAMED TRIBUTARY TO GRUB CREEK, SS NO. 4, NEAR RIMINI, MT $LOCATION.--Lat\ 46^{\circ}25'00.8", long\ 112^{\circ}17'35.2"\ (NAD\ 83), in\ SE^{1}/_{4}SW^{1}/_{4}NE^{1}/_{4}\ sec.\ 25, T.8\ N., R.6\ W., Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ 0.25\ mi\ upstream\ from\ Grub\ Creek\ and\ 5.9\ mi\ south\ of\ Rimini.$ DRAINAGE AREA.--Indeterminate. PERIOD OF RECORD.--October 2001 to current year. GAGE.--None. Elevation at site is 7,420 ft (NGVD 29). # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | |-----------------------------|--|--|---|--|---|--|---|--|---|---|---| | JUL 2003 | 1200 | .03 | | 5.9 | 97 | 8.5 | 30 | 8.79 | 2.00 | 4.14 | .1 | | SEP | | | | | | | | | | | | | 05 | 1215 | .001 | 8.7 | 4.7 | 79 | 11.0 | 19 | 5.32 | 1.27 | 4.50 | .1 | | Date | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d
(70302) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | | JUL 2003 | 1.86 | 3 | 1.20 | <.2 | 12.0 | 33.0 | 65 | .09 | .01 | <.04 | E.05 | | SEP
05 | 1.45 | <2 | 1.43 | <.2 | 20.1 | 30.4 | E65 | E.09 | E.00 | < .04 | E.06 | | | | | | | | | | | | | | | Date | Nitrite
water,
fltrd,
mg/L
as N
(00613) | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Alum-
inum,
water,
fltrd,
ug/L
(01106) | Alum-
inum,
water,
unfltrd
recover
-able,
ug/L
(01105) | Anti-
mony,
water,
fltrd,
ug/L
(01095) | Anti-
mony,
water,
unfltrd
ug/L
(01097) | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | Beryll-
ium,
water,
fltrd,
ug/L
(01010) | Beryll-
ium,
water,
unfltrd
recover
-able,
ug/L
(01012) | Cadmium
water,
fltrd,
ug/L
(01025) | | Date JUL 2003 | water,
fltrd,
mg/L
as N | phos-
phate,
water,
fltrd,
mg/L
as P | inum,
water,
fltrd,
ug/L | inum,
water,
unfltrd
recover
-able,
ug/L | mony,
water,
fltrd,
ug/L | mony,
water,
unfltrd
ug/L | water,
fltrd,
ug/L | water
unfltrd
ug/L | ium,
water,
fltrd,
ug/L | ium,
water,
unfltrd
recover
-able,
ug/L | water,
fltrd,
ug/L | | JUL 2003
10
SEP | water,
fltrd,
mg/L
as N
(00613) | phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | inum,
water,
fltrd,
ug/L
(01106) | inum,
water,
unfltrd
recover
-able,
ug/L
(01105) | mony,
water,
fltrd,
ug/L
(01095) | mony,
water,
unfltrd
ug/L
(01097) | water,
fltrd,
ug/L
(01000) | water
unfltrd
ug/L
(01002) | ium,
water,
fltrd,
ug/L
(01010) | ium,
water,
unfltrd
recover
-able,
ug/L
(01012) | water,
fltrd,
ug/L
(01025) | | JUL 2003
10 | water,
fltrd,
mg/L
as N
(00613) | phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | inum,
water,
fltrd,
ug/L
(01106) | inum,
water,
unfltrd
recover
-able,
ug/L
(01105) | mony,
water,
fltrd,
ug/L
(01095) | mony,
water,
unfltrd
ug/L
(01097) | water,
fltrd,
ug/L
(01000) | water
unfltrd
ug/L
(01002) | ium,
water,
fltrd,
ug/L
(01010) | ium,
water,
unfltrd
recover
-able,
ug/L
(01012) | water,
fltrd,
ug/L
(01025) | | JUL 2003
10
SEP
05 | water,
fltrd,
mg/L
as N
(00613)
<.008
<.008
Cadmium
water,
unfltrd
ug/L
(01027) |
phos-phate, water, fltrd, mg/L as P (00671) <.02 <.18 Chromium, water, fltrd, ug/L (01030) | inum, water, fltrd, ug/L (01106) 25 187 Chromium, water, unfltrd recover -able, ug/L (01034) | inum,
water,
unfltrd
recover
-able,
ug/L
(01105)
119
258
Cobalt
water,
fltrd,
ug/L | mony, water, fltrd, ug/L (01095) <.30 <.30 Cobalt water, unfltrd recover -able, ug/L (01037) | mony, water, unfltrd ug/L (01097) <.6 <.6 Copper, water, fltrd, ug/L (01040) | water,
fltrd,
ug/L
(01000) .6 .4 Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | water unfilrd ug/L (01002) <2 E1 Iron, water, fltrd, ug/L (01046) | ium, water, fltrd, ug/L (01010) .17 .41 Iron, water, unfltrd recover -able, ug/L (01045) | ium,
water,
unfltrd
recover
-able,
ug/L
(01012)
.24
.39 | water,
fltrd,
ug/L
(01025)
.23
.18
Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | | JUL 2003
10
SEP
05 | water,
fltrd,
mg/L
as N
(00613)
<.008
<.008 | phos-
phate,
water,
fltrd,
mg/L
as P
(00671)
<.02
<.18 | inum, water, fltrd, ug/L (01106) 25 187 Chrom- ium, water, unfltrd recover -able, ug/L | inum,
water,
unfltrd
recover -able,
ug/L
(01105)
119
258
Cobalt
water,
fltrd,
ug/L
(01035) | mony, water, fltrd, ug/L (01095) <.30 <.30 Cobalt water, unfltrd recover -able, ug/L | mony, water, unfltrd ug/L (01097) <.6 <.6 Copper, water, fltrd, ug/L | water,
fltrd,
ug/L
(01000) .6 .4 Copper,
water,
unfltrd
recover
-able,
ug/L | water
unfilrd
ug/L
(01002)
<2
El
Iron,
water,
fltrd,
ug/L | ium, water, fltrd, ug/L (01010) .17 .41 Iron, water, unfltrd recover -able, ug/L | ium,
water,
unfltrd
recover
-able,
ug/L
(01012)
.24
.39 | water,
fltrd,
ug/L
(01025)
.23
.18
Lead,
water,
unfltrd
recover
-able,
ug/L | # 462501112173501 UNNAMED TRIBUTARY TO GRUB CREEK, SS NO. 4, NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | ese,
water,
fltrd,
ug/L | unfltrd
recover
-able,
ug/L | Nickel,
water,
fltrd,
ug/L
(01065) | unfltrd
recover
-able,
ug/L | Selen-
ium,
water,
fltrd,
ug/L | ium,
water,
unfltrd
ug/L | Silver,
water,
fltrd,
ug/L | unfltrd
recover
-able,
ug/L | |-----------------------------|----------------------------------|--------------------------------------|--|--------------------------------------|--|-----------------------------------|-------------------------------------|--------------------------------------| | JUL 2003
10
SEP
05 | 114
136 | | 1.06 | | | | | | | | Date | ium,
water,
fltrd,
ug/L | Thall-
ium,
water,
unfltrd
ug/L
(01059) | ium,
water,
fltrd,
ug/L | ium,
water,
unfltrd
ug/L | Zinc,
water,
fltrd,
ug/L | -able,
ug/L | | | | JUL 2003
10
SEP
05 | .12 | <.4 | | <1
<1 | 65
66 | 64
66 | | $\mathtt{E--Estimated}.$ # 462458112173201 UNNAMED TRIBUTARY TO GRUB CREEK, SS NO. 5, NEAR RIMINI, MT $LOCATION.--Lat\ 46^{\circ}24'57.6", long\ 112^{\circ}17'32.5"\ (NAD\ 27),\ SW^{1}/_{4}SE^{1}/_{4}sec.\ 25, T.8N., R.6W., Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ 0.2$ mi upstream from Grub\ Creek and 5.9 mi south of Rimini. DRAINAGE AREA.--Indeterminate. PERIOD OF RECORD.--July 2003 to September 2003. GAGE.--None. Elevation at sampling site is 7,370 ft (NGVD 29). # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conductance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | |-----------------------|--|---|---|---|---|--|---|--|--|--|--| | JUL 2003
10
SEP | 1115 | .03 | | 5.7 | 104 | 8.5 | 32 | 8.94 | 2.32 | 3.87 | . 2 | | 05 | 1200 | .004 | 8.6 | 4.7 | 80 | 10.5 | 20 | 5.64 | 1.36 | 4.26 | . 2 | | Date | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | water,
fltrd,
tons/d | Ammonia
water,
fltrd,
mg/L
as N
(00608) | Nitrite + nitrate water fltrd, mg/L as N (00631) | | JUL 2003 | 2.18 | 2 | 1.06 | <.2 | 11.8 | 37.0 | 69 | .09 | .01 | <.04 | <.06 | | SEP
05 | 1.64 | <2 | 1.48 | <.2 | 20.5 | 30.4 | E67 | E.09 | E.00 | <.04 | E.04 | | Date | Nitrite
water,
fltrd,
mg/L
as N
(00613) | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Alum-
inum,
water,
fltrd,
ug/L
(01106) | Alum- inum, water, unfltrd recover -able, ug/L (01105) | Anti-
mony,
water,
fltrd,
ug/L
(01095) | Anti-
mony,
water,
unfltrd
ug/L
(01097) | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | Beryll-
ium,
water,
fltrd,
ug/L
(01010) | Beryll-
ium,
water,
unfltrd
recover
-able,
ug/L
(01012) | Cadmium
water,
fltrd,
ug/L
(01025) | | JUL 2003
10 | <.008 | <.02 | 36 | 88 | <.30 | <.6 | .5 | <2 | . 29 | .32 | .30 | | SEP
05 | <.008 | <.18 | 144 | 167 | <.30 | <.6 | . 4 | E1 | .64 | .62 | .23 | | Date | Cadmiur
water
unfltro
ug/L
(01027 | , water,
d fltrd,
ug/L | unfltrd
recover
-able,
ug/L | Cobalt
water,
fltrd,
ug/L | recover
-able,
ug/L | Copper,
water,
fltrd,
ug/L | , recover
, -able,
ug/L | d Iron,
water
fltrd
ug/L | , -able,
ug/L | Lead,
water,
fltrd,
ug/L | -able,
ug/L | | JUL 2003
10 | .28 | <.8 | <.8 | 1.18 | 1.14 | . 8 | 1.5 | 152 | 320 | E.07 | . 42 | | SEP
05 | .23 | <.8 | <.8 | 1.75 | 1.69 | 1.5 | 1.5 | 260 | 550 | .16 | . 67 | # 462458112173201 UNNAMED TRIBUTARY TO GRUB CREEK, SS NO. 5, NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | ese,
water,
fltrd,
ug/L | recover
-able,
ug/L | Nickel,
water,
fltrd,
ug/L | Nickel,
water,
unfltrd
recover
-able,
ug/L
(01067) | ium,
water,
fltrd,
ug/L | ium,
water,
unfltrd
ug/L | Silver,
water,
fltrd,
ug/L | recover
-able,
ug/L | |-----------------------------|----------------------------------|---------------------------|-------------------------------------|--|----------------------------------|-----------------------------------|-------------------------------------|---------------------------| | JUL 2003
10
SEP
05 | 123
187 | 120
180 | | 1.40 | <.5
<.5 | | | | | | Date | fltrd,
ug/L | ium,
water,
unfltrd
ug/L | | unfltrd
ug/L | fltrd,
ug/L | -able,
ug/L | | | | JUL 2003
10
SEP
05 | .09 | <.4 | <.1 | <1
<1 | 72
72 | 71
72 | | | | | | | | | | | | $\mathtt{E--Estimated}.$ # 462442112174602 UNNAMED TRIBUTARY TO GRUB CREEK AT MOUTH, SS NO. 6, NEAR RIMINI, MT $LOCATION.--Lat\ 46^{\circ}24^{\prime}42.3^{"},\ long\ 112^{\circ}17^{\prime}45.5^{"}\ (NAD\ 27),\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 25,\ T.8N.,\ R.6W.,\ Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ 30\ ft\ upstream\ from\ Grub\ Creek\ and\ 5.9\ mi\ south\ of\ Rimini.$ DRAINAGE AREA.--Indeterminate. PERIOD OF RECORD.-July 2003 to September 2003. GAGE.--None. Elevation at sampling site is 7,320 ft (NGVD 29). # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | |-----------------------------|--|---
--|--|--|---|---|--|---|--|--| | JUL 2003
10
SEP | 1030 | .06 | | 6.4 | 97 | 8.0 | 35 | 9.79 | 2.50 | 3.01 | . 2 | | 05 | 1045 | .01 | 8.9 | 5.5 | 109 | 9.5 | 34 | 9.59 | 2.54 | 3.83 | .2 | | Date | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d
(70302) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | Nitrite + nitrate water fltrd, mg/L as N (00631) | | JUL 2003
10 | 2.24 | 11 | 1.09 | <.2 | 11.4 | 28.4 | 65 | .09 | .01 | < .04 | <.06 | | SEP
05 | 2.80 | 15 | 2.21 | <.2 | 14.3 | 27.1 | 72 | .10 | .00 | < . 04 | E.03 | | | | | | | | | | . = - | | | | | | | | | | | | | | | | | | Date | Nitrite
water,
fltrd,
mg/L
as N
(00613) | Ortho- phos- phate, water, fltrd, mg/L as P (00671) | Alum-
inum,
water,
fltrd,
ug/L
(01106) | Alum- inum, water, unfltrd recover -able, ug/L (01105) | Anti-
mony,
water,
fltrd,
ug/L
(01095) | Anti-
mony,
water,
unfltrd
ug/L
(01097) | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | Beryll-
ium,
water,
fltrd,
ug/L
(01010) | Beryll-
ium,
water,
unfltrd
recover
-able,
ug/L
(01012) | Cadmium
water,
fltrd,
ug/L
(01025) | | JUL 2003 | water,
fltrd,
mg/L
as N
(00613) | phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | inum,
water,
fltrd,
ug/L
(01106) | inum,
water,
unfltrd
recover
-able,
ug/L
(01105) | mony,
water,
fltrd,
ug/L
(01095) | mony,
water,
unfltrd
ug/L
(01097) | water,
fltrd,
ug/L
(01000) | water
unfltrd
ug/L
(01002) | ium,
water,
fltrd,
ug/L
(01010) | ium,
water,
unfltrd
recover
-able,
ug/L
(01012) | water,
fltrd,
ug/L
(01025) | | JUL 2003
10
SEP | water,
fltrd,
mg/L
as N
(00613) | phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | inum,
water,
fltrd,
ug/L
(01106) | inum,
water,
unfltrd
recover
-able,
ug/L
(01105) | mony,
water,
fltrd,
ug/L
(01095) | mony,
water,
unfltrd
ug/L
(01097) | water,
fltrd,
ug/L
(01000) | water
unfltrd
ug/L
(01002) | ium,
water,
fltrd,
ug/L
(01010) | ium,
water,
unfltrd
recover
-able,
ug/L
(01012) | water,
fltrd,
ug/L
(01025) | | JUL 2003 | water,
fltrd,
mg/L
as N
(00613) | phos- phate, water, fltrd, mg/L as P (00671) <.02 <.18 Chrom- ium, water, fltrd, ug/L | inum, water, fltrd, ug/L (01106) 20 11 Chromium, water, unfltrd | inum,
water,
unfltrd
recover
-able,
ug/L
(01105)
60
73
Cobalt
water,
fltrd,
ug/L | mony, water, fltrd, ug/L (01095) <.30 E.16 Cobalt water, unfltrd | mony,
water,
unfltrd
ug/L
(01097)
<.6
<.6 | water, fltrd, ug/L (01000) .6 .6 .6 Copper, water, unfltrd | water
unfiltrd
ug/L
(01002)
<2
E1 | ium, water, fltrd, ug/L (01010) .12 .16 Iron, water, unfltrd recover -able, ug/L | ium,
water,
unfltrd
recover
-able,
ug/L
(01012)
.12
.21 | water, fltrd, ug/L (01025) .14 .11 Lead, water, unfltrd recover -able, ug/L | | JUL 2003
10
SEP
05 | water,
fltrd,
mg/L
as N
(00613)
<.008
<.008
Cadmium
water,
unfltrd
ug/L
(01027) | phos- phate, water, fltrd, mg/L as P (00671) <.02 <.18 Chrom- ium, water, fltrd, ug/L (01030) | inum, water, fltrd, ug/L (01106) 20 11 Chromium, water, unfltrd recover -able, ug/L (01034) | inum, water, unfiltrd recover -able, ug/L (01105) 60 73 Cobalt water, fltrd, ug/L (01035) | mony, water, fltrd, ug/L (01095) <.30 E.16 Cobalt water, unfltrd recover -able, ug/L (01037) | mony,
water,
unfltrd
ug/L
(01097)
<.6
<.6
Copper,
water,
fltrd,
ug/L
(01040) | water,
fltrd,
ug/L
(01000)
.6
.6
.6
Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | water unfltrd ug/L (01002) <2 E1 Iron, water, fltrd, ug/L (01046) | ium, water, fltrd, ug/L (01010) .12 .16 Iron, water, unfltrd recover -able, ug/L (01045) | ium, water, unfltrd recover -able, ug/L (01012) .12 .21 Lead, water, fltrd, ug/L (01049) | water, fltrd, ug/L (01025) .14 .11 Lead, water, unfltrd recover -able, ug/L (01051) | | JUL 2003
10
SEP
05 | water,
fltrd,
mg/L
as N
(00613)
<.008
<.008 | phos- phate, water, fltrd, mg/L as P (00671) <.02 <.18 Chrom- ium, water, fltrd, ug/L | inum, water, fltrd, ug/L (01106) 20 11 Chromium, water, unfltrd recover -able, ug/L | inum,
water,
unfltrd
recover
-able,
ug/L
(01105)
60
73
Cobalt
water,
fltrd,
ug/L | mony, water, fltrd, ug/L (01095) <.30 E.16 Cobalt water, unfltrd recover -able, ug/L | mony, water, unfltrd ug/L (01097) <.6 <.6 Copper, water, fltrd, ug/L | water, fltrd, ug/L (01000) .6 .6 .6 Copper, water, unfltrd recover -able, ug/L | water unfiltrd ug/L (01002) <2 E1 Iron, water, fltrd, ug/L | ium, water, fltrd, ug/L (01010) .12 .16 Iron, water, unfltrd recover -able, ug/L | ium, water, unfltrd recover -able, ug/L (01012) .12 .21 Lead, water, fltrd, ug/L | water, fltrd, ug/L (01025) .14 .11 Lead, water, unfltrd recover -able, ug/L | E--Estimated. # 462442112174602 UNNAMED TRIBUTARY TO GRUB CREEK AT MOUTH, SS NO. 6, NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | ese,
water,
fltrd,
ug/L | | Nickel,
water,
fltrd,
ug/L | recover
-able,
ug/L | Selendium, water fltrdug/L | ium,
, water,
, unfltro
ug/L | | recover
-able,
ug/L | |-----------|----------------------------------|--------------------------|-------------------------------------|---------------------------|----------------------------|--|------|---------------------------| | JUL 2003 | | | | | | | | | | 10
SEP | 43.0 | 45 | .92 | .89 | <.5 | <.5 | <.2 | <.16 | | 05 | 113 | 123 | .74 | .96 | <.5 | <.5 | <.2 | <.16 | | Da | ate | water,
fltrd,
ug/L | ium,
water,
unfltrd
ug/L | water,
fltrd,
ug/L | water,
unfltrd
ug/L | Zinc,
water,
fltrd,
ug/L
(01090) | ug/L | | | | 2003
L0 | E.02 | <.4 | <.1 | <1 | 46 | 48 | | | |)5 | .05 | < . 4 | E.1 | <1 | 35 | 39 | | $\mathtt{E--Estimated}.$ # 462442112174601 GRUB CREEK ABOVE MOUTH OF UNNAMED TRIBUTARY, GC03, NEAR RIMINI, MT $LOCATION.--Lat~46^{\circ}24^{\prime}42.1^{"},~long~112^{\circ}17^{\prime}45.7^{"}~(NAD~27),~NE^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}~sec.~25,~T.8N.,~R.6W.,~Jefferson~County,~Hydrologic~Unit~10020006,~1.1~mi~upstream~from~Basin~Creek~and~5.9~mi~south~of~Rimini.$ DRAINAGE AREA.--Indeterminate. PERIOD OF RECORD.--July 2003. GAGE.--None. Elevation at sampling site is 7,290 ft (NGVD 29). REMARKS.--Stream was dry on site visits in August and September. # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | Sodium,
water,
fltrd,
mg/L
(00930) | |----------------|---|---|--|--|--|--
--|--|--|--|--| | JUL 2003
10 | 1000 | .01 | 5.8 | 32 | 9.0 | 13 | 3.69 | .829 | .59 | . 2 | 1.39 | | Date | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water, | water,
fltrd,
mg/L | tuents
mg/L | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d | | water
fltrd,
mg/L
as N | Nitrite water, fltrd, mg/L as N (00613) | | JUL 2003
10 | 11 | .49 | <.2 | 8.65 | 3.0 | 26 | .04 | .00 | <.04 | <.06 | <.008 | | Date | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Alum-
inum,
water,
fltrd,
ug/L
(01106) | Alum- inum, water, unfltrd recover -able, ug/L (01105) | Anti-
mony,
water,
fltrd,
ug/L
(01095) | Anti-
mony,
water,
unfltrd
ug/L
(01097) | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | Beryll-
ium,
water,
fltrd,
ug/L
(01010) | Beryll-
ium,
water,
unfltrd
recover
-able,
ug/L
(01012) | Cadmium
water,
fltrd,
ug/L
(01025) | Cadmium
water,
unfltrd
ug/L
(01027) | | JUL 2003
10 | <.02 | 94 | 135 | <.30 | <.6 | 1.5 | <2 | .13 | .17 | .36 | .39 | | Date | Chrom-
ium,
water,
fltrd,
ug/L
(01030) | Chrom-
ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | Cobalt
water,
fltrd,
ug/L
(01035) | Cobalt
water,
unfltrd
recover
-able,
ug/L
(01037) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Iron,
water,
fltrd,
ug/L
(01046) | Iron,
water,
unfltrd
recover
-able,
ug/L
(01045) | Lead,
water,
fltrd,
ug/L
(01049) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Mangan-
ese,
water,
fltrd,
ug/L
(01056) | | JUL 2003
10 | <.8 | <.8 | .158 | .174 | 19.1 | 21.0 | 175 | 230 | .30 | .40 | 23.4 | | | | Date | Mangan
ese,
water
unfltr
recove
-able
ug/L
(01055 | ,
d Nickel
r water
, fltrd
ug/L | , recover
, -able
ug/L | , Selend ium, r water, fltrd ug/L | ium,
, water
, unfltro
ug/L | Silver,
, water
d fltrd
ug/L | , recove:
, -able
ug/L | ,
d
r | | | | , | JUL 2003
10 | 24 | .85 | .81 | <.5 | <.5 | <.2 | E.15 | | | | | | Date
JUL :
10 | e
(
2003 | ium,
water,
fltrd, u
ug/L | ium,
water,
nfltrd
ug/L | ium,
water, w
fltrd, um
ug/L | water, wa | Zinc, un
water, re
fltrd, - | -able,
ug/L | | | # 462155112181501 JACK CREEK ABOVE BULLION MINE TRIBUTARY, NEAR BASIN, MT $LOCATION.--Lat\ 46^{\circ}21'55",\ long\ 112^{\circ}18'15"\ (NAD\ 27),\ in\ NW^{1}/_{4}SW^{1}/_{4}SW^{1}/_{4}\ sec.\ 12,\ T.7\ N.,\ R.6\ W.,\ Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ 0.2\ mi\ upstream\ of\ Bullion\ Mine\ tributary,\ 2.4\ mi\ upstream\ of\ Basin\ Creek,\ and\ 7.1\ mi\ north\ of\ Basin.$ DRAINAGE AREA.--2.55 mi². PERIOD OF RECORD.--March 2003 to August 2003. GAGE.--None. Elevation at site is 6,580 ft (NGVD 29). #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water, deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | |-----------------------|--|---|---|--|--|--|--|--|---|--|---| | MAR 2003
24 | 1415 | .39 | 7.8 | 96 | 1.5 | 0.0 | 44 | 12.8 | 2.91 | 1.04 | . 2 | | MAY
13 | 1150 | 2.0 | 7.6 | 83 | 4.0 | 0.5 | 45 | 13.5 | 2.75 | | | | JUN
03 | 1300 | 11 | 7.4 | 41 | 12.5 | 4.5 | 20 | 5.84 | 1.20 | | | | AUG
21 | 1145 | .25 | 7.2 | 128 | 15.0 | 10.5 | 48 | 14.5 | 2.80 | | | | | | | | | | | | | | | | | Date | Sodium
water
fltrd
mg/L
(00930 | , lab,
, mg/L a
CaCO3 | t Chlor-
d ide,
water,
s fltrd, | ide,
water,
fltrd,
mg/L | Silica,
water,
fltrd,
mg/L
(00955) | water,
fltrd,
mg/L | tuents
mg/L | Residue
water,
fltrd, | Residue
water,
fltrd,
tons/d | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | | MAR 2003
24
MAY | 2.67 | 43 | .34 | .08 | 14.0 | 10.9 | 71 | .10 | .07 | 4.7 | 4 | | 13 | | | | | | | | | | 3.6 | 4 | | 03
AUG | | | | | | | | | | 4.7 | 8 | | 21 | | | | | | | | | | 6.3 | 6 | | Date | Cadmium
water,
fltrd,
ug/L
(01025) | Cadmium
water,
unfltrd
ug/L
(01027) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Lead,
water,
fltrd,
ug/L
(01049) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | Suspnd. sedi- ment, sieve diametr percent <.063mm (70331) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | | MAR 2003
24 | .26 | .24 | 3.0 | 3.2 | <.08 | E.04 | 54 | 40 | 75 | 1 | <.01 | | MAY
13 | .10 | .10 | 3.2 | 3.5 | E.05 | .28 | 19 | 19 | 71 | 1 | .01 | | JUN
03 | .07 | .10 | 4.8 | 6.4 | .12 | 2.05 | 14 | 21 | 46 | 11 | .32 | | AUG
21 | .07 | .08 | 1.9 | 1.8 | <.08 | .07 | 11 | 9 | 80 | 1 | <.01 | # 462120112173701 BULLION MINE ADIT NEAR BASIN, MT LOCATION.--Lat 46°21′20″, long 112°17′37″ (NAD 27), in NW¹/₄SW¹/₄SE¹/₄ sec. 13, T.7 N., R.6 W., Jefferson County, Hydrologic Unit 10020006, at PVC pipe draining the Bullion mine adit about 400 ft upstream from the Bullion mine tributary, 2 mi upstream from Jack Creek, and 6.3 mi northwest of Basin. PERIOD OF RECORD.--October 1999 to current year. GAGE.--None. Elevation at site is 7,360 ft (NGVD 29). #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) |
-----------------------|--|---|---|--|--|---|--|--|--|--|--| | JUN 2003
26
AUG | 1020 | .01 | 2.5 | 3010 | 14.0 | 5.5 | 350 | 80.1 | 35.7 | 2.22 | .1 | | 21 | 1045 | .02 | 3.6 | 3050 | 16.0 | 5.0 | 320 | 78.5 | 31.1 | 2.59 | .1 | | Date | Sodium,
water,
fltrd,
mg/L
(00930) | water, | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Alum-
inum,
water,
fltrd,
ug/L
(01106) | Anti-
mony,
water,
fltrd,
ug/L
(01095) | Arsenic
water,
fltrd,
ug/L
(01000) | Cadmium
water,
fltrd,
ug/L
(01025) | Chrom-
ium,
water,
fltrd,
ug/L
(01030) | Copper,
water,
fltrd,
ug/L
(01040) | | JUN 2003
26
AUG | 3.87 | 8.50 | .3 | 37.5 | 1610 | 19800 | 60.7 | 9240 | 718 | 10.4 | 16100 | | 21 | 4.79 | 2.11 | . 4 | 38.0 | 1160 | 18000 | 24.1 | 1870 | 464 | 3.7 | 11700 | | | | Date JUN 2003 | Iron,
water,
fltrd,
ug/L
(01046) | , fltrd
ug/L | , fltrd,
ug/L | Mercury
water,
fltrd,
ug/L | , water
, fltrd
ug/I | , water
d, fltrd
L ug/I | , water
l, fltrd
ug/L | .,
l, | | | | | 26
AUG | 285000 | 676 | 24800 | E.02 | 119 | 1.4 | 84100 | | | | | | 21 | 232000 | 410 | 23400 | <.02 | 89.7 | 7 .5 | 49200 |) | | $\mathtt{E--Estimated}.$ # 462153112181701 BULLION MINE TRIBUTARY AT MOUTH, NEAR BASIN, MT $LOCATION.--Lat\ 46^{\circ}21'53",\ long\ 112^{\circ}18'17"\ (NAD\ 27),\ in\ SE^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}\ sec.\ 13,\ T.7\ N.,\ R.5\ W.,\ Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ at\ confluence\ with\ Jack\ Creek,\ 2.2\ mi\ upstream\ from\ Basin\ Creek,\ and\ 6.7\ mi\ northwest\ of\ Basin.$ DRAINAGE AREA.--1.19 mi². PERIOD OF RECORD.--October 1996 to current year. GAGE.--None. Elevation at site is 6,595 ft (NGVD 29). #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | | | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | sium,
water,
fltrd,
mg/L | Sodium
adsorp-
tion
ratio
(00931) | |-----------------------|--|---|---|--|--|--|---|--|---|--|---| | MAR 2003 | | | | | | | | | | | | | 24
MAY | 1340 | .15 | 7.6 | 136 | 1.6 | 0.0 | 75 | 21.6 | 5.20 | 1.07 | . 2 | | 13
JUN | 1225 | .60 | 7.7 | 123 | 4.0 | 0.5 | 55 | 16.2 | 3.44 | | | | 03
AUG | 1230 | 5.7 | 7.3 | 54 | 12.5 | 4.0 | 21 | 6.06 | 1.33 | | | | 21 | 1130 | .23 | 4.3 | 626 | 15.0 | 11.0 | 140 | 37.8 | 10.3 | | | | Date | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d
(70302) | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | | MAR 2003
24
MAY | 3.18 | 8 | .81 | .11 | 16.5 | 78.8 | 135 | .18 | .05 | .7 | 4 | | 13
JUN | | | | | | | | | | 1.4 | 9 | | 03 | | | | | | | | | | 8.0 | 55 | | AUG
21 | | | | | | | | | | 5.0 | 15 | | Date | Cadmium
water,
fltrd,
ug/L
(01025) | Cadmium
water,
unfltrd
ug/L
(01027) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Lead,
water,
fltrd,
ug/L
(01049) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | Suspnd. sedi- ment, sieve diametr percent <.063mm (70331) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | | MAR 2003 | | | | | | | | | | | | | 24
MAY | 22.0 | 22.2 | 93.8 | 150 | .10 | 2.87 | 2640 | 2690 | 81 | 5 | <.01 | | 13
JUN | 10.9 | 11.1 | 41.1 | 117 | .14 | 3.53 | 1210 | 1250 | 75 | 3 | <.01 | | 03
AUG | 3.15 | 3.47 | 52.0 | 71.1 | 1.58 | 19.4 | 347 | 391 | 36 | 25 | .38 | | 21 | 77.1 | 76.7 | 1100 | 1070 | 12.9 | 15.2 | 8110 | 7810 | 93 | 4 | <.01 | ${\tt E--Estimated.}$ # 462047112201901 JACK CREEK AT MOUTH, NEAR BASIN, MT $LOCATION. --Lat\ 46^{\circ}20'47'', long\ 112^{\circ}20'19''\ (NAD\ 27), in\ NW^{1}/_{4}SE^{1}/_{4}SE^{1}/_{4}SE^{2}/_{4}SE^{2}, L7\ N., R.6\ W., Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ at\ Basin\ Creek\ road\ crossing,\ 7\ mi\ northwest\ of\ Basin.$ DRAINAGE AREA.--8.55 mi². PERIOD OF RECORD.--January 2000 to current year. GAGE.--None. Elevation at site is 6,260 ft (NGVD 29). #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | |-----------------------------|--|---|---|--|--|--|---|--|--|--|---| | APR 2003 | 1100 | 1.4 | 7 | 4.0 | | 0 5 | 2.4 | 10.0 | 0.16 | 1 15 | 0 | | 23
MAY | 1100 | 14 | 7.5 | 48 | 5.5 | 0.5 | 34 | 10.0 | 2.16 | 1.15 | . 2 | | 13
JUN | 1335 | 11 | 7.7 | 66 | 7.5 | 4.5 | 26 | 7.49 | 1.87 | | | | 04
AUG | 0840 | 22 | 7.7 | 42 | 10.0 | 4.0 | 18 | 5.39 | 1.21 | | | | 20 | 1050 | 1.3 | 7.9 | 114 | 22.5 | 13.0 | 44 | 13.1 | 2.79 | | | | Date | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d
(70302) | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | | APR 2003
23
MAY
13 | 2.36 | 21 | .76 | <.2 | 13.5 | 14.0 | 57 | .08 | 2.10 | 6.8 | 65
8 | | JUN
04 | | | | | | | | | | | 21 | | AUG | | | | | | | | | | 5.8 | | | 20 | | | | | | | | | | 5.4 | 8 | | Date | Cadmium
water,
fltrd,
ug/L
(01025) | Cadmium
water,
unfltrd
ug/L
(01027) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Lead,
water,
fltrd,
ug/L
(01049) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | Suspnd.
sedi-
ment,
sieve
diametr
percent
<.063mm
(70331) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | | APR 2003
23 | 1.83 | 3.61 | 35.6 | 133 | 1.12 | 26.4 | 237 | 409 | 74 | 46 | 1.7 | | MAY
13 | 1.20 | 1.36 | 17.5 | 22.1 | . 25 | 1.77 | 160 | 173 | 83 | 1 | .03 | | JUN
04 | .80 | 1.01 | 18.2 | 26.7 | .45 | 7.17 | 100 | 123 | 49 | 15 | .89 | | AUG
20 |
3.17 | 3.30 | 12.3 | 22.9 | .12 | .62 | 372 | 391 | 42 | 2 | .01 | # 06031600 BASIN CREEK AT BASIN, MT $LOCATION.--Lat~46^{\circ}16'16", long~112^{\circ}15'42"~(NAD~27), in~NE^{1}/_{4}NW^{1}/_{4}SW^{1}/_{4}~sec.~17,~T.6~N.,~R.5~W.,~Jefferson~County,~Hydrologic~Unit~10020006, at~county~bridge~on~old~interstate~15~in~Basin.$ DRAINAGE AREA.--41.1 mi². PERIOD OF RECORD.--October 1996 to current year. GAGE.--None. Elevation at site is 5,340 ft (NGVD 29). # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | |-----------------------|---|---|---|--|--|--|---|--|---|--|---| | FEB 2003
20 | 1000 | 4.2 | 7.8 | 102 | -2.0 | .0 | 39 | 11.1 | 2.82 | 1.25 | . 2 | | MAY
13 | 0900 | 62 | 8.0 | 49 | 6.0 | 2.0 | 21 | 6.10 | 1.46 | | | | JUN
04 | 1000 | 106 | 7.5 | 39 | 10.5 | 6.0 | 15 | 4.32 | .961 | | | | AUG
20 | 1140 | 2.7 | 7.2 | 108 | 23.0 | 17.0 | 43 | 12.9 | 2.65 | | | | Date | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d
(70302) | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | | FEB 2003
20
MAY | 3.60 | 30 | 1.18 | .11 | 17.3 | 19.4 | 75 | .10 | .87 | 3.1 | 4 | | 13
JUN | | | | | | | | | | 5.1 | 7 | | 04
AUG | | | | | | | | | | 5.2 | 10 | | 20 | | | | | | | | | | 7.4 | 8 | | Date | Cadmium
water,
fltrd,
ug/L,
(01025) | Cadmium
water,
unfltrd
ug/L
(01027) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Lead,
water,
fltrd,
ug/L
(01049) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | Suspnd. sedi- ment, sieve diametr percent <.063mm (70331) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | | FEB 2003
20 | .30 | .33 | 2.1 | 2.9 | .11 | . 29 | 67 | 74 | 67 | 1 | .01 | | MAY
13
JUN | .30 | .37 | 6.5 | 8.0 | .33 | 1.42 | 57 | 69 | 84 | 3 | .50 | | 04
AUG | .28 | .36 | 7.9 | 10.9 | .37 | 3.74 | 41 | 54 | 60 | 10 | 2.9 | | 20 | .24 | .24 | 3.1 | 3.3 | E.07 | .24 | 32 | 32 | 62 | 1 | .01 | # 461905112144201 CATARACT CREEK ABOVE UNCLE SAM GULCH, NEAR BASIN, MT $LOCATION.--Lat\ 46^{\circ}19'05", long\ 112^{\circ}14'42"\ (NAD\ 27), in\ SE^{1}/_{4}SE^{1}/_{4}NE^{1}/_{4}\ sec.\ 32, T.7\ N., R.5\ W., Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ 100ft\ upstream\ from\ Uncle\ Sam\ Gulch\ and\ 3.4\ mi\ northeast\ of\ Basin.$ DRAINAGE AREA.--22.2 mi². PERIOD OF RECORD.--October 1996 to March 2003 (discontinued). GAGE.--None. Elevation at site is 6,320 ft (NGVD 29). # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | | water, | Potas-
sium,
water,
fltrd,
mg/L
(00935) | | |----------------|--|---|---|--|--|--|---|--|---|--|---| | MAR 2003
25 | 0850 | 3.2 | 7.8 | 103 | -0.5 | 0.0 | 52 | 15.7 | 3.05 | 1.14 | . 2 | | Date | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d
(70302) | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | | MAR 2003
25 | 3.11 | 49 | . 69 | .09 | 14.7 | 12.8 | 81 | .11 | .70 | 2.2 | E2 | | Date | Cadmium
water,
fltrd,
ug/L
(01025) | Cadmium
water,
unfltrd
ug/L
(01027) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Lead,
water,
fltrd,
ug/L
(01049) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | Suspnd. sedi- ment, sieve diametr percent <.063mm (70331) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | | MAR 2003
25 | .30 | .32 | 8.1 | 7.4 | . 41 | .50 | 61 | 64 | 95 | 5 | .04 | # 462053112153601 CRYSTAL MINE ADIT NEAR BASIN, MT $LOCATION.--Lat~46^{\circ}20'53", long~112^{\circ}15'36"~(NAD~27), in~NE^{1}/_{4}SW^{1}/_{4}NW^{1}/_{4}~sec.~20, T.7~N., R.5~W., Jefferson~County,~Hydrologic~Unit~10020006, adit~discharge~from~Cyrstal~Mine,~about~3~mi~upstream~from~the~mouth~of~Uncle~Sam~Gulch,~and~5.25~mi~north~of~Basin.$ DRAINAGE AREA.--None. PERIOD OF RECORD.--June 2003 to August 2003. GAGE.--None. Elevation at site is 7,600 ft (NGVD 29). #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | |-----------------------|--|---|---|--|--|---|--|--|--|--|---| | JUN 2003
26
AUG | 0845 | .08 | 3.9 | 810 | 19.5 | 5.0 | 210 | 57.6 | 17.0 | 1.45 | .1 | | 21 | 1010 | .11 | 3.8 | 1270 | 15.0 | 6.0 | 220 | 57.8 | 17.3 | 1.47 | .1 | | Date | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | ide,
water, | ide,
water, | Silica,
water,
fltrd,
mg/L
(00955) | water, | water, | fltrd,
ug/L | | Cadmium
water,
fltrd,
ug/L
(01025) | Chrom-
ium,
water,
fltrd,
ug/L
(01030) | | JUN 2003
26 | 3.47 | <1 | 1.41 | <.2 | 20.6 | 477 | 2890 | 2.01 | 143 | 581 | <.8 | | AUG
21 | 3.34 | <1 | 1.16 | <.2 | 22.8 | 528 | 5810 | 2.09 | 85.2 | 700 | <.8 | | | Dat | e f | ater, w
ltrd, f
ug/L | ater, w
ltrd, f
ug/L | ead,
ater, w
ltrd, f
ug/L | ater, w
ltrd, f
ug/L | ater, w
ltrd, f
ug/L | ater, w
ltrd, f
ug/L |
ater, wa
ltrd, fl
ug/L i | inc,
ater,
Ltrd,
ug/L
1090) | | | | | | | Mangan- | | | | | |-----------------------|--|--|--|---|--|--|--|--| | Date | Copper,
water,
fltrd,
ug/L
(01040) | Iron,
water,
fltrd,
ug/L
(01046) | Lead,
water,
fltrd,
ug/L
(01049) | ese,
water,
fltrd,
ug/L
(01056) | Mercury
water,
fltrd,
ug/L
(71890) | Nickel,
water,
fltrd,
ug/L
(01065) | Silver,
water,
fltrd,
ug/L
(01075) | Zinc,
water,
fltrd,
ug/L
(01090) | | JUN 2003
26
AUG | 5080 | 39500 | 30.9 | 12200 | <.02 | 38.4 | <.3 | 45700 | | 21 | 7400 | 55100 | 40.2 | 13600 | <.02 | 39.5 | <.2 | 55900 | # 461904112144401 UNCLE SAM GULCH AT MOUTH, NEAR BASIN, MT $LOCATION.\text{--Lat }46^\circ19'04'', long\ 112^\circ14'44''\ (NAD\ 27), in\ SE^1/_4SE^1/_4NE^1/_4\ sec.\ 32,\ T.7\ N.,\ R.5\ W.,\ Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ at\ confluence\ with\ Cataract\ Creek,\ 3.4\ mi\ northeast\ of\ Basin.$ DRAINAGE AREA.--3.06 mi². PERIOD OF RECORD.--October 1996 to current year. GAGE.--None. Elevation at site is 6,315 ft (NGVD 29). # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | |------------------|--|---|---|--|--|--|---|--|--|--|---| | MAR 2003
25 | 0930 | .54 | 7.5 | 112 | -1.0 | 0.5 | 50 | 14.6 | 3.19 | .79 | . 2 | | MAY
13
JUN | 1035 | 3.4 | 8.0 | 74 | 10.5 | 2.5 | 35 | 10.7 | 2.02 | | | | 04
AUG | 1140 | 8.4 | 7.4 | 46 | 11.0 | 6.0 | 18 | 5.36 | 1.08 | | | | 21 | 0910 | .37 | 8.0 | 269 | 16.5 | 9.0 | 73 | 21.9 | 4.31 | | | | Date | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d
(70302) | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | | MAR 2003
25 | 3.13 | 28 | .41 | .08 | 16.0 | 35.6 | 92 | .13 | .13 | 2.9 | 3 | | MAY
13 | | | | | | | | | | 4.5 | 15 | | JUN
04
AUG | | | | | | | | | | 6.2 | 59 | | 21 | | | | | | | | | | 4.9 | 5 | | Date | Cadmium
water,
fltrd,
ug/L
(01025) | Cadmium
water,
unfltrd
ug/L
(01027) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | water, | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | diametr | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | | MAR 2003
25 | 24.2 | 23.0 | 74.8 | 87.9 | . 27 | .82 | 2040 | 2170 | 75 | 1 | <.01 | | MAY
13 | 11.0 | 11.2 | 90.2 | 125 | .83 | 8.19 | 1010 | 1020 | 80 | 5 | .05 | | JUN
04
AUG | 4.85 | 6.28 | 77.8 | 173 | 1.31 | 40.0 | 453 | 560 | 45 | 28 | .64 | | 21 | 19.7 | 19.6 | 32.5 | 38.3 | .18 | .59 | 1730 | 1650 | 75 | 1 | <.01 | | | | | | | | | | | | | | # 06031960 CATARACT CREEK AT BASIN, MT $LOCATION.--Lat\ 46^{\circ}16'17",\ long\ 112^{\circ}14'28"\ (NAD\ 27),\ in\ NE^{1}/_{4}NW^{1}/_{4}SW^{1}/_{4}\ sec.\ 16,\ T.6\ N.,\ R.5\ W.,\ Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ at\ county\ bridge,\ 0.1\ mi\ upstream\ from\ the\ Boulder\ River,\ and\ 1\ mi\ east\ of\ Basin.$ DRAINAGE AREA.--29.3 mi². PERIOD OF RECORD.--October 1996 to current year. GAGE.--None. Elevation at site is 5,270 ft (NGVD 29). #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | |-----------------------|--|---|---|--|--|--|--|--|---|--|---| | FEB 2003
20 | 1115 | 2.3 | 7.5 | 130 | -2.0 | .0 | 58 | 17.6 | 3.53 | 1.07 | . 2 | | 13 | 1145 | 46 | 7.7 | 71 | 21.0 | 5.5 | 33 | 10.2 | 1.81 | | | | JUN
04 | 1300 | 68 | 7.3 | 50 | 14.0 | 6.0 | 20 | 6.19 | 1.20 | | | | AUG
20 | 1230 | 2.0 | 8.2 | 155 | 24.0 | 16.5 | 68 | 21.1 | 3.79 | | | | Date | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | consti-
tuents
mg/L | Residue
water, | Residue
water,
fltrd, | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | | FEB 2003
20
MAY | 3.55 | 49 | .58 | .09 | 15.2 | 20.0 | 91 | .12 | .57 | 3.1 | 3 | | 13
JUN | | | | | | | | | | 2.3 | 4 | | 04
AUG | | | | | | | | | | 3.4 | 11 | | 20 | | | | | | | | | | 5.5 | 5 | | Date | Cadmium
water,
fltrd,
ug/L
(01025) | Cadmium
water,
unfltrd
ug/L
(01027) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Lead,
water,
fltrd,
ug/L
(01049) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | Suspnd. sedi- ment, sieve diametr percent <.063mm (70331) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | | FEB 2003
20 | 3.01 | 3.07 | 9.5 | 10.2 | .37 | .39 | 284 | 307 | 83 | 1 | .01 | | MAY
13 | 1.19 | 1.34 | 16.5 | 22.0 | .29 | 1.65 | 139 | 148 | 69 | 3 | .37 | | JUN
04 | .84 | 1.05 | 19.9 | 26.9 | .55 | 6.21 | 98 | 118 | 52 | 7 | 1.3 | | AUG
20 | 1.91 | 1.89 | 7.1 | 8.6 | E.04 | .14 | 130 | 129 | 57 | 1 | .01 | # 06032400 BOULDER RIVER BELOW LITTLE GALENA GULCH, NEAR BASIN, MT $LOCATION. --Lat\ 46^{\circ}14'58", long\ 112^{\circ}10'27\ (NAD\ 27), in\ NE^{1}/_{4}NE^{1}/_{4}NW^{1}/_{4}\ sec.\ 25, T.6\ N., R.5\ W., Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ at\ county\ bridge,\ 0.2\ mi\ downstream\ from\ Little\ Galena\ Gulch,\ and\ 2.5\ mi\ northeast\ of\ Basin.$ DRAINAGE AREA.--318 mi². PERIOD OF RECORD.--October 1996 to current year. GAGE.--None. Elevation at site is 5,020 ft (NGVD 29). #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) |
Sodium
adsorp-
tion
ratio
(00931) | |----------------|--|---|---|--|--|--|---|--|---|--|---| | FEB 2003 | | | | | | | | | | | | | 21
MAY | 0915 | 18 | 8.1 | 147 | 4.0 | . 0 | 59 | 17.1 | 3.89 | 1.55 | . 4 | | 13
JUN | 1315 | 332 | 7.7 | 98 | 21.5 | 8.5 | 39 | 11.7 | 2.32 | | | | 05
AUG | 1000 | 497 | 7.8 | 59 | 15.0 | 6.5 | 22 | 6.45 | 1.32 | | | | 20 | 1330 | 12 | 7.7 | 171 | 25.0 | 21.0 | 63 | 18.9 | 3.79 | | | | | | | | | | | | | | | | | Date | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d
(70302) | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | | FEB 2003
21 | 7.04 | 55 | 3.09 | .13 | 18.8 | 20.3 | 105 | .14 | 5.05 | 3.4 | 4 | | MAY | 7.04 | | | | | | | | | | | | 13
JUN | | | | | | | | | | 3.8 | 5 | | 05
AUG | | | | | | | | | | 4.0 | 7 | | 20 | | | | | | | | | | 9.7 | 9 | | Date | Cadmium
water,
fltrd,
ug/L
(01025) | Cadmium
water,
unfltrd
ug/L
(01027) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Lead,
water,
fltrd,
ug/L
(01049) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | Suspnd. sedi- ment, sieve diametr percent <.063mm (70331) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | | FEB 2003 | | 7.6 | 0.0 | 10.6 | 1.0 | | 11.5 | 105 | 5.4 | | 1.0 | | 21
MAY | .68 | .76 | 8.2 | 10.6 | .16 | .55 | 117 | 135 | 74 | 2 | .10 | | 13
JUN | .23 | .32 | 7.6 | 9.7 | .24 | 1.14 | 38 | 50 | 55 | 12 | 11 | | 05
AUG | .20 | .43 | 9.0 | 17.9 | .38 | 4.23 | 34 | 52 | 53 | 20 | 27 | | 20 | .30 | .38 | 8.9 | 10.1 | .10 | .34 | 31 | 37 | 82 | 2 | .06 | #### 06033000 BOULDER RIVER NEAR BOULDER, MT $LOCATION.--Lat\ 46^{\circ}12'40'', long\ 112^{\circ}05'27''\ (NAD\ 27), in\ SE^{1}/_{4}NE^{1}/_{4}SW^{1}/_{4}\ sec.\ 3,\ T.5\ N.,\ R.4\ W.,\ Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ on\ N. And\ M.$ left bank 40 ft downstream from county bridge, 1.1 mile downstream from Muskrat Creek, 2.0 mi southeast of Boulder, and at river mile 44.1. DRAINAGE AREA.--381 mi². PERIOD OF RECORD.--May 1929 to December 1932, March 1934 to September 1972, October 1984 to current year. Monthly discharge only for some periods, published in WSP 1309. REVISED RECORDS.--WSP 1279: 1931. GAGE.--Water-stage recorder. Elevation of gage is 4,810 ft (NGVD 29). Prior to Aug. 29, 1946, nonrecording gage at present site and elevation. REMARKS.--Records good except those for estimated daily discharges, which are fair. Diversions for irrigation of about 3,500 acres upstream from station. Several observations of water temperature and specific conductance were made during the year. U.S. Geological Survey satellite telemeter EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 22, 1981, reached a discharge of 7,000 ft³/s, gage height, 12.3 ft, from floodmarks. | | | DISCHARO | GE, CUBIO | C FEET PE | | | R YEAR OO
VALUES | CTOBER 20 | 002 TO S | EPTEMBER | 2003 | | |--|-------------------------------------|---|--|--|---|-------------------------------------|---|---|-------------------------------------|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 20
20
19
20
20 | 17
18
17
18
19 | 27
29
29
28
28 | 18
19
21
21
22 | 37
30
28
27
27 | 23
23
23
23
23 | 103
122
91
63
62 | 247
270
274
334
353 | 932
750
584
487
416 | 59
55
50
48
43 | 11
10
12
15
15 | 9.2
9.1
9.0
9.1
8.9 | | 6
7
8
9
10 | 21
21
21
23
22 | 20
22
22
23
25 | 27
23
21
21
22 | 22
21
21
20
19 | 26
25
25
26
26 | 23
23
24
24
24 | 56
45
51
63
111 | 346
307
288
260
242 | 384
348
316
318
320 | 41
38
36
36
31 | 14
14
12
11 | 9.1
9.4
9.8
9.9 | | 11
12
13
14
15 | 21
21
21
21
22 | 26
26
27
27
27 | 23
22
23
25
26 | 16
16
16
16
17 | 26
25
25
25
25 | 30
48
83
106
70 | 164
200
259
263
226 | 227
247
317
339
401 | 334
285
253
276
228 | 27
24
19
19 | 9.2
9.1
9.2
9.5
9.2 | 10
11
11
12
11 | | 16
17
18
19
20 | 22
22
22
22
22 | 26
27
27
28
31 | 26
26
21
19
16 | 17
17
17
17
18 | 25
25
25
25
25 | 63
50
72
78
77 | 174
156
145
130
135 | 488
455
408
363
339 | 209
198
188
168
192 | 18
18
17
17 | 9.3
9.7
9.7
9.1
8.5 | 12
12
12
12
12 | | 21
22
23
24
25 | 22
22
21
16
15 | 31
32
32
22
18 | 16
17
18
18 | 18
20
19
18
18 | 25
25
e23
e20
e21 | 75
72
76
54
63 | 166
219
329
435
473 | 342
371
512
708
936 | 194
175
170
166
152 | 16
16
13
13 | 8.2
8.2
9.2
11 | 12
12
12
12
12 | | 26
27
28
29
30
31 | 15
17
23
18
14
16 | 25
29
31
31
29 | 16
16
16
17
17 | 19
20
21
22
23
25 | e22
e23
e23
 | 60
46
41
43
51
64 | 410
324
278
245
236 | 1040
1050
1020
1060
1030
1040 | 129
114
104
91
79 | 16
16
14
12
11 | 9.8
9.9
9.7
9.7
10
9.9 | 12
12
12
12
12 | | TOTAL MEAN MAX MIN AC-FT STATIST | 622
20.1
23
14
1230 | 753
25.1
32
17
1490
ONTHLY MEA | 667
21.5
29
16
1320
N DATA FO | 594
19.2
25
16
1180
OR WATER 3 | 710
25.4
37
20
1410
YEARS 1929 | 1555
50.2
106
23
3080 | 5734
191
473
45
11370
BY WATER | 15614
504
1060
227
30970
YEAR (WY) | 8560
285
932
79
16980 | 783
25.3
59
11
1550 | 323.1
10.4
15
8.2
641 | 328.5
10.9
12
8.9
652 | | MEAN
MAX
(WY)
MIN
(WY) | 36.6
113
1966
5.85
1936 | 34.9
71.2
1966
9.09
1936 | 28.5
53.0
1996
7.45
1936 | 26.3
42.1
1969
10.1
1937 | 30.6
68.5
1971
7.71
1937 | 48.1
121
1986
20.7
1937 | 167
511
1930
46.0
1967 | 461
961
1948
126
1992 | 405
1027
1965
70.4
2000 | 94.5
374
1938
10.9
1931 | 31.1
194
1993
7.11
1931 | 28.5
156
1993
5.69
1935 | | ANNUAL ANNUAL HIGHEST LOWEST HIGHEST ANNUAL MAXIMUM INSTANI ANNUAL 10 PERC 50 PERC | | MEAN EAN EAN EAN MINIMUM MIGGE DW FLOW CC-FT) EDS | FOR 2 | 27182
74.5
666
10
14
53920
235
23
17 | Jun 2
Jun 2
Jan 2
Feb 24 | F | OR 2003 WA 36243.6 99.3 1060 8.2 8.9 1150 7.76 47.9 71890 317 23 11 | May 29
Aug 21
Aug 17
May 27 | | MATER YEAR
117
211
48.2
2400
0.0
1.0
3490
10.9
0.0
84400
337
36
16 | May 22
0 Jul 15
Jan 21
Jun 9
0 Jun 9 | 1965
2000
1948
1931
1930
1964
1964 | $[\]star$ --During periods of operation (May 1929 to December 1932, March 1934 to September 1972, October 1984 to present). a--Gage height, 4.74 ft. e--Estimated. #### 06036650 JEFFERSON RIVER NEAR THREE FORKS, MT $LOCATION.--Lat\ 45^{\circ}53'52", long\ 111^{\circ}35'45"\ (NAD\ 27), in\ SW^{1}/_{4}SW^{1}/_{4}NW^{1}/_{4}\ sec. 27, T.2\ N., R.1\ E., Broadwater\ County,\ Hydrologic\ Unit\ 10020005, on\ left\ bank\ 50\ ft\ downstream\ from\ bridge\ on\ U.S.\ Highway\ 10,\ 2.5\ mi\ northwest\ of\ Three\ Forks,\ and\ at\ river\ mile\ 2,329.3.$ DRAINAGE AREA.--9,532 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1978 to current year. GAGE.--Water-stage recorder. Elevation of gage is 4,076.76 ft (NGVD 29). REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor.
Some regulation by Ruby River Reservoir (station number 06020500) and Clark Canyon Reservoir (station number 06015300). Diversions for irrigation of about 390,000 acres upstream from station. U.S. Army Corps of Engineers satellite telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES Y OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP | | | | | | | | | | | | | |--|--|--|--------------------------------------|--|--|--|---|--|---|---|---|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 756
773
802
829
863 | 705
793
1010
1130
1150 | 1100
1100
1100
1070
1070 | 972
939
957
976
988 | 1040
1060
1060
1060
1030 | e750
e800
e850
e800
e800 | 1210
1790
2470
2180
1780 | 2600
2750
2870
2870
3070 | 10300
11300
11000
9560
7940 | 1390
1210
1090
1030
1020 | 173
158
152
161
159 | 196
205
203
189
173 | | | 6
7
8
9
10 | 857
846
835
835
845 | 1130
1140
1160
1180
1120 | 1070
1060
1000
959
927 | 954
949
923
863
681 | e950
e850
e900
e900 | e850
e900
e800
e850
e900 | 1570
1460
1340
1250
1230 | 3190
2970
2690
2460
2290 | 6570
5650
4910
4350
4320 | 979
878
776
652
584 | 177
172
172
171
167 | 167
178
190
211
216 | | | 11
12
13
14
15 | 856
863
869
872
878 | 1110
1120
1120
1130
1120 | 968
1020
980
997
1020 | 637
e800
e900
e950
e1000 | e950
e900
e900
e900 | e950
e1050
1140
1200
1380 | 1470
1910
2260
2660
2940 | 2170
2090
2100
2140
2120 | 4480
4490
4170
3830
3760 | 543
470
422
396
354 | 177
195
187
180
168 | 230
240
273
277
299 | | | 16
17
18
19
20 | 881
896
902
905
908 | 1120
1110
1090
1100
1110 | 1020
1030
986
958
807 | e950
e750
e650
e700
e750 | 923
918
908
901
890 | 1370
1390
1570
1670
1660 | 2810
2550
2240
2110
1990 | 2180
2400
2580
2660
2590 | 3630
3420
3260
3170
3030 | 333
304
283
269
253 | 156
165
170
177
175 | 309
328
351
372
414 | | | 21
22
23
24
25 | 913
910
919
950
965 | 1120
1150
1200
1210
1080 | 840
946
978
911
701 | e800
e700
e600
e650
e750 | 915
935
e750
e550
e500 | 1570
1490
1440
1440
1430 | 1900
1980
2220
2580
2970 | 2420
2180
2010
2000
2490 | 3570
4210
4170
3850
3450 | 240
226
218
199
195 | 175
178
173
176
176 | 433
462
451
444
453 | | | 26
27
28
29
30
31 | 962
947
934
957
1000
712 | 1020
995
1110
1180
1120 | 568
653
e900
e950
e950 | e900
e1000
e1000
e950
e950
e1000 | e550
e650
e700
 | 1450
1440
1310
1200
1140
1130 | 3340
3350
3160
2840
2670 | 3380
4670
6040
6970
7850
8870 | 3040
2600
2160
1840
1600 | 207
250
313
286
240
195 | 174
168
173
179
177 | 426
442
443
428
438 | | | MEAN
MAX
MIN
AC-FT 5 | 27240
879
1000
712
54030 | 32833
1094
1210
705
65120 | 29587
954
1100
568
58690 | 26589
858
1000
600
52740 | 24497
875
1060
500
48590
YEARS 1978 | 36720
1185
1670
750
72830 | 66230
2208
3350
1210
131400 | 99670
3215
8870
2000
197700 | 143630
4788
11300
1600
284900 | 15805
510
1390
195
31350 | 5338
172
195
152
10590 | 9441
315
462
167
18730 | | | MEAN
MAX
(WY)
MIN | 1582
3163
1985
803
1989 | 1631
2805
1984
1039
1989 | 1342
1993
1999
805
1993 | 1222
1929
1983
727
1993 | 1298
1964
1984
805
2002 | 1538
2295
1996
824
2002 | 2384
4444
1996
1371
1992 | 3766
7679
1997
990
1992 | 5097
11420
1997
988
1992 | 2030
5505
1995
352
1988 | 890
3030
1984
59.1
1988 | 1127
3303
1984
262
1994 | | | SUMMARY S | STATIST | ICS | FOR | 2002 CALE | NDAR YEAR | | FOR 2003 | WATER YEAR | 3 | WATER YEAR | RS 1978 - | 2003 | | | ANNUAL TO
ANNUAL ME
HIGHEST A
HIGHEST I
LOWEST DA
ANNUAL SE
MAXIMUM E
MAXIMUM E
INSTANTAN
ANNUAL RU
10 PERCEN
50 PERCEN | EAN ANNUAL M NNUAL M DAILY M EVEN-DA PEAK FL PEAK ST NEOUS L UNOFF (NT EXCE | EAN EAN AN Y MINIMUM OW AGE OW FLOW AC-FT) EDS EDS | | 415193
1138
6180
204
222
823500
2020
910
481 | Jun 4
Aug 21
Aug 19 | | 517580
1418
11300
152
164
11500
7.
a145
1027000
3030
954
195 | Jun 2
Aug 3
Aug Jun 2
72 Jun 2
Aug 3 | 3
2
2
2 | 1991
3650
996
16800
44
48
b17000
c9.8
d43
1443000
3830
1460
607 | Jun 9
Aug 19
Aug 19
Jun 9
8 Jan 3
Aug 19 | 1988
1988
1995
1997 | | a--Gage height, 1.75 ft. b--Gage height, 9.00 ft. c--Backwater from ice. d--Gage height, 1.31 ft. e--Estimated. # 06036650 JEFFERSON RIVER NEAR THREE FORKS, MT--Continued WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1980-81, 1986, 1987, May 1999 to current year. PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: June 1980 to September 1981, October 1999 to current year. INSTRUMENTATION.--Temperature recorder since October 1999. REMARKS--Daily water temperature records good. Unpublished records of instantaneous specific conductance and temperature data are available in files of the District office. EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 28.0°C, July 19-21, 2003; minimum, 0.0°C, on many days during winter period. EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 28.0°C, July 19-21; minimum, 0.0°C, many days October through March. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 Ammonia Nitrite | | | | T | pH, | Specif. | | | Ammonia
+ | Nitrite
+ | 371 1 | | |-----------|-----------|--|--|--|--|---|--|---|---|---|--| | | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | field,
std
units | wat unf
uS/cm
25 degC | Temper-
ature,
air,
deg C
(00020) | ature,
water,
deg C | org-N,
water,
unfltrd
mg/L
as N
(00625) | nitrate
water
fltrd,
mg/L
as N
(00631) | water,
fltrd,
mg/L
as N
(00613) | | | | APR 2003 | 1620 | 2810 | 8.2 | 228 | 12.0 | 10.0 | .77 | 150 | .004 | | | | 16
MAY | 1630 | | | | | | | .158 | | | | | JUN | 1230 | 2620 | 8.4 | 218 | 14.0 | 12.0 | . 44 | <.022 | <.002 | | | | 03
JUL | 1000 | 11200 | 8.0 | 170 | 24.0 | 14.0 | .85 | .023 | .003 | | | | 29 | 1300 | 290 | 8.6 | 419 | 28.0 | 24.0 | . 29 | <.022 | <.002 | | | | | | Date | Orthorphose phate water fltromy/I as I (0067) | Phose, Phose, phorus d, water unfltre mg/I | s, sieve
c, diamet
cd percer
c <.063m | pende, sedi-
sedi-
ment
concer
nt tratio | ed Sus- pende sedi- ment n load, tons/ | ed
-
:
/d | | | | | | | APR 2003
16 | .023 | 3 .177 | 64 | 99 | 751 | | | | | | | | MAY
20 | .009 | | 78 | 26 | 184 | | | | | | | | JUN
03 | .040 | | 51 | 179 | 5410 | | | | | | | | JUL
29 | <.00 | 7 .014 | 84 | 3 | 2.3 | 3 | | | | Date | Time | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | fltrd,
mg/L | Sodium
adsorp-
tion
ratio
(00931) | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | | MAY
20 | 1230 | 89 | 23.7 | 7.17 | 2.33 | . 4 | 9.19 | 78 | 4.18 | . 2 | 16.0 | | JUL
29 | 1300 | 180 | 41.3 | 17.9 | 4.65 | .7 | 20.7 | 145 | 9.84 | . 4 | 14.1 | | Date | | mg/L | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d | water
unfltrd
ug/L |
Cadmium
water,
unfltrd
ug/L
(01027) | | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | recover
-able,
ug/L | recover
-able,
ug/L | unfltrd
recover
-able,
ug/L | | MAY
20 | 24.9 | 134 | .18 | 950 | 3 | <.2 | E.6 | 5.9 | 1.51 | .85 | 11 | | JUL
29 | 58.6 | 254 | .35 | 199 | 4 | <.04 | <.8 | 1.5 | .08 | 1.09 | <2 | | | | | | | | | | | | | | # 06036650 JEFFERSON RIVER NEAR THREE FORKS, MT--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|------------------------------------|---------------------------------|---------------------------------|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--| | | | OCTOBER | | N | OVEMBER | | D | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 10.5
10.5
9.0
10.5
9.5 | 8.0
7.0
7.5
7.5
8.5 | 9.0
8.5
8.0
9.0
9.0 | 0.0
0.5
0.0
0.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 1.0
2.5
2.5
1.5 | 0.0
0.5
1.0
1.0 | 1.0 | 0.0
0.0
0.5
0.5 | 0.0 | 0.0
0.0
0.0
0.0 | | 6
7
8
9
10 | 11.0
12.5
12.0
12.0 | 8.0
9.0
9.0
9.0
8.5 | 9.5
10.5
10.5
10.5 | 1.0
1.0
3.0
2.5
2.5 | 0.0
0.0
0.5
1.5 | 0.5
0.5
1.5
2.0
2.0 | 1.5
0.5
0.0
0.0 | 0.0
0.0
0.0
0.0 | 1.0
0.5
0.0
0.0 | 0.5
0.5
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 11
12
13
14
15 | 10.0
8.5
8.5
9.0
9.0 | 8.0
5.5
5.0
6.0
5.5 | 9.0
7.0
7.0
7.5
7.5 | 3.5
3.0
3.5
3.0
3.5 | 2.0
2.0
2.0
2.5
2.0 | 2.5
2.5
3.0
3.0 | 0.5
0.5
1.0
2.5
2.5 | 0.0
0.0
0.0
1.0
2.0 | 0.0
0.0
0.5
2.0
2.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 16
17
18
19
20 | 8.5
9.0
9.0
8.5
9.0 | 6.0
6.0
6.0
5.0 | 7.5
7.5
7.5
7.0
7.5 | 3.0
5.0 | 2.5
2.0
2.0
2.0
2.5 | 2.5
2.5
2.5
2.5
4.0 | 2.0
2.0
1.0
0.0 | 1.5
1.0
0.0
0.0 | | 0.0
0.0
0.0
0.0 | | 0.0
0.0
0.0
0.0 | | 21
22
23
24
25 | 10.0
8.5
6.0
4.5
5.0 | 7.0
6.0
4.0
2.0 | 8.5
7.0
4.5
3.5
3.5 | 5.5
5.5
5.0
2.5
0.0 | 4.0
3.5
2.5
0.0 | 4.5
4.5
4.0
1.5
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 26
27
28
29
30
31 | 5.0
4.5
5.0
4.0
1.0 | 2.0
2.0
3.5
1.0
0.0 | 3.5
3.5
4.5
2.0
0.0 | 0.0
0.5
0.0
1.5
1.5 | | 0.0
0.0
0.0
0.5
1.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
1.0
2.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.5 | | MONTH | 12.5 | 0.0 | 7.0 | 5.5 | 0.0 | 1.5 | 2.5 | 0.0 | 0.5 | 2.5 | 0.0 | 0.0 | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 3.5
3.5
2.0
1.5
0.5 | 2.0
2.0
1.0
0.5
0.0 | 3.0
3.0
1.5
1.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 8.5
8.0
6.5
6.0
8.0 | 7.5
6.0
5.0
4.0
4.5 | 8.0
7.5
5.5
5.0
6.0 | 12.0
12.0
11.0
11.5
11.0 | 9.5
9.5
10.0
9.0
9.5 | 10.5
10.5
10.5
10.0 | | 6
7
8
9
10 | 0.0
0.0
0.0
0.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 7.5
9.0
10.5
12.5
13.5 | 5.5
5.5
6.0
8.0
9.0 | 7.0
7.0
8.0
10.0
11.5 | 10.5
12.5
11.5
11.0 | 8.5
9.0
9.5
9.0
8.5 | 9.5
10.5
10.5
10.0 | | 11
12
13
14
15 | 1.0
1.5
1.0
2.0
3.0 | 0.0
0.0
0.0
0.0
1.0 | 0.5
0.5
0.5
1.0
2.0 | 0.5
2.0
6.5
8.5
8.0 | 0.0
0.0
1.0
6.0
6.5 | 0.0
1.0
4.0
7.0
7.0 | 13.5
14.0
13.5
11.5 | 10.5
11.0
11.5
10.0
8.5 | 12.0
12.5
12.0
10.5
9.5 | 12.0
12.5
14.0
16.0
17.5 | 9.0
10.5
10.0
12.0
14.0 | 12.0 | | 16
17
18
19
20 | 2.5
3.0
2.5
3.0
2.5 | 1.0
1.0
0.5
0.5 | 2.0
2.0
1.5
2.0 | 7.0
7.0
6.0
6.5
7.5 | 6.0
5.0
4.5
3.5
4.5 | 6.5
6.0
5.5
5.0
6.0 | 10.0
9.0
9.0
11.5
12.5 | 7.0
8.0
8.5
8.0
9.0 | 8.5
8.5
8.5
9.5
11.0 | 16.5
15.0
12.5
12.0
13.0 | 14.0
12.5
10.0
8.5
9.5 | 15.0
13.5
12.0
10.0
11.5 | | 21
22
23
24
25 | 3.5
3.0
0.0
0.0 | 1.0
0.0
0.0
0.0
0.0 | 2.0
1.5
0.0
0.0 | 7.0
8.5
9.0
7.5
6.0 | 6.0
6.5
5.5
5.0 | 6.5
7.0
7.5
6.5
5.5 | 14.0
15.0
13.5
12.5
11.5 | 10.0
11.5
12.0
11.5
10.0 | 12.0
13.0
13.0
12.0
11.0 | 14.0
16.0
18.5
20.5
20.0 | 11.5
12.0
14.5
16.5
17.5 | 12.5
14.0
16.0
18.5
18.5 | | 26
27
28
29
30
31 | 0.0
0.0
0.0
 | 0.0
0.0
0.0 | 0.0
0.0
0.0
 | 6.0
4.5
6.5
8.5
10.0
10.0 | 4.5
3.5
2.5
4.5
6.5
8.0 | 5.0
4.0
4.5
6.0
8.0
8.5 | 10.0
10.0
9.0
8.0
10.5 | 8.0
7.0
7.5
7.5
7.5 | 9.0
8.5
8.5
7.5
9.0 | 18.5
18.5
18.5
19.5
18.5
17.0 | 16.5
16.0
16.0
17.0
17.0 | 17.5
17.0
17.5
18.5
18.0
16.5 | | MONTH | 3.5 | 0.0 | 1.0 | 10.0 | 0.0 | 4.0 | 15.0 | 4.0 | 9.5 | 20.5 | 8.5 | 13.5 | # 06036650 JEFFERSON RIVER NEAR THREE FORKS, MT--Continued # WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | 1 | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5 | 16.5
16.0
16.0
15.5
16.0 | 15.5
14.5
13.5
14.5
14.0 | 16.0
15.0
14.5
15.0
15.0 | 23.5
23.0
22.5
23.5
23.0 | 20.0
19.5
18.5
19.5
19.0 | 21.5
21.0
20.5
21.0
21.0 | 27.0
27.0
25.5
25.5
25.0 | 21.0
21.5
22.0
21.5
20.0 | 23.5
24.5
23.5
23.0
22.5 | 22.0
22.0
22.0
21.5
20.5 | 17.0
17.0
17.0
17.5
17.5 | 19.5
19.5
19.5
19.5 | | 6
7
8
9
10 | 15.5
15.5
17.5
18.0
18.5 | 14.0
13.0
14.0
15.5
16.5 | 14.5
14.0
15.5
17.0
17.5 | 23.0
24.0
22.5
23.0
24.5 | 18.5
19.0
19.5
18.0
19.5 | 20.5
21.5
20.5
20.5
22.0 | 25.5
26.0
24.0
25.5
25.5 | 19.5
19.5
20.5
19.0
20.0 | 22.0
22.5
22.5
22.0
23.0 | 19.5
22.0
19.5
17.5
16.5 | 18.0
17.0
15.5
13.5
14.5 | 18.5
19.5
17.5
15.5 | | 11
12
13
14
15 | 19.0
19.0
18.5
19.0
20.0 | 16.5
15.5
16.5
16.5 | 17.5
17.5
17.5
17.5
18.0 | 25.5
26.0
25.5
25.5
26.0 | 20.5
21.5
22.0
20.5
21.5 | 23.0
24.0
23.5
23.0
23.5 | 24.0
25.0
25.0
26.0
26.5 | 20.5
19.5
20.0
20.0
21.5 | 22.0
22.0
22.0
22.5
24.0 | 16.0
14.0
15.0
16.0
14.0 | 13.5
12.0
11.5
11.5 | 14.5
13.0
13.0
13.5
13.0 | | 16
17
18
19
20 | 20.5
21.0
21.0
20.5
19.5 | 17.0
18.0
19.0
19.0
17.5 | 19.0
19.5
20.0
19.5
18.5 | 25.5
26.0
27.5
28.0
28.0 | 21.5
21.5
21.5
22.5
22.5 | 23.5
23.5
24.5
25.0
25.5 | 25.5
23.0
23.5
24.5
25.5 | 21.0
19.5
18.0
19.0
20.0 | 23.0
21.5
20.5
21.5
22.5 | 14.0
12.5
13.0
13.5
14.5 | 12.0
10.5
9.5
10.0
11.5 | 12.5
11.5
11.0
11.5
13.0 | | 21
22
23
24
25 | 17.5
16.5
16.0
14.5
16.0 | 16.0
14.0
12.5
13.0
12.0 | 17.0
15.0
14.0
14.0
14.0 | 28.0
27.5
27.0
26.5
25.5 | 22.0
22.5
22.5
22.5
22.0 | 25.0
25.0
24.5
24.0
23.5 | 24.0
23.5
24.0
24.5
24.5 | 19.5
20.0
19.0
18.5
19.0 | 22.0
21.5
21.5
21.5
21.5 | 14.5
15.0
15.5
15.5 | 11.5
11.5
12.5
12.0
12.5 | 13.0
13.5
14.0
13.5
14.0 | | 26
27
28
29
30
31 | 17.5
19.5
22.0
23.0
23.5 | 14.5
15.5
18.0
19.0
20.0 | 16.0
17.5
20.0
21.0
21.5 | 27.0
27.0
27.0
26.0
26.5
26.5 | 22.0
22.5
23.0
22.0
21.5
21.5 | 24.0
24.5
25.0
24.0
24.0
23.5 | 23.5
22.5
22.0
21.0
21.5
22.0 | 19.5
19.5
17.5
16.0
16.5
16.5 | 21.5
20.5
19.5
18.5
19.0
19.0 | 16.5
16.5
16.0
15.5
14.5 | 13.5
13.0
13.0
13.0
11.5 | 15.0
14.5
14.5
14.0
13.0 | | MONTH |
23.5 | 12.0 | 17.0 | 28.0 | 18.0 | 23.0 | 27.0 | 16.0 | 22.0 | 22.0 | 9.5 | 15.0 | # MADISON RIVER BASIN # 06036905 FIREHOLE RIVER NEAR WEST YELLOWSTONE, MT LOCATION.--Lat 44°37'13", long 110°51'44" (NAD 27), Yellowstone National Park, Hydrologic Unit 10020007, on right bank 1.6 mi south of Madison Junction, 12 mi east of West Yellowstone, and at river mile 1.8. DRAINAGE AREA.--282 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1983 to March 1996, October 2002 to September 2003. GAGE.--Water-stage recorder. Elevation of gage is 7,050 ft (NGVD 29). REMARKS.--Water-discharge records good. No regulation or diversions upstream from station. U. S. Geological Survey satellite telemeter at station. | | | DISCHAR | GE, CUBI | C FEET PE | ER SECONI
DAI | D, WATEI
LY MEAN | R YEAR OO
VALUES | CTOBER 2 | 002 TO S | EPTEMBER | 2003 | | |---|---|---|--|--|--|--|--|--|---------------------------------|--|--|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 240 | 237 | 250 | 250 | 316 | 248 | 289 | 325 | 589 | 258 | 234 | 228 | | 2 | 242 | 238 | 253 | 249 | 283 | 246 | 294 | 307 | 528 | 254 | 230 | 227 | | 3 | 246 | 235 | 253 | 253 | 261 | 251 | 279 | 325 | 479 | 249 | 228 | 234 | | 4 | 245 | 243 | 252 | 254 | 260 | 250 | 272 | 374 | 448 | 247 | 247 | 229 | | 5 | 276 | 240 | 251 | 256 | 253 | 247 | 263 | 341 | 422 | 246 | 240 | 230 | | 6 | 251 | 241 | 251 | 249 | 244 | 246 | 261 | 342 | 411 | 245 | 234 | 245 | | 7 | 243 | 244 | 250 | 248 | 243 | 254 | 254 | 321 | 393 | 244 | 229 | 239 | | 8 | 240 | 251 | 244 | 248 | 255 | 257 | 254 | 305 | 387 | 240 | 226 | 242 | | 9 | 237 | 249 | 244 | 247 | 250 | 258 | 267 | 297 | 402 | 238 | 228 | 238 | | 10 | 235 | 253 | 246 | 244 | 248 | 259 | 291 | 288 | 396 | 236 | 228 | 250 | | 11 | 248 | 249 | 248 | 250 | 252 | 261 | 310 | 288 | 390 | 235 | 225 | 243 | | 12 | 239 | 248 | 249 | 248 | 250 | 264 | 333 | 304 | 382 | 235 | 225 | 242 | | 13 | 239 | 251 | 251 | 250 | 250 | 280 | 337 | 361 | 368 | 232 | 225 | 239 | | 14 | 241 | 250 | 253 | 255 | 254 | 293 | 336 | 347 | 369 | 229 | 224 | 237 | | 15 | 239 | 247 | 255 | 258 | 251 | 281 | 360 | 386 | 353 | 232 | 225 | 237 | | 16 | 239 | 246 | 253 | 250 | 257 | 282 | 309 | 425 | 347 | 230 | 225 | 238 | | 17 | 237 | 250 | 259 | 250 | 253 | 264 | 300 | 464 | 329 | 231 | 225 | 238 | | 18 | 237 | 246 | 250 | 248 | 253 | 254 | 303 | 473 | 323 | 234 | 229 | 236 | | 19 | 235 | 246 | 250 | 250 | 249 | 254 | 293 | 396 | 318 | 238 | 227 | 237 | | 20 | 236 | 250 | 252 | 251 | 250 | 253 | 286 | 382 | 306 | 242 | 224 | 236 | | 21 | 236 | 258 | 254 | 253 | 254 | 253 | 297 | 402 | 303 | 240 | 223 | 235 | | 22 | 237 | 258 | 255 | 252 | 257 | 257 | 315 | 466 | 301 | 240 | 225 | 233 | | 23 | 241 | 277 | 248 | 257 | 253 | 294 | 335 | 518 | 309 | 240 | 229 | 233 | | 24 | 254 | 258 | 244 | 252 | 240 | 262 | 325 | 585 | 292 | 241 | 225 | 233 | | 25 | 242 | 247 | 243 | 251 | 247 | 255 | 328 | 620 | 286 | 245 | 224 | 232 | | 26
27
28
29
30
31 | 239
239
243
237
238
238 | 248
250
252
254
251 | 252
254
260
257
254
256 | 253
273
265
257
260
273 | 251
251
247
 | 269
265
257
253
264
280 | 374
339
338
344
328 | 589
608
596
619
644
594 | 278
271
268
265
262 | 245
246
240
240
234
233 | 224
225
228
228
239
232 | 232
232
233
233
233
 | | TOTAL | 7489 | 7467 | 7791 | 7854 | 7132 | 8111 | 9214 | 13292 | 10775 | 7439 | 7080 | 7074 | | MEAN | 242 | 249 | 251 | 253 | 255 | 262 | 307 | 429 | 359 | 240 | 228 | 236 | | MAX | 276 | 277 | 260 | 273 | 316 | 294 | 374 | 644 | 589 | 258 | 247 | 250 | | MIN | 235 | 235 | 243 | 244 | 240 | 246 | 254 | 288 | 262 | 229 | 223 | 227 | | AC-FT | 14850 | 14810 | 15450 | 15580 | 14150 | 16090 | 18280 | 26360 | 21370 | 14760 | 14040 | 14030 | | STATIS' | TICS OF M | ONTHLY ME | AN DATA F | OR WATER | YEARS 198 | 4 - 2003, | BY WATER | YEAR (WY | *) * | | | | | MEAN | 280 | 275 | 268 | 263 | 262 | 271 | 332 | 488 | 429 | 295 | 271 | 272 | | MAX | 356 | 348 | 316 | 298 | 304 | 336 | 398 | 613 | 756 | 415 | 371 | 368 | | (WY) | 1984 | 1984 | 1984 | 1985 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | | MIN | 225 | 227 | 220 | 223 | 226 | 239 | 276 | 367 | 273 | 221 | 212 | 217 | | (WY) | 1989 | 1993 | 1993 | 1993 | 1993 | 1992 | 1993 | 1987 | 1992 | 1988 | 1994 | 1988 | | SUMMAR | Y STATIST | CICS | | | FOR 2 | 003 WATER | R YEAR | | | WATER YEAR | RS 1984 - | 2003* | | LOWEST HIGHES' LOWEST ANNUAL MAXIMUI MAXIMUI INSTAN' ANNUAL 10 PER 50 PER | MEAN
T ANNUAL
ANNUAL M
T DAILY M
DAILY ME | HEAN HEAN HAN HAN HAN HAN HAN HAN HAN HAN HAN H | ſ | | 6
2
2
7
a2
1998
3
2 | 76 44 M 23 A 25 54 M 4.28 M 17 A | May 30
Aug 21
Aug 11
May 25
May 25
Aug 25 | | | 308
399
264
1240
201
205
b2050
c6.10
d190
223300
422
277
232 | May 31
Dec 4
Aug 18
May 18
Dec 4 | 1992
1994
1996
1996 | ^{*--}During periods of operation (October 1983 to March 1996, October 2002 to September 2003). a--Gage height, 2.91 ft. b--From rating curve extended above 1,540 ft3/s. c--From floodmark. d--Gage height, 3.03 ft. #### MADISON RIVER BASIN # 06036905 FIREHOLE RIVER NEAR WEST YELLOWSTONE, MT--Continued WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1983 to 1993, October 2002 to September 2003. #### PERIOD OF DAILY RECORD .-- SEPCIFIC CONDUCTANCE: August 1983 to September 1986, October 1987 to September 1988. WATER TEMPERATURE: October 1983 to September 1993, October 2002 to September 2003. INSTRUMENTATION.--Temperature recorder installed Sept. 18, 2002. REMARKS.--Daily water temperature records good. Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum 633 microsiemens per centimeter (μs/cm) at 25.0°C, Apr. 1, 1988; minimum 140 μs/cm at 25.0°C, June 5, 1986. WATER TEMPERATURE: Maximum, 30.0°C, June 24, 1988; minimum, 0.5°C Dec. 21, 1990. #### EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: Maximum, 29.0°C, July 18 and 21; minimum, 3.0°C, Feb. 24. #### WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|---|---|--|--------------------------------------|-------------------------------------|--------------------------------------|---|--|---|--------------------------------------|--|--------------------------------------| | | | OCTOBER | | N | OVEMBER | | D | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 13.5
17.0
15.0
16.0
15.0 | 11.0
10.0
13.0
14.0
13.5 | 12.5
13.0
14.5
15.0
14.0 | 11.0
9.5
10.5
11.0
11.5 | 6.5
6.5
6.5
7.5
7.0 | 8.5
8.0
8.5
9.0
9.5 | 12.5
13.0
12.5
13.0
12.5 | 10.0
11.5
11.5
12.0
11.0 | 11.0
12.0
12.0
12.5
11.5 | 11.0
10.5
11.5
12.5
12.5 | 9.0
9.0
9.5
9.5 | 10.0
10.0
10.5
11.0
11.5 | | 6
7
8
9
10 | 17.0
18.0
18.5
17.5
15.5 | 13.5
13.5
13.5
13.0
12.5 | 15.0
15.5
16.0
15.5
14.0 | 13.0
12.5
10.5
11.5
12.5 | 8.5
9.0
9.5
9.5
10.5 | 10.5
10.5
10.0
10.5
11.0 | 13.0
12.0
10.0
10.0
10.5 | 11.0
10.0
8.0
7.5
7.0 | 12.0
11.0
9.0
8.5
9.0 | 10.5
10.0
9.5
9.0
10.0 | 8.0
7.5
7.0
6.5
5.5 | 9.5
9.0
8.5
8.0
7.5 | | 11
12
13
14
15 | 14.5
15.0
16.0
16.5
16.5 | 12.0
9.5
10.5
10.5 | 13.0
12.5
13.0
13.5
14.0 | 11.5
11.5
13.0
12.0
11.5 | 10.0
10.0
11.5
10.0
9.5 | 10.5
10.5
12.0
11.0
10.5 | 10.0
11.0
11.5
12.5
12.0 | 8.5
9.0
10.5
11.0
8.0 | 9.0
10.0
11.0
12.0
10.0 | 12.0
11.5
11.5
13.5
11.5 | 9.5
10.0
9.5
11.5
8.5 | 10.5
11.0
10.5
12.5
10.0 | | 16
17
18
19
20 | 17.0
17.0
17.0
16.5
16.5 | 12.0
11.5
11.5
11.5
12.0 | 14.5
14.5
14.5
14.0
14.5 | 11.5
11.0
10.0
11.5
14.0 | 8.5
9.5
8.5
8.5
11.5 | 10.0
10.0
9.5
10.0
13.0 | 10.5
11.5
9.5
8.5
9.5 | 8.0
9.5
7.5
6.0
7.0 | 9.5
10.5
8.0
7.5
8.0 | 10.5
10.0
9.5
11.5
10.5 | 7.5
8.0
6.0
9.0
9.0 | 9.0
9.0
8.0
10.5
10.0 | | 21
22
23
24
25 | 16.5
15.5
15.0
14.0
14.5 | 13.0
11.0
11.0
11.5 | 15.0
13.0
12.5
12.5
12.5 | 16.0
15.0
14.0
10.5
9.5 | 13.5
12.0
8.5
8.0
6.0 | 14.5
13.5
11.5
9.0
7.5 | 10.0
11.0
9.5
7.0
7.5 | 8.0
9.5
7.0
5.0
4.0 | 9.0
10.0
7.5
6.0
5.5 | 11.0
10.5
11.0
12.0
12.5 | 9.0
8.5
9.5
8.5
10.5 | 10.0
9.5
10.5
10.0
11.0 | | 26
27
28
29
30
31 |
14.5
14.0
12.5
11.0
9.5
10.5 | 10.0
10.0
10.5
8.0
7.0
7.5 | 12.5
12.0
11.5
10.0
8.0
9.0 | 9.0
11.5
13.5
13.0
12.5 | 6.0
8.5
11.0
11.5
11.0 | 8.0
10.0
12.5
12.5
12.0 | 8.5
9.0
10.5
10.5
9.0
11.5 | 6.5
7.5
8.5
8.0
7.5
8.5 | 7.5
8.5
9.5
9.0
8.0
10.0 | 11.5
11.5
11.5
12.0
11.0 | 10.0
10.0
8.5
10.5
9.0
10.5 | 11.0
10.5
10.5
11.0
10.0 | | MONTH | 18.5 | 7.0 | 13.5 | 16.0 | 6.0 | 10.5 | 13.0 | 4.0 | 9.5 | 13.5 | 5.5 | 10.0 | # MADISON RIVER BASIN # 06036905 FIREHOLE RIVER NEAR WEST YELLOWSTONE, MT--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | DAY | MAX | MIN | MEAN | |--|--|---|--|--|---|--|--|---|--|--|--|--| | 1
2
3
4
5 | 11.0
9.5
9.5
10.5
9.5 | 9.5
8.0
6.5
7.5
6.5 | 10.5
8.5
8.0
9.0
8.0 | 12.0
9.5
11.5
12.5
9.5 | 9.0
6.0
8.0
9.0
6.5 | 10.5
8.0
10.0
10.5
7.5 | 16.5 | 11.5
12.0
9.5
9.0
9.5 | 12.5
14.0
11.0
11.5
13.0 | 16.0
17.5
16.0
16.5
17.0 | MAY
13.0
13.0
14.0
13.0
12.0 | 14.5
15.0
15.5
14.5
14.0 | | 6
7
8
9
10 | 8.5
9.5
10.0
10.0
10.5 | 4.5
4.5
7.5
7.5
6.5 | 6.5
7.0
9.0
8.5
8.5 | 9.0
8.0
10.0
10.5
13.5 | 5.5
6.0
6.0
9.0
9.0 | 7.0
7.0
8.0
9.5
11.0 | 14.5
18.0
19.5
19.5
20.5 | 11.0
11.0
11.0
12.5
12.5 | 12.5
14.0
15.0
16.0
16.5 | 17.0
19.5
18.0
15.0
16.5 | 11.5
12.0
14.5
12.5
12.0 | 14.0
15.5
16.0
13.5
14.0 | | 11
12
13
14
15 | 12.0
12.5
12.5
14.5
14.0 | 8.0
7.0
8.5
12.5
12.5 | 10.0
10.0
10.5
13.0
13.0 | 14.0
14.5
16.5
14.5
15.5 | 10.0
9.5
11.0
11.5
10.5 | 11.5
11.5
13.5
13.0
13.0 | 20.5
19.0
18.0
17.0
16.0 | 12.5
12.0
12.5
12.5
12.5 | 16.5
15.5
15.5
15.0
14.5 | 17.0
17.0
19.5
21.5
19.5 | 13.5
14.5
12.5
13.5
14.5 | 15.0
15.5
15.5
17.5
17.5 | | 16
17
18
19
20 | 12.5
9.5
13.0
12.0
12.0 | 8.5
7.0
8.0
8.5
7.5 | 11.0
8.0
10.0
10.0 | 15.5
12.5
10.0
16.0
16.0 | 12.5
10.0
9.0
9.5
10.0 | 13.5
11.5
9.5
12.5
13.0 | 16.5
15.5
16.0
17.5
20.5 | 11.0
12.5
13.0
11.5
12.5 | 13.5
14.0
14.5
14.5
16.5 | 17.5
17.0
14.0
17.0
18.5 | 12.0
10.0
9.5
9.0
11.0 | 15.0
13.5
11.5
13.0
15.0 | | 21
22
23
24
25 | 10.0
11.0
10.5
8.5
10.0 | 8.5
9.0
5.5
3.0
4.0 | 9.5
10.0
8.5
5.5
7.0 | 14.5
14.5
13.5
14.5
12.5 | 12.0
11.0
9.5
8.5
10.0 | 13.0
13.0
11.0
11.5
11.0 | 20.0
18.5
16.0
17.5
19.0 | 13.0
14.0
14.0
14.0 | 16.5
16.5
15.0
15.5
16.0 | 17.0
18.5
19.5
20.0
19.0 | 12.5
12.0
11.5
10.5
11.5 | 15.5
16.0
16.0
16.0
15.5 | | 26
27
28
29
30
31 | 11.5
13.0
12.5
 | 5.5
8.5
8.0
 | 9.0
10.5
10.0
 | 13.0
12.5
16.5
16.0
17.0
15.0 | 10.0
8.5
8.5
9.0
11.0 | 11.0
10.5
12.0
12.5
14.0
13.5 | 16.5
17.5
16.0
17.0
17.0 | 10.5
8.5
11.5
12.5
13.0 | 13.0
12.5
13.5
14.5
15.0 | 18.0
20.0
20.0
19.5
17.5
18.0 | 12.5
12.5
13.5
14.5
13.0
14.0 | 15.5
16.5
17.5
17.5
15.5
16.0 | | MONTH | 14.5 | 3.0 | 9.0 | 17.0 | 5.5 | 11.0 | 20.5 | 8.5 | 14.5 | 21.5 | 9.0 | 15.5 | | | | | | | | | | | | | | | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | lR | | 1
2
3
4
5 | 18.0
17.5
18.0
17.0
19.0 | | 16.0
15.5
15.5
15.5
16.0 | 26.0
25.0
25.0
25.5
25.5 | | | 27.5
28.0
26.0
24.0
27.0 | | 23.5
24.0
24.0
22.0
23.0 | 25.0
24.0
25.0
24.5
22.0 | SEPTEMBE
18.0
18.0
18.5
18.5 | 21.5
21.5
21.5
21.5
21.5
20.0 | | 2
3
4 | 17.5
18.0
17.0 | JUNE 14.0 13.5 12.5 13.5 | 16.0
15.5
15.5
15.5 | 25.0
25.0
25.5 | JULY 19.5 19.0 18.0 18.0 | 22.5
22.0
21.0
21.5
22.0 | 27.5
28.0
26.0
24.0 | AUGUST 19.5 20.5 22.0 21.0 | 23.5
24.0
24.0
22.0 | 25.0
24.0
25.0
24.5 | 18.0
18.0
18.5
18.5 | 21.5
21.5
21.5
21.5 | | 2
3
4
5
6
7
8
9
10
11
12
13 | 17.5
18.0
17.0
19.0
18.5
20.5
21.0
20.5
21.0 | JUNE 14.0 13.5 12.5 13.5 13.0 14.0 14.5 16.5 16.0 | 16.0
15.5
15.5
16.0
16.0
17.0
18.0
19.0
18.5
17.5
18.5
19.0 | 25.0
25.0
25.5
25.5
26.5
27.0
23.0
26.5
28.0
28.0 | JULY 19.5 19.0 18.0 18.5 18.5 19.0 19.5 17.5 19.0 20.5 21.0 20.5 | 22.5
22.0
21.0
21.5
22.0
22.5
23.0
21.5
21.5
21.5
23.5 | 27.5
28.0
26.0
24.0
27.0
26.5
26.5
24.0
24.0
25.5
27.0
26.0
26.0 | AUGUST 19.5 20.5 22.0 21.0 19.5 20.5 19.5 19.0 19.0 20.0 20.5 20.0 | 23.5
24.0
24.0
22.0
23.0
23.5
23.0
22.0
21.5 | 25.0
24.0
25.0
24.5
22.0
24.5
21.5
18.5
17.5
17.5 | 18.0
18.0
18.5
18.5
18.5
19.5
19.0
16.5
14.0 | 21.5
21.5
21.5
21.5
20.0
20.5
21.5
19.5
17.0
16.5
16.0 | |
2
3
4
5
6
7
8
9
10
11
12
13
14 | 17.5
18.0
17.0
19.0
18.5
20.5
21.0
20.5
21.0
20.5
21.0
22.5 | JUNE 14.0 13.5 12.5 13.5 13.0 14.0 13.0 14.5 16.5 16.0 15.5 15.0 16.0 | 16.0
15.5
15.5
15.5
16.0
16.0
17.0
18.0
19.0
18.5
17.5
18.5 | 25.0
25.0
25.5
25.5
26.5
27.0
23.0
26.5
28.0
28.0
26.0
27.0 | JULY 19.5 19.0 18.0 18.5 18.5 19.0 19.5 17.5 19.0 20.5 21.0 20.5 18.5 | 22.5
22.0
21.0
21.5
22.0
22.5
23.0
21.5
21.5
21.5
23.5 | 27.5
28.0
26.0
24.0
27.0
26.5
24.0
24.0
25.5
27.0
26.0
26.5
28.5 | AUGUST 19.5 20.5 22.0 21.0 19.5 20.5 19.5 19.0 19.0 19.5 20.0 20.5 20.0 | 23.5
24.0
24.0
22.0
23.0
23.5
23.5
22.0
21.5
22.5
23.5
23.0
24.0 | 25.0
24.0
25.0
24.5
22.0
22.0
24.5
21.5
18.5
17.5
17.5
17.0
19.0
20.0 | 18.0
18.0
18.5
18.5
18.5
19.5
19.0
16.5
14.0
16.0
15.5
15.0
13.5 | 21.5
21.5
21.5
21.5
20.0
20.5
21.5
19.5
17.0
16.5
16.0
16.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 17.5
18.0
17.0
19.0
18.5
20.5
21.0
20.5
21.0
22.5
21.0
22.5
23.5
24.0
25.0
27.0
24.0 | JUNE 14.0 13.5 12.5 13.5 13.0 14.0 13.0 14.5 16.5 16.0 17.0 18.0 19.0 18.0 19.5 | 16.0
15.5
15.5
16.0
16.0
17.0
18.0
19.0
18.5
17.5
18.5
19.0
20.0 | 25.0
25.5
25.5
25.5
27.0
23.0
26.5
28.0
28.0
26.0
27.0
27.5
28.0 | JULY 19.5 19.0 18.0 18.5 18.5 19.0 19.5 17.5 19.0 20.5 21.0 20.5 21.0 20.5 21.0 21.5 | 22.5
22.0
21.0
21.5
22.0
22.5
23.0
21.5
21.5
23.5
24.5
24.5
24.5
24.0
24.5
24.0 | 27.5
28.0
26.0
24.0
27.0
26.5
24.0
24.0
25.5
27.0
26.5
28.5
26.0
22.5
26.0 | AUGUST 19.5 20.5 22.0 21.0 21.0 19.5 20.5 19.5 19.0 20.5 20.5 20.5 20.5 21.5 | 23.5
24.0
24.0
22.0
23.0
23.5
23.5
22.5
23.5
22.5
23.0
24.0
24.0
20.0
20.0
20.5
22.5 | 25.0
24.0
25.0
24.5
22.0
22.0
24.5
21.5
18.5
17.5
17.9
19.0
20.0
19.0 | 18.0
18.0
18.5
18.5
18.5
19.5
19.0
16.5
14.0
16.0
15.5
15.0
13.5
14.5
13.0
12.5
11.5
12.5 | 21.5
21.5
21.5
21.5
20.0
20.5
21.5
19.5
16.5
17.0
16.5
16.0
16.0
16.5
16.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 17.5
18.0
17.0
19.0
18.5
20.5
21.0
20.5
21.0
22.5
23.5
24.0
25.0
27.0
24.0
22.5
27.0
24.0
22.5 | JUNE 14.0 13.5 12.5 13.5 13.0 14.0 13.0 14.5 16.5 16.0 17.0 18.0 19.0 18.0 19.0 18.5 19.5 19.0 16.5 19.5 19.0 | 16.0
15.5
15.5
16.0
16.0
17.0
18.0
19.0
19.0
19.0
20.0
21.0
22.0
22.5
22.0
20.5 | 25.0
25.5
25.5
26.5
27.0
23.0
26.5
28.0
26.0
27.0
27.5
28.0
26.0
27.5
28.0
27.5
28.0
29.0
29.0
26.5
28.5 | JULY 19.5 19.0 18.0 18.5 18.5 19.0 19.5 17.5 19.0 20.5 21.0 20.5 21.0 21.5 21.0 22.0 21.5 21.0 | 22.5
22.0
21.0
21.5
22.0
22.5
23.0
21.5
21.5
23.5
24.5
24.5
24.5
24.0
22.5
24.0
25.5
24.0
25.0
25.0 | 27.5
28.0
26.0
24.0
27.0
26.5
24.0
24.0
25.5
27.0
26.5
28.5
26.5
28.5
26.5
26.5
28.5
26.5
26.5
28.5
26.5
28.5
26.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5 | AUGUST 19.5 20.5 22.0 21.0 19.5 20.5 19.5 19.0 19.5 20.0 20.5 20.0 20.5 21.5 20.0 20.5 19.0 20.5 19.0 20.5 19.0 20.0 | 23.5
24.0
24.0
22.0
23.0
23.5
22.5
23.5
23.0
24.0
24.0
24.0
20.5
22.5
23.0
24.0
24.0
20.0
20.5
22.5
23.0 | 25.0
24.0
25.0
24.5
22.0
24.5
21.5
18.5
17.5
17.5
17.5
17.0
19.0
20.0
19.0
17.5
20.0 | 18.0
18.0
18.5
18.5
18.5
19.5
19.0
16.5
14.0
15.5
13.0
13.5
14.5
13.5
13.5
13.5
13.5
14.0
14.0 | 21.5
21.5
21.5
21.5
20.0
20.5
21.5
21.5
16.5
17.0
16.5
16.0
16.0
16.5
16.5
16.5
16.5
16.5
17.0 | #### 06037100 GIBBON RIVER AT MADISON JUNCTION, YELLOWSTONE NATIONAL PARK LOCATION .-- Lat 44°38'26", long 110°51'38" (NAD 27), Yellowstone National Park, Hydrologic Unit 10020007, on left bank 40 ft downstream from highway bridge, 0.4 mi south of Madison Junction, 14 mi east of West Yellowstone, and at river mile 0.2. DRAINAGE AREA.--126 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--April 2001 to September 2001, October 2002 to September 2003. GAGE.--Water-stage recorder. Elevation of gage is 6,800 ft (NGVD 29). REMARKS.--Water-discharge records good. No regulation or diversions upstream from station. U. S. Geological Survey satellite telemeter at station. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP | | | | | | | | | | | | | | |--|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--|---|--|------------------------------------|---|--------------------------------------|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 103
101
102
102
116 | 89
89
86
89
88 | 92
94
94
94
93 | 94
93
95
95
97 | 115
109
97
98
93 | 88
85
89
89 | 101
109
105
101
95 | 201
187
202
227
229 | 494
387
326
288
264 | 141
137
134
133
130 | 101
99
99
109
106 | 91
90
89
89
90 | | | 6
7
8
9
10 | 107
101
98
96
95 | 88
91
94
95
94 | 95
93
87
87
88 | 90
90
e88
e86
e85 | 92
e90
92
94
95 | 91
92
92
89
92 | 97
92
91
96
110 | 217
197
194
183
173 | 250
238
224
217
210 | 128
126
124
122
118 | 102
98
96
99
100 | 97
96
101
98
100 | | | 11
12
13
14
15 | 102
98
96
98
97 | 92
92
94
93
92 | 92
93
94
94
95 | 91
94
94
97
98 | 93
91
92
97
95 | 93
93
98
107
104 | 127
148
167
179
196 | 170
182
211
234
294 | 201
193
189
192
185 | 117
115
112
109
108 | 98
97
96
94
95 | 99
97
95
94
93 | | | 16
17
18
19
20 | 98
97
96
93
93 | 93
93
89
93
91 | 95
97
90
89
92 | 90
92
91
93
95 |
96
95
93
90 | 105
99
95
93
92 | 178
161
155
142
137 | 360
428
441
330
292 | 184
179
182
191
182 | 107
105
104
104
105 | 98
96
98
95
94 | 94
94
92
92
92 | | | 21
22
23
24
25 | 93
93
93
96
93 | 94
95
103
96
89 | 95
94
90
87
e85 | 96
96
98
94
94 | 97
97
92
e82
e85 | 92
92
101
92
92 | 155
179
226
204
209 | 295
319
390
453
503 | 180
183
197
177
177 | 103
102
101
102
106 | 93
94
94
92
91 | 91
90
90
89
89 | | | 26
27
28
29
30
31 | 91
91
93
91
88
89 | 93
94
96
97
95 | 90
94
96
98
95 | 95
101
101
95
100
101 | 87
87
87
 | 97
96
90
89
91
95 | 240
202
192
188
185 | 504
506
496
469
441
432 | 168
162
156
152
147 | 111
112
106
102
100 | 91
93
93
96
94 | 88
88
88
87 | | | TOTAL
MEAN
MAX
MIN
AC-FT | 3000
96.8
116
88
5950 | 2777
92.6
103
86
5510 | 2868
92.5
98
85
5690 | 2919
94.2
101
85
5790 | 2621
93.6
115
82
5200 | 2901
93.6
107
85
5750 | 4567
152
240
91
9060 | 9760
315
506
170
19360 | 6475
216
494
147
12840 | 3524
114
141
100
6990 | 2992
96.5
109
91
5930 | 2771
92.4
101
87
5500 | | | | | ONTHLY MEA | | | | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 96.8
96.8
2003
96.8
2003 | 92.6
92.6
2003
92.6
2003 | 92.5
92.5
2003
92.5
2003 | 94.2
94.2
2003
94.2
2003 | 93.6
93.6
2003
93.6
2003 | 93.6
93.6
2003
93.6
2003 | 141
152
2003
130
2001 | 280
315
2003
246
2001 | 176
216
2003
137
2001 | 111
114
2003
109
2001 | 92.1
96.5
2003
87.7
2001 | 87.5
92.4
2003
82.6
2001 | | | SUMMARY | STATIST | ICS | | | FOR 2 | 003 WATER | YEAR | | | WATER YEAR | S 2001 - | 2003* | | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL 10 PERC 50 PERC | MEAN 'ANNUAL MEANNUAL MEA 'DAILY MEA | EAN EAN AN Y MINIMUM DW AGE DW FLOW AC-FT) EDS | | | a5
]
c
935
2 | 29 06 Ma 32 Fe 36 Fe 55 Ma 55.58 Fe 31 De | ay 27
eb 24
24
ay 25
eb 25
ec 24 | | | 129
129
129
584
79
81
674
5.93
93630
203
96
89 | May 16
Sep 4
Sep 21
May 16 | 2001
2001
2001 | | ^{*--}During periods of operation (April 2001 to September 2001, October 2002 to September 2003). a--Gage height, 5.35 ft. b--Backwater from ice. c--Gage height, 3.89 ft, but may have been lower during period of ice effect. e--Estimated. ## PERIOD OF RECORD.--October 2002 to September 2003. PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: October 2002 to September 2003. INSTRUMENTATION.--Temperature recorder installed Sept. 19, 2002. REMARKS.--Daily water temperature records good. Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office. EXTREMES FOR PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: Maximum, 25.5°C, July 21, 2003; minimum, 0.0°C, several days during winter months. EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: Maximum, 25.5°C, July 21; minimum, 0.0°C, several days November through February. #### WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|--|---------------------------------|--|-----------------------------------|---------------------------------|---------------------------------|--|--|--|--|---------------------------------|--| | | | OCTOBER | | NC | VEMBER | | DE | CEMBER | | | JANUARY | | | 1
2
3
4
5 | 9.0
12.0
10.0
11.0
10.5 | 7.0
5.5
7.0
9.0
9.5 | 8.0
8.5
9.0
10.0
10.0 | 4.0
5.5
4.5
5.5
6.0 | 0.5
1.0
0.0
1.5
1.0 | 2.5
3.0
2.5
3.5
3.5 | 6.5
7.5
7.5
8.5
8.0 | 4.5
6.0
6.5
7.0
6.5 | 5.5
7.0
7.0
7.5
7.0 | 5.5
5.5
6.5
7.0
7.5 | 3.0
4.5
5.0
4.5
5.0 | 4.5
5.0
6.0
6.0
6.5 | | 6
7
8
9
10 | 13.0
14.0
14.0
13.5
12.0 | 9.0
8.0
8.5
8.5 | 10.5
11.0
11.0
11.0 | 7.0
7.0
6.5
7.0
7.5 | 3.0
3.0
4.5
5.5
5.5 | 5.0
5.0
5.5
6.0 | 8.0
7.0
4.5
4.0
4.5 | 6.0
4.5
2.0
1.0 | 7.0
6.0
3.5
3.0 | 5.0
4.5
3.5
3.0
3.0 | 2.5
2.0
0.5
0.5 | 4.0
3.0
2.0
1.5
1.0 | | 11
12
13
14
15 | 10.5
10.5
10.5
11.0
11.5 | 8.0
5.0
5.0
5.5
6.0 | 9.0
7.5
8.0
8.0
9.0 | 6.5
6.5
8.0
7.0 | 5.0
5.5
6.0
5.0
4.5 | 6.0
6.0
7.0
6.0
5.5 | 5.0
6.0
6.5
8.0 | 3.5
4.0
6.0
6.5
6.0 | 4.5
5.0
6.5
7.0 | 6.0
6.5
7.0
8.0
7.0 | 3.0
5.5
5.5
6.5
3.5 | 4.5
6.0
6.5
7.0
5.5 | | 16
17
18
19
20 | 12.0
12.0
12.0
11.5
12.0 | 7.0
6.5
6.5
6.0
7.0 | 9.0
9.0
9.0
8.5
9.5 | 6.5
6.0
5.5
7.0
8.5 | 3.5
3.5
3.0
4.5
7.0 | 5.0
5.0
4.0
5.5
7.5 | 6.0
6.5
4.5
3.5
4.0 | 4.5
4.5
2.0
1.5
1.5 | 5.5
6.0
3.0
2.5
2.5 | 5.5
5.0
4.0
7.0
6.0 | 3.0
2.5
0.5
4.0
3.5 | 4.0
4.0
2.5
5.0 | | 21
22
23
24
25 | 12.0
10.5
9.5
10.0
9.5 | 8.5
7.0
6.0
6.5
5.0 | 10.0
9.0
7.5
8.5
7.0 | 10.5
10.0
9.0
5.0
3.0 | 8.5
7.0
4.5
2.0
0.0 | 9.0
8.5
7.0
3.5
1.5 | 4.5
5.5
4.0
1.0 | 2.5
4.0
1.0
0.0
0.0 | 4.0
4.5
2.0
0.5 | 6.5
6.5
7.0
6.5
7.5 | 5.0
5.0
4.5
3.0
5.5 | 6.0
6.0
6.0
5.0
6.5 | | 26
27
28
29
30
31 | 9.0
9.0
8.5
7.0
4.0
4.5 | 4.0
4.5
6.5
3.5
2.0 | 6.5
6.5
7.0
5.5
3.0
2.5 | 3.0
6.0
8.0
8.5
8.0 | 0.0
2.5
5.5
7.0
6.0 | 2.0
4.0
7.0
7.5
7.0 | 3.5
4.5
6.5
6.0
4.5
6.0 | 0.5
3.5
4.5
4.5
3.5
4.5 | 2.0
4.0
5.5
5.5
4.0
5.0 | 7.5
7.5
7.0
7.0
7.0
7.5 | 6.5
5.5
4.5
5.5
5.5 | 7.0
7.0
5.5
6.5
6.0
7.0 | | MONTH | 14.0 | 1.0 | 8.5 | 10.5 | 0.0 | 5.0 | 8.5 | 0.0 | 4.5 | 8.0 | 0.0 | 5.0 | # 06037100 GIBBON RIVER AT MADISON JUNCTION, YELLOWSTONE NATIONAL PARK--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | DAY | MAX | MIN | MEAN | |--|--|--|--|--|--|--|--|--|--|--|---|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 8.0
6.5
4.5
5.0
4.0 | 6.5
3.5
1.5
2.5
1.0 | 7.5
5.5
3.0
3.5
2.5 | 8.0
5.0
6.5
7.0
4.5 | 3.5
0.5
4.0
3.5
2.0 | 5.0
3.0
5.0
5.0
3.0 | 10.5
12.5
8.5
10.0
11.5 | 8.0
7.0
5.0
4.5
3.5 | 9.5
9.5
6.5
7.0
7.5 | 10.5
12.5
12.5
11.5
12.0 | 7.0
7.5
9.0
8.0
7.0 | 8.5
10.0
10.5
10.0
9.5 | | 6
7
8
9
10 | 2.0
2.5
4.5
4.5
5.0 | 0.0
0.0
2.0
2.5
2.5 | 1.0
1.0
3.0
3.5
4.0 | 4.0
4.0
6.0
7.5
9.5 | 2.5
2.5
2.5
5.0
5.5 | 3.5
3.0
4.5
6.0
7.5 | 10.5
13.5
14.5
15.5
16.0 | 6.5
6.0
6.0
7.0
8.5 | 8.0
9.0
10.0
11.0
12.0 | 11.5
14.5
14.0
11.0
12.5 | 6.5
8.0
9.5
7.5
8.0 | 9.0
11.0
11.5
9.5
10.0 | | 11
12
13
14
15 |
6.5
6.0
6.5
9.0
9.0 | 3.0
1.0
2.0
6.5
7.0 | 4.5
3.5
4.5
7.5
8.0 | 9.5
10.0
13.0
10.5
11.5 | 7.0
6.5
7.0
7.5
6.5 | 7.5
8.0
9.5
9.0
9.0 | 16.0
15.5
14.5
12.0
10.5 | 9.0
8.5
8.5
8.5
8.0 | 12.5
12.0
11.0
10.0
9.5 | 12.0
11.5
14.0
16.0
13.0 | 8.5
9.5
8.5
8.5
9.0 | 10.0
10.5
11.0
12.0
11.0 | | 16
17
18
19
20 | 7.5
7.0
7.0
6.5
6.5 | 4.5
3.5
3.0
2.5
2.0 | 6.5
5.0
5.0
4.5
4.0 | 12.0
9.5
8.0
12.0
11.0 | 8.0
6.0
6.0
5.0 | 9.5
8.0
7.0
8.0 | 12.0
10.5
11.0
13.5
15.5 | 6.5
7.0
8.0
7.0
7.5 | 9.0
8.5
9.0
10.0
11.0 | 12.5
11.5
10.0
11.5
13.0 | 7.5
6.0
6.5
4.0
7.0 | 10.0
9.0
7.5
7.5 | | 21
22
23
24
25 | 5.5
6.5
4.5
0.5
2.0 | 4.5
4.5
0.5
0.0 | 5.0
5.0
3.5
0.0 | 10.0
10.0
9.0
9.0
8.5 | 7.0
7.5
6.0
4.0
5.5 | 8.5
9.0
7.5
6.5
6.5 | 15.5
13.0
10.5
11.5
13.0 | 8.0
9.0
8.0
8.5
8.0 | 11.5
11.0
9.5
9.5
10.0 | 12.0
15.0
15.0
16.5
15.5 | 9.5
9.5
10.0
11.0 | 11.0
12.5
13.0
14.0
13.5 | | 26
27
28
29
30
31 | 5.5
7.5
7.0
 | 0.0
2.5
2.0
 | 2.5
5.0
4.5
 | 8.5
8.5
8.5
12.0
11.5
12.5 | 4.5
4.5
4.0
4.0
6.5
7.5 | 6.5
6.5
7.5
8.0
9.5
9.5 | 10.0
12.0
10.5
12.5
12.5 | 6.0
4.5
7.0
7.5
8.0 | 7.5
8.0
8.5
9.5
10.0 | 14.5
16.5
17.0
16.5
15.5 | 11.0
10.5
12.0
13.5
12.5
13.0 | 13.0
13.5
15.0
15.5
14.5 | | MONTH | 9.0 | 0.0 | 4.0 | 13.0 | 0.5 | 7.0 | 16.0 | 3.5 | 9.5 | 17.0 | 4.0 | 11.0 | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5 | 16.0
15.5
16.0
16.5
17.0 | JUNE 12.0 11.5 11.0 11.5 10.5 | 14.0
13.5
13.5
13.5
13.5 | 22.5
21.5
21.5
21.0
22.0 | JULY
14.5
14.0
13.0
13.5
14.0 | 18.0
17.5
17.0
17.0 | 23.5
24.5
22.5
21.0
23.0 | AUGUST
15.0
15.5
18.0
17.0
15.5 | 19.0
19.5
20.0
18.5
19.0 | 21.0
20.5
21.5
21.0
18.0 | SEPTEMBE
13.0
13.5
13.5
13.5
13.5 | 17.0
17.0
17.5
17.5
15.5 | | 2
3
4 | 15.5
16.0
16.5 | 12.0
11.5
11.0
11.5 | 13.5
13.5
13.5 | 21.5
21.5
21.0 | 14.5
14.0
13.0
13.5 | 17.5
17.0
17.0 | 23.5
24.5
22.5
21.0 | 15.0
15.5
18.0
17.0 | 19.5
20.0
18.5 | 21.0
20.5
21.5
21.0 | 13.0
13.5
13.5
13.5 | 17.0
17.0
17.5
17.5 | | 2
3
4
5
6
7
8
9 | 15.5
16.0
16.5
17.0
15.0
17.5
18.5
18.5 | 12.0
11.5
11.0
11.5
10.5
11.0
10.0
11.5
13.5 | 13.5
13.5
13.5
13.5
13.0
13.5
15.0
16.0 | 21.5
21.5
21.0
22.0
22.5
23.0
20.5
22.5 | 14.5
14.0
13.0
13.5
14.0
14.5
14.5
13.5 | 17.5
17.0
17.0
17.5
18.0
18.5
17.5
18.0 | 23.5
24.5
22.5
21.0
23.0
23.5
23.0
20.5
20.5 | 15.0
15.5
18.0
17.0
15.5
15.5
15.0
14.0 | 19.5
20.0
18.5
19.0
19.5
19.0
17.5
17.5 | 21.0
20.5
21.5
21.0
18.0
18.5
21.0
17.5
15.5 | 13.0
13.5
13.5
13.5
13.5
14.5
14.5
12.5
9.5 | 17.0
17.0
17.5
17.5
15.5
16.0
17.0
15.0
12.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14 | 15.5
16.0
16.5
17.0
15.0
17.5
18.5
18.5
18.5
20.0
19.5 | 12.0
11.5
11.0
11.5
10.5
11.0
10.0
11.5
13.5
13.0
12.5
11.5 | 13.5
13.5
13.5
13.5
13.0
13.5
15.0
16.0
16.0 | 21.5
21.5
21.0
22.0
22.5
23.0
20.5
22.5
24.0
24.5
23.0
24.5
23.0 | 14.5
14.0
13.0
13.5
14.0
14.5
14.5
14.5
14.5
14.0 | 17.5
17.0
17.0
17.5
18.0
18.5
17.5
18.0
19.0 | 23.5
24.5
22.5
21.0
23.0
23.5
23.5
20.5
21.0
23.0
22.5
23.5 | 15.0
15.5
18.0
17.0
15.5
15.5
15.0
14.0
14.5
14.5 | 19.5
20.0
18.5
19.0
19.5
19.0
17.5
17.5
18.0
19.5
19.0
19.5 | 21.0
20.5
21.5
21.0
18.0
18.5
21.0
17.5
15.5
14.0 | 13.0
13.5
13.5
13.5
13.5
14.5
14.5
12.5
9.5
12.0
11.5
8.5
8.5 | 17.0
17.0
17.5
17.5
15.5
16.0
17.0
15.0
12.5
13.0
12.5
12.5
12.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 15.5
16.0
16.5
17.0
15.0
17.5
18.5
18.5
18.5
20.0
18.5
19.5
20.5 | 12.0
11.5
11.0
11.5
10.5
11.0
10.0
11.5
13.5
13.5
12.5
12.0
12.0
13.5 | 13.5
13.5
13.5
13.5
13.5
15.0
16.0
16.0
15.5
15.5
15.5
16.5
17.5
18.0
18.0
17.5 | 21.5
21.5
21.0
22.0
22.5
23.0
20.5
22.5
24.0
24.5
23.0
23.5
23.5
23.0
24.0
24.5 | 14.5
14.0
13.0
13.5
14.0
14.5
14.5
14.5
14.5
15.5
14.0
15.5
14.0
15.5
14.0 | 17.5
17.0
17.0
17.5
18.0
18.5
17.5
18.0
19.0
19.5
20.0
19.0
19.0
20.0
21.0
20.0 | 23.5
24.5
22.5
21.0
23.0
23.5
23.0
20.5
20.5
21.0
23.0
22.0
22.5
23.5
22.0 | 15.0
15.5
18.0
17.0
15.5
15.5
15.0
14.0
14.5
14.5
16.0
16.0
15.5
16.5
15.5
16.5 | 19.5
20.0
18.5
19.0
19.5
19.0
17.5
18.0
19.5
19.0
19.5
19.5
19.5 | 21.0
20.5
21.5
21.0
18.0
18.5
21.0
17.5
15.5
14.0
13.5
16.0
15.5
15.0 | 13.0
13.5
13.5
13.5
14.5
14.5
12.5
9.5
12.0
11.5
8.5
9.5
10.0
8.5
7.0
7.5 | 17.0
17.0
17.5
17.5
15.5
16.0
17.0
15.0
12.5
13.0
12.5
12.0
12.0
12.0
12.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 15.5
16.0
16.5
17.0
15.0
17.5
18.5
18.5
18.5
20.0
18.5
20.5
21.0
21.0
21.0
20.5
19.0 | 12.0
11.5
11.0
11.5
10.5
11.0
11.5
13.5
13.5
12.5
13.0
12.5
11.5
12.0
12.0
14.5
15.0
14.5
15.0
14.5
15.0
14.5 | 13.5
13.5
13.5
13.5
13.0
13.5
15.0
16.0
15.5
15.5
15.5
16.5
17.5
18.0
17.5
16.5 | 21.5
21.0
22.0
22.5
23.0
20.5
22.5
24.0
24.5
23.0
23.5
23.0
25.0
25.0
25.0
25.0
25.0 | 14.5
14.0
13.0
13.5
14.0
14.5
14.5
14.5
14.5
15.5
16.0
15.5
14.0
15.5
14.0
15.5
17.5
16.5
17.5
16.5
17.5 | 17.5
17.0
17.0
17.5
18.0
18.5
17.5
18.0
19.0
19.0
19.0
20.0
20.0
20.0
20.0
20.5
20.5
21.0 | 23.5
24.5
22.5
21.0
23.0
23.5
20.5
20.5
21.0
23.0
22.0
22.5
23.5
22.0
23.0
22.5
23.5
22.0
23.5
22.5
23.5
22.5
23.5
22.5
23.0 | 15.0
15.5
18.0
17.0
15.5
15.5
15.0
14.0
14.5
14.5
16.0
15.5
16.5
15.5
16.5
15.5
12.0
14.0
15.0 | 19.5
20.0
18.5
19.0
19.5
19.0
17.5
17.5
18.0
19.5
19.0
19.5
19.5
19.5
18.0
18.5
18.5
18.5
18.5 | 21.0
20.5
21.5
21.0
18.0
18.5
21.0
17.5
15.5
14.0
13.5
16.0
15.5
15.0 | 13.0
13.5
13.5
13.5
13.5
14.5
14.5
12.5
9.5
12.0
11.5
8.5
9.5
10.0
8.5
7.5
8.5
8.5
9.5
9.5 | 17.0
17.0
17.5
17.5
15.5
16.0
17.0
12.5
13.0
12.5
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0 | #### 06037500 MADISON RIVER NEAR WEST YELLOWSTONE, MT LOCATION.--Lat 44°39'25", long 111°04'03" (NAD 27), in NE¹/₄NW¹/₄SW¹/₄ sec.36, T.13 S., R.5 E., Gallatin County, Hydrologic Unit 10020007, Yellowstone National Park, on left bank 0.7 mi downstream from Montana-Wyoming stateline, 1.5 mi east of West Yellowstone, 16.4 mi downstream from Gibbon River, and at river mile 132.7. DRAINAGE AREA.--420 mi². PERIOD OF RECORD.--June 1913 to December 1917, July 1918 to October 1921, June 1922 to September 1973, August 1983 to September 1986, October 1988 to current year. Monthly discharge only for some periods, published in WSP 1309. GAGE.--Water-stage recorder. Elevation of gage is 6,650 ft (NGVD 29). Prior to Oct. 20, 1918, nonrecording gage, and Oct. 20, 1918 to June 29, 1930, nonrecording gage or water-stage recorder at sites 2.5 mi upstream at different elevations. Supplementary nonrecording gage at site 0.3 mi downstream at different elevation used at time during 1927-30. REMARKS.--Records good. No regulation or diversions upstream from station. U. S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 770 e365 e365 23 377 e370 e345 e370 e350 e370 e375 437 2.7 ---TOTAL MEAN MAX MTN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1913 2003. BY WATER YEAR (WY) MEAN MAX (WY) MTN (WY) FOR 2003 WATER YEAR SUMMARY STATISTICS FOR 2002 CALENDAR YEAR WATER YEARS 1913 - 2003* ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN May 27 May 21 Mav 18 HIGHEST DAILY MEAN LOWEST DAILY MEAN Feb 26 Jan Aug 25 ANNUAL
SEVEN-DAY MINIMUM Aug Aug a325 2.65 May May 2.4 b2820 d100 c10.00 May 18 Feb Jan MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS ^{*--}During periods of operation (June 1913 to December 1917, July 1918 to October 1921, June 1922 to September 1973, August 1983 to September 1986, October 1988 to current year). a--Gage height, 1.59 ft. b--Gage height, 3.78 ft c--About, backwater from ice. d--Result of freezeup. e--Estimated. #### 06038500 MADISON RIVER BELOW HEBGEN LAKE, NEAR GRAYLING, MT LOCATION.--Lat 44°52'00", long 111°20'15" (NAD 27), NE¹/₄NE¹/₄sec.22, T.11 S., R.3 E., Gallatin County, Hydrologic Unit 10020007, Gallatin National Forest, on right bank 1,500 ft downstream from Hebgen Dam, 8 mi northwest of Grayling, 17 mi upstream from West Fork, and at river mile 108.8. DRAINAGE AREA.--905 mi². PERIOD OF RECORD.--June 1909 to current year. Prior to October 1938 adjusted runoff only, published in WSP 1309. Prior to October 1949, published as "below Hebgen Reservoir". REVISED RECORDS.--WSP 1509: 1948. WSP 1559: Drainage area. WSP 1629: 1943. WSP 1709: 1959. WSP 1729: 1943. GAGE.--Water-stage recorder. Elevation of gage is 6,448.47 ft (after 1959 earthquake) (NGVD 29). Prior to July 13, 1943, nonrecording gage in stilling well. REMARKS.--Records excellent. Flow completely regulated by Hebgen Lake (station number 06038000). Diversions for irrigation of about 1,100 acres upstream from station. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. AVERAGE DISCHARGE.--94 years, 1,020 ft³/s, 15.31 in/yr, 739,000 acre-ft/yr, adjusted for storage. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 10,200 ft³/s, Aug. 17, 1959, caused by wave over Hebgen Dam during earthquake, gage height, 5.3 ft, from floodmark, from rating curve extended above 3,500 ft³/s on basis of slope-area measurement of peak flow; maximum observed unaffected by wave over dam, 5,090 ft³/s, June 3, 1943, gage height, 3.69 ft; minimum daily, 5.0 ft³/s, May 9-12, 1960. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,890 ft³/s, July 21, gage height, 2.41 ft; minimum daily, 608 ft³/s, Apr. 26. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC FEB MAY JUN AUG SEP JAN MAR APR JUL 841 803 1140 807 2.0 2.2 TOTAL 1780 MEAN MAX MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1939 2003, BY WATER YEAR (WY) (UNADJUSTED) MEAN MAX 217 (WY) 45.5 96.0 MIN ADJUSTED FOR CHANGE IN CONTENTS IN HEBGEN MEAN CFSM 0.78 0.80 0.80 0.77 0.75 0.82 1.05 1.86 1.56 0.76 0.70 0.80 ΤN 0.90 n 89 0.93 0 89 0 78 0 94 1 17 2 14 1 74 0 88 0 71 0 79 AC-FT† OBSERVED CALENDAR YEAR TOTAL MEAN MAX MIN AC-FT WATER YEAR TOTAL MAX MIN AC-FT ADJUSTED AC-FT CALENDAR YEAR 2002 TOTAL MEAN CESM 0 95 IN 12.89 WATER YEAR TOTAL MEAN CFSM 0.95 IN 12.85 AC-FT t -- Adjusted for change in contents in Hebgen Lake. #### 06038800 MADISON RIVER AT KIRBY RANCH, NEAR CAMERON, MT LOCATION.--Lat 44°53'22", long 111°34'46" (NAD 27), in NE¹/₄NE¹/₄SE¹/₄ sec.10, T.11 S., R.1 E., Madison County, Hydrologic Unit 10020007, 75 ft upstream from county bridge, 0.2 mi upstream from West Fork Madison River, and 22 mi south of Cameron, and at river mile 89.8. DRAINAGE AREA.--1,065 mi². PERIOD OF RECORD.--September 1959 to September 1963, May 1978 to September 1994 (seasonal records only), October 1995 to current year. GAGE.--Water-stage recorder. Elevation of gage is 5,860 ft (NGVD 29). Aug. 31, 1959 to Oct. 2, 1959, nonrecording gage 75 ft downstream at elevation 0.96 ft lower. Oct. 3, 1959 to September 1963, water-stage recorder at present site and elevation. May 1978 to September 1994, nonrecording gage 75 ft downstream at present elevation. REMARKS.--Records good. Flow regulated by Hebgen Lake (station 06038000). Diversions for irrigation of about 1,500 acres upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | 2.112 | | | | | | | | |---|---|--|--|---|-------------------------------------|--|---|---|--|---|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 933
923
927
932
930 | 895
899
899
899 | 897
897
896
894
897 | 893
890
892
892
896 | 913
904
898
900
899 | 900
905
904
906
907 | 879
893
888
878
875 | 734
725
731
734
736 | 1950
1770
1630
1670
1580 | 1140
1120
1110
1090
1080 | 1170
1130
1260
1290
1280 | 861
859
870
921
938 | | 6
7
8
9
10 | 926
927
926
925
921 | 900
899
900
900 | 896
893
885
888
885 | 890
887
886
886
893 | 902
e900
906
911
912 | 908
907
911
905
904 | 887
876
875
872
881 | 737
734
734
785
844 | 1460
1430
1420
1450
1550 | 1070
1070
1060
1010
984 | 1260
1250
1230
1220
1200 | 951
956
958
948
946 | | 11
12
13
14
15 | 915
915
917
918
916 | 900
900
900
900 | 891
894
895
898
899 | 891
892
896
898
897 | 911
907
913
917
911 | 893
894
895
901
900 | 891
897
910
917
924 | 863
878
884
901
946 | 1690
1680
1640
1660
1620 | 974
971
990
1070
1100 | 1180
1170
1150
1140
1120 | 942
939
942
939
937 | | 16
17
18
19
20 | 919
920
917
915
917 | 900
898
899
899 | 898
899
894
891
893 | 892
894
892
895
895 | 911
912
905
903
903 | 898
891
892
891
896 | 907
901
891
875
873 | 994
1010
1020
986
952 | 1560
1540
1390
1360
1340 | 1200
1390
1570
1640
1740 | 1100
1090
1060
979
942 | 938
936
933
932
928 | | 21
22
23
24
25 | 920
915
912
914
916 | 900
899
e900
898
887 | 896
898
895
893
e890 | 899
900
901
899
900 | 908
915
e890
e880
e890 | 883
884
893
880
881 | 880
891
904
901
836 | 955
986
1090
1260
1460 | 1290
1230
1180
1140
1110 | 1770
1870
1860
1840
1850 | 925
909
899
895
891 | 928
927
925
926
923 | | 26
27
28
29
30
31 | 915
911
915
903
899
895 | 891
895
899
897
897 | 894
890
894
891
889
893 | 900
910
904
900
908
909 | e890
899
902

 | 883
871
864
865
872
879 | 780
738
728
733
729 | 1670
1730
1790
1940
2090
2070 | 1100
1090
1110
1120
1130 | 1870
1840
1800
1660
1580
1380 | 886
876
879
868
863
865 | 924
927
926
922
924 | | TOTAL
MEAN
MAX
MIN
AC-FT | 28454
918
933
895
56440 | 26950
898
900
887
53460 | 27703
894
899
885
54950 | 27777
896
910
886
55100 | 25312
904
917
880
50210 | 27663
892
911
864
54870 | 25910
864
924
728
51390 | 33969
1096
2090
725
67380 | 42890
1430
1950
1090
85070 | 42699
1377
1870
971
84690 | 32977
1064
1290
863
65410 | 27826
928
958
859
55190 | | STATIST | TICS OF M | ONTHLY ME | AN DATA | FOR WATER | YEARS 1959 | - 2003 | , BY WATE | ER YEAR (WY |) * | | | | | MEAN
MAX
(WY)
MIN
(WY) | 1561
2570
1962
918
2003 | 1560
2780
1960
736
1961 | 1217
3005
1960
739
1961 | 1043
1449
1999
737
1961 | 1025
1521
1999
626
1963 | 1028
1611
1999
525
1963 | 1001
1527
1995
370
1961 | 1374
2865
1997
445
1961 | 1864
3862
1997
619
1960 | 1328
2125
1982
716
1979 | 1131
1672
1997
734
1960 | 1166
1567
1996
732
1960 | | SUMMAR | Y STATIST | ICS | FOR | 2002 CALI | ENDAR YEAR | | FOR 2003 | WATER YEAR | | WATER YEAR | S 1959 - | - 2003* | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUI MAXIMUI INSTANT ANNUAL 10 PERC 50 PERC | MEAN I ANNUAL M I DAILY M DAILY ME SEVEN-DA M PEAK FI TANEOUS I | EAN EAN AN Y MINIMUM OW AGE OW FLOW AC-FT) EDS EDS | | 363666
996
2020
806
812
721300
1330
914
826 | Jun 2
Apr 2
Mar 28 | | 370130
1014
2090
725
731
2170
2
a712
734200
1420
905
879 | May 30
May 2
Apr 28
May 30
.71 May 30
Apr 28 | | 1295
1896
733
5030
139
152
b5030
3.97
c139
938300
2090
1170
734 | May 3:
Sep :
Sep :
May 3:
Jun :
Sep : | 1 1959
1 1959
D 1993
7 1996 | | | | | | | | | | | | | | | ^{*--}During periods of operation {September 1959 to September 1963, May 1978 to September 1994 (seasonal records only), October 1994 to current year}. a--Gage height, 1.62 ft. b--Observed, gage height, 3.15
ft, previous site at present datum. c--Observed, present site and datum. e--Estimated. ## 06040800 MADISON RIVER ABOVE POWERPLANT, NEAR MCALLISTER, MT $LOCATION.--Lat\ 45^{\circ}29'12'', long\ 111^{\circ}37'59''\ (NAD\ 27), in\ NW^{1}/_{4}NE^{1}/_{4}SW^{1}/_{4}\ sec.17, T.4\ S., R.1\ E., Madison\ County,\ Hydrologic\ Unit\ 10020007,\ on\ NW^{1}/_{4}NE^{1}/_{4}SW^{1}/_{4}$ right bank 160 ft upstream from Madison powerplant, 1.4 mi downstream from Ennis Lake, 5.6 mi northeast of McAllister, and at river mile 38.9. DRAINAGE AREA.--2,186 mi². PERIOD OF RECORD.--April 2002 to current year. GAGE.--Water-stage recorder. Elevation of gage is 4,690 ft (NGVD 29). REMARKS.--Records good. Flow regulated by Hebgen Lake (station number 06038000) and Ennis Lake (station number 06040500). Diversions for irrigation of about 23,000 acres upstream from station. Flow through Madison Powerplant bypasses the station. U. S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. | teleffie | | DISCHAR | | | R SECONI | O, WATER | | | | EPTEMBER | 2003 | | |--|--|--|--------------------------------------|---------------------------------------|-----------------------------------|--|--|--|--------------------------------------|---|--------------------------------------|-----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 289
291
292
294
295 | 306
303
302
305
308 | 85
84
95
81
100 | 84
84
84
84 | 89
88
81
90
100 | 100
637
130
129
129 | 179
233
234
233
231 | 220
221
222
224
228 | 3530
3210
2340
1950
1410 | 165
117
119
123
119 | 643
442
350
322
319 | 93
92
105
113
103 | | 6
7
8
9
10 | 296
296
296
298
300 | 242
340
397
395
394 | 116
88
87
87 | 83
83
82
79
80 | 99
98
99
100
102 | 104
90
e90
96
101 | 230
229
228
224
219 | 230
226
221
217
217 | 748
592
712
719
870 | 117
112
103
105
108 | 144
147
148
153
339 | 95
95
95
94
95 | | 11
12
13
14
15 | 294
294
293
245
176 | 392
392
388
387
385 | 86
87
87
87
89 | 79
79
80
88
87 | 104
105
108
115
125 | 104
106
117
123
121 | 219
220
222
226
227 | 220
765
1170
1170
1190 | 1060
1200
1090
753
569 | 257
438
495
469
577 | 293
125
123
120
125 | 98
98
99
101
101 | | 16
17
18
19
20 | 180
185
188
190
193 | 385
381
379
226
107 | 91
90
e90
e85
81 | 86
85
84
83
84 | 126
122
115
111
106 | 117
103
97
98
98 | 229
228
231
231
231 | 1200
1220
e1250
1280
1280 | 651
755
754
748
684 | 606
569
598
559
497 | 126
118
108
118
117 | 102
102
104
107 | | 21
22
23
24
25 | 196
196
245
331
330 | 105
102
99
98
95 | 79
80
81
e80
e78 | 86
85
85
87
89 | 104
104
102
97
95 | 99
100
99
98
97 | 229
228
231
232
232 | 1010
309
312
358
857 | 577
572
559
473
349 | 750
751
767
689
624 | 113
115
111
109
108 | 106
106
105
105
105 | | 26
27
28
29
30
31 | 329
327
324
320
328
344 | 92
91
89
88
87 | e75
73
75
82
86
84 | 93
150
278
324
320
250 | 95
96
98

 | 96
97
97
97
98
99 | 232
230
226
221
219 | 2000
2380
2380
2570
3260
3540 | 274
214
223
233
233
 | 496
412
562
427
344
354 | 108
108
106
104
98
95 | 104
103
104
104
100 | | TOTAL
MEAN
MAX
MIN
AC-FT | 8455
273
344
176
16770 | 7660
255
397
87
15190 | 2656
85.7
116
73
5270 | 3508
113
324
79
6960 | 2874
103
126
81
5700 | 3767
122
637
90
7470 | 6784
226
234
179
13460 | 31947
1031
3540
217
63370 | 28052
935
3530
214
55640 | 12429
401
767
103
24650 | 5555
179
643
95
11020 | 3041
101
113
92
6030 | | | | ONTHLY MEA | | | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 273
273
2003
273
2003 | 255
255
2003
255
2003 | 85.7
85.7
2003
85.7
2003 | 113
113
2003
113
2003 | 103
103
2003
103
2003 | 122
122
2003
122
2003 | 289
351
2002
226
2003 | 686
1031
2003
342
2002 | 1005
1076
2002
935
2003 | 480
560
2002
401
2003 | 191
203
2002
179
2003 | 174
247
2002
101
2003 | | SUMMAR | Y STATIST | ICS | | | FOR 20 | 003 WATER | YEAR | | | WATER YEAR | RS 2002 - | 2003 | | LOWEST
HIGHES
LOWEST
ANNUAL
MAXIMU
MAXIMU
ANNUAL
10 PER
50 PER | | EAN EAN AN Y MINIMUM OW AGE AC-FT) EDS EDS | | | 354
359
2315
69 | 40 M
73 D
77 D
50 M
9.05 M | lay 31
lec 27
lec 22
lay 31
lay 31 | | | 320
320
320
3540
73
77
3940
9.42
231700
698
129
86 | | 2002
2002
2002 | e--Estimated. 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS #### 06041000 MADISON RIVER BELOW ENNIS LAKE, NEAR MCALLISTER, MT LOCATION.--Lat 45°29'25", long 111°38'00" (NAD 27), in SW¹/₄SE¹/₄NW¹/₄ sec.17, T.4 S., R.1 E., Madison County, Hydrologic Unit 10020007, on right bank 500 ft downstream from Madison powerplant, 1.5 mi downstream from Ennis Lake, 5.7 mi northeast of McAllister, and at river mile 38.8. DRAINAGE AREA.--2.186 mi². ## WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1901 to December 1905, October 1906 to current year. Prior to October 1938 adjusted monthly runoff only, published in WSP 1309. Published as "below Madison Reservoir" 1938-49. Records published as "near Red Bluff" 1890-94 and as "near Norris" 1910 are not equivalent and are published as "near Norris" in WSP 1309. REVISED RECORDS .-- WSP 1559: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 4,689.03 ft (levels by U.S. Army Corps of Engineers) (NGVD 29). Prior to May 7, 1941, nonrecording gage in wooden stilling well at present site at different elevation. May 7, 1941, to Jan. 13, 1945, nonrecording gages in concrete stilling well at present site and elevation. REMARKS.—Water-discharge records excellent. Flow regulated by Hebgen Lake (station number 06038000) and Ennis Lake (station number 06040500). Diversions for irrigation of about 23,000 acres upstream from station. U. S. Geological Survey satellite telemeter at station. ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|---|--|--|--|---------------------------|--|--|--|--------------------------------------|--|--|--------------------------------------| | 1 | 1250 | 1280 | 1400 | 1340 | 1440 | 1230 | 1210 | 1130 | 4550 | 1410 | 1870 | 1140 | | 2 | 1250 | 1280 | 1400 | 1330 | 1440 | 1190 | 1220 | 1130 | 4290 | 1370 | 1610 | 1150 | | 3 | 1250 | 1280 | 1390 | 1340 | 1370 | 1260 | 1300 | 1130 | 3430 | 1380 | 1510 | 1150 | | 4 | 1250 | 1290 | 1400 | 1340 | 1270 | 1260 | 1290 | 1130 | 2990 | 1380 | 1480 | 1160 | | 5 | 1250 | 1290 | 1410 | 1340 | 1170 | 1250 | 1290 | 1220 | 2490 | 1380 | 1480 | 1150 | | 6 | 1250 | 1230 | 1340 | 1330 | 1150 | 1180 | 1290 | 1300 | 2080 | 1380 | 1300 | 1150 | | 7 | 1260 | 1320 | 1270 | 1330 | 1160 | 1120 | 1290 | 1300 | 1940 | 1240 | 1280 | 1150 | | 8 | 1270 | 1370 | 1270 | 1330 | 1140 | 1130 | 1290 | 1300 | 2040 | 1130 | 1300 | 1150 | | 9 | 1260 | 1370 | 1270 | 1240 | 1140 | 1190 | 1260 | 1190 | 2050 | 1130 | 1320 | 1140 | | 10 | 1260 | 1370 | 1280 | 1190 | 1140 | 1220 | 1200 | 1130 | 2170 | 1140 | 1500 | 1150 | | 11 | 1270 | 1370 | 1280 | 1160 | 1140 | 1230 | 1190 | 1130 | 2330 | 1320 | 1360 | 1150 | | 12 | 1270 | 1370 | 1280 | 1150 | 1150 | 1240 | 1190 | 1180 | 2470 | 1480 | 1290 | 1150 | | 13 | 1270 | 1370 | 1260 | 1150 | 1150 | 1390 | 1190 | 1170 | 2360 | 1530 | 1290 | 1150 | | 14 | 1230 | 1370 | 1260 | 1270 | 1260 | 1500 | 1270 | 1180 | 2060 | 1500 | 1240 | 1150 | | 15 | 1170 | 1360 | 1290 | 1250 | 1430 | 1490 | 1310 | 1190 | 1910 | 1610 | 1250 | 1150 | | 16 | 1170 | 1360 | 1330 | 1210 | 1480 | 1490 | 1300 | 1210 | 1980 | 1640 | 1310 | 1150 | | 17 | 1170 | 1360 | 1350 | 1210 | 1470 | 1310 | 1300 | 1230 | 2070 | 1590 | 1280 | 1160 | | 18 | 1180 | 1360 | 1340 | 1210 | 1410 | 1220 | 1310 | 1250 | 2080 | 1630 | 1230 | 1150 | | 19 | 1180 | 1410 | 1340 | 1210 | 1350 | 1200 | 1310 | 1280 | 2080 | 1580 | 1340 | 1190 | | 20 | 1190 | 1430 | 1260 | 1210 | 1290 | 1210 | 1310 | 1290 | 2020 |
1520 | 1280 | 1220 | | 21 | 1190 | 1420 | 1210 | 1210 | 1230 | 1210 | 1310 | 1370 | 1850 | 1790 | 1210 | 1220 | | 22 | 1200 | 1420 | 1210 | 1210 | 1220 | 1210 | 1310 | 1380 | 1920 | 1820 | 1170 | 1220 | | 23 | 1230 | 1420 | 1210 | 1210 | 1220 | 1210 | 1310 | 1370 | 1900 | 1970 | 1160 | 1220 | | 24 | 1310 | 1420 | 1210 | 1210 | 1190 | 1210 | 1310 | 1410 | 1820 | 1890 | 1160 | 1220 | | 25 | 1310 | 1410 | 1210 | 1210 | 1140 | 1200 | 1310 | 1880 | 1720 | 1800 | 1160 | 1220 | | 26
27
28
29
30
31 | 1310
1310
1300
1300
1290
1280 | 1410
1410
1400
1400
1400 | 1200
1160
1140
1250
1330
1330 | 1220
1270
1380
1420
1410
1440 | 1120
1120
1190
 | 1200
1200
1210
1190
1190
1200 | 1310
1310
1310
1220
1140 | 3030
3440
3420
3630
4330
4560 | 1670
1580
1510
1480
1470 | 1640
1550
1860
1640
1550
1660 | 1160
1160
1160
1160
1150
1140 | 1220
1220
1220
1230
1220 | | TOTAL | 38680 | 40950 | 39880 | 39330 | 34980 | 38540 | 38160 | 53890 | 66310 | 47510 | 40310 | 35320 | | MEAN | 1248 | 1365 | 1286 | 1269 | 1249 | 1243 | 1272 | 1738 | 2210 | 1533 | 1300 | 1177 | | MAX | 1310 | 1430 | 1410 | 1440 | 1480 | 1500 | 1310 | 4560 | 4550 | 1970 | 1870 | 1230 | | MIN | 1170 | 1230 | 1140 | 1150 | 1120 | 1120 | 1140 | 1130 | 1470 | 1130 | 1140 | 1140 | | AC-FT | 76720 | 81220 | 79100 | 78010 | 69380 | 76440 | 75690 | 106900 | 131500 | 94240 | 79950 | 70060 | | STATIS' | TICS OF M | ONTHLY ME. | AN DATA 1 | FOR WATER | YEARS 1939 | - 2003 | , BY WATER | R YEAR (WY |) | | | | | MEAN | 1928 | 1997 | 1519 | 1392 | 1395 | 1446 | 1556 | 2016 | 2988 | 1859 | 1527 | 1618 | | MAX | 2963 | 3318 | 3243 | 2061 | 2336 | 2087 | 3008 | 4189 | 6135 | 3454 | 2339 | 2298 | | (WY) | 1960 | 1960 | 1960 | 1999 | 1943 | 1939 | 1948 | 1969 | 1997 | 1965 | 1971 | 1972 | | MIN | 810 | 961 | 974 | 767 | 781 | 891 | 717 | 859 | 1122 | 972 | 1044 | 934 | | (WY) | 1942 | 1941 | 1940 | 1940 | 1940 | 1941 | 1941 | 1961 | 1992 | 1961 | 1961 | 1941 | | SUMMAR | Y STATIST | ICS | FOR | 2002 CALE | ENDAR YEAR | | FOR 2003 V | VATER YEAR | | WATER YEAR | RS 1939 - | 2003 | | LOWEST
HIGHES'
LOWEST
ANNUAL
MAXIMUI | MEAN T ANNUAL ANNUAL M T DAILY ME DAILY ME SEVEN-DA M PEAK FL | EAN EAN AN Y MINIMUM OW AGE AC-FT) EDS EDS | | | Jun 3
Aug 15
Aug 21 | | 513860
1408
4560
1120
1150
4670
5.6
1019000
1810
1280
1150 | May 31
Feb 26
Feb 6
May 31
52 May 31 | | 1770
2530
1047
9210
210
390
9550
8.0
1282000
2700
1560
1090 | Jun 11
Aug 25
Aug 23
Jun 12
1 Jun 12 | 1959
1959
1970 | ## 06041000 MADISON RIVER BELOW ENNIS LAKE, NEAR MCALLISTER, MT--Continued WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1972-73, 1977 to current year. PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: June 1977 to current year. INSTRUMENTATION.--Temperature recorder since June 21, 1977. REMARKS.--Daily water temperature records good. Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office. EXTREMES FOR PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: Maximum, 24.5°C, July 22 and 23, 2003; minimum, 0.0°C several to many day during winter months most years. EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: Maximum, 24.5°C, July 22 and 23; minimum, 0.0°C, Oct. 30. #### WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|--|----------------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------| | | | OCTOBER | | NO | VEMBER | | DE | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 11.0
10.0
9.5
9.0
9.0 | 10.0
9.5
9.0
8.5
8.5 | 10.5
9.5
9.5
8.5
8.5 | 1.0
1.0
1.5
1.5 | 0.5
0.5
1.0
1.0 | 0.5
1.0
1.0
1.5 | 2.5
2.5
2.5
2.5
2.5 | 2.0
2.5
2.5
2.5
2.5 | 2.5
2.5
2.5
2.5
2.5 | 1.5
1.5
1.5
1.5 | 1.0
1.5
1.5
1.5 | 1.5
1.5
1.5
1.5 | | 6
7
8
9
10 | 9.0
9.5
9.5
9.5
10.0 | 8.5
9.0
9.5
9.5
9.5 | 9.0
9.0
9.5
9.5 | 2.0
2.5
2.5
2.5
2.5 | 1.5
2.0
2.5
2.0 | 2.0
2.0
2.5
2.5
2.5 | 3.0
3.0
3.0
3.5
3.0 | 2.5
2.5
2.5
3.0
3.0 | 2.5
3.0
3.0
3.0
3.0 | 1.5
2.0
2.0
2.0
2.0 | 1.5
1.5
1.5
1.5 | 1.5
2.0
2.0
1.5
2.0 | | 11
12
13
14
15 | 9.5
9.0
8.0
8.0
8.5 | 9.0
8.0
8.0
7.5
8.0 | 9.5
8.5
8.0
8.0 | 2.5
2.5
2.5
2.0
2.0 | 2.0
2.0
2.0
2.0
2.0 | 2.5
2.5
2.0
2.0
2.0 | 3.0
3.0
3.0
3.0
2.5 | 3.0
3.0
3.0
2.5
1.0 | 3.0
3.0
3.0
2.5
1.5 | 2.0
2.5
2.5
2.5
2.5 | 2.0
2.0
2.5
2.5
2.0 | 2.0
2.0
2.5
2.5
2.5 | | 16
17
18
19
20 | 8.0
8.0
8.0
8.0 | 7.5
7.5
7.5
7.5
8.0 | 8.0
7.5
8.0
8.0 | 2.0
1.5
1.0
1.0 | 1.5
1.0
1.0
0.5
0.5 | 1.5
1.0
1.0
1.0 | 1.0
1.0
0.5
1.0 | 1.0
0.5
0.5
0.5 | 1.0
0.5
0.5
1.0 | 2.0
2.0
2.0
2.0
2.0 | 2.0
1.5
1.5
1.5
2.0 | 2.0
2.0
2.0
2.0
2.0 | | 21
22
23
24
25 | 8.0
7.5
6.5
5.5
4.5 | 7.5
6.5
5.5
4.0
4.0 | 7.5
7.0
6.0
5.0
4.0 | 1.5
1.5
1.5
2.0
1.5 | 0.5
1.0
1.0
1.5 | 1.0
1.5
1.5
1.5 | 1.0
1.0
1.0
1.0 | 0.5
1.0
1.0
0.5 | 1.0
1.0
1.0
0.5 | 2.0
2.0
2.0
2.0
2.0 | 1.5
1.5
2.0
2.0
2.0 | 2.0
1.5
2.0
2.0 | | 26
27
28
29
30
31 | 4.5
4.5
5.0
4.5
2.5
0.5 | 4.0
4.0
4.0
2.5
0.0 | 4.5
4.0
4.5
3.5
1.0 | 1.0
1.5
2.0
2.0
2.0 | 1.0
1.0
1.5
1.5 | 1.0
1.5
1.5
2.0
2.0 | 0.5
1.0
1.0
1.0
1.0 | 0.5
0.5
1.0
1.0 | 0.5
1.0
1.0
1.0
1.0 | 2.0
2.0
1.5
1.5
2.0
2.5 | 2.0
1.5
1.5
1.5
2.0 | 2.0
2.0
1.5
1.5
2.0 | | MONTH | 11.0 | 0.0 | 7.0 | 2.5 | 0.5 | 1.5 | 3.5 | 0.5 | 1.5 | 2.5 | 1.0 | 2.0 | # 06041000 MADISON RIVER BELOW ENNIS LAKE, NEAR MCALLISTER, MT--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | DAY | MAX | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | |--|--|--|--|--|--|--|--|--|--|--|--|--| | 1
2
3
4
5 | 2.5
2.5
2.5
2.5
2.5 | 2.0
2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.5
2.5 | 2.5
2.0
2.0
1.5 | 2.0
0.5
1.5
1.5 | 2.5
2.0
2.0
1.5
1.5 | 6.5
6.0
5.5
5.5 | 6.0
5.5
5.0
4.5
5.0 | 6.0
6.0
5.5
5.0 | 9.0
9.0
9.5
9.5 | 8.0
9.0
9.0
9.0
9.0 | 8.5
9.0
9.5
9.5 | | 6
7
8
9
10 | 2.5
2.5
2.5
2.5
2.0 | 2.0
2.0
2.5
2.0
2.0 | 2.0
2.0
2.5
2.0
2.0 | 1.5
1.5
1.0
1.5 | 1.5
1.0
0.5
0.5 | 1.5
1.5
1.0
1.0 | 6.0
6.5
6.5
7.0
8.5 | 5.0
5.5
6.0
6.5
7.0 | 5.5
6.0
6.0
6.5
7.5 | 10.0
10.0
10.0
9.5
9.0 | 9.5
9.5
9.5
9.0
8.5 | 10.0
10.0
10.0
9.5
9.0 | | 11
12
13
14
15 | 2.0
1.5
1.5
1.0
1.5 | 1.5
1.5
1.0
1.0 | 1.5
1.5
1.0
1.0 | 1.5
2.0
2.5
3.0
3.5 | 1.5
1.5
1.5
2.5
3.0 | 1.5
1.5
2.0
2.5
3.0 | 9.0
10.0
10.0
10.0
9.5 | 8.5
9.0
9.5
9.5
9.0 | 8.5
9.5
10.0
9.5
9.5 | 9.0
9.5
10.0
12.0
13.5 | 8.5
9.0
9.0
10.0
12.0 | 8.5
9.0
9.5
11.0
13.0 | | 16
17
18
19
20 | 1.5
2.0
2.0
2.5
2.5 | 1.0
1.5
1.5
2.0
2.0 | 1.5
1.5
2.0
2.0
2.5 |
4.0
4.0
4.0
3.0
3.5 | 3.5
3.5
2.5
2.5
2.5 | 4.0
3.5
3.0
2.5
3.0 | 9.0
9.0
9.0
9.0
9.5 | 8.5
9.0
9.0
8.5
8.5 | 9.0
9.0
9.0
8.5
9.0 | 13.0
12.5
11.5
11.0
12.0 | 12.0
11.5
11.0
10.5
10.0 | 12.5
12.0
11.0
10.5
11.0 | | 21
22
23
24
25 | 3.0
3.5
2.5
3.0
3.0 | 2.5
2.5
2.0
2.5
2.5 | 3.0
3.0
2.5
2.5
2.5 | 3.5
5.0
5.5
5.5 | 2.5
2.5
4.5
5.0
4.5 | 3.0
3.5
5.0
5.0 | 10.5
11.0
11.0
11.5
12.0 | 9.5
9.5
10.5
11.0
11.5 | 10.0
10.5
10.5
11.0
11.5 | 12.0
12.5
13.5
16.0
16.5 | 11.0
11.5
12.5
12.5
14.5 | 12.0
11.5
13.0
14.0
15.5 | | 26
27
28
29
30
31 | 3.0
3.0
2.5
 | 2.5
2.5
2.0
 | 2.5
2.5
2.5
 | 4.5
4.5
4.0
5.0
5.5
6.0 | 4.5
4.0
3.5
4.0
5.0 | 4.5
4.0
4.5
5.0
6.0 | 11.5
10.0
10.5
10.0
9.0 | 10.0
9.5
10.0
9.0
8.5 | 10.5
10.0
10.0
9.5
9.0 | 16.5
18.5
18.5
19.5
19.0
17.5 | 16.0
16.0
17.0
16.5
17.0
16.0 | 16.5
17.0
17.5
17.5
17.5 | | MONTH | 3.5 | 1.0 | 2.0 | 6.0 | 0.5 | 3.0 | 12.0 | 4.5 | 8.5 | 19.5 | 8.0 | 12.0 | | | | | | | | | | | | | | | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4
5 | 16.5
16.5
15.0
14.5
14.5 | JUNE 15.5 13.5 13.5 13.5 13.5 | 16.0
15.0
14.0
13.5
14.0 | 20.0
20.0
20.5
20.5
21.0 | JULY 19.0 18.5 20.0 20.0 20.0 | 19.5
19.5
20.0
20.5
20.5 | 23.0
23.5
23.0
22.5
22.5 | AUGUST 22.0 22.5 22.5 22.0 22.0 | 22.5
23.0
22.5
22.5
22.5 | 18.5
18.5
18.5
18.5 | SEPTEMBE
17.5
17.5
17.5
18.0
18.0 | 18.0
18.0
18.0
18.0
18.0 | | 2
3
4 | 16.5
15.0
14.5 | 15.5
13.5
13.5
13.5 | 15.0
14.0
13.5 | 20.0
20.5
20.5 | 19.0
18.5
20.0
20.0 | 19.5
20.0
20.5 | 23.0
23.5
23.0
22.5 | 22.0
22.5
22.5
22.0 | 23.0
22.5
22.5 | 18.5
18.5
18.5
18.5 | 17.5
17.5
17.5
18.0 | 18.0
18.0
18.0
18.0 | | 2
3
4
5
6
7
8
9 | 16.5
15.0
14.5
14.5
14.5
15.0
16.5
16.5 | 15.5
13.5
13.5
13.5
13.5
14.0
14.0
14.0 | 15.0
14.0
13.5
14.0
14.5
15.0
16.0 | 20.0
20.5
20.5
21.0
21.0
20.5
20.5
21.0 | 19.0
18.5
20.0
20.0
20.0
20.0 | 19.5
20.0
20.5
20.5
20.5
20.5
20.0
20.5
20.5 | 23.0
23.5
23.0
22.5
22.5
22.5
22.5
22.5
22.5 | 22.0
22.5
22.5
22.0
22.0
22.0
22.0
22.0 | 23.0
22.5
22.5
22.5
22.0
22.0
22.0
22.0 | 18.5
18.5
18.5
19.0
19.0
18.5
18.5
17.5
16.5 | 17.5
17.5
17.5
18.0
18.0
18.5
18.0
17.5
16.5 | 18.0
18.0
18.0
18.0
18.5
18.5
18.5
18.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14 | 16.5
15.0
14.5
14.5
15.0
16.5
17.5
18.0
18.0
18.0 | 15.5
13.5
13.5
13.5
13.5
14.0
14.0
15.0
15.5 | 15.0
14.0
13.5
14.0
14.5
14.5
16.0
16.0
17.0
17.5
17.0
17.5 | 20.0
20.5
20.5
21.0
21.0
20.5
20.5
21.5
21.5
22.5
23.0
22.5 | 19.0
18.5
20.0
20.0
20.0
20.0
20.0
20.0
20.5
20.5
21.0
22.0
22.0 | 19.5
20.0
20.5
20.5
20.5
20.0
20.5
21.0
21.0
22.0
22.5
22.5 | 23.0
23.5
23.0
22.5
22.5
22.5
22.5
22.5
22.5
22.5
22 | 22.0
22.5
22.5
22.0
22.0
22.0
22.0
22.0 | 23.0
22.5
22.5
22.5
22.0
22.0
22.0
21.5
21.0
21.5 | 18.5
18.5
18.5
19.0
19.0
18.5
17.5
16.5
16.0
15.5
14.5 | 17.5
17.5
18.0
18.0
18.5
18.0
17.5
16.5
16.5
14.5
14.5 | 18.0
18.0
18.0
18.5
18.5
18.5
18.5
18.5
18.5
17.0
16.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 16.5
15.0
14.5
14.5
16.5
16.5
17.5
18.0
18.0
18.0
18.0
20.0 | 15.5
13.5
13.5
13.5
13.5
14.0
14.0
15.0
15.5
16.5
17.0
17.0
17.0
17.0
17.0
19.0 | 15.0
14.0
13.5
14.0
14.5
15.0
16.0
17.0
17.5
17.5
17.5
17.5
17.5
18.0 | 20.0
20.5
20.5
21.0
21.0
20.5
21.5
21.5
21.5
22.5
23.0
22.5
23.0
23.0
23.0
23.0 | 19.0
18.5
20.0
20.0
20.0
20.0
20.0
20.5
20.5
21.0
22.0
22.0
22.0
22.5
22.5
22.5 | 19.5
20.0
20.5
20.5
20.5
20.0
20.5
21.0
21.0
22.5
22.5
22.5
23.0
23.0
23.0
23.0 | 23.0
23.5
23.0
22.5
22.5
22.5
22.5
22.5
22.5
22.5
21.5
21 | 22.0
22.5
22.5
22.0
22.0
22.0
22.0
22.0 | 23.0
22.5
22.5
22.5
22.0
22.0
22.0
21.5
21.0
21.5
21.0
21.0
21.0
21.0 | 18.5
18.5
18.5
19.0
19.0
18.5
17.5
16.5
15.0
14.5
14.0
13.5
13.0
12.0
11.5 | 17.5
17.5
18.0
18.0
18.5
18.0
17.5
16.5
14.5
14.5
14.5
14.5
14.0
13.5 | 18.0
18.0
18.0
18.5
18.5
18.5
18.5
16.5
15.5
15.0
14.0
14.0
13.5
12.5
11.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 16.5
15.0
14.5
14.5
14.5
16.5
17.5
18.0
18.0
18.0
18.0
20.0
20.0
19.5
18.5
18.0 | 15.5
13.5
13.5
13.5
13.5
14.0
14.0
15.0
15.5
16.5
17.0
17.0
17.0
17.0
17.0
17.0
19.0
18.5 | 15.0
14.0
13.5
14.0
14.5
15.0
16.0
17.0
17.5
17.5
17.5
17.5
17.5
19.0
18.0
17.5
19.0 | 20.0
20.5
20.5
21.0
21.5
22.5
21.5
22.5
23.0
22.5
23.0
23.5
23.0
24.0
24.5
24.0 | 19.0
18.5
20.0
20.0
20.0
20.0
20.0
20.0
20.5
20.5
21.0
22.0
22.0
22.0
22.5
22.5
22.5
22.5
23.0
23.5 | 19.5 20.0 20.5 20.5 20.5 20.5 21.0 21.0 22.5 22.5 23.0 23.0 23.0 23.0 23.5 23.5 24.0 | 23.0
23.5
23.0
22.5
22.5
22.5
22.5
22.5
22.5
21.5
21.5 | 22.0
22.5
22.5
22.0
22.0
22.0
22.0
22.0 | 23.0
22.5
22.5
22.5
22.0
22.0
22.0
21.5
21.0
21.5
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | 18.5
18.5
18.5
19.0
19.0
19.0
18.5
17.5
16.5
16.5
14.5
14.0
13.5
13.0
12.0
11.5
11.5
12.0
12.5
12.5 | 17.5
17.5
18.0
18.0
18.5
16.5
16.5
14.5
14.5
14.0
13.5
13.0
12.0
11.0
11.0
11.0
12.0 | 18.0
18.0
18.0
18.5
18.5
18.5
18.5
16.5
15.5
15.5
14.0
14.0
13.5
11.5
11.5
11.5
11.5
11.5 | #### 06043500 GALLATIN RIVER NEAR GALLATIN GATEWAY, MT LOCATION.--Lat 45°29'51", long 111°16'11" (NAD 27), in SE¹/₄SE¹/₄SE¹/₄sec.7, T.4 S., R.4 E., Gallatin County, Hydrologic Unit 10020008, on left bank 0.3 mi downstream from Spanish Creek, 7.3 mi south of Gallatin Gateway and at river mile 47.7. DRAINAGE AREA.--825 mi². PERIOD OF RECORD.--August 1889 to September 1894, June 1930 to September 1969, annual maximum, water years 1970-71, October 1971 to September 1981, October 1984 to current year. Monthly discharge only for some periods, published in WSP 1309. Published as West Gallatin River near Bozeman 1889-94. REVISED RECORDS.--WSP 1389: 1892(M), 1893-94. WSP 1559: Drainage area. WDR MT-85-1 (M), WDR MT-02-1: 1970-71 (M). GAGE.--Water-stage recorder. Elevation of gage is 5,167.67 ft (NGVD 29). Prior to Oct. 20, 1932, nonrecording gages at several different sites and elevations within 0.8 mi of present site. REMARKS.--Records good. Diversions for irrigation of about 1,400 acres upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and conductance were made during the year. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------|-------------------------|-------------|------------|------------|------------|------------|-------------|----------------------|--------------|---|--------------|--------------| | 1 | 369 | 230 | 282 | 245 | 287 | 246 | 316 | 575 | 5390 | 1210 | 493 | 358 | | 2 | 362 | 257 | 298 | 242 | 287 | 233 | 320 | 562 | 4380 | 1150 | 478 | 351 | | 3 | 361 | 264 | 300 | 247 | 272 | 225 | 307 | 563 | 3650 | 1080 | 476 | 348 | | 4 | 364 | 264 | 295 | 250 | 255 | 240 | 270 | 590 | 3260 | 1020 | 523 | 345 | | 5 | 361 | 277 | 289 | 253 | 259 | 237 | 269 | 636 | 2760 | 975 | 486 | 343 | | 6 | 354 | 307 | 283 | 251 | 233 | 237 | 278 | 625 | 2610 | 938 | 468 | 355 | | 7 | 348 | 301 | 266 | 233 | 213 | 241 | 264 | 601 | 2280 | 906 | 450 | 378 | | 8 | 348 | 319 | 257 | 211 | 254 | 244 | 268 | 591 | 2300 | 879 | 438 | 364 | | 9 | 345 | 324 | 249 | 217 | 249 | 247 | 285 | 580 | 2740 | 839 | 440 | 366 | | 10 | 339 | 317 | 266 | 197 | 247 | 256 | 329 | 570 | 2960 | 795 | 454 | 361 | | 11 | 340 | 312 | 269 | 196 | 243 | 264 | 373 | 553 | 2890 | 766 | 430 | 371 | | 12 | 330 | 300 | 270 | 207 | 230 | 271 | 432 | 569 | 2740 | 744 | 419 | 362 | | 13 | 328 | 314 | 268 | 233 | 233 | 280 | 509 | 672 | 2610 | 723 | 411 | 374 | | 14 | 339 | 310 | 287 | 243 | 244 | 337 | 557 | 748 | 2630 | 698 | 403 | 362 | | 15 | 333 | 306 | 290 | 254 | 257 | 328 | 566 | 958 | 2450 | 681 | 401 | 350 | | 16 | 340 |
292 | 277 | 244 | 258 | 320 | 487 | 1200 | 2290 | 664 | 443 | 363 | | 17 | 336 | 300 | 281 | 219 | 259 | 293 | 446 | 1220 | 2320 | 638 | 422 | 397 | | 18 | 328 | 294 | 259 | 231 | 253 | 278 | 447 | 1240 | 2270 | 621 | 420 | 371 | | 19 | 321 | 295 | 229 | 224 | 248 | 267 | 413 | 1060 | 2230 | 602 | 404 | 360 | | 20 | 332 | 309 | 233 | 243 | 240 | 262 | 397 | 944 | 2160 | 590 | 397 | 354 | | 21 | 331 | 303 | 241 | 252 | 248 | 272 | 431 | 914 | 2100 | 573 | 388 | 349 | | 22 | 334 | 300 | 241 | 257 | 262 | 273 | 503 | 1020 | 1790 | 556 | 388 | 343 | | 23 | 323 | 309 | 245 | 261 | 245 | 307 | 597 | 1460 | 1570 | 541 | 381 | 334 | | 24 | 319 | 284 | 196 | 263 | 214 | 274 | 638 | 2090 | 1420 | 550 | 373 | 332 | | 25 | 304 | 243 | 153 | 255 | 202 | 272 | 696 | 2930 | 1300 | 560 | 374 | 328 | | 26 | 299 | 244 | 165 | 264 | 233 | 280 | 745 | 3930 | 1220 | 742 | 366 | 325 | | 27 | 296 | 294 | 214 | 280 | 243 | 269 | 629 | 4120 | 1200 | 656 | 370 | 321 | | 28 | 341 | 302 | 243 | 274 | 244 | 265 | 589 | 4460 | 1240 | 579 | 380 | 322 | | 29
30 | 321
264 | 303
297 | 252 | 267
265 | | 259
268 | 563
563 | 4460
5420
5860 | 1240
1220 | 540
520 | 372
370 | 320
317 | | 31 | 239 | 297 | 248
242 | 268 | | 289 | 503 | 5640 | 1220 | 520
502 | 362 | 317 | | 31 | 239 | | 242 | 200 | | 209 | | 3040 | | | | | | TOTAL | 10249 | 8771 | 7888 | 7546 | 6912 | 8334 | 13487 | 52901 | 71220 | 22838 | 12980 | 10524 | | MEAN | 331 | 292 | 254 | 243 | 247 | | 450 | 1706 | 2374 | 737 | 419 | 351 | | MAX | 369 | 324 | 300 | 280 | 287 | 337 | 745 | 5860 | 5390 | 1210 | 523 | 397 | | MIN | 239
20330 | 230 | 153 | 196 | 202 | 225 | 264 | 553 | 1200 | 502 | 362
25750 | 317
20870 | | AC-FT | 20330 | 17400 | 15650 | 14970 | 13710 | 16530 | 26750 | 104900 | 141300 | 45300 | 25/50 | 20870 | | STATIS' | TICS OF M | ONTHLY ME | AN DATA F | FOR WATER | YEARS 1889 | - 2003 | , BY WATE | R YEAR (W | Y)* | | | | | MEAN | 454 | 382 | 321 | 307 | 304 | 311 | 501 | 1802 | 2937 | 1287 | 609 | 490 | | MAX | 743 | 589 | 549 | 468 | 430 | 465 | 899 | | 5110 | 3669 | 1162 | 788 | | (WY) | 1893 | 1960 | 1893 | 1893 | 1893 | 1960 | 1990 | 1976 | 1997 | 1975 | 1993 | 1968 | | MIN | 238 | 247 | 214 | 200 | 220 | 206 | 263 | 873 | 643 | 345 | 269 | 233 | | (WY) | 1932 | 1937 | 1935 | 1931 | 1935 | 1935 | 1937 | 1953 | 1934 | 1934 | 1934 | 1931 | | SUMMAR | Y STATIST | ICS | FOR | 2002 CALE | NDAR YEAR | | FOR 2003 | WATER YEAR | ? | WATER YEA | RS 1889 - | 2003* | | ANNUAL | TOTAL | | | 227495 | | | 233650 | | | | | | | ANNUAL | MEAN | | | 623 | | | 640 | | | 811 | | | | | T ANNUAL I | | | | | | | | | 1184 | | 1976 | | | ANNUAL M | | | | | | | | | 408 | | 1934 | | | T DAILY M | | | 4960 | Jun 2 | | 5860 | May 30 |) | 8970 | Jun 17 | 1974 | | | DAILY ME | | | 153
208 | Dec 25 | | 153 | Dec 25 | | 153 | Dec 25 | 2002 | | | SEVEN-DA
M PEAK FLO | | | 208 | Dec 21 | | 208
6710 | Dec 2. | L | 182
h0160 | Jan 18 | 1931 | | | M PEAK FLO
M PEAK ST | | | | | | 6/10 | 71 May 30 |) | 408
8970
153
182
b9160
7.3
c117
587700
2040 | 8 Jun 17 | 1974 | | TATOMANI | TANDOTTO T | OUT THE OUT | | | | | a147 | Dec 25 | - | c117 | Jan 19 | 1935 | | ANNUAL | RUNOFF (| AC-FT) | | 451200 | | | 463400 | | | 587700 | | | | IO PER | CENI EACE. | ED3 | | 1/40 | | | | | | 2010 | | | | | CENT EXCE | | | 332 | | | 334 | | | 429 | | | | 90 PER | CENT EXCE | EDS | | 226 | | | 243 | | | 268 | | | ^{*--}During periods of operation (August 1889 to September 1894, June 1930 to September 1969, October 1971 to September 1981, October 1984 to current year). a--Gage height, 0.91 ft, result of freezeup. b--Gage height, 6.71 ft. c--Gage height, 0.68 ft, result of freezeup. #### 06048700 EAST GALLATIN RIVER BELOW BRIDGER CREEK, NEAR BOZEMAN, MT $LOCATION.--Lat\ 45^{\circ}43'30'', long\ 111^{\circ}04'08''\ (NAD\ 27), in\ NE^{1}/_{4}SW^{1}/_{4}NE^{1}/_{4}\ sec. 26, T.1\ S.,\ R.5\ E.,\ Gallatin\ County,\ Hydrologic\ Unit\ 10020008,\ on\ NE^{1}/_{4}SW^{1}/_{4}NE^{1}/_{4}$ left bank 600 ft downstream from Bozeman Wastewater Treatment Plant, 0.2 mi downstream from bridge on Montana Secondary Highway 411, 3.2 mi downstream from Bridger Creek, 2.0 mi northwest of Bozeman, and at river mile 33.0. DRAINAGE AREA.--226 mi². PERIOD OF RECORD.--October 2001 to current year. GAGE.--Water-stage recorder. Elevation of gage is 4,610 ft (NGVD 29). REMARKS.--Records good except those for estimated daily discharges, which are fair. Some regulation or diurnal effect from wastewater treatment plant upstream. Numerous diversions for irrigation upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and conductance were made during the year. | |] | DISCHARG | E, CUBIC | FEET PE | | | YEAR OO
VALUES | CTOBER 200 |)2 TO S | EPTEMBER 20 | 003 | | |--|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|---|---|-----------------------------------|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 45
43
43
45
43 | e25
e28
32
35
37 | 35
36
35
34
34 | 29
29
29
29
32 | 104
67
49
44
39 | 30
30
31
30
31 | 142
164
139
105
96 | 264
258
250
257
318 | 380
314
273
241
211 | 80
76
77
71
68 | 25
22
23
31
28 | 19
17
17
16
15 | | 6
7
8
9
10 | 43
40
39
39
38 | 39
39
40
40
39 | 32
29
29
30
30 | 30
28
27
26
21 | 31
35
40
40
39 | 31
31
27
31
36 | 94
84
86
98
138 | 316
322
311
287
274 | 229
215
193
186
199 | 65
60
57
58
53 | 26
24
21
21
24 | 17
20
20
22
21 | | 11
12
13
14
15 | 39
40
43
41
38 | 38
37
38
38
38 | 32
32
32
33
33 | 24
28
30
30
31 | 36
35
36
36
35 | 44
60
107
184
167 | 159
181
228
268
319 | 249
244
350
353
366 | 185
165
155
149
137 | 48
46
45
42
41 | 23
24
23
20
18 | 21
20
23
22
21 | | 16
17
18
19
20 | 39
39
39
39 | 37
37
36
35
36 | 32
32
28
27
24 | 26
24
28
30
30 | 34
36
34
33
32 | 139
103
86
72
71 | 265
225
248
222
201 | 395
377
367
340
298 | 131
118
111
105
105 | 41
38
37
35
34 | e17
e19
e22
e21
e20 | 19
25
27
24
23 | | 21
22
23
24
25 | 41
39
38
35
37 | 38
37
37
30
27 | 30
31
29
23
21 | e28
e22
30
32
33 | 34
35
e22
e18
e20 | 74
76
108
84
74 | 203
234
350
423
428 | 273
285
314
357
397 | 156
137
130
123
127 | 33
31
28
29
36 | 20
21
21
20
20 | 22
20
20
19 | | 26
27
28
29
30
31 | 39
38
41
39
e26
e23 | 34
36
37
37
36 | 25
29
32
32
30
30 | 36
78
67
47
45
51 | e25
e28
30
 | 69
70
67
65
77
120 | 431
360
299
267
263 | 446
428
392
368
346
353 | 112
100
94
90
84 | 48
44
37
30
27
27 | 18
19
21
20
22
20 | 17
17
18
18
19 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1210
39.0
45
23
2400 | 1073
35.8
40
25
2130 | 941
30.4
36
21
1870 | 1030
33.2
78
21
2040 | 1047
37.4
104
18
2080 | 2225
71.8
184
27
4410 | 6720
224
431
84
13330 | 10155
328
446
244
20140 | 4955
165
380
84
9830 | 1442
46.5
80
27
2860 | 674
21.7
31
17
1340 | 598
19.9
27
15
1190 | | MEAN
MAX
(WY)
MIN
(WY) | 39.8
40.6
2002
39.0
2003 | 38.5
41.2
2002
35.8
2003 | 31.7
33.0
2002
30.4
2003 | 34.6
36.0
2002
33.2
2003 | 35.5
37.4
2003
33.7
2002 | 54.4
71.8
2003
37.0
2002 | 162
224
2003
100
2002 | YEAR (WY) 270 328 2003 212 2002 | 215
265
2002
165
2003 | 58.6
70.6
2002
46.5
2003 | 29.6
37.5
2002
21.7
2003 | 28.2
36.5
2002
19.9
2003 | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | FOR 2 | 28409
77.8
447
21
26
56350
200
38
30 | Jun 3
Dec 25
Dec 20 | F | OR 2003 W 32070 87.9 446 15 17 467 3.5 88.0 63610 267 37 21 | May 26
Sep 5
Aug 31
May 26
7 May 26 | | WATER YEARS 83.3 87.9 78.6 447 15 17 500 3.64 8.0 60310 250 39 25 | Jun : Sep ! Aug 3: May 2: May 2: Jan 10 | 2003
2002
3 2002
5 2003
L 2003
2 2002
2 2002 | a--Gage height, 1.45 ft, result of freezeup. #### 06052500 GALLATIN RIVER AT LOGAN, MT LOCATION.--Lat 45°53'07", long 111°26'15" (NAD 27), in SE¹/₄NW¹/₄NE¹/₄ sec.35, T.2 N., R.2 E.,
Gallatin County, Hydrologic Unit 10020008, on right bank at former county road bridge site, 0.2 mi upstream from present county bridge, 0.5 mi west of Logan, and at river mile 6.3. DRAINAGE AREA.--1,795 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--September 1893 to December 1905, August 1928 to current year. Monthly discharge only for some periods, published in WSP 1309. REVISED RECORDS.--WSP 1389: 1898-99, 1903, 1905, 1929(M), 1935-36(M), 1938-39(M), 1941(M). WSP 1559: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 4,086.42 ft (NGVD 29). Prior to Aug. 10, 1928, nonrecording gages at several sites within 0.5 mi of present site at various elevations. Aug. 10, 1928, to Oct. 7, 1941, nonrecording gage at present site and elevation. REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. Some regulation by Middle Creek Reservoir (station number 06049500). Diversions for irrigation of about 110,000 acres upstream from station. U.S. Army Corps of Engineers satellite telemeter at station. ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------|-----------|-----------|---------|-----------|------------|-----------|----------|---------|--------|-------|-------|-------| | 1 | 450 | e480 | 636 | 563 | 744 | e560 | 715 | 1040 | 5320 | 637 | 215 | 269 | | 2 | 436 | e450 | 631 | 560 | 734 | e570 | 802 | 1020 | 4780 | 549 | 210 | 254 | | 3 | 446 | e520 | 655 | 560 | 663 | 576 | 810 | 954 | 3830 | 458 | 221 | 250 | | 4 | 460 | e520 | 647 | 560 | 620 | 564 | 749 | 958 | 3350 | 390 | 271 | 241 | | | | | | | | | | | | | | | | 5 | 456 | 601 | 643 | 573 | 603 | e560 | 690 | 1060 | 2860 | 355 | 283 | 243 | | 6 | 452 | 625 | 631 | 572 | e580 | 559 | 674 | 1090 | 2590 | 340 | 284 | 245 | | 7 | 447 | 635 | 611 | 554 | e550 | 547 | 659 | 1040 | 2370 | 337 | 276 | 262 | | 8 | 435 | 643 | e580 | e530 | e570 | 543 | 627 | 1000 | 2190 | 314 | 262 | 274 | | 9 | 435 | 667 | e570 | e500 | 587 | e540 | 612 | 965 | 2270 | 296 | 264 | 284 | | 10 | 430 | 668 | e580 | e470 | 588 | 549 | 644 | 946 | 2620 | 270 | 252 | 278 | | 11 | 424 | 666 | 592 | e480 | 573 | 654 | 704 | 901 | 2640 | 247 | 256 | 291 | | 12 | 435 | 656 | 597 | e520 | e550 | 893 | 757 | 888 | 2500 | 236 | 256 | 306 | | 13 | 456 | 659 | 598 | 555 | 562 | 1090 | 851 | 980 | 2350 | 236 | 250 | 317 | | 14 | 460 | 671 | 603 | 583 | 589 | 1390 | 968 | 1050 | 2290 | 241 | 239 | 328 | | 15 | 456 | 671 | 626 | 589 | 576 | 1190 | 1080 | 1090 | 2180 | 232 | 231 | 327 | | 16 | 455 | 660 | 625 | e580 | 568 | 925 | 1120 | 1280 | 2000 | 232 | 233 | 322 | | 17 | 459 | 653 | 618 | e560 | 578 | 835 | 964 | 1480 | 1880 | 230 | 262 | 352 | | 18 | 454 | 645 | 605 | e560 | 568 | 752 | 1120 | 1490 | 1760 | 216 | 267 | 379 | | 19 | 445 | 636 | e560 | e580 | 561 | 704 | 1100 | 1460 | 1680 | 202 | 268 | 373 | | 20 | 445 | 639 | e560 | e600 | 554 | 674 | 959 | 1270 | 1640 | 196 | 253 | 353 | | 20 | 437 | 039 | e560 | 6600 | 554 | 6/4 | 959 | 1270 | 1640 | 190 | 253 | 353 | | 21 | 447 | 645 | e570 | 570 | 562 | 664 | 910 | 1140 | 1810 | 193 | 244 | 342 | | 22 | 447 | 644 | 578 | e530 | 592 | 664 | 909 | 1090 | 1710 | 192 | 252 | 337 | | 23 | 469 | 661 | 581 | e500 | e500 | 708 | 1080 | 1250 | 1540 | 190 | 244 | 325 | | 24 | 485 | 636 | e550 | e530 | e430 | 709 | 1330 | 1780 | 1320 | 192 | 245 | 316 | | 25 | 497 | e580 | e500 | 563 | e400 | 660 | 1290 | 2520 | 1230 | 224 | 251 | 317 | | 26 | 508 | e550 | e450 | 592 | e450 | 657 | 1350 | 3560 | 1070 | 265 | 237 | 308 | | 27 | 517 | 601 | e520 | 764 | e500 | 679 | 1290 | 4170 | 928 | 373 | 253 | 304 | | 28 | 536 | 644 | 576 | 740 | e540 | 671 | 1150 | 4310 | 801 | 340 | 273 | 308 | | 29 | 609 | 650 | 591 | 660 | | 655 | 1070 | 4710 | 754 | 281 | 270 | 306 | | 30 | 582 | 647 | 574 | 627 | | 640 | 1060 | 5350 | 720 | 258 | 275 | 317 | | 31 | e520 | | 563 | 667 | | 671 | 1000 | 5480 | 720 | 231 | 278 | | | | | | | | | | | | | | | | | TOTAL | 14545 | 18663 | 18221 | 17792 | 15892 | 22053 | 28044 | 57322 | 64983 | 8953 | 7875 | 9128 | | MEAN | 469 | 622 | 588 | 574 | 568 | 711 | 935 | 1849 | 2166 | 289 | 254 | 304 | | MAX | 609 | 671 | 655 | 764 | 744 | 1390 | 1350 | 5480 | 5320 | 637 | 284 | 379 | | MIN | 424 | 450 | 450 | 470 | 400 | 540 | 612 | 888 | 720 | 190 | 210 | 241 | | AC-FT | 28850 | 37020 | 36140 | 35290 | 31520 | 43740 | 55630 | 113700 | 128900 | 17760 | 15620 | 18110 | | STATIS | TICS OF M | ONTHLY ME | AN DATA | FOR WATER | YEARS 1894 | 4 - 2003, | BY WATER | YEAR (W | Y)* | | | | | MEAN | 767 | 815 | 743 | 687 | 701 | 789 | 1042 | 2127 | 2974 | 1007 | 487 | 641 | | MAX | 1265 | 1186 | 1049 | 971 | 1249 | 1290 | 1993 | 4686 | 5957 | 3899 | 1658 | 1269 | | (WY) | 1983 | 1976 | 1976 | 1976 | 1963 | 1960 | 1952 | 1901 | 1997 | 1975 | 1993 | 1968 | | MIN | 333 | 328 | 450 | 400 | 385 | 478 | 429 | 176 | 280 | 162 | 167 | 238 | | (WY) | 1935 | 1935 | 1894 | 1894 | 1936 | 1904 | 1934 | 1934 | 1934 | 1934 | 1934 | 1934 | | | | | | | | | | | | | | | #### 06052500 GALLATIN RIVER AT LOGAN, MT--Continued | SUMMARY STATISTICS | FOR 2002 CALEND | AR YEAR | FOR 2003 WAT | ER YEAR | WATER YEARS | 1894 - 2003 | 3 * | |--------------------------|-----------------|---------|--------------|---------|-------------|-------------|-----| | ANNUAL TOTAL | 275912 | | 283471 | | | | | | ANNUAL MEAN | 756 | | 777 | | 1065 | | | | HIGHEST ANNUAL MEAN | | | | | 1673 | 1997 | 7 | | LOWEST ANNUAL MEAN | | | | | 454 | 1934 | 1 | | HIGHEST DAILY MEAN | 5200 | Jun 3 | 5480 | May 31 | b9840 | Jun 21 1899 | 9 | | LOWEST DAILY MEAN | 256 | Aug 20 | 190 | Jul 23 | c130 | Jul 19 1939 | 9 | | ANNUAL SEVEN-DAY MINIMUM | 264 | Aug 16 | 197 | Jul 18 | 147 | Jul 16 1934 | 1 | | MAXIMUM PEAK FLOW | | | 5830 | May 30 | b9840 | Jun 21 1899 | 9 | | MAXIMUM PEAK STAGE | | | 8.24 | May 30 | d11.88 | Feb 5 1963 | 3 | | INSTANTANEOUS LOW FLOW | | | a182 | Jul 22 | c130 | Jul 19 1939 | 9 | | ANNUAL RUNOFF (AC-FT) | 547300 | | 562300 | | 771500 | | | | 10 PERCENT EXCEEDS | 1680 | | 1340 | | 2120 | | | | 50 PERCENT EXCEEDS | 552 | | 576 | | 756 | | | | 90 PERCENT EXCEEDS | 304 | | 254 | | 420 | | | ^{*--}During periods of operation (October 1893 to December 1905, August 1928 to current year). a--Gage height, 3.31 ft. b--Observed, gage height, 6.25 ft, site and datum then in use. c--Observed, gage height, 2.04 ft. d--From floodmark, backwater from ice. #### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1949, 1951, 1957, 1965, 1979-86, 1999 to present. PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: August 1979 to September 1985, October 1999 to present (seasonal records). INSTRUMENTATION.--Temperature probe installed Sept. 14, 1999. REMARKS--Daily water temperature record good except for the period for July 6-21, which are poor due to low-flow conditions. Unpublished records of instantaneous specific conductance and temperature data are available in files of the District office. EXTREMES FOR PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: Maximum, 28.5°C, July 19-21, 2003; minimum, 0.0°C, on many days during winter periods. EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: During period of seasonal operation, maximum, 28.5°C, July 19-21; minimum 3.5°C, Apri 4. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | field,
std
units | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | air,
deg C | Temper-
ature,
water,
deg C | +
org-N,
water,
unfltrd
mg/L | fltrd,
mg/L
as N | water,
fltrd,
mg/L
as N | |----------------|------|---|---|--|-------------------------------|---|--|------------------------|----------------------------------| | APR 2003
16 | 1345 | 1100 | 8.3 | 327 | 10.0 | 8.0 | .71 | .405 | .006 | | MAY
20 | 1500 | 1260 | 8.6 | 300 | 16.0 | 11.0 | .35 | .266 | .005 | | JUN
04 | 1215 | 3430 | 8.2 | 187 | 17.0 | 11.5 | .40 | .152 | E.002 | | JUL
29 | 1445 | 287 | 8.9 | 341 | 30.0 | 25.0 | .23 | <.022 | E.002 | | | | Date | Ortho- phos- phate, water, fltrd, mg/L as P (00671) | Phos- phorus, water, unfltro | sieve
diametr
d percent | pended
sedi-
ment
r concen-
t tration
m mg/L | pended
sedi-
ment
load,
tons/d | 1 | | | | | 16
MAY | .024 | .179 | 86 | 106 | 315 | | | | | | 20
JUN | .016 | .080 | 79 | 49 | 167 | | | | | | 04
JUL | .019 | .185 | 65 | 159 | 1470 | | | | | | 29 | <.007 | .016 | 82 | 5 | 3.9 | | | | | | | | | | | | | | e--Estimated. ## 06052500 GALLATIN RIVER AT LOGAN, MT--Continued ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | Time | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | |-----------------------|--|---|--|--|--|---
---|---|--|--|--| | MAY 2003
20 | 1500 | 150 | 40.5 | 11.2 | 1.98 | .3 | 7.07 | 135 | 3.52 | . 2 | 15.4 | | JUL | 1500 | 130 | 40.5 | 11.2 | 1.90 | . 3 | 7.07 | 133 | 3.34 | . 4 | 13.4 | | 29 | 1445 | 170 | 42.6 | 14.9 | 3.23 | . 3 | 9.15 | 150 | 4.78 | . 2 | 20.9 | | Date | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d
(70302) | Arsenic
water
unfltrd
ug/L
(01002) | Cadmium
water,
unfltrd
ug/L
(01027) | Chrom-
ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | recover | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Nickel,
water,
unfltrd
recover
-able,
ug/L
(01067) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | | MAY 2003
20
JUL | 22.0 | 184 | . 25 | 626 | E2 | E.1 | 1.2 | 2.3 | .74 | 1.55 | 6 | | 29 | 28.0 | 216 | .29 | 167 | E1 | < .04 | <.8 | 1.0 | .07 | 1.12 | E1 | E--Estimated. ## WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR APRIL 2003 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|-----------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--| | | | APRIL | | | MAY | | | JUNE | | | JULY | | | 1
2
3
4
5 | 8.5
9.0
7.5
8.5
9.0 | 7.0
6.0
4.5
3.5
4.0 | 8.0
7.5
6.0
6.0 | 11.5
12.0
10.5
13.5
10.5 | 8.5
8.0
8.0
9.0
8.5 | 9.5
10.0
9.5
11.0
9.5 | 14.0
12.0
13.5
13.0
13.5 | 10.0
9.5
8.0
10.0
8.5 | 11.5
10.5
10.5
11.5 | 22.0
21.5
22.5
23.5
23.5 | 16.5
17.0
15.5
16.5 | 19.5
19.0
19.0
20.0
19.5 | | 6
7
8
9
10 | 9.0
10.0
11.5
12.5
14.0 | 5.5
4.5
5.5
7.0
8.5 | 7.0
7.5
8.5
10.0
11.0 | 11.5
13.0
11.0
10.5
11.5 | 7.0
8.5
9.0
7.5
7.5 | 9.5
10.5
10.0
9.0
9.5 | 12.5
14.5
16.5
16.5 | 9.0
8.0
10.0
12.0
12.5 | 10.5
11.5
13.0
14.0
14.5 | 24.5
25.0
22.0
24.0
26.0 | 15.5
16.5
17.5
14.5
15.0 | 19.5
20.5
19.5
19.5
21.0 | | 11
12
13
14
15 | 13.0
13.5
12.5
12.0
10.5 | 9.0
8.5
9.5
9.5
7.0 | 11.0
11.5
11.0
11.0
8.5 | 12.0
11.0
14.5
16.0
16.0 | 7.5
9.5
9.5
10.5
12.0 | 10.0
10.5
12.0
13.5
14.5 | 16.5
17.0
15.5
16.5
17.5 | 12.0
11.0
12.0
11.0 | 14.0
14.0
14.0
13.5
14.5 | 27.0
27.5
26.5
26.0
26.5 | 17.0
17.5
18.0
15.5
16.0 | 22.0
22.5
22.0
21.0
21.5 | | 16
17
18
19
20 | 10.0
10.0
9.5
11.5
13.5 | 5.0
7.0
7.0
6.5
8.0 | 7.5
9.0
8.0
9.0
10.5 | 15.0
13.5
11.0
10.5
12.5 | 10.5
9.0
7.5
5.5
7.0 | 13.0
11.5
9.0
8.0
10.0 | 18.5
19.5
19.0
17.5
16.5 | 12.0
13.5
14.0
14.0 | 15.0
16.5
16.5
16.0
14.5 | 27.0
27.0
27.5
28.5
28.5 | 17.5
18.0
18.0
19.0
20.0 | 22.0
22.5
23.0
23.5
24.0 | | 21
22
23
24
25 | 14.0
14.0
13.0
13.0
12.5 | 9.0
10.0
10.0
9.5
9.5 | 11.5
12.5
11.0
11.0 | 13.5
16.5
18.0
18.5
17.0 | 10.5
11.0
13.0
13.0
13.0 | 12.0
13.5
15.5
16.0
15.0 | 17.0
14.5
15.0
13.5
15.0 | 12.5
11.5
10.0
11.0
10.5 | 14.0
12.5
12.5
12.0
13.0 | 28.5
27.0
26.5
26.0
23.5 | 19.0
19.0
19.0
19.5
20.0 | 23.5
23.0
23.0
22.5
21.5 | | 26
27
28
29
30
31 | 10.5
11.0
10.0
9.0
11.0 | 8.0
5.5
8.0
7.0
7.5 | 9.0
8.5
9.0
8.0
9.0 | 15.0
15.5
15.5
15.5
13.5 | 11.0
10.0
11.0
11.5
11.0 | 13.0
12.5
13.0
13.5
12.0
11.5 | 17.0
20.0
21.5
22.5
22.0 | 12.0
13.5
16.0
16.5
17.0 | 14.5
16.5
19.0
19.5
19.5 | 25.5
25.5
25.5
25.0
25.5
25.5 | 19.5
19.5
19.0
18.5
18.0 | 22.5
22.5
22.5
22.0
22.0
22.0 | | MONTH | 14.0 | 3.5 | 9.0 | 18.5 | 5.5 | 11.5 | 22.5 | 8.0 | 14.0 | 28.5 | 14.5 | 21.5 | ## 06052500 GALLATIN RIVER AT LOGAN, MT--Continued ## WATER TEMPERATURE, DEGREES CELSIUS, APRIL 2003 TO SEPTEMBER 2003--Continued | | | AUGUST | | | SEPTEMB | ER | |----------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|-----------------------------------|----------------------| | 1
2
3
4
5 | 23.5
24.0 | | 22.0 | 20.5
20.5
20.0 | 14.5
14.5
14.0 | 17.5
17.5
17.0 | | 6
7
8
9
10 | 22.5
24.0 | 17.5
17.0 | 20.0
20.5
20.0
20.0
20.5 | 17.5 | 12.0 | 15.0 | | 11
12
13
14
15 | 25.0 | 18.0 | 20.0
20.0
21.0
21.5
22.0 | 15.0
13.0
15.5
16.0
14.0 | 10.0 | 13.0 | | 16
17
18
19
20 | 23.0 | 16.0 | 21.0
19.0
18.5
19.5
20.5 | 13.5
12.0
13.0
13.0 | 11.0
8.5
8.0
8.5
10.0 | 11.0 | | 21
22
23
24
25 | 22.5
22.0
23.0
23.5
23.5 | 16.5 | 20.0
19.5
19.5
19.5
20.0 | 14.5
15.0
15.0
16.0 | 10.0 | 13.0 | | 26
27
28
29
30
31 | 20.0 | 16.0
17.5
15.0
14.0
13.5
13.5 | 17.0 | 16.5
16.0
15.5
15.5 | 9.5 | 12.0 | | MONTH | 26.0 | 13.5 | 20.0 | 21.0 | 8.0 | 14.0 | SEP #### MISSOURI RIVER MAIN STEM #### 06054500 MISSOURI RIVER AT TOSTON, MT LOCATION.--Lat 46°08'46", long 111°25'11" (NAD 27), in NW¹/₄SE¹/₄NW¹/₄ sec.36, T.5 N., R.2 E., Broadwater County, Hydrologic Unit 10030101, on left bank 2.2 mi southeast of Toston, 4.8 mi upstream from Crow Creek, 7.8 mi downstream from Sixteenmile Creek, and at river mile 2,296.1. DRAINAGE AREA.--14,669 mi² #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--April 1890 to February 1891, April 1910 to December 1916, April 1941 to current year. Monthly discharge only for some periods, published in WSP 1309. GAGE.--Water-stage recorder. Elevation of gage is 3,905.68 ft (NGVD 29). Prior to Dec. 20, 1916, nonrecording gages at site 2.5 mi downstream at different elevations. REMARKS.--Water-discharge records good. Some regulation by six reservoirs on tributaries and Clark Canyon Reservoir (station 06015300). Diversions for irrigation of about 555,400 acres of which 12,000 acres lies downstream from station. U.S. Army Corps of Engineers satellite telemeter at station. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES NOV DEC TAN FEB MAR APR MAY TITE. AHG | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------------|----------------------|--------------------------------------|------------------------------|----------------------|----------------------|----------------------|--------------|--------------------------------------|--------------------------------------|--|---------|-------| | 1 | 2280 | 2240 | 3320 | 3000 | 3500 | 2870 | 3330 | 5000 | 19100 | 3390 | 1530 | 1250 | | 2 | 2280 | 2250 | 3240 | 2970 | 3510 | 2810 | 3790 | 5040 | 19700 | 2950 | 1560 | 1260 | | 3 | 2290 | 2430 | 3240 | 3040 | 3380 | 2900 | 4710 | 5100 | 18100 | 2650 | 1420 | 1250 | | 4 | 2370 | 3010 | 3200 | 3060 | 3190 | 2890 | 4600 | 5120 | 15600 | 2460 | 1440 | 1250 | | 5 | 2410 | 3130 | 3190 | 3160 | 3020 | 2710 | 4110 | 5100
5120
5420 | 13200 | 2650
2460
2390 | 1430 | 1300 | | 6 | 2420 | 3240 | 3210 | 3040 | 2560 | 2880 | 3840 | 5760 | 10900 | 2290 | 1440 | 1280 | | 7 | 2410 | 3260 | 3030 | 2880 | 2490 | 2800 | 3640 | | 9190 | 2170 | 1260 | 1240 | | 8 | 2410 | 2400 | 2760 | 2810 | 2860 | 2490 | 3490 | 5150 | 8270 | 1870 | 1250 | 1260 | | 9 | | 3370 | 2750 | 2660 | 2820 | 2500 | 3360 | 4840 | 7770 | 1680 | 1230 | 1330 | | 10 | 2390
2380 | 3370
3300 | 2760
2750
2630 | 2100 | 3020 | 2820 | 3320 | 4450 | 8040 | 1510 | 1250 | 1320 | | 11 | 2390 | 3290 | 3000 | 1970 | 3000 | 3460 | 3490 | 4250
4130
4260
4340
4390 | 8500 | 1460 | 1430 | 1360 | | 12 | 2410 | 3240 | 2990 | 2240 | 2830 | 4540 | 3980 | 4130 | 8550 | 1530 | 1360 | 1380 | | 13 | 2470 | 3270 | 3030 | 2750 | 2770 | 4730 | 4460 | 4260 | 8210 | 1590 | 1300 | 1400 | | 14 | 2570 | 3260 | 2960 | 2910 | 2830 | 5380 | 5090 | 4340 | 7600 | 1610 | 1290 | 1530 | | 15 | 2570 | 3250 | 3000 | 3100 | 2980 | 4730 | 5770 | 4390 | 7000 | 1540 | 1230 | 1470 | | 16 | 2530 | 3200 | 3050 | 2770 | 3080 | 4310 | 5760 | 4520
4900
5160
5340
5120 | 6700
6460
6260
6060 | 1570 | 1240 | 1550 | | 17 | 2550 | 3210 | 3070 | 2300 | 3110 | 4050 | 5320 | 4900 | 6460 | 1540 | 1320 | 1500 | | 18 | 2560 | 3180 | 2960 | 2260 | 3080 | 3810 | 5140 | 5160 | 6260 | 1470 | 1370 | 1640 | | 19 | 2570 | 3180 | 2690 | 2470 | 2970 | 3810 | 4990 | 5340 | 6060 | 1450 | 1230 | 1670 | | 20 | 2560 | 3250 | 2400 | 2810 | 2920 | 3800 | 4720 | 5120 | 5920
 1390 | 1390 | 1740 | | 21 | 2570 | 3280 | 2530 | 2850 | 2830 | 3660 | 4520 | 4830
4630
4440
4720
5790 | 6230 | 1340
1540
1550
1660
1640 | 1290 | 1770 | | 22 | 2590 | 3290 | 2680 | 1960 | 2860 | 3560 | 4510 | 4630 | 6830 | 1540 | 1250 | 1810 | | 23 | 2620 | 3390 | 2650 | 1880 | 2250 | 3560 | 5000
5990 | 4440 | 6780 | 1550 | 1230 | 1820 | | 24 | 2720 | 3350 | 2540 | 2280 | 1770 | 3550 | 5990 | 4720 | 6330 | 1660 | 1180 | 1800 | | 25 | 2800 | 3290
3390
3350
2980 | e2400 | 2770 | 1620 | 3500 | 6290 | | | | 1220 | 1810 | | 26 | 2830 | 2860
3140
3270
3320
3330 | e2400 | 3260 | 1920 | 3500 | 6610 | 8410 | 5350
4790
4260
3850
3580 | 1630 | 1230 | 1780 | | 27 | 2840 | 3140 | 2230 | 3860 | 2420 | 3480 | 6540 | 11400 | 4790 | 1650 | 1230 | 1760 | | 28 | 2850 | 3270 | 2880 | 3730 | 2580 | 3390 | 6120 | 12800 | 4260 | 1640 | 1230 | 1810 | | 29 | 2880 | 3320 | 2880
3060
3030 | 3460 | | 3240 | 5640 | 14100 | 3850 | 1890 | 1250 | 1760 | | 30 | 2880 | 3330 | 3030 | 3350 | | 3130 | 5220 | 16000 | 3580 | 1530 | 1240 | 2020 | | 31 | 2400 | | 3000 | 3330 | | 3130 | | 18000 | | 1450 | 1240 | | | TOTAL | 78800 | 94170 | 89120 | 87030 | 78170 | 107990 | 143350 | 202990 | 254960 | 56030 | 40560 | 46120 | | MEAN | 2542 | 3139 | 2875
3320
2230 | 2807
3860
1880 | 2792
3510
1620 | 3484 | 4778
6610 | 6548 | 8499
19700 | 1807
3390
1340 | 1308 | 1537 | | MAX | 2880 | 3400 | 3320 | 3860 | 3510 | 5380 | 6610 | 18000 | 19700 | 3390 | 1560 | 2020 | | MIN | 2280 | 3400
2240 | 2230 | 1880 | | 2490 | 3320 | 1130 | 3580 | 1340 | 1180 | 1240 | | AC-F1 | 156300 | 186800 | 176800 | 172600 | 155100 | 214200 | 284300 | 402600 | 505700 | 111100 | 80450 | 91480 | | STATIS | TICS OF | MONTHLY ME | AN DATA | FOR WATER | YEARS 189 | 0 - 2003 | B, BY WATI | ER YEAR (WY |) * | | | | | MEAN | 4391 | 4694 | 3747 | 3371 | 3695 | 4114 | 5595 | 8784 | 12390 | 5167 | 2726 | 3386 | | MAX | 6778
1977
2507 | 7028 | 5968
1960
2569
1891 | 4893 | 5217 | 6900
1916
2835 | 10090 | | 24520 | 14240 | 5729 | 5813 | | (WY) | 1977 | 1984 | 1960 | 1984 | 1915 | 1916 | 1969
2388 | 1976 | 1997 | 1975 | 1975 | 1984 | | | 2507 | 2815 | 2569 | 2165 | 2268 | 2835 | 2388 | 3127 | 3175 | 1243 | 896 | 1448 | | (WY) | 2002 | 4694
7028
1984
2815
1891 | 1891 | 1891 | 1989 | 1955 | 1961 | 1961 | 1987 | 1988 | 1988 | 1994 | | SUMMAR | Y STATIS | TICS | FOR | 2002 CAL | ENDAR YEAR | | FOR 2003 | WATER YEAR | | WATER YEARS | 1890 - | 2003* | | ANNUAL | TOTAL | | | 1172870 | | | 1279330 | | | | | | | ANNUAL | | | | 3213 | | | 3505 | | | 5192 | | | | HIGHES' | T ANNUAL | MEAN | | | | | | | | 7742 | | 1997 | | LOWEST | ANNUAL | MEAN | | | | | | | | 2927 | | 1961 | | HIGHES' | T DAILY | MEAN | | 15400 | Jun 3 | | 19700 | Jun 2 | | 33400 | Jun 12 | 1997 | | LOWEST | DAILY M | EAN | | 1270 | Aug 20 | | 1180 | Aug 24 | | 700 | Jan 12 | 1963 | | ANNUAL | SEVEN-D | MEAN
MEAN
EAN
AY MINIMUM | | T300 | Aug 18 | | 1220 | Aug 22 | | 5192
7742
2927
33400
700
811
34000
12.22
b450
3761000
9340
4100
2360 | Jul 31 | 1961 | | MAXIMUI | M PEAK F
M PEAK S | LOW | | | | | 20200 | Jun 2 | | 34000 | Jun 12 | 1007 | | | | LOW FLOW | | | | | 2010 | . os oun 2 | | 14.22
h450 | .Tu1 21 | 1000 | | TIND LAIN. | BIINOEE | (AC-FT) | | 2326000 | | | 2538000 | Aug 5 | | 3761000 | Jul 31 | . 100 | | 10 PER | CENT EXC | (AC-FT)
EEDS | | 5140 | | | 5810 | | | 9340 | | | | 50 PER | CENT EXC | EEDS | | 2740 | | | 2950 | | | 4100 | | | | | CENT EXC | | | 1660 | | | 1390 | | | 2360 | | | | | | | | | | | | | | | | | ^{*--}During periods of operation (1911-16, 1942 to current year). a--Gage height, 2.41 ft, result of regulation. b--Gage height, 1.68 ft, result of regulation. DAY e--Estimated. ## 06054500 MISSOURI RIVER AT TOSTON, MT--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1949-53, 1965, 1972 to current year. Sampling location moved in October 1978, from old bridge on U. S. Highway 287 at Toston, to cableway 2.4 miles upstream. #### PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: April 1973 to September 1981. WATER TEMPERATURE: May 1949 to June 1953, April 1973 to current year. SUSPENDED-SEDIMENT DISCHARGE: March 1949 to June 1953. INSTRUMENTATION.--Temperature recorder since July 6, 1977. REMARKS.--Daily water temperature record good. Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum daily, 524 microsiemens per centimeter (µS/cm) at 25°C, Mar. 4, 1978; minimum daily, 159 µS/cm at 25°C, May 28, 1979. WATER TEMPERATURE: Maximum, 29.0°C, July 31, 1988, July 20, 1989; minimum, 0.0°C on many days during winter. SEDIMENT CONCENTRATION: Maximum daily mean, 670 mg/L, Mar. 22, 25, 1951; minimum daily mean, 5 mg/L, Jul. 12, 1951. SEDIMENT LOAD: Maximum daily, 16,100 tons, May 5, 1952; minimum daily, 51 tons Feb. 1, 1951. #### EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: Maximum, 27.5°C, July 20; minimum, 0.0°C, many days October through March. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | + | Nitrite + nitrate water fltrd, mg/L as N (00631) | Nitrite
water,
fltrd,
mg/L
as N
(00613) | | |-----------|-----------------------|--|---|---|--|---|---|--|--|--|--| | | APR 2003
17
MAY | 1015 | 5230 | 8.2 | 292 | 10.0 | 9.5 | .60 | .172 | .004 | | | | 21
JUN | 1600 | 4860 | 8.5 | 280 | 13.5 | 13.0 | .33 | .052 | E.002 | | | | 04
JUL | 1500 | 14700 | 8.2 | 193 | 17.0 | 14.5 | .87 | .072 | .005 | | | | 24 | 1000 | 1540 | 8.6 | 316 | 27.0 | 24.5 | . 25 | E.015 | E.002 | | | | | | Date | Orthorphos-
phate
water
fltromg/I
as I | Phose, Phose, phorus , phorus , water , unflt | s, sieve
c, diame
cd percer
c <.063 | pende, sedi- e ment tr concer nt tratio | ed Sus- pende sedi- ment n ment on load, tons/ | d
d | | | | | | | APR 2003
17
MAY | .023 | .107 | 96 | 38 | 537 | | | | | | | | 21
JUN | .012 | .052 | 96 | 18 | 236 | | | | | | | | 04 | .031 | .195 | 69 | 146 | 5790 | | | | | | | | 24 | .013 | .043 | 95 | 13 | 54 | | | | | Date | Time | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | water,
fltrd,
mg/L | water,
fltrd,
mg/L | sium,
water
fltrd
mg/L | Sodium
, adsorp
, tion
ratio | - water
fltrd
mg/L | , lab,
, mg/L as
CaCO3 | Chloride, water fltrd mg/L | ide,
, water,
, fltrd,
mg/L | Silica,
water,
fltrd,
mg/L
(00955) | | MAY 2003 | 1600 | 110 | 29.3 | 8.46 | 2.93 | .7 | 16.6 | 106 | 8.49 | ٥ | 21 0 | | JUL
24 | 1000 | 100 | 29.3 | 8.46 | 3.69 | 1 | 26.3 | 114 | 14.4 | .9
1.8 | 21.0
25.9 | | 24 | 1000 | 100 | 20.0 | 0.39 | 3.09 | Τ | ∠0.3 | 114 | 14.4 | 1.0 | 23.9 | E--Estimated. ## 06054500 MISSOURI RIVER AT TOSTON, MT--Continued ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d
(70302) | Arsenic
water
unfltrd
ug/L
(01002) | Cadmium
water,
unfltrd
ug/L
(01027) | Chrom-
ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Nickel,
water,
unfltrd
recover
-able,
ug/L
(01067) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | |-----------------------|--|---|--|--|--|---|---|--|--|--|--| | MAY 2003
21
JUL | 24.2 | 176 | .24 | 2310 | 25 | <.2 | E.6 | 5.1 | 1.04 | .93 | 6 | | 24 | 21.7 | 197 | .27 | 820 | 31 | < .04 | <.8 | 3.4 | 1.38 | 1.20 | 3 | E--Estimated. ## WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|-----------------------------------|---------------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------
---------------------------------|---------------------------------| | | | OCTOBER | | NO | VEMBER | | DE | CEMBER | | | JANUARY | | | 1
2
3
4
5 | 11.5
9.0
9.0
9.0
10.0 | 9.0
8.5
8.5
8.0
9.0 | 10.5
8.5
9.0
8.5
9.5 | 1.0
1.0
1.0
1.0 | 0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5 | 1.0
1.5
2.5
2.0 | 0.5
0.5
1.5
1.5 | 0.5
1.0
2.0
1.5 | 0.5
1.0
0.5
0.5 | 0.0
0.5
0.5
0.0 | 0.5
0.5
0.5
0.5 | | 6
7
8
9
10 | 9.5
10.5
11.0
11.0 | 8.5
9.0
10.0
10.0 | 9.0
9.5
10.5
10.5 | 1.0
1.0
1.0
1.5
2.5 | 0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
1.0
2.5 | 1.5
1.0
0.5
0.5 | 1.0
0.5
0.0
0.0 | 1.5
1.0
0.5
0.5 | 1.0
1.0
1.0
0.5 | 0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5 | | 11
12
13
14
15 | 10.0
8.5
7.5
8.5
8.0 | 8.5
7.0
6.5
7.0
7.5 | 9.5
8.0
7.0
7.5
8.0 | 3.0
3.5
3.0
4.0
3.5 | 2.5
3.0
2.5
3.0
2.5 | 2.5
3.0
3.0
3.5
3.0 | 0.5
0.5
0.5
2.5
3.5 | 0.5
0.5
0.5
0.5
2.5 | 0.5
0.5
0.5
1.5
3.0 | 0.5
1.0
1.0
0.5 | 0.0
0.5
0.5
0.0 | 0.5
0.5
0.5
0.5 | | 16
17
18
19
20 | 8.0
8.0
8.0
8.0 | 7.5
7.5
7.0
7.0 | 7.5
7.5
7.5
7.5
7.5 | 3.5
3.0
3.0
3.0
4.0 | 3.0
2.5
2.5
2.5
3.0 | 3.0
3.0
3.0
2.5
3.5 | 3.5
2.0
2.0
0.5 | 2.0
2.0
0.5
0.0 | 3.0
2.0
1.0
0.5 | 0.5
0.5
1.0
1.0 | 0.0
0.0
0.0
0.5 | 0.5
0.5
0.5
0.5 | | 21
22
23
24
25 | 9.0
8.5
6.5
5.0
4.0 | 8.0
6.5
5.0
3.5
3.0 | 8.5
8.0
5.5
4.0
3.5 | 4.5
4.5
4.0
3.5
1.0 | 4.0
3.5
3.5
1.0
0.0 | 4.5
4.0
4.0
2.0
0.5 | 0.5
0.5
0.5
0.5 | 0.5
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5 | 0.5
0.5
1.0
1.0 | 0.0
0.0
0.0
0.0 | 0.0
0.5
0.5
0.5 | | 26
27
28
29
30
31 | 4.0
4.5
4.5
1.5 | 3.0
3.0
3.5
1.5
0.0 | 3.5
3.5
4.0
3.5
0.5 | 0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5 | 0.5
1.0
0.5
0.5
0.5 | 0.0
0.5
0.5
0.5
0.0 | 0.5
0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5
1.0 | 0.5
0.5
0.0
0.0
0.5 | 0.5
0.5
0.5
0.5
0.5 | | MONTH | 11.5 | 0.0 | 7.0 | 4.5 | 0.0 | 2.0 | 3.5 | 0.0 | 1.0 | 1.0 | 0.0 | 0.5 | ## 06054500 MISSOURI RIVER AT TOSTON, MT--Continued ## WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | | FEBRUARY MARCH | | | | | | MAY | | | | | | |--|--|--|--|--|--|--|--|--|--|--|--|--| | 1
2
3
4
5 | 3.0
3.0
3.0
1.5 | 1.0
2.5
1.5
1.5 | 1.5
3.0
2.5
1.5 | 1.0
1.0
0.5
1.0 | 0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5 | 9.5
8.0
7.5
6.5
7.0 | 8.0
7.0
6.0
5.5
6.0 | 9.0
7.5
6.5
6.0 | 11.0
11.5
11.5
11.5
11.5 | 10.0
10.5
10.5
10.0
10.5 | 10.5
11.0
11.0
10.5
10.5 | | 6
7
8
9
10 | 1.0
0.5
1.0
1.0 | 0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5 | 1.0
1.0
1.0
1.0 | 0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5 | 7.5
8.0
9.0
10.5
12.0 | 6.5
6.5
7.5
9.0
10.0 | 7.0
7.0
8.5
9.5 | 10.5
12.0
12.0
10.5
10.5 | 9.5
10.0
10.5
9.5
9.0 | 10.0
10.5
11.0
10.0
9.5 | | 11
12
13
14
15 | 1.0
1.0
1.0
1.0
2.0 | 0.0
0.0
0.5
0.5 | 0.5
0.5
0.5
0.5 | 1.0
1.0
1.0
5.5
6.0 | 0.5
0.5
0.5
1.0
5.5 | 0.5
0.5
0.5
4.5
6.0 | 13.0
13.0
13.0
12.5
11.5 | 11.5
12.0
12.5
11.5
9.0 | 12.0
12.5
12.5
12.0
10.5 | 11.5
12.0
13.0
15.0
16.0 | 10.0
11.5
11.5
13.0
15.0 | 10.5
11.5
12.0
13.5
15.5 | | 16
17
18
19
20 | 2.0
2.5
3.0
2.5
2.5 | 1.5
1.0
2.0
1.5
2.0 | 1.5
2.0
2.5
2.0
2.5 | 6.5
6.0
6.0
6.0 | 5.5
5.0
5.5
5.0 | 6.0
5.5
5.5
5.5
6.0 | 9.5
10.0
10.0
10.5
12.0 | 8.0
9.5
9.0
8.5
10.5 | 8.5
9.5
9.5
9.5 | 16.0
14.5
13.5
11.0
12.0 | 14.0
13.0
10.5
9.5
10.5 | 14.5
13.5
12.0
10.0
11.0 | | 21
22
23
24
25 | 3.0
3.0
1.5
1.0 | 2.0
1.5
0.0
0.0 | 2.5
2.5
0.5
0.5 | 7.0
7.5
8.0
8.0
6.0 | 6.5
7.0
7.5
6.0
5.5 | 7.0
7.0
7.5
7.0
6.0 | 12.5
13.5
13.5
12.5
13.0 | 11.5
12.5
12.0
11.5
11.5 | 12.0
13.0
13.0
12.0 | 13.5
15.0
17.5
19.0
19.5 | 12.0
13.5
15.0
17.0
18.0 | 13.0
14.0
16.0
18.0
19.0 | | 26
27
28
29
30
31 | 1.5
1.0
1.0
 | 0.0
0.0
0.0
 | 0.5
0.5
0.5
 | 6.0
5.5
5.0
6.5
8.5
9.5 | 5.0
5.0
4.5
5.0
6.5
8.5 | 5.5
5.5
5.0
6.0
7.5
9.0 | 11.5
10.0
10.0
9.0
10.0 | 9.5
8.5
9.0
8.0
8.5 | 10.5
9.0
9.5
8.5
9.0 | 18.0
18.0
19.0
19.0
19.0 | 17.0
15.5
16.5
17.5
16.5 | 17.5
16.5
17.5
18.5
17.5
16.0 | | MONTH | 3.0 | 0.0 | 1.0 | 9.5 | 0.0 | 4.0 | 13.5 | 5.5 | 10.0 | 19.5 | 9.0 | 13.5 | | | | | | | | | | | | | | | | | | TTTNTT | | | TITE SE | | | ATTOTTOM | | | CHDMHMDI | 7D | | 1 | 17.0 | JUNE
15.0 | 16.0 | 22.5 | JULY
21.5 | 22.0 | 25.5 | AUGUST
22.5 | 23.5 | 21.5 | SEPTEMBE | 19.0 | | 1
2
3
4
5 | 17.0
17.0
15.5
15.5 | | 16.0
15.0
14.5
15.0 | 22.5
22.5
21.0
22.0
22.5 | | 22.0
21.5
20.5
21.0
21.5 | | | 23.5
24.0
24.0
23.5
23.0 | | | | | 2
3
4 | 17.0
15.5
15.5 | 15.0
14.5
13.5
14.5 | 15.0
14.5
15.0 | 22.5
21.0
22.0 | 21.5
21.0
20.0
20.0 | 21.5
20.5
21.0 | 25.5
26.0
26.0
24.5 | 22.5
23.0
23.0
22.0 | 24.0
24.0
23.5 | 21.5
21.0
21.0
21.5 | 17.5
17.5
17.5
18.0 | 19.0
19.0
19.0 | | 2
3
4
5
6
7
8
9 | 17.0
15.5
15.5
16.0
15.5
15.5
17.0
17.5 | 15.0
14.5
13.5
14.5
13.5
14.0
13.0
15.0
16.5 | 15.0
14.5
15.0
14.5
14.5
14.0
15.5
17.0 | 22.5
21.0
22.0
22.5
21.0
22.5
22.5
22.5
22.0 | 21.5
21.0
20.0
20.0
20.5
20.5
20.5
20.5
20.5 | 21.5
20.5
21.0
21.5
20.5
21.5
22.0
21.0 | 25.5
26.0
26.0
24.5
24.5
24.5
24.0
24.5
24.0 | 22.5
23.0
23.0
22.0
22.0
21.0
21.0
21.5
21.0 | 24.0
24.0
23.5
23.0
22.5
22.5
22.5
22.5 | 21.5
21.0
21.0
21.5
21.0
20.5
19.5 | 17.5
17.5
17.5
18.0
18.0
18.0
17.5
16.0 | 19.0
19.0
19.0
19.5
19.0
19.0
19.0
18.5
17.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14 | 17.0
15.5
15.5
16.0
15.5
17.0
17.5
18.0
18.5
18.5
18.5 | 15.0
14.5
13.5
14.5
13.5
14.0
13.0
15.0
16.5
17.0
16.5
17.0 | 15.0
14.5
15.0
14.5
14.5
14.0
15.5
17.0
17.5
17.5
17.5
17.5 | 22.5
21.0
22.5
21.0
22.5
22.5
22.5
22.5
22.5
22.5
22.6
23.5 | 21.5
21.0
20.0
20.0
20.5
20.5
20.5
20.5
20.0
20.0 | 21.5
20.5
21.0
21.5
20.5
21.5
22.0
21.0
21.5
23.0
24.0
24.0
23.0 | 25.5
26.0
26.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | 22.5
23.0
23.0
22.0
22.0
21.0
21.5
21.0
21.5
21.0
20.5
21.5 | 24.0
24.0
23.5
23.0
22.5
22.5
22.5
22.5
22.5
22.5
22.0
23.0 | 21.5
21.0
21.0
21.5
21.0
20.5
20.5
19.5
19.0
17.5 |
17.5
17.5
17.5
18.0
18.0
18.0
17.5
16.0
15.0
14.5
13.5
13.5 | 19.0
19.0
19.5
19.0
19.0
19.0
19.0
18.5
17.5
16.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 17.0
15.5
16.0
15.5
17.0
17.5
18.0
18.5
18.0
19.0
19.5
20.5
21.0 | 15.0
14.5
13.5
14.5
13.5
14.0
13.0
15.0
16.5
17.0
16.5
17.0
17.5
17.0
17.5
17.0
17.5 | 15.0
14.5
15.0
14.5
14.5
14.0
15.5
17.0
17.5
17.5
18.0
17.5
18.0
20.0
20.0
20.5
20.0 | 22.5
21.0
22.5
21.0
22.5
22.5
22.5
22.5
22.0
23.5
24.5
25.5
26.0
24.0
24.5 | 21.5
21.0
20.0
20.0
20.5
20.5
20.5
20.0
20.0
21.5
22.5
22.5
22.0
22.0
21.5
23.0
23.5
23.5
23.5 | 21.5
20.5
21.0
21.5
20.5
21.5
22.0
21.5
23.0
24.0
23.0
23.0
23.0
23.0
24.0
24.0
24.0
23.5 | 25.5
26.0
24.5
24.5
24.5
24.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | 22.5
23.0
23.0
22.0
21.0
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5
21.0 | 24.0
24.0
23.5
23.0
22.5
22.5
22.5
22.5
22.5
22.5
22.0
23.0
23.0
23.0
23.0
22.5
21.0
21.0 | 21.5
21.0
21.0
21.5
21.0
20.5
20.5
19.5
19.0
17.5
16.0
14.5
15.0
15.0
14.5
13.0
12.0 | 17.5
17.5
17.5
18.0
18.0
18.0
17.5
16.0
15.0
14.5
13.5
13.5
13.0
12.5
13.0 | 19.0
19.0
19.5
19.0
19.0
19.0
19.0
19.0
14.0
15.0
14.0
13.5
14.0
13.5
12.0
11.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 17.0
15.5
16.0
15.5
17.0
17.5
18.0
18.5
18.5
18.0
19.0
19.5
20.5
21.0
19.5
18.5
17.0
19.5 | 15.0
14.5
13.5
14.5
13.5
14.0
13.0
15.0
16.5
17.0
17.5
17.0
17.5
17.0
17.5
19.5
19.5
18.0
19.5
18.0 | 15.0
14.5
15.0
14.5
14.5
14.0
15.5
17.0
17.5
17.5
18.0
17.5
18.0
20.0
20.5
20.0
18.5
17.5
17.5 | 22.5
21.0
22.5
21.0
22.5
22.5
22.5
22.5
22.0
23.5
24.5
25.5
26.0
24.0
25.5
26.0
26.5
27.5 | 21.5
21.0
20.0
20.0
20.5
20.5
20.5
20.5
20.0
21.5
22.5
23.0
22.0
21.5
23.5
23.5
24.0
24.0
24.0
24.0
23.5 | 21.5
20.5
21.0
21.5
22.0
21.5
22.0
21.0
21.5
23.0
24.0
23.0
23.0
23.5
24.0
24.5
25.0
25.5 | 25.5
26.0
26.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | 22.5
23.0
23.0
22.0
21.0
21.0
21.5
21.0
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | 24.0
24.0
23.5
23.0
22.5
22.5
22.5
22.5
22.5
22.0
23.0
23.0
23.0
23.0
21.0
21.5
21.0
21.5 | 21.5
21.0
21.0
21.5
21.0
20.5
20.5
19.5
19.0
17.5
16.0
15.0
15.0
15.0
12.5
13.0
12.5
13.0
14.5
14.5
14.5
14.5 | 17.5
17.5
17.5
18.0
18.0
18.0
17.5
16.0
15.0
14.5
13.5
13.0
12.5
13.0
12.5
13.0
12.5
13.0 | 19.0
19.0
19.0
19.5
19.0
19.0
19.0
19.0
14.0
14.0
13.5
14.0
11.5
12.5
13.6
12.5 | #### 06058500 CANYON FERRY LAKE NEAR HELENA, MT LOCATION.--Lat 46°38'57", long 111°43'39" (NAD 27), in SE¹/₄SE¹/₄ sec.4, T.10 N., R.1 W., Lewis and Clark County, Hydrologic Unit 10030101, in block 17 of Canyon Ferry Dam, 15 mi east of Helena, and at river mile 2,252.8. DRAINAGE AREA.--15,904 mi². PERIOD OF RECORD.--April 1953 to current year (monthend contents only). Prior to October 1981, published as Canyon Ferry Reservoir near Helena. Records of monthend contents in Lake Sewell, submerged by present reservoir Apr. 8, 1953, available January 1936 to March 1953. Scattered daily elevations and contents for April to July 1953, published in WSP 1320-B. Daily elevations and contents for May to June 1964, published in WSP 1840-B. Daily elevations and contents on file in Helena district office. REVISED RECORDS.--WSP 1559: Drainage area. GAGE.--Water-stage recorder in powerhouse control room. Elevation of gage is 3,650.0 ft (NGVD 29). REMARKS.--Reservoir is formed by concrete dam; construction began in 1949, completed in 1953. Storage began in March 1953. All elevations are referenced to the National Geodetic Vertical Datum of 1929. Usable capacity, 1,993,000 acre-ft between elevation 3,770.00 ft, invert of outlet works, and 3,800.00 ft, controlled spillway elevation. Dead storage, 1,060 acre-ft, below elevation 3,650.00 ft. Minimum operating level, 396,000 acre-ft, at elevation 3,728.00 ft, for on-site power generation. Figures given herein represent usable contents. Water is used for power production, flood control, irrigation, recreation, and supplemental water supply for city of Helena. COOPERATION .-- Elevations and capacity table furnished by Bureau of Reclamation. EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 2,043,000 acre-ft, July 15-29, 31, 1955, July 2, 5, 6, 8, 1956, July 16, 17, 1962, June 23, 1964, elevation, 3,800.0 ft; minimum since first filling, 1,017,000 acre-ft, Apr. 11, 1967, elevation, 3,764.70 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 1,913,000 acre-ft, June 25, elevation, 3,797.66 ft; minimum, 1,546,000 acre-ft, Sept. 30, elevation, 3,786.31 ft. #### MONTHEND ELEVATION AND CONTENTS AT 2400 HOURS, SEPTEMBER 2002 TO SEPTEMBER 2003 | Date | Elevation
(feet) | Contents (acre-feet) | Change in
Contents
(acre-feet) | |----------|---------------------|----------------------|--------------------------------------| | Sept. 30 | 3,790.25 | 1,687,000 | | | Oct. 31 | 3,790.21 | 1,669,000 | -18,000 | | Nov. 30 | 3,790.06 | 1,664,000 | -5,000 | | Dec. 31 | 3,789.20 | 1,637,000 | -27,000 | | CALEND | OAR YEAR 2002 | | +245,000 | | Jan. 31 | 3,788.15 | 1,604,000 | -33,000 | | Feb. 28 | 3,787.23 | 1,575,000 | -29,000 | | Mar. 31 | 3,787.70 | 1,590,000 | +15,000 | | Apr. 30 | 3,790.18 | 1,668,000 | +78,000 | | May 31 | 3,793.07 | 1,762,000 | +94,000 | | June 30 | 3,797.30 | 1,901,000 | +139,000 | | July 31 | 3,792.71 | 1,750,000 | -151,000 | | Aug. 31 | 3,788.89 | 1,627,000 | -123,000 | | Sept. 30 | 3,786.31 | 1,546,000 | -81,000 | | WATER | YEAR 2003 | | -141,000 | ## PRICKLY PEAR CREEK BASIN ## 06061500 PRICKLY PEAR CREEK NEAR CLANCY, MT $LOCATION.--Lat\ 46^{\circ}31'09", long\ 111^{\circ}56'45"\ (NAD\ 27), in\ NE^{1}/_{4}SE^{1}/_{4}SW^{1}/_{4}\ sec.\ 23,\ T.9\ N.,\ R.3\ W.,\ Jefferson\ County,\ Hydrologic\ Unit\ 10030101,\ on\ right\ bank\ 3.5\ mi\ downstream\ from\ Lump\ Gulch\ Creek,\ 4\ mi\ northeast\ of\ Clancy,\ 7\ mi\ southeast\ of\ Helena,\ and\ at\ river\ mile\ 24.4.$ DRAINAGE AREA.--192 mi². PERIOD OF RECORD.--May 1999 to current year. REMARKS.--Data for Nov. 14, 2002 collected as part of a research project. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | ature,
water,
deg C | +
org-N,
water, | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | Nitrite
water,
fltrd,
mg/L
as N
(00613) | | |-----------|--|---|---|--|---|--|---------------------------------------|---|--|--| | NOV 2002 | 1200 | 17 | 7.9 | 303 | 5.0 | 4.5 | | | | | | APR 2003 | 1330 | 43 | 8.2 | 232 | 7.0 | 6.5 | .20 | .125 | <.002 | | | MAY
20 | 0900 | 64 | 8.0 | 200 | 11.0 | 4.0 | .21 | .128 | E.002 | | | JUN
02 | 1330 | 98 | 7.9 | 140 | 13.0 | 10.5 | .34 | .089 | <.002 | | | JUL
22 | 1500 | 12 | 8.5 | 332 | 29.5 | 24.5 | .20 | .201 | .004 | | | | | Date NOV 2002 14 APR 2003 17 MAY 20 JUN 02 JUL 22 | | , Phos- , phorus, , water, unfltrc mg/L) (00665) 024 .025 .045 | sieve
diamet
percen
<.063m | pende
sedi-
ment
r concen
t tratio
m mg/L | d Sus- pende sedi- ment n load, tons/ | d
d
) | | | | Time | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L | ium, s
water, s
fltrd, s
mg/L | water, ad
fltrd,
mg/L r | tion
catio | odium, f
water,
fltrd, m
mg/L | xd end
lab,
g/L as
CaCO3 | Chlor-
ide,
water,
fltrd,
mg/L
00940) | water,
fltrd,
mg/L | Silica,
water,
fltrd,
mg/L
(00955) | E--Estimated. 1200 0900 1500 78 120 23.1 34.8 5.03 7.88 1.98 3.20 . 4 .8 8.78 21.3 53 87 3.02 6.15 . 2 .6 18.1 20.4 Date NOV 2002 MAY 2003 JUL 22... ## PRICKLY PEAR CREEK BASIN # 06061500 PRICKLY PEAR CREEK NEAR CLANCY, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | water,
fltrd,
mg/L | sum of
consti-
tuents
mg/L | acre-ft | water,
fltrd,
tons/d | water
fltrd
ug/L | water
unfltrd
ug/L | Cadmium
water,
unfltrd
ug/L
(01027) |
unfltrd
recover
-able,
ug/L | recover
-able,
ug/L | |----------------------------|--------------------------|-------------------------------------|--|---------------------------------|------------------------|--------------------------|---|--------------------------------------|---------------------------| | NOV 2002
14
MAY 2003 | | | | | 4 | | | | | | 20 | 38.1 | 131 | .18 | 22.6 | | 5 | .3 | <.8 | 4.8 | | JUL
22 | 65.5 | 213 | .29 | 6.89 | | 9 | .13 | <.8 | 3.8 | | | | Date | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | ese,
water
fltrd,
ug/L | -able, | water
fltrd,
ug/L | recover
-able, | | | | | | V 2002
14
Y 2003 | | 34 | | 69 | | | | | | J | 20
UL | 5.86 | | .58 | | 112 | | | | | | 22 | 2.54 | | .97 | | 37 | | | #### 462522112172402 08N06W24DDCD02 $LOCATION.--Lat\ 46^{\circ}25'21.8'',\ long\ 112^{\circ}17'23.5'',\ (NAD\ 83)\ in\ SW^{1}/_{4}SE^{1}/_{4}\ sec.\ 24,\ T.8\ N.,\ R.6\ W.,\ Lewis\ and\ Clark\ County,\ Hydrologic\ Unit$ 10030101. HYDROGEOLOGIC UNIT.--Tertiary volcanics. WELL CHARACTERISTICS.--Drilled in June 2000, casing diameter 2 in., depth 84 ft. DATUM.--Measuring point, top of PVC casing, 3.10 ft above land surface datum. Elevation of land-surface datum is 7,579.6 ft (NGVD 29). PERIOD OF RECORD.--October 2001 to current year. REMARKS.--All water levels are reported as distance, in feet below land-surface datum. ## MEASURED WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 2002 THROUGH SEPTEMBER 2003 | | DA | TE | WATER
<u>LEVEL</u> | |---|----|----|-----------------------| | J | ul | 2 | 32.29 | | Α | ug | 8 | 50.58 | | Α | ug | 29 | 58.34 | #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | ra
ins
tan
gal | or flow per te, protection to see the control of th | sam- pli
ing, dep | th, fie | ty,
er, Di
trd sol
ld, oxyg
U mg | ved fie
en, sto
/L uni | er, conditrd tandid, wat discussion discussi | uc-
ce, Temp
unf atu
cm wat
egC deg | re, unfl
er, mg/L
C CaC | s,
er,
trd
as
03 | |-----------------------|---|--|--|---|---|---|---|--|---|--|---| | JUL 200
02
AUG | | 1 | .0 | 50 8 | 0 6 | 0 9. | 4 4.: | 2 5 | 1 6. | 0 10 | | | 29 | 1200 | | .40 | 9 8 | 0 22 | 0 7. | 3 3. | 7 11 | 8 7. | 0 4 | | | Date | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | | Sodium,
water,
fltrd,
mg/L
(00930) | field, | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Alum-
inum,
water,
fltrd,
ug/L
(01106) | | JUL 2003
02
AUG | 2.93 | .723 | 2.14 | .1 | .97 | .0 | 1.11 | <.2 | 7.46 | 15.9 | 254 | | 29 | 1.46 | .285 | 1.57 | .1 | .47 | .0 | .67 | <.2 | 7.46 | 22.3 | 724 | | Date | Anti-
mony,
water,
fltrd,
ug/L
(01095) | Arsenic
water,
fltrd,
ug/L
(01000) | Beryll-
ium,
water,
fltrd,
ug/L
(01010) | Cadmium
water,
fltrd,
ug/L
(01025) | Chrom-
ium,
water,
fltrd,
ug/L
(01030) | Cobalt
water,
fltrd,
ug/L
(01035) | Copper,
water,
fltrd,
ug/L
(01040) | Iron,
water,
fltrd,
ug/L
(01046) | Lead,
water,
fltrd,
ug/L
(01049) | Mangan-
ese,
water,
fltrd,
ug/L
(01056) | Nickel,
water,
fltrd,
ug/L
(01065) | | JUL 2003
02
AUG | <.30 | E.2 | <.06 | .06 | E.5 | .277 | 1.6 | 54 | 3.62 | 5.2 | 1.46 | | 29 | <.30 | <.3 | .06 | . 25 | 2.5 | 2.14 | 11.6 | 276 | 8.90 | 7.1 | 5.92 | | | | | Date | Selen-
ium,
water,
fltrd,
ug/L
(01145) | Silver,
water,
fltrd,
ug/L | Thall-
ium,
water,
fltrd,
ug/L
(01057) | ium, | Zinc,
water,
fltrd,
ug/L
(01090) | | | | | | | | JUL 2003
02
AUG | <.5 | <.2 | .20 | <.1 | 16 | | | | | | | | 29 | <.5 | <.2 | .22 | <.1 | 42 | | | | #### 462522112172401 08N06W24DDCD01 LOCATION.--Lat 46°25'21.8", long 112°17'23.5" (NAD 83), in SW¹/₄SE¹/₄sec. 24, T.8 N., R.6 W., Lewis and Clark County, Hydrologic Unit 10030101. HYDROGEOLOGIC UNIT.--Boulder batholith quartz monzonite. WELL CHARACTERISTICS.--Drilled in June 1999, casing diameter 4 in., depth 227 ft. Pump DATUM.--Measuring point, top of PVC casing, 1.70 ft above land surface datum. Elevation of land-surface datum is 7,579.8 ft (NGVD 29). PERIOD OF RECORD.-- October 2001 to current year. REMARKS. - All water levels are reported as distance, in feet below land-surface datum. Well was pumped extensively one day prior to each sampling date in an attempt to remove sediment and standing water from the well casing. ## MEASURED WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 2002 THROUGH SEPTEMBER 2003 | DA | TE | WATER
<u>LEVEL</u> | |-----|----|-----------------------| | Jul | 2 | 120.65 | | Aug | 8 | 119.05 | | Aua | 28 | 121.96 | #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Flow
rate,
instan-
taneous
gal/min
(00059) | or flow
period
prior
to sam-
pling,
minutes
(72004) | Sam- |
Tur-
bidity,
water,
unfltrd
field,
NTU
(61028) | Dis-
solved
oxygen,
mg/L
(00300) | unfltrd | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | |-----------------------|--|---|---|---|---|---|--|---|---|--|--| | JUL 2003
03
AUG | 1000 | . 25 | 150 | 195 | >1000 | . 4 | 6.5 | 310 | 9.5 | 23 | 7.28 | | 29 | 1100 | .20 | 15 | 190 | | 6.6 | 6.7 | 285 | 8.0 | 4 | 1.25 | | Date | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | sium, | Sodium
adsorp-
tion
ratio
(00931) | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Alka-
linity,
wat flt
inc tit
field,
mg/L as
CaCO3
(39086) | | Carbon-
ate,
wat flt
incrm.
titr.,
field,
mg/L
(00452) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | | JUL 2003 | 1.18 | 6.08 | 5 | 58.9 | 68 | 67 | 81 | . 0 | 2.93 | . 3 | 26.3 | | AUG
29 | .141 | 3.08 | 13 | 56.7 | 69 | 60 | 74 | . 0 | 1.97 | . 3 | 28.6 | | Date | Sulfate
water,
fltrd,
mg/L
(00945) | tuents
mg/L | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Alum-
inum,
water,
fltrd,
ug/L
(01106) | Anti- mony, water, fltrd, ug/L (01095) | Arsenic
water,
fltrd,
ug/L
(01000) | Beryll-
ium,
water,
fltrd,
ug/L
(01010) | Cadmium
water,
fltrd,
ug/L
(01025) | Chrom-
ium,
water,
fltrd,
ug/L
(01030) | Cobalt
water,
fltrd,
ug/L
(01035) | Copper,
water,
fltrd,
ug/L
(01040) | | JUL 2003
03 | 72.3 | 216 | . 29 | 2 | <.30 | 1.4 | <.06 | .05 | <.8 | 3.41 | .6 | | AUG
29 | 62.4 | 191 | .26 | 3 | E.15 | .8 | <.06 | E.02 | 9.4 | .451 | .5 | | | Date | Iron,
water
fltro
ug/I
(01046 | r, water
d, fltrd
L ug/L | , water
, fltrd
ug/L | Nickel
, water
l, fltrd
ug/L | water
, fltro
ug/I | Silver
, water
d, fltrd
ug/I | , water
l, fltrd | ium,
, water,
, fltrd,
ug/L | Zinc,
water,
fltrd,
ug/L | • | | | JUL 2003 | 317 | E.07 | 238 | 2.18 | <.5 | <.2 | . 28 | .3 | 28 | | | | AUG
29 | 45 | E.05 | 41.7 | .49 | <.5 | <.2 | .12 | . 2 | 3 | | | | | | | | | | | | | | | ## 462720112165101 TENMILE CREEK ABOVE MONITOR CREEK, NEAR RIMINI, MT $LOCATION.--Lat\ 46^{\circ}27'19.0",\ long\ 112^{\circ}16'52.3"\ (NAD\ 27),\ SW^{1}/_{4}NE^{1}/_{4}SW^{1}/_{4}\ sec.\ 7,\ T.8N.,\ R.5W.,\ Lewis\ and\ Clark\ County,\ Hydrologic\ Unit\ 10020006,\ 30\ ft\ above\ confluence\ with\ Monitor\ Creek\ and\ 2.9\ mi\ south\ of\ Rimini.$ DRAINAGE AREA.--Indeterminate. PERIOD OF RECORD.--July 2003 to September 2003. GAGE.--None. Elevation at sampling site is 6,230 ft (NGVD 29). ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | solved
oxygen,
mg/L | water,
unfltrd
field,
std
units | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | |----------------|---|---|---|---|---|---|--|--|--|--|--| | JUL 2003
10 | 0930 | .82 | | 6.8 | 32 | 15.0 | 10.5 | 10 | 3.03 | .629 | .89 | | SEP
04 | 1030 | .02 | 9.1 | 7.5 | 44 | | 10.0 | 14 | 4.10 | .852 | 1.15 | | Date | Sodium
adsorp-
tion
ratio
(00931) | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d | Ammonia
water,
fltrd,
mg/L
as N
(00608) | | JUL 2003
10 | . 3 | 2.48 | 12 | <.20 | <.2 | 15.2 | 3.0 | E33 | E.04 | E.00 | < .04 | | SEP
04 | . 4 | 3.78 | 17 | .26 | <.2 | 12.1 | 5.5 | 38 | .05 | .00 | < .04 | | Date | Nitrite + nitrate water fltrd, mg/L as N (00631) | Nitrite
water,
fltrd,
mg/L
as N
(00613) | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Alum-
inum,
water,
fltrd,
ug/L
(01106) | Alum-
inum,
water,
unfltrd
recover
-able,
ug/L
(01105) | Anti- mony, water, fltrd, ug/L (01095) | Anti-
mony,
water,
unfltrd
ug/L
(01097) | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | Beryll-
ium,
water,
fltrd,
ug/L
(01010) | Beryll-
ium,
water,
unfltrd
recover
-able,
ug/L
(01012) | | JUL 2003
10 | <.06 | <.008 | <.02 | 70 | 104 | <.30 | <.6 | 1.9 | 3 | .15 | .15 | | SEP
04 | <.06 | <.008 | <.18 | 16 | 19 | <.30 | <.6 | 1.5 | 2 | E.05 | E.06 | | Date | Cadmium
water,
fltrd,
ug/L
(01025) | unfltrd
ug/L | Chrom-
ium,
water,
fltrd,
ug/L
(01030) | Chrom-
ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | Cobalt
water,
fltrd,
ug/L
(01035) | -able,
ug/L | Copper,
water,
fltrd,
ug/L
(01040) | | Iron,
water,
fltrd,
ug/L
(01046) | Iron,
water,
unfltrd
recover
-able,
ug/L
(01045) | Lead,
water,
fltrd,
ug/L
(01049) | | JUL 2003 | E.03 | .04 | <.8 | <.8 | .039 | .047 | 1.5 | 1.8 | 132 | 150 | .23 | | SEP
04 | E.03 | E.03 | <.8 | <.8 | .228 | .179 | . 9 | . 9 | 126 | 140 | E.06 | | 01 | Date JUL 2003 10 | Lead wate: unflt: recovabl; ug/ (0105: | ,
r, Mangan
rd ese,
er water
e, fltrd
L ug/L | Mangan
ese,
- water
unfltr
, recove
, -able
ug/L | -
d Nickel
r water
, fltrd
ug/L | Nickel
water
, unfltr
, recove
l, -able
ug/I | .,
Seler
d ium,
er water
e, fltro | n- Seler
ium
a, water
d, unflt
ug/l | n-
, Silver
c, water
cd fltro | Silver
water
, unfltr
, recove
d, -able
ug/L | ,
,
d
r | | | SEP
04 | .08 | 28.6 | 30 | .21 | .26 | <.5 | E.3 | <.2 | <.16 | | | | | | | | | | | | | | | # 462720112165101 TENMILE CREEK ABOVE MONITOR CREEK, NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 200--Continued | Date | Thall-
ium,
water,
fltrd,
ug/L
(01057) | Thall-
ium,
water,
unfltrd
ug/L
(01059) | Vanad-
ium,
water,
fltrd,
ug/L
(01085) | Vanad-
ium,
water,
unfltrd
ug/L
(01087) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | | |-----------------------|---|--|---|--|--|--|--| | JUL 2003
10
SEP | <.04 | <.4 | . 2 | <1 | 6 | 7 | | | 04 | < .04 | < . 4 | . 2 | <1 | 3 | 3 | | ## 462542112173101 MONITOR CREEK SS 12, NEAR RIMINI, MT $LOCATION.--Lat\ 46^{\circ}25'41.6",\ long\ 112^{\circ}17'30.6"\ (NAD\ 27),\ NW^{1}/_{4}NE^{1}/_{4}SE^{1}/_{4}\ sec.\ 24,\ T.8N.,\ R.6W.,\ Lewis\ and\ Clark\ County,\ Hydrologic\ Unit\ 10020006,\ 1.95\ mi\ upstream\ of\ confluence\ with\ Tenmile\ Creek,\ 5.4\ mi\ south\ of\ Rimini.$ DRAINAGE AREA.--Indeterminate. PERIOD OF RECORD.--July 2003 to September 2003. GAGE.--None. Elevation at sampling site is 7,230 ft (NGVD 29). ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | solved
oxygen,
mg/L | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L
as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | |----------------|---|---|--|--|--|--|--|--|--|--|---| | JUL 2003
10 | 1420 | .15 | | 3.7 | 253 | 31.0 | 15.0 | 43 | 12.4 | 3.01 | 5.81 | | SEP
05 | 1000 | .07 | 9.2 | 3.5 | 227 | | 9.0 | 38 | 10.8 | 2.69 | 6.90 | | Date | Sodium
adsorp-
tion
ratio
(00931) | fltrd,
mg/L | water, | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | Nitrite + nitrate water fltrd, mg/L as N (00631) | Nitrite
water,
fltrd,
mg/L
as N
(00613) | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Alum-
inum,
water,
fltrd,
ug/L
(01106) | | JUL 2003
10 | .1 | 1.51 | .55 | <.2 | 22.5 | 102 | < .04 | .35 | <.008 | <.02 | 4620 | | SEP
05 | .1 | 1.96 | .57 | . 2 | 30.7 | 97.2 | <.04 | .16 | <.008 | <.18 | 4350 | | Date | Alum-
inum,
water,
unfltrd
recover
-able,
ug/L
(01105) | Anti-
mony,
water,
fltrd,
ug/L
(01095) | Anti-
mony,
water,
unfltrd
ug/L
(01097) | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | Beryll-
ium,
water,
fltrd,
ug/L
(01010) | Beryll-
ium,
water,
unfltrd
recover
-able,
ug/L
(01012) | Cadmium
water,
fltrd,
ug/L
(01025) | Cadmium
water,
unfltrd
ug/L
(01027) | Chrom-
ium,
water,
fltrd,
ug/L
(01030) | Chrom-
ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | | JUL 2003
10 | 4440 | <.30 | <.6 | . 5 | <2 | 3.83 | 3.06 | 8.96 | 8.59 | <.8 | <.8 | | SEP
05 | 4340 | <.30 | <.6 | . 5 | <2 | 2.69 | 2.65 | 6.76 | 6.77 | <.8 | <.8 | | Date | Cobalt
water,
fltrd,
ug/L
(01035) | Cobalt
water,
unfltrd
recover
-able,
ug/L
(01037) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Iron,
water,
fltrd,
ug/L
(01046) | Iron,
water,
unfltrd
recover
-able,
ug/L
(01045) | Lead,
water,
fltrd,
ug/L
(01049) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Mangan-
ese,
water,
fltrd,
ug/L
(01056) | Mangan-
ese,
water,
unfltrd
recover
-able,
ug/L
(01055) | Nickel,
water,
fltrd,
ug/L
(01065) | | JUL 2003
10 | 15.8 | 14.9 | 28.8 | 29.6 | 312 | 350 | 35.4 | 34.0 | 597 | 556 | 13.8 | | SEP
05 | 14.7 | 13.8 | 24.8 | 24.6 | 628 | 650 | 29.9 | 29.6 | 545 | 513 | 11.6 | | Date | Nickel,
water,
unfltro
recover
-able,
ug/L
(01067) | Selen- ium, water, fltrd, ug/L | ium,
water,
unfltrd
ug/L | Silver
water | , recover
, -able,
ug/L | l ium,
water,
fltrd,
ug/L | ium,
water,
unfltro
ug/L | ium,
water
d fltrd
ug/L | ium,
, water,
, unfltrd
ug/L | Zinc,
water,
l fltrd,
ug/L | -able,
ug/L | | JUL 2003
10 | 13.2 | 2.1 | 1.9 | <.2 | <.16 | .57 | .5 | <.1 | <1 | 597 | 574 | | SEP
05 | 11.1 | 1.4 | 1.4 | <.2 | <.16 | .43 | E.4 | <.1 | <1 | 481 | 498 | ## 462721112164801 MONITOR CREEK AT MOUTH, NEAR RIMINI, MT $LOCATION. --Lat\ 46^{\circ}27'21'', long\ 112^{\circ}16'48''\ (NAD\ 27),\ SW^{1}/_{4}NE^{1}/_{4}SW^{1}/_{4}\sec.\ 7,\ T.8N.,\ R.5W.,\ Lewis\ and\ Clark\ County,\ Hydrologic\ Unit\ 10020006,\ 20\ ft\ upstream\ from\ mouth\ and\ 4.0\ mi\ southwest\ of\ Rimini.$ DRAINAGE AREA.--Indeterminate. PERIOD OF RECORD.--July and October 1997, July 2003 to September 2003. GAGE.--None. Elevation at sampling site is 6,220 ft (NGVD 29). ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | Dis-
solved
oxygen,
mg/L
(00300) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | |----------------|--|---|---|---|--|--|--|--|--|--|--| | JUL 2003
10 | 1015 | .63 | | 6.5 | 74 | 9.0 | 23 | 6.47 | 1.66 | 2.02 | . 2 | | SEP
04 | 1100 | .11 | 9.2 | 6.8 | 105 | 9.5 | 36 | 10.2 | 2.49 | 2.78 | . 2 | | 04 | 1100 | .11 | 9.2 | 0.0 | 103 | 9.3 | 30 | 10.2 | 2.49 | 2.70 | . 2 | | Date | Sodium,
water,
fltrd,
mg/L
(00930) | lab,
mg/L as
CaCO3 | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | consti-
tuents
mg/L | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d
(70302) | | Nitrite + nitrate water fltrd, mg/L as N (00631) | | JUL 2003
10 | 2.23 | 6 | .22 | . 2 | 19.3 | 23.2 | 59 | .08 | .10 | <.04 | <.06 | | SEP
04 | 2.23 | 7 | .35 | . 2 | | 37.5 | | | | | | | 04 | 2.94 | / | .35 | . 2 | 21.2 | 3/.5 | 82 | .11 | .02 | <.04 | <.06 | | Date | Nitrite
water,
fltrd,
mg/L
as N
(00613) | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Alum- inum, water, fltrd, ug/L (01106) | Anti- mony, water, fltrd, ug/L (01095) | Anti- mony, water, unfltrd ug/L (01097) | Arsenic water, fltrd, ug/L (01000) | water
unfltrd
ug/L | Beryll-
ium,
water,
fltrd,
ug/L
(01010) | Beryll-
ium,
water,
unfltrd
recover
-able,
ug/L
(01012) | Cadmium
water,
fltrd,
ug/L
(01025) | Cadmium
water,
unfltrd
ug/L
(01027) | | JUL 2003 | <.008 | <.02 | 113 | <.30 | < . 6 | . 6 | <2 | .37 | .35 | .92 | .90 | | SEP | | | | | | | | | | | | | 04 | <.008 | <.18 | 28 | <.30 | <.6 | .5 | <2 | .14 | .15 | .55 | .56 | | Date | Chrom-
ium,
water,
fltrd,
ug/L
(01030) | Chrom-
ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | Cobalt
water,
fltrd,
ug/L
(01035) | Cobalt
water,
unfltrd
recover
-able,
ug/L
(01037) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Iron,
water,
fltrd,
ug/L
(01046) | Iron,
water,
unfltrd
recover
-able,
ug/L
(01045) | Lead,
water,
fltrd,
ug/L
(01049) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Mangan-
ese,
water,
fltrd,
ug/L
(01056) | | JUL 2003 | <.8 | <.8 | .526 | .542 | 2.4 | 3.0 | 32 | 50 | .45 | .86 | 30.7 | | SEP
04 | <.8 | <.8 | .169 | .157 | 1.5 | 1.5 | 18 | 20 | E.06 | .18 | 14.9 | | | J | Date
UL 2003
10
EP | recove
-able
ug/L
(01055 | d Nickel
r water
, fltrd
ug/L
) (01065 | , recove
, -able
ug/L
) (01067 | , Selendium, rwater, fltrdug/L) (01145 | ium,
, water
, unfltr
ug/L
) (01147 | Silver, water d fltrd ug/L) (01075 | , recove
, -able
ug/L
) (01077 | d
er | | | | | 04 | 15 | 1.38 | 1.46 | <.5 | <.5 | <.2 | <.16 | | | # 462721112164801 MONITOR CREEK AT MOUTH, NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | Thall-
ium,
water,
fltrd,
ug/L
(01057) | Thall-
ium,
water,
unfltrd
ug/L
(01059) | Vanad-
ium,
water,
fltrd,
ug/L
(01085) | | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | |-----------------------|---|--|---|----|--|--| | JUL 2003
10
SEP | .04 | <.4 | E.1 | <1 | 91 | 90 | | 04 | E.02 | < . 4 | <.1 | <1 | 72 | 70 | ## 462544112162001 RUBY CREEK RC2A, ABOVE SCOTT RESERVOIR, NEAR RIMINI, MT $LOCATION.--Lat\ 46^{\circ}25'44.1'',\ long\ 112^{\circ}16'19.7''\ (NAD\ 27),\
NE^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 19,\ T.8N.,\ R.5W.,\ Lewis\ and\ Clark\ County,\ Hydrologic\ Unit\ 10020006,\ 200\ ft\ above\ confluence\ with\ unnamed\ tributary,\ 0.3\ mi\ upstream\ from\ Scott\ Reservoir,\ and\ 0.45\ mi\ south\ of\ Rimini.$ DRAINAGE AREA.--Indeterminate. PERIOD OF RECORD.--July 2003. GAGE.--None. Elevation at sampling site is 7,380 ft (NGVD 29). REMARKS.--Stream was dry on site visits in August and September. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | dis-
charge,
cfs | std
units | wat unf
uS/cm | ature,
water,
deg C | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | water,
fltrd,
mg/L | water,
fltrd,
mg/L | fltrd,
mg/L | Sodium
adsorp-
tion
ratio
(00931) (| water,
fltrd,
mg/L | |----------------|---|--|--------------------------------------|--|---------------------------------|--|---|---|--------------------------------|---|---| | JUL 2003
10 | 1320 | .03 | 6.1 | 17 | 11.0 | 6 | 1.96 | .317 | .52 | . 2 | .92 | | Date | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L | ide,
water,
fltrd,
mg/L | Silica,
water, | | water,
fltrd,
mg/L
as N | water
fltrd,
mg/L
as N | Nitrite
water,
fltrd,
mg/L
as N | water, | Alum-
inum, | Alum-
inum,
water,
unfltrd
recover
-able,
ug/L
(01105) | | JUL 2003
10 | 7 | <.20 | <.2 | 7.14 | 1.3 | <.04 | <.06 | <.008 | <.02 | 103 | 137 | | Date | Anti-
mony,
water
fltrd
ug/L
(01095 | mony,
, water
, unfltr
ug/L | Arseni
, water
d fltrd
ug/L | | water
fltrd
ug/L | unfltro
, recover
, -able
ug/L | ,
d Cadmiu
r water
, fltrd
ug/L | | water
d fltrd
ug/L | unfltro
, recover
, -able, | d Cobali
water
fltrd
ug/L | | JUL 2003
10 | <.30 | <.6 | 1.2 | <2 | .09 | .10 | <.04 | E.03 | <.8 | <.8 | .037 | | Date | Cobalt
water,
unfltrd
recover
-able,
ug/L
(01037) | Copper,
water,
fltrd,
ug/L | | Iron,
water, | recover
-able,
ug/L | Lead,
water,
fltrd,
ug/L | unfltrd
recover
-able,
ug/L | water,
fltrd,
ug/L | recover
-able,
ug/L | Nickel,
water,
fltrd,
ug/L | recover
-able,
ug/L | | JUL 2003
10 | .049 | 1.7 | 1.7 | 57 | 70 | .21 | .23 | 3.2 | 4 | . 24 | . 25 | | Date | w | ium,
ater, w
ltrd, un
ug/L | ater, w
fltrd f
ug/L | wa
lver, unf
ater, rec
ltrd, -a | ltrd
over w
ble, f
g/L | ium, :
ater, wa
ltrd, un:
ug/L : | ium,
ater, w
fltrd f
ug/L | ium, i
ater, wa
ltrd, unf
ug/L i | ater, wa
Eltrd fl
ug/L u | wainc, unf
ater, red
ltrd, -a
ug/L u | dinc,
ater,
ltrd
cover
able,
ag/L
.092) | | JUL 200
10 | | <.5 | .5 | <.2 <. | 16 < | .04 | < . 4 | .1 < | <1 | 5 | 4 | | | | | | | | | | | | | | ## 462657112143501 BANNER CREEK AT BRIDGE, 0.5 MILE ABOVE CITY DIVERSION, NEAR RIMINI, MT $LOCATION.--Lat\ 46^{\circ}23'57", long\ 112^{\circ}15'25"\ (NAD\ 27), in\ NW^{1}/_{4}\ NW^{1}/_{4}\ SW^{1}/_{4}\ sec.\ 16,\ T.\ 8\ N.,\ R.\ 5\ W.,\ Lewis\ and\ Clark\ County,\ Hydrologic\ Unit\ 10030101,\ at\ bridge\ near\ the\ downstream\ edge\ of\ meadow,\ about\ 0.5\ mi\ upstream\ from\ city\ diversion,\ and\ 2.5\ mi\ south\ of\ Rimini.$ DRAINAGE AREA.--2.6 mi². PERIOD OF RECORD .-- April 2000 to current year. GAGE--None. Elevation at site is 6,700 ft (NGVD 29). ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | |-----------------------------|---|---|---|--|--|---|--|---|--|--|---| | MAR 2003
24 | 1045 | .20 | 7.5 | 68 | 1.5 | 0.0 | 33 | 9.95 | 1.93 | | | | JUL
22 | 0930 | .16 | 7.3 | 73 | 16.0 | 10.0 | 29 | 9.03 | 1.67 | .83 | .1 | | AUG | | | | | | | | | | | | | 21
SEP | 1340 | .11 | 7.3 | 80 | 15.5 | 19.0 | 38 | 12.0 | 1.88 | | | | 25 | 1050 | .15 | 7.7 | 87 | 17.0 | 6.0 | 36 | 10.8 | 2.08 | | | | Date | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d
(70302) | Alum-
inum,
water,
fltrd,
ug/L
(01106) | Alum-
inum,
water,
unfltrd
recover
-able,
ug/L
(01105) | | MAR 2003
24
JUL
22 | 1.82 |
26 | .33 |
<.2 |
12.4 |
8.6 |
50 |
.07 | .02 |
4 |
43 | | AUG
21 | | | | | | | | | | | | | SEP
25 | | | | | | | | | | | | | Date | Anti-
mony,
water,
fltrd,
ug/L
(01095) | Anti-
mony,
water,
unfltrd
ug/L
(01097) | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | Cadmium
water,
fltrd,
ug/L
(01025) | Cadmium
water,
unfltrd
ug/L
(01027) | Chrom-
ium,
water,
fltrd,
ug/L
(01030) | Chrom-
ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Iron,
water,
fltrd,
ug/L
(01046) | | MAR 2003
24 | | | .8 | E2 | .12 | .13 | | | 1.2 | 1.6 | | | JUL
22 | <.30 | < . 6 | 1.1 | <2 | .10 | .11 | <.8 | <.8 | 3.5 | 3.2 | 286 | | AUG | <.30 | <.0 | | | | | | | | | | | 21
SEP | | | 1.2 | E1 | .05 | .07 | | | 1.4 | 1.6 | | | 25 | | | . 4 | <2 | .09 | .08 | | | 1.5 | 1.2 | | # 462657112143501 BANNER CREEK AT BRIDGE, 0.5 MILE ABOVE CITY DIVERSION, NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | Iron,
water,
unfltrd
recover
-able,
ug/L
(01045) | Lead,
water,
fltrd,
ug/L
(01049) | recover
-able,
ug/L | ese,
water,
fltrd,
ug/L | unfltrd
recover
-able,
ug/L | water,
fltrd,
ug/L | -able,
ug/L | water,
fltrd,
ug/L | recover
-able,
ug/L | |-----------------------|--|--|--|--|--|--------------------------------------|--|---|---------------------------| | MAR 2003
24
JUL | | .10 | .52 | | | | | | | | 22 | 550 | .15 | .36 | 143 | 136 | <.02 | <.02 | .65 | .54 | | AUG
21
SEP | | .13 | .30 | | | | | | | | 25 | | E.08 | .10 | | | | | | | | | Date | water, | Silver,
water,
unfltrd
recover
-able,
ug/L
(01077) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | ment,
sieve
diametr
percent | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | | | | MAR 2003
24
JUL | | | 37 | 26 | 75 | 3 | <.01 | | | | 22
AUG | <.2 | <.16 | 17 | 20 | 75 | 4 | <.01 | | | | 21
SEP | | | 8 | 8 | 90 | 1 | <.01 | | | | 25 | | | 21 | 20 | 67 | 1 | <.01 | | $\mathtt{E--Estimated}.$ ## 462838112143901 POISON CREEK AT MOUTH, NEAR RIMINI, MT LOCATION.--Lat 46°28'38", long 112°14'39" (NAD 27), in SW¹/₄ NW¹/₄ sec. 4, T. 8 N., R. 5 W., Lewis and Clark County, Hydrologic Unit 10030101, at culvert crossing on Rimini Road about 1 mi south of Rimini. DRAINAGE AREA.--0.32 mi². PERIOD OF RECORD.--May 1999 to current year. GAGE--None. Elevation at site is 5,500 ft (NGVD 29). ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Instan- water, cor
taneous unfltrd ta
dis- field, wat
Time charge, std us
cfs units 25 | | conduc-
l tance,
wat uni
uS/cm
25 deg(| Specif. conductance, Temper- wat unf ature, uS/cm air, 25 degC deg C (00095) (00020) | | Hard-
ness,
water,
unfltrd
mg/L
as
CaCO3
(00900) | | water,
fltrd,
mg/L | sium,
water,
fltrd,
mg/L | Sodium
adsorp-
tion
ratio | | | |-----------------------|--|---|--|--|--|--|---|--|--|--|--|--| | JUN 2003
18 | 0800 | .17 | 6.5 | 98 | 14.0 | 10.0 | 31 | 9.53 | 1.70 | 1.32 | .1 | | | JUL
22 | 0945 | .05 | 5.9 | 107 | 18.0 | 12.0 | 34 | 10.5 | 1.99 | | | | | AUG
26 | 0840 | .03 | 6.8 | 111 | | | 41 | 13.1 | 2.08 | | | | | SEP | | | | | 12.0 | 12.0 | | | | | | | | 25 | 1130 | .01 | 6.2 | 126 | 18.0 | 7.5 | 43 | 13.0 | 2.50 | | | | | Date | Sodium,
water,
fltrd,
mg/L
(00930) | water, lab,
fltrd, mg/L as
mg/L CaCO3 | | Fluoride,
water
fltrd
mg/L
(00950) | Silica,
, water,
, fltrd,
mg/L | water,
fltrd,
mg/L | tuents
mg/L | Residue
water,
fltrd, | Residue
water,
fltrd,
tons/d | water,
fltrd,
ug/L | -able,
ug/L | | | JUN 2003
18
JUL | 1.90 | 4 | .46 | . 2 | 24.2 | 32.5 | 76 | .10 | .03 | 61 | 189 | | | 22 | | | | | | | | | | | | | | AUG
26 | | | | | | | | | | | | | | SEP
25 | | | | | | | | | | | | | | Dat | | Anti-
mony,
water,
fltrd,
ug/L
(01095) | Anti-
mony,
water,
unfltrd
ug/L
(01097) | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | Cadmium
water,
fltrd,
ug/L
(01025) | Cadmium
water,
unfltrd
ug/L
(01027) | | recover
-able,
ug/L | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | | | | 2003 | 1.81 | 1.9 | 17.6 | 40 | 8.57 | 8.69 | <.8 | <.8 | 27.7 | 33.1 | | | JUL
22 | 2 | 16.3 | | 28 | 8.87 | 8.59 | 8.59 | | 27.1 | 29.7 | | | | AUG
26 | 5 | 19 | | 19.3 | 24 | 8.95 | 8.39 | | | 34.2 | 32.6 | | | SEP | 5 | | | 14.4 | 16 | 9.02 | 8.95 | | | 32.2 | 30.0 | | | 25 |) | | | 14.4 | 16 | 9.02 | 8.95
Mangan- | | | 32.2 | 30.0 | | | г | Date | Iron,
water,
fltrd,
ug/L
(01046) | Iron,
water,
unfltrd
recover
-able,
ug/L
(01045) | Lead,
water,
fltrd,
ug/L
(01049) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Mangan-
ese,
water,
fltrd,
ug/L
(01056) | ese,
water,
unfltrd | Mercury
water,
fltrd,
ug/L
(71890) | Mercury
water,
unfltrd
recover
-able,
ug/L
(71900) | Nickel,
water,
fltrd,
ug/L
(01065) | Nickel,
water,
unfltrd
recover
-able,
ug/L
(01067) | | | | JN 2003 | 177 | 110 | 1 52 | 0 50 | 411 | 402 | - 02 | - 02 | 2 07 | 2 00 | | | JU | | 17 | 110 | 1.53 | 8.59 | | | <.02 | <.02 | 2.97 | 2.88 | | | AU | | | | 1.89 | 7.06 | | | | | | | | | SE | | | | 3.04 | 7.17 | | | | | | | | | | 25 | | 2. | | 2.92 | | | | | | | | # 462838112143901 POISON CREEK AT MOUTH, NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | Silver,
water,
fltrd,
ug/L
(01075) | Silver,
water,
unfltrd
recover
-able,
ug/L
(01077) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | Suspnd. sedi- ment, sieve diametr percent <.063mm (70331) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | |-----------------------|--|--|--|--|---|--|---| | JUN 2003
18
JUL | <.3 | .33 | 1080 | 1150 | 73 | 3 | <.01 | | 22 | | | 1140 | 1160 | 67 | 1 | <.01 | | AUG
26
SEP | | | 1300 | 1240 | 62 | 2 | <.01 | | 25 | | | 1430 | 1370 | 38 | 2 | <.01 | ## 462853112144101 TENMILE CREEK ABOVE CITY DIVERSION, NEAR RIMINI, MT $LOCATION.--Lat\ 46^{\circ}28'53", long\ 112^{\circ}14'10"\ (NAD\ 27), in\ NW^{1}/_{4}\ NW^{1}/_{4}\ sec.\ 4\ , T.\ 8\ N., R.\ 5\ W., Lewis\ and\ Clark\ County,\ Hydrologic\ Unit\ 10030101,\ about\ 0.25\ mile\ upstream\ from\ city\ diversion,\ about\ 100\ feet\ west\ of\ Rimini\ road,\ and\ 0.125\ mi\ south\ of\ Rimini.$ DRAINAGE AREA.--15.2 mi². PERIOD OF RECORD.--May 1999 to current year. GAGE--None. Elevation at site is 5,350 ft (NGVD 29). ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Dat | te | Tim | e d | dis-
charge,
cfs | pH,
water,
unfltrd
field,
std
units
(00400) | Specif
conduc-
tance
wat un
uS/cm
25 deg
(00095 | Ten
fat
at
Cde | ure,
air,
eg C | Tempe
atur
wate
deg
(0001 | r-
e, u
r, π | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
00900) | Calcium
water,
fltrd,
mg/L
(00915) | wa
fl
m | nes-
um,
ter,
trd,
g/L
925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | | |-------------------------------|------|--|--------------------------------------|---|---|---|---|---|---------------------------------------|---|---|--|--|--|--|---|---------------------------| | 17 | 2003 | 114 | 5 | 22 | 7.4 | 44 | 20 | 0.0 | 11.0 | | 15 | 4.53 | | 960 | .96 | . 2 | | | JUL
22. | 2 | 100 | 0 | 9.0 | 7.0 | 41 | 18 | 3.0 | 10.5 | | 14 | 4.20 | | 921 | | | | | | 5 | 093 | 0 | 1.4 | 7.3 | 75 | 12 | 2.5 | 11.5 | | 33 | 10.3 | 1. | 75 | | | | | SEP
29 | 9 | 085 | 0 | 1.1 | 7.6 | 82 | 5 | 5.0 | 5.0 | | 32 | 9.34 | 2. | 07 | | | | | Dat | te | wa
fl
m | ium,
ter,
trd,
g/L
930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor
ide,
water
fltrd
mg/L
(00940 | id
, wate
, flt:
mg | e, S
er,
rd,
/L | Gilica,
water,
fltrd,
mg/L
00955) | wa
fl
m | fate
ter,
trd,
g/L
945) | Residue
water
fltrd
sum oconsti-
tuents
mg/L
(70301 | , Resid
f wate
f fltr
tons
acre- | r, R
d,
/
ft | esidue
water,
fltrd,
tons/d
70302) | Alum-
inum,
water
fltrd
ug/L
(01106 | , recove
, -able
ug/l | r,
rd
er
e,
L | | | 2003 | 1. | 66 | 11 | .35 | < | 2 | 13.9 | 7 | .1 | 37 | .05 | | 2.14 | 85 | 171 | | | JUL
22 | 2 | | | | | _ | _ | | | | | | | | | | | | AUG
26 | 5 | | | | | _ | _ | | | | | | | | | | | | SEP
29 | 9 | | | | | _ | _ | | | | | | | | | | | | | | Date | | Anti-
mony,
water,
fltrd,
ug/L
(01095) | Anti-
mony,
water
unfltr
ug/L
(01097 | d flt:
ug | er,
rd, ι
/L | Arsenic
water
unfltrd
ug/L
01002) | wa
fl
u | mium
ter,
trd,
g/L
025) | Cadmium
water
unfltro
ug/L
(01027 | , wate
d fltr
ug/ | , C
r,
d,
L | opper,
water,
fltrd,
ug/L
01040) | Copper
water
unfltr
recove
-able
ug/L
(01042 | d
r | | | | | JUN 2003
17
JUL
22
AUG
26 | | E.17 | <.6 | 2. | 8 | 4 | | 54 | .57 | <.8 | | 4.1 | 4.6 | | | | | | | | | | 4. | 5 | 7 | | 64 | .71 | | | 4.8 | 5.1 | | | | | | | | | | 6. | 3 | 8 | 1. | 67 | 1.64 | | | 3.1 | 3.4 | | | | | | SEP
29 | | | | 6. | 0 | 10 | 1. | 95 | 2.00 | | | 2.7 | 2.7 | | | | | Dat | | Iror
wate
fltr
ug/
(0104 | er, reco
rd, -ab
'L ug | er,
trd Le
ver wa
le, fl
/L u | ad, unter, retrd, ref | Lead,
water,
nfltro
ecover
-able,
ug/L | d es
wate
flt:
ug | an-
e,
er,
rd, | Manga
ese
wate
unflt
recov
-abl
ug/ | er,
erd Merc
er wat
e, fli | w
cury un
ter, re
trd, -
g/L | rcury
ater,
fltrd
cover
able,
ug/L
1900) | Nicke
wate
flt:
ug, | wa
el, unf
er, rec
rd, -a
/L u | kel,
ter,
ltrd
over
ble,
g/L
067) | | | | | 2003 | 80 |) 19 | 0 | 76 | 1.89 | 20. | 5 | 25 | < | .02 E | .01 | . 66 | б | 64 | | | JUL
22
AUG
26
SEP | | | | | | 99 | 3.04 | | | | | | | | | | | | | | | | | | 77 | 1.77 | _ | | | | | | | | | | | | | 9 | | | | 33 | 1.12 | _ | _ | | | | | | _ | # 462853112144101 TENMILE CREEK ABOVE CITY DIVERSION, NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | Silver,
water,
fltrd,
ug/L
(01075) |
Silver,
water,
unfltrd
recover
-able,
ug/L
(01077) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | Suspnd. sedi- ment, sieve diametr percent <.063mm (70331) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | | |------------------------|--|--|--|--|---|--|---|--| | JUN 2003
17
JUL | <.3 | <.16 | 102 | 105 | 84 | 3 | .18 | | | 22
AUG
26
SEP | | | 116
444 | 146
370 | 87
94 | 4
2 | .10 | | | 29 | | | 472 | 471 | 75 | 2 | .01 | | ## 462758112123001 BEAVER CREEK TRIBUTARY NO. 2 NEAR RIMINI, MT LOCATION.--Lat $46^{\circ}27'58''$, long $112^{\circ}12'30''$ (NAD 27), in $SW^{1}/_{4}$ $SE^{1}/_{4}$ sec. 3, T. 8 N., R. 5 W., Lewis and Clark County, Hydrologic Unit 10030101, about 40 ft upstream from inlet structure to Banner Creek flume, about 100 ft. upstream from Banner Creek flume, and about 2.5 mi southwest of Rimini. DRAINAGE AREA.--0.67 mi². PERIOD OF RECORD.--April 2000 to current year. GAGE--None. Elevation at site is 6,330 ft (NGVD 29). ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | ature,
water,
deg C | unfltrd
mg/L as
CaCO3 | Calcium
water,
fltrd,
mg/L
(00915) | | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | |----------------|--|---|---|--|--|---|---|---|--|--|---| | JUN 2003 | | | | | | | | | | | | | 18
JUL | 1000 | .82 | 7.3 | 64 | 22.0 | 7.0 | 18 | 5.63 | .953 | 1.34 | . 2 | | 22
AUG | 1300 | .20 | 7.6 | 60 | 27.0 | 10.5 | 19 | 6.04 | 1.03 | | | | 25
SEP | 1330 | .12 | 7.3 | 62 | 28.0 | 12.0 | 20 | 6.32 | 1.04 | | | | 25 | 1330 | .14 | 7.2 | 64 | 24.5 | 6.5 | 21 | 6.61 | 1.12 | | | | Date | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d
(70302) | water,
fltrd, | Alum-
inum,
water,
unfltrd
recover
-able,
ug/L
(01105) | | JUN 2003
18 | 2.17 | 12 | . 27 | <.2 | 16.5 | 13.0 | 48 | .06 | .11 | 10 | 42 | | JUL
22 | | | | | | | | | | | | | AUG
25 | | | | | | | | | | | | | SEP
25 | | | | | | | | | | | | | Date | Anti- mony, water, fltrd, ug/L (01095) | Anti-
mony,
water,
unfltrd
ug/L
(01097) | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | Cadmium
water,
fltrd,
ug/L
(01025) | Cadmium
water,
unfltrd
ug/L
(01027) | Chrom-
ium,
water,
fltrd,
ug/L
(01030) | Chrom-
ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Iron,
water,
fltrd,
ug/L
(01046) | | JUN 2003
18 | <.30 | <.6 | 5.1 | 9 | 3.46 | 3.56 | <.8 | <.8 | 11.2 | 12.5 | 11 | | JUL
22 | | | 7.3 | 8 | 2.22 | 2.11 | | | 6.9 | 7.2 | | | AUG
25 | | | 7.8 | 9 | 2.23 | 2.20 | | | 7.7 | 9.0 | | | SEP | | | | | | | | | | | | | 25 | | | 6.5 | 8 | 2.01 | 1.96 | | | 6.4 | 5.9 | | | | Date | Iron, water, unfltrd recover -able, ug/L (01045) | Lead,
water,
fltrd,
ug/L
(01049) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | fltrd,
ug/L | recover
-able,
ug/L | Mercury
water,
fltrd,
ug/L
(71890) | recover
-able,
ug/L | water,
fltrd,
ug/L | recover
-able,
ug/L | | | Ċ | JUN 2003 | 70 | .32 | 2 27 | 6 7 | ٥ | <.02 | - 02 | E C | ΕO | | | Ċ | 18 | 70 | | 2.27 | 6.7 | 8 | | <.02 | .56 | .50 | | | 1 | 22
AUG | | .18 | .65 | | | | | | | | | 5 | 25
SEP | | .21 | 1.40 | | | | | | | | | | 25 | | .20 | .18 | | | | | | | | # 462758112123001 BEAVER CREEK TRIBUTARY NO. 2 NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | Silver,
water,
fltrd,
ug/L
(01075) | Silver,
water,
unfltrd
recover
-able,
ug/L
(01077) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | Suspnd. sedi- ment, sieve diametr percent <.063mm (70331) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | | |-----------------------|--|--|--|--|---|--|---|--| | JUN 2003
18
JUL | <.3 | <.16 | 570 | 574 | 75 | 1 | <.01 | | | 22 | | | 288 | 324 | 67 | 2 | <.01 | | | AUG
25
SEP | | | 349 | 324 | 50 | 2 | <.01 | | | 25 | | | 337 | 322 | 83 | 1 | <.01 | | ## 462922112145401 TENMILE CREEK BELOW SPRING CREEK, AT RIMINI, MT LOCATION.--Lat $46^{\circ}29'22''$, long $112^{\circ}14'54''$ (NAD 27), in NW $^{1}/_{4}$ SW $^{1}/_{4}$ sec. 33, T. 8 N., R. 5 W., Lewis and Clark County, Hydrologic Unit 10030101, at bridge crossing on road to private residence in Rimini. DRAINAGE AREA.--22.8 mi². PERIOD OF RECORD.--May 1997 to current year. GAGE--None. Elevation at site is 5,220 ft (NGVD 29). ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | |----------------|---|---|---|--|--|---|---|---|--|--|--| | JUN 2003 | 1000 | 0.0 | | 45 | 01 0 | 11.0 | 1.0 | 4 85 | 1 06 | 0.5 | | | 17
JUL | 1230 | 28 | 7.5 | 47 | 21.0 | 11.0 | 16 | 4.75 | 1.06 | .95 | . 2 | | 22
AUG | 1130 | .10 | 7.0 | 116 | 22.0 | 18.5 | 39 | 10.6 | 2.98 | | | | 26
SEP | 1015 | .08 | 6.6 | 225 | 20.0 | 14.0 | 84 | 22.8 | 6.54 | | | | 29 | 0940 | .11 | 6.5 | 458 | 6.5 | 4.5 | 110 | 29.8 | 9.57 | | | | Date | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d
(70302) | Alum-
inum,
water,
fltrd,
ug/L
(01106) | Alum- inum, water, unfltrd recover -able, ug/L (01105) | | JUN 2003
17 | 1.75 | 12 | .38 | <.2 | 15.2 | 8.6 | 40 | .05 | 2.99 | 79 | 188 | | JUL
22 | | | | | | | | | | | | | AUG
26 | | | | | | | | | | | | | SEP
29 | | | | | | | | | | | | | Date | Anti-
mony,
water,
fltrd,
ug/L
(01095) | Anti-
mony,
water,
unfltrd
ug/L
(01097) | Arsenic
water,
fltrd,
ug/L
(01000)
| Arsenic
water
unfltrd
ug/L
(01002) | Cadmium
water,
fltrd,
ug/L
(01025) | Cadmium
water,
unfltrd
ug/L
(01027) | Chrom-
ium,
water,
fltrd,
ug/L
(01030) | Chrom-
ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Iron,
water,
fltrd,
ug/L
(01046) | | JUN 2003
17 | E.20 | <.6 | 5.0 | 8 | .85 | .90 | <.8 | <.8 | 5.8 | 6.7 | 107 | | JUL
22 | 1.20 | | 11.3 | 13 | 5.09 | 4.99 | | | 7.4 | 8.7 | | | AUG | | | | | | | | | | | | | 26
SEP | | | 44.8 | 77 | 20.1 | 18.8 | | | 12.5 | 16.0 | | | 29 | | | 233 | 425 | 23.2 | 22.9 | | | 8.8 | 14.5 | | | | Date | Iron, water, unfltrd recover -able, ug/L (01045) | water
fltrd
ug/L | , -able,
ug/L | d ese,
water,
fltrd,
ug/L | unfltrd
recover
-able,
ug/L | Mercury
water,
fltrd,
ug/L | recover
-able
ug/L | d Nickel,
water,
fltrd,
ug/L | recover
-able
ug/L | ,
1
2 | | | JUN 2003
17 | 260 | .97 | 3.20 | 31.3 | 40 | <.02 | E.01 | . 69 | .73 | | | | JUL
22 | | .94 | 3.41 | | | | | | | | | | AUG
26 | | 4.81 | 12.0 | | | | | | | | | | SEP
29 | | .20 | 7.32 | | | | | | | | E--Estimated. # 462922112145401 TENMILE CREEK BELOW SPRING CREEK, AT RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | Silver,
water,
fltrd,
ug/L
(01075) | Silver,
water,
unfltrd
recover
-able,
ug/L
(01077) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | Suspnd. sedi- ment, sieve diametr percent <.063mm (70331) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | | |-----------------------|--|--|--|--|---|--|---|--| | JUN 2003
17
JUL | <.3 | <.16 | 132 | 142 | 46 | 8 | .60 | | | 22
AUG | | | 597 | 689 | 12 | 33 | .01 | | | 26
SEP | | | 2810 | 2700 | 97 | 4 | <.01 | | | 29 | | | 3800 | 3810 | 98 | 13 | <.01 | | E--Estimated. ## 462932112145801 MOORES SPRING CREEK AT MOUTH, NEAR RIMINI, MT $LOCATION.--Lat\ 46^{\circ}29'32'', long\ 112^{\circ}14'58''\ (NAD\ 27), in\ NW^{1}/_{4}\ NW^{1}/_{4}\ SW^{1}/_{4}\ sec.\ 33\ , T.\ 8\ N., R.\ 5\ W., Lewis\ and\ Clark\ County,\ Hydrologic\ Unit\ 10030101,\ at\ culvert\ crossing\ on\ Rimini.$ DRAINAGE AREA.--0.6 mi². PERIOD OF RECORD .-- May 2000 to current year. GAGE--None. Elevation at site is 5,180 ft (NGVD 29). ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | |---|---|--|---|---|---|---|--|--|---|---|---| | JUN 2003 | | | | | | | | | | | | | 18
JUL | 0845 | .09 | 7.9 | 210 | 14.0 | 11.0 | 89 | 24.4 | 6.86 | 2.06 | . 2 | | 22
AUG | 1200 | .01 | 8.1 | 257 | 24.0 | 14.5 | 110 | 30.8 | 8.81 | | | | 26
SEP | 1045 | .01 | 7.6 | 297 | 23.0 | 13.0 | 130 | 34.5 | 11.2 | | | | 25 | 1200 | .01 | 8.1 | 276 | 24.0 | 9.5 | 130 | 35.3 | 10.8 | | | | Date | Sodium,
water,
fltrd,
mg/L
(00930) | lab,
mg/L as
CaCO3 | Chloride,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d
(70302) | Alum-
inum,
water,
fltrd,
ug/L
(01106) | Alum-
inum,
water,
unfltrd
recover
-able,
ug/L
(01105) | | JUN 2003
18 | 5.01 | 49 | .93 | <.2 | 24.4 | 47.4 | 141 | .19 | .03 | 50 | 109 | | JUL | | | | | | | | | | | | | 22
AUG | | | | | | | | | | | | | 26
SEP | | | | | | | | | | | | | 25 | Date | Anti-
mony,
water,
fltrd,
ug/L
(01095) | Anti-
mony,
water,
unfltrd
ug/L
(01097) | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | water, | Cadmium
water,
unfltrd
ug/L
(01027) | Chrom-
ium,
water,
fltrd,
ug/L
(01030) | Chromium,
water,
unfltrd
recover
-able,
ug/L
(01034) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Iron,
water,
fltrd,
ug/L
(01046) | | JUN 2003 | mony,
water,
fltrd,
ug/L
(01095) | mony,
water,
unfltrd
ug/L
(01097) | water,
fltrd,
ug/L
(01000) | water
unfltrd
ug/L
(01002) | water,
fltrd,
ug/L
(01025) | water,
unfltrd
ug/L
(01027) | ium,
water,
fltrd,
ug/L
(01030) | ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | water,
fltrd,
ug/L
(01040) | water,
unfltrd
recover
-able,
ug/L
(01042) | water,
fltrd,
ug/L
(01046) | | JUN 2003
18
JUL | mony,
water,
fltrd,
ug/L
(01095) | mony,
water,
unfltrd
ug/L
(01097) | water,
fltrd,
ug/L
(01000) | water
unfltrd
ug/L
(01002) | water,
fltrd,
ug/L
(01025) | water,
unfltrd
ug/L
(01027) | ium,
water,
fltrd,
ug/L
(01030) | ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | water,
fltrd,
ug/L
(01040) | water,
unfltrd
recover
-able,
ug/L
(01042) | water,
fltrd,
ug/L
(01046) | | JUN 2003
18
JUL
22
AUG | mony,
water,
fltrd,
ug/L
(01095) | mony,
water,
unfltrd
ug/L
(01097) | water,
fltrd,
ug/L
(01000)
60.7
85.7 | water
unfltrd
ug/L
(01002)
63
90 | water,
fltrd,
ug/L
(01025)
5.15
4.00 | water,
unfltrd
ug/L
(01027)
5.45
3.81 | ium,
water,
fltrd,
ug/L
(01030) | ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | water,
fltrd,
ug/L
(01040)
8.3
6.3 | water,
unfltrd
recover
-able,
ug/L
(01042)
9.3
6.1 | water,
fltrd,
ug/L
(01046) | | JUN 2003
18
JUL
22
AUG
26
SEP | mony,
water,
fltrd,
ug/L
(01095) | mony,
water,
unfltrd
ug/L
(01097) | water,
fltrd,
ug/L
(01000)
60.7
85.7
84.5 | water
unfltrd
ug/L
(01002)
63
90
79 | water,
fltrd,
ug/L
(01025)
5.15
4.00
4.75 | water,
unfltrd
ug/L
(01027)
5.45
3.81
4.74 | ium,
water,
fltrd,
ug/L
(01030) | ium,
water,
unfltrd
recover
-able,
ug/L
(01034)
E.5 | water,
fltrd,
ug/L
(01040)
8.3
6.3
5.5 | water,
unfltrd
recover
-able,
ug/L
(01042)
9.3
6.1
5.7 | water,
fltrd,
ug/L
(01046) | | JUN 2003
18
JUL
22
AUG
26 | mony,
water,
fltrd,
ug/L
(01095) | mony,
water,
unfltrd
ug/L
(01097) | water,
fltrd,
ug/L
(01000)
60.7
85.7 | water
unfltrd
ug/L
(01002)
63
90 | water,
fltrd,
ug/L
(01025)
5.15
4.00 | water,
unfltrd
ug/L
(01027)
5.45
3.81 | ium,
water,
fltrd,
ug/L
(01030) | ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | water,
fltrd,
ug/L
(01040)
8.3
6.3 | water,
unfltrd
recover
-able,
ug/L
(01042)
9.3
6.1 | water,
fltrd,
ug/L
(01046) | | JUN 2003
18
JUL
22
AUG
26
SEP | mony,
water,
fltrd,
ug/L
(01095) | mony,
water,
unfltrd
ug/L
(01097) | water,
fltrd,
ug/L
(01000)
60.7
85.7
84.5
81.4 | water unfiltrd ug/L (01002) 63 90 79 82 Lead, water, unfiltrd recover, -able, ug/L | water, fltrd, ug/L (01025) 5.15 4.00 4.75 4.47 Mangandese, water, fltrd, ug/L | water, unfiltrd
ug/L (01027) 5.45 3.81 4.74 4.45 Manganese, water, unfiltrd recover, able, | ium, water, fltrd, ug/L (01030) <.8 d Mercury water, fltrd, ug/L (01030) | ium, water, unfltrd recover -able, ug/L (01034) E.5 Mercury water, unfltrd recover, -able, ug/L | water,
fltrd,
ug/L
(01040)
8.3
6.3
5.5
5.4
Nickel,
r water,
fltrd,
ug/L | water, unfltrd recover -able, ug/L (01042) 9.3 6.1 5.7 5.1 Nickel water unfltrd recover | water,
fllrd,
ug/L
(01046)
21

dr, | | JUN 2003
18
JUL
22
AUG
26
SEP | mony, water, fltrd, ug/L (01095) .91 | mony, water, unfltrd ug/L (01097) 1.0 Iron, water, unfltrd recover -able, ug/L | water,
fltrd,
ug/L
(01000)
60.7
85.7
84.5
81.4 | water unfiltrd ug/L (01002) 63 90 79 82 Lead, water, unfiltrd recover, -able, ug/L | water, fltrd, ug/L (01025) 5.15 4.00 4.75 4.47 Mangandese, water, fltrd, ug/L | water, unfiltrd ug/L (01027) 5.45 3.81 4.74 4.45 Manganese, water, unfiltrd recover, -able, ug/L | ium, water, fltrd, ug/L (01030) <.8 d Mercury water, fltrd, ug/L (01030) | ium, water, unfltrd recover -able, ug/L (01034) E.5 Mercury water, unfltrd recover, -able, ug/L | water,
fltrd,
ug/L
(01040)
8.3
6.3
5.5
5.4
Nickel,
r water,
fltrd,
ug/L | water, unfltrd recover -able, ug/L (01042) 9.3 6.1 5.7 5.1 Nickel water unfltr, recove: -able | water,
flrd,
ug/L
(01046)
21

,,
dd r | | JUN 2003
18
JUL
22
AUG
26
SEP | mony, water, fltrd, ug/L (01095) .91 | mony, water, unfltrd ug/L (01097) 1.0 Iron, water unfltrd recover able ug/L (01045) | water,
fltrd,
ug/L
(01000)
60.7
85.7
84.5
81.4
d. Lead,
water
fltrd
ug/L
(01049 | water unfltrd ug/L (01002) 63 90 79 82 Lead, water, unfltrc recover, -able, ug/L) (01051) | water, fltrd, ug/L (01025) 5.15 4.00 4.75 4.47 Manganese, water, fltrd, ug/L (01056) | water,
unfltrd
ug/L
(01027)
5.45
3.81
4.74
4.45
Mangan-
ese,
unfltrd
recover,
able,
ug/L
(01055) | ium, water, fltrd, ug/L (01030) <.8 d Mercury water, fltrd, ug/L (71890) | ium, water, unfltrd recover -able, ug/L (01034) E.5 Mercury water, unfltrd recover -able, ug/L (71900) | water,
fltrd,
ug/L
(01040)
8.3
6.3
5.5
5.4
Nickel,
r water,
fltrd,
ug/L
(01065) | water, unfltrd recover -able, ug/L (01042) 9.3 6.1 5.7 5.1 Nickel water unfltr recover -able ug/L (01067) | water,
flrd,
ug/L
(01046)
21

,,
dd r | | JUN 2003
18
JUL
22
AUG
26
SEP | mony, water, fltrd, ug/L (01095) .91 | mony, water, unfltrd ug/L (01097) 1.0 Iron, water unfltrr recover -able ug/L (01045) | water,
fltrd,
ug/L
(01000)
60.7
85.7
84.5
81.4
Lead,
water
fltrd
ug/L
(01049 | water unfltrd ug/L (01002) 63 90 79 82 Lead, water unfltrd recover , -able, ug/L) (01051) | water, fltrd, ug/L (01025) 5.15 4.00 4.75 4.47 Manganese, water fltrd, ug/L (01056) 200 | water,
unfltrd
ug/L
(01027)
5.45
3.81
4.74
4.45
Mangan-
ese,
water,
unfltrd
recover,
-able,
ug/L
(01055) | ium, water, fltrd, ug/L (01030) <.8 d Mercury water, fltrd, ug/L (71890) <.02 | ium, water, unfltrd recover -able, ug/L (01034) E.5 Mercury water, unfltrc recover -able, ug/L (71900) <.02 | water, fltrd, ug/L (01040) 8.3 6.3 5.5 5.4 Nickel, water, fltrd, ug/L (01065) 2.66 | water,
unfltrd
recover
-able,
ug/L
(01042)
9.3
6.1
5.7
5.1
Nickel
water
unfltro
recover
-able
ug/L
(01067 | water,
flrd,
ug/L
(01046)
21

,,
dd r | | JUN 2003
18
JUL
22
AUG
26
SEP | mony, water, fltrd, ug/L (01095) .91 | mony, water, unfltrd ug/L (01097) 1.0 Iron, water, unfltrd ug/L (01045) | water, fltrd, ug/L (01000) 60.7 85.7 84.5 81.4 A Lead, water fltrd ug/L (01049 .22 E.04 | water unfltrd ug/L (01002) 63 90 79 82 Lead, water, unfltr recover, -able, ug/L) (01051) | water, fltrd, ug/L (01025) 5.15 4.00 4.75 4.47 Manganese, water, fltrd, ug/L (01056) 200 | water,
unfltrd
ug/L
(01027)
5.45
3.81
4.74
4.45
Mangan-
ese,
water,
unfltrd
recover,
-able,
ug/L
(01055) | ium, water, fltrd, ug/L (01030) <.8 Mercury water, fltrd, ug/L (71890) <.02 | ium, water, unfltrd recover -able, ug/L (01034) E.5 Mercury water, unfltrd recover -able, ug/L (71900) <.02 | water,
fltrd,
ug/L
(01040)
8.3
6.3
5.5
5.4
Nickel,
water,
fltrd,
ug/L
(01065)
2.66 | water,
unfltrd
recover
-able,
ug/L
(01042)
9.3
6.1
5.7
5.1
Nickel
water
unfltr,
recover
-able
ug/L
(01067 | water,
flrd,
ug/L
(01046)
21

,,
dd r | E--Estimated. # 462932112145801 MOORES SPRING CREEK AT MOUTH, NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | Silver,
water,
fltrd,
ug/L
(01075) | Silver,
water,
unfltrd
recover
-able,
ug/L
(01077) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | Suspnd.
sedi-
ment,
sieve
diametr
percent
<.063mm
(70331) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | |-----------------------------|--|--|--|--|--|--|---| | JUN 2003
18
JUL
22 | <.3 | <.16 | 676
455 | 706
502 | 83
67 | 3 | <.01 | | AUG
26
SEP | | | 674 | 649 | 67 | 1 | <.01 | | 25 | | | 721 | 696 | 75 | 1 | <.01 | ## 462917112165601 MINNEHAHA CREEK BELOW ARMSTRONG MINE, NEAR RIMINI, MT $LOCATION.--Lat\ 46^{\circ}29'17'', long\ 112^{\circ}16'56''\ (NAD\ 27), in\ SW^{1}/_{4}\ SW^{1}/_{4}\ NW^{1}/_{4}\ sec.\ 31, T.\ 9\ N., R.\ 5\ W., Lewis\ and\ Clark\ County,\ Hydrologic\ Unit\ 10030101,\ 0.6\ mi\ downstream\ from\ the\ Armstrong\ mine\ road\ and\ 1.4\ mi\ southwest\ of\ Rimini.$ DRAINAGE AREA.--1.75 mi². PERIOD OF RECORD.--April 1998 to current year. GAGE--None. Elevation at site is 5,650 ft (NGVD 29). ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | unfltr
field
std
units | d tan
l, wat
uS/
25 d | luc-
lce, Tem
unf at
cm a
legC de | per-
ure,
ir,
g C
020) | Temper
ature
water
deg (| ne;
r- wa:
e, unf:
r, mg/l | rd-
ss,
ter,
ltrd
L as
CO3 | Calcium
water
fltrd
mg/L
(00915 | , wate
, flt:
mg, | m, sin
er, wa
rd, fl
/L m | tas-
um,
ter,
trd,
g/L | Sodiu
adsorp
tion
ratio | |-----------------------|--|---|---|--|--|--|--|--|---|---|---|--
---|--| | JUN 2003
17 | 0950 | 2.7 | 7.2 | 58 | 2.0 | .0 | 7.5 | 1 | 7 | 4.68 | 1.2 | 5 1.: | 16 | . 3 | | JUL
23 | 0930 | .51 | 7.4 | 60 | | | 10.0 | 1' | | 4.60 | 1.2 | | | | | AUG
25 | 1040 | .35 | 7.2 | 58 | | . 5 | 12.0 | 1' | | 4.82 | 1.2 | | | | | SEP
29 | 1130 | .31 | 7.2 | 65 | | .0 | 5.0 | 2 | | 5.61 | 1.5 | | | | | 27 | 1130 | .51 | 7.2 | 03 | , | . 0 | 3.0 | 2 | , | 3.01 | 1.5 | 1 | | | | Date | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor
d ide,
water
fltro
mg/I | id
, wat
l, flt
, mg | er, wa
rd, fl
/L m | ica,
ter,
trd,
g/L
955) | Sulfat
water
fltro
mg/I
(00945 | wai
fli
te sum
r, cons
l, tu | idue
ter,
trd,
of
sti-
ents
g/L
301) | Residu
water
fltrd
tons/
acre-f:
(70303 | , Resid
, wate
flt:
t tons | due in
er, wa
rd, fl
s/d u | um-
um,
cer,
crd,
g/L
106) | Aluminum, water unfltr recoverable ug/I (01105 | | JUN 2003
17
JUL | 2.64 | 11 | .54 | <. | 2 25 | . 4 | 12.9 | ! | 56 | .08 | . 40 | 0 : | 31 | 163 | | 23
AUG | | | | - | - | | | | | | | - | | | | 25
SEP | | | | - | - | | | | | | | | | | | 29 | | | | - | - | | | | | | | - | | | | Date JUN 20 17 | 03 | mony,
water,
fltrd, u
ug/L | Anti- mony, water, mfltrd ug/L 01097) | Arsenic
water,
fltrd,
ug/L
(01000) | unfltr
ug/L | wa
d fl
u
) (01 | dmium
ater,
ltrd,
ug/L
1025) | Cadmium water unfltrug/L (01027 | n :
, wa
d f:
, (0: | ater, :
ltrd,
ug/L | Chrom-
ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | Copper
water
fltrd
ug/L
(01040 | wa
, uni
, red
, -a
, (01 | oper,
ater,
fltrd
cover
able,
ug/L
1042) | | JUL
23 | | | | 4.9 | 5 | 3. | . 05 | 2.99 | | | | 9.2 | 9 | 9.7 | | AUG
25 | | | | 5.3 | 6 | 3. | .18 | 3.17 | | | | 7.8 | 8 | 3.1 | | SEP
29 | | | | 4.6 | 5 | 3. | . 26 | 3.34 | | | | 6.2 | | 7.0 | | Date | wa
fl
u | wa
on, unf
ter, rec
trd, -a
g/L u | cover wable, f
ng/L | ater,
ltrd,
ug/L | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Manga
ese
wate
fltr
ug/
(0105 | an- we are recorded to the contract of con | angan-
ese,
water,
nfltrd
ecover
-able,
ug/L
01055) | Mercu
wate
flt:
ug,
(7189 | ury uner, rend, | ercury
water,
nfltrd
ecover
-able,
ug/L
71900) | Nickel,
water,
fltrd,
ug/L
(01065) | unfl
reco
-ak
ug | ter,
ltrd | | JUN 20
17 | | 27 | 80 | .92 | 2.30 | 32.9 | 9 | 36 | <.(| 02 | <.02 | 1.54 | 1.5 | 50 | | JUL
23 | | | | .14 | .59 | | - | | | - | | | | | | AUG
25 | | | | .17 | .37 | | _ | | _ | _ | | | - | | | SEP
29 | | | | .14 | .35 | | - | | | - | | | | | # 462917112165601 MINNEHAHA CREEK BELOW ARMSTRONG MINE, NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | Silver,
water,
fltrd,
ug/L
(01075) | Silver,
water,
unfltrd
recover
-able,
ug/L
(01077) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | Suspnd. sedi- ment, sieve diametr percent <.063mm (70331) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | | |-----------------------|--|--|--|--|---|--|---|--| | JUN 2003
17
JUL | <.3 | <.16 | 588 | 592 | 75 | 2 | .01 | | | 23
AUG | | | 378 | 451 | 75 | 1 | <.01 | | | 25 | | | 511 | 489 | 71 | 1 | <.01 | | | SEP
29 | | | 550 | 548 | 50 | 14 | .01 | | ## 462918112170801 BEATTRICE MINE TRIBUTARY AT MOUTH, NEAR RIMINI, MT LOCATION.--Lat 46°29'18", long 112°17'08" (NAD 27), in SW¹/₄ SW¹/₄ sec. 31, T. 9 N., R. 5 W., Lewis and Clark County, Hydrologic Unit 10030101, 400 ft upstream from old logging road crossing, about 1,000 ft upstream from confluence with Minnehaha Creek, and 1.5 mi southwest of Rimini. DRAINAGE AREA.--0.24 mi². PERIOD OF RECORD.--May 2000 to current year. GAGE--None. Elevation at site is 5,660 ft (NGVD 29). ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | |---|---|--|--|--|--|--|---|--|--|--|---| | JUN 2003 | | 27 | 7 | 0.0 | 20.0 | 0.0 | 0.1 | 6 57 | 1 16 | 1 50 | 2 | | 17
JUL | 1020 | . 27 | 7.5 | 80 | 20.0 | 9.0 | 21 | 6.57 | 1.16 | 1.50 | . 3 | | 23
AUG | 0900 | .03 | 7.6 | 113 | 28.0 | 12.0 | 36 | 11.0 | 2.08 | | | | 25
SEP | 1000 | .02 | 7.2 | 109 | 17.0 | 12.0 | 40 | 12.8 | 2.04 | | | | 29 | 1100 | .02 | 7.1 | 102 | 7.0 | 6.0 | 33 | 9.97 | 1.86 | | | | Date | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chloride,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d
(70302) | Alum-
inum,
water,
fltrd,
ug/L
(01106) | Alum-
inum,
water,
unfltrd
recover
-able,
ug/L
(01105) | | JUN 2003
17 | 3.25 | 13 | .40 | <.2 | 34.0 | 15.3 | 70 | .10 | .05 | 27 | 61 | | JUL
23 | | | | | | | | | | | | | AUG
25 | | | | | | | | | | | | | SEP
29 | Date | Anti- mony, water, fltrd, ug/L (01095) | Anti-
mony,
water,
unfltrd
ug/L
(01097) | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | Cadmium
water,
fltrd,
ug/L
(01025) | Cadmium
water,
unfltrd
ug/L
(01027) | Chrom-
ium,
water,
fltrd,
ug/L
(01030) | Chrom-
ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Iron,
water,
fltrd,
ug/L
(01046) | | JUN 2003 | mony,
water,
fltrd,
ug/L
(01095) | mony,
water,
unfltrd
ug/L
(01097) | water,
fltrd,
ug/L
(01000) | water
unfltrd
ug/L
(01002) | water,
fltrd,
ug/L
(01025) | water,
unfltrd
ug/L
(01027) | ium,
water,
fltrd,
ug/L
(01030) | ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | water,
fltrd,
ug/L
(01040) | water,
unfltrd
recover
-able,
ug/L
(01042) | water,
fltrd,
ug/L
(01046) | | JUN 2003
17
JUL | mony,
water,
fltrd,
ug/L | mony,
water,
unfltrd
ug/L | water,
fltrd,
ug/L | water
unfltrd
ug/L | water,
fltrd,
ug/L
(01025) | water,
unfltrd
ug/L | ium,
water,
fltrd,
ug/L | ium,
water,
unfltrd
recover
-able,
ug/L | water,
fltrd,
ug/L | water,
unfltrd
recover
-able,
ug/L | water,
fltrd,
ug/L | | JUN 2003
17 | mony,
water,
fltrd,
ug/L
(01095) | mony,
water,
unfltrd
ug/L
(01097) | water,
fltrd,
ug/L
(01000) | water
unfltrd
ug/L
(01002) | water,
fltrd,
ug/L
(01025) | water,
unfltrd
ug/L
(01027) | ium,
water,
fltrd,
ug/L
(01030) | ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | water,
fltrd,
ug/L
(01040) | water,
unfltrd
recover
-able,
ug/L
(01042) | water,
fltrd,
ug/L
(01046) | | JUN
2003
17
JUL
23 | mony,
water,
fltrd,
ug/L
(01095) | mony,
water,
unfltrd
ug/L
(01097) | water,
fltrd,
ug/L
(01000) | water
unfltrd
ug/L
(01002) | water,
fltrd,
ug/L
(01025) | water,
unfltrd
ug/L
(01027) | ium,
water,
fltrd,
ug/L
(01030) | ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | water,
fltrd,
ug/L
(01040) | water,
unfltrd
recover
-able,
ug/L
(01042) | water,
fltrd,
ug/L
(01046) | | JUN 2003
17
JUL
23
AUG
25 | mony,
water,
fltrd,
ug/L
(01095) | mony,
water,
unfltrd
ug/L
(01097) | water,
fltrd,
ug/L
(01000)
.8
.6 | water
unfltrd
ug/L
(01002)
<2
<2 | water,
fltrd,
ug/L
(01025)
.04 | water,
unfltrd
ug/L
(01027)
.04 | ium,
water,
fltrd,
ug/L
(01030) | ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | water,
fltrd,
ug/L
(01040)
11.3
7.4 | water,
unfltrd
recover
-able,
ug/L
(01042)
11.9
7.5 | water,
fltrd,
ug/L
(01046) | | JUN 2003
17
JUL
23
AUG
25
SEP | mony,
water,
fltrd,
ug/L
(01095) | mony,
water,
unfltrd
ug/L
(01097) | water,
fltrd,
ug/L
(01000)
.8
.6 | water unfltrd ug/L (01002) <2 <2 <2 <2 Lead, water, unfltrd recover -able, ug/L | water,
fltrd,
ug/L
(01025)
.04
.07 | water,
unfltrd
ug/L
(01027)
.04
.06 | ium,
water,
fltrd,
ug/L
(01030) | ium, water, unfltrd recover -able, ug/L (01034) <.8 Mercury water, | water,
fltrd,
ug/L
(01040)
11.3
7.4
7.9 | water,
unfiltrd
recover
-able,
ug/L
(01042)
11.9
7.5
7.9 | water,
fltrd,
ug/L
(01046)
20
 | | JUN 2003
17
JUL
23
AUG
25
SEP | mony, water, fltrd, ug/L (01095) <.30 Date JUN 2003 | mony, water, unfiltrd ug/L (01097) <.6 Iron, water, unfiltrd recover able, ug/L (01045) | water,
fltrd,
ug/L
(01000)
.8
.6
.8
.6 | water unfltrd ug/L (01002) <2 <2 <2 <2 Lead, water, unfltrd recover -able, ug/L (01051) | water,
fltrd,
ug/L
(01025)
.04
.07
.06
Mangan-
ese,
water,
fltrd,
ug/L
(01056) | water,
unfltrd
ug/L
(01027)
.04
.06
.08
.05
Mangan-
ese,
water,
unfltrd
recover
-able,
ug/L
(01055) | ium, water, fltrd, ug/L (01030) <.8 Mercury water, fltrd, ug/L (71890) | ium, water, unfltrd recover -able, ug/L (01034) <.8 Mercury water, unfltrd recover -able, ug/L (71900) | water,
fltrd,
ug/L
(01040)
11.3
7.4
7.9
6.8
Nickel,
water,
fltrd,
ug/L
(01065) | water,
unfiltrd
recover
-able,
ug/L
(01042)
11.9
7.5
7.9
6.9
Nickel,
water,
unfiltrd
recover
-able,
ug/L
(01067) | water,
fltrd,
ug/L
(01046)
20
 | | JUN 2003
17
JUL
23
AUG
25
SEP | mony, water, fltrd, ug/L (01095) <.30 Date JUN 2003 17 JUL | mony, water, unfiltrd ug/L (01097) <.6 Iron, water, unfiltrd recover -able, ug/L (01045) | water,
fltrd,
ug/L
(01000)
.8
.6
.8
.6 | water unfltrd ug/L (01002) <2 <2 <2 <2 <2 Lead, water, unfltrd recover -able, ug/L (01051) .27 | water,
fltrd,
ug/L
(01025)
.04
.07
.06
Mangan-
ese,
water,
fltrd,
ug/L
(01056) | water, unfiltrd ug/L (01027) .04 .06 .08 .05 Mangan- ese, water, unfiltrd recover -able, ug/L (01055) | ium, water, fltrd, ug/L (01030) <.8 Mercury water, fltrd, ug/L (71890) <.02 | ium, water, unfltrd recover -able, ug/L (01034) <.8 Mercury water, unfltrd recover -able, ug/L (71900) <.02 | water,
fltrd,
ug/L
(01040)
11.3
7.4
7.9
6.8
Nickel,
water,
fltrd,
ug/L
(01065) | water,
unfiltrd
recover
-able,
ug/L
(01042)
11.9
7.5
7.9
6.9
Nickel,
water,
unfiltrd
recover
-able,
ug/L
(01067) | water,
fltrd,
ug/L
(01046)
20
 | | JUN 2003
17
JUL
23
AUG
25
SEP | mony, water, fltrd, ug/L (01095) <.30 Date JUN 2003 17 JUL 23 AUG | mony, water, unfiltrd ug/L (01097) <.6 | water, fltrd, ug/L (01000) .8 .6 .8 .6 Lead, water, fltrd, ug/L (01049) E.04 E.05 | water unfltrd ug/L (01002) <2 <2 <2 <2 <2 Lead, water, unfltrd recover -able, ug/L (01051) .27 <.06 | water, fltrd, ug/L (01025) .04 .07 .06 Mangan-ese, water, fltrd, ug/L (01056) .66 | water, unfltrd ug/L (01027) .04 .06 .08 .05 Mangan- ese, water, unfltrd recover -able, ug/L (01055) 3 | ium, water, fltrd, ug/L (01030) <.8 Mercury water, fltrd, ug/L (71890) <.02 | ium, water, unfltrd recover -able, ug/L (01034) <.8 Mercury water, unfltrd recover -able, ug/L (71900) <.02 | water, fltrd, ug/L (01040) 11.3 7.4 7.9 6.8 Nickel, water, fltrd, ug/L (01065) .34 | water,
unfiltrd
recover
-able,
ug/L
(01042)
11.9
7.5
7.9
6.9
Nickel,
water,
unfiltrd
recover
-able,
ug/L
(01067) | water,
fltrd,
ug/L
(01046)
20
 | | JUN 2003
17
JUL
23
AUG
25
SEP | mony, water, fltrd, ug/L (01095) <.30 Date JUN 2003 17 JUL 23 | mony, water, unfiltrd ug/L (01097) <.6 Iron, water, unfiltrd recover -able, ug/L (01045) | water,
fltrd,
ug/L
(01000)
.8
.6
.8
.6 | water unfitrd ug/L (01002) <2 <2 <2 <2 <2 Lead, water, unfitrd recover -able, ug/L (01051) .27 | water,
fltrd,
ug/L
(01025)
.04
.07
.06
Mangan-
ese,
water,
fltrd,
ug/L
(01056) | water, unfiltrd ug/L (01027) .04 .06 .08 .05 Mangan- ese, water, unfiltrd recover -able, ug/L (01055) | ium, water, fltrd, ug/L (01030) <.8 Mercury water, fltrd, ug/L (71890) <.02 | ium, water, unfltrd recover -able, ug/L (01034) <.8 Mercury water, unfltrd recover -able, ug/L (71900) <.02 | water,
fltrd,
ug/L
(01040)
11.3
7.4
7.9
6.8
Nickel,
water,
fltrd,
ug/L
(01065) | water,
unfiltrd
recover
-able,
ug/L
(01042)
11.9
7.5
7.9
6.9
Nickel,
water,
unfiltrd
recover
-able,
ug/L
(01067) | water,
fltrd,
ug/L
(01046)
20
 | E--Estimated. # 462918112170801 BEATTRICE MINE TRIBUTARY AT MOUTH, NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | Silver,
water,
fltrd,
ug/L
(01075) | Silver,
water,
unfltrd
recover
-able,
ug/L
(01077) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | Suspnd. sedi- ment, sieve diametr percent <.063mm (70331) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | | |-----------------------|--|--|--|--|---|--|---|--| | JUN 2003
17
JUL | <.3 | <.16 | 6 | 6 | 75 | 1 | <.01 | | | 23 | | | 7 | 10 | 67 | 1 | <.01 | | | AUG
25
SEP | | | 8 | 6 | 75 | 1 | <.01 | | | 29 | | | 7 | 6 | 57 | 1 | <.01 | | ## 463023112153701 MINNEHAHA CREEK ABOVE CITY DIVERSION, NEAR RIMINI, MT $LOCATION.--Lat\ 46^{\circ}30'23", long\ 112^{\circ}15'37"\ (NAD\ 27), in\ NW^{1}/_{4}\ NW^{1}/_{4}\ SE^{1}/_{4}\ sec.\ 29, T.\ 9\ N., R.\ 5\ W., Lewis\ and\ Clark\ County,\ Hydrologic\ Unit\ 10030101,\ about\ 75\ feet\ upstream\ from\ city\ diversion\ structure,\ about\ 200\ feet\ upstream\ from\ mouth\ and\ about\ 3\ mi\ north\ of\ Rimini.$ DRAINAGE AREA.--5.35 mi². PERIOD OF RECORD .-- April 1998 to current year. GAGE--None. Elevation at site is 5,040 ft (NGVD 29). ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | dis-
charge,
cfs | water, ounfltrd field, water w | vat unf
uS/cm
25 degC | ature,
air,
deg C | water, m | unfltrd
mg/L as
CaCO3 | Calcium
water,
fltrd,
mg/L | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | fltrd,
mg/L | Sodium
adsorp-
tion
ratio
(00931) | |---
--|--|--|---|--|--|---|--|--|---|---| | JUN 2003
17 | 0855 | 4.9 | 7.5 | 61 | 14.0 | 8.5 | 19 | 5.47 | 1.29 | 1.21 | .3 | | JUL | | | | | | | | | | | | | 23
AUG | 1030 | .31 | 7.5 | 66 | 28.5 | 13.5 | 22 | 6.15 | 1.53 | | | | 25
SEP | 1130 | .57 | 7.4 | | 17.0 | 15.0 | 23 | 6.57 | 1.59 | | | | 29 | 1230 | .41 | 7.5 | 76 | 11.0 | 5.0 | 26 | 7.33 | 1.84 | | | | Date | Sodium
water
fltrd
mg/L
(00930 | , lab,
, mg/L as
CaCO3 | Chloride,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd, | Residue
water,
fltrd,
tons/d | Alum-
inum,
water,
fltrd,
ug/L
(01106) | Alum-
inum,
water,
unfltrd
recover
-able,
ug/L
(01105) | | JUN 2003 | 3.14 | 16 | .30 | <.2 | 25.1 | 9.3 | 56 | .08 | .74 | 35 | 163 | | JUL | 3.14 | | .30 | | 25.1 | 9.3 | | .00 | . /4 | | 103 | | 23
AUG | | | | | | | | | | | | | 25
SEP | | | | | | | | | | | | | 29 | Date | Anti-
mony,
water
fltrd
ug/L
(01095) | , unfltrd
ug/L | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | Cadmium
water,
fltrd,
ug/L
(01025) | Cadmium
water,
unfltrd
ug/L
(01027) | Chrom-
ium,
water,
fltrd,
ug/L
(01030) | Chrom-
ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | | | JUN 2003 | mony,
water,
fltrd,
ug/L
(01095) | mony,
, water,
, unfltrd
ug/L
) (01097) | water,
fltrd,
ug/L
(01000) | water
unfltrd
ug/L
(01002) | water,
fltrd,
ug/L
(01025) | water,
unfltrd
ug/L
(01027) | ium,
water,
fltrd,
ug/L
(01030) | ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | water,
fltrd,
ug/L
(01040) | water,
unfltrd
recover
-able,
ug/L
(01042) | water,
fltrd,
ug/L
(01046) | | JUN 2003
17
JUL | mony,
water
fltrd
ug/L | mony,
, water,
, unfltrd
ug/L
) (01097) | water,
fltrd,
ug/L
(01000) | water
unfltrd
ug/L
(01002) | water,
fltrd,
ug/L
(01025) | water,
unfltrd
ug/L
(01027) | ium,
water,
fltrd,
ug/L
(01030) | ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | water,
fltrd,
ug/L
(01040) | water,
unfltrd
recover
-able,
ug/L
(01042) | water,
fltrd,
ug/L
(01046) | | JUN 2003
17
JUL
23
AUG | mony,
water,
fltrd,
ug/L
(01095) | mony,
, water,
, unfltrd
ug/L
) (01097) | water,
fltrd,
ug/L
(01000)
2.6
3.2 | water
unfltrd
ug/L
(01002) | water,
fltrd,
ug/L
(01025)
1.55 | water,
unfltrd
ug/L
(01027)
1.60
1.51 | ium,
water,
fltrd,
ug/L
(01030) | ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | water,
fltrd,
ug/L
(01040)
7.8
5.0 | water,
unfltrd
recover
-able,
ug/L
(01042)
9.0
6.3 | water,
fltrd,
ug/L
(01046) | | JUN 2003
17
JUL
23
AUG
25
SEP | mony,
water,
fltrd,
ug/L
(01095) | mony,
, water,
, unfltrd
ug/L
) (01097) | water,
fltrd,
ug/L
(01000)
2.6
3.2
3.1 | water
unfltrd
ug/L
(01002) | water,
fltrd,
ug/L
(01025)
1.55
1.36
1.45 | water,
unfltrd
ug/L
(01027)
1.60
1.51
1.41 | ium,
water,
fltrd,
ug/L
(01030) | ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | water,
fltrd,
ug/L
(01040)
7.8
5.0
4.7 | water,
unfitrd
recover
-able,
ug/L
(01042)
9.0
6.3
4.8 | water,
fltrd,
ug/L
(01046) | | JUN 2003
17
JUL
23
AUG
25 | mony,
water,
fltrd,
ug/L
(01095) | mony,
, water,
, unfltrd
ug/L
) (01097) | water,
fltrd,
ug/L
(01000)
2.6
3.2 | water
unfltrd
ug/L
(01002) | water,
fltrd,
ug/L
(01025)
1.55 | water,
unfltrd
ug/L
(01027)
1.60
1.51 | ium,
water,
fltrd,
ug/L
(01030) | ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | water,
fltrd,
ug/L
(01040)
7.8
5.0 | water,
unfltrd
recover
-able,
ug/L
(01042)
9.0
6.3 | water,
fltrd,
ug/L
(01046) | | JUN 2003
17
JUL
23
AUG
25
SEP | mony, water fltrd ug/L (01095) <.30 | mony, water, unfltrd ug/L)(01097) <.6 Iron wate: unflt: recovable ug/I (0104) | water, fltrd, ug/L (01000) 2.6 3.2 3.1 2.4 , r, rd Lead er water e, fltrc, t ug/L ug/L | water unfltrd (01002) 3 3 3 2 Lead water unfltr tr,
recove | water, fltrd, ug/L (01025) 1.55 1.36 1.45 1.47 , Mangar ese, er water e, fltrc L ug/L | water, unfiltrd ug/L (01027) 1.60 1.51 1.41 1.46 Mangar ese, unfiltr crecove tr, recove di, -able | ium, water, fltrd, ug/L (01030) <.8 n- r, rd Mercur er water e, fltre L ug/L | ium, water, unfltrd recover -able, ug/L (01034) <.8 Mercu wate ry unflt r, recov d, -abl L ug/L | water, fltrd, ug/L (01040) 7.8 5.0 4.7 3.3 ry rr, rd Nickel er water e, fltrc L ug/L | water, unfiltrd recover -able, ug/L (01042) 9.0 6.3 4.8 8.1 Nicke wate: unfiltr, recov. d, -abl. | water,
fltrd,
ug/L
(01046)
31

l,
r,
rd
er
e,
L | | JUN 2003
17
JUL
23
AUG
25
SEP | mony,
water
fltrd
ug/L
(01095 | mony, water, unfltrd ug/L)(01097) <.6 Iron wate: unflt: recovable ug/I (0104) | water, fltrd, ug/L (01000) 2.6 3.2 3.1 2.4 , r, rd Lead er water e, fltrd, ug/L (01049) | water unfiltrd (01002) 3 3 3 2 Lead water unfiltr r, recove d, -able L ug/I | water, fltrd, ug/L (01025) 1.55 1.36 1.45 1.47 , Mangar ese water es fltrd water te, fltrd ug/L (01056) | water, unfltrd ug/L (01027) 1.60 1.51 1.41 1.46 Mangar ese ese unfltr r, recove d, -able L ug/L | ium, water, fltrd, ug/L (01030) <.8 n- , r, rd Mercur er water e, fltrd, ug/E (7189) | ium, water, unfltrd recover -able, ug/L (01034) <.8 Mercu wate ry unflt r, recov d, -abl L ug/ 0) (7190 | water, fltrd, ug/L (01040) 7.8 5.0 4.7 3.3 ry rr, rd Nickel er water e, fltrd, ug/L (01065) | water, unfiltrd recover -able, ug/L (01042) 9.0 6.3 4.8 8.1 Nicke wate: unfiltr, recov. d, -abl. | water,
fltrd,
ug/L
(01046)
31

l,
r,
rd
ee,
L
7) | | JUN 2003
17
JUL
23
AUG
25
SEP | mony, water fltrd ug/L (01095) < .30 Date | mony, water, unfltrd ug/L) (01097) <.6 Iron wate: unflt: recovabl: ug/I (0104: | water, fltrd, ug/L (01000) 2.6 3.2 3.1 2.4 , r, rd Lead er water e, fltrd Lug/L (01049) 5.5 (01049) | water unfltrd ug/L (01002) 3 3 3 2 Lead water unfltr recove l, -able ug/l (0105) | water, fltrd, ug/L (01025) 1.55 1.36 1.45 1.47 , Mangar ese, er water e, fltrc ug/I (01056) 4 2.9 | water, unfltrd ug/L (01027) 1.60 1.51 1.41 1.46 Mangar ese, unfltr r, recove d, -able ug/I (01055) | ium, water, fltrd, ug/L (01030) <.8 n- , r, rd Mercur er water e, fltrd, ug/E (7189) | ium, water, unfltrd recover -able, ug/L (01034) <.8 Mercu wate ry unflt r, recov d, -abl L ug/ 0) (7190 | water, fltrd, ug/L (01040) 7.8 5.0 4.7 3.3 ry rr, rd Nickel er water e, fltrd, ug/L (01065) | water, unfitrd recover -able, ug/L (01042) 9.0 6.3 4.8 8.1 Nicke wate unfit: r, recov. d, -abl. L ug/5) (0106 | water,
fltrd,
ug/L
(01046)
31

l,
r,
rd
ee,
L
7) | | JUN 2003
17
JUL
23
AUG
25
SEP | mony, water fltrd ug/L (01095) <.30 Date JUN 2003 17 JUL | mony, water, unfiltrd ug/L) (01097) <.6 Iron wate: unfilt: recov: -able ug/I (0104: | water, fltrd, ug/L (01000) 2.6 3.2 3.1 2.4 , r, rd Lead er water e, fltrd Lug/L (01049) 5.5 (01049) | water unfltrd (01002) 3 3 3 2 Lead water unfltri r, recove 1, -able 2, ug/I (0105) | water, fltrd, ug/L (01025) 1.55 1.36 1.45 1.47 , Mangar ese water ese, fltrc ug/L ug/L (01056) 4 2.9 | water, unfiltrd ug/L (01027) 1.60 1.51 1.41 1.46 Mangar ese, water unfiltr trecove try try (01055) 8 | ium, water, fltrd, ug/L (01030) <.8 n- , rr, d Mercur er water e, fltrd L ug/: (7189) <.02 | ium, water, unfltrd recover -able, ug/L (01034) <.8 Mercu wate unflt r, recov d, -abl L ug/ 0) (7190 | water, fltrd, ug/L (01040) 7.8 5.0 4.7 3.3 ry rr, rd Nickel er water e, fltrc L ug/I 0) (01065 | water, unfltrd recover -able, ug/L (01042) 9.0 6.3 4.8 8.1 Nicke wate: unflt: r, recov. d, -abl. L ug/: 5) (0106 | water,
fltrd,
ug/L
(01046)
31

l,
r,
rd
ee,
L
7) | | JUN 2003
17
JUL
23
AUG
25
SEP | mony, water fltrd ug/L (01095 <.30 Date JUN 2000 17 JUL 23 AUG | mony, water, unfiltrd ug/L (01097) <.6 | water, fltrd, ug/L (01000) 2.6 3.2 3.1 2.4 , r, rd Lead er water e, fltrc L ug/J (01049) .21 E.07 | water unfltrd ug/L (01002) 3 3 3 2 Lead water unfltr c, recove 1, -able Lead ug/J (0105) 1.04 | water, fltrd, ug/L (01025) 1.55 1.36 1.45 1.47 , Mangar ese water water e, fltrd, ug/l (01056) 4 2.9 9 4 | water, unfiltrd ug/L (01027) 1.60 1.51 1.41 1.46 Mangar ese ese unfiltr r, recove d, -able L ug/I (01055) 8 | ium, water, fltrd, ug/L (01030) <.8 n- , r, rd Mercue er fltrd (7189) <.02 | ium, water, unfltrd recover -able, ug/L (01034) <.8 Mercu wate ry unflt r, recov d, -abl L Ug/L 0) (7190 | water, fltrd, ug/L (01040) 7.8 5.0 4.7 3.3 ry rr, rd Nickel er water e, fltrd L ug/I (01065) .79 | water,
unfiltrd
recover
-able,
ug/L
(01042)
9.0
6.3
4.8
8.1
Nicke
wate:
unfiltr,
recov.
-abli
Lug/C
(0106 | water,
fltrd,
ug/L
(01046)
31

1,
r,
rd
er
e,
L | E--Estimated. # 463023112153701 MINNEHAHA CREEK ABOVE CITY DIVERSION, NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | Silver,
water,
fltrd,
ug/L
(01075) | Silver,
water,
unfltrd
recover
-able,
ug/L
(01077) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | Suspnd. sedi- ment, sieve diametr percent <.063mm (70331) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | |-----------------------|--|--|--|--|---|--|---| | JUN 2003
17
JUL | <.3 | <.16 | 249 | 262 | 73 | 3 | .04 | | 23 | | | 191 | 233 | 68 | 2 | <.01 | | AUG
25 | | | 242 | 235 | 71 | 1 | <.01 | | SEP
29 | | | 264 | 260 | 75 | 1 | <.01 | #### 06062500 TENMILE CREEK NEAR RIMINI, MT LOCATION.--Lat 46°31'27", long 112°15'22" (NAD 27), in NE¹/₄SW¹/₄NE¹/₄ sec. 20, T.9 N., R.5 W., Lewis and Clark County, Hydrologic Unit 10030101, Helena National Forest, on left bank at U.S. Forest Service Moose Creek campground, 500 ft upstream from Moose Creek, 2.5 mi north of Rimini, and at river mile 20.4. DRAINAGE AREA.--30.9 mi². PERIOD OF RECORD.--July 1914 to September 1994, May 1997 to current year. Monthly discharge only for some periods, published in WSP 1309. REVISED RECORDS.--WSP 1309: 19417, 1921, 1924-25. WSP 1509: 1915, 1916-17(M), 1920(M), 1927(m), 1928-1930, 1947(m), 1948, 1950(M). WSP 1559: Drainage area. WSP 1709: 1959. WDR-MT-97-1: Drainage area. GAGE.--Water-stage recorder and concrete control. Elevation of gage is 4,850 ft (NGVD 29). Prior to Dec. 17, 1934, water-stage recorder at site 40 ft downstream at different elevation and different control. REMARKS.--Records good except those below 1.0 ft³/s and those for estimated daily discharges, which are poor. Flow regulated by Chessman and Scott Reservoirs on tributaries upstream from station, combined capacity, 2,340 acre-feet. Small diversions upstream from station for water supply for city of Helena. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. | | | DISCHAR | GE, CUBI | C FEET PE | | | R YEAR OCT
N VALUES | TOBER 2 | 002 TO S | EPTEMBER | 2003 | | |---|---|---|--|---|--|---|---|---|--------------------------------------|--|--------------------------------------|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.42
0.39
0.39
0.39
0.37 | 0.37
0.39
0.38
0.36
0.38 | e0.94
e0.90
0.67
0.57 | 0.36
0.37
0.37
0.36
0.41 | 3.8
2.2
1.4
1.1
0.84 | e0.34
e0.35
e0.36
e0.37
e0.37 | 8.1
6.6
5.8
4.5
4.0 | 42
41
43
51
48 | 129
108
91
80
69 | 5.8
4.9
4.2
3.4
2.7 | 0.35
0.46
0.59
1.8
0.91 | 0.31
0.28
0.27
0.25
0.23 | | 6
7
8
9 | 0.38
0.36
0.35
0.35
0.34 | 0.38
0.38
0.41
0.39
0.36 | 0.53
0.49
0.44
0.43
0.41 | 0.38
0.34
0.31
0.29
e0.27 | 0.67
0.64
0.59
0.55
0.54 | e0.38
e0.40
e0.44
e0.45
e0.47 | 3.7
3.4
3.8
8.3 | 46
44
42
40
38 | 64
54
47
44
44 | 2.2
1.6
1.7
1.7 | 0.63
0.64
0.74
0.61
0.44 | 0.21
0.21
0.24
0.29
0.27 | | 11
12
13
14
15 | 0.34
0.36
0.34
0.34 | 0.34
0.33
0.33
0.29
0.29 | 0.49
0.45
0.46
0.50
0.53 | e0.25
0.20
0.43
0.47
0.40 | 0.56
0.53
0.52
0.50
0.49 | 0.48
0.61
1.0
2.1
2.9 | 20
28
36
38
34 | 37
40
44
50
65 | 40
34
37
37
29 | 1.2
7.0
7.6
0.95
1.0 | 0.40
0.39
0.38
0.34
0.39 | 0.29
0.76
0.96
0.46
0.38 | | 16
17
18
19
20 | 0.34
0.33
0.34
0.34
0.33 | 0.30
0.32
0.31
0.35
0.44 | 0.48
0.43
0.35
e0.35
0.30 | 0.33
0.31
0.29
e0.27
e0.25 | 0.50
0.48
0.44
0.43
0.43 |
2.8
2.5
1.8
1.5 | 29
26
24
23
24 | 75
66
60
54
48 | 28
29
23
24
30 | 0.86
0.78
0.72
0.69
0.63 | 0.56
0.37
0.35
0.31
0.32 | 0.62
1.4
0.60
0.48
0.43 | | 21
22
23
24
25 | 0.33
0.35
0.34
0.27
0.29 | 0.46
0.44
0.85
0.56
0.55 | e0.32
e0.30
e0.30
0.28
e0.27 | e0.24
e0.24
e0.24
0.26
0.31 | 0.43
e0.43
e0.43
e0.40
e0.37 | 1.4
1.9
3.9
2.7
2.0 | 28
35
53
71
74 | 47
57
85
114
150 | 26
22
19
20
17 | 0.57
0.47
0.47
0.72
1.1 | 0.29
0.31
1.0
0.51
0.37 | 0.43
0.42
0.39
0.37
0.35 | | 26
27
28
29
30
31 | 0.30
0.31
0.38
0.29
e0.29
e0.32 | 0.80
0.83
0.79
0.89
0.91 | 0.22
0.25
0.33
0.35
0.36
0.38 | 0.35
0.95
0.80
0.56
0.54 | e0.34
e0.30
e0.33 | 1.7
1.4
1.3
1.3
1.9 | 62
50
45
41
40 | 168
164
163
170
159
153 | 15
12
9.9
8.6
7.3 | 0.51
0.45
0.40
0.37
0.38
0.37 | 0.33
0.34
0.33
0.31
0.31 | 0.31
0.30
0.29
0.29
0.30 | | TOTAL
MEAN
MAX
MIN
AC-FT | 10.61
0.34
0.42
0.27
21 | 14.18
0.47
0.91
0.29
28 | 13.65
0.44
0.94
0.22
27 | 12.25
0.40
1.1
0.20
24 | 20.24
0.72
3.8
0.30
40 | 45.92
1.48
5.3
0.34
91 | 844.2
28.1
74
3.4
1670 | 2404
77.5
170
37
4770 | 1197.8
39.9
129
7.3
2380 | 56.74
1.83
7.6
0.37
113 | 15.38
0.50
1.8
0.29
31 | 12.39
0.41
1.4
0.21
25 | | | | | | | | | , BY WATER Y | - | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 3.06
23.1
1966
0.19
1974 | 2.31
13.6
1986
0.22
1941 | 1.75
9.64
1918
0.17
1941 | 1.44
6.97
1918
0.14
1941 | 1.32
5.05
1921
0.063
2002 | 2.50
17.5
1986
0.068
2002 | 17.9
66.7
1926
1.50
1975 | 83.3
300
1917
6.14
2000 | 72.7
346
1975
3.01
2000 | 12.3
66.4
1969
0.34
1985 | 2.53
22.5
1993
0.13
2000 | 2.33
22.4
1993
0.23
1935 | | SUMMARY | Y STATIST | CICS | FOR | 2002 CALE | NDAR YEAR | | FOR 2003 WAT | TER YEAR | | WATER YEAR | S 1915 - | 2003* | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUN
MAXIMUN | MEAN
F ANNUAL
ANNUAL M
F DAILY M
DAILY ME | EAN
EAN
AN
Y MINIMUM
OW
'AGE | | 3882.4
10.6
124
0.0
0.0 | Jun 15 | | 4647.36
12.7
170
0.20
0.24
193
3.13 | May 29
Jan 12
Sep 2
May 26
May 26 | | 16.9
53.1
1.74
1880
0.00
0.00
3290
6.20 | May 22
Aug 31
Aug 31
May 22 | 1931
1931
1981 | 9220 0 51 0.30 12210 2.0 7700 0 43 0.06 ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS ^{*--}During period of operation (1915-1994, May 1997 to current year). e--Estimated. ## 06062750 TENMILE CREEK AT TENMILE WATER TREATMENT PLANT, NEAR RIMINI, MT $LOCATION.--Lat\ 46^{\circ}34'22'', long\ 112^{\circ}12'52''\ (NAD\ 27), in\ NE^{1}/_{4}SW^{1}/_{4}SE^{1}/_{4}\ sec.\ 34,\ T.10N.,\ R.5W.,\ Lewis\ and\ Clark\ County,\ Hydrologic\ Unit\ 10030101,\ on\ left\ bank\ near\ Tenmile\ Water\ Treatment\ Plant,\ about\ 0.1\ mi\ south\ of\ U.S.\ Highway\ 12,\ and\ about\ 8\ mi\ north\ of\ Rimini.\ Formerly$ published as Tenmile Creek at Helena Water Treatment Plant, near Rimini. DRAINAGE AREA.--51.1 mi². PERIOD OF RECORD.--May 1999 to current year. REMARKS.--No samples collected in August or September due to no flow. Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | ature,
water,
deg C | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | |----------------|--|---|---|--|---|--|--|---|--|--|--| | JUN 2003
17 | 0730 | 25 | 7.7 | 68 | 15.0 | 9.5 | 24 | 7.14 | 1.60 | 1.14 | . 2 | | JUL
23 | 1130 | .18 | 7.6 | 125 | 34.0 | 20.0 | 61 | 18.0 | 3.88 | | | | Date | Sodium,
water,
fltrd,
mg/L
(00930) | lab,
mg/L as
CaCO3 | ide,
water,
fltrd,
mg/L | ide,
water,
fltrd,
mg/L | Silica,
water,
fltrd,
mg/L | water,
fltrd,
mg/L | | Residue
water,
fltrd,
tons/
acre-ft | fltrd, | +
org-N,
water,
unfltrd
mg/L
as N | water
fltrd,
mg/L
as N | | JUN 2003
17 | 2.49 | 18 | .91 | <.2 | 17.0 | 10.6 | 52 | .07 | 3.47 | .17 | E.013 | | JUL
23 | | | | | | | | | | E.10 | <.022 | | Date | Nitrite
water,
fltrd,
mg/L
as N
(00613) | water,
fltrd,
mg/L
as P | Phos-
phorus,
water,
unfltrd
mg/L | water,
fltrd,
ug/L | Alum-
inum,
water,
unfltrd
recover
-able,
ug/L
(01105) | water,
fltrd,
ug/L | unfltrd
ug/L | water,
fltrd,
ug/L | Arsenic
water
unfltrd
ug/L
(01002) | water,
fltrd,
ug/L | water,
unfltrd
ug/L | | JUN 2003
17 | <.002 | E.004 | .020 | 48 | 230 | E.27 | E.4 | 11.1 | 16 | .67 | . 79 | | JUL
23 | <.002 | .007 | .012 | | | | | 22.9 | 24 | .68 | . 69 | | Date | Chrom-
ium,
water,
fltrd,
ug/L
(01030) | unfltrd
recover
-able,
ug/L | Copper,
water,
fltrd,
ug/L | recover
-able,
ug/L | water,
fltrd,
ug/L | Iron, water, unfltrd recover -able, ug/L (01045) | Lead,
water,
fltrd,
ug/L | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | ese,
water,
fltrd,
ug/L | unfltrd
recover
-able,
ug/L | fltrd,
ug/L | | JUN 2003
17 | <.8 | <.8 | 6.5 | 7.7 | 73 | 290 | .52 | 3.99 | 10.3 | 21 | <.02 | | JUL
23 | | | 2.7 | 3.1 | | | E.05 | .21 | | | | | Date
JUN 2 | u
r
(| ecover
-able,
ug/L
71900) (| ickel, ug/L 01065) (| ickel,
water,
nfltrd S
ecover
-able,
ug/L
01067) (| ilver, u
water, r
fltrd,
ug/L
01075) (| ecover
-able,
ug/L
01077) (| Zinc, www.water, refltrd, ug/L 01090) (| SZinc,
water, maltrd
ecover d
-able, p
ug/L <
01092) (| ment, sieve iametr cercent t: .063mm 70331) (3 | ment
oncen-
ration
mg/L
80154) (| Sus-
pended
sedi-
ment
load,
tons/d
80155) | | JUL | | E.01 | .72 | .84 | | <.16 | 137 | 156 | 94 | 12 | .80 | | 23. | • • | | | | | | 109 | 104 | 71 | 1 | <.01 | E--Estimated. ## 463438112091801 TENMILE CREEK BELOW COLORADO GULCH, NEAR HELENA, MT $LOCATION.--Lat~46^{\circ}34'38'', long~112^{\circ}09'18''~(NAD~27), in~NW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}~sec.~31,~T.10N.,~R4W.,~Lewis~and~Clark~County,~Hydrologic~Unit~10030101,~at~U.S.~Highway~12~bridge~over~Tenmile~Creek,~about~0.5~mi~below~the~mouth~of~Colorado~Gulch,~and~about~5.0~mi~west~of~Helena.$ DRAINAGE AREA.--77.8 mi². PERIOD OF RECORD .-- April 2002 to current year. GAGE.--None. Elevation of gage is 4,190 ft (NGVD 29). ### WATER-QUALITY DATA, OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | pH,
water,
unfltrd
field,
std
units
(00400) | tance, | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | +
org-N,
water, | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | |----------------------------|--|---|---|--|--|---|--|--|--|--|---| | OCT 2002
09 | 0830 | 2.2 | 8.1 | 262 | 6.0 | 7.5 | 110 | 30.6 | 7.76 | E.10 | .232 | | MAR 2003
13 | 0830 | 24 | 8.2 | 162 | 14.5 | 3.0 | 52 | 14.8 | 3.66 | .90 | .169 | | MAY
27
JUL | 1230 | 151 | 7.5 | 56 | 24.0 | 7.0 | 22 | 6.46 | 1.42 | .43 | .022 | | 23 | 1300 | 2.4 | 7.9 | 130 | 34.0 | 16.5 | 94 | 26.8 | 6.72 | .11 | .289 | | Date | Nitrite
water,
fltrd,
mg/L
as N
(00613) | Ortho- phos- phate, water, fltrd, mg/L as P (00671) | Phos-
phorus,
water,
unfltrd
mg/L
(00665) | Arsenic
water,
fltrd,
ug/L
(01000) |
Arsenic
water
unfltrd
ug/L
(01002) | Cadmium
water,
fltrd,
ug/L
(01025) | Cadmium
water,
unfltrd
ug/L
(01027) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Lead,
water,
fltrd,
ug/L
(01049) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | | OCT 2002
09
MAR 2003 | .003 | E.006 | .013 | 11.0 | 10 | .09 | .10 | 1.9 | 1.4 | E.06 | .13 | | 13
MAY | .005 | .139 | .22 | 6.6 | 7 | .10 | .10 | 2.6 | 3.9 | .18 | 1.37 | | 27
JUL | .003 | <.007 | .052 | 6.3 | 18 | . 45 | .82 | 5.8 | 9.8 | .46 | 11.4 | | 23 | E.002 | .012 | .019 | 13.9 | 14 | .18 | .18 | 1.5 | 1.8 | E.07 | .14 | | | | | Date | Zinc,
water,
fltrd,
ug/L
(01090) | -able,
ug/L | sieve
diametr
percent
<.063mm | mg/L | pended
sedi-
ment
load,
tons/d | | | | | | | 0 | CT 2002
09 | 18 | 18 | | | | | | | | | | | AR 2003
13 | 20 | 28 | 86 | 15 | .99 | | | | | | | | 27 | 92 | 143 | 63 | 31 | 13 | | | | | | | J | UL
23 | 24 | 23 | 67 | 1 | .01 | | | | E--Estimated. ## 06063000 TENMILE CREEK NEAR HELENA, MT $LOCATION.\text{--Lat }46^{\circ}36'20'', long\ 112^{\circ}05'20''\ (NAD\ 27), in\ SW^{1}/_{4}NE^{1}/_{4}SE^{1}/_{4}\ sec.\ 22,\ T.10N.,\ R4W.,\ Lewis\ and\ Clark\ County,\ Hydrologic\ Unit\ 10030101,\ at\ Williams\ Street\ bridge\ over\ Tenmile,\ about\ 1.2\ mi\ southeast\ of\ Fort\ Harrison,\ and\ about\ 3.5\ mi\ west\ of\ Helena.$ DRAINAGE AREA.--96.5 mi². PERIOD OF RECORD.--April 2002 to current year. GAGE.-- Non-recording wire-weight gage on bridge. Elevation at gage is 3,960 ft (NGVD 29). ### WATER-QUALITY DATA, OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Ammonia
+ org-N,
water,
unfltrd
mg/L
as N
(00625) | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | |----------------------------|--|--|---|--|--|---|--|---|--|---|---| | OCT 2002
09 | 1000 | 2.2 | 7.9 | | 10.5 | 10.5 | 130 | 36.1 | 8.96 | .11 | .176 | | MAR 2003
13 | 1000 | 46 | 7.9 | 190 | 15.0 | 3.5 | 64 | 18.6 | 4.30 | .80 | . 258 | | MAY
27 | 1100 | 137 | 7.8 | 68 | 18.0 | 7.0 | 26 | 7.70 | 1.71 | .32 | .030 | | JUL
23 | 1330 | .22 | 8.3 | 130 | 35.0 | 19.5 | 120 | 33.4 | 7.88 | .14 | .528 | | Date | Nitrite
water,
fltrd,
mg/L
as N
(00613) | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Phos-
phorus,
water,
unfltrd
mg/L
(00665) | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | Cadmium
water,
fltrd,
ug/L
(01025) | Cadmium
water,
unfltrd
ug/L
(01027) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Lead,
water,
fltrd,
ug/L
(01049) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | | OCT 2002
09
MAR 2003 | .003 | <.007 | .009 | 13.2 | 12 | .12 | .11 | 2.0 | 1.7 | .37 | .38 | | 13
MAY | .004 | .133 | .21 | 7.7 | 9 | .09 | .10 | 2.6 | 4.3 | .16 | 1.87 | | 27
JUL | .003 | E.004 | .059 | 7.3 | 20 | .36 | .81 | 5.7 | 10.2 | .56 | 12.0 | | 23 | .006 | .015 | .022 | 16.9 | 17 | .14 | .17 | 2.8 | 2.1 | <.08 | .26 | | | | | Date | Zinc,
water,
fltrd,
ug/L
(01090) | -able,
ug/L | sieve
diametr
percent
<.063mm | mg/L | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | | | | | | | | OCT 2002
09 | 13 | 16 | 78 | 11 | .07 | | | | | | | | IAR 2003
13 | 14 | 26 | 75 | 22 | 2.7 | | | | | | | | 1AY
27 | 82 | 141 | 72 | 33 | 12 | | | | | | | J | UL
23 | 16 | 18 | 57 | 2 | <.01 | | | | $\mathtt{E--Estimated}.$ ## 463747112033801 SEVENMILE CREEK AT MOUTH, NEAR HELENA, MT $LOCATION.--Lat\ 46^{\circ}37'47'',\ long\ 112^{\circ}03'38''\ (NAD\ 27),\ in\ NW^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}sec.\ 13,\ T.10N.,\ R4W.,\ Lewis\ and\ Clark\ County,\ Hydrologic\ Unit\ 10030101,\ at\ railroad\ bridge\ over\ Sevenmile\ Creek,\ about\ 0.15\ mi\ upstream\ from\ Tenmile\ Creek,\ about\ 3.2\ mi\ northwest\ of\ Helena.$ DRAINAGE AREA.--57.2 mi². PERIOD OF RECORD .-- April 2002 to current year. GAGE.--None. Elevation at site is 3,850 ft (NGVD 29). ### WATER-QUALITY DATA, OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Ammonia
+
org-N,
water,
unfltrd
mg/L
as N
(00625) | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | |----------------------------|--|--|---|--|--|---|--|--|--|--|---| | OCT 2002
09
MAR 2003 | 1145 | .70 | 8.0 | | 17.0 | 9.5 | 340 | 81.6 | 33.4 | .25 | E.014 | | 13
MAY | 1145 | 60 | 7.8 | 205 | 18.0 | 1.0 | 87 | 23.2 | 7.03 | 4.8 | .363 | | 27
JUL | 0945 | 7.3 | 8.1 | 433 | 16.0 | 7.0 | 220 | 59.5 | 17.7 | .31 | .026 | | 24 | 1100 | 2.7 | 8.4 | 500 | 31.0 | 19.0 | 240 | 62.6 | 20.1 | .36 | <.022 | | Date | Nitrite
water,
fltrd,
mg/L
as N
(00613) | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Phos-
phorus,
water,
unfltrd
mg/L
(00665) | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | Cadmium
water,
fltrd,
ug/L
(01025) | Cadmium
water,
unfltrd
ug/L
(01027) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Lead,
water,
fltrd,
ug/L
(01049) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | | OCT 2002
09 | .003 | .021 | .046 | 8.8 | 8 | E.02 | .05 | 1.2 | 3.1 | .12 | .97 | | MAR 2003
13 | .012 | .133 | 1.61 | 7.6 | 28 | E.02 | .90 | 2.4 | 83.0 | .39 | 66.7 | | MAY
27 | E.002 | .018 | .053 | 12.6 | 14 | E.02 | .05 | 1.7 | 3.7 | E.06 | 1.31 | | JUL
24 | <.002 | .034 | .068 | 18.1 | 19 | E.03 | .04 | 1.6 | 2.4 | .12 | 1.51 | | | | | Date OCT 2002 | Zinc,
water,
fltrd,
ug/L
(01090) | , -able,
ug/L | diametr
percent
<.063mm | pended
sedi-
ment
concen-
tration
mg/L | pended
sedi-
ment
load,
tons/ | d
d | | | | | | | MAR 2003 | | 112 | 80 | 1790 | 291 | | | | | | | | MAY
27 | 4 | 8 | 91 | 22 | .43 | | | | | | | | JUL | | | | | | | | | | | | | 24 | 1 | 4 | 88 | 18 | .13 | | | | ${\tt E--Estimated}.$ ## 06064100 TENMILE CREEK AT GREEN MEADOW DRIVE, AT HELENA, MT $LOCATION.--Lat~46°37'54", long~112°02'46"~(NAD~27), in~SW^1/_4SE^1/_4SE^1/_4SE^1/_4sec.~12, T.10N., R4W., Lewis and Clark County, Hydrologic Unit~10030101, at Green Meadow Drive bridge over Tenmile Creek, about 1.1 mi north of Custer Avenue, and about 3 mi northwest of Helena.$ DRAINAGE AREA.--161 mi². PERIOD OF RECORD.--May 1997 to September 1998, April 2002 to current year. GAGE.--None. Elevation at site is 3,820 ft (NGVD 29). ## WATER-QUALITY DATA, APRIL 2003 TO OCTOBER 2003 | Date OCT 2002 09 MAR 2003 13 MAY 27 JUL | Time 1300 1300 0815 | Instantaneous discharge, cfs (00061) 1.2 304 | pH,
water,
unfltrd
field,
std
units
(00400)
8.3
8.1 | wat unf
us/cm
25 degC
(00095)

189
90 | ature,
air,
deg C
(00020)
17.0
18.0
9.0 | water,
deg C
(00010)
10.0
4.0
7.0 | unfltrd
mg/L as
CaCO3
(00900)
200
71
36 | Calcium water, fltrd, mg/L (00915) 53.9 19.8 | Magnes- ium, water, fltrd, mg/L (00925) 16.1 5.29 2.48 | Ammonia + org-N, water, unfltrd mg/L as N (00625) .18 4.6 | hitrate water filtrd, mg/L as N (00631) <.022 .296 .030 | |--|--|---|---
---|---|---|---|--|--|---|--| | 24 | 1000 | 1.4 | 8.5 | 483 | 27.0 | 20.5 | 230 | 60.5 | 19.4 | .31 | <.022 | | Date | Nitrite
water,
fltrd,
mg/L
as N
(00613) | water, | Phos-
phorus, | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | Cadmium
water,
fltrd,
ug/L
(01025) | Cadmium
water,
unfltrd
ug/L
(01027) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Lead,
water,
fltrd,
ug/L
(01049) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | | OCT 2002
09
MAR 2003
13
MAY
27
JUL | <.002
.009
.003 | .009
.141
E.006 | .021
1.49
.105 | 12.3
8.3
8.3 | 12
30
26 | .05
E.02
.25 | .06
1.46
.92 | 1.5
2.4
5.3 | 1.8
78.9
12.6 | .13
.52
.54 | .45
69.3
17.6 | | 24 | <.002 | .018 | .047 | 19.1 | 20 | .04 | .08 | 3.2 | 3.2 | .11 | 1.12 | | | | | Date | Zinc,
water
fltrd
ug/I
(01090 | r, recove
l, -able
ug/L | nd sieve
d sieve
dr diamet
percer
c. 063m | pende
sedi-
ment
r concen
t tratio
m mg/L | d Sus- pende sedi- ment n load, tons/ | ed
-
:
/d | | | | | | | OCT 2002
09
MAR 2003
13 | 4 | 7
191 | 90
83 | 4
1270 | 1040 |)1 | | | | | | | MAY
27 | 68 | 148 | 60 | 72 | 31 | | | | | | | | JUL
24 | 3 | 11 | 94 | 10 | .0 | 14 | | | | | | | 41 | 3 | 11 |) <u>1</u> | 10 | | | | | $\mathtt{E--Estimated}.$ #### 06065500 MISSOURI RIVER BELOW HAUSER DAM, NEAR HELENA, MT LOCATION.--Lat 46°46′02", long 111°53′27" (NAD 27), in SE¹/₄NW¹/₄Sw¹/₄ sec. 29, T.12 N., R.2 W., Lewis and Clark County, Hydrologic Unit 10030101, 0.2 mi downstream from Hauser Dam, 1.3 mi upstream from Beaver Creek, 15 miles northeast of Helena, and at river mile 2,237.2. DRAINAGE AREA.--16,876 mi². PERIOD OF RECORD.--January 1923 to September 1942, October 1994 to current year. Monthly means for October, November, and December 1922 were from Congressional documents: 73rd Congress, 2nd session, H. Doc. 238, Missouri River. Published figures are in acre feet. GAGE.--Water-stage recorder. Elevation of gage is 3,580 ft (NGVD 29). REMARKS.—Records excellent. Flow regulated by eight small irrigation reservoirs and two power plants, Clark Canyon Reservoir (station number 06015300) and Canyon Ferry Lake (station number 06058500). Diversions for irrigation of about 594,400 acres. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were obtained during the year. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES AY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP | | | | | | | | | | | | | |--------------------------------------|---|--|--|--|--------------------------------------|--|--|--|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 3160
3140
3060
2950
2930 | 3050
3050
3050
3050
3040 | 3610
3560
3580
3560
3550 | 3640
3630
3630
3630
3630 | 3640
3650
3640
3650
3650 | 3640
3630
3660
3640
3630 | 3660
3690
3670
3670
3670 | 4060
4060
4070
4090
4060 | 7770
8320
9440
9910
8850 | 5560
5280
4940
4590
4370 | 3670
3670
3680
3680
3680 | 3060
3070
3030
3040
3080 | | | 6
7
8
9
10 | 2900
2870
2860
2940
3060 | 3070
3370
3580
3640
3640 | 3550
3550
3550
3610
3640 | 3620
3620
3630
3580
3540 | 3640
3630
3640
3640
3620 | 3660
3670
3650
3640
3640 | 3670
3760
3810
3810
3800 | 4080
4140
4290
4540
4640 | 7380
5860
5900
5960
5790 | 4260
4200
4200
4190
4200 | 3680
3630
3410
3240
3210 | 3120
3190
3100
3160
3210 | | | 11
12
13
14
15 | 3130
3120
3110
3110
3110 | 3550
3500
3510
3530
3610 | 3640
3640
3640
3640
3640 | 3540
3540
3540
3540
3600 | 3690
3690
3680
3710
3690 | 3630
3620
3720
4120
4400 | 3840
4050
4120
4090
4120 | 4620
4700
4790
5440
6030 | 5830
5810
5790
5760
5680 | 4190
4180
4220
4270
4270 | 3240
3070
2900
2900
2920 | 3210
3210
3130
3090
3110 | | | 16
17
18
19
20 | 3110
3150
3200
3190
3160 | 3640
3650
3640
3640
3640 | 3570
3550
3550
3550
3550 | 3620
3650
3630
3620
3640 | 3690
3640
3440
3460
3550 | 4390
4160
3900
3700
3630 | 4050
4000
3950
3910
3900 | 6490
6210
5950
6010
6000 | 5680
5680
5670
5680
5690 | 4220
3830
3540
3590
3680 | 2980
3100
3150
3280
3360 | 3120
3110
3090
3090
3090 | | | 21
22
23
24
25 | 3150
3150
3140
3130
3130 | 3640
3650
3670
3650
3610 | 3550
3550
3550
3540
3540 | 3680
3630
3620
3620
3620 | 3540
3600
3570
3540
3540 | | 3910
3910
3910
3910
3910 | | 5700
5780
5820
5840
5800 | 3670
3670
3610
3590
3570 | 3370
3370
3380
3390
3380 | 3100
3080
3100
3080
3110 | | | 26
27
28
29
30
31 | 3140
3120
3100
3100
3080
3030 | 3540
3540
3540
3580
3640 | 3540
3540
3540
3540
3610
3630 | 3540
3540
3540
3540
3540
3610 | 3560
3610
3630
 | 3660
3670
3660
3660
3660
3670 | 3920
3920
3960
4000
4080 | 6180
6470
7020
7540
7750
7760 | 5800
5810
5820
5690
5620 | 3580
3570
3570
3590
3610
3690 | 3390
3370
3210
3070
3050
3050 | 3190
3200
3150
3100
3080 | | | TOTAL
MEAN
MAX
MIN
AC-FT | 95530
3082
3200
2860
189500 | 104510
3484
3670
3040
207300 | 110860
3576
3640
3540
219900 | | 101230 | 115860
3737
4400
3620
229800 | 116670
3889
4120
3660
231400 | 170660
5505
7760
4060
338500 | 190130
6338
9910
5620
377100 | 125500
4048
5560
3540
248900 | 102480
3306
3680
2900
203300 | 93500
3117
3210
3030
185500 | | | STATIS | | | | | YEARS 192 | 3 - 2003 | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 3556
6489
1998
1944
1935 | 3646
6021
1998
1998
1935 | 3598
5622
1996
1935
1935 | 3562
6665
1997
1896
1937 | 3771
8101
1997
1666
1938 | 4411
8271
1997
2398
1938 | 5265
9227
1942
2585
1938 | 6973
16340
1928
2381
1934 | 8327
23540
1927
2546
1934 | 4332
12020
1998
1208
1934 | 3063
5797
1998
971
1934 | 3259
5684
1995
1495
1934 | | | SUMMAR | Y STATIS | TICS | FOR | 2002 CAL | ENDAR YEAR | | FOR 2003 | WATER YEA | R | WATER YE | ARS 1923 | - 2003* | | | ANNUAL
HIGHES
LOWEST | T ANNUAL | MEAN | | 1124840
3082 | | | 1438480
3941 | _ | | 4479
7862
2381 | | 1997
1934 | | | LOWEST
ANNUAL
MAXIMU
MAXIMU | M PEAK F
M PEAK S | EAN
AY MINIMU!
LOW | M | 3670
2640
2680 | Nov 23
Jun 24
Jun 22 | | 9910
2860
2930
10100
6. | Jun
Oct
Oct
Jun
77 Jun | 4
8
3
4
4 | 33300
280
716
33300
a78.
280 | Mar
Aug
Jun 1
80 Jun 1 | 5 1927
3 1938
3 1934
5 1927
5 1927
3 1938 | | | ANNUAL
10 PER
50 PER | RUNOFF
CENT EXC
CENT EXC
CENT EXC | (AC-FT)
EEDS
EEDS | | 2231000
3550
3010
2840 | | | 2853000
5780
3630
3100 | | | 3245000
7610
3680
2050 | | | | ^{*--}During periods of operation (December 1922 to September 1942, October 1994 to present). a--Site and elevation then in use. #### 06066500 MISSOURI RIVER BELOW HOLTER DAM, NEAR WOLF CREEK, MT LOCATION.--Lat 46°59'41", long 112°00'37" (NAD 27), in NE¹/₄SW¹/₄SE¹/₄ sec.5, T.14 N., R.3 W., Lewis and Clark County, Hydrologic Unit 10030102, on left bank 0.4 mi downstream from Holter Dam, 2.8 mi southeast of Wolf Creek, and at river mile 2,210.7. DRAINAGE AREA.--17.149 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1945 to current year. 90 PERCENT EXCEEDS GAGE.--Water-stage recorder. Elevation of gage is 3,464.11 ft (NGVD 29). REMARKS.--Water-discharge records good. Flow regulated by nine smaller irrigation reservoirs and powerplants, Clark Canyon Reservoir (station number 06015300), and Canyon Ferry Lake (station number 06058500). Diversions for irrigation of about 594,400 acres. Bureau of Reclamation satellite telemeter at station. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER
2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR MAY JUN JUL AUG SEP APR 3780 7240 ---TOTAL MEAN MAX MTN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1946 - 2003, BY WATER YEAR (WY) MEAN MAX (WY) MIN (WY) SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1946 - 2003 ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN 8 1948 HIGHEST DAILY MEAN Nov 10 Jun Jun May 27 LOWEST DAILY MEAN Jul Aug 15 ANNUAL SEVEN-DAY MINIMUM Jul 17 Oct May MAXIMIM PEAK FLOW Tun Jun 8 1948 MAXIMUM PEAK STAGE 5.14 11.70 Jun Jun INSTANTANEOUS LOW FLOW a250 Jul 26 1968 ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS ### 06066500 MISSOURI RIVER BELOW HOLTER DAM, NEAR WOLF CREEK, MT--Continued | SUMMARY STATISTICS | WATER YEARS | 3 1946 - 195 | 52* WATER | YEARS 1953 - 2003** | |--------------------------|-------------|--------------|-----------|---------------------| | ANNUAL MEAN | 5882 | | 5375 | | | HIGHEST ANNUAL MEAN | 7787 | 19 | 948 8497 | 1984 | | LOWEST ANNUAL MEAN | 4651 | 19 | 946 3008 | 2002 | | HIGHEST DAILY MEAN | 34000 | Jun 8 19 | 948 25600 | Jun 20 1964 | | LOWEST DAILY MEAN | 1560 | Aug 31 19 | 946 747 | May 27 1962 | | ANNUAL SEVEN-DAY MINIMUM | 2310 | Aug 2 19 | 949 1040 | May 16 1957 | | MAXIMUM PEAK FLOW | 34800 | Jun 8 19 | 948 27100 | Jun 19 1964 | | MAXIMUM PEAK STAGE | 11.70 | Jun 8 19 | 948 10. | 04 Jun 19 1964 | | INSTANTANEOUS LOW FLOW | b742 | Nov 25 19 | 949 a250 | Jul 26 1968 | | ANNUAL RUNOFF (AC-FT) | 4261000 | | 3894000 | | | 10 PERCENT EXCEEDS | 10800 | | 7890 | | | 50 PERCENT EXCEEDS | 4520 | | 4790 | | | 90 PERCENT EXCEEDS | 3350 | | 3030 | | #### WATER-QUALITY RECORDS PERIOD OF DAILY RECORD.--October 1999 to current year. WATER TEMPERATURE: October 1999 to current year. INSTRUMENTATION.--Temperature probe installed Sept. 30, 1999. REMARKS--Daily water temperature record good except for Aug. 17-18 which are missing due to equipment problems. Unpublished records of instantaneous specific conductance and temperature data are available in files of the District office. EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 21.0°C, July 25, 2002; minimum, 1.0°C, many days during winter period. EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: Maximum, 20.0°C, Aug. 3, 4, 10, 25; minimum, 1.0°C, many days January through March. ### WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--|--|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | | OCTOBER | | NO | VEMBER | | DE | CEMBER | | | JANUARY | | | 1
2
3
4
5 | 13.5
13.5
13.5
13.5
13.0 | 13.5
13.5
13.0
13.0
12.5 | 13.5
13.5
13.5
13.0
13.0 | 8.0
8.0
7.5
7.0 | 7.5
7.5
7.0
7.0
7.0 | 8.0
7.5
7.5
7.0
7.0 | 4.0
4.0
4.0
4.0
3.5 | 4.0
4.0
3.5
3.5
3.5 | 4.0
4.0
4.0
4.0
3.5 | 1.5
1.5
2.0
1.5 | 1.5
1.5
1.5
1.5 | 1.5
1.5
1.5
1.5 | | 6
7
8
9
10 | 13.0
13.0
13.0
12.5
12.5 | 12.5
12.5
12.0
12.5
12.5 | 12.5
12.5
12.5
12.5
12.5 | 7.0
7.0
6.5
6.5 | 6.5
6.5
6.5
6.5 | 7.0
6.5
6.5
6.5 | 4.0
3.5
3.5
3.5
3.5 | 3.5
3.5
3.5
3.0
3.0 | 3.5
3.5
3.5
3.5
3.0 | 1.5
1.5
1.5
1.5 | 1.5
1.5
1.5
1.5 | 1.5
1.5
1.5
1.5 | | 11
12
13
14
15 | 12.5
12.0
12.0
11.5
11.5 | 11.5
11.5
11.5
11.5
11.5 | 12.0
12.0
11.5
11.5 | 6.5
6.5
6.0
6.0 | 6.0
6.0
6.0
5.5 | 6.0
6.0
6.0
5.5 | 3.5
3.0
3.0
3.5
3.0 | 3.0
3.0
3.0
3.0
3.0 | 3.0
3.0
3.0
3.0
3.0 | 1.5
1.5
1.5
1.5 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.5
1.5 | | 16
17
18
19
20 | 11.5
11.5
11.5
11.0
11.0 | 11.0
11.0
11.0
11.0 | 11.5
11.5
11.0
11.0 | 6.0
5.5
5.5
5.5 | 5.5
5.5
5.0
5.0 | 5.5
5.5
5.5
5.0
5.0 | 3.0
3.0
3.0
2.5
2.5 | 3.0
3.0
2.5
2.5
2.5 | 3.0
3.0
2.5
2.5
2.5 | 1.5
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | | 21
22
23
24
25 | 11.0
10.5
10.5
10.0
10.0 | 10.5
10.5
10.0
10.0 | 11.0
10.5
10.0
10.0 | 5.5
5.0
5.0
5.0
4.5 | 5.0
5.0
5.0
4.5
4.5 | 5.0
5.0
5.0
5.0
4.5 | 2.5
2.5
2.0
2.0 | 2.0
2.0
2.0
1.5 | 2.5
2.5
2.0
1.5 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | | 26
27
28
29
30
31 | 10.0
9.5
9.5
9.0
9.0 | 9.5
9.5
9.0
9.0
8.5
8.0 | 9.5
9.5
9.5
9.0
8.5
8.5 | 4.5
4.0
4.0
4.0
4.0 | 4.0
4.0
4.0
4.0
4.0 | 4.5
4.0
4.0
4.0
4.0 | 1.5
1.5
2.0
2.0
2.0
2.0 | 1.5
1.5
1.5
1.5
1.5 | 1.5
1.5
2.0
2.0
1.5 | 1.5
1.0
1.5
1.0
1.5 | 1.0
1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0
1.5 | | MONTH | 13.5 | 8.0 | 11.5 | 8.0 | 4.0 | 5.5 | 4.0 | 1.5 | 2.5 | 2.0 | 1.0 | 1.0 | ^{*--}Before Canyon Ferry completion. **--After Canyon Ferry completion. a--Gage height, 0.18 ft. b--Probably less than; during power plant operation. # 06066500 MISSOURI RIVER BELOW HOLTER DAM, NEAR WOLF CREEK, MT--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | DAY | MAX | MIN | MEAN | |--|--|--|--|--|--|--|--|--|--|--|--|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 1.5
1.5
1.0
1.5 | 1.0
1.0
1.0
1.0 | 1.5
1.0
1.0
1.0 | 1.5
1.5
1.5
1.5 | 1.0
1.0
1.0
1.0 | 1.0
1.5
1.0
1.5 | 3.0
3.0
3.5
3.5
3.5 | 3.0
3.0
3.0
3.0
3.0 | 3.0
3.0
3.0
3.0
3.5 | 9.0
9.5
9.0
8.0
8.5 | 7.5
9.0
8.0
7.5
7.5 | 8.5
9.0
8.5
8.0 | | 6
7
8
9
10 | 1.5
1.0
1.5
1.5 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | 1.5
1.5
1.5
1.5 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.5 | 4.0
4.0
4.5
5.0 | 3.5
3.5
3.5
4.5
4.5 | 3.5
3.5
4.0
4.5
4.5 | 8.5
9.0
8.5
8.0 | 7.5
8.0
7.5
7.5 | 8.5
8.5
8.0
7.5
8.0 | | 11
12
13
14
15 | 1.5
1.5
1.5
1.5 | 1.0
1.0
1.0
1.0 | 1.5
1.0
1.5
1.5 | 1.5
1.5
2.0
2.0 | 1.0
1.5
1.5
1.5 | 1.5
1.5
1.5
1.5 | 6.0
5.5
5.5
6.5
6.5 | 5.0
5.0
5.0
5.0
5.5 | 5.5
5.5
5.0
5.5
6.0 | 8.0
8.0
9.5
9.5
9.5
10.5 | 8.0
9.0
8.5
8.5
9.0 | 8.5
9.5
9.0
9.5
9.5 | | | 1.5
1.5
1.5
1.5 | | 1.5
1.5
1.5
1.5 | 1.5
2.0
1.5
2.0
2.0 | 1.5
1.5
1.5
1.5 | 1.5
1.5
1.5
2.0 | 7.0
7.5
7.0
7.5
8.5 | 5.5
7.0
6.0
6.0
7.0 | 6.5
7.0
6.5
7.0
8.0 | 9.5 | 8.5
8.5
8.5
8.5 | 8.5
9.5
9.0
10.0
10.5 | | 21
22
23
24
25 | 1.5
1.5
1.5
1.5 | 1.5
1.5
1.0
1.0 | 1.5
1.5
1.5
1.5 | 2.0
2.0
2.5
2.5
2.5 | 1.5
1.5
2.0
2.0 | 2.0
2.0
2.0
2.0
2.0 | 8.5
9.0
9.0
9.5
9.5 | 7.0
7.5
8.0
8.5
8.0 | 8.0
8.0
8.5
9.0
8.5 | 10.5 | 9.5
9.5
9.5
9.5
10.0 | 9.5
10.5
10.0
10.5
11.0 | | | 1.5
1.5
1.5
 | 1.0
1.0
1.0
 | | 2.5
2.5
2.5
3.0
3.0 | | 2.0
2.0
2.5
2.5
2.5
3.0 | 10.0
9.5
8.5
7.5
8.0 | 7.5
7.0
7.0
7.5
7.5 | 9.0
8.5
7.5
7.5
7.5 | 12.0
12.5
12.5
12.0
12.0 | 10.0
10.0
10.0
11.0
10.5 | 11.0
11.5
11.5
11.5
11.0 | | MONTH | 1.5 | 1.0 | 1.5 | 3.0 | 1.0 | 1.5 | 10.0 | 3.0 | 6.0 | 13.5 | 7.5 | 9.5 | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5 |
13.0
13.0
13.0
12.5
12.5 | JUNE 11.0 10.5 11.0 11.5 11.5 | 12.0
12.0
12.0
12.0
12.0 | 15.5
15.5
16.5
16.5
16.0 | JULY 14.5 13.0 13.5 14.0 14.0 | 15.0
14.5
15.0
15.0 | | AUGUST 17.5 18.0 17.5 17.5 18.0 | 18.0
18.5
18.0
18.5
18.5 | | SEPTEMBE
17.5
17.5
17.5
17.5
17.5 | R
18.0
17.5
18.0
18.0
18.0 | | 2
3
4 | 13.0
13.0
12.5 | 11.0
10.5
11.0
11.5 | 12.0
12.0
12.0
12.0
12.0
12.0
12.5
13.0
12.0 | 15.5
15.5
16.5
16.5
16.0
16.5
16.0 | 14.5
13.0
13.5
14.0 | 15.0
14.5
15.0
15.0
15.5
15.0
15.5
15.0 | | 17.5
18.0
17.5
17.5 | 18.0
18.5
18.0
18.5
18.5
18.5
18.5
18.5 | 18.5
18.0
18.5
19.0
18.5 | 17.5
17.5
17.5
17.5 | 18.0
17.5
18.0
18.0 | | 2
3
4
5
6
7
8
9 | 13.0
13.0
12.5
12.5
12.5
13.5
14.5
13.0 | 11.0
10.5
11.0
11.5
11.5
11.5
11.5
11.5 | 12.0
12.5
13.0
12.0 | 16.5
16.0
16.0
16.5
16.0 | 14.5
13.0
13.5
14.0
14.0
14.5
15.0
14.5 | 15.0
15.5
15.0
15.5 | 19.0
19.0
20.0
20.0
19.0
19.5
19.0
18.0
19.5
20.0 | 17.5
18.0
17.5
17.5
18.0
17.0
17.5
17.5
17.5
17.6 | 18.5
18.5
17.5
18.0 | 18.5
18.0
18.5
19.0
18.5
18.5
19.0
18.0
17.5 | 17.5
17.5
17.5
17.5
17.5
17.5
17.0
17.0
17.0 | 18.0
17.5
18.0
18.0
18.0
18.5
17.5
18.0
17.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14 | 13.0
13.0
12.5
12.5
12.5
13.5
14.5
13.0
14.0 | 11.0
10.5
11.0
11.5
11.5
11.5
11.5
11.5 | 12.0
12.5
13.0
12.0
13.0
13.0
13.5
14.0 | 16.5
16.0
16.0
16.5
16.0 | 14.5
13.0
13.5
14.0
14.0
14.5
15.0
14.5
15.0
15.5
14.5 | 15.0
15.5
15.0
15.5
15.5
16.5
16.0
16.0 | 19.0
19.0
20.0
20.0
19.0
19.5
19.0
18.0
19.5
20.0 | 17.5
18.0
17.5
17.5
18.0
17.0
17.5
17.5
17.0
18.0 | 18.5
18.5
17.5
18.0
18.5 | 18.5
18.0
18.5
19.0
18.5
19.0
18.5
19.0
18.0
17.5
17.5
17.5
17.5 | 17.5
17.5
17.5
17.5
17.5
17.5
18.0
18.0
17.5
17.0
17.0 | 18.0
17.5
18.0
18.0
18.0
18.0
18.5
17.5
17.5
17.5
17.0
17.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 13.0
13.0
12.5
12.5
12.5
13.5
14.5
13.0
14.0
14.0
14.5
14.5
14.5 | 11.0
10.5
11.0
11.5
11.5
11.5
11.5
11.5 | 12.0
12.5
13.0
12.0
13.0
13.5
14.0
14.0
13.5 | 16.5
16.0
16.5
16.0
16.5
18.0
17.0
16.5
17.0
17.5
17.0 | 14.5
13.0
13.5
14.0
14.0
14.5
15.0
14.5
15.0
14.5
15.5
15.0
16.0 | 15.0
15.5
15.0
15.5
15.5
15.5
16.5
16.0
17.0
17.0
17.0 | 19.0
19.0
20.0
20.0
19.0
19.5
19.0
18.5
18.5
18.5
18.5 | 17.5
18.0
17.5
17.5
18.0
17.0
17.5
17.5
17.0
18.0
17.5
17.5
17.5
17.5
17.5
17.5 | 18.5
18.5
17.5
18.0
18.5
18.0
18.0
18.0
18.0 | 18.5
18.0
18.5
19.0
18.5
19.0
18.0
17.5
17.5
17.5
17.0
17.0
17.0 | 17.5
17.5
17.5
17.5
17.5
17.5
18.0
17.5
17.0
17.0
17.0
16.5
16.5
16.5
16.5
15.5 | 18.0
17.5
18.0
18.0
18.0
18.0
18.5
17.5
17.5
17.0
17.0
17.0
16.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 13.0
12.5
12.5
12.5
13.5
14.5
14.0
14.0
14.5
14.5
14.5
14.5
14.5
16.0
15.5
16.0
15.5 | 11.0
10.5
11.0
11.5
11.5
11.5
11.5
11.5 | 12.0
12.5
13.0
12.0
13.0
13.5
14.0
14.0
13.5
14.0
15.0
15.0
14.5
14.5
14.5
14.5 | 16.5
16.0
16.0
16.5
16.0
17.0
17.0
17.0
17.5
17.0
18.0
17.5
19.5
19.5 | 14.5
13.0
13.5
14.0
14.0
14.5
15.0
14.5
15.0
15.5
15.5
16.0
16.5
16.5
16.5
17.0 | 15.0
15.5
15.0
15.5
15.5
16.5
16.0
16.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0 | 19.0
19.0
20.0
20.0
19.0
19.5
19.0
18.5
18.5
18.5
18.5
18.5
19.0
19.0 | 17.5 18.0 17.5 17.5 18.0 17.5 17.5 17.0 18.0 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 | 18.5
18.5
17.5
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0 | 18.5
18.0
18.5
19.0
18.5
19.0
18.0
18.0
17.5
17.5
17.5
17.0
17.0
17.0
15.5
15.5
15.5 | 17.5
17.5
17.5
17.5
17.5
17.5
18.0
17.0
17.0
17.0
17.0
16.5
16.5
16.5
16.5
15.0
15.0
15.0
14.5
14.5
14.0 | 18.0
17.5
18.0
18.0
18.0
18.5
17.5
17.5
17.0
17.0
17.0
15.5
15.5
15.5
15.0
15.0
14.5 | #### LITTLE PRICKLY PEAR CREEK BASIN #### 06071300 LITTLE PRICKLY PEAR CREEK AT WOLF CREEK, MT LOCATION.--Lat 47°00'19", long 112°04'10" (NAD 27), in NE¹/₄NW¹/₄NE¹/₄ sec.2, T.14N., R.4W., Lewis and Clark County, Hydrologic Unit 10030102, on right bank 30 ft downstream from Interstate 15 access road bridge, 500 ft southwest of Wolf Creek Post Office, 0.5 mi downstream from Wolf Creek, and at river mile 3.2. DRAINAGE AREA.--381 mi². PERIOD OF RECORD.--May 1962 to September 1967, October 1991 to current year. GAGE.--Water-stage recorder. Elevation of gage is 3,547.38 ft (NGVD 29). May 10, 1962 to July 6, 1965, water-stage recorder on left bank at present elevation. July 7, 1965 to Apr. 11, 1966, non-recording gage on bridge 0.25 mi upstream at elevation 3.27 ft higher. Apr. 12, 1966 to Sept. 30, 1967, water-stage recorder on right bank 23 ft upstream at present elevation. REMARKS.--Records good except those for estimated daily discharges, which are poor. Diversions for irrigation of about 2,500 acres upstream from station. U.S.Geological Survey satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of May 7, 1975, reached a stage of 7.45 ft, present elevation, from floodmarks, discharge, 4,500 ft^3/s . DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 24 e45 e40 e35 e30 e30 39 e35 e35 e25 25 e30 e25 e40 e20 e18 182 22 2.8 e30 e20 e25 2.0 e25 e20 e40 e32 e22 e30 e30 e20 27 e25 e30 2.5 e40 e35 27 2.8 e38 2.3 177 TOTAL MEAN 40.8 46.9 39.6 36.3 42.5 97.1 38.5 23.4 26.9 MAX 2.7 MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1962 2003, BY WATER YEAR (WY) 45.3 51.5 53.5 49.4 44.1 60.2 68.2 81.0 48.8 MEAN 98.5 74.9 95.4 MAX 69.1 (WY) 25.5 17.7 MTN 29.5 31.5 26.0 30.8 29.3 42.0 64.8 35.5 14.2 18.5 (WY) FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR SUMMARY STATISTICS WATER YEARS 1962 - 2003* ANNUAL TOTAL 67.9 88.5 ANNUAL MEAN 67.3 HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN 35 2 HIGHEST DAILY MEAN Jun 11 Mar 14 Jun LOWEST DAILY MEAN Jan Jan Aug 13 Jul 29 ANNUAL SEVEN-DAY MINIMUM Feb 24 Aug MAXIMUM PEAK FLOW Mar Jun 5.59 7.65 MAXIMUM PEAK STAGE Aug INSTANTANEOUS LOW FLOW a9.6 ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS 2.4 ^{*--}During periods of operation (May 1962 to September 1967, October 1991 to current year). a--Gage height, 2.54 ft. e--Estimated. #### 06073500 DEARBORN RIVER NEAR CRAIG, MT LOCATION .-- Lat 47°11'57", long 112°05'44" (NAD 27), in NW1/4 NW1/4 SE1/4 sec.27, T. 17 N., R. 4 W., Lewis and Clark County, Hydrologic Unit 10030102, on left bank at upstream side of bridge on U.S. Highway 287, 7.0 mi downstream from South Fork Dearborn River, 10.5 mi northwest of Craig, 13.5 mi north of Wolf Creek, and at river mile 19.0. DRAINAGE AREA.--325 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1945 to September 1969, October 1993 to current year. GAGE.--Water-stage recorder. Elevation of gage is 3,800 ft (NGVD 29). Oct. 1, 1945 to Sept. 30, 1946, nonrecording gage; Oct. 1, 1946 to June 9, 1964, water-stage recorder on upstream side of bridge; June 10, 1964 to May 31, 1965, nonrecording gage; June 1, 1965 to Sept. 30 1969, waterstage recorder on downstream side of abandoned bridge 0.2 mi downstream, all at same previous elevation. REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. U.S. Geological Survey satellite telemeter at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | DISCHARO | E, CUDIC | , FEET FE | | | VALUES | TOBER 20 | 02 10 3 | EFIEWIDEK 2 | 003 | | |--|--------------------------------------|--|---|-------------------------------------|--|---|---|------------------------------------|---|-------------------------------------|-------------------------------------| | DAY OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 54
2 54
3 52
4 52
5 50 | e45
e50
e60
e65
e70 | 60
59
e55
e50
e45 | e42
e45
e48
e50
e50 | e50
e45
e40
e37
e35 |
e43
e45
e40
e45
e40 | 169
184
167
157 | 291
280
267
323
307 | 523
470
408
363
320 | 110
104
99
92
86 | 28
27
28
28
27 | 21
20
19
18
17 | | 6 50
7 48
8 51
9 49
10 47 | 66
64
60
58
56 | e50
e55
57
63
60 | e48
e45
e40
e30
e15 | e35
e35
e35
e37
e40 | e30
e25
e20
e25
e40 | 145
137
132
134
153 | 297
288
279
285
291 | 314
288
272
310
301 | 84
80
79
73
68 | 28
32
29
28
26 | 17
17
18
21
20 | | 11 47
12 49
13 48
14 46
15 45 | 55
53
53
52
51 | 57
59
57
56
56 | e20
e30
e40
e35
e30 | e40
e38
e35
e35
e37 | e50
e200
905
e500
e300 | 189
255
306
358
358 | 295
323
363
390
462 | 286
266
247
237
224 | 66
62
58
56
56 | 24
26
28
25
23 | 20
22
23
22
21 | | 16 46
17 46
18 44
19 44
20 44 | 51
49
49
49
48 | 56
55
e40
e32
e25 | e25
e30
e33
e35
e30 | e40
e43
e45
e40
e35 | e220
e180
e150
130
122 | 327
305
293
274
261 | 551
509
444
396
355 | 209
196
189
189
200 | 55
52
50
48
44 | 23
24
24
22
21 | 29
35
30
33
39 | | 21 43
22 47
23 45
24 44
25 46 | 48
50
59
54
50 | e25
e26
e27
e28
e30 | e25
e20
e22
e23
e20 | e30
e23
e20
e25
e30 | 119
118
149
142
131 | 268
296
331
394
448 | 325
314
344
415
554 | 182
161
146
172
162 | 44
43
42
39
37 | 21
23
24
23
22 | 37
35
33
34
31 | | 26 50
27 51
28 52
29 e50
30 e45
31 e40 | 58
61
60
60
60 | e35
e40
e45
e42
e40
e40 | e30
e45
e40
e37
e40
e45 | e40
e35
e40
 | 126
121
113
108
106
120 | 425
373
335
318
312 | 722
697
634
663
675
587 | 146
147
139
130
118 | 38
37
32
30
30
29 | 21
24
25
24
24
23 | 30
31
32
32
33 | | TOTAL 1479 MEAN 47.7 MAX 54 MIN 40 AC-FT 2930 | 1664
55.5
70
45
3300 | 1425
46.0
63
25
2830 | 1068
34.5
50
15
2120 | 1020
36.4
50
20
2020 | 4463
144
905
20
8850 | 7955
265
448
132
15780 | 12926
417
722
267
25640 | 7315
244
523
118
14510 | 1823
58.8
110
29
3620 | 775
25.0
32
21
1540 | 790
26.3
39
17
1570 | | STATISTICS OF M | ONTHLY MEA | N DATA F | OR WATER | YEARS 1946 | - 2003, | BY WATER | YEAR (WY) | * | | | | | MEAN 73.6
MAX 187
(WY) 1966
MIN 17.0
(WY) 1957 | 74.4
165
1947
33.8
2002 | 66.0
155
1947
23.9
2002 | 55.9
104
1947
22.2
2002 | 60.5
184
1996
22.5
2002 | 86.0
187
1947
33.8
2002 | 237
519
1969
51.0
1961 | 684
1337
1995
135
2000 | 768
2104
1964
113
2000 | 208
583
1951
27.2
2000 | 67.4
163
1951
13.1
2000 | 56.9
230
1993
18.8
1956 | | SUMMARY STATIST | CICS | FOR : | 2002 CALE | NDAR YEAR | F | OR 2003 W | ATER YEAR | | WATER YEARS | 1946 - | 2003* | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL LOWEST ANNUAL M HIGHEST DAILY M LOWEST DAILY M ANNUAL SEVEN-DA MAXIMUM PEAK FI MAXIMUM PEAK SI INSTANTANEOUS I ANNUAL RUNOFF (10 PERCENT EXCE 90 PERCENT EXCE | EAN EAN AN OW AGE OW FLOW AC-FT) EDS | | 60433
166
1610
13
18
119900
543
55
21 | Jun 16
Mar 8
Jan 25 | | 42703
117
905
15
18
2090
6.2:
84700
319
50
24 | Mar 13
Jan 10
Sep 2
Mar 13
Mar 13 | | 203
363
58.3
12500
8.5
11
a15400
b13.50
c8.0
147000
548
74 | | 1961
1961
1964
1964 | ^{*--}During periods of operation (October 1945 to September 1969, October 1993 to current year). a--From rating curve extended above $7,000~{\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow. b--From floodmark. c--Site and datum then in use. e--Estimated. ## 06073500 DEARBORN RIVER NEAR CRAIG, MT--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--June 1999 to to current year. PERIOD OF DAILY RECORD.--August to September 1991, November 1993 to current year. INSTRUMENTATION.--Temperature recorder installed Nov. 3, 1993. REMARKS.—Daily water temperature record good. Unpublished records of instantaneous water temperature and specific conductance for many days are available in files of the District office. EXTREMES FOR PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: Maximum, 28.5°C, Aug. 1, 2, 2000; minimum, 0.0°C on many days during winter. EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: Maximum, 28.0°C, July 19 and Aug. 2; minimum, 0.0°C on many days October through April. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 Ammonia Nitrite | | Date APR 2003 08 MAY 27 JUN 16 | Time 1050 1530 1045 | Instan-
taneous
dis-
charge,
cfs
(00061)
134
679
218 | pH,
water,
unfltrd
field,
std
units
(00400)
8.3
8.4 | Specif.
conductance,
wat unf
uS/cm
25 degC
(00095)
316
234
283 | Temper-
ature,
air,
deg C
(00020)
11.0
22.0
24.0 | Temper-
ature,
water,
deg C
(00010)
5.0
12.0 | + org-N, water, unfltrd mg/L as N (00625) E.10 .22 .12 | nitrate
water
fltrd,
mg/L
as N
(00631)
E.014 | Nitrite
water,
fltrd,
mg/L
as N
(00613)
<.002
<.002 | | |-----------------|---------------------------------|---------------------|--|---|--|---|--|---|--|--|--| | | JUL
15 | 1015 | 57 | 8.5 | 318 | 30.0 | 17.0 | E.05 | <.022 | <.002 | | | | | | Date | Ortho
phos-
phate
water
fltrd
mg/L
as P
(00671 | , Phos-
, phorus
, water
unfltr
mg/L | , sieve
, diamet
d percen
<.063m | pende
sedi-
ment
r concen
t tratio | d Sus- pende sedi- ment n load, tons/ | ed
:
: | | | | | | | APR 2003
08 | <.007 | E.004 | 69 | 2 | .72 | 2 | | | | | | | MAY
27 | <.007 | | | 98 | 180 | | | | | | | | JUN
16 | <.007 | .004 | 80 | 5 | 2.9 | | | | | | | | JUL
15 | <.007 | E.002 | 51 | 13 | 2.0 | | | | | Date | Time | | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | tion
ratio | Sodium,
water,
fltrd,
mg/L | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | | MAY 2003
27 | 1530 | 130 | 35.8 | 9.13 | .57 | .0 | 1.14 | 118 | .55 | <.2 | 5.19 | | JUL
15 | 1015 | 170 | 45.4 | 13.7 | .84 | .1 | 2.55 | 162 | .85 | <.2 | 6.55 | | Date | water,
fltrd,
mg/L | mg/L | fltrd,
tons/
acre-ft | Residue
water,
fltrd,
tons/d
(70302) | water
unfltrd
ug/L | water,
unfltrd
ug/L | recover
-able,
ug/L | recover
-able,
ug/L | recover
-able,
ug/L | unfltrd
recover
-able,
ug/L | recover
-able,
ug/L | | MAY 2003 | E C | 100 | 1.0 | 226 | -0 | 2 | E (| 2 0 | 2 20 | 1 76 | 7 | | 27
JUL
15 | 5.6
11.9 | 129
179 | .18 | 236
27.5 | <2
<2 | .3 | E.6 | 3.8
2.6 | 3.30
E.05 | 1.76 | /
E1 | | | | = 1 2 | | 3 | | | | | | .,, | == | ${\tt E--Estimated}.$ ## 06073500 DEARBORN RIVER NEAR CRAIG, MT--Continued ## WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | DAY | MAX | MIN | MEAN | |--|--|--|--|--|--|---|--|--|--|--|--
---| | | | OCTOBER | | | OVEMBER | | | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 10.0
11.5
8.5
10.5
12.0 | 7.5
4.0
7.0
6.5
7.0 | 8.5
7.5
7.5
8.0
8.5 | 0.0
0.5
0.5
1.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.5 | 4.0
3.5
2.0
0.5
0.5 | 1.0
1.0
0.0
0.0 | 2.0
0.5 | 0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5 | | 6
7
8
9
10 | 12.0
14.5
12.0
13.5
13.0 | 8.5
8.0
7.5 | 9.0
11.0
10.0
10.0
9.5 | 5.5
5.5
4.0
4.5
4.0 | 0.5
1.5
2.0
2.0 | 3.0
3.5
3.0
3.5
3.0 | 1.5
1.5
1.0
1.5
2.0 | 0.0
0.0
0.0
0.0 | 0.5
0.5
0.5
0.5 | 1.5
2.5
2.5
0.5
1.0 | 0.0
0.5
0.0
0.0 | 1.0
1.0
1.0
0.0 | | 11
12
13
14
15 | 10.0
9.0
10.5
10.5 | 6.0
2.5
4.0
4.0
3.5 | 7.5
6.0
7.0
7.0 | 4.5
4.0
6.5
4.5
5.0 | 1.5
2.0
3.5
2.5
2.0 | 3.0
3.0
4.5
3.5
3.5 | 1.0
3.0
4.0
5.0
4.5 | 0.0
0.0
1.0
2.0
2.0 | 0.5
1.0
2.5
3.5
3.5 | 0.5
0.5
0.5
0.0 | 0.0
0.0
0.0
0.0 | 0.5
0.0
0.0
0.0 | | 16
17
18
19
20 | 10.0
11.0
11.0
9.5
11.5 | 3.5
4.0
4.5
3.5
6.0 | 7.0
7.5
7.5
7.0
8.5 | 5.0
4.0
2.5
4.5
8.0 | 2.5
2.0
1.5
2.0
4.0 | 3.5
3.0
2.0
3.5
5.5 | 3.0
2.5
0.5
0.5 | 1.0
0.0
0.0
0.0 | 2.0
1.0
0.5
0.5 | 0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 21
22
23
24
25 | 10.5
6.0
5.0
7.0
6.5 | 4.5
3.0
2.5
1.5 | 7.5
4.0
3.5
4.0
3.5 | 7.5
6.0
4.5
1.5 | 4.0
4.5
1.0
0.0
0.0 | 5.5
5.5
3.0
0.5 | 0.0
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 26
27
28
29
30
31 | 3.5
5.0
3.5
1.0
0.5 | 0.5
1.5
0.0
0.0
0.0 | 2.0
3.5
3.0
0.5
0.5 | 1.0
3.0
5.5
5.0
3.5 | 0.0
0.5
0.5
2.0
0.5 | 0.5
1.5
3.0
4.0
2.0 | 0.5
0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.5
0.0
0.5
0.5
2.0
5.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.5
3.5 | | MONTH | 14.5 | 0.0 | 6.0 | 8.0 | 0.0 | 2.5 | 5.0 | 0.0 | 1.0 | 5.5 | 0.0 | 0.5 | | | | | | | | | | | | | | | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | | FEBRUARY 1.0 0.0 0.0 0.0 0.0 | | 0.5
0.5
0.5
0.5
0.5 | | 0.0
0.0
0.0
0.0
0.0 | 8.5
5.5
6.0
7.5
8.0 | | 6.5
4.0
3.0
4.5
5.5 | 12.0
11.0
10.5
8.0
10.0 | | 8.5
8.5
8.5
6.0
7.0 | | 2
3
4 | 4.0
3.5
1.5
1.0
0.5 | | 2.5
1.5
0.5
0.5 | | 0.0
0.0
0.0
0.0 | | | 5.5
1.5
0.0
1.5
2.5 | | 12.0
11.0
10.5
8.0
10.0
12.0
12.0
9.5
6.0 | | | | 2
3
4
5
6
7
8
9 | 4.0
3.5
1.5
1.0
0.5
0.5
0.5
1.0 | 1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 2.5
1.5
0.5
0.5
0.0
0.0
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 8.5
5.5
6.0
7.5
8.0 | 5.5
1.5
0.0
1.5
2.5
3.0
1.5
3.5
5.5 | | 12.0
12.0
9.5
6.0
10.0 | 5.5
6.0
6.5
5.0
4.0
4.5
5.5
4.5 | 8.0
8.5
6.5
5.0
6.5
8.5
9.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14 | 4.0
3.5
1.5
1.0
0.5
0.5
0.5
1.0
0.5
1.0
0.5
2.0 | 1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 2.5
1.5
0.5
0.5
0.0
0.5
0.5
0.5
0.5
0.5 | 0.5
0.5
0.5
0.5
0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.1
0.1
0.7
2.8 | 8.5
5.5
6.0
7.5
8.0
8.5
9.0
12.0
13.5
13.0 | 5.5
1.5
0.0
1.5
2.5
3.0
1.5
3.5
5.5
5.5 | 5.5
5.0
7.5
9.5
9.0
9.5
9.5
9.0 | 12.0
12.0
9.5
6.0
10.0
13.0
12.0
14.5
15.0 | 5.5
6.0
6.5
5.0
4.0
4.5
5.5
4.5
4.5
7.0
6.5
7.0 | 8.0
8.5
6.5
5.0
6.5
8.5
9.5
10.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 4.0
3.5
1.5
1.0
0.5
0.5
0.5
1.0
0.5
1.0
2.0
2.0
1.0
4.0
4.5
4.5 | 1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 2.5
1.5
0.5
0.5
0.0
0.5
0.5
0.5
0.5
0.5
0.5
0 | 0.5
0.5
0.5
0.5
0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.1
0.1
0.7
2.8
3.5
4.5
3.5 | 8.5
5.5
6.0
7.5
8.0
8.5
9.0
12.0
13.5
13.0
11.5
10.5
11.0
8.5 | 5.5
1.5
0.0
1.5
2.5
3.0
1.5
3.5
5.5
5.5
6.0
7.0
6.5
6.0
3.5
6.0 | 5.5
5.0
7.5
9.5
9.0
9.5
9.5
9.0
8.5
7.5
6.5
7.5 | 12.0
12.0
9.5
6.0
10.0
13.0
12.0
14.5
15.0
14.0
11.5
10.0
8.5 | 5.5
6.0
6.5
5.0
4.0
4.5
5.5
4.5
4.5
7.0
9.0
6.5
7.0
9.0 | 8.0
8.5
6.5
5.0
6.5
8.5
9.5
11.0
11.5
9.0
7.5
6.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 4.0
3.5
1.5
1.0
0.5
0.5
0.5
1.0
0.5
1.0
2.0
1.0
4.0
4.5
1.5
2.5 | 1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 2.5
1.5
0.5
0.5
0.0
0.5
0.5
0.5
0.5
0.5
0.5
0 | 0.5
0.5
0.5
0.5
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.1
0.1
0.7
2.8
3.5
4.5
3.5
4.0
5.0
5.0
6.5
5.5
3.5 | 8.5
5.5
6.0
7.5
8.0
8.5
9.0
12.0
13.5
13.0
11.5
10.5
11.0
8.5
10.5
11.5
10.5
11.5
10.5
11.5
10.5
11.5
11.0
11.5 | 5.5
1.5
0.0
1.5
2.5
3.5
5.5
5.5
5.5
6.0
7.0
6.5
6.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
6.0
5.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6 | 5.5
5.0
7.5
9.5
9.0
9.5
9.5
9.0
8.5
7.5
7.5
7.5
9.0
8.0
8.0
8.5 | 12.0
12.0
9.5
6.0
10.0
13.0
12.0
14.5
15.0
14.0
11.5
12.0
12.0
12.0
12.0 | 5.5
6.0
6.5
5.0
4.0
4.5
5.5
4.5
4.5
7.0
9.0
6.5
7.0
9.0
6.5
5.5
8.0
8.5
8.0
8.5
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | 8.0
8.5
6.5
6.5
8.5
9.5
11.0
11.5
9.0
7.5
6.5
7.5
9.0
11.0
11.0
11.0
11.0 | ## 06073500 DEARBORN RIVER NEAR CRAIG, MT--Continued ## WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | 1 | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5 | 15.5
14.0
15.0
13.0
14.0 | 9.5
9.0
8.0
8.5
8.0 | 12.0
11.5
11.5
11.0
11.5 | 24.0
23.0
22.0
22.5
22.5 | 15.5
15.0
13.0
13.0 | 19.5
18.5
17.0
17.5
18.0 | 26.5
28.0
24.0
21.5
24.5 | 16.0
16.0
18.5
16.0
14.5 | 21.0
21.5
20.5
19.0
19.0 | 22.5
22.5
22.0
20.5
21.0 | 12.5
13.0
12.5
13.0
13.5 | 17.5
17.5
17.0
17.0 | | 6
7
8
9
10 | 12.5
16.5
16.0
14.0
16.5 | 10.0
7.5
10.5
11.5
10.0 | 11.0
12.0
13.5
12.5
13.0 | 22.0
24.0
21.0
24.0
25.5 | 13.0
13.5
15.5
14.0
14.5 | 17.5
18.5
18.0
19.0
20.0 | 24.0
26.0
26.0
27.0
26.0 | 16.0
15.5
16.0
16.0
16.5 | 19.0
19.5
20.5
21.0
21.5 | 22.0
22.5
18.0
18.5
18.5 | 13.5
15.0
14.0
10.5
10.0 | 17.5
18.0
16.0
14.0
14.0 | | 11
12
13
14
15 | 15.5
18.5
16.5
20.0
20.5 | 10.5
10.0
11.0
11.0 | 13.5
14.5
14.0
15.0
16.5 | 26.0
26.5
23.5
24.0
26.5 | 15.5
16.0
17.0
14.5
14.5 | 20.5
21.0
20.5
19.0
20.0 | 23.5
22.0
27.0
26.5
25.5 | 16.0
16.0
15.5
16.0
16.0 | 20.0
19.0
20.5
21.0
20.5 | 17.5
17.0
18.5
15.5
13.0 | 11.0
11.5
11.0
9.5
11.0 | 13.5
13.5
14.0
12.5
12.0 | | 16
17
18
19
20 | 21.5
22.5
22.5
20.5
16.5 | 13.0
14.0
14.5
14.5
13.5 | 17.0
18.0
18.5
17.5
15.0 | 27.0
27.0
27.5
28.0
26.5 | 16.5
17.0
16.5
16.5 | 21.5
22.0
22.0
22.0
21.5 |
22.5
24.5
24.5
24.0
24.0 | 16.5
14.5
16.0
15.5
16.0 | 19.5
19.0
20.0
19.5
19.5 | 11.5
10.5
14.0
16.5
17.0 | 8.5
7.0
5.5
8.5
9.5 | 10.5
8.5
9.5
12.0
13.0 | | 21
22
23
24
25 | 17.0
15.5
18.5
14.5
18.0 | 10.5
10.0
9.5
11.5
9.0 | 14.0
13.0
13.5
13.0 | 27.5
27.5
26.5
22.0
23.5 | 16.5
16.5
16.5
17.0
16.0 | 21.5
22.0
21.5
18.5
19.0 | 21.5
22.5
23.0
23.0
24.0 | 14.0
14.5
15.0
13.5
14.5 | 18.0
18.0
18.5
18.0 | 13.5
15.5
14.5
16.5
18.5 | 9.5
8.0
10.0
9.0
10.5 | 11.0
11.5
12.0
12.5
14.0 | | 26
27
28
29
30
31 | 19.5
22.0
21.0
23.0
24.0 | 12.0
13.5
14.0
13.5
15.5 | 15.5
17.5
17.5
18.5
19.5 | 26.5
27.0
27.5
27.0
27.5
26.5 | 16.5
17.5
16.5
16.5
16.0
16.5 | 20.5
21.5
21.5
21.5
21.5
21.0 | 22.5
21.5
22.0
21.5
22.5
22.5 | 13.5
16.0
12.5
12.5
11.5
12.0 | 18.0
18.0
16.5
16.5
16.5 | 18.5
17.5
17.0
15.5
15.5 | 11.0
9.5
9.0
10.5
7.0 | 14.5
13.0
12.5
12.0
11.0 | | MONTH | 24.0 | 7.5 | 14.5 | 28.0 | 13.0 | 20.0 | 28.0 | 11.5 | 19.0 | 22.5 | 5.5 | 13.5 | ## SMITH RIVER BASIN ## 06077200 SMITH RIVER BELOW EAGLE CREEK, NEAR FORT LOGAN, MT $LOCATION. --Lat\ 46^{\circ}49'41'', long\ 111^{\circ}11'29''\ (NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 2,\ T.12\ S.,\ R.4\ E.,\ Meagher\ County,\ Hydrologic\ Unit\ 10030103,\ on\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 2,\ T.12\ S.,\ R.4\ E.,\ Meagher\ County,\ Hydrologic\ Unit\ 10030103,\ on\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 2,\ T.12\ S.,\ R.4\ E.,\ Meagher\ County,\ Hydrologic\ Unit\ 10030103,\ on\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 2,\ T.12\ S.,\ R.4\ E.,\ Meagher\ County,\ Hydrologic\ Unit\ 10030103,\ on\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 2,\ T.12\ S.,\ R.4\ E.,\ Meagher\ County,\ Hydrologic\ Unit\ 10030103,\ on\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 2,\ T.12\ S.,\ R.4\ E.,\ Meagher\ County,\ Hydrologic\ Unit\ 10030103,\ on\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 2,\ T.12\ S.,\ R.4\ E.,\ Meagher\ County,\ Hydrologic\ Unit\ 10030103,\ on\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 2,\ T.12\ S.,\ R.4\ E.,\ Meagher\ County,\ Hydrologic\ Unit\ 10030103,\ on\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 2,\ T.12\ S.,\ R.4\ E.,\ Meagher\ County,\ Hydrologic\ Unit\ 10030103,\ on\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 2,\ T.12\ S.,\ R.4\ E.,\ Meagher\ County,\ Hydrologic\ Unit\ 10030103,\ on\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 2,\ T.12\ S.,\ R.4\ E.,\ Meagher\ County,\ Hydrologic\ Unit\ 10030103,\ on\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}NW^{1}$ right bank at downstream side of private bridge, 0.6 mi downstream from Eagle Creek, 11.3 mi north of Fort Logan, and at river mile 80.8. DRAINAGE AREA.--1,088 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1996 to current year. GAGE.--Water-stage recorder. Elevation of gage is 4,350 ft (NGVD 29). REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. Flow slightly regulated by Smith River Reservoir (station number 06075000). Diversion for irrigation of about 19,300 acres upstream from station. U.S. Geological Survey satellite telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | | |---|---|--|--|---|------------------------------------|--|--|---|-------------------------------------|--|---|------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 92
90
93
95
97 | e60
e70
e80
e90
e100 | e100
e100
e100
e95
e90 | e100
e100
e100
e100
e100 | e100
e100
e95
e90
e85 | e70
e70
e65
e65
e65 | 369
277
264
225
209 | 546
547
522
615
601 | 889
856
775
667
578 | 154
144
140
132
114 | 50
50
49
56
59 | 49
47
47
48
46 | | | 6
7
8
9
10 | 97
94
92
90
89 | e110
e120
e130
e130
e125 | e90
e85
e80
e80
e85 | e95
e90
e85
e80
e75 | e80
e75
e80
e85
e90 | e60
e60
e65
e70 | 192
174
170
220
369 | 569
537
504
470
450 | 557
549
483
447
435 | 102
100
102
106
104 | 60
59
56
56
56 | 48
50
54
60 | | | 11
12
13
14
15 | 88
89
89
90 | e120
e115
112
109
106 | e90
e95
e100
e110
e110 | e80
e85
e95
e90
e85 | e85
e80
e75
e80
e80 | e90
e200
e1000
e2000
1130 | 371
400
422
456
503 | 424
417
463
452
491 | 459
437
382
362
349 | 99
96
85
79
76 | 55
58
58
54
52 | 63
81
103
91
84 | | | 16
17
18
19
20 | 90
91
93
92
94 | e105
e100
104
113
115 | e100
e95
e90
e85
e80 | e80
e75
e80
e90
e95 | e85
e85
e85
e85
e85 | 552
354
263
231
199 | 443
389
375
371
345 | 562
561
574
553
520 | 329
315
297
283
281 | 75
68
66
64
58 | 48
47
46
47
49 | 91
110
100
93
90 | | | 21
22
23
24
25 | 93
94
85
85
76 | 116
114
120
e115
e100 | e80
e80
e80
e80
e80 | e85
e75
e80
e90
e90 | e80
e70
e55
e60
e65 | 180
180
272
238
185 | 357
396
473
904
901 | 489
476
518
578
693 | 281
274
255
242
248 | 60
61
58
53
55 | 49
45
45
45
43 | 89
90
88
88
89 | | | 26
27
28
29
30
31 | 84
92
103
89
71
e65 | e110
e120
e110
e105
e100 | e85
e90
e100
e110
e100
e100 | e90
e100
e150
e130
e110
e110 | e65
e65
e70
 | 157
148
139
133
145
267 | 853
746
650
582
561 | 815
879
894
904
908
938 | 240
207
189
179
168 | 59
61
62
57
53
50 | 43
45
51
50
50 | 87
86
90
87
88 | | | TOTAL
MEAN
MAX
MIN
AC-FT | 2772
89.4
103
65
5500 | 3224
107
130
60
6390 | 2845
91.8
110
80
5640 | 2890
93.2
150
75
5730 | 2235
79.8
100
55
4430 | 8713
281
2000
60
17280 | 12967
432
904
170
25720 | 18470
596
938
417
36640
CR YEAR (WY) | 12013
400
889
168
23830 | 2593
83.6
154
50
5140 | 1582
51.0
60
43
3140 | 2297
76.6
110
46
4560 | | | MEAN
MAX
(WY)
MIN
(WY) | 126
213
1998
67.0
2002 | 127
185
1999
73.6
2002 | 112
167
1998
67.5
2002 | 126
249
1997
66.9
2002 | 111
145
1997
65.8
2002 | 170
281
2003
71.5
2002 | 246
432
2003
134
2002 | 464
1119
1997
249
2002 | 586
1893
1997
152
2001 | 256
607
1998
83.6
2003 | 116
276
1997
43.7
2000 | 105
219
1997
53.6
2001 | | | SUMMARY | STATIST | ICS | FOR 2 | 2002 CALEI | NDAR YEAR | 1 | FOR 2003 | WATER YEAR | | WATER YEARS | 1997 - | 2003 | | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL MANNUAL MANNUAL MAILY MAILY MAILY MAILY MAILY MAILY MEA | EAN EAN AN Y MINIMUM OW AGE DW FLOW AC-FT) EDS EDS | | 52898
145
1020
55
59
104900
362
95
65 | Jun 23
Feb 25
Feb 25 | | 72601
199
2000
43
45
a2000
b8.
c40
144000
528
95
56 | Mar 14
Aug 25
Aug 21
Mar 14
19 Mar 13
Aug 26 | | 212
458
109
3510
31
32
d3900
9.30
28
153700
422
130
65 | Jun 12
Aug 25
Aug 25
Jun 12
Jan 1
Aug 26 | 2000
2000
1997
1997 | | a--Estimated daily discharge, occurred during period of ice affected stage-discharge relation. b--Backwater from ice. c--Gage height, 2.73 ft. d--Gage height, 7.00 ft. e--Estimated. ## SMITH RIVER BASIN ## 06077200 SMITH RIVER BELOW EAGLE CREEK, NEAR FORT LOGAN, MT--Continued WATER-QUALITY RECORDS PERIOD OF DAILY RECORD.--Water years 1997 to present. Data for water years 1997 to 2001 not published. INSTRUMENTATION.--Water temperature recorder installed Nov. 4, 1997. REMARKS.--Daily water temperature record good except for ice-affected days in March and April, which are fair. Several observations of water temperature and specific conductance were made during the water year. ## EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 27.5°C, July 14, 2002; minimum 0.0°C, many days during winter months. #### EXTREMES FOR CURRENT
YEAR .-- WATER TEMPERATURE: Maximum, 26.5°C, July 17-19, 21-22, Aug. 2, 14; minimum 0.0°C, many days October through March. ## WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|-------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | OCTOBER | | | NO | NOVEMBER | | | CEMBER | | | JANUARY | | | 1
2
3
4
5 | 9.0
9.5
6.5
7.5
9.5 | 6.5
4.0
4.5
5.5
6.0 | 7.5
6.5
5.5
6.5
7.0 | 0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0 | 6
7
8
9
10 | 8.5
11.5
11.5
11.5
10.0 | 5.5
6.5
7.5
6.5
5.5 | 7.0
8.5
9.5
8.5
7.5 | 0.5
0.5
0.5
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 1.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.5
0.0
0.0
0.0 | | 11
12
13
14
15 | 8.0
6.5
7.0
7.5
6.5 | 4.5
2.0
2.0
2.5
2.5 | 6.5
4.0
4.5
5.0
4.5 | 0.5
0.5
2.0
1.5
2.0 | 0.0
0.0
0.5
0.0 | 0.0
0.0
1.0
0.5
1.0 | 0.0
0.0
0.0
2.5
2.5 | 0.0
0.0
0.0
0.0
1.5 | 0.0
0.0
0.0
0.5
2.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 16
17
18
19
20 | 7.0
7.0
7.5
6.5
8.0 | 3.0
2.5
3.0
2.5
4.0 | 5.0
4.5
5.0
4.5
6.0 | 1.0
1.5
1.0
2.0
4.0 | 0.0
0.0
0.0
0.0
1.0 | 0.5
0.5
0.5
1.0
2.5 | 2.5
2.5
2.5
0.5
0.0 | 2.0
2.5
0.5
0.0 | 2.5
2.5
1.5
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.5 | | 21
22
23
24
25 | 7.5
5.5
3.0
4.0
3.5 | 4.0
3.0
1.5
1.5 | 6.0
4.0
2.5
2.5 | 3.5
2.5
2.5
0.0
0.0 | 1.5
1.5
0.0
0.0 | 2.5
2.0
1.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 1.5
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 1.0
0.0
0.0
0.0
0.0 | | 26
27
28
29
30
31 | 2.5
3.0
2.5
1.0
0.5 | 0.5
0.5
1.0
0.5
0.5 | 1.0
1.5
2.0
0.5
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 1.0
1.0
1.0
0.0
0.5 | 0.0
0.5
0.0
0.0
0.0 | 0.0
0.5
0.5
0.0
0.0 | | MONTH | 11.5 | 0.0 | 4.5 | 4.0 | 0.0 | 0.5 | 2.5 | 0.0 | 0.5 | 1.5 | 0.0 | 0.0 | ## SMITH RIVER BASIN # 06077200 SMITH RIVER BELOW EAGLE CREEK, NEAR FORT LOGAN, MT--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | DAY | MAX | MIN | MEAN | |---|--|---|--|--|--|--|--|--|--|---|--|---| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 0.5
0.5
0.5
0.5 | 0.5
0.5
0.0
0.0 | 0.5
0.5
0.5
0.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 5.5
6.0
5.0
6.0
8.0 | 3.5
2.5
2.0
2.0
3.0 | 4.5
4.5
3.0
4.0
5.0 | 8.5
9.5
8.0
8.0
7.0 | 4.5
6.0
5.0
6.0
4.5 | 6.5
7.5
7.0
7.0
6.0 | | 6
7
8
9
10 | 0.5
0.0
0.0
0.5
0.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 7.5
8.0
10.0
11.5
12.0 | 3.0
2.5
3.5
4.0
5.0 | 5.0
5.0
6.0
7.5
8.0 | 8.0
9.5
8.0
9.0
7.5 | 3.5
5.0
5.0
5.0
5.5 | 5.5
7.0
6.5
7.0
6.5 | | 11
12
13
14
15 | 0.5
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.5
0.0
0.0
0.5
2.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
1.0 | 11.5
9.5
8.5
7.5
6.0 | 5.5
4.0
4.5
5.0
4.0 | 8.0
7.0
6.5
6.0
5.0 | 10.5
10.0
11.0
13.5
12.5 | 4.5
8.0
7.0
7.0
9.0 | 7.5
9.0
9.0
10.0
11.0 | | 16
17
18
19
20 | 1.0
2.5
1.5
0.5 | 0.0
0.5
0.5
0.5 | 0.0
1.0
1.0
0.5 | 2.5
3.0
2.5
6.5
5.5 | 1.0
0.0
0.5
1.0
2.0 | 1.5
1.5
1.5
3.0
4.0 | 7.0
7.0
7.5
10.5
10.5 | 2.5
3.5
5.0
4.5
5.0 | 5.0
5.5
6.0
7.0
8.0 | 11.0
10.5
9.0
10.0
10.5 | 8.0
6.5
6.0
4.0
5.5 | 9.5
8.5
6.5
7.0
8.0 | | 21
22
23
24
25 | 0.5
0.5
0.0
0.0 | 0.5
0.0
0.0
0.0 | 0.5
0.5
0.0
0.0 | 5.5
6.0
6.0
4.5
4.0 | 3.5
3.5
3.5
2.0
3.0 | 4.5
5.0
4.5
3.5
3.5 | 11.0
10.5
9.5
9.0
8.5 | 5.5
6.0
7.0
5.0
6.0 | 8.0
8.5
8.5
7.0
7.5 | 11.5
13.5
14.5
16.0
16.0 | 8.5
9.0
10.0
10.0
11.5 | 10.0
11.0
12.5
13.0
14.0 | | 26
27
28
29
30
31 | 0.0
0.0
0.0
 | 0.0
0.0
0.0
 | 0.0
0.0
0.0
 | 5.0
6.0
6.0
7.0
9.5
9.0 | 3.0
2.5
2.5
2.5
4.0
3.5 | 4.0
4.0
4.5
6.5
5.5 | 7.5
7.0
6.5
6.5
7.0 | 5.0
3.0
4.0
4.0
5.0 | 6.0
5.0
5.0
5.0
6.0 | 14.5
15.0
16.0
17.0
15.5
14.0 | 11.5
10.5
10.5
12.5
12.5
11.0 | 13.0
12.5
13.5
15.0
13.5
12.5 | | MONTH | 2.5 | 0.0 | 0.0 | 9.5 | 0.0 | 2.0 | 12.0 | 2.0 | 6.0 | 17.0 | 3.5 | 9.5 | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | | | 1
2
3
4
5 | 14.5
13.5
13.0
12.0
13.5 | JUNE 11.5 11.0 9.0 9.0 9.0 | 13.0
12.0
11.0
10.5
11.0 | 24.0
23.0
19.5
21.5
21.5 | JULY 16.5 16.5 15.5 13.5 13.5 | 20.0
19.5
17.5
17.5 | 25.5
26.5
23.5
24.0
24.0 | AUGUST
16.5
17.5
18.0
18.0
15.0 | 21.0
22.0
21.0
20.5
19.5 | 21.0
21.5
21.0
20.5
19.0 | 12.0
13.0
12.5
12.5
13.0 | 16.5
16.5
16.5
16.0
16.0 | | 1
2
3
4 | 13.5
13.0
12.0 | 11.5
11.0
9.0
9.0 | 12.0
11.0
10.5 | 23.0
19.5
21.5 | 16.5
16.5
15.5
13.5 | 19.5
17.5
17.5 | 25.5
26.5
23.5
24.0 | 16.5
17.5
18.0
18.0 | 22.0
21.0
20.5 | 21.0
21.5
21.0
20.5 | 12.0
13.0
12.5
12.5 | 16.5
16.5
16.5
16.0 | | 1
2
3
4
5
6
7
8 | 13.5
13.0
12.0
13.5
12.0
14.5
16.0
15.0 | 11.5
11.0
9.0
9.0
9.0
9.5
8.0
10.5
12.5
12.5 | 12.0
11.0
10.5
11.0
10.5
11.0
13.0
13.5
14.5 | 23.0
19.5
21.5
21.5
21.5
23.0
20.0
22.5 | 16.5
16.5
15.5
13.5
13.5
14.5
15.0
17.0
13.5 | 19.5
17.5
17.5
17.5
18.0
19.0
18.5
18.0 | 25.5
26.5
23.5
24.0
24.0
25.0
24.5
25.5
26.0 | 16.5
17.5
18.0
18.0
15.0 | 22.0
21.0
20.5
19.5
20.0
20.0
20.5
21.0 | 21.0
21.5
21.0
20.5
19.0
18.0
19.0
17.5
18.0
16.5 | 12.0
13.0
12.5
12.5
13.0
13.5
14.0
14.0 | 16.5
16.5
16.0
16.0
16.0
16.5
15.5
14.0
13.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 13.5
13.0
12.0
13.5
12.0
14.5
16.0
15.0
17.0
15.5
17.5
17.5
17.5 | 11.5
11.0
9.0
9.0
9.0
9.5
8.0
10.5
12.5
12.5
12.5 | 12.0
11.0
10.5
11.0
10.5
11.0
13.5
14.5
14.0
14.0
15.0 |
23.0
19.5
21.5
21.5
21.5
23.0
20.0
22.5
24.0
25.0
26.0
25.0
24.0 | 16.5
16.5
13.5
13.5
13.5
14.5
17.0
13.5
15.5
16.5
17.5
18.0
15.5 | 19.5
17.5
17.5
17.5
18.0
19.0
18.5
18.0
19.5 | 25.5
26.5
23.5
24.0
24.0
25.0
24.5
25.5
26.0
24.0
22.0
24.5
26.5 | 16.5
17.5
18.0
18.0
15.0
16.5
16.5
16.5
16.5
16.5
17.0
15.5 | 22.0
21.0
20.5
19.5
20.0
20.0
20.5
21.0
21.0
20.5
19.0
19.5
21.0 | 21.0
21.5
21.0
20.5
19.0
18.0
19.0
17.5
18.0
16.5 | 12.0
13.0
12.5
12.5
13.0
13.5
14.0
11.0
10.5 | 16.5
16.5
16.5
16.0
16.0
16.0
16.5
15.5
14.0
13.0
12.5
12.0
11.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 13.5
13.0
12.0
13.5
12.0
14.5
16.0
15.0
17.5
17.5
17.5
18.5
20.5
20.0
22.0
20.0 | 11.5
11.0
9.0
9.0
9.0
9.5
8.0
10.5
12.5
12.5
12.5
12.5
12.5
13.5 | 12.0
11.0
10.5
11.0
10.5
11.0
13.0
13.5
14.5
14.0
15.0
16.0
17.0
18.0
18.5
18.0 | 23.0
19.5
21.5
21.5
21.5
23.0
20.0
22.5
24.0
25.0
24.0
25.0
24.0
26.5
26.5 | 16.5
16.5
13.5
13.5
13.5
14.5
15.0
17.0
13.5
15.5
16.5
17.5
18.0
17.5
18.0
17.5
18.0 | 19.5
17.5
17.5
17.5
18.0
19.0
18.5
18.0
19.5
20.5
21.5
21.5
22.0
22.5
22.5 | 25.5
26.5
23.5
24.0
24.0
24.0
25.0
24.5
25.5
26.0
24.5
26.5
25.5
26.5
25.5 | 16.5
17.5
18.0
18.0
15.0
16.5
16.5
16.5
16.5
17.0
17.0
17.0
18.0
16.5
15.5 | 22.0
21.0
20.5
19.5
20.0
20.0
20.5
21.0
21.0
20.5
19.5
21.0
21.0
21.0 | 21.0
21.5
21.0
20.5
19.0
18.0
19.0
17.5
18.0
16.5
14.5
13.5
14.0
13.5 | 12.0
13.0
12.5
12.5
13.0
13.5
14.0
11.0
10.5
10.5
11.0
9.5
7.5
10.5
8.5
6.5
5.5 | 16.5
16.5
16.0
16.0
16.0
16.5
15.5
14.0
13.0
12.5
12.0
11.5
11.0
11.5
8.0
8.5
8.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 13.5
13.0
12.0
13.5
12.0
14.5
16.0
17.0
17.5
17.5
17.5
17.0
20.5
20.0
22.0
22.0
22.0
17.0
15.5
16.0 | 11.5
11.0
9.0
9.0
9.0
9.5
8.0
10.5
12.5
12.5
12.5
12.5
13.5
14.0
15.5
15.5
16.0
14.0 | 12.0
11.0
10.5
11.0
10.5
11.0
13.0
13.5
14.5
14.0
15.0
16.0
17.0
18.5
18.0
16.0
14.0
12.5
14.0 | 23.0
19.5
21.5
21.5
21.5
23.0
20.0
22.5
24.0
25.0
24.0
25.0
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5 | 16.5
16.5
13.5
13.5
13.5
14.5
17.0
13.5
15.5
16.5
17.5
16.0
17.5
18.0
17.5
18.0
17.5
18.5
17.5
17.5 | 19.5
17.5
17.5
17.5
18.0
19.0
18.5
18.0
19.5
20.5
21.5
21.0
19.5
22.5
22.5
22.5
22.5
21.5 | 25.5
26.5
23.5
24.0
24.0
25.0
24.5
25.5
26.0
24.0
22.0
24.5
25.5
25.5
26.5
25.5
25.5
26.5
23.0
24.0
24.0
24.0
24.0 | 16.5
17.5
18.0
18.0
15.0
16.5
16.5
16.5
16.5
17.0
17.0
17.0
18.0
15.5
17.0
17.0
15.5
17.0
17.0 | 22.0
21.0
20.5
19.5
20.0
20.0
20.5
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | 21.0
21.5
21.0
20.5
19.0
18.0
19.0
17.5
18.0
16.5
14.5
14.0
13.5
12.5
9.5
12.0
11.0
13.5
14.0
13.5 | 12.0
13.0
12.5
12.5
13.0
13.5
14.0
11.0
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5 | 16.5
16.5
16.0
16.0
16.0
16.5
15.5
14.0
13.0
12.5
12.0
11.5
11.0
8.5
8.5
8.5
10.0 | #### 06078200 MISSOURI RIVER NEAR ULM, MT LOCATION (REVISED).--Lat 47°26′09", long 111°23′12" (NAD 27), in NE¹/₄NW¹/₄NW¹/₄NW¹/₄ sec.5, T.19 N., R.3 E., Cascade County, Hydrologic Unit 10030102, on left bank 5.6 mi east of Ulm, 9.1 mi downstream from Smith River, and at river mile 2,140.4. DRAINAGE AREA.--20,941 mi². PERIOD OF RECORD.--August 1957 to current year. GAGE.--Water-stage recorder. Elevation of gage is 3,313.27 ft (NGVD 29). REMARKS.—Records good except those for estimated daily discharges, which are fair. Flow regulated by 10 smaller irrigation reservoirs and power plants, Clark Canyon Reservoir (station number 06015300), and Canyon Ferry Lake (station number 06058500). Diversions for irrigation of about 630,400 acres upstream from station. U.S. Army Corps of Engineers satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1953 reached a stage of about 17 ft; discharge, 35,000 ft³/s. Flood in June 1948 reached a stage of about 16 ft; discharge, 32,000 ft³/s, from information by local residents. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------------------|---------------------|---------------------------|----------------|-----------------|----------------|----------------|-----------------|----------------|----------------|---|-----------------|----------------| | 1 | 3160 | 3210 | 3670 | e3900 | e3800 | e3900 | 4120 | 5290 | 9470 | 5770 | 3630 | 2980 | | 2 | 3170 | 3200 | 3660 | e3900 | 3940 | e3900 | 4440 | 5430 | 9370 | 5740 | 3630 | 2960 | | 3
4 | 3190
3200 | 3190
3180 | 3750
3780 | e3900
e3850 | 3980
3990 | e4000
e4000 | 4540
4450 | 5320
5340 | 9780
10600 | 5590
5240 | 3630
3640 | 2910
2890 | | 5 | 3110 | 3170 | 3750 | 3850 | 3980 | e3900 | 4340 | 5440 | 11100 | 4870 | 3630 | 2900 | | 6
7 | 3100
3120 | 3140
3170 | 3790
3840 | 3820
3770 | 3980
e3950 | e3900
e3900 | 4280
4260 | 5520
5510 | 10300
8820 | 4640
4510 | 3650
3670 | 2900
2920 | | 8 | 3140 | 3370 | 3860 | 3770 | e3900 | e3900 | 4210 | 5500 | 7460 | 4320 | 3670 | 2970 | | 9
10 | 3150
3120 | 3500
3820 | 3760
3700 | 3820
3580 | e3900
3900 | e3900
e3900 | 4190
4190 | 5590
5860 | 6670
6560 | 4220
4270 | 3610
3320 | 3010
3000 | | 11 | 3100 | 3940 | 3610 | e3700 | 3870 | e3900 | 4400 | 6000 | 6780 | 4340 | 3240 | 3060 | | 12
13 | 3130
3190 | 3870
3720 | 3630
3730 | e3800
e3800 | 3850
3920 | e3900
e4000 | 4590
4760 | 5990
6020 | 6810
6680 | 4370
4420 | 3250
3160 | 2970
3030 | | 14 | 3160 | 3650 | 3850 | e3800 | 3890 | e4500 | 5050 | 6120 | 6480 | 4360 | 3050 | 3120 | | 15 | 3160 | 3620 | 3920 | e3800 | 3840 | 8880 | 5300 | 6450 | 6340 | 4210 | 2950 | 3100 | | 16
17 | 3170
3180 | 3650
3750 | 3900
3800 | e3800
e3800 | 3850
3920 | 6830
6010 | 5440
5240 | 7240
7660 | 6240
6170 | 4210
4250 | 2840
2830 | 3070
3110 | | 18
19 | 3180
3200 | 3820
3900 | 3690
3660 | e3800
e3800 | 3890
3870 | 5560
5070 | 5040
5000 | 7830
7450 | 6120
6100 | 4140
3860 | 2890
3000 | 3130
3120 | | 20 | 3210 | 3810 | 3740 | e3900 | 3720 | 4490 | 4940 | 7320 | 6130 | 3670 | 3120 | 3120 | | 21 | 3230 | 3780 | e3800 | e3900 | 3720 | 4230 | 4850 | 7270 | 6150 | 3580 | 3260 | 3120 | | 22
23 | 3220
3180 | 3770
3760 | e3800
e3800 | e3900
e3900 | e3750
e3800 | 4050
4030 | 4790
4800 | 7140
6920 | 6100
6070 | 3570
3560 | 3290
3320 | 3140
3110 | | 24 | 3170 | 3800 | e3800 | e4000 | e3800 | 4150
4270 | 4940
5460 | 6880
7100 | 6100 | 3550 | 3280 | 3110
3070 | | 25 | 3200 | 3810 | e3800 | e3900 | e3800 | | | | 6160 | 3530 | 3280 | | | 26
27 | 3260
3300 | 3810
3820 | e3800
e3750 | e3800
e3700 | e3800
e3800 | 4210
4200 | 5660
5600 | 7500
7890 | 6200
6200 | 3590
3590 | 3270
3280 | 3000
3030 | | 28
29 | 3240
3260 | 3820
3770 | e3700
e3700 | e3700
e3700 | e3800 | 4160
4130 | 5450
5340 | 8270
8910 | 6150
6040 | 3510
3510 | 3290
3250 | 3040
3080 | | 30 | 3290 | 3730 | e3700 | e3700 | | 4090 | 5210 | 9510 | 5930 | 3530 | 3100 | 3100 | | 31 | 3240 | | e3800 | e3700 | | 4050 | | 9770 | | 3550 | 3000 | | | TOTAL
MEAN | 98730
3185 | 108550
3618 | 116540
3759 | 118060
3808 | 108210
3865 | 137910
4449 | 144880
4829 | 210040
6775 | 215080
7169 | 130070
4196 | 102030
3291 | 91070
3036 | | MAX | 3300 | 3940 | 3920 | 4000 | 3990 | 8880 | 5660 | 9770 | 11100 | 5770 | 3670 | 3140 | | MIN
AC-FT | 3100
195800 | 3140
215300 | 3610
231200 | 3580
234200 | 3720
214600 | 3900
273500 | 4120
287400 | 5290
416600 | 5930
426600 | 3510
258000 | 2830
202400 | 2890
180600 | | STATIST | TICS OF N | MONTHLY ME | EAN DATA | FOR WATER | YEARS 195 | 7 - 2003 | , BY WATE | R YEAR (W | Υ) | | | | | MEAN | 4931 | 5303 | 5529 | 5638 | 5756 | 5886 | 6532 | 8957 | 10870 | 7375 | 4853 | 4608 | | MAX | 11230
1966 | 9497
1966 | 10690
1960 | 7213
1984 | 9501
1996 | 9652
1968 | 12070 | 19800
1976 | 24260
1981 | 19480
1975 | 8741
1993 | 9990 | | (WY)
MIN | 2977 | 3090 | 3095 | 3129 | 3096 | 3152 | 1976
3070 | 3501 | 2965 | 2868 | 2990 | 1984
2283 | | (WY) | 2002 | 2002 | 2002 | 2002 | 2002 | 2002 | 1961 | 1961 | 1961 | 1985 | 2000 | 1959 | |
SUMMAR | Y STATIST | rics | FOR | 2002 CAL | ENDAR YEAR | | FOR 2003 | WATER YEA | R | WATER YEA | ARS 1957 - | 2003 | | ANNUAL
ANNUAL | | | | 1312610
3596 | | | 1581170
4332 | | | 6353 | | | | HIGHEST | r annual | | | 3390 | | | 4332 | | | 9653 | | 1976 | | | ANNUAL N
DAILY N | | | 9790 | Jun 12 | | 11100 | Jun | 5 | 3479
28200 | May 24 | 2002
1981 | | LOWEST | DAILY ME | MEAN
EAN
AY MINIMUN | | 2850 | Sep 20 | | 2830
2920 | Aug 1 | 7 | 1700 | Jun 17 | 1961 | | MAXIMU | M PEAK FI | LOW | 1 | 2890 | Sep 18 | | 11100 | Jun | 5 | 3479
28200
1700
2150
a28500
15.2 | Sep 4
May 24 | 1981 | | MAXIMUI
ANNIJAT | M PEAK ST | TAGE
(AC-FT) | | 2604000 | | | 7.
3136000 | 86 Jun | 5 | 15.2
4603000 | 20 Jun 17 | 1997 | | TO PER | CEMI EVCE | מעשי | | 4330 | | | 6200 | | | 10000 | | | | | CENT EXCE | | | 3260
3090 | | | 3820
3120 | | | 5580
3390 | | | | | | | | | | | | | | | | | a--Gage height, 14.99 ft. e--Estimated. Figure 10. Schematic diagram showing diversions and storage in Sun River Basin. #### SUN RIVER BASIN #### 06085800 SUN RIVER AT SIMMS, MT LOCATION.--Lat 47°30'06", long 111°55'56" (NAD 27), in NW¹/₄NW¹/₄SE¹/₄ sec. 12, T. 20 N., R.3 W., Cascade County, Hydrologic Unit 10030104, on left bank 5 ft downstream from bridge on Montana Secondary Highway 565, 0.7 mi downstream from Simms Creek, 0.7 mi north of Simms, and at river mile 45.0. DRAINAGE AREA.--1,320 mi². PERIOD OF RECORD.--May to June 1953 (in WSP 1320-B), May to June 1964 (in WSP 1840-B), April 1966 to September 1979, April 1997 to current REVISED RECORDS.--WDR MT-75-1: 1964 (M). GAGE.--Water-stage recorder. Elevation of gage is 3,570 ft (NGVD 29). May 1941 to October 1965, nonrecording gage at different elevation. April 1966 to September 1979, water-stage recorder at site about 500 ft downstream at different elevation. REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated by Gibson, Pishkun, Willow Creek, and Nilan Reservoirs. Diversions for irrigation of about 105,000 acres upstream from station. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC APR MAY JUN JUL AUG SEP JAN FEB MAR e160 e170 e150 e160 e130 e170 e150 239 e170 e160 e140 e180 e150 e170 e140 e130 e190 e140 e170 e150 e120 e200 e150 e170 e150 e130 e600 e160 e170 e150 e120 e300 e160 e160 e110 e150 167 313 e400 37 117 e160 e160 e140 e110 e500 e170 e150 e140 e120 e600 e170 e140 e140 e140 e150 e140 e160 e150 e160 e160 e170 e150 e150 e200 e170 e150 e140 e170 e150 e160 e160 171 e150 e160 e150 e150 e150 e150 e170 e140 2.0 e130 e160 e140 e140 e130 e130 e130 e130 e120 e170 e130 e140 e100 e150 e150 e130 e110 e160 e140 e130 e120 27 e160 e150 e140 e130 e180 e160 e160 e120 e190 e160 e130 e170 e160 e150 175 77 e160 e160 e170 e150 e150 e150 e170 TOTAL MEAN 44.3 56.6 88.8 MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1966 2003, BY WATER YEAR (WY) MEAN MAX (WY) 89.0 49.3 MTN 96.3 80.9 72.1 44.3 48.8 (WY) SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1966 2003* ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN Jun 20 HIGHEST DAILY MEAN Jun 11 May 30 LOWEST DAILY MEAN Jul 12 May Sep May ANNUAL SEVEN-DAY MINIMUM Jul 1 Sep May 27 MAXIMUM PEAK FLOW Jun b13.70 MAXIMUM PEAK STAGE May 27 Jul 12 5.88 INSTANTANEOUS LOW FLOW a24 ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS ^{*--}During periods of operation (April 1966 to September 1979, April 1997 to current year). a--Gage height, 0.58 ft. b--About, from floodmark. e--Estimated. #### SUN RIVER BASIN #### 06088300 MUDDY CREEK NEAR VAUGHN, MT LOCATION.--Lat 47°37'30", long 111°38'05" (NAD 27), in NE¹/₄NE¹/₄NW¹/₄ sec. 32, T. 22 N., R.1 E., Cascade County, Hydrologic Unit 10030104, on left bank 200 ft downstream from bridge on county road 6.2 mi northwest of Vaughn and at mile 14.6 DRAINAGE AREA.--282 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--July 1968 to September 1987, March 1996 to current year. GAGE.--Water-stage recorder. Elevation of gage is 3,441.79 ft (NGVD 29) (levels by U.S. Army Corps of Engineers). REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. Natural flow increased by wastage from Greenfield Irrigation Project. Diversions for irrigation of about 400 acres upstream from station and pumped diversions from Muddy Creek upstream from station in SW¹/₄ sec. 2, T. 22 N., R.1 W, to supplement water supply for Benton Lake Wildlife Refuge. Bureau of Reclamation satellite telemeter at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 #### DAILY MEAN VALUES NOV FEB DAY OCT DEC JAN MAY JUL AUG SEP e48 e33 e25 e35 177 e52 e38 e30 e27 e55 e38 e40 e27 e22 e60 e35 e38 e24 e24 e65 e25 e40 e22 e20 e35 e42 e33 e24 e18 e45 e30 e22 e18 e48 e25 e22 e20 . 253 e22 e25 e22 e30 13 57 55 e32 27 127 188 217 e48 e23 e50 e25 e100 e30 e28 e23 e80 e23 e30 e60 e28 e25 e30 e28 e28 e28 e25 25 e28 e30 e23 e27 e25 e20 e27 e17 47 32 21 e27 e20 e15 e27 e22 e15 e40 e30 e22 e20 e22 e35 e37 e30 e20 2.8 e28 e22 e35 e27 e50 e30 ___ e45 e33 e35 TOTAL 53.2 22.6 MEAN 59.8 28.9 33.6 25.3 27 MAX MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1968 - 2003, BY WATER YEAR (WY)* MEAN 76.2 54.3 41.6 58.5 33.2 35.5 65.1 58.8 40.4 162 71.4 59.8 MAX (WY) MTN 40.8 34.9 21.7 19.3 17.5 23.4 21.3 56.3 42.1 (WY) FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR SUMMARY STATISTICS WATER YEARS 1968 - 2003* ANNUAL TOTAL ANNUAL MEAN 99.0 80.1 77.2 8.0 May 7 Dec 8 Dec May 7 1975 8 1972 22 1981 May 22 1981 Jun 11 Jan 28 Mar 4.50 Jun 21 Feb 20 Jun 24 2.4 Feb Jun 2.0 HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM LOWEST DAILY MEAN MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS ANNUAL RUNOFF (AC-FT) ^{*--}During periods of operation (July 1968 to September 1987, March 1996 to current year). a--From floodmark. a--From floodmar! e--Estimated. ### SUN RIVER BASIN ### 06088300 MUDDY CREEK NEAR VAUGHN, MT--Continued PERIOD OF RECORD.--Water years 1968 to September 1982, March 1996 to current year. PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: July 1968 to September 1982. SUSPENDED-SEDIMENT DISCHARGE: July 1968 to September 1982. REMARKS.--Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office. EXTREMES FOR PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: Maximum daily, 6,400 microsiemens per centimeter (μS/cm) Apr. 29, 1976; minimum daily, 365 μS/cm Feb. 20, 1969. SEDIMENT CONCENTRATION: Maximum daily mean, 13,000 mg/L, Mar. 18, 1978; minimum daily mean observed, 11 mg/L, Oct. 19, 1968, Oct. 19, 1972, Oct. 30, 1973. SEDIMENT LOAD: Maximum daily, 63,900 tons, May 22, 1981; minimum daily, 0.84 ton, Jan. 8, 1973. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | Temper- | Ammonia
+
org-N,
water,
unfltrd
mg/L
as N
(00625) | Ammonia water, fltrd, mg/L as N (00608) | Nitrite + nitrate water fltrd, mg/L as N (00631) | Nitrite
water,
fltrd,
mg/L
as N
(00613) | |----------------|------|---|--|--|--|---|--|--|---|--| | NOV 2002
14 | 1500 | 54 | 8.5 | 917 | 11.0 | 4.0 | . 23 | E.011 | 3.29 | .015 | | JAN 2003
15 | 0930 | 34 | 8.2 | 962 | 0.0 | 0.0 | .27 | .022 | 4.01 | .014 | | MAR
12 | 1150 | 26 | 8.0 | 960 | 11.0 | 0.0 | .21 | .028 | .796 | .004 | | APR
10 | 0820 | 21 | 8.6 | 1180 | 3.0 | 7.0 | .49 | .019 | 2.28 | .020 | | MAY
28 | 1830 | 59 | 8.5 | 547 | 29.0 | 22.0 | .93 | .055 | .583 | .014 | | JUN
18 | 0800 | 219 | 8.5 | 507 | 21.0 | 16.0 | 1.0 | .021 | .973 | .011 | | JUL
15 | 1540 | 241 | 8.8 | 587 | 35.0 | 21.0 | .79 | <.015 | 1.14 | .011 | | AUG
20 | 0815 | 73 | 8.4 | 815 | 18.0 | 17.0 | .39 | <.015 | 1.48 | .013 | | SEP
09 | 1100 | 38 | 8.4 | 895 | 14.0 | 13.0 | .35 | E.011 | 1.42 | .008 | | | | Date | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Phos-
phorus,
water,
unfltrd
mg/L
(00665) | Selen-
ium,
water,
unfltrd
ug/L
(01147) | Suspnd. sedi- ment, sieve diametr percent <.063mm (70331) | pended
sedi-
ment
concen-
tration
mg/L | pended
sedi-
ment
load,
tons/d | 1 | | | | | NOV 2002
14
JAN 2003 | <.007 | .013 | 2.7 | 82 | 40 | 5.8 | | | | | | 15
MAR | E.004 | .017 | 2.9 | 85 | 16 | 1.5 | | | | | | 12 | <.007 | .010 | .8 | 74 | 15 | 1.1 | | | | | | APR
10 | <.007 | .029 | 3.4 | 83 | 30 | 1.7 | | | | | | MAY
28 | .010 | .168 | 1.6 | 96 | 154 | 25 | | | | | | JUN
18 | .033 | .340 | 1.1 | 75 | 319 | 189 | | | | | | JUL
15 | .062 | .183 | 1.5 | 70 | 107 | 70 | | | | | | AUG
20 | <.007 | .015 | 2.2 | 75 | 8 | 1.6 | | | | | | SEP
09 | <.007 | .012 | 2.0 | 58 | 15 | 1.5 | | | E--Estimated. #### 06088500 MUDDY CREEK AT VAUGHN, MT LOCATION.--Lat $47^{\circ}33'40''$, long $111^{\circ}32'15''$ (NAD 27), in $SW^1/_4SE^1/_4NE^1/_4$ sec.24, T.21 N., R.1 E., Cascade
County, Hydrologic Unit 10030104, on left bank at Vaughn, and at river mile 1.1. DRAINAGE AREA.--314 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--June 1925 to January 1926, April 1934 to September 1968, July 1971 to current year. REVISED RECORDS.--WSP 856: 1937. WSP 1509: 1934-35, 1941(M). WSP 1559: 1956. WSP 1629: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 3,330 ft (NGVD 29). May 21, 1925 to Feb. 8, 1926, nonrecording gage at site 500 ft downstream at different elevation. Apr. 19, 1925 to Sept. 30, 1955, at previous site at elevation. May 18, 1955 to Apr. 25, 1960 and Sept. 24, 1962 to Sept. 30, 1968, auxiliary crest-stage gage. Oct. 1, 1955 to Sept. 30, 1968, nonrecording gage at bridge 670 ft upstream at previous elevation. July 1, 1971 to May 9, 1996, 700 ft upstream at previous elevation. REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. Natural flow increased by wastage from Sun River Canal and by return flow from irrigation. Diversions for irrigation of about 700 acres upstream from station. Bureau of Reclamation satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1908 reached a stage of about 24 ft, previous elevation (discharge not determined); flood in June 1932 reached a stage of about 19 ft, previous elevation (discharge not determined); from information by local residents. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e52 e40 e38 e28 115 e55 e42 e35 e32 e25 28 221 244 e45 e60 e45 e30 e70 e42 e40 e25 e30 77 74 e45 e40 e25 e25 e48 e38 e27 e20 2.7 e35 e52 e25 e20 e25 e25 e25 e30 e30 e25 e40 2.7 e37 e27 e80 e35 e30 e150 e120 e33 e35 e28 e52 e33 e30 e45 e32 e32 e35 e32 e30 e32 **e35** e28 e30 e30 e25 e30 e25 e20 e22 e30 e18 e30 e25 e17 e32 e22 e20 2.8 e35 e25 e23 e25 e55 e37 e30 e40 e35 e22 e32 e42 e25 e40 e30 e55 e38 e35 e50 e38 e40 ___ TOTAL 81.0 118 61.3 43.8 33.2 26.2 41.5 29.3 97.9 195 419 314 302 MEAN 97.0 138 MAX MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1925 2003, BY WATER YEAR (WY)* MEAN 99.7 60.0 44.2 34.4 37.2 54.7 41.6 68.5 1997 17.3 96.9 MAX 26.3 30.7 18.3 52.6 86.0 40.2 (WY) 16.8 10.0 22.4 52.1 44.0 MIN #### 06088500 MUDDY CREEK AT VAUGHN, MT--Continued | SUMMARY STATISTICS | FOR 2002 CALEN | NDAR YEAR | FOR 2003 WAT | TER YEAR | WATER YEARS | 1925 - 2003* | |--------------------------|----------------|-----------|--------------|----------|-------------|--------------| | ANNUAL TOTAL | 47346 | | 36969 | | | | | ANNUAL MEAN | 130 | | 101 | | 125 | | | HIGHEST ANNUAL MEAN | | | | | 185 | 1975 | | LOWEST ANNUAL MEAN | | | | | 61.2 | 1936 | | HIGHEST DAILY MEAN | 1150 | Jun 11 | 419 | Jun 21 | 3500 | Jun 4 1953 | | LOWEST DAILY MEAN | 17 | Jan 28 | 17 | Feb 23 | 4.8 | Mar 29 1977 | | ANNUAL SEVEN-DAY MINIMUM | 20 | Mar 4 | 21 | Feb 21 | 7.0 | Jan 24 1936 | | MAXIMUM PEAK FLOW | | | 438 | Jun 21 | a7600 | Jun 4 1953 | | MAXIMUM PEAK STAGE | | | 5.42 | Jun 21 | b17.70 | Jun 4 1953 | | INSTANTANEOUS LOW FLOW | | | | | c2.0 | Mar 16 1972 | | ANNUAL RUNOFF (AC-FT) | 93910 | | 73330 | | 90260 | | | 10 PERCENT EXCEEDS | 309 | | 258 | | 293 | | | 50 PERCENT EXCEEDS | 62 | | 62 | | 70 | | | 90 PERCENT EXCEEDS | 24 | | 27 | | 26 | | ^{*--}During periods of operation (June 1925 to January 1926, April 1934 to September 1968, July 1971 to current year). a--From rating curve entended above 3,000 ft³/s on basis of slope-area measurement of peak flow. b--From floodmark, site and datum then in use. c--Gage height, 1.20 ft, result of freezeup. #### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1968, 1971-82, October 1991 to current year. #### PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: October 1967 to September 1968, July 1972 to September 1982. WATER TEMPERATURE: October 1967 to September 1968, July 1971 to September 1979. SUSPENDED-SEDIMENT DISCHARGE: July 1971 to September 1982. REMARKS.--Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office. ## EXTREMES FOR PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: Maximum daily, 5,400 microsiemens per centimeter (µS/cm) at 25.0°C, Apr. 30, 1976; minimum daily, 470 µS/cm at 25.0°C, June 8, 1974. WATER TEMPERATURE: Maximum daily, 25.5°C, June 18, 1974, June 28, 1979; minimum daily, 0.0°C, on many days during winters. SEDIMENT CONCENTRATION: Maximum daily, 21,100 mg/L, May 22, 1981; minimum daily, 10 mg/L, Feb. 10, 1973. SEDIMENT LOAD: Maximum daily, 127,000 tons, May 22, 1981; minimum daily, 0.68 ton, Feb. 10, 1973. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs | pH,
water,
unfltrd
field,
std
units | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC | Temper-
ature,
air,
deg C | Temper-
ature,
water,
deg C | Ammonia + org-N, water, unfltrd mg/L as N | Ammonia
water,
fltrd,
mg/L
as N | Nitrite
+
nitrate
water
fltrd,
mg/L
as N | Nitrite-
water,
fltrd,
mg/L
as N | |----------------|------|--|--|---|------------------------------------|--------------------------------------|---|---|--|--| | | | (00061) | (00400) | (00095) | (00020) | (00010) | (00625) | (00608) | (00631) | (00613) | | NOV 2002 | | | | | | | | | | | | 15
JAN 2003 | 1000 | 61 | 8.5 | 952 | 11.0 | 5.0 | .23 | .023 | 3.08 | .013 | | 15 | 1215 | 35 | 8.3 | 1010 | 10.0 | 0.0 | .27 | E.010 | 3.95 | .014 | | MAR | | | | | | | | | | | | 19 | 1450 | 47 | 8.4 | 1050 | 15.0 | 0.0 | .72 | .060 | 2.42 | .015 | | APR
10 | 1000 | 24 | 8.7 | 1240 | 11.5 | 8.5 | .44 | .015 | 1.86 | .020 | | MAY | | | | | | | | | | | | 21
JUN | 1600 | 134 | 8.5 | 608 | 16.0 | 15.0 | .72 | E.014 | .537 | .009 | | 18 | 1000 | 238 | 8.5 | 584 | 26.0 | 19.0 | .99 | E.009 | 1.04 | .012 | | JUL
15 | 1230 | 250 | 8.5 | 594 | 30.0 | 19.0 | 1.0 | <.015 | 1.03 | .007 | | AUG | | | | | | | | | | | | 19 | 1645 | 134 | 8.4 | 734 | 30.0 | 23.0 | .37 | <.015 | .856 | .008 | | SEP
10 | 1430 | 88 | 8.6 | 798 | 21.0 | 16.0 | .34 | <.015 | .779 | .005 | | | | | | | | | | | | | $\mathtt{E--Estimated}.$ e--Estimated. # 06088500 MUDDY CREEK AT VAUGHN, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Phos-
phorus,
water,
unfltrd
mg/L
(00665) | ug/L | percent <.063mm | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | |----------------|--|--|------|-----------------|--|---| | NOV 2002 | | | | | | | | 15
JAN 2003 | <.007 | .015 | 2.4 | 61 | 61 | 10 | | 15 | <.007 | .015 | 3.0 | 67 | 31 | 2.9 | | 19 | E.006 | .119 | 3.5 | 92 | 118 | 15 | | APR
10 | <.007 | .027 | 3.6 | 93 | 44 | 2.9 | | MAY
21 | <.007 | .170 | 1.3 | 94 | 168 | 61 | | JUN
18 | .043 | .200 | 1.6 | 84 | 387 | 249 | | JUL
15 | .038 | .220 | 1.3 | 69 | 205 | 138 | | AUG
19 | <.007 | .030 | 1.7 | 83 | 43 | 16 | | SEP
10 | <.007 | .028 | 1.3 | 82 | 60 | 14 | E--Estimated. #### 06089000 SUN RIVER NEAR VAUGHN, MT LOCATION (REVISED).--Lat 47°31'33", long 111°30'43" (NAD 27), in SE¹/₄SW¹/₄sec.32, T.21 N., R.2 E., Cascade County, Hydrologic Unit 10030104, on right bank 2.3 mi downstream from Muddy Creek, 2.8 mi southeast of Vaughn, and at river mile 15.0. DRAINAGE AREA.--1,849 mi², revised. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--July to October 1897 (gage heights and discharge measurements only, published as "near Great Falls"), April 1934 to current year. Monthly discharge only for April 1934, published in WSP 1309. REVISED RECORDS.--WSP 786: 1934. WSP 1729: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 3,340 ft (NGVD 29). July 11 to Oct. 30, 1897, nonrecording gage at site 0.6 mi downstream at different elevation. Apr. 19 to Aug. 3, 1934, non-recording gage at 1.4 mi downstream at different elevation. Aug. 4, 1934 to Oct. 15, 2002, water-stage recorder 1.4 mi downstream at different elevation. REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. Flow regulated by Gibson, Pishkun, Willow Creek, and Nilan Reservoirs. Diversion for irrigation of about 110,000 acres upstream from station. U.S. Army Corps of Engineers satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 1964 exceeded the stage of the June 1908 flood by about 3 ft and is the highest since 1908, from information by local residents. # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|----------------------------------|--|--|--------------------------|--|----------------------------------|--|---------------------------------|--|--|---------------------------------| | 1 | 374 | e300 | 300 | e280 |
e250 | e240 | 195 | 589 | 2480 | 320 | 461 | 210 | | 2 | 381 | e320 | 298 | e280 | e240 | e250 | 217 | 379 | 1920 | 293 | 413 | 202 | | 3 | 383 | e340 | 294 | e290 | e240 | e230 | 246 | 337 | 1790 | 306 | 403 | 212 | | 4 | 379 | e350 | e300 | e290 | e240 | e220 | 235 | 403 | 1900 | 332 | 476 | 205 | | 5 | 392 | e360 | e280 | e290 | e230 | e230 | 225 | 499 | 1190 | 397 | 434 | 188 | | 6 | 371 | 372 | e290 | e300 | e230 | e210 | 220 | 503 | 531 | 387 | 449 | 182 | | 7 | 370 | 376 | e300 | e300 | e230 | e200 | 214 | 422 | 686 | 466 | 503 | 173 | | 8 | 345 | 352 | e300 | e290 | e220 | e200 | 212 | 477 | 949 | 477 | 512 | 173 | | 9 | 327 | 336 | e310 | e270 | e220 | e210 | 207 | 394 | 1140 | 514 | 570 | 181 | | 10 | 314 | 322 | e310 | e250 | e220 | e230 | 206 | 382 | 1190 | 486 | 515 | 192 | | 11 | 296 | 313 | e300 | e230 | e230 | e240 | 215 | 375 | 1150 | 426 | 487 | 193 | | 12 | 285 | 308 | e300 | e240 | e230 | e250 | 224 | 345 | 1130 | 406 | 376 | 189 | | 13 | 290 | 306 | e310 | e250 | e240 | e300 | 236 | 399 | 1020 | 367 | 339 | 209 | | 14 | 299 | 306 | 335 | e240 | e220 | e400 | 262 | 417 | 967 | 395 | 318 | 219 | | 15 | 314 | 305 | 317 | e250 | e230 | e500 | 286 | 391 | 856 | 402 | 296 | 241 | | 16 | 338 | 299 | 308 | e250 | e230 | 418 | 276 | 337 | 788 | 420 | 278 | 275 | | 17 | 333 | 291 | 303 | e250 | e230 | 323 | 264 | 348 | 647 | 382 | 281 | 364 | | 18 | 326 | 286 | 290 | e260 | e220 | 277 | 258 | 412 | 610 | 374 | 272 | 318 | | 19 | 317 | 288 | e280 | e270 | e210 | 256 | 259 | 438 | 573 | 376 | 235 | 300 | | 20 | 314 | 291 | e260 | e250 | e210 | 235 | 268 | 315 | 829 | 369 | 221 | 293 | | 21 | 312 | 289 | e250 | e230 | e200 | 226 | 278 | 262 | 1000 | 389 | 202 | 276 | | 22 | 315 | 295 | e250 | e230 | e190 | 218 | 279 | 212 | 755 | 381 | 203 | 274 | | 23 | 318 | 288 | e240 | e240 | e180 | 213 | 275 | 232 | 772 | 386 | 196 | 269 | | 24 | 317 | 296 | e240 | e250 | e180 | 212 | 260 | 205 | 670 | 412 | 202 | 259 | | 25 | 318 | 262 | e250 | e220 | e200 | 203 | 296 | 179 | 714 | 427 | 197 | 251 | | 26
27
28
29
30
31 | 338
336
336
326
e300
e280 | e270
339
336
315
302 | e270
e280
e280
e270
e270
e270 | e240
e250
e240
e240
e240
e250 | e230
e220
e230
 | 192
197
203
196
192
193 | 322
586
993
1010
865 | 1190
3180
2860
2770
3220
3510 | 673
585
524
425
508 | 426
482
465
413
451
493 | 189
183
194
204
211
211 | 238
238
239
235
233 | | TOTAL | 10244 | 9413 | 8855 | 7960 | 6200 | 7664 | 9889 | 25982 | 28972 | 12620 | 10031 | 7031 | | MEAN | 330 | 314 | 286 | 257 | 221 | 247 | 330 | 838 | 966 | 407 | 324 | 234 | | MAX | 392 | 376 | 335 | 300 | 250 | 500 | 1010 | 3510 | 2480 | 514 | 570 | 364 | | MIN | 280 | 262 | 240 | 220 | 180 | 192 | 195 | 179 | 425 | 293 | 183 | 173 | | AC-FT | 20320 | 18670 | 17560 | 15790 | 12300 | 15200 | 19610 | 51540 | 57470 | 25030 | 19900 | 13950 | | STATIS' | rics of | MONTHLY | MEAN DATA | FOR WATER | YEARS 193 | 4 - 2003, | BY WATER | R YEAR (WY |) | | | | | MEAN | 381 | 339 | 301 | 256 | 265 | 325 | 499 | 1570 | 2538 | 782 | 562 | 441 | | MAX | 779 | 908 | 896 | 656 | 601 | 868 | 3000 | 4333 | 8014 | 2508 | 1025 | 1040 | | (WY) | 1952 | 1990 | 1996 | 1986 | 1986 | 1969 | 1934 | 1976 | 1964 | 1975 | 1975 | 1993 | | MIN | 143 | 149 | 114 | 66.5 | 82.4 | 133 | 93.3 | 87.1 | 280 | 265 | 250 | 164 | | (WY) | 1937 | 1937 | 1936 | 1937 | 1936 | 1941 | 1941 | 1941 | 1941 | 1939 | 1940 | 1936 | #### 06089000 SUN RIVER NEAR VAUGHN, MT--Continued | SUMMARY STATISTICS | FOR 2002 CALE | NDAR YEAR | FOR 2003 WAT | TER YEAR | WATER YEARS | 1934 - 2003 | |--------------------------|---------------|-----------|--------------|----------|-------------|-------------| | ANNUAL TOTAL | 207200 | | 144861 | | | | | ANNUAL MEAN | 568 | | 397 | | 683 | | | HIGHEST ANNUAL MEAN | | | | | 1307 | 1943 | | LOWEST ANNUAL MEAN | | | | | 210 | 1941 | | HIGHEST DAILY MEAN | 5360 | Jun 11 | 3510 | May 31 | 37000 | Jun 10 1964 | | LOWEST DAILY MEAN | 69 | May 5 | 173 | Sep 7 | 23 | May 26 1941 | | ANNUAL SEVEN-DAY MINIMUM | 89 | Apr 30 | 183 | Sep 5 | 38 | May 21 1941 | | MAXIMUM PEAK FLOW | | | 3620 | May 27 | b53500 | Jun 9 1964 | | MAXIMUM PEAK STAGE | | | 4.21 | May 27 | c23.40 | Jun 9 1964 | | INSTANTANEOUS LOW FLOW | | | a160 | May 26 | d20 | Apr 24 1944 | | ANNUAL RUNOFF (AC-FT) | 411000 | | 287300 | | 494600 | | | 10 PERCENT EXCEEDS | 829 | | 578 | | 1380 | | | 50 PERCENT EXCEEDS | 304 | | 293 | | 360 | | | 90 PERCENT EXCEEDS | 160 | | 206 | | 179 | | #### WATER-QUALITY RECORDS PERIOD OF RECORD .-- Water years 1969 to current year. #### PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: October 1968 to September 2003 (discontinued). WATER TEMPERATURE: October 1968 to September 1979, August 1999 to current year. INSTRUMENTATION.--Temperature recorder installed Aug. 24, 1999. Specific conductance probe installed Sept. 18, 2001, discontinued September 30, 2003. REMARKS.--Daily water temperature record good. Daily specific conductance record fair. Missing specific conductance data for March 27 to April 10, May 31 to June 17, and Sept. 12-14 are due to equipment problems. Unpublished records of instantaneous water temperature and specific conductance are available in files of District office. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum daily, 2,610 microsiemens per centimeter (μS/cm), Apr. 8, 1977; minimum daily, 214 μS/cm, June 8, WATER TEMPERATURE: Maximum daily, 29.5°C, July 14, 18, 2002; minimum daily, 0.0°C on many days during winter. #### EXTREMES FOR CURRENT YEAR .-- SPECIFIC CONDUCTANCE: Maximum daily, 873 microsiemens per centimeter (µS/cm), Dec. 24; minimum daily, 287 µS/cm, May 19. WATER TEMPERATURE: Maximum daily, 25.0°C, July 17-19, 22; minimum daily, 0.0°C on many days October through March. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 Mitmita | | | | | | | | Ammonia | | Nitrite | | |----------|------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | | | pН, | Specif. | | | + | | + | | | | | Instan- | water, | conduc- | | | org-N, | Ammonia | nitrate | Nitrite | | | | taneous | unfltrd | tance, | Temper- | Temper- | water. | water. | water | water, | | | | dis- | field, | wat unf | ature, | ature, | unfltrd | fltrd, | fltrd, | fltrd, | | Date | Time | charge, | std | uS/cm | air, | water, | mq/L | mq/L | mq/L | mq/L | | | | cfs | units | 25 degC | deg C | deg C | as N | as N | as N | as N | | | | (00061) | (00400) | (00095) | (00020) | (00010) | | (00608) | (00631) | (00613) | | | | (/ | (, | (, | (, | (, | (/ | (, | (/ | (/ | | NOV 2002 | | | | | | | | | | | | 15 | 1300 | 304 | 8.6 | 732 | 11.0 | 4.0 | .12 | E.014 | 1.12 | .005 | | JAN 2003 | | | | | | | | | | | | 15 | 1440 | E250 | 8.3 | 693 | 5.0 | 0.0 | .15 | E.010 | 1.05 | .005 | | MAR | | | | | | | | | | | | 12 | 1530 | E250 | 7.9 | 672 | 10.5 | 0.0 | .41 | .020 | 3.80 | .014 | | APR | | | | | | | | | | | | 10 | 1240 | 204 | 8.5 | 690 | 16.0 | 12.5 | .29 | .024 | .244 | .003 | | MAY | | | | | | | | | | | | 29 | 1330 | 2720 | 8.3 | 317 | 30.0 | 17.0 | .39 | E.010 | .034 | E.002 | | JUN | | | | | | | | | | | | 17 | 1730 | 582 | 8.4 | 498 | 28.0 | 22.0 | . 44 | <.015 | .303 | .005 | | JUL | | | | | | | | | | | | 17 | 0815 | 369 | 8.6 | 648 | 28.0 | 22.5 | .55 | .016 | .661 | .007 | | AUG | | | | | | | | | | | | 19 | 1315 | 228 | 8.4 | 727 | 27.0 | 23.0 | .42 | .018 | .440 | .005 | | SEP | | | | | | | | | | | | 10 | 1230 | 192 | 8.6 | 805 | 21.0 | 16.0 | .43 | .016 | .342 | .004 | | | | | | | | | | | | | E--Estimated. a--Gage height, 1.94 ft. b--42,200 $\rm ft^3/s$ in main channel, plus 11,300 $\rm ft^3/s$ in bypass channel. c--From floodmark. d--Gage height, 0.52 ft, result of irrigation. e--Estimated. # 06089000 SUN RIVER NEAR VAUGHN, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | | | Da | te | water, p
fltrd,
mg/L u
as P | horus,
water,
nfltrd u
mg/L | Selen-
ium,
water,
nfltrd
ug/L
01147) | percent
<.063mm | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | | | |----------------|--|---|--|--|--|--|--|---|---|---|--| | | | | 2002 | <.007 | .007 | 1.0 | 66 | 41 | 34 | | | | | | JAN | 2003 | <.007 | .007 | 1.0 | 83 | 9 | E6.1 | | | | | | MAR | | | | | | | | | | | | | APR | | <.007 | .022 | 3.0 | 65 | 8 | E5.4 | | | | | | 1
MAY | | <.007 | .027 | .8 | 91 | 29 | 16 | | | | | | | 9 | <.007 | .158 | E.4 | 61 | 282 | 2070 | | | | | | 1 | 7 | .007 | .080 | .7 | 99 | 54 | 85 | | | | | | | 7 | .024 | .093 | 1.4 | 96 | 51 | 51 | | | | | | AUG
1 | | <.007 | .045 | 1.3 | 95 | 59 | 36 | | | | | | SEP
1 | | E.004 | .034 | 1.0 | 82 | 49 | 25 | | | | Date | Time | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) |
Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | | APR 2003
10 | 1240 | 310 | 63.7 | 37.6 | 1.76 | . 9 | 34.8 | 211 | 3.01 | .40 | 2.70 | | JUN
17 | 1730 | 220 | 48.5 | 24.9 | 1.70 | .6 | 19.7 | 180 | 2.70 | .36 | 4.75 | | Date | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d | unfltrd
ug/L | water,
unfltro
ug/L | d -able,
ug/L | Copper,
water,
unfltrd
recover
-able,
ug/L | water,
unfltrd
recover
-able,
ug/L | | | | APR 2003 | | | | | | - | | | | | | | 10
JUN | 159 | 431 | . 59 | 237 | E2 | <.2 | <.8 | 3.0 | . 37 | 3.22 | 3 | | 17 | 77.3 | 289 | .39 | 454 | 2 | <.2 | <.8 | 2.7 | .95 | 3.08 | 6 | E--Estimated. # 06089000 SUN RIVER NEAR VAUGHN, MT--Continued # SPECIFIC CONDUCTANCE, $\mu\text{S/CM},$ WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------|---------------------------------|---------------------------------|---------------------------------| | 1
2
3 | 738
745
743 | 831
821
781 | 706
706
707 | 686
690
675 | 577
570
572 | 664
664
665 | | 346
398
424 | | 584
627
630 | 639
636
644 | 789
795
794 | | 4
5 | 735
722 | 731
712 | 708
709 | 674
667 | 575
578 | 666
668 | | 397
409 | | 629
611 | 646
631 | 787
794 | | 6
7
8 | 723
714
718 | 698
705
744 | 712
739
725 | 668
669
672 | 580
582
585 | 668
669
669 | | 401
372
370 | | 631
644
623 | 635
634
650 | 804
820
822 | | 9
10 | 714
719 | 767
760 | 723
727 | 673
672 | 587
599 | 670
671 | | 335
342 | | 621
640 | 654
647 | 821
811 | | 11
12
13 | 741
742
762 | 753
744
739 | 721
722
718 | 684
725
765 | 605
607
609 | 672
672
666 | 661
637
626 | 340
352
365 | | 621
627
654 | 643
663
672 | 779
 | | 14
15 | 784
782 | 740
741 | 697
694 | 735
705 | 607
608 | 655
566 | 622
618 | 354
332 | | 640
631 | 690
716 | 810 | | 16
17
18
19
20 | 741
723
731
733
728 | 741
742
745
745
747 | 699
704
709
725
741 | 704
710
718
712
677 | 607
605
607
609
610 | 507
476
489
495
466 | 653
648
623
595
602 | 321
316
311
287
297 |
515
524
549 | 640
645
646
638
651 | 726
735
734
724
731 | 784
772
777
782
786 | | 21
22 | 726
725 | 752
751 | 765
789 | 657
657 | 615
623 | 442
366 | 573
543 | 337
352 | 602
576 | 648
652 | 749
773 | 769
756 | | 23
24
25 | 727
734
745 | 749
751
731 | 830
873
846 | 659
663
665 | 635
643
649 | 384
452
436 | 532
531
486 | 364
364
374 | 588
590
550 | 658
652
646 | 796
806
810 | 742
731
727 | | 26
27
28 | 758
771
766 | 709
707
706 | 830
831
794 | 668
671
638 | 652
656
662 | 433
 | 463
446
338 | 390
323
307 | 550
558
572 | 657
651
642 | 803
794
799 | 724
729
722 | | 29
30
31 | 758
745
779 | 705
706
 | 694
681
684 | 622
623
621 | | | 309
316
 | 318
312
 | 586
595
 | 659
674
654 | 797
785
777 | 715
719
 | | MEAN
MAX
MIN | 741
784
714 | 742
831
698 | 739
873
681 | 678
765
621 | 608
662
570 | | | | | 640
674
584 | 714
810
631 | | # WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|-------------------------------------|--------------------------------------|------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | | OCTOBER | | NO | VEMBER | | DE | CEMBER | | | JANUARY | | | 1
2
3
4
5 | 13.5
12.5
9.0
10.5
10.5 | 13.5
12.5
9.0
10.5
10.5 | 10.0
8.5
8.0
8.0
7.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 2.5
2.5
2.0
0.0 | 2.5
2.5
2.0
0.0 | 2.0
2.0
0.5
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 6
7
8
9
10 | 12.0
14.0
14.0
14.0 | 12.0
14.0
14.0
14.0
14.0 | 8.5
10.0
10.5
10.5
9.5 | 0.5
3.0
3.0
3.0
2.5 | 0.5
3.0
3.0
3.0
2.5 | 0.0
1.5
2.5
2.5
2.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 11
12
13
14
15 | 10.5
10.5
11.5
11.5 | 10.5
10.5
11.5
11.5 | 7.5
6.0
6.5
6.5 | 2.5
2.5
4.0
4.0 | 2.5
2.5
4.0
4.0
4.0 | 2.0
2.0
3.5
3.5 | 0.0
0.0
0.0
1.5
2.5 | 0.0
0.0
0.0
1.5
2.5 | 0.0
0.0
0.0
0.5
2.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 16
17
18
19
20 | 9.0
8.0
9.0
8.5
9.0 | 9.0
8.0
9.0
8.5
9.0 | 7.0
7.5
8.0
8.0 | 3.5
3.5
2.5
3.5
5.5 | 3.5
3.5
2.5
3.5
5.5 | 3.0
3.0
2.0
2.5
4.5 | 2.0
1.5
0.0
0.0 | 2.0
1.5
0.0
0.0 | 1.5
1.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 21
22
23
24
25 | 9.5
8.0
5.0
3.5
3.5 | 9.5
8.0
5.0
3.5
3.5 | 9.0
6.5
4.0
3.0 | 6.0
6.0
5.5
3.5 | 6.0
6.0
5.5
3.5
0.5 | 5.5
6.0
5.0
2.0
0.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 26
27
28
29
30
31 | 3.0
3.5
3.5
2.0
0.0 | 3.0
3.5
3.5
2.0
0.0 | 3.0
3.0
3.0
0.5
0.0 | 0.5
2.0
3.0
3.5
3.0 | 0.5
2.0
3.0
3.5
3.0 | 0.0
1.5
2.5
3.5
2.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | | MONTH | 14.0 | 0.0 | 6.5 | 6.0 | 0.0 | 2.0 | 2.5 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | # 06089000 SUN RIVER NEAR VAUGHN, MT--Continued # WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | DAY | MAX | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | |---|--|--|--|--|--|--|--|--|--|---|---|--| | 1
2
3
4
5 | 0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 11.0
8.5
6.5
7.0
8.5 | 11.0
8.5
6.5
7.0
8.5 | 9.5
7.5
5.0
5.5
6.5 | 11.0
13.0
13.0
12.0
9.0 | 11.0
13.0
13.0
12.0
9.0 | 9.0
11.5
12.0
9.5
8.0 | | 6
7
8
9
10 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 9.5
9.0
10.5
13.0
14.0 |
9.5
9.0
10.5
13.0
14.0 | 7.5
7.5
8.5
11.0
11.5 | 11.0
12.0
11.5
8.5
9.5 | 11.0
12.0
11.5
8.5
9.5 | 9.5
11.0
10.0
8.0
8.5 | | 11
12
13
14
15 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
2.0 | 0.0
0.0
0.0
0.0
2.0 | 0.0
0.0
0.0
0.0
0.5 | 15.5
15.5
15.5
14.5
12.5 | 15.5
15.5
15.5
14.5
12.5 | 13.0
13.0
13.5
13.0
12.0 | 12.0
14.5
14.5
16.0
16.5 | 12.0
14.5
14.5
16.0
16.5 | 10.0
13.0
13.5
14.5
15.5 | | 16
17
18
19
20 | 0.0
0.0
0.5
0.5 | 0.0
0.0
0.5
0.5 | 0.0
0.0
0.0
0.0 | 4.0
5.5
5.5
6.5
7.0 | 4.0
5.5
5.5
6.5
7.0 | 3.5
4.5
4.5
4.5
5.5 | 12.0
12.5
11.0
13.5
14.5 | 12.0
12.5
11.0
13.5
14.5 | 11.0
11.0
11.0
11.5
13.0 | 15.5
13.5
11.0
11.0
14.0 | 15.5
13.5
11.0
11.0 | 13.5
11.5
9.0
9.0
12.0 | | 21
22
23
24
25 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 6.5
8.5
9.0
6.0 | 6.5
8.5
9.0
6.0 | 5.5
6.5
7.0
5.0
4.5 | 15.5
16.5
18.5
17.5
16.5 | 15.5
16.5
18.5
17.5
16.5 | 14.0
15.0
16.5
16.0
15.5 | 16.0
16.5
17.0
20.0
22.5 | 16.0
16.5
17.0
20.0
22.5 | 14.0
15.0
16.0
17.5
20.0 | | 26
27
28
29
30
31 | 0.0
0.0
0.0
 | 0.0
0.0
0.0
 | 0.0
0.0
0.0
 | 7.5
6.5
7.0
8.0
10.0
12.0 | 7.5
6.5
7.0
8.0
10.0 | 5.5
5.5
5.0
6.0
7.5 | 14.0
12.0
10.5
7.5
8.5 | 14.0
12.0
10.5
7.5
8.5 | 12.5
11.0
9.0
7.0
7.0 | 20.5
14.5
15.0
16.0
15.5
13.5 | 20.5
14.5
15.0
16.0
15.5
13.5 | 18.5
13.0
14.0
15.0
14.0
12.5 | | MONTH | 0.5 | 0.0 | 0.0 | 12.0 | 0.0 | 3.0 | 18.5 | 6.5 | 11.0 | 22.5 | 8.5 | 12.5 | | | | | | | | | | | | | | | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | lR | | 1
2
3
4
5 | 13.5
13.5
14.0
13.5
13.0 | JUNE 13.5 13.5 14.0 13.5 13.0 | 12.5
13.5
13.0
12.5
12.0 | 24.5
23.0
21.0
20.5
20.5 | JULY 24.5 23.0 21.0 20.5 20.5 | 22.5
21.5
19.5
19.0
19.0 | | AUGUST 22.5 23.5 23.0 21.5 21.0 | 21.0
21.5
22.0
20.5
20.0 | 20.5 | SEPTEMBE
20.5
20.0
20.5
21.0
21.0 | 18.5
18.5
19.0
19.0 | | 1
2
3
4 | 13.5
14.0
13.5 | 13.5
13.5
14.0
13.5 | | 24.5
23.0
21.0
20.5
20.5
21.5
20.5
21.0
22.5 | 24.5
23.0
21.0
20.5 | 22.5
21.5
19.5
19.0
19.0
19.0
19.5
19.0
20.5 | 22.5
23.5
23.0
21.5
21.0 | 22.5
23.5
23.0
21.5 | 21.5
22.0
20.5 | 20.5
20.0
20.5
21.0 | 20.5
20.0
20.5
21.0 | 18.5
18.5
19.0
19.0 | | 1
2
3
4
5
6
7
8 | 13.5
14.0
13.5
13.0
14.0
15.0
16.0
15.5 | 13.5
13.5
14.0
13.5
13.0
14.0
15.0
16.0
15.5 | 13.0
13.5
15.0
15.0
15.0 | | 24.5
23.0
21.0
20.5
20.5
21.0
21.5
20.5
21.0
22.5 | | 22.5
23.5
23.0
21.5
21.0
21.5
21.5
22.5
23.0
23.5 | 22.5
23.5
23.0
21.5
21.0
21.5
21.5
22.5
23.0 | 21.5
22.0
20.5
20.0
20.0
20.0
21.0
21.5 | 20.5
20.0
20.5
21.0
21.0
20.5
20.5
19.5
17.0
16.5 | 20.5
20.0
20.5
21.0
21.0
20.5
20.5
19.5
17.0 | 18.5
18.5
19.0
19.0
19.5
19.5
19.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 13.5
14.0
13.5
13.0
14.0
15.0
16.0
15.5
16.0 | 13.5
13.5
14.0
13.5
13.0
14.0
15.0
16.0
15.5
16.0 | 13.0
13.5
15.0
15.0
15.0
15.5
16.5
17.0
17.0 | 21.0
21.5
20.5
21.0
22.5
23.0
24.0
24.0
21.5 | 24.5
23.0
21.0
20.5
20.5
21.5
20.5
21.5
22.5
23.0
24.0
24.0
21.5 | 19.0
19.5
19.0
19.0
20.5
21.5
22.5
22.0
20.0 | 22.5
23.5
23.0
21.5
21.0
21.5
22.5
23.0
23.5
23.0
21.5
23.0
24.0 | 22.5
23.5
23.0
21.5
21.0
21.5
22.5
23.0
23.5
23.0
21.5
23.0
24.0 | 21.5
22.0
20.5
20.0
20.0
21.0
21.5
22.5
22.5 | 20.5
20.0
20.5
21.0
21.0
20.5
20.5
19.5
17.0
16.5
15.5
14.5 | 20.5
20.0
20.5
21.0
21.0
20.5
20.5
19.5
17.0
16.5
14.5
14.5 | 18.5
18.5
19.0
19.0
19.5
19.5
19.5
18.5
15.5
15.0
14.5
13.0
13.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 13.5
14.0
13.5
13.0
14.0
15.0
16.0
15.5
16.0
16.5
17.5
17.5
17.5
19.5 | 13.5
13.5
14.0
13.5
13.0
14.0
15.0
16.0
15.5
16.0
16.5
17.5
17.5
17.5
19.5 | 13.0
13.5
15.0
15.0
15.0
15.5
16.5
17.0
17.0
18.0
19.5
20.5
21.5 | 21.0
21.5
20.5
21.0
22.5
23.0
24.0
21.5
23.0
24.0
21.5
23.0 | 24.5
23.0
21.0
20.5
20.5
21.5
20.5
21.5
22.5
23.0
24.0
24.0
21.5
23.0
24.5
25.0
25.0 | 19.0
19.5
19.0
20.5
21.5
22.5
22.0
20.0
21.0
23.0
23.5
23.5 | 22.5
23.5
23.0
21.5
21.0
21.5
21.5
22.5
23.0
23.5
23.0
24.0
24.0
24.0
22.5
22.5
23.5 | 22.5
23.5
23.0
21.5
21.0
21.5
21.5
22.5
23.0
23.5
23.0
24.0
24.0
22.5
22.0
22.5
23.5 | 21.5
22.0
20.5
20.0
20.0
21.0
21.5
22.5
22.5
22.5
21.0
22.5
21.5
22.5 | 20.5
20.0
20.5
21.0
21.0
20.5
20.5
19.5
17.0
16.5
15.5
14.5
15.0
13.5 | 20.5
20.0
20.5
21.0
21.0
20.5
20.5
19.5
17.0
16.5
14.5
14.5
14.5
15.0
13.5 | 18.5
19.0
19.0
19.5
19.5
19.5
19.5
18.5
15.5
13.0
13.0
13.0
13.0
11.0
9.0
9.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 13.5 14.0 13.5 13.0 14.0 15.0 16.0 16.5 17.5 17.5 17.5 19.5 20.0 22.0 22.5 23.0 20.5 | 13.5
13.5
14.0
13.5
13.0
14.0
15.0
16.0
15.5
16.0
16.5
17.5
17.5
17.5
17.5
19.5
20.0
22.0
22.5
23.0
20.5 | 13.0
13.5
15.0
15.0
15.0
15.0
17.0
17.0
18.0
19.5
20.5
21.5
21.5
19.5 | 21.0
21.5
20.5
21.0
22.5
23.0
24.0
21.5
23.0
24.5
25.0
25.0
25.0
24.5
25.0
25.0
24.5 | 24.5
23.0
21.0
20.5
20.5
21.5
20.5
21.0
22.5
23.0
24.0
24.0
21.5
23.0
24.5
25.0
24.5
25.0
24.5
25.0
24.5 | 19.0
19.5
19.0
19.0
20.5
21.5
22.5
22.0
20.0
21.0
22.0
23.0
23.5
23.0
22.5
23.0
22.5 | 22.5
23.5
23.0
21.5
21.0
21.5
22.5
23.0
23.5
23.0
24.0
24.0
22.5
23.0
24.0
22.5
23.0
24.0
22.5
23.0
24.0
22.5
23.0 | 22.5
23.5
23.0
21.5
21.0
21.5
22.5
23.0
23.5
23.0
24.0
24.0
22.5
22.5
23.0
24.0
22.5
23.0
24.0
22.5
23.0
24.0 | 21.5
22.0
20.5
20.0
20.0
21.0
21.5
22.5
22.5
22.5
21.0
22.5
21.0
22.0
22.0
22.0
22.0 | 20.5
20.0
20.5
21.0
20.5
21.0
20.5
19.5
17.0
16.5
15.5
14.5
15.0
13.5
12.5
9.5
11.5
13.5 | 20.5
20.0
20.5
21.0
21.0
20.5
19.5
17.0
16.5
15.5
14.5
14.5
15.0
13.5
12.5
9.5
11.5
13.5 | 18.5
19.0
19.0
19.5
19.5
19.5
18.5
15.5
15.0
14.5
13.0
13.0
13.0
12.0
12.0
12.0
12.0
12.0
11.5 | #### 06090300 MISSOURI RIVER NEAR GREAT FALLS, MT LOCATION.--Lat 47°35'04", long 111°03'35" (NAD 27), in SW¹/₄SE¹/₄SW¹/₄ sec.11, T.21 N., R.5 E., Cascade County, Hydrologic Unit 10030102, on left bank 700 ft downstream from Morony Dam, 12.6 mi northeast of Great Falls, and at river mile 2,105.4. DRAINAGE AREA.--23,292 mi². PERIOD OF RECORD.--May to July 1953 (in WSP 1320-B), October 1956 to current year. GAGE.--Water-stage recorder. Elevation of gage is 2,807.21 ft (NGVD 29). Prior to July 27, 1977, nonrecording gage at same site at elevation 2.00 ft higher. July 27, 1977 to May 26, 1987, at site 600 ft upstream at elevation 2.00 ft higher. October 1971 to July 27, 1977, discharges were obtained from the Montana Power Company at Rainbow Dam 7.05 mi upstream. Prior to October 1971, Foxboro meters were used for determining discharge through powerplant. Water-stage recorder on Morony Reservoir was used for determining head on taintor gates with elevation of gage at sea level (level by Montana Power Company). REMARKS.--Records good. Flow regulated by 18 smaller irrigation reservoirs and powerplants upstream, Clark Canyon Reservoir (station number 06015300), and Canyon Ferry Lake (station number 06058500). Diversion for irrigation of about 750,400 acres upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILLY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------------|---------------|-------------------|----------------------|-----------------------|------------------|--
--------------------------------------|----------------------|----------------|--|--------------|------------------| | 1 | 4210 | 4300 | 4940 | 4800 | 5490 | 5300 | 5200 | | 12800 | 7380 | 4850 | 3730 | | 2 | 4390
4510 | 4290
4360 | 4820
4890 | 5160
5270 | 4820
4990 | 4940
5210 | 5340
5760 | 6800
6830 | 11600
11400 | 7320
7020 | 4810
4910 | 4010
3650 | | 4 | 4450 | 4440 | 4850 | 5390 | 4890 | 5090 | 5650 | 6790 | 12100 | 6510 | 5070 | 3720 | | 5 | 4300 | 4430 | 4820 | 5250 | 4900 | 4720 | 5390 | 6800 | 12400 | 6620 | 4910 | 3630 | | 6 | 4320 | 4430 | 4670 | 4900 | 4770 | 4770 | 5470 | 7030 | 11500 | 6110 | 4980 | 3650 | | 7
8 | 4370
4310 | 4480
4350 | 5100
5110 | 4950
4840 | 4220
4910 | 4640
4250 | 5470
5320
5360
5300 | 6940 | 10200
9560 | 6070
5880 | 5020
5050 | 3580
3670 | | 9 | 4280 | 4560 | 5030 | 4890 | 5180 | 3970 | 5300 | 6910
6940 | 8740 | 5560 | 5300 | 3770 | | 10 | 4310 | 4770 | 4870 | 4560 | 5070 | 4230 | 5290 | 6970 | 8460 | 5710 | 4980 | 3690 | | 11 | 4310 | 5090 | 4850 | 3390 | 4930 | 4480 | 5410
5700
5900
6300
6330 | 7130 | 8760 | 5810 | 4850 | 3840 | | 12 | 4100 | 5250 | 4740 | 3400 | 4790 | 5200 | 5700 | 7230 | 8210 | 5870 | 4390 | 3880 | | 13
14 | 4210
4370 | 5050
4880 | 4700
4860 | 4400
4680 | 4810
4880 | 5770
6870 | 5900 | 7530
7000 | 8260
8150 | 5940
6010 | 4420
3990 | 3940
4080 | | 15 | 4370 | 4850 | 5110 | 4990 | 4810 | 11000 | 6330 | 7590 | 8200 | 5860 | 3990 | 3910 | | | | | | | | | | | | | | | | 16
17 | 4300
4320 | 4800
4790 | 5150
4980 | 5110
4700 | 4790
4860 | 7760
6870 | 6530
6590 | | 7920
7900 | 5650
5640 | 3750
4000 | 4140
4100 | | 18 | 4340 | 4950 | 4860 | 4460 | 4940 | 6700 | | 8880 | 7650 | 5650 | 4010 | 4120 | | 19 | 4420 | 5030 | 4670 | 4700 | 4900 | 6620 | 6240
6220 | 8780 | 7680 | 5120 | 3880 | 3960 | | 20 | 4480 | 5110 | 4350 | 5230 | 4780 | 5970 | 6220 | 8780
8470 | 7700 | 5020 | 3930 | 3820 | | 21 | 4470 | 5010 | 3800 | 5080 | 4400 | 4760 | 6080 | 8310 | 7940 | 5190 | 4010 | 3830 | | 22 | 4410 | 4960 | 3420 | 4270 | 4060 | 4720 | 6010
6020 | 8310
8170
7950 | 7930 | 4870 | 4080 | 4050 | | 23 | 4380 | 4970 | 4170 | 2750 | 3250 | 5020 | | | 7730 | 4870 | 3950 | 4010 | | 24
25 | 4320
4350 | 4930
5040 | 4360
4670 | 3170
4570 | 3120
3430 | 5070
5320 | 6150
6390 | 7930
7970 | 7860
7880 | 4860
4700 | 4140
4360 | 3930
4030 | | | | | | | | | | | | | | | | 26
27 | 4340
4550 | 4850
5000 | 4170
3910 | 5010
5040 | 4440
4750 | 5480
5240
5290
5170
5160
5190 | 6930
7010
7170
7320 | 8550 | 7850
7860 | 4700
4890
5010
4730
4800 | 4130
4090 | 3850 | | 28 | 4530 | 5150 | 4740 | 5270 | 5330 | 5240 | 7010 | 11200
11400 | 7780 | 4890
5010 | 4100 | 3760
4280 | | 29 | 4440 | 5090 | 5360 | 5570 | | 5170 | 7320 | 11800 | 7560 | 4730 | 4020 | 4270 | | 30 | 4430 | 4930 | 5440 | 5690 | | 5160 | 6990 | 12300 | 7340 | 4800 | 3900 | 3890 | | 31 | 4280 | | 5240 | 5570 | | 5190 | | 13300 | | 4740 | 3880 | | | | | 144140 | 146650 | 147060 | 130510 | 170780 | 181880 | 256620 | 266920 | | 135750 | 116790 | | MEAN | 4358 | 4805 | 4731 | 4744 | 4661 | 5509 | 6063 | 8278 | 8897 | 5616 | 4379 | 3893 | | MAX
MTN | 4550
4100 | 5250
4290 | 5440
3420 | 5690
2750 | 5490
3120 | 11000
3970 | 7320
5200 | 13300
6790 | 12800
7340 | 7380
4700 | 5300
3750 | 4280
3580 | | | 268000 | 285900 | 290900 | 291700 | 258900 | 338700 | 360800 | 509000 | 529400 | 345300 | 269300 | 231700 | | CHART | ITTOO OF I | MONTHLIT M | 1731 DAMA | EOD WATER | VEADO 105 | 7 2002 | DV WAR | ER YEAR (WY | , | | | | | | | | | | | | | · | | | | | | MEAN | 5808 | 6160 | 6143 | 6297 | 6495 | 6805 | 7466 | 10940 | 13730 | 8626 | 5928 | 5552 | | MAX
(WY) | 11940
1966 | 10430
1966 | 11520 | 8232
1971 | 9252
1997 | 10820
1968 | 13200
1976 | 24780
1976 | 30160
1964 | 23560
1975 | 9946
1993 | 9992
1984 | | MIN | 3829 | 3950 | 3773 | 3869 | 4030 | 4021 | 3526 | 4454 | 3758 | 3817 | 3719 | 3109 | | (WY) | 1989 | 1993 | 1960
3773
2002 | 2002 | 2002 | 1961 | 1961 | 1961 | 1977 | 1977 | 1988 | 1959 | | SUMMAR | RY STATIS | TICS | FOR | 2002 CAL | ENDAR YEAR | | FOR 2003 | WATER YEAR | | WATER YEAR | RS 1957 - | - 2003 | | A NINITI A T | TOTAL | | | 1776300 | | | 2006310 | | | | | | | ANNUAL | | | | 4867 | | | 5497 | | | 7496 | | | | | T ANNUAL | MEAN | | | | | | | | 11490 | | 1975 | | | ANNUAL I | MEAN | | | | | | | | 4349 | | 2001 | | | T DAILY I | MEAN | | 15000
2500
3450 | Jun 12 | | 13300 | May 31 | | 63400 | Jun 10 | 1964 | | | DAILY M | LAN
AY MINIMUN | Л | 2500
3450 | Mar 21
Tan 15 | | 2750
3670 | Sen 3 | | 2740 | Apr It | 5 1961
5 1959 | | | M PEAK F | LOW | • | 3130 | 0 dii 13 | | 13800 | May 31 | | a72000 | Jun 10 | 1964 | | MAXIMU | M PEAK S' | TAGE | | | | | 5 | .07 May 31 | | 11490
4349
63400
1760
2740
a72000
b9.02
c1.0
5430000 | May 2 | 1981 | | INSTAN | TANEOUS | LOW FLOW | | 250200 | | | 200000 | | | c1.0 | Apr 16 | 5 1962 | | ANNUAL | RUNOFF | (AC-FT) | | 3523000 | | | 3980000
7890 | | | 5430000
11900 | | | | TO FEN | CENT EXC | ولاقت | | 6150
4460 | | | 4940 | | | 6400 | | | | | CENT EXC | | | 3920 | | | 3970 | | | 4250 | | | | | | | | | | | | | | | | | a--From hydrographic comparison with nearby stations. b--Site and datum then in use. c--About, powerplant shutdown. #### 06090650 LAKE CREEK NEAR POWER, MT $LOCATION.--Lat\ 47^{\circ}41^{\circ}5^{\circ},\ long\ 111^{\circ}23^{\circ}23^{\circ}\ (NAD\ 27),\ in\ SE^{1}/_{4}SE^{1}/_{4}sec.31,\ T.23\ N.,\ R.3\ E.,\ Chouteau\ County,\ Hydrologic\ Unit\ 10030102,\ on\ SE^{1}/_{4}SE$ left bank 1.9 mi downstream from county bridge, 1.5 mi upstream from Benton Lake, and 14 mi east of Power. DRAINAGE AREA.--83.8 mi², of which 11.4 mi² is noncontributing. PERIOD OF RECORD.--July 1990 to current year (seasonal records only). GAGE.--Water-stage recorder. Parshall flume since Apr. 1, 1997. Prior to Apr. 1, 1997 water-stage recorder located at site 1.9 mi upstream. Elevation of gage is 3,620 ft (NGVD 29). REMARKS.--Seasonal records fair. Seasonal flows from Muddy Creek diverted into Lake Creek, most years. U. S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. # DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|---|----------|---------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--|-----|-----| | 1
2
3
4
5 | | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 33
32
26
24
33 | 0.04
0.00
0.00
0.00
0.00 | 0.00
7.8
23
26
28 | 9.3
11
7.9
10 | 9.6
9.4
9.5
9.7
9.5 | | | | 6
7
8
9
10 | | | | 0.00
0.00
0.00
0.00 | 0.06
0.01
0.00
0.00
0.00 | 32
31
31
30
26 | 0.00
0.00
0.00
0.00 | 30
31
32
32
32 | 11
9.6
10
10 | 9.7
10
11
11 | | | | 11
12
13
14
15 | | | | 0.00
0.00
0.01
0.06
0.06 | 0.00
0.00
0.00
0.00
0.00 | 21
26
25
3.7
0.18 | 0.00
0.00
0.00
0.00 | 33
33
34
27
26 | 11
12
12
13
13 | 12
12
12
12
12 | | | | 16
17
18
19
20 | | | | 0.06
0.06
0.04
0.01
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.02
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 |
26
26
26
26
26 | 15
15
13
13 | 13
13
13
14 | | | | 21
22
23
24
25 | | | | 0.00
0.00
0.00
0.00 | 0.00
2.2
8.8
31 | 0.50
0.39
0.21
0.12
0.10 | 0.00
0.00
0.00
0.00 | 26
26
23
22
22 | 12
13
12
11 | 14
14
14
14 | | | | 26
27
28
29
30
31 | | | | 0.00
0.00
0.00
0.00
0.00 | 13
12
19
29
19
32 | 0.08
0.09
0.11
0.11
0.07 | 0.00
0.00
0.00
0.00
0.00 | 18
9.6
13
10
9.4
8.9 | 10
10
9.3
9.1
9.4 | 14
14
2.8
0.24
0.03
0.05 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | 0.30
0.010
0.06
0.00
0.6 | 197.11
6.36
32
0.00
391 | 375.68
12.5
33
0.00
745 | 0.04
0.001
0.04
0.00
0.08 | 712.70
23.0
34
0.00
1410 | 339.6
11.3
16
7.9
674 | 328.52
10.6
14
0.03
652 | | | | STATIST | rics of Mo | ONTHLY M | EAN DATA | FOR SEAS | ONS 1990 | - 2003 | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | | 3.64
24.8
1993
0.055
2000 | 3.27
8.56
1993
0.010
2003 | 13.6
30.9
1992
0.49
1993 | 13.4
29.8
1991
1.05
1999 | 1.38
9.51
1993
0.000
1992 | 12.0
35.5
1990
0.35
2002 | 25.4
38.1
1990
11.3
2003 | 16.46
30.1
2000
0.03
2003 | | | | SUMMAR | Y STATIST | ICS | | FOF | 2003 SE | ASON | | | SEASONS | 1990 - 2003 | | | | LOWEST
MAXIMUN | T DAILY ME
DAILY MEA
M PEAK FLO
M PEAK STA | AN
WC | | 34
.0
35
1.8 | Ai
00 ma
Ai
35 Ai | ng 13
any days
ng 13
ng 13 | | | 300
0.00
a300
b7.30 | Mar 6 1993
Jul 1 1990
Mar 6 1993
Mar 6 1993 | | | a--Estimated daily discharge during period of ice effect. b--From floodmarks, site and datum then in use. #### 06090800 MISSOURI RIVER AT FORT BENTON, MT LOCATION.--Lat 47°49'03", long 110°39'59" (NAD 27), in NW¹/₄SE¹/₄sec.23, T.24 N., R.8 E., Chouteau County, Hydrologic Unit 10030102, on left bank at downstream side of Old Fort Benton Bridge at Fort Benton, 3.8 mi upstream from Shonkin Creek, and at river mile 2,073.2. DRAINAGE AREA.--24,749 mi². PERIOD OF RECORD.--October 1890 to current year. Records for June 1881 to September 1890, published in WSP 546 and 761, have been found to be unreliable and should not be used. REVISED RECORDS.--WSP 746: 1932. WSP 1146: 1891-1907, 1908(M), 1909-18, 1937-38. WSP 1209: 1948(P). WSP 1309: 1929(M). WSP 1629: Drainage area. See also PERIOD OF RECORD. GAGE.--Water-stage recorder. Elevation of gage is 2,614.05 ft (NGVD 1929). Prior to Oct. 11, 1920, nonrecording gages, and Oct. 11, 1920, to Apr. 25, 1924, water-stage recorder, all at present site at elevation 1.00 ft higher. REMARKS.--Records good except those for estimated daily discharges, which are fair. Flow regulated by 18 smaller irrigation reservoirs and powerplants, Clark Canyon Reservoir (station number 06015300), and Canyon Ferry Lake (station number 06058500). Diversions for irrigation of about 751,000 acres upstream from station. Extreme diurnal fluctuation caused by powerplant at Morony Dam. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|---|--|--|--|--|--|---|---|---|--|--| | 1
2
3
4
5 | 3800
3780
3980
3980
3820 | 3920
4010
4010
4120
4160 | 4980
4900
4920
4900
4900 | 4740
4920
5080
5290
5220 | 5530
5190
4720
4850
4840 | e5300
5200
5220
5470
5050 | 5120
5150
5670
5710
5410 | 6820
6880
6750 | 13800
12300
12200
12300
13100 | 7300
7110
7250
6280
6600 | 4380
4450
4440
4490
4380 | 3630
3820
3560
3620
3460 | | 6
7
8
9
10 | 3820
3860
3860
3780
3840 | 4180
4210
4180
4270
4460 | 4760
5000
5140
5110
4950 | 4850
4850
4730
4710
e4600 | 4750
4410
4490
5220
5010 | 4860
e4700
e4300
e4100
e4300 | 5330
5280
5190
5200
5090 | 7000
6930
6960
6980 | 12400
11000
10300
9600
9110 | 6220
5890
5850
5770
5480 | 4420
4360
4460
4420
4540 | 3530
3440
3490
3560
3500 | | 11
12
13
14
15 | 3790
3740
3670
3870
3810 | 4730
5090
4970
4770
4740 | 4910
4840
4740
4820
5050 | e3800
e3500
e4600
e4800
e5100 | 4910
4760
4720
4800
4800 | e4500
e5400
e6000
e8000
e12000 | 5170
5520
5740
6170
6390 | 7450
7940
7170 | 9370
9030
8820
8770
8510 | 5740
5740
5960
5910
5860 | 4140
3990
3850
3720
3680 | 3580
3700
3660
3750
3660 | | 16
17
18
19
20 | 3800
3800
3830
3870
3970 | 4750
4720
4830
4990
5060 | 5180
5060
4960
4750
e4400 | e5200
e4800
e4600
e4640
e5040 | 4710
4770
4820
4840
4740 | e9500
8200
7260
7090
6570 | 6530
6630
6610
6240
6190 | 8810
9430
9580 | 8230
8120
7810
8010
8030 | 5600
5610
5690
5240
5090 | 3490
3600
3640
3620
3610 | 3780
3910
3790
3720
3600 | | 21
22
23
24
25 | 3970
3980
3880
3880
3930 | 5100
5010
5010
5000
5040 | e3900
e3600
e4300
e4400
e4700 | e4900
e4200
e2900
e3200
e4800 | 4480
e4200
e3300
e3200
e3800 | 5030
4710
4880
5080
5160 | 5980
5970
5900
6000
6310 | 8770
8450
8490 | 7830
8020
7650
7760
7730 | 5090
4790
4760
4710
4600 | 3670
3810
3780
3740
4010 | 3510
3680
3670
3600
3630 | | 26
27
28
29
30
31 | 3850
4020
4090
4030
4020
3980 | 4980
4980
5180
5170
5020 | e4200
3990
4460
5010
e5500
5280 | e5000
e5100
5120
5470
5790
5720 | e4500
e4800
e5600
 | 5430
5260
5230
5110
5080
5080 | 7210 | 9120
11300
12200
12400
12900
13900 | 7800
7710
7740
7500
7260 | 4430
4760
4730
4560
4400
4400 | 3940
3870
3880
3840
3800
3760 | 3610
3440
3630
4060
3590 | | TOTAL
MEAN
MAX
MIN | 120300
3881
4090
3670
238600 | 140660
4689
5180
3920
279000 | 147610
4762
5500
3600
292800 | 147270
4751
5790
2900
292100 | 130760
4670
5600
3200
259400 | | 180910
6030
7590
5090
358800 | 267280
8622 | 277810
9260
13800
7260
551000 | 171420
5530
7300
4400
340000 | 123780
3993
4540
3490
245500 | 109180
3639
4060
3440
216600 | | STATIS | TICS OF I | MONTHLY ME | EAN DATA | FOR WATER | YEARS 189 | 1 - 2003 | B, BY WAT | ER YEAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 5307
12610
1966
2441
1920 | 5485
10850
1966
2789
1920 | 5193
11640
1960
2446
1932 | 5062
8380
1997
2377
1932 | 5355
9327
1997
2492
1937 | 6258
11800
1910
2986
1938 | 8108
15540
1910
3574
1961 | 28600
1894
4144 | 18390
53620
1908
4055
1977 | 9130
26580
1907
2433
1919 | 5069
10550
1993
1576
1934 | 4850
10240
1984
1890
1934 | | SUMMAR | Y STATIS | TICS | FOR | 2002 CAL | ENDAR YEAR | | FOR 2003 | WATER YEAR | | WATER YEA | RS 1891 | - 2003 | | ANNUAL
HIGHES | T ANNUAL | MEAN | | 1766560
4840 | | | 1996050
5469 | | | 7649
11850
3619 | | 1894
1937 | | MAXIMU
MAXIMU | M PEAK FI
M PEAK S' | TAGE | | | Jun 12
Mar 21
Jan 16 | | 13900
2900
3510
a14200
b12 | May 31
Jan 23
Sep 5
May 31 | | 107000
627
1190
c140000
d18.5
f320 | Jun
Jul
Jan 1
Jun
0 Jun | 7 1908
5 1936
0 1932
6 1908
6 1908
5 1936 | | ANNUAL
10 PER
50 PER
90 PER
aGag | RUNOFF
CENT EXC
CENT EXC
CENT EXC
e height
kwater f | (AC-FT)
EEDS
EEDS
EEDS
, 4.72 ft. | | | | | 3959000
8070
4900
3690 | | | 5542000
14400
5650
3510 | 041 | 2 1330 | c--About, observed, from rating table extended above 63,000 ${\rm ft}^3/{\rm s.}$ d--Present datum. e--Estimated. f--Gage height, -0.05 ft. #### 06091700 TWO MEDICINE RIVER BELOW SOUTH FORK, NEAR BROWNING, MT LOCATION.--Lat 48°25'36", long 112°59'20" (NAD 27), in SE¹/₄SE¹/₄SE¹/₄ sec. 23, T.31 N., R.11 W., Glacier County, Hydrologic Unit 10030201, Blackfeet Indian Reservation, on left bank 15 ft downstream from bridge on Blackfeet Secondary Highway No. 1, 9.7 mi south of Browning, and 12.3 mi northwest of Heart Butte. DRAINAGE AREA.--250 mi². PERIOD OF RECORD .-- May 1977 to current year. GAGE.--Water-stage recorder. Elevation of gage is 4,180 ft (NGVD 29). May 1977 to September 1997 at elevation 1.00 ft higher. REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated by Lower Two Medicine Lake (station number 06090900). Diversions for irrigation of about 64 acres upstream
from station. Bureau of Reclamation satellite telemeter at station. Several observations of water discharge and specific conductance were made during the year. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge, 100,000 ft³/s, June 8, 1964, as determined at Two Medicine River near Browning (station number 06092000) located about 10 mi downstream. # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---|---------------------------------------|------------------------------------|--|---|-------------------------------------|--|--------------------------------------|---|--|--|---|--| | 1
2
3
4
5 | 71
68
68
68
71 | e33
e35
e35
e35
e37 | e40
e35
e30
e25
e28 | e40
e43
e45
e45
e45 | e45
e43
e40
e40
e37 | e32
e35
e32
e30
e30 | 893
576
412
330
273 | 844
843
876
861
771 | 1630
1540
1300
1170
1080 | 330
322
292
291
256 | 209
206
206
203
203 | 94
91
87
75
72 | | 6
7
8
9
10 | 78
81
84
78
75 | e40
e42
e45
e48
50 | e30
e30
e30
e32
e35 | e48
e50
e45
e40
e35 | e35
e37
e38
e40
e40 | e27
e25
e25
e30
e35 | 235
212
229
349
468 | 691
645
596
515
507 | 940
895
886
942
850 | 238
246
240
235
237 | 201
197
191
187
180 | 61
58
59
60
53 | | 11
12
13
14
15 | 76
75
74
75
73 | 52
49
56
53
48 | e35
e35
e37
e40
e40 | e37
e40
e38
e35
e35 | e42
e43
e45
e40
e45 | e40
e100
e500
e1200
487 | 570
645
828
796
789 | 505
521
556
641
794 | 791
840
846
808
772 | 276
269
259
256
253 | 177
176
170
154
140 | 43
50
49
38
36 | | 16
17
18
19
20 | 72
71
71
69
69 | 45
47
42
46
50 | e38
e35
e30
e27
e25 | e35
e37
e40
e45
e40 | e45
e45
e45
e45
e40 | 369
269
205
162
150 | 763
818
796
780
777 | 762
630
587
537
512 | 725
675
661
697
726 | 250
244
240
239
244 | 139
137
135
133 | 39
44
39
38
42 | | 21
22
23
24
25 | 69
70
62
55
51 | 56
58
60
e30
e28 | e25
e25
e25
e25
e27 | e30
e25
e28
e30
e25 | e30
e25
e20
e22
e25 | 149
165
283
195
153 | 818
901
1000
1070
1160 | 520
536
636
839
1110 | 677
610
506
448
401 | 242
239
232
227
229 | 129
126
123
122
120 | 42
37
35
35
33 | | 26
27
28
29
30
31 | 51
51
49
38
e32
e30 | e30
e35
e40
e45
e43 | e30
e30
e32
e35
e35
e37 | e30
e40
e45
e43
e42
e45 | e30
e33
e35
 | 133
122
109
104
141
870 | 1010
877
775
777
812 | 1570
1280
1190
1230
1500
1760 | 379
317
220
307
336 | 228
223
219
217
214
212 | 118
113
114
111
98
95 | 32
31
33
31
32 | | TOTAL
MEAN
MAX
MIN
AC-FT | 2025
65.3
84
30
4020
0 | 1313
43.8
60
28
2600 | 983
31.7
40
25
1950 | 1201
38.7
50
25
2380 | 1050
37.5
45
20
2080 | 6207
200
1200
25
12310 | 20739
691
1160
212
41140 | 25365
818
1760
505
50310
0 | 22975
766
1630
220
45570
3160 | 7699
248
330
212
15270
9580 | 4744
153
209
95
9410
7740 | 1469
49.0
94
31
2910
2210 | | STATIST | TICS OF MC | NTHLY MEA | N DATA F | OR WATER | YEARS 1977 | - 2003 | , BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 95.4
533
1986
25.0
1980 | 128
558
1996
18.8
1980 | 78.1
394
1996
19.7
1999 | 60.8
180
1981
17.9
1982 | 90.5
394
1996
26.4
1980 | 146
474
1986
40.5
1980 | 501
923
1990
140
2001 | 1171
2040
1991
439
1977 | 1056
2922
2002
282
1977 | 362
656
2002
173
1994 | 161
265
2002
41.2
1994 | 102
240
1985
24.4
1988 | | SUMMARY | STATISTI | CS | FOR | 2002 CALE | NDAR YEAR | : | FOR 2003 W | NATER YEAR | | WATER YEARS | 1977 - | 2003 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL 10 PERC 50 PERC | | EAN EAN AN MINIMUM AGE AC-FT) EDS | | 187907
515
4430
20
26
372700
2140
90
35 | Jun 16
Jan 28
Dec 19 | | | May 31
Feb 23
Dec 19
May 31
52 May 31 | | 335
542
199
8600
10
13
all700
b8.25
242700
969
120
32 | Jun 7
Jan 29
Feb 3
May 19
Jun 7 | 1980
1982
1991 | ^{*--}Flows, in acre-ft, in Two Medicine Canal. a--Gage height, 7.78 ft, previous datum; from rating curve extended above 5,500 $\rm ft^3/s$. b--Previous datum. e--Estimated. #### 06093200 BADGER CREEK BELOW FOUR HORNS CANAL, NEAR BROWNING, MT LOCATION.--Lat 48°22'12", long 112°48'07" (NAD 27), in NW¹/₄SW¹/₄SE¹/₄ sec.8, T.30 N., R.9 W., Glacier County, Hydrologic Unit 10030201, Blackfeet Indian Reservation, on left bank, 3.4 mi downstream from point of diversion to Four Horns Canal, 15.5 mi southeast of Browning, and at river mile 11.6. DRAINAGE AREA.--152 mi². - PERIOD OF RECORD.--October 1973 to current year. Records equivalent to those published as Badger Creek near Browning (station number 06092500) if diversion to Four Horns Canal is added to flow past station. - GAGE.--Water-stage recorder. Elevation of gage is 4,140 ft (NGVD 29). May 1951 to September 1973, water-stage recorder at site 3.4 mi upstream (station number 06092500) at different elevation. - REMARKS.--Records good except those for estimated daily discharges, which are poor. Four Horns Canal diverts water from right bank in NE¹/₄ sec.24, T.30 N., R.10 W., at diversion dam 3.4 mi upstream for irrigation of about 6,000 acres downstream from station. Recorded diversions by Four Horns Canal are listed in daily table below. Several observations of water temperature and specific conductance were made during the year. Bureau of Reclamation satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge, 49,700 ft³/s, June 8, 1964, gage height, 10.37 ft, from rating curve extended above 2,000 ft³/s on basis of slope-area measurement of peak flow, as determined at Badger Creek near Browning site (station number 06092500) 3.4 mi upstream. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
DAILY MEAN VALUES | | | | | | | | | | | | | |--------------------------------------|--|------------------------------------|--|--|-------------------------------------|---------------------------------------|---|--|--|---|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 71
69
68
67
68 | e105
e110
e115
115
114 | 103
103
e103
e100
e100 | e100
e100
e100
e100
e100 | e89
e92
e94
e94
e95 | e86
e84
e82
e82
e80 | 174
162
142
132
125 | 216
216
227
242
226 | 578
555
478
433
390 | 115
110
106
101
98 | 48
46
46
46
47 | 39
38
38
38
38 | | | 6
7
8
9
10 | 71
71
72
69
67 | 114
115
114
114
112 | e102
e100
e100
100
100 | 98
96
96
e94
e86 | e95
e89
e91
e91
e92 | e78
e79
e85
e94
e98 | 119
114
112
116
128 | 214
201
195
194
187 | 400
369
360
438
405 | 98
94
92
89
85 | 47
46
45
43
42 | 38
38
39
40
39 | | | 11
12
13
14
15 | 69
69
67
67
90 | 111
111
113
112
110 | 99
100
100
101
102 | e92
e98
e98
e95
e92 | e87
e85
e82
e82
e81 | e100
e100
e200
e150
e140 | 147
184
276
325
278 | 183
186
191
215
321 | 434
367
335
309
288 | 83
80
76
75
74 | 42
41
41
40
40 | 38
41
40
38
38 | | | 16
17
18
19
20 | 125
124
124
124
123 | 107
106
105
106
106 | 102
101
e96
e96
e90 | e90
e93
e91
e94
e96 | e77
e74
e69
e66
e72 | 127
117
107
102
98 | 242
225
221
211
210 | 395
341
309
277
258 | 264
244
237
249
233 | 75
72
70
68
67 | 40
44
48
46
45 | 39
38
38
37
39 | | | 21
22
23
24
25 | 124
125
122
118
119 | 108
109
112
107
110 | e90
e90
e90
e94
e94 | e92
e95
e93
e92
e90 | e74
e78
e75
e80
e84 | 99
99
120
110
104 | 226
264
296
356
393 |
260
272
327
456
685 | 205
188
174
166
153 | 64
58
56
55 | 45
52
93
93
78 | 38
64
93
93
89 | | | 26
27
28
29
30
31 | 120
119
121
e115
e110
e100 | 103
105
106
106
105 | e94
e94
e100
e100
e100
e100 | e88
e88
e92
e90
e92
e92 | e86
e86
e86
 | 101
100
96
95
94
119 | 388
338
290
254
234 | 1260
893
833
952
909
674 | 143
137
133
127
120 | 55
54
51
50
50
48 | 41
40
40
40
39
39 | 88
89
89
89
89 | | | TOTAL
MEAN
MAX
MIN
AC-FT | 2968
95.7
125
67
5890
1850 | 3286
110
115
103
6520 | 3044
98.2
103
90
6040 | 2913
94.0
100
86
5780 | 2346
83.8
95
66
4650 | 3226
104
200
78
6400
0 | 6682
223
393
112
13250
430 | 12315
397
1260
183
24430
2630 | 8912
297
578
120
17680
5270 | 2324
75.0
115
48
4610
4780 | 1483
47.8
93
39
2940
3930 | 1592
53.1
93
37
3160
2850 | | | STATIST | CICS OF M | ONTHLY MEA | AN DATA FO | OR WATER | YEARS 1974 | - 2003, | BY WATER | YEAR (WY |) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 83.8
316
1986
9.13
1978 | 112
295
1990
40.9
2002 | 97.2
184
1976
42.9
1984 | 89.4
160
1976
57.0
2001 | 90.1
198
1996
52.5
2001 | 94.6
205
1986
44.6
1977 | 173
321
1990
62.3
1977 | 499
899
1976
140
1977 | 576
2240
1975
58.9
1977 | 167
568
1975
17.5
1977 | 75.4
184
1975
16.4
1984 | 68.4
199
1993
15.6
1988 | | ## 06093200 BADGER CREEK BELOW FOUR HORNS CANAL, NEAR BROWNING, MT--Continued | SUMMARY STATISTICS | FOR 2002 CALE | NDAR YEAR | FOR 2003 WAT | ER YEAR | WATER YEARS | 1974 - 2003 | |--------------------------|---------------|-----------|--------------|---------|-------------|-------------| | ANNUAL TOTAL | 88033 | | 51091 | | | | | ANNUAL MEAN | 241 | | 140* | | 177** | | | HIGHEST ANNUAL MEAN | | | | | 350 | 1975 | | LOWEST ANNUAL MEAN | | | | | 68.1 | 1977 | | HIGHEST DAILY MEAN | 2420 | Jun 18 | 1260 | May 26 | 14000 | Jun 19 1975 | | LOWEST DAILY MEAN | 45 | Jan 27 | 37 | Sep 19 | 6.5 | Sep 17 1984 | | ANNUAL SEVEN-DAY MINIMUM | 51 | Jan 23 | 38 | Sep 1 | 7.7 | Oct 25 1977 | | MAXIMUM PEAK FLOW | | | 1630 | May 26 | a20700 | Jun 19 1975 | | MAXIMUM PEAK STAGE | | | 7.39 | May 26 | 13.58 | Jun 19 1975 | | ANNUAL RUNOFF (AC-FT) | 174600 | | 101300 | | 128400 | | | 10 PERCENT EXCEEDS | 751 | | 277 | | 397 | | | 50 PERCENT EXCEEDS | 100 | | 99 | | 97 | | | 90 PERCENT EXCEEDS | 60 | | 45 | | 42 | | ⁺⁻⁻Diversion, in acre-feet, by Four Horns Canal. *--170 ft³/s, adjusted flow Four Horns Canal. **-217 ft³/s, adjusted flow Four Horns Canal. a--From rating curve extended above 7,700 ft³/s, based on comparison with previous site 3.4 miles upstream. (station number 06092500). e--Estimated. #### 06098500 CUT BANK CREEK NEAR BROWNING, MT LOCATION--Lat 48°37'00", long 113°02'06" (NAD 27), in NE¹/₄NW¹/₄sec. 15, T.33 N., R.11 W., Glacier County, Hydrologic Unit 10030202, Blackfeet Indian Reservation, on right bank 20 ft downstream from bridge on Montana Secondary Highway 464, 4.0 mile north of Browning, and at river mile 73.3. DRAINAGE AREA.--123 mi². PERIOD OF RECORD.--April 1918 to October 1925 (seasonal records only), April 1991 to current year. REVISED RECORDS.--WDR MT-93-1: 1992(M). GAGE.--Water-stage recorder. Elevation of gage is 4,380 ft (NGVD 29). April 1918 to October 1925, water-stage recorder at site about 120 ft upstream at different elevation. April 1991 to September 1995 at elevation 1.00 ft higher. REMARKS.--Records good except those for estimated daily discharges, which are poor. Diversions for irrigation of about 1,200 acres upstream from station. Several observations of water temperature and specific conductance were made during the year. Bureau of Reclamation satellite telemeter at station. # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------------|-------------------------|--------------|--------------|--------------|--------------|--------------|--------------|------------------|-------------|------------------------------|-----------------|--------------| | 1 | 49 | e33 | e43 | 37 | e33 | e29 | 292 | 187 | 545 | 170 | 42 | 20 | | 2 | 48 | 39 | e40 | 33 | e30 | e30 | 179 | 171 | 557 | 163 | 43 | 20 | | 3
4 | 50
50 | 40
40 | e35
e31 | 34
35 | e26
e24 | e24
e18 | 148
131 | 174
180 | 514
422 | 143
124 | 45
45 | 19
18 | | 5 | 51 | 40 | e30 | 36 | e24 | e18 | 121 | 175 | 364 | 112 | 39 | 18 | | 6 | 55 | 42 | e35 | 33 | e22 | e16 | 110 | 166 | 344 | 110 | 36 | 17 | | 7 | 55 | 46 | 34 | 33 | e23 | e15 | 100 | 156 | 317 | 101 | 35 | 17 | | 8
9 | 62
64 | 46
46 | 34
35 | 34
e33 | e24
e27 | e14
e14 | 93
101 | 148
146 | 298
379 | 96
89 | 32
32 | 19
22 | | 10 | 71 | 43 | 36 | e32 | 27 | e24 | 134 | 142 | 421 | 83 | 29 | 22 | | 11 | 67 | 41 | 36 | e30 | 29 | e26 | 145 | 135 | 403 | 79 | 26 | 21 | | 12 | 68 | 43 | 35 | e31 | e28 | e40 | 160 | 127 | 370 | 78 | 27 | 22 | | 13
14 | 66
66 | 44
43 | 37
38 | e32
e32 | e30
29 | e70
e120 | 197
208 | 125
135 | 340
326 | 82
83 | 26
25 | 26
23 | | 15 | 65 | 41 | 40 | e30 | e29 | e110 | 195 | 177 | 312 | 82 | 24 | 23 | | 16 | 63 | 41 | 37 | e28 | e24 | e90 | 180 | 273 | 291 | 81 | 25 | 27 | | 17 | 60
58 | 40
34 | 36 | e27 | e20 | e76 | 172
164 | 278
247 | 279 | 67 | 25
25 | 29 | | 18
19 | 58
59 | 34
42 | e24
e23 | e26
e24 | e18
e18 | e73
73 | 156 | 247 | 286
343 | 60
64 | 25
23 | 27
25 | | 20 | 56 | 41 | e22 | e24 | e16 | 69 | 153 | 188 | 364 | 62 | 23 | 24 | | 21 | 55 | 42 | e22 | e22 | e16 | 70 | 157 | 174 | 311 | 60 | 25 | 24 | | 22
23 | 57
55 | 44
46 | e22
e23 | e21
e21 | e15
e14 | 70
95 | 174
218 | 172
192 | 254
215 | 58
55 | 23
24 | 23
23 | | 23 | 45 | 46
37 | e23
e24 | e21
e21 | e14
e15 | 95
79 | 267 | 314 | 192 | 52 | 23 | 23 | | 25 | 47 | 37 | e27 | e27 | e18 | 67 | 316 | 545 | 172 | 55 | 23 | 22 | | 26 | e47 | 43 | e28 | e31 | e20 | 61 | 344 | 921 | 149 | 55 | 22 | 21 | | 27
28 | e47
e42 | 49
52 | 30
30 | e30
e30 | e24
e30 | 64
58 | 417
346 | 970
784 | 156
174 | 51
46 | 21
22 | 22
22 | | 29 | e35 | 50 | 32 | e33 | | 56
57 | 246 | 759 | 175 | 44 | 22 | 21 | | 30 | e31 | 44 | 37 | 32 | | 65 | 212 | 874 | 172 | 42 | 22 | 22 | | 31 | e31 | | 33 | 31 | | 184 | | 708 | | 42 | 21 | | | TOTAL | 1675 | 1269 | 989 | 923 | 653 | 1819 | 5836 | 9958 | 9445 | 2489 | 875 | 663 | | MEAN
MAX | 54.0
71 | 42.3
52 | 31.9
43 | 29.8
37 | 23.3
33 | 58.7
184 | 195
417 | 321
970 | 315
557 | 80.3
170 | 28.2
45 | 22.1
29 | | MIN | 31 | 33 | 22 | 21 | 14 | 14 | 93 | 125 | 149 | 42 | 21 | 17 | | AC-FT | 3320 | 2520 | 1960 | 1830 | 1300 | 3610 | 11580 | 19750 | 18730 | 4940 | 1740 | 1320 | | STATIST | TICS OF MO | ONTHLY MEA | N DATA FO | OR WATER | YEARS 1918 | - 2003, | , BY WATER | YEAR (WY) | * | | | | | MEAN | 55.3 | 61.0 | 41.5 | 31.5 | 39.3 | 53.6 | 137 | 416 | 502 | 185 | 66.0 | 42.0 | | MAX | 136 | 216 | 157 | 73.8 | 139 | 110 | 217 | 740 | 955 | 344 | 140 | 81.8 | | (WY)
MIN | 1996
15.2 | 1996
25.4 | 1996
17.3 | 1996
18.5 | 1996
15.4 | 1997
17.8 | 1996
57.1 | 1991
248 | 2002
184 | 2002
57.9 | 1923
15.6 | 1993
11.7 | | (WY) | 2002 | 2001 | 2001 | 2001 | 2001 | 2001 | 2001 | 1992 | 1992 | 2001 | 2001 | 2001 | | SUMMAR | Y STATIST | ICS | FOR 2 | 2002 CALE | NDAR YEAR | E | FOR 2003 WAT | TER YEAR | | WATER YEARS | 1918 - | 2003* | | ANNUAL | TOTAL | | | 66298 | | | 36594 | | | | | | | ANNUAL | | | | 182 | | | 100 | | | 130 | | | | | I ANNUAL N
ANNUAL ME | | | | | | | | | 201
69.0 | | 1996
2001 | | | T DAILY ME | EAN | | 1420 | Jun 17 | | 970 | May 27 | | 3400 | Jun 7 | 1995 | | | DAILY MEA | AN | | 10 | Jan 28 | | 14 | Feb 23 | | 9.1 | Sep 3 | | | | SEVEN-DAY
M PEAK FLO | | | 13 | Mar 5 | | 16
1090 | Feb 18
May 26 | | 9.8
a5480 | Aug 30
Jun 7 | 2001
1995 | | MAXIMU | M PEAK STA | AGE | | | | | | May 26 | | 9.1
9.8
a5480
b5.59 | Jun 7 | 1995 | | | FANEOUS LO
RUNOFF (A | | | 131500 | | | 72580 | | | c4.9
94200 | Nov 22 | 1994 | | | CENT EXCE | | | 653 | | | 269 | | | 342 | | | | 50 PERG | CENT EXCE | EDS | | 50 | | | 43 | | | 51 | | | | 90 PER | CENT EXCE | £DS | | 17 | | | 2.2 | | | 21 | | | ^{*--}During periods of operation (April 1918 to October 1925, seasonal records only; April 1991 to current year). a--From rating curve extended above $2,500~{\rm ft}^3/{\rm s}$. b--Previous datum. c--Gage height, 0.60 ft, result of freezeup. e--Estimated. #### 06099000 CUT BANK CREEK AT CUT BANK, MT LOCATION.--Lat 48°38'00", long 112°20'46" (NAD 27), in SW¹/₄SE¹/₄NE¹/₄ sec.11, T.33 N., R.6 W., Glacier County, Hydrologic Unit 10030202, Blackfeet Indian Reservation, on right bank, 0.1 mi downstream from bridge on U.S. Highway 2, 0.7 mi west of Cut Bank, 0.8 mi downstream from Old Maids Coulee, and at river mile 17.7. DRAINAGE AREA.--1,041 mi². PERIOD OF RECORD.--August 1905 to October 1919, May to July 1920, May 1922 to October 1924, May 1951 to September 1973, October 1981 to current year. Monthly discharge only for some periods, published in WSP 1309. REVISED RECORDS.--WSP 1309; 1907-8, 1910-11, 1924-25. WSP 1509: 1911, 1916(M). WSP 1559: 1905(M), 1908(M). WSP 1709: 1959. WSP 1729: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 3,561.42 ft (NGVD 29). Prior to May 12, 1922, nonrecording gage at several sites 0.5 mi upstream at various
elevations. May 12, 1922 to Nov. 1, 1924, nonrecording gage at present site and different elevation. REMARKS.--Records good except those for estimated daily discharges, which are poor. Few minor diversions for irrigation and municipal water supply for city of Cut Bank upstream from station. Natural flow of stream may be affected by return flow from Two Medicine Canal which irrigates lands upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 20, 1975 reached a discharge of 5,200 ft³/s, gage height, 8.2 ft, from floodmarks. #### DAILY MEAN VALUES DAY FEB MAY JUL AUG SEP OCT NOV DEC JAN APR JUN e50 e45 e50 e60 e35 12 e45 e60 e60 e45 e70 e50 e40 e45 e40 e80 e40 e45 e35 e30 e40 e40 e45 e30 e50 e40 e40 e30 9.9 73 17 e45 e40 e40 e25 8.7 e45 e20 8.7 e40 e45 e45 e30 e45 e20 e75 e45 e25 e50 e30 e50 e25 e55 e40 e80 e50 e55 e25 e55 e50 51 15 e25 e100 e50 e60 e85 e25 e45 e85 e60 e30 e50 e1000 e30 e45 e30 e50 37 e35 e30 e50 e30 e25 e30 e40 e20 e25 74 e20 e20 e20 2.8 e70 e22 e15 e20 e22 e20 e65 e20 e70 e25 e20 e50 e30 e30 e35 e80 e35 e40 e40 e70 e35 e40 e55 e70 e35 e35 ---e45 e60 e30 e40 e40 TOTAL 511.3 74.3 40.3 31.8 72.7 42.0 15.1 17.0 15 8.7 MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1905 2003, BY WATER YEAR (WY) 74.9 298 MEAN 84.2 76.5 47.0 34.7 57.2 89.1 MAX (WY) MTN 11.2 19.1 15.0 1.61 11.1 6.90 79.4 17.0 5.56 5.92 (WY) ## 06099000 CUT BANK CREEK AT CUT BANK, MT--Continued | SUMMARY STATISTICS | FOR 2002 CALEND | DAR YEAR | FOR 2003 WAT | ER YEAR | WATER YEARS | 1905 - 2003* | |--------------------------|-----------------|----------|--------------|---------|-------------|--------------| | ANNUAL TOTAL | 98223 | | 44801.3 | | | | | ANNUAL MEAN | 269 | | 123 | | 183 | | | HIGHEST ANNUAL MEAN | | | | | 317 | 1972 | | LOWEST ANNUAL MEAN | | | | | 73.9 | 1988 | | HIGHEST DAILY MEAN | 7750 | Jun 11 | 1000 | Mar 15 | 11200 | Jun 9 1964 | | LOWEST DAILY MEAN | 10 | Jan 29 | 8.7 | Sep 7 | 1.0 | Jan 22 1982 | | ANNUAL SEVEN-DAY MINIMUM | 13 | Jan 27 | 11 | Sep 3 | 1.1 | Jan 20 1982 | | MAXIMUM PEAK FLOW | | | a1250 | Mar 14 | c16600 | Jun 9 1964 | | MAXIMUM PEAK STAGE | | | b7.11 | Mar 14 | 13.93 | Jun 9 1964 | | INSTANTANEOUS LOW FLOW | | | | | d0.92 | Sep 10 1988 | | ANNUAL RUNOFF (AC-FT) | 194800 | | 88860 | | 132400 | | | 10 PERCENT EXCEEDS | 787 | | 323 | | 485 | | | 50 PERCENT EXCEEDS | 78 | | 55 | | 80 | | | 90 PERCENT EXCEEDS | 20 | | 16 | | 24 | | ^{*--}During periods of operation (August 1905 to October 1919, May to July 1920, May 1922 to October 1924, May 1951 to September 1973, October 1981 to current year). to September 1973, October 1981 to current year). a--About. b--Backwater from ice. c--From rating curve extended above 12,000 ft³/s on basis of slope-area measurement of peak flow. d--Gage height, 0.59 ft. e--Estimated. #### 06099500 MARIAS RIVER NEAR SHELBY, MT LOCATION.--Lat 48°25'38", long 111°53'20" (NAD 27), in SE¹/₄NW¹/₄SE¹/₄ sec.20, T.31 N., R.2 W., Toole County, Hydrologic Unit 10030203, on left bank 20 ft downstream from bridge on old U.S. Highway 91, 5.1 mi south of Shelby, 24 mi downstream from Cut Bank Creek, and at river mile 140.6 DRAINAGE AREA.--3,242 mi², of which 518 mi² is probably noncontributing. PERIOD OF RECORD.--April 1902 to December 1904, May 1905 to December 1906, May 1907 to January 1908, April 1911 to current year. Monthly discharge only for some periods, published in WSP 1309. REVISED RECORDS.--WSP 1309: 1903-4, 1918, 1921, 1933, 1935, 1947. WSP 1509: 1902, 1912(M), 1916, 1943(M). WSP 1729: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 3,087.72 ft (NGVD 29). Prior to Dec. 23, 1947, nonrecording gage or water-stage recorder at several sites within 1,000 ft of present site at approximately the same elevation. Dec. 23, 1947, to Apr. 6, 1976, water-stage recorder at site 150 ft downstream at same elevation. REMARKS.--Records good except those for estimated daily discharges, which are poor. Some regulation by Lower Two Medicine Lake (station number 06090900), Four Horns Reservoir (station number 06093000) Swift Reservoir (station number 06094000), and Lake Frances (station number 06095500), having a combined capacity of 172,630 acre-ft. Diversions for irrigation of about 50,000 acres upstream from station and about 15,000 acres downstream from station. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | |---| | DAILY MEAN VALUES | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------|------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|------------|------------|----------| | 1 2 | 282
281 | e300
e330 | 350
348 | e270
e260 | e400
e390 | e260
e270 | 957
1490 | 1610
1510 | 2900
2520 | 507
475 | 109
99 | 87
78 | | 3 | 278 | 388 | e320 | e270 | e380 | e270 | 1260 | 1450 | 2340 | 449 | 94 | 74 | | 4 | 279 | 412 | e250 | e290 | e370 | e260 | 981 | 1570 | 2130 | 437 | 91 | 70 | | 5 | 284 | 433 | e180 | e290 | e360 | e260 | 861 | 1640 | 1940 | 407 | 96 | 73 | | 6 | 297 | 451 | e200 | e300 | e350 | e250 | 782 | 1550 | 1770 | 384 | 105 | 70 | | 7 | 299 | 439 | e220 | e300 | e340 | e230 | 723 | 1390 | 1640 | 362 | 117 | 71 | | 8
9 | 304
306 | 433
418 | e250
e270 | e290
e250 | e330
e320 | e220
e220 | 668
637 | 1270
1200 | 1530
1530 | 342
323 | 118
125 | 70
72 | | 10 | 305 | 377 | e270 | e200 | e310 | e240 | 653 | 1150 | 1870 | 307 | 128 | 75 | | | | | | | | | | | | | | | | 11 | 311 | 429 | e300 | e170 | e300 | e250 | 808 | 1140 | 2060 | 289 | 125 | 77 | | 12 | 322 | 399 | e300 | e180 | e300 | e300 | 947 | 1100 | 1760 | 267 | 124 | 80 | | 13 | 327 | 382 | e310 | e170 | e300 | e1000 | 1160 | 1070 | 1600 | 262 | 135 | 81 | | 14 | 326 | 364 | e320 | e170 | e290 | e2000 | 1660 | 1050 | 1510 | 248 | 135 | 81 | | 15 | 326 | 371 | e340 | e180 | e280 | 3090 | 1800 | 1090 | 1380 | 233 | 124 | 89 | | 16 | 322 | 365 | e350 | e200 | e280 | 2580 | 1650 | 1290 | 1310 | 221 | 117 | 94 | | 17 | 348 | 353 | e330 | e200 | e290 | 1830 | 1490 | 1400 | 1240 | 211 | 118 | 103 | | 18 | 354 | 334 | e280 | e210 | e290 | 1270 | 1480 | 1370 | 1210 | 197 | 121 | 122 | | 19 | 348 | 334 | e200 | e230 | e290 | 1020 | 1430 | 1300 | 1330 | 187 | 127 | 130 | | 20 | 348 | 326 | e170 | e250 | e280 | 821 | 1360 | 1190 | 1540 | 184 | 126 | 128 | | 21 | 343 | 328 | e150 | e220 | e250 | 736 | 1330 | 1100 | 1490 | 177 | 125 | 128 | | 22 | 344 | 335 | e150 | e180 | e220 | 689 | 1360 | 1040 | 1270 | 166 | 115 | 130 | | 23 | 351 | 348 | e160 | e150 | e200 | 666 | 1480 | 1030 | 1140 | 147 | 99 | 124 | | 24 | 345 | 364 | e180 | e170 | e200 | 715 | 1640 | 1130 | 1040 | 143 | 88 | 124 | | 25 | 334 | 289 | e200 | e180 | e210 | 692 | 1880 | 1430 | 949 | 136 | 106 | 148 | | 26 | 343 | 279 | e220 | e150 | e230 | 619 | 2090 | 2220 | 832 | 143 | 118 | 133 | | 27 | 339 | 405 | e250 | e200 | e240 | 544 | 2000 | 3110 | 735 | 147 | 114 | 125 | | 28 | 337 | 383 | e270 | e250 | e250 | 517 | 1820 | 2950 | 672 | 143 | 93 | 126 | | 29 | e310 | 360 | e280 | e230 | | 482 | 1760 | 2710 | 553 | 135 | 87 | 127 | | 30 | e280 | 361 | e260 | e220 | | 463 | 1650 | 2770 | 537 | 137 | 87 | 131 | | 31 | e250 | | e250 | e250 | | 467 | | 3000 | | 118 | 91 | | | TOTAL | 9823 | 11090 | 7948 | 6880 | 8250 | 23231 | 39807 | 48830 | 44328 | 7884 | 3457 | 3021 | | MEAN | 317 | 370 | 256 | 222 | 295 | 749 | 1327 | 1575 | 1478 | 254 | 112 | 101 | | MAX | 354 | 451 | 350 | 300 | 400 | 3090 | 2090 | 3110 | 2900 | 507 | 135 | 148 | | MIN | 250 | 279 | 150 | 150 | 200 | 220 | 637 | 1030 | 537 | 118 | 87 | 70 | | AC-FT | 19480 | 22000 | 15760 | 13650 | 16360 | 46080 | 78960 | 96850 | 87920 | 15640 | 6860 | 5990 | | STATIS | rics of | MONTHLY M | EAN DATA | FOR WATER | YEARS 190 | 2 - 2003, | BY WATER | R YEAR (WY | *) * | | | | | MEAN | 404 | 394 | 304 | 254 | 318 | 580 | 1137 | 2705 | 3074 | 1050 | 386 | 355 | | MAX | 1448 | 1485 | 1135 | 700 | 1173 | 2300 | 3149 | 5300 | 10190 | 3982 | 1100 | 1853 | | (WY) | 1952 | 1990 | 1996 | 1918 | 1986 | 1947 | 1934 | 1927 | 1948 | 1902 | 1927 | 1911 | | MIN | 73.8 | 116 | 103 | 41.9 | 58.7 | 139 | 280 | 711 | 409 | 147 | 67.1 | 66.4 | | (WY) | 2002 | 2002 | 1937 | 1937 | 1936 | 2002 | 1931 | 1977 | 1977 | 1940 | 1988 | 1988 | ## 06099500 MARIAS RIVER NEAR SHELBY, MT--Continued | SUMMARY STATISTICS | FOR 2002 CALE | IDAR YEAR | FOR 2003 WAT | ER YEAR | WATER YEARS | 1902 - 2003* | |--------------------------|---------------|-----------|--------------|---------|-------------|--------------| | ANNUAL TOTAL | 408971 | | 214549 | | | | | ANNUAL MEAN | 1120 | | 588 | | 903 | | | HIGHEST ANNUAL MEAN | | | | | 1929 | 1927 | | LOWEST ANNUAL MEAN | | | | | 302 | 1977 | | HIGHEST DAILY MEAN | 19300 | Jun 11 | 3110 | May 27 | 109000 | Jun 9 1964 | | LOWEST DAILY MEAN | 80 | Mar 9 | 70 | Sep 4 | 10 | Aug 20 1919 | | ANNUAL SEVEN-DAY MINIMUM | 100 | Mar 17 | 71 | Sep 3 | 21 | Jan 25 1937 | | MAXIMUM PEAK FLOW | | | 4180 | Mar 15 | b241000 | Jun 9 1964 | | MAXIMUM PEAK STAGE | | | 6.85 | Mar 15 | c23.64 | Jun 9 1964 | | INSTANTANEOUS LOW FLOW | | | a66 | Sep 06 | d10 | Aug 20 1919 | | ANNUAL RUNOFF (AC-FT) | 811200 | | 425600 | | 653900 | | | 10 PERCENT EXCEEDS | 3840 | | 1530 | | 2320 | | | 50 PERCENT EXCEEDS | 340 | | 310 | | 400 | | | 90 PERCENT EXCEEDS | 140 | | 118 | | 157 | | ^{*--}During periods of operation (1903-04, 1906, 1912 to current year). a--Gage height, 2.61 ft. b--Largely due to the failure of Swift Dam, from slope-area measurement
of peak flow. Maximum unaffected by dam failure, 75,000 ft³/s, June 20, 1975, gage height, 18.21 ft. c--From floodmark. d--Observed, site and datum in use. e--Estimated. #### 06101500 MARIAS RIVER NEAR CHESTER, MT LOCATION.--Lat 48°18'23", long 111°04'47" (NAD 27), in SW¹/₄SW¹/₄sec.34, T.30 N., R.5 E., Liberty County, Hydrologic Unit 10030203, on left bank 2.0 mi downstream from Tiber Dam, 4.4 mi upstream from Pondera Coulee, 15 mi southwest of Chester, and at river mile 78.3. DRAINAGE AREA.--4,927 mi², of which 518 mi² is probably noncontributing. PERIOD OF RECORD.--April to September 1921, October 1945 to September 1947, October 1955 to current year. Monthly discharge only for some periods, published in WSP 1309. REVISED RECORDS .-- WSP 1629: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 2,814.03 ft (NGVD) (Bureau of Reclamation bench mark). Prior to Oct. 1, 1921, nonrecording gage at bridge 2.5 mi downstream at different elevation. Oct. 4, 1945, to Sept. 30, 1946, nonrecording gage at site 3 mi downstream at different elevation. REMARKS.--Records good. Flow completely regulated by Lake Elwell since Oct. 28, 1955 (see preceding page). Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. EXTREMES OUTSIDE PERIOD OF RECORD .-- Flood of June 1948 reached a stage of 16 ft, present elevation. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | DAIL | I WILAI | VALUES | | | | | | |-----------|------------------------|------------|------------|-------------|-----------------|------------|------------|----------------|------------|---------------|------------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1010 | 508 | 503 | 507 | 503 | 497 | 481 | 487 | 625 | 638 | 498 | 497 | | 2 | 1010 | 508 | 503 | 506 | 503 | 495 | 482 | 487 | 626 | 637 | 498 | 502 | | 3 | 925 | 509 | 503 | 504 | 503 | 487 | 483 | 486 | 627 | 638 | 500 | 514 | | 4 | 874 | 432 | 503 | 504 | 503 | 487 | 484 | 486 | 627 | 638 | 499 | 511 | | 5 | 873 | 457 | 503 | 503 | 501 | 487 | 483 | 489 | 628 | 639 | 495 | 507 | | 6 | 873 | 505 | 503 | 503 | 503 | 487 | 481 | 487 | 629 | 640 | 492 | 508 | | 7 | 873 | 506 | 503 | 503 | 502 | 487 | 479 | 489 | 631 | 642 | 497 | 508 | | 8
9 | 874
873 | 508
507 | 503
503 | 502
504 | 503
502 | 487
487 | 476
476 | 488
487 | 630
631 | 643
641 | 500
490 | 507
504 | | 10 | 871 | 508 | 508 | 504 | 502 | 487 | 477 | 489 | 634 | 642 | 492 | 500 | | 11 | 872 | 507 | 508 | 504 | 503 | 487 | 476 | 492 | 632 | 643 | 491 | 504 | | 12 | 874 | 507 | 508 | 503 | 500 | 487 | 475 | 497 | 634 | 642 | 489 | 508 | | 13 | 872 | 507 | 508 | 503 | 497 | 487 | 477 | 565 | 635 | 637 | 489 | 506 | | 14 | 872 | 507 | 509 | 503 | 497 | 487 | 479 | 614 | 635 | 635 | 487 | 508 | | 15 | 872 | 508 | 508 | 502 | 497 | 492 | 479 | 614 | 641 | 637 | 493 | 508 | | 16 | 884 | 506 | 509 | 508 | 496 | 492 | 479 | 613 | 643 | 636 | 494 | 510 | | 17 | 895 | 504 | 508 | 507 | 496 | 492 | 478 | 614 | 643 | 589 | 497 | 508 | | 18 | 896 | 503 | 508 | 506 | 495 | 492 | 481 | 616 | 648 | 550 | 497 | 508 | | 19
20 | 895
896 | 503
505 | 508
508 | 505
506 | 495
494 | 492
489 | 480
481 | 618
618 | 647
649 | 550
551 | 494
493 | 508
508 | | 20 | 896 | 505 | 508 | 506 | 494 | 489 | 481 | 018 | 649 | 221 | 493 | 508 | | 21 | 896 | 508 | 508 | 507 | 497 | 487 | 482 | 618 | 643 | 551 | 496 | 508 | | 22 | 902 | 505 | 508 | 508 | 497 | 487 | 481 | 618 | 644 | 553 | 496 | 508 | | 23
24 | 894
834 | 505
507 | 508
508 | 508
508 | 497
497 | 487
487 | 481
482 | 618
619 | 643
643 | 551
553 | 495
497 | 505
507 | | 25 | 809 | 507 | 508 | 508 | 497 | 487 | 487 | 619 | 643 | 551 | 496 | 507 | | | | | | | | | | | | | | | | 26
27 | 811
812 | 503
503 | 508
508 | 508
508 | 497
497 | 487
487 | 486
487 | 618
611 | 643
643 | 551
547 | 499
497 | 503
503 | | 28 | 722 | 503 | 508 | 508 | 497 | 487 | 487 | 617 | 643 | 546 | 487 | 503 | | 29 | 577 | 503 | 508 | 508 | | 485 | 488 | 620 | 646 | 525 | 498 | 503 | | 30 | 509 | 503 | 508 | 506 | | 481 | 487 | 618 | 639 | 498 | 498 | 503 | | 31 | 508 | | 508 | 505 | | 481 | | 619 | | 492 | 498 | | | TOTAL | 26158 | 15048 | 15705 | 15669 | 13971 | 15128 | 14435 | 17531 | 19125 | 18386 | 15342 | 15180 | | MEAN | 844 | 502 | 507 | 505 | 499 | 488 | 481 | 566 | 638 | 593 | 495 | 506 | | MAX | 1010 | 509 | 509 | 508 | 503 | 497 | 488 | 620 | 649 | 643 | 500 | 514 | | MIN | 508 | 432 | 503 | 502 | 494 | 481 | 475 | 486 | 625 | 492 | 487 | 497 | | AC-FT | 51880 | 29850 | 31150 | 31080 | 27710 | 30010 | 28630 | 34770 | 37930 | 36470 | 30430 | 30110 | | STATIS' | TICS OF M | ONTHLY ME | AN DATA | FOR WATER | YEARS 1921 | - 2003, | BY WATER | YEAR (WY) | * | | | | | MEAN | 734 | 589 | 443 | 404 | 440 | 602 | 810 | 1221 | 1701 | 1233 | 924 | 850 | | MAX | 2758 | 1733 | 1050 | 1079 | 1068 | 2400 | 2343 | 3541 | 6254 | 5325 | 2909 | 3063 | | (WY) | 1966 | 1986 | 1990 | 1990 | 1990 | 1947 | 1996 | 1947 | 1964 | 1975 | 1964 | 1965 | | MIN | 208 | 0.40 | 15.7 | 35.0 | 35.0 | 47.7 | 46.1 | 51.0 | 58.9 | 57.5 | 82.5 | 173 | | (WY) | 1983 | 1956 | 1956 | 1956 | 1956 | 1956 | 1956 | 1956 | 1956 | 1956 | 1956 | 1921 | | SUMMAR | Y STATIST | ICS | FOF | 2002 CAL | ENDAR YEAR | F | OR 2003 W | ATER YEAR | | WATER YEAR | S 1921 - | 2003* | | ANNUAL | TOTAL | | | 352892 | | | 201678 | | | | | | | ANNUAL | | | | 967 | | | 553 | | | 829 | | | | | T ANNUAL | | | | | | | | | 1488 | | 1959 | | | ANNUAL M | | | 5280 | T 22 | | 1010 | 0 1 | | 97.5
10100 | Jun 12 | 1956 | | | T DAILY M
DAILY ME. | | | 225 | Jun 22
Apr 1 | | 432 | Oct 1
Nov 4 | | 0.20 | | | | | SEVEN-DA | | | 227 | Mar 26 | | 477 | Apr 7 | | 0.20 | Oct 29 | | | | M PEAK FL | | | | 20 | | 1010 | Oct 1 | | a10400 | Jun 16 | | | MAXIMU | M PEAK ST. | AGE | | | | | 4.17 | | | 10.63 | Jun 16 | 1964 | | | TANEOUS L | | | | | | | | | b0.20 | Nov 10 | 1955 | | | RUNOFF (. | | | 700000 | | | 400000 | | | 600400 | | | | | CENT EXCE | | | 1960
508 | | | 643
505 | | | 1660
563 | | | | | CENT EXCE | | | 231 | | | 487 | | | 220 | | | | 20 I IIIC | | | | 231 | | | 10. | | | | | | ^{*--}During period of operation (April to September 1921, October 1945 to September 1947, October 1955 to current year). a--Since dam completion. Maximum discharge not determined; occurred about March 20, 1947. b--Probably less than; during Tiber Dam shutdown. #### 06102050 MARIAS RIVER NEAR LOMA, MT $LOCATION.--Lat\ 47^{\circ}55'59", long\ 111^{\circ}31'02"\ (NAD\ 27)\ , in\ SW^{1}/_{4}NE^{1}/_{4}SE^{1}/_{4}\ sec.12,\ T.25\ N.,\ R.9\ E.,\ Choteau\ County,\ Hydrologic\ Unit\ 10030203,\ on\ left\ bank\ 600\ ft\ upstream\ from\ Teton\ River,\ 800\ ft\ upstream\ from\ highway\ bridge,\ 0.2\ mi\ southwest\ of\ Loma,\ and\ at\ river\ mile\ 2.5.$ DRAINAGE AREA.--7,137 mi², of which 518 mi² is probably noncontributing. PERIOD OF RECORD.--October 1959 to September 1972, June 2001 to current year (seasonal records only). GAGE.--Water-stage recorder. Elevation of gage is 2,570 ft (NGVD 29). Prior to June 2001, water-stage recorder at site 4.5 mi upstream at different elevation. REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow completely regulated by Lake Elwell. Numerous diversions for irrigation upstream from station. Several observations of water temperature and specific conductance were made during the year. # DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | | | | | | Ditti | LI WILL | 11 TILCES | | | | | | |----------|-----------|-------------|------|------------|------------------|------------|--|------------|------------|--------------------------|------------|---------| | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | | 1 | | | | e490 | 490 | 610 | 595
592
582
586
594 | 455 | 488 | 477 | | | | 2 | | | | e492 | 490 | 602 | 592 | 442 | 484 | 480 | | | | 3 | | | | e495 | 484 | 599 | 582 | 453 | 479 | 481
473 | | | | 4
5 | | | | e495 | 490 | 601 | 586 | 458 | 479 | 473
467 | | | | 5 | | | | | | | | | | 407 | | | | 6 | | | | e495 | 575 | 613 | 595
593
597
606
575 | 466 | 490 | 474 | | | | 7 | | | | e495 | 520 | 606 | 593 | 464 | 491 | 477 | | | | 8 | | | | e492 | 520 | 609 | 597 | 464 | 493 | 461 | | | | 9
10 | | | | e490 | 528
510 | 609
621 | 606
575 | 476 | 492 | 461
455 | | | | 10 | | | | | | | | | | | | | | 11 | | | | e490 | 503 | 626 | 585
579
569
561
566 | 469 | 483 | 461
469
469
470 | | | | 12 | | | | e490 | 504 | 611 | 579 | 476 | 488 | 469 | | | | 13
14 | | | | e490 | 499 | 588 | 569
E61 | 493 | 497 | 469 | | | | 15 | | | | e510 | 588 | 601 | 566 | 496 | 500 | 475 | | | | | | | | | | | | | | | | | | 16 | | | | 532 | 607 | 605 | 562
570
564
499
503 | 470 | 504 | 487 | | | | 17 | | | | 492 | 599 | 610 | 570 | 486 | 502 | 478 | | | | 18
19 | | | | 521
597 | 601 | 502
588 | 564
499 | 482
476 | 484
470 | 4/4 | | | | 20 | | | | 507 | 615 | 809 | 503 | 470 | 472 | 478
474
472
476 | | | | | | | | | | | 510
507
479
468
487 | | | | | | | 21 | | | | 489 | 614 | 661 | 510 | 469 | 464 | 473
369
353
445 | | | | 22
23 | | | | 488 | 607 | 649 | 507 | 480 | 470 | 369 | | | | 23
24 | | | | 494 | 610 | 655 | 479 | 484 | 452 | 353
445 | | | | 25 | | | | 491 | 596 | 641 | 487 | 480 | 457 | 454 | | | | | | | | | | | 497
502
507
514
512
458 | | | | | | | 26
27 | | | | 484 | 600 | 647 | 497 | 478 | 445 | 461 | | | | 28 | | | | 475 | 600 | 609 | 502 | 479 | 467 | 405
e470 | | | | 29 | | | | 489 | 589 | 589 | 514 | 475 | 454 |
e470 | | | | 30 | | | | 489 | 587 | 592 | 512 | 482 | 466 | e475 | | | | 31 | | | | | 589 | | 458 | 484 | | e475 | | | | TOTAL | | | | 14984 | 17408 | 18643 | 16914 | 14696 | 14348 | 14347 | | | | MEAN | | | | 499 | 562 | 621 | 16914
546
606
458 | 474 | 478 | 14347
463
487 | | | | MAX | | | | 597 | 631 | 809 | 606 | 498 | 504 | 487
353 | | | | MIN | | | | 475 | 484 | 588 | 458 | 442 | 445 | 353 | | | | AC-FT | | | | 29720 | 34530 | 36980 | 33550 | 29150 | 28460 | 28460 | | | | | | | | | | | , AND 2001- | | | | | | | MEAN | 298 | 434 | 568 | 852 | 1273 | 2151 | 1345
2990
2002
250
1962 | 1154 | 1072 | 1345 | 1154 | 1072 | | MAX | 517 | 910 | 1290 | 2184 | 2175 | 6018 | 2990 | 3040 | 3258 | 2990 | 3040 | 3258 | | (WY) | 1968 | 1968 | 1967 | 1972 | 1972 | 1964 | 2002 | 1965 | 1965 | 2002 | 1965 | 1965 | | MIN | 105 | 110 | 117 | 180 | 441 | 621 | 250 | 137 | 296 | 250 | 137 | 296 | | (WY) | 1964 | 1964 | 1964 | 1961 | 2002 | 2003 | 1902 | 1901 | 2001 | 1962 | 1901 | 2001 | | | | | | | | | WATER YEARS | | | | | | | ANNUAL | MEAN | | | | | | 977
1330
522
10300
45
49
10800
a8.72
707900
1940
800 | | | | | | | HIGHEST | ANNUAL M | EAN | | | | | 1330 | | 1967 | | | | | LOWEST | ANNUAL ME | AN | | 0.00 | T 00 | | 522 | T 16 | 1963 | 5050 | T (| 22 2000 | | LOWEST | DAILY MEA | AN
N | | 809
353 | Jun 20
Oct 23 | | 10300
45 | Dec 11 | 1964 | 5250
220 | Jun . | 1 2002 | | ANNUAL | SEVEN-DAY | MINIMUM | | 555 | 300 25 | | 49 | Dec 5 | 1962 | 220 | 15- | _ 2002 | | MAXIMUM | PEAK FLO | W | | 972 | Jun 20 | | 10800 | Jun 16 | 1964 | 5250 | Jun 2 | 23 2002 | | MAXIMUM | PEAK STA | GE | | 1.92 | Jun 20 | | a8.72 | Jun 16 | 1964 | b5.2 | 29 Jun 2 | 24 2002 | | ANNUAL | KUNUFF (A | DG
C-ET) | | | | | 10/900 | | | | | | | 50 PERC | ENT EXCEE | DS | | | | | 800 | | | | | | | | ENT EXCEE | | | | | | 180 | a--Site and datum then in use. b--From high-water mark. e--Estimated. #### 06102500 TETON RIVER BELOW SOUTH FORK, NEAR CHOTEAU, MT LOCATION.--Lat 47°52′59", long 112°36′40" (NAD 27), in NE¹/₄NE¹/₄ sec.34, T.25 N., R.8 W., Teton County, Hydrologic Unit 10030205, on right bank at county road bridge, 1.1 mi downstream from South Fork, 7.6 mi southwest of Bynum Reservoir, 20 mi northwest of Choteau, and at river mile 194.7. #### WATER-DISCHARGE RECORDS DRAINAGE AREA.--105 mi². PERIOD OF RECORD.--June 1947 to October 1954 (published as "near Farmington"), June 1998 to current year, seasonal records only. GAGE.--Water-stage recorder. Elevation of gage is 4,770 ft (NGVD 29). June 1947 to October 1954, water-stage recorder 300 ft downstream at different REMARKS.--Seasonal water-discharge records good. Negligible diversion for irrigation upstream from station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 8, 1964 reached a discharge of 54,600 ft³/s, from slope-area measurement of peak flow. #### DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | | | | | | DAII | LIMEAN | VALUES | | | | | | |---|--|---|--------------------------------------|-------------------------------------|--|------------------------------------|---|------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------| | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | | 1
2
3
4
5 | | | | 70
64
59
56
55 | 140
138
143
145
138 | 389
362
317
292
263 | 129
125
121
116
113 | 72
72
71
70
70 | 58
58
58
57
57 | 57
57
57
56
56 | | | | 6
7
8
9
10 | | | | 53
52
51
55
59 | 133
e127
e125
e120
114 | 268
243
245
279
271 | 112
108
108
103
100 | 71
69
69
70
67 | 56
56
58
58
58 | 56
55
55
56
56 | | | | 11
12
13
14
15 | | | | 62
69
80
92
91 | 110
110
107
115
142 | 284
264
252
247
236 | 98
95
94
93
92 | 67
66
65
64
64 | 57
67
61
59
59 | 56
56
55
56
57 | | | | 16
17
18
19
20 | | | | 85
84
83
79
80 | 171
163
156
145
141 | 224
220
224
232
261 | 90
87
85
83
83 | 64
64
62
61
61 | 67
65
61
59
62 | 57
55
56
55
55 | | | | 21
22
23
24
25 | | | | 83
92
109
142
179 | 141
142
164
215
348 | 223
199
185
174
160 | 82
81
79
78
78 | 61
61
60
60 | 61
59
59
59
56 | 54
55
55
55
55 | | | | 26
27
28
29
30
31 | | | | 186
176
168
155
147 | 506
467
467
527
535
432 | 149
147
143
137
132 | 78
76
74
73
73
73 | 60
59
60
60
59 | 57
58
58
57
57 | 53
52
56
69
e61
e55 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | 2816
93.9
186
51
5590 | 6627
214
535
107
13140 | 7022
234
389
132
13930 | 2880
92.9
129
73
5710 | 1999
64.5
72
59
3970 | 1772
59.1
67
56
3510 | 1739
56.1
69
52
3450 | | | | STATIST | ICS OF MO | NTHLY MEA | N DATA F | OR WATER | YEARS 1947 | 7 - 1954 | AND SEASO | NS 1998 - | 2003* | | | | | MEAN
MAX
(WY)
MIN
(WY) | 47.9
59.0
1952
24.9
1950 | 46.3
59.0
1952
25.1
1949 | 45.1
48.9
1952
36.5
1950 | 80.3
142
1952
45.0
2001 | 324
516
1951
195
2001 | 513
1178
1953
230
2000 | 239
468
1951
92.9
1949 | 114
182
1951
61.8
1949 | 86.4
134
1951
57.3
1949 | 77.5
133
1952
54.6
1950 | 68.6
89.8
1952
44.0
1950 | 56.9
68.2
1951
40.7
1950 | | SUMMARY | STATISTI | CS | | FOR 200 | 3 SEASON | V | NATER YEAR | S 1947 - 3 | 1954* | SEASONS | S 1998 -: | 2003* | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL ME DAILY ME DAILY MEA SEVEN-DAY PEAK FLO ANEOUS LO RUNOFF (A ENT EXCEE ENT EXCEE | AN AN N MINIMUM W GE W FLOW C-FT) DS DS | | 535
51
608
5.21
a48 | May 30
Apr 8
May 30
May 30
Apr 9 | k | 166
225
92.9
2380
20
222
2780
c7.34
d12
.9900
418
80
43 | | 1949
1949
1948
1950 | 1160
36
1280
5.78
f35 | Jun 17 | 2001
2002
2002 | ^{*--}During periods of operation (June 1947 to October 1955, June 1998 to current year; seasonal records beginning 1998). a--Gage height, 3.62 ft. b--From rating curve extended above 1,100 ft³/s, gage height, 5.32 ft. previous site and datum. c--Backwater from ice, previous site and datum. d--Gage height, 2.82 ft, previous site and datum. e--Estimated. f Green beight 3.71 ft. f--Gage height, 3.71 ft. # PERIOD OF RECORD.--May 1998 to current year. REMARKS.--Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge, | water,
unfltrd
field, | | Temper-
ature,
air, | Temper-
ature,
water, | Ammonia + org-N, water, unfltrd mg/L | water, | Nitrite
+
nitrate
water
fltrd,
mg/L | water, | |----------------|--------|---------------------------------------|-----------------------------|---------------------------------------|-----------------------------|-----------------------------|---|--|--|-----------------| | Date | 111116 | cfs
(00061) | | 25 degC | deg C
(00020) | deg C | as N
(00625) | as N
(00608) | as N | as N
(00613) | | NOV 2002
04 | 1510 | 68 | 8.3 | 390 | 7.0 | 4.0 | <.10 | <.015 | .043 | <.002 | | JAN 2003
14 | 1500 | 49 | 8.4 | 388 | .5 | 2.5 | <.10 | <.015 | .050 | <.002 | | MAR
11 | 1000 | 48 | 7.8 | 382 | -9.0 | .0 | <.10 | <.015 | .061 | <.002 | | APR
08 | 1745 | 50 | 8.2 | 387 | 15.5 | 11.5 | E.06 | E.009 | .054 | <.002 | | MAY
21 | 0930 | 144 | 8.3 | 339 | 10.0 | 8.0 | <.10 | <.015 | .036 | <.002 | | JUN
16 | 1520 | 212 | 8.5 | 312 | 23.0 | 15.0 | E.07 | <.015 | E.020 | <.002 | | JUL
15 | 2000 | 89 | 8.5 | 367 | 28.0 | 15.0 | <.10 | <.015 | E.019 | <.002 | | AUG
20 | 1745 | 59 | 8.4 | 383 | 24.0 | 16.0 | <.10 | <.015 | <.022 | <.002 | | SEP
09 | 1745 | 58 | 8.6 | 385 | 12.0 | 13.0 | <.10 | <.015 | E.012 | <.002 | | | | Date | | Phos-
phorus,
water,
unfltro | ium,
water,
l unfltro | diame
l perce
<.063 | - pend
, sedi
e men
tr conce
nt trati | ed Sus - pend t sedi n- men on load L tons | ed
-
t
/d | | | | | NOV 2002
04 | <.007 | <.004 | E.5 | 83 | 13 | 2.4 | | | | | | JAN 2003
14 | <.007 | E.003 | .8 | 70 | 2 | . 26 | | | | | | MAR
11 | <.007 | E.002 | E.5 | 47 | 12 | 1.6 | | | | | | APR
08 | <.007 | E.002 | .8 | 61 | 5 | .68 | | | | | | MAY
21 | <.007 | <.004 | .7 | 63 | 3 | 1.2 | | | | | | JUN
16 | <.007 | E.003 | E.4 | 80 | 3 | 1.7 | | | | | | JUL
15 | - 007 | E 003 | | 70 | 0 | 2.2 | | | E.002 .7 .6 .6 < .004 < .004 79 60 58 9 10 7 2.2 1.6 1.1 E--Estimated. 15... AUG 20... SEP 09... <.007 <.007 <.007 #### 06108000 TETON RIVER NEAR DUTTON, MT $LOCATION.--Lat\ 47^{\circ}55'49", long\ 111^{\circ}33'07"\ (NAD\ 27), in\ SE^{1}/_{4}SW^{1}/_{4}SW^{1}/_{4}SEC.12,
T.25\ N., R.1\ E., Teton\ County,\ Hydrologic\ Unit\ 10030205,\ on\ SE^{1}/_{4}SW^{1}/_{4$ right bank 150 ft upstream from Kerr Bridge, 0.9 mi downstream from Hunt Coulee, 9.5 mi northeast of Dutton, and at river mile 100.9. DRAINAGE AREA.--1,307 mi². Area at site used prior to July 17, 1965, 1,308 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--August 1954 to current year. GAGE.--Water-stage recorder. Elevation of gage is 3,235 ft (NGVD 29). Prior to July 17, 1965, water-stage recorder at site 1,800 ft downstream at elevation 1.97 ft lower. REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. Water is diverted on left bank in sec.34, T.25 N., R.7 W., for storage in Bynum Reservoir (usable capacity, 75,000 acre-ft). Diversions for irrigation of about 44,000 acres upstream from station. U.S. Geological Survey satellite telemeter at station. | U.S. Ge | ological Su | ırvey satelli | te telemete | er at station | • | | | | | | | | |---|--|---|--|--|-------------------------------------|---------------------------------------|------------------------------------|--|-------------------------------------|--------------------------------------|--|-------------------------------------| | |] | DISCHARC | E, CUBIO | C FEET PE | | | R YEAR OCT
N VALUES | TOBER 200 | 02 TO S | EPTEMBER | 2 2003 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 38
36
36
37
39 | e30
e35
e38
e40
e42 | e45
e40
e30
e25
e27 | e35
e40
e40
e40
e40 | e40
e40
e35
e35
e32 | e35
e35
e30
e35
e35 | 99
107
117
123
124 | 98
107
104
103
103 | 62
59
55
49
45 | 52
41
30
19
16 | 0.00
0.00
0.00
0.00
0.00 | 3.8
4.6
4.8
4.7
4.8 | | 6
7
8
9
10 | 37
38
38
38
34 | e45
e47
e45
e45
e45 | e30
e35
e35
e40
e45 | e40
e40
e35
e25
e25 | e35
e35
e38
e40
e40 | e25
e15
e15
e20
e35 | 126
125
114
106
96 | 134
147
129
115
105 | 47
43
53
58
61 | 12
11
12
12
11 | 0.00
0.00
0.00
0.00
0.00 | 4.9
4.5
5.0
6.0
6.4 | | 11
12
13
14
15 | 35
37
36
38
42 | e48
e50
e50
47
46 | e40
e40
e45
e50
e45 | e30
e35
e33
e30
e30 | e40
e40
e40
e35
e40 | e40
e50
e70
e100
e300 | 91
87
87
96
119 | 101
101
101
83
72 | 74
70
75
86
71 | 9.9
6.5
6.8
6.3 | 0.00
0.00
0.00
0.00
0.00 | 7.4
9.2
9.9
11
14 | | 16
17
18
19
20 | 43
47
43
38
37 | 44
44
42
41
39 | e45
e40
e32
e27
e25 | e30
e30
e33
e35
e30 | e45
e45
e45
e40
e35 | 504
400
275
212
179 | 163
149
131
118
111 | 69
63
67
67 | 58
48
42
41
48 | 5.2
3.9
3.4
3.2
2.7 | 1.5
2.8
1.8
1.2 | 22
39
41
33
26 | | 21
22
23
24
25 | 38
39
38
39
42 | 38
38
38
e37
e37 | e25
e25
e25
e27
e30 | e25
e20
e22
e25
e20 | e30
e20
e15
e15
e20 | 161
147
132
120
116 | 102
92
84
80
78 | 64
61
60
57
53 | 169
228
171
116
104 | 2.3
1.8
1.3
0.53
0.13 | 1.3
1.2
1.8
1.7 | 21
17
15
14
13 | | 26
27
28
29
30
31 | 44
44
e40
e30
e20
e25 | e40
e45
e45
e40 | e35
e35
e35
e30
e30
e35 | e25
e35
e35
e35
e40
e45 | e30
e25
e30
 | 110
107
107
104
103
98 | 79
85
94
95
93 | 48
45
50
57
53
57 | 96
86
81
74
64 | 0.00
0.00
0.00
0.00
0.00 | 1.7
1.9
2.3
2.2
2.4
2.9 | 12
11
11
10
10 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1166
37.6
47
20
2310 | 1261
42.0
50
30
2500 | 1073
34.6
50
25
2130 | 1003
32.4
45
20
1990 | 960
34.3
45
15
1900 | 3715
120
504
15
7370 | 3171
106
163
78
6290 | 2538
81.9
147
45
5030 | 2334
77.8
228
41
4630 | 276.26
8.91
52
0.00
548 | 29.70
0.96
2.9
0.00
59 | 396.0
13.2
41
3.8
785 | | MEAN
MAX
(WY)
MIN
(WY) | 69.8
223
1966
15.4
2002 | 70.6
176
1976
18.5
2002 | 64.1
209
1960
14.8
2001 | 55.2
167
1976
13.2
1985 | 85.5
388
1986
15.2
1985 | 183
819
1969
28.8
2002 | 158
495
1965
46.6
2000 | YEAR (WY)
245
957
1976
20.1
2000 | 385
2727
1964
16.9
1988 | 157
551
1958
1.30
1985 | 72.7
263
1972
0.000
1988 | 64.9
211
1993
7.39
2001 | | SUMMARY | STATISTI | cs | FOR | 2002 CALE | NDAR YEAR | I | FOR 2003 WA | TER YEAR | | WATER YEA | RS 1954 - | 2003 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL 10 PERC 50 PERC | MEAN 'ANNUAL MEANUAL MEANUAL MEAULY M | EAN EAN AN MINIMUM AGE DW FLOW AC-FT) EDS | | 20999
57.5
1900
10
11
41650
66
35
15 | Jun 12
Jan 26
Jan 24 | | 0.00
0.00
a607
b5.96 | Mar 16
Jul 26
Jul 26
Mar 16
Mar 15
Jul 26 | | 0.0
c71300
d20.4 | 0 Jul 21
0 Jul 21 | 1984
1984
1964
1964 | a--Gage height, 3.83 ft. b--Backwater from ice. c--From slope-area measurement of peak flow. d--From floodmark. e--Estimated. f--No flow at times on many years. # 06108000 TETON RIVER NEAR DUTTON, MT--Continued $\label{eq:water-quality} WATER-QUALITY RECORDS$ PERIOD OF RECORD.--May 1998 to current
year. REMARKS.--Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | | | nII | Specif. | | | Ammonia
+ | | Nitrite
+ | | |------------------------|--------------|-----------------------------------|-----------------------------|--|---------------------------|--|---|--|--|--------| | Date | Time | taneous
dis-
charge,
cfs | water,
unfltrd
field, | conduc-
tance,
wat unf
uS/cm
25 degC | | ature,
water,
deg C | org-N,
water,
unfltrd
mg/L
as N | water, | nitrate
water
fltrd,
mg/L
as N | water, | | NOV 2002
06 | 1240 | 45 | 8.3 | 822 | 14.0 | 0.0 | .21 | .053 | .684 | .006 | | JAN 2003
14 | 1015 | 29 | 8.4 | 1010 | -5.0 | 0.0 | .18 | E.014 | 1.07 | .007 | | MAR
11
19
APR | 1540
1030 | 38
204 | 7.4 | 849
700 | -4.0
14.0 | 0.0
1.5 | .20 | E.012 | .856 | .004 | | 08 | 1445 | 114 | 8.5 | 1010 | 26.5 | 10.0 | .65 | .015 | .072 | E.002 | | MAY
20 | 1410 | 64 | 8.6 | 807 | 17.0 | 14.0 | .34 | E.011 | <.022 | <.002 | | JUN
16 | 1815 | 55 | 8.6 | 1020 | 27.0 | 26.0 | .76 | E.009 | .056 | .009 | | JUL
16 | 0930 | 5.8 | 8.5 | 1110 | 26.0 | 21.0 | .45 | E.008 | <.022 | <.002 | | AUG
20 | 1345 | 1.3 | 8.5 | 1310 | 25.0 | 23.5 | .55 | <.015 | <.022 | <.002 | | SEP
09 | 1400 | 5.8 | 8.5 | 925 | 17.0 | 17.0 | .32 | <.015 | <.022 | <.002 | | | | Date | fltrd,
mg/L
as P | Phos-
phorus,
water,
unfltrd | water,
unfltrd
ug/L | ment,
sieve
diamet
percer
<.063r | pend, sedi
e men
cr conce
nt trati | ed Sus - pend t sedi n- men on load L tons | led
-
it
!, | | | | | NOV 2002
06 | <.007 | .009 | .8 | 77 | 52 | 6.3 | | | | | | JAN 2003
14 | <.007 | .011 | 1.0 | 30 | 80 | 6.3 | | | | | | MAR
11
19
APR | <.007 | .010 | .7 | 80
98 | 42
560 | | | | | | | 08
MAY | <.007 | .053 | 1.1 | 96 | 69 | 21 | | | | | | 20
JUN | <.007 | .026 | 1.0 | 96 | 42 | 7.3 | | | | | | 16
JUL | <.007 | .055 | 1.0 | 96 | 76 | 11 | | | | | | 16
AUG | <.007 | .039 | .8 | 99 | 58 | .9 | 1 | | | | | 20
SEP | <.007 | .041 | 1.0 | 99 | 24 | .0 | 8 | | | | | 09 | <.007 | .027 | .8 | 99 | 26 | . 4 | 1 | | $\mathtt{E--Estimated}$. #### 06108800 TETON RIVER AT LOMA, MT LOCATION.--Lat 47°55'57", long 110°30'49" (NAD 27), in NW¹/₄SW¹/₄SE¹/₄ sec.12, T.25 N., R.9 E., Choteau County, Hydrologic Unit 10030205, on left bank 25 ft downstream from county bridge, 0.5 mi southwest of Loma, and at river mile 0.3. DRAINAGE AREA.--2.010 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--June 1998 to current year. Prior to October 1, 1999, seasonal records only. GAGE.--Water-stage recorder. Elevation of gage is 2,560 ft (NGVD 29). REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. U. S. Geological Survey satellite telemeter at station. Numerous diversions upstream from station for irrigation. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES JUL DAY OCT NOV DEC FEB MAY JUN AUG SEP JAN MAR APR 55 e25 e38 e31 99 92 38 26 0.00 0 00 55 26 102 31 0.00 e31 e25 e32 e30 89 0.00 26 e36 e46 e26 e28 e28 107 37 18 0.00 0.00 e39 e21 e25 e27 26 27 4 e27 107 92 39 13 0.00 0.00 112 9.2 5 93 39 e26 e29 e24 0.00 0.00 e41 e26 e33 e26 6.5 6 7 27 e45 e32 e25 116 91 38 0 00 0 00 27 e47 e36 e37 e28 e24 119 89 31 0.00 0.00 30 e38 e23 99 31 1.5 e43 29 57 e40 **630** e22 124 102 32 3 4 0.00 0.00 35 10 28 51 118 0.06 e47 e32 e28 e21 97 0.00 0.00 31 41 61 0 00 0 00 11 e52 e27 e28 e21 113 89 0 00 34 38 e55 109 67 12 e24 e26 e20 87 0.00 0.00 0.00 e25 13 31 46 e56 e21 e24 108 83 64 0.00 0.00 0.00 e58 14 29 61 e19 e26 e34 108 77 64 0 00 0 00 0.00 30 62 0.00 0.00 15 62 e54 e18 e24 e56 108 75 0.00 16 29 53 e47 e17 e27 e100 107 72 61 0 00 0 00 0 00 32 49 e19 e29 119 59 0.00 0.00 17 e36 e430 64 0.00 18 34 45 e30 e27 e30 357 147 63 49 0.00 0.00 0.00 19 36 43 e26 e33 e32 290 132 62 37 0.00 0.00 0.00 20 e25 115 58 122 21 37 42 e21 e20 e28 215 110 55 50 0.00 0.00 0.00 e16 22 35 42 e20 e21 107 51 45 0.00 0.00 190 0.00 23 32 40 e23 e18 e18 171 102 51 92 0.00 0.00 0.00 24 33 0.00 e25 e25 e17 e17 153 98 49 124 0.00 0.00 25 36 e19 96 102 0.00 0.00 0.00 e20 e30 e18 26 36 e28 e33 e23 e21 127 92 50 82 0.00 0.00 0.00 27 36 42 e30 e27 e26 122 90 50 72 0.00 0.00 0.00 28 38 52 e27 e22 e29 115 88 38 65 0.00 0.00 0.00 57 0.00 29 e27 64 e25 108 29 0.00 e28 91 0.00 30 e20 59 e24 e37 103 92 24 47 0.00 0.00 0.00 ---31 e24 e24 e40 97 28 0.00 0.00 TOTAL 949 1321 1120 808 747 3376 3258 2134 1726 119.26 0 00 0.00 0.000 MEAN 30.6 44.0 36.1 26.1 26.7 109 109 68.8 57.5 3.85 0.000 38 0.00 MAX 39 64 58 40 430 147 102 124 38 0.00 MIN 20 20 2.0 16 17 20 88 24 31 0.00 0.00 0.00 6700 2220 4230 3420 AC-FT 1880 2620 1600 1480 6460 237 0.00 0.00 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1998 - 2003, BY WATER YEAR (WY) MEAN 72.7 126 38.2 13.7 MAX 30.6 44.0 39.5 35.0 31.6 109 109 74.8 1999 304 151 62.6 24.8 (WY) 1998 2000 2003 2003 2002 1998 2003 2003 1999 0.000 0.000 0.000 0.000 (WY) 2000 2002 2002 2002 2002 2001 2002 2000 2000 2001 2000 2000 SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1998 ANNUAL TOTAL 18257.65 15558.26 ANNUAL MEAN 50.0 42.6 32.3 HIGHEST ANNUAL MEAN 2003 42.6 LOWEST ANNUAL MEAN 16.6 2001 1740 1740 2002 430 0.00 0.00 0.00 LOWEST DAILY MEAN Jan 1 Jul 11 Jul 30 1999 ANNUAL SEVEN-DAY MINIMUM 0.00 Jul 11 0.00 Jul 30 1999 0.07 Jan MAXIMUM PEAK FLOW a500 c2000 b6.98 0.00 30860 102 Mar 16 b6.98 0.00 23400 73 19 Mar 16 2003 36210 67 27 MAXIMUM PEAK STAGE 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS ANNUAL RUNOFF (AC-FT) a--About, backwater from ice. b--Backwater from ice, from floodmarks. c--Gage height, 5.87 ft. e--Estimated. # 06108800 TETON RIVER AT LOMA, MT--Continued WATER-QUALITY RECORDS PERIOD OF RECORD .-- Water year 1965, May 1998 to current year. PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: October 1999 to current year. INSTRUMENTATION.--Temperature recorder installed Oct. 20, 1999. REMARKS.--No samples collected during July through September due to no flow. Daily temperature record good for period of flow. Missing maximum daily water temperature for Mar. 31 due to equipment problems. No daily water temperature data from July 10 through September 30 due to no flow. Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- WATER TEMPERATURE (October 1999 to current year): Maximum, 35.5°C, July 13, 2002; minimum, 0.0°C on many days during winter months. #### EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: Maximum, 30.5°C, July 1; minimum, 0.0°C, many days October through March. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Tim | dis- | s unfltro
field,
, std
units | tance,
wat unf
uS/cm
25 deg(| Tempe:
ature
air
deg (| e, at
, wa
C de | mper-
cure,
iter,
eg C | Ammonia + org-N, water, unfltro mg/L as N (00625) | Ammon
wate
fltr
mg/
as | r, wate
d, fltr
L mg/
N as | te Nitri
er wate
ed, flt:
L mg,
N as | er,
cd,
/L
N | |----------------------------|------|----------------------------|---|--|--|--|---------------------------------|--|---|---|---|--| | NOV 2002
06
JAN 2003 | 161 | 5 45 | 8.4 | 915 | 13.0 | | .0 | .34 | E.00 | 8 .21 | .7 .00 | 04 | | 13 | 143 | 0 21 | 7.9 | 1100 | -2.0 | | .0 | .22 | E.00 | 9 .90 | .00 | 08 | | MAR
12 | 084 | 0 E20 | 7.9 | 992 | -5.5 | | .0 | .15 | .01 | 5 .59 | 6 E.00 | 02 | | APR
09 | 090 | 5 129 | 8.5 | 961 | 22.0 | 10 | .5 | .54 | <.01 | 5 <.02 | .00 |)2 | | MAY
22 | 110 | 0 52 | 8.6 | 1020 | 17.0 | 17 | .0 | . 29 | <.01 | 5 <.02 | 22 <.00 |)2 | | JUN
17 | 144 | 0 59 | 8.6 | 1100 | 29.0 | 28 | 3.0 | .63 | <.01 | 5 <.02 | 22 <.00 | 02 | | | | Date | Orthophos-phatewater fltrd mg/I as F (00671 | Phose, Phorus
t, phorus
l, water
unfltr
mg/I | s, ium
c, wate
cd unfli
L ug | en- m
m, s
er, di
trd pe
/L <. | rcent
063mm | pende
sedi-
ment
concer
tratio | ed Su
pen
sed
n- me
on loa
ton | ded
i-
nt
d,
s/d | | | | | | NOV 2002
06
JAN 2003 | <.007 | .098 | 1. | 1 | 97 | 177 | 22 | | | | | | | 13
MAR | <.007 | .019 | 1. | 1 | 90 | 51 | 2. | 9 | | | | | | 12
APR | <.007 | .010 | . ' | 7 | 78 | 46 | E2. | 5 | | | | | | 09 | <.007 | .081 | 1.: | 2 | 96 | 101 | 35 | | | | | | | 22
JUN | <.007 | .015 | 1. | 1 | 96 | 26 | 3. | 7 | | | | | | 17 | <.007 | .095 | . ! | 9 | 99 | 130 | 21 | | | | | Date | Time | | Calcium
water,
fltrd,
mg/L | <pre>lagnes- ium, water, fltrd, mg/L 00925)</pre> | Potas-
sium,
water,
fltrd,
mg/L
(00935) | | o- w
ı f | dium, frater, ltrd, n | Alka-
inity,
vat flt
Exd end
lab,
ng/L as
CaCO3
29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | | APR 2003 | | | | | | _ | _ | | | | | | | 09
JUN | 0905 | 410 | 68.2 | 57.7 | 2.90 | 1 | | 7.3 | 249 | 8.75 | .44 |
1.42 | | 17 | 1440 | 420 | 60.5 | 65.6 | 3.64 | 2 | 9 | 1.1 | 225 | 11.3 | . 4 | 1.37 | E--Estimated. # 06108800 TETON RIVER AT LOMA, MT--Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d
(70302) | Arsenic
water
unfltrd
ug/L
(01002) | Cadmium
water,
unfltrd
ug/L
(01027) | Chrom-
ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Nickel,
water,
unfltrd
recover
-able,
ug/L
(01067) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | |-----------------------|--|---|--|--|--|---|---|--|--|--|--| | APR 2003
09
JUN | 259 | 615 | .84 | 214 | E2 | <.2 | . 9 | 6.2 | 1.24 | 5.50 | 10 | | 17 | 342 | 711 | .97 | 113 | 2 | <.2 | E.7 | 4.9 | 1.58 | 5.53 | 10 | E--Estimated. ## WATER TEMPERATURE, DEGREES CELSIUS, OCTOBER 2002 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|----------------------------------|-------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | | OCTOBER | | NC | VEMBER | | DE | CEMBER | | | JANUARY | | | 1
2
3
4
5 | 15.0
14.0
10.0
9.5
8.5 | 7.5
5.5
8.0
7.5
6.0 | 10.5
9.5
9.0
8.5
7.0 | 0.0
0.0
0.5
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 3.5
2.5
1.5
0.0 | 0.0
1.5
0.0
0.0 | 1.5
2.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 6
7
8
9
10 | 13.0
14.0
16.0
15.5
14.5 | 5.0
10.0
8.5
8.5
8.0 | 8.5
11.0
11.5
12.0
10.5 | 0.5
2.0
2.5
2.0 | 0.0
0.0
0.0
0.5
0.0 | 0.0
1.0
1.0
1.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 11
12
13
14
15 | 10.0
10.5
11.5
11.5 | 6.0
3.5
3.5
4.5
4.0 | 8.5
6.5
7.0
7.5
7.5 | 3.0
4.5
5.5
5.0
6.5 | 0.0
0.0
3.0
3.0
3.5 | 1.0
2.5
4.5
4.0
4.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 16
17
18
19
20 | 11.5
12.5
12.0
11.5
12.0 | 6.5
5.0
6.5
4.5
6.5 | 8.5
8.5
9.0
8.0
9.0 | 4.0
5.5
4.5
6.0
7.5 | 2.5
2.0
1.5
2.0
4.0 | 3.0
3.0
2.5
4.0
5.5 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 21
22
23
24
25 | 11.0
7.0
4.0
4.0
5.5 | 6.5
2.0
0.0
0.0 | 8.5
5.0
1.5
1.5 | 6.0
5.5
4.5
0.5 | 2.0
3.5
0.0
0.0 | 4.5
5.0
2.5
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 26
27
28
29
30
31 | 5.0
5.5
3.5
0.5
0.0 | 0.0
1.5
0.5
0.0
0.0 | 2.5
3.5
2.5
0.0
0.0 | 0.0
2.0
5.5
4.5
3.5 | 0.0
0.0
0.5
1.5
0.5 | 0.0
1.0
3.0
3.0
1.5 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | | MONTH | 16.0 | 0.0 | 6.5 | 7.5 | 0.0 | 2.0 | 3.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | # 06108800 TETON RIVER AT LOMA, MT--Continued # WATER TEMPERATURE, DEGREES CELSIUS, OCTOBER 2002 TO SEPTEMBER 200E--Continued | DAY | MAX | MIN | MEAN | |--|--|--|--|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--| | 1 | 0.0 | FEBRUARY
0.0 | 0.0 | 0.0 | MARCH
0.0 | 0.0 | 11.0 | APRIL
9.0 | 10.0 | 16.5 | MAY
8.0 | 12.0 | | 2
3
4
5 | 0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0 | 9.0
9.5
10.5
11.5 | 2.5
1.0
3.5
4.5 | 6.0
4.5
6.5
7.5 | 17.5
17.5
14.0
10.5 | 10.5
10.0
8.0
4.5 | 14.0
13.5
11.0
7.5 | | 6
7
8
9
10 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 11.0
11.5
14.5
16.0
16.5 | 6.5
4.0
5.5
9.0
8.0 | 8.5
8.0
10.0
12.5
12.0 | 13.0
14.0
11.5
10.0
11.5 | 6.5
8.0
8.5
8.0
7.5 | 9.5
11.0
9.5
9.0
9.0 | | 11
12
13
14
15 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 19.0
19.5
18.0
17.0
13.5 | 10.5
12.0
12.5
12.0
9.5 | 14.5
15.5
15.0
14.0
11.5 | 18.5
19.0
19.0
22.5
22.0 | 7.5
12.0
12.5
12.0
15.0 | 12.5
15.5
16.0
17.5
18.5 | | 16
17
18
19
20 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
1.5
3.5
6.0
7.5 | 0.0
0.0
1.0
1.0
2.0 | 0.0
0.5
2.0
3.5
5.0 | 15.5
15.0
12.5
16.5
18.5 | 7.5
8.5
9.5
8.5
10.5 | 11.0
12.0
10.5
12.0
14.5 | 17.5
17.0
13.5
18.0
20.5 | 12.5
9.0
7.0
6.0
9.5 | 15.0
13.0
9.5
11.5
15.0 | | 21
22
23
24
25 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 7.5
9.0
9.0
5.5
6.0 | 3.5
4.0
5.0
3.0
1.5 | 5.5
6.5
7.0
4.5
4.0 | 19.5
20.5
21.0
22.0
18.5 | 11.5
11.5
14.0
14.5
14.0 | 15.0
16.0
17.5
17.5
16.0 | 21.0
22.5
22.5
27.0
29.0 | 14.0
14.5
16.0
15.0
17.0 | 17.0
18.5
18.5
20.5
22.5 | | 26
27
28
29
30
31 | 0.0
0.0
0.0
 | 0.0
0.0
0.0
 | 0.0
0.0
0.0
 | 8.5
8.5
9.5
9.5
13.0 | 3.0
4.5
2.5
3.0
5.5
9.0 | 6.0
6.5
6.0
6.5
9.0 | 17.5
17.5
13.5
11.5
11.0 | 12.0
10.0
9.5
9.0
9.0 | 14.0
13.5
11.0
10.5
10.0 | 24.0
26.0
27.5
28.0
24.5
23.5 | 19.0
16.5
16.5
19.5
16.5 | 21.5
21.0
21.5
23.5
20.5
19.5 | | MONTH | 0.0 | 0.0 | 0.0 | | 0.0 | 2.5 | 22.0 | 1.0 | 12.0 | 29.0 | 4.5 | 15.5 | | | | | | | | | | | | | | | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5 | 23.0
19.0
22.5
17.0
19.5 | JUNE 17.0 15.5 14.5 13.5 12.5 | 19.5
17.5
18.0
14.0
16.0 | 30.5
27.5
25.0
27.0
26.5 | 19.5
19.5 | 24.5
23.0
20.5
21.0
21.0 | | |

 |

 | SEPTEMBE

 | R

 | | 2
3
4 | 19.0
22.5
17.0 | 17.0
15.5
14.5
13.5 | 17.5
18.0
14.0 | 27.5
25.0
27.0
26.5 | 19.5
19.5
16.5
15.0
16.5 | 24.5
23.0
20.5
21.0 |

 | AUGUST |

 |
 |

 | | | 2
3
4
5
6
7
8
9 | 19.0
22.5
17.0
19.5
19.0
25.5
24.5
21.0 | 17.0
15.5
14.5
13.5
12.5
14.0
13.5
15.5
16.5 | 17.5
18.0
14.0
16.0
16.0
19.0
20.0
18.5 | 27.5
25.0
27.0
26.5
28.0
29.5
22.5
28.0 | 19.5
19.5
16.5
15.0
16.5
14.5
16.5
16.5 | 24.5
23.0
20.5
21.0
21.0
20.5
22.5
19.5
21.5 |

 | AUGUST |

 | | |

 | | 2
3
4
5
6
7
8
9
10
11
12
13
14 |
19.0
22.5
17.0
19.5
19.0
25.5
24.5
21.0
25.5
21.0
26.0
27.5
26.5 | 17.0
15.5
14.5
13.5
12.5
14.0
13.5
15.5
16.5
15.5 | 17.5
18.0
14.0
16.0
19.0
20.0
18.5
19.5
18.5
21.0
22.0
22.0 | 27.5
25.0
27.0
26.5
28.0
29.5
22.5
28.0
 | 19.5
19.5
16.5
15.0
16.5
14.5
16.5
15.0 | 24.5
23.0
20.5
21.0
21.0
20.5
22.5
19.5
21.5 | | AUGUST | | | | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 19.0
22.5
17.0
19.5
19.0
25.5
24.5
21.0
25.5
21.0
26.0
27.5
26.5
29.0
30.0
30.0
30.0
29.5 | 17.0
15.5
14.5
13.5
12.5
14.0
13.5
15.5
16.5
16.0
16.0
18.0
19.0
19.0 | 17.5 18.0 14.0 16.0 19.0 20.0 18.5 19.5 18.5 21.0 22.0 24.0 25.5 24.0 24.0 | 27.5
25.0
27.0
26.5
28.0
29.5
22.5
28.0
 | 19.5 19.5 16.5 15.0 16.5 14.5 16.5 15.0 | 24.5
23.0
20.5
21.0
21.0
20.5
22.5
19.5
21.5 | | AUGUST | | | | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 19.0
22.5
17.0
19.5
19.0
25.5
24.5
21.0
26.0
27.5
26.5
29.0
30.0
30.0
30.0
30.0
30.0
29.5
21.5 | 17.0
15.5
14.5
13.5
12.5
14.0
13.5
15.5
16.5
16.0
18.0
19.0
19.0
20.0
16.5
15.5
15.5 | 17.5 18.0 14.0 16.0 19.0 20.0 18.5 19.5 18.5 21.0 22.0 24.0 25.0 24.0 25.5 24.0 19.0 18.0 16.5 16.5 17.5 | 27.5 25.0 27.0 26.5 28.0 29.5 22.5 28.0 | 19.5 19.5 16.5 15.0 16.5 14.5 16.5 15.0 | 24.5
23.0
20.5
21.0
21.0
20.5
22.5
19.5
21.5
 | | AUGUST | | | | | #### 06109500 MISSOURI RIVER AT VIRGELLE, MT LOCATION.--Lat 48°00'18", long 110°15'25" (NAD 27), in SW¹/₄SW¹/₄SE¹/₄ sec.13, T.26 N., R.11 E., Chouteau County, Hydrologic Unit 10040101, on left bank 0.2 mi upstream from Virgelle ferry, 0.6 mi southwest of Virgelle, 1.8 mi downstream from Spring Coulee, and at river mile 2,034.2. DRAINAGE AREA.--34,379 mi². PERIOD OF RECORD.--February 1935 to current year. Prior to October 1953, published as "at Loma." REVISED RECORDS .-- WSP 1729: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 2,507.50 ft (NGVD 29). Prior to Sept. 30, 1953, water-stage recorder at Loma, 18 mi upstream, 2.543.40 ft. REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated by 23 smaller irrigation reservoirs and powerplants, Clark Canyon Reservoir (station number 06015300), Canyon Ferry Lake (station number 06058500), and Lake Elwell (station number 06101300). Diversions for irrigation of about 850,400 acres upstream from station. U.S. Army Corps of Engineers satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1908 reached a stage about 2 ft higher than that of June 5, 1953, from information by local residents. | iocai ie | esidents. | | | | | | | | | | | | |--|--|---|--|---|---|--|---|---|--|--|--|--| | | | DISCHAF | RGE, CUB | IC FEET P | ER SECON
DAI | | R YEAR C
N VALUES | | 2002 TO S | EPTEMBEI | R 2003 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4800
4590
4760
4840
4700 | 4550
4680
4690
4760
4830 | 5290
5280
5210
5170
5240 | e5700
e5350
e5650
e5750
e5850 | e6200
e6100
e5400
e5500
e5400 | e5950
e5950
e5600
e5900
e5750 | 5630
5630
5930
6290
6210 | 7660
7500
7470
7490
7530 | 15100
13700
13200
12900
14000 | 7830
7760
7650
7080
6830 | 4860
4980
5040
5030
5140 | 4120
3990
4210
3900
3930 | | 6
7
8
9
10 | 4600
4610
4650
4620
4600 | 4750
4790
4860
4780
4950 | 5170
5000
5430
5450
5360 | e5550
e5250
e5250
e5150
e5300 | e5400
e5250
e4800
e5650
e5900 | e5400
e5300
e5100
e4750
e4550 | 5950
5930
5780
5770
5680 | 7570
7690
7640
7610
7830 | 13800
12500
11500
10800
9990 | 6710
6040
6210
5960
5500 | 5040
5090
5140
5120
5410 | 3860
3880
3840
3900
3960 | | 11
12
13
14
15 | 4600
4630
4420
4530
4640 | 5140
5490
5600
5350
5220 | 5260
5200
5200
5180
5400 | e4900
e3900
e4150
e5050
e5350 | e5800
5670
5550
5520
5580 | e4850
e5300
e6150
e7150
e13000 | 5630
5820
6140
6500
7060 | 7830
8070
8390
8260
8240 | 10100
10300
9650
9870
9440 | 5740
5700
5860
5830
5960 | 4930
4830
4470
4620
4280 | 3890
4100
4090
4100
4200 | | 16
17
18
19
20 | 4590
4590
4620
4640
4720 | 5200
5140
5150
5270
5340 | 5580
5570
5340
5140
e4950 | e5650
e5350
e5250
e5050
e5300 | 5480
5420
5430
5510
5550 | e10500
9080
8330
8060
7730 | 7060
7300
7400
7250
6900 | 8860
9310
10200
10600
10200 | 9290
9020
8700
8400
9420 | 5730
5670
5720
5600
5210 | 4220
4100
4260
4230
4140 | 4120
4360
4230
4270
4110 | | 21
22
23
24
25 | 4750
4740
4690
4670
4630 | 5420
5330
5290
5270
5260 | e4700
e4200
e4100
e4750
e4950 | e5600
e5300
e4350
e3250
e3950 | 5480
e4850
e4350
e3650
e3700 | 6610
5530
5420
5560
5630 | 6730
6610
6480
6530
6790 | 9960
9620
9380
9260
9240 | 8520
8800
8560
8540
8490 | 5040
5190
4970
4910
4900 | 4180
4300
4390
4210
4410 | 3990
4020
4140
4090
4040 | | 26
27
28
29
30
31 | 4590
4580
4850
4840
4710
4610 | 5280
5280
5410
5510
5430 | e5100
e4650
e4500
e5300
e5900
e5950 | e5200
e5650
e5650
e5900
e6250
e6350 | e4150
e5100
e5550
 | 5820
5920
5760
5740
5680
5660 | 7330
7790
7930
8200
8140 | 9550
10900
13300
13100
13500
14400 | 8620
8490
8420
8250
7960 | 4790
4950
5060
5160
4930
4900 | 4540
4360
4350
4300
4250
4170 | 4090
3940
3870
4370
4240 | | MEAN
MAX
MIN | 144410
4658
4850
4420
286400 | 154020
5134
5600
4550
305500 | 159520
5146
5950
4100
316400 | 162200
5232
6350
3250
321700 | 147940
5284
6200
3650
293400 | 197730
6378
13000
4550
392200 | 198390
6613
8200
5630
393500 | 288160
9295
14400
7470
571600 | 306330
10210
15100
7960
607600 | 179390
5787
7830
4790
355800 | 142390
4593
5410
4100
282400 | 121850
4062
4370
3840
241700 | | STATIS' | TICS OF | MONTHLY ME | EAN DATA | FOR WATER | YEARS 193 | 5 - 2003 | , BY WATE | R YEAR (W) | 7) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 6160
15340
1966
3533
1938 | 6329
12470
1966
3207
1938 | 6254
12220
1960
3221
1937 | 6253
8997
1976
2716
1936 | 6579
10240
1971
2600
1937 | 7343
14490
1978
3784
1938 | 8672
17720
1943
4062
1961 | 13340
28260
1976
4819
1992 | 17860
51960
1948
4646
1977 | 9749
29670
1975
3704
1940 | 6142
11950
1993
2821
1937 | 5825
11590
1965
2818
1937 | | SUMMAR | Y STATIS | TICS | FOR | 2002 CAL | ENDAR YEAR | | FOR 2003 | WATER YEAF | 2 | WATER YEA | ARS 1935 | - 2003 | | LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU ANNUAL 10 PER 50 PER | MEAN
T ANNUAL
ANNUAL I
T DAILY I
DAILY M | MEAN
MEAN
EAN
AY MINIMUN
LOW
TAGE
(AC-FT)
EEDS
EEDS | | 2047170
5609
18600
2670
3490
4061000
8800
4750
4030 | Jun 13
Mar 22
Mar 17 | | 2202330
6034
15100
3250
3890
a15200
b11.
4368000
8920
5350
4200 | Jun 1
Jan 24
Sep 5
May 31
63 Mar 15 | <u> </u> | 8403
13660
4152
119000
638
2020
c122000
d23.4
6087000
14600
6750
4230 | Jul
Feb
Jun | 1975
1937
5 1953
5 1936
2 1937
5 1953
5 1953 | a--Gage height, 6.29 ft. b--Backwater from ice. c--From rating curve for former site at Loma, extended above $66,000~{\rm ft}^3/{\rm s.}$ d--From floodmark. e--Estimated. ## 06114700 JUDITH RIVER NEAR MOUTH, NEAR WINIFRED, MT $LOCATION.--Lat\ 47^{\circ}40'06", long\ 109^{\circ}39'09"\ (NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}NE^{1}/_{4}\ sec. 22,\ T.22\ N.,\ R.16\ E.,\ Fergus\ County,\ Hydrologic\ Unit\ 10040103,\ LOCATION.--Lat\ 47^{\circ}40'06", long\ 109^{\circ}39'09"\ (NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}NE^{1}/_{4}\ sec. 22,\ T.22\ N.,\ R.16\ E.,\ Fergus\ County,\ Hydrologic\ Unit\ 10040103,\ LOCATION.--Lat\ 47^{\circ}40'06", long\ 109^{\circ}39'09"\ (NAD\ 27), in\
SW^{1}/_{4}NW^{1}/_{4}NE^{1}/_{4}\ sec. 22,\ T.22\ N.,\ R.16\ E.,\ Fergus\ County,\ Hydrologic\ Unit\ 10040103,\ 10040103,\$ on right bank 0.2 mi downstream from private road bridge, 5.3 mi south of Judith Landing, 15 mi northwest of Winifred, and at river mile 7.7. DRAINAGE AREA.--2,731 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 2000 to current year. GAGE.--Water-stage recorder. Elevation of gage is 2,490 ft (NGVD 29). REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. Numerous diversions for irrigation upstream from station. U. S. Geological Survey satellite telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
DAILY MEAN VALUES | | | | | | | | | | | | | | |---|--|---|--|--|--------------------------|--|--|--|---------------------------------|--|--|---------------------------------|--|--| | | | | | | DAIL | Y MEAN | VALUES | | | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1 | 214 | e200 | 258 | e250 | e280 | e250 | 324 | 412 | 868 | 263 | 108 | 136 | | | | 2 | 214 | e210 | 259 | e250 | e280 | e240 | 358 | 402 | 808 | 223 | 119 | 126 | | | | 3 | 214 | e220 | 262 | e250 | e270 | e240 | 369 | 387 | 736 | 202 | 133 | 128 | | | | 4 | 224 | e230 | e250 | e250 | e260 | e230 | 348 | 423 | 687 | 199 | 137 | 131 | | | | 5 | 229 | e230 | e220 | e250 | e260 | e230 | 330 | 627 | 666 | 194 | 131 | 130 | | | | 6 | 240 | 241 | e230 | e260 | e250 | e220 | 326 | 717 | 673 | 169 | 139 | 138 | | | | 7 | 241 | 247 | e230 | e260 | e250 | e220 | 311 | 627 | 706 | 156 | 167 | 147 | | | | 8 | 236 | 251 | e240 | e260 | e260 | e210 | 301 | 601 | 682 | 150 | 150 | 141 | | | | 9 | 238 | 255 | e240 | e260 | e260 | e200 | 294 | 572 | 622 | 139 | 148 | 175 | | | | 10 | 235 | 253 | e250 | e250 | e260 | e200 | 287 | 548 | 597 | 139 | 147 | 178 | | | | 11 | 236 | 251 | e250 | e230 | e270 | e220 | 288 | 571 | 634 | 127 | 137 | 178 | | | | 12 | 237 | 249 | e260 | e230 | | e250 | 289 | 573 | 587 | 111 | 140 | 198 | | | | 13 | e235 | 249 | e260 | e240 | | e2000 | 289 | 545 | 553 | 98 | 157 | 233 | | | | 14 | e235 | 250 | 265 | e240 | | 6860 | 309 | 524 | 506 | 71 | 157 | 211 | | | | 15 | e235 | 252 | 269 | e250 | | 4870 | 395 | 509 | 496 | 62 | 148 | 206 | | | | 16 | e235 | 256 | 271 | e260 | e270 | 2670 | 519 | 495 | 492 | 63 | 145 | 212 | | | | 17 | 235 | 255 | 267 | | e280 | 1760 | 475 | 466 | 454 | 68 | 168 | 235 | | | | 18 | 235 | 250 | 270 | | e280 | 1070 | 427 | 557 | 420 | 77 | 172 | 221 | | | | 19 | 236 | 249 | e260 | | e280 | 703 | 485 | 684 | 400 | 69 | 172 | 214 | | | | 20 | 235 | 250 | e230 | | e280 | 523 | 507 | 637 | 381 | 62 | 171 | 213 | | | | 21 | 236 | 250 | e220 | e250 | e270 | 418 | 466 | 621 | 377 | 62 | 167 | 212 | | | | 22 | 237 | 251 | e210 | e250 | e240 | 354 | 419 | 606 | 361 | 61 | 159 | 226 | | | | 23 | 237 | 249 | e200 | e240 | e200 | 336 | 380 | 585 | 369 | 62 | 150 | 226 | | | | 24 | 237 | 253 | e200 | e230 | e170 | 417 | 357 | 557 | 358 | 58 | 147 | 224 | | | | 25 | 236 | 259 | e200 | e220 | e150 | 430 | 371 | 576 | 339 | 75 | 145 | 224 | | | | 26
27
28
29
30
31 | 236
238
241
249
e240
e220 | 262
263
262
259
257 | e210
e220
e230
e250
e260
e260 | e230
e240
e260
e250
e250
e260 | e180
e230
e250
 | 338
305
262
278
289
292 | 465
437
432
422
426 | 664
763
806
831
823
850 | 344
336
308
286
272 | 81
83
84
85
91
96 | 132
122
111
111
119
127 | 219
220
220
220
219 | | | | TOTAL | 7246 | 7413 | 7501 | 7700 | 7050 | 26885 | 11406 | 18559 | 15318 | 3480 | 4436 | 5761 | | | | MEAN | 234 | 247 | 242 | 248 | 252 | 867 | 380 | 599 | 511 | 112 | 143 | 192 | | | | MAX | 249 | 263 | 271 | 260 | 280 | 6860 | 519 | 850 | 868 | 263 | 172 | 235 | | | | MIN | 214 | 200 | 200 | 220 | 150 | 200 | 287 | 387 | 272 | 58 | 108 | 126 | | | | AC-FT | 14370 | 14700 | 14880 | 15270 | 13980 | 53330 | 22620 | 36810 | 30380 | 6900 | 8800 | 11430 | | | | STATIS | TICS OF M | ONTHLY ME | AN DATA F | OR WATER | YEARS 2001 | - 2003 | BY WATER | YEAR (WY) | | | | | | | | MEAN | 248 | 258 | 230 | 260 | 258 | 493 | 323 | 332 | 386 | 177 | 180 | 201 | | | | MAX | 272 | 268 | 242 | 278 | 287 | 867 | 380 | 599 | 511 | 226 | 236 | 217 | | | | (WY) | 2001 | 2001 | 2003 | 2002 | 2002 | 2003 | 2003 | 2003 | 2003 | 2001 | 2002 | 2002 | | | | MIN | 234 | 247 | 223 | 248 | 234 | 293 | 293 | 157 | 318 | 112 | 143 | 192 | | | | (WY) | 2003 | 2003 | 2001 | 2003 | 2001 | 2002 | 2001 | 2001 | 2001 | 2003 | 2003 | 2003 | | | | SUMMAR | Y STATIST | CICS | FOR | 2002 CALE | NDAR YEAR | I | FOR 2003 WA | TER YEAR | | WATER YEARS | 2001 - | 2003 | | | | LOWEST HIGHES' LOWEST ANNUAL MAXIMUI INSTAN' ANNUAL 10 PER 50 PER | MEAN
I ANNUAL
ANNUAL M
I DAILY M
DAILY ME | EAN EAN Y MINIMUM OW AGE OW FLOW AC-FT) EDS | | 93816
257
517
83
92
186100
312
253
204 | Jul 8
Aug 1
Jul 29 | | 122755
336
6860
58
64
47600
b11.00
c54
243500
572
250
137 | Mar 14
Jul 24
Jul 19
Mar 14
Mar 13
Jul 24 | | 279
336
243
6860
58
64
a7600
b11.00
c54
201900
365
250
150 | Mar 14 | 2003
2003 | | | a--Gage height, 9.06 ft. b--From floodmarks, backwater from ice. c--Gage height, 2.26 ft. e--Estimated. # 06114700 JUDITH RIVER NEAR MOUTH, NEAR WINIFRED, MT--Continued WATER-QUALITY RECORDS PERIOD OF RECORD .-- May 2001 to current year. PERIOD OF DAILY RECORD .-- WATER TEMPERATURE (seasonal records): April 2002 to current year. INSTRUMENTATION.--Temperature recorder installed Sept. 9, 2000. REMARKS.--Seasonal daily water temperature record good.Unpublished records of instantaneous water temperature and specific conductance are available in files of the District Office. EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE (seasonal records): Maximum, 32.0°C, July 13, 2002; minimum, 0.0°C Apr. 1-3, 2002. EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: During period of seasonal operation, maximum 30.5°C, July 17, minimum, 2.5°C, Apr. 3. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 Ammonia Nitrite | | Date APR 2003 09 MAY 22 JUN | Time
1350
1630 | Instantaneous discharge, cfs (00061) | unfltrd
field,
std
units | tance, | ature,
air,
deg C | water,
deg C | +
org-N,
water,
unfltrd | water
fltrd,
mg/L
as N | Nitrite
water,
fltrd,
mg/L
as N
(00613) | | |----------------|------------------------------|-----------------------------|---|---|--|--|--|--|--|--|--| | | 17 | 0930 | 469 | 8.4 | 685 | 27.0 | 21.0 | .54 | .089 | .003 | | | | JUL
16 | 1500 | 62 | 8.4 | 899 | 36.0 | 26.0 | .14 | <.022 | <.002 | | | | | | Date | Ortho
phos-
phate
water
fltrd
mg/L
as P
(00671 | , Phos-
, phorus
, water
unfltr
mg/I | s, sieve
r, diamet
rd percen
L <.063m | - pende
, sedi-
e ment
tr concer
nt tratio | ed Sus- pende sedi- ment n- nload, tons/ | d
d | | | | | | | APR 2003 | <.007 | .022 | 84 | 38 | 31 | | | | | | | | MAY
22 | <.007 | | 86 | 227 | 378 | | | | | | | | JUN
17 | <.007 | | 89 | 241 | 305 | | | | | | | | JUL
16 | <.007 | | 88 | 18 | 3.0 | ı | | | | | | | | | | | | | | | | | Date | Time | unfltrd
mg/L as
CaCO3 | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) (| fltrd,
mg/L | adsorp-
tion
ratio | Sodium,
water,
fltrd,
mg/L
(00930) | lab,
mg/L as
CaCO3 | Chlor-
ide,
water,
fltrd,
mg/L
00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | | MAY 2003
22 | 1630 | 430 | 101 | 43.4 | 2.86 | . 9 | 41.4 | 185 | 5.56 | . 6 | 4.76 | | JUL
16 | 1500 | 410 | 93.0 | 42.1 | 3.06 | .9 | 40.8 | 145 | 4.73 | .9 | 6.10 | | Date | water,
fltrd,
mg/L | mg/L | Residue
water,
fltrd,
tons/
acre-ft | Residue
water,
fltrd, | water
unfltrd
ug/L | water,
unfltrd
ug/L | recover
-able,
ug/L | recover
-able,
ug/L | recover
-able,
ug/L | unfltrd
recover
-able,
ug/L | unfltrd
recover
-able,
ug/L | | MAY 2003 | 005 | | 0.0 | 1010 | 2 | 0 | 1 0 | | 2 00 | T 00 | 0.0 | | JUL | 295 | 605 | . 82 | 1010 | 3 | <.2 | 1.8 | 7.5 | 3.08 | 7.90 | 20 | | 16 | 318 | 595 | .81 | 99.6 | <2 | <.04 | <.8 | 2.3 | <.06 | 3.53 | E2 | | | | | | | | | | | | | | E--Estimated. # 06114700 JUDITH RIVER NEAR MOUTH, NEAR WINIFRED, MT--Continued WATER TEMPERATURE, DEGREES CELSIUS, APRIL 2003 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--------------------------------------
--|--------------------------------------|-------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--| | | | APRIL | | | MAY | | | JUNE | | | JULY | | | 1
2
3
4
5 | 9.5
8.0
7.5
7.5
8.5 | 8.0
4.0
2.5
4.0
4.0 | 9.0
6.5
5.0
6.0 | 13.5
15.5
14.5
13.5
8.0 | 8.0
10.0
10.5
8.0
5.5 | 11.0
12.5
13.0
10.5
7.0 | 20.0
17.5
18.5
16.5
16.5 | 17.0
15.5
14.5
13.5
13.0 | 18.0
16.5
16.5
15.0
14.5 | 27.0
26.5
22.5
23.5
24.0 | 20.5
20.5
19.0
17.0
17.5 | 24.0
23.0
21.0
20.0
20.5 | | 6
7
8
9
10 | 9.5
10.5
12.5
15.0
15.0 | 6.0
4.5
6.5
9.0
9.0 | 7.5
7.5
9.5
12.0
12.0 | 13.0
11.5
10.5 | 9.0 | 9.0
10.5
10.0
9.5
10.0 | 15.5
17.0
19.0
18.0
20.0 | 14.0
12.0
14.0
16.0
15.5 | 14.5
14.5
16.5
17.0
17.5 | 24.0
25.0
21.5
24.5
26.0 | 17.0
18.0
18.0
17.0
18.0 | 20.5
21.5
19.5
20.5
22.0 | | 11
12
13
14
15 | 16.5
17.5
16.0
15.0 | | 13.5
14.5
14.5
13.5
11.0 | 15.0
17.0
17.5
19.0 | 11.5 | 11.5
14.5
15.0
15.5
17.0 | 19.5
21.5
23.5
23.5
24.5 | 16.5
16.0
17.5
18.5
19.5 | 17.5
18.5
20.5
21.0
22.0 | 27.0
28.5
28.0
26.0
27.0 | 19.5
20.0
22.0
18.5
18.0 | 23.0
24.5
24.5
22.5
22.5 | | 16
17
18
19
20 | 12.0
13.5
12.0
13.0
15.5 | 8.0
8.5
9.0
7.5
9.0 | 10.0
11.0
10.5
10.0
12.0 | 16.5 | 11.5
8.0
7.0 | 15.5
14.0
11.0
10.0
12.0 | 26.0
26.0
27.0
27.0
24.5 | 20.0
21.0
20.5
21.0
20.5 | 23.0
23.5
23.5
23.5
22.0 | 28.0
30.5
29.5
28.5
29.0 | 20.5
21.0
22.0
21.5
20.5 | 23.5
25.5
26.0
25.0
24.5 | | 21
22
23
24
25 | 16.5
17.5
19.0
18.5
16.5 | 11.0
11.5
13.0
14.5
13.5 | 13.5
14.5
16.0
16.5
15.0 | 17.0
18.5
19.0
22.0
22.5 | 13.5
15.5
15.0 | 14.5
16.0
17.0
18.0
20.0 | 22.0
20.5
20.0
19.5
20.0 | 18.0
15.5
14.0
15.0
14.5 | 20.0
18.0
17.0
17.0 | 28.5
29.5
29.5
26.5
24.0 | 21.0
20.5
21.5
22.5
20.0 | 24.5
25.0
25.5
24.5
22.0 | | 26
27
28
29
30
31 | 15.0
15.0
13.0
11.5
12.0 | 12.5
10.5
9.5
10.0
9.0 | 13.5
12.5
11.5
10.5 | 22.0
22.5
23.0
21.5
19.0 | 18.0 | 20.5
20.0
20.0
21.0
20.0
18.0 | 22.0
23.0
25.0
26.0
27.5 | 16.0
18.0
18.5
18.5
20.5 | 19.0
20.5
21.5
22.5
24.0 | 25.0
27.5
28.0
27.5
28.0
26.5 | 20.0
20.0
20.5
20.5
20.5
21.0 | 22.0
23.5
24.0
24.0
24.0
23.5 | | MONTH | 19.0 | 2.5 | | | 5.5 | 14.5 | 27.5 | 12.0 | 19.0 | 30.5 | 17.0 | 23.0 | | | | AUGUST | | | SEPTEMBE | R | | | | | | | | 1
2
3
4
5 | 26.5
28.0
25.5
25.5
26.5 | 20.0
20.0
22.5
21.0
19.5 | 23.5
24.0
24.0
23.0
23.0 | 21.5
22.0
22.5
22.5
21.5 | 16.0
16.0
16.0
16.5 | 19.0
19.0
19.0
19.5
19.5 | | | | | | | | 6
7
8
9
10 | 26.5
26.5
26.5
27.5
28.5 | 21.0
20.0
19.0
20.5
21.5 | | 20.5
24.0
21.5
18.5
18.5 | 17.5
18.0
18.0
15.0 | 19.0
21.0
19.5
17.0
16.0 | | | | | | | | 11
12
13
14
15 | 27.0
25.0
27.0
28.0
26.5 | 21.5
21.0
20.5
21.5
20.5 | 24.5
22.5
24.0
24.5
23.5 | 17.0
16.0
15.5
16.5
16.0 | 13.5
12.0
10.5 | 15.5
14.5
13.5
13.5
14.5 | | | | | | | | 16
17
18
19
20 | 27.0
23.5
25.5
25.5
25.5 | 21.0
21.0
19.0
19.5
20.0 | 23.5
22.0
22.0
22.5
22.5 | 15.0
11.0
13.0
14.5
15.0 | 11.0
9.0
7.5
9.5
11.5 | 12.5
10.0
10.5
12.0
13.5 | | | | | | | | 21
22
23
24
25 | 24.5
25.0
24.5
25.0
25.0 | 18.5
20.0
20.5
19.0 | 21.5
22.5
22.5
22.0
22.0 | 13.5
15.0
14.0
15.5
16.5 | 11.5
9.0
11.5
11.0 | 12.0
12.0
13.0
13.0
13.5 | | | | | | | | 26
27
28
29
30
31 | 23.5
21.5
20.5
21.5
22.0
22.5 | 17.5
18.5
16.0
14.5
14.5 | 21.0
19.5
18.0
18.0
18.5
19.5 | 16.5
16.0
16.5
16.0
14.5 | 13.5
11.0
12.5
12.0
9.5 | 14.5
13.5
14.5
14.0
12.0 | | | | | | | MONTH 28.5 14.5 22.5 24.0 7.5 15.0 ## 06115200 MISSOURI RIVER NEAR LANDUSKY, MT LOCATION.--Lat 47°37'51", long 108°41'13" (NAD 27), in NW¹/₄NE¹/₄ sec.31, T.22 N., R.24 E., Fergus County, Hydrologic Unit 10040104, Fort Peck Game Range, on right bank 380 ft upstream from bridge on U.S. Highway 191, 0.9 mi upstream from Armells Creek, 20 mi south of Landusky, and at river mile 1.921.61. DRAINAGE AREA.--40,987 mi². Area at site used prior to Dec. 13, 1968, 40,763 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--February 1934 to current year. Prior to October 1968, published as "at powerplant ferry, near Zortman." REVISED RECORDS.--WSP 1729: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 2,239.96 ft (NGVD 29) (State Highway bench mark). Prior to Feb. 7, 1935, nonrecording gage, and Feb. 7, 1935, to Dec. 12, 1968, water-stage recorder, at site 16.5 mi upstream at elevation 33.06 ft higher. REMARKS.—Water-discharge records good except those for estimated daily discharges, which are fair. Flow regulated by 24 smaller irrigation reservoirs and powerplants, Clark Canyon Reservoir (station number 06015300), Canyon Ferry Lake (station number 06058500), and Lake Elwell (station number 06101300). Diversions for irrigation of about 870,400 acres upstream from station. U. S. Army Corps of Engineers satellite telemeter at station. # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | DAI | LINEA | N VALUES | • | | | | | |---|--|--
---|--|--|---
---|--|--|---|---| | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 5460
5290
5100
5110
5340 | 5290
5210
e5200
e5200
e5000 | 5580
5430
5400
5460
5660 | e6400
e6100
e5800
e6000
e6200 | e6800
e6700
e6600
e5900
e5900 | e5900
e6400
e6400
e6000
e6300 | e6100
e6000
e6000
e6300
e6700 | 8310
7960
7730
7710
8400 | 15100
15700
14700
13900
13600 | 8130
7940
7740
7510
7310 | 4230
4220
4250
4410
4450 | 3910
3860
3770
3820
3790 | | 5270
5080
5080
5120
5120 | e5000
e5000
4990
5110
5060 | e5600
e5600
e5400
e5800
e5900 | e6300
e6000
e5700
e5600 | e5800
e5800
e5700
e5200
e6000 | e6200
e5800
e5700
e5500
e5200 | e6700
e6400
e6400
5880
5870 | 8660
8300
8300
8150
8160 | 14600
14500
13500
12500
11800 | 6540
6690
6160
5820
5740 | 4590
4640
4860
4540
4720 | 3720
3670
3700
3650
3690 | | 5010
5090
5040
4960
4880 | 5070
5190
5450
5760
5570 | e5800
e5700
e5600
e5600 | e5700
e5300
e4300
e4500
e5400 | e6300
e6200
e6100
e6000
e5900 | e4900
e5200
e5700
e8600
e14400 | 5810
5770
5840
6370
7220 | 8260
8370
8580
8730
8970 | 11000
11000
11100
10700
10500 | 5480
5120
5420
5330
5500 | 4720
4920
4380
4300
4100 | 3750
3810
3890
4030
3980 | | 5090
5040
5040
5040
5090 | 5330
5240
5220
5130
5210 | e5800
e6000
e6000
e5800
e5600 | e5700
e6000
e5800
e5700
e5500 | e6000
e5900
e5800
e5800
e5900 | e18000
e13600
e11000
e9600
e8600 | 8750
7760
7690
7760
7820 | 8490
9130
9520
10300
10900 | 10200
10000
9540
9310
8980 | 5520
5460
5280
5290
5340 | 4000
3930
3780
3810
3880 |
4030
4170
4180
4290
4160 | | 5140
5220
5180
5180
5110 | 5380
5450
5460
5340
5330 | e5400
e5100
e4600
e4400
e5100 | e5700
e6000
e5700
e4800
e3700 | e6000
e5900
e5300
e4700
e4000 | e8300
e7200
e6000
e5800
e6000 | 7380
7190
6980
6970
6900 | 10500
10300
10100
9930
9750 | 9740
9000
9000
8950
8730 | 4780
4650
4620
4440
4220 | 3830
3750
e3700
e3800
3910 | 4140
4050
3980
4110
4160 | | 5120
5120
5010
5190
5250
5070 | 5510
5690
5510
5430
5580 | e5300
e5500
e5100
e4900
e5600
e6300 | e4200
e5500
e6000
e6100
e6300
e6700 | e4000
e4500
e5400
 | e6000
e6200
e6400
e6200
e6200
e6100 | 7170
7410
7950
8100
8280 | 9890
10200
11200
13700
13600
14100 | 8750
8800
8740
8600
8470 | 4130
4210
4150
4500
4530
4440 | 3890
4070
4030
3940
3920
3920 | 4140
4190
4130
3990
4110 | | 158840
5124
5460
4880
315100 | 158910
5297
5760
4990
315200 | 170630
5504
6300
4400
338400 | 174300
5623
6700
3700
345700 | 160100
5718
6800
4000
317600 | 229400
7400
18000
4900
455000 | 207470
6916
8750
5770
411500 | 296200
9555
14100
7710
587500 | 331010
11030
15700
8470
656600 | 171990
5548
8130
4130
341100 | 129490
4177
4920
3700
256800 | 118870
3962
4290
3650
235800 | | TICS OF I | MONTHLY ME | EAN DATA | FOR WATER | YEARS 193 | 4 - 2003 | , BY WATER | R YEAR (WY | () | | | | | 6525
16480
1966
3270
1935 | 6732
13920
1966
3581
1938 | 6613
13180
1960
3121
1937 | 6605
10840
1979
2805
1937 | 7120
11380
1965
2511
1936 | 8528
19700
1978
4313
2002 | 9533
19240
1952
4338
1961 | 14220
30510
1975
4860
1992 | 19390
55270
1948
4939
1977 | 10700
33590
1975
3956
1940 | 6565
12620
1975
2075
1934 | 6186
12310
1965
2501
1934 | | Y STATIS | rics | FOR | 2002 CAL | ENDAR YEAR | | FOR 2003 V | VATER YEAR | ! | WATER YEA | ARS 1934 - | - 2003 | | TOTAL MEAN TANNUAL TANNUAL TO DAILY M SEVEN-D. M PEAK S' TANEOUS RUNOFF CENT EXC. | MEAN MEAN MEAN EAN AY MINIMUN LOW FAGE LOW FLOW (AC-FT) EEDS EEDS | 4 | 2180840
5975
18700
3200
3740
4326000
9670
5090 | Jun 16
Mar 1 | | 2307210
6321
18000
3650
3710
unknown
a22.5
4576000
9560
5600 | Mar 16
Sep 9
Sep 5
Mar 16 | | 9085
15280
4438
136000
1220
1620
b137000
a34.1
1120
6581000
7300 | Jun (Dec 1 Dec ! Jun : Jun : | 1975
1937
6 1953
3 1936
9 1936
3 1953 | | | 5460 5290 5100 5110 5340 5270 5080 5080 5120 5010 5040 4960 4880 5090 5040 5040 5040 5040 5040 5180 5110 5120 5110 5120 5110 5120 5110 5120 5110 5120 5180 5110 5120 5110 5120 5180 5110 5120 5180 5110 5120 5180 5110 5120 5180 5110 5120 5120 5180 5110 5120 5180 5110 5120 5120 5180 5110 5120 5120 5120 5120 5120 5120 512 | 5460 5290 5290 5210 5100 e5200 5110 e5200 5110 e5200 5340 e5000 5340 e5000 5340 e5000 5080 e5000 5080 e5000 5080 4990 5120 5110 5120 5060 5010 5070 5090 5190 5040 5450 4960 5760 4880 5570 5090 5330 5040 5240 5040 5130 5090 5210 5140 5380 5220 5450 5180 5460 5180 5340 5110 5330 5120 5690 5110 5120 5690 5010 5510 501 | \$ 5460 \$ 5290 \$ 5580 \$ 5290 \$ 5210 \$ 5430 \$ 5100 \$ e5200 \$ 5400 \$ 5110 \$ e5200 \$ 5460 \$ 5340 \$ e5000 \$ 5660 \$ 5340 \$ e5000 \$ e5600 \$ 5080 \$ e5000 \$ e5600 \$ 5080 \$ 4990 \$ e5400 \$ 5120 \$ 5100 \$ e5700 \$ 65000 | \$460 \$290 \$580 \$6400 \$5290 \$5210 \$5430 \$6100 \$5100 \$65200 \$5400 \$6800 \$5110 \$65200 \$5460 \$6000 \$5340 \$65000 \$5660 \$6200 \$5340 \$65000 \$6660 \$6200 \$5340 \$65000 \$6660 \$6200 \$5340 \$65000 \$65600 \$63000 \$5080 \$4990 \$65400 \$65700 \$5120 \$5110 \$6520 \$6500 \$6500 \$65000 \$5080 \$4990 \$65000 \$65 | OCT NOV DEC JAN FEB 5460 5290 5580 e6400 e6800 5290 5210 5430 e6100 e6700 5110 e5200 5400 e5800 e6600
5110 e5200 5400 e5800 e6600 5340 e5000 5660 e6200 e5900 5270 e5000 e5600 e6000 e5800 5080 4990 e5400 e5700 e5000 5120 5110 e5800 e5600 e6000 e5200 5120 5110 e5800 e5600 e6000 e5200 5120 5100 e5900 e5600 e6000 e5900 5120 5100 e5900 e5600 e6000 e5900 5010 5070 e5800 e5700 e6300 e6000 5010 5070 e5800 e5700 e5300 e6200 5040 5450 e5600 e4500 e6000 5040 5450 e5600 e4500 e6000 5040 5240 e6000 e5800 e5900 5040 5240 e6000 e5800 e5900 5040 5220 5230 e5600 e5500 e5900 5140 5330 e5800 e5700 e6000 5020 5450 e5100 e6000 e5900 5120 5510 e5100 e6000 e5900 5180 5460 e4600 e5700 e5300 5110 5330 e5100 e3700 e4000 5120 5510 e5100 e6000 e5900 5120 5510 e5100 e6000 e5400 5124 5297 5504 5623 5718 5460 5760 6300 6700 6800 31510 315200 338400 345700 317600 STICS OF MONTHLY MEAN DATA FOR WATER YEARS 193 66525 6732 6613 6605 7120 16680 1966 1966 1960 1979 1965 3270 3581 3121 2805 2511 1935 1938 1937 1937 1936 EY STATISTICS FOR 2002 CALENDAR YEAR 3 TOTAL 2180840 3 MEAN 5975 3 TANNUAL MEAN T | OCT NOV DEC JAN FEB MAR 5460 5290 5580 e6400 e6800 e5900 5120 5210 5430 e6100 e6700 e6400 5110 e5200 5400 e5800 e6600 e6400 5110 e5200 5460 e6200 e5900 e6300 5340 e5000 5660 e6200 e5900 e6300 5340 e5000 5660 e6000 e5900 e6300 5270 e5000 e5600 e6000 e5800 e5800 e5800 5080 e5000 e5600 e6000 e5800 e5800 e5800 5100 e5900 e5600 e6000 e5800 e5800 5100 e5900 e5600 e6000 e5900 e5500 5100 5070 e5800 e5600 e6000 e5200 e5500 5110 5070 e5800 e5700 e6300 e6200 e5200 5010 5070 e5800 e5700 e6300 e6200 e5200 5040 5450 e5600 e44500 e6000 e8600 4880 5570 e5600 e4500 e6000 e8600 5040 5240 e6000 e5800 e5900 e14400 5040 5240 e6000 e5800 e5900 e14400 5040 5220 e6000 e5800 e5900 e13600 5040 5220 e6000 e5800 e5900 e8600 5040 5220 e6000 e5800 e5900 e8600 5040 5220 e6000 e5500 5230 e5600 e5500 e5900 e8600 5040 5240 e6000 e5500 e5900 e8600 5040 5240 e6000 e5500 e5900 e8600 5040 5220 e6000 e5500 e5900 e8600 5040 5220 e6000 e5500 e5900 e8600 5040 5380 e5400 e5700 e6000 e8300 5040 5380 e5400 e5700 e6000 e8300 5040 5380 e5400 e5700 e6000 e8300 5040 5380 e5600 e5500 e5900 e8600 5140 5380 e5400 e5700 e6000 e5900 e7200 5180 5340 e4400 e4800 e4700 e5800 5110 5330 e5000 e5000 e5900 e7200 5180 5340 e4400 e4800 e4700 e5800 5120 5510 e5500 e5500 e5500 e5500 e6200 5120 5510 e5000 e6000 e5400 e6000 5120 5580 e5600 e6300 e6200 5120 5430 e4400 a4800 a4700 a5800 5120 5580 e5600 e6300 e6200 5120 5580 e5600 e6300 e6200 5120 5580 e5600 e6300 e6200 5120 5400 e6000 e5900 e7200 5120 5580 e5600 e6000 e5900 e7900 e7000 5120 5000 e7000 e7000 5120 E600 e7000 e7000 e7000 5120 E600 e7000 e7000 e7000 e7000 5120 E600 e7000 e7000 e7000 e7000 | S460 S290 S580 e6400 e6800 e5900 e6100 S290 S210 S430 e6100 e6700 e6400 e6000 S110 e5200 S400 e6800 e5900 e6000 e6300 S340 e5000 S660 e6200 e5900 e6000 e6300 S340 e5000 S660 e6200 e5900 e6300 e6700 | OCT NOV DEC JAN FEB MAR APR MAY 5460 5290 5210 5430 e6100 e6700 e6400 e6000 7960 5110 e5200 5400 e5800 e6600 e6400 e6000 7730 5110 e5200 5460 e6000 e5900 e6300 e7700 8400 5340 e5000 e5600 e6000 e6300 e6700 8400 5270 e5000 e5600 e6000 e5800 e6400 8300 5080 e5000 e5600 e6000 e5800 e6400 8300 5120 5110 e5800 e5600 e6000 e5500 5880 8150 5120 5110 e5700 e5800 e5700 e6300 e4900 5810 8260 5010 5070 e5800 e5700 e6300 e4900 5810 8260 5010 5570 e5800 | OCT NOV DEC JAN FEB MAR APR MAY JUN 5460 5290 5580 e6400 e6800 e5900 e6100 8310 15100 5290 5210 5430 e6100 e6700 e6400 e6000 7960 15700 5110 e5200 5400 e5800 e6600 e6400 e6000 7730 14700 5110 e5200 5400 e5800 e6600 e6400 e6700 e6700 8300 7110 13900 5340 e5500 5660 e6000 e5900 e6300 e6700 8400 13900 5320 e5000 e5600 e6000 e5900 e6300 e6700 8300 13900 5080 e5000 e5600 e6000 e5800 e6200 e6700 8600 14600 5080 e5000 e5600 e6000 e5800 e6200 e5700 8000 5120 5110 e5800 e6600 e5700 e5700 e6400 8300 13500 5120 5110 e5800 e6600 e5000 e5500 e6400 8300 13500 5120 5060 e5900 e6600 e5200 e5700 e5400 8300 13500 5120 5060 e5900 e6600 e5200 e5700 e7000 e7000 e7000 5120 5100 e5800 e6500 e6000 e5200 5880 8150 12500 5120 5060 e5900 e6600 e6200 e5200 5870 8160 11800 5090 5190 e5700 e5300 e6000 e5200 5770 8370 11000 5090 5190 e5700 e5300 e6000 e5200 5770 8370 11000 5040 5450 e5600 e4300 e6100 e5700 5840 8850 11100 4880 5570 e5600 e4300 e5900 e14400 7220 8970 10500 5040 5450 e5600 e5400 e5900 e14400 7220 8970 10500 5040 5240 e6000 e5000 e5900 e14600 8700 8730 10700 5040 5220 e6000 e5800 e5900 e13600 7760 9130 10000 5040 5220 e6000 e5800 e5900 e13600 7760 9130 10000 5040 5220 e6000 e5800 e5900 e13600 7760 9130 10000 5040 5220 e6000 e5800 e5900 e13600 7760 9130 10000 5040 5220 e6000 e5800 e5900 e13600 7760 9130 10000 5040 5220 e6000 e5000 e5900 e13600 7760 9130 10000 5040 5220 e6000 e5000 e5900 e13600 7760 9130 10000 5040 5220 e6000 e5000 e5000 e1400 e7000 7700 9700 5040 5220 e6000 e5000 e5000 e1400 e7000 7700 9700 5040 5200 e6000 e5000 e5900 e13600 7760 9130 10000 5040 5200 e6000 e5000 e5000 e1400 e7000 7700 9700 5040 5200 e6000 e5000 e5000 e7000 7700 9700 5040 5200 e6000 e5000 e5000 e7000 7700 9700 5040 5200 e6000 e5000 e7000 e7000 7700 9700 5040 5200 e6000 e5000 e7000 e7000 9700 5040 5200 e6000 e7000 e7000 e7000 9700 5040 5200 e7000 e7000 e7000 e7000 9700 5040 5200 e7000 e7000 e7000 e7000 e7000 9700 5040 5200 e7000 | OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 5460 5290 5580 e6400 e6800 e5900 e6100 8310 15100 8130 5230 5210 5430 e6100 e6700 e6400 e6000 7730 15700 7740 5110 e5200 5400 e5800 e6000 e5900 e6000 7730 14700 7740 5110 e5200 5400 e5800 e6900 e6000 7730 14700 7740 5110 e5200 5400 e5800 e6900 e6000 7730 14700 7740 5110 e5200 5400 e6000 e5900 e6000 e6700 8400 13600 7731 5270 e5000 e5600 e6000 e5900 e6000 e6700 8400 13600 7731 5270 e5000 e5600 e6000 e5800 e6200 e6700 8600 14600 6690 5080 e5000 e5600 e6000 e5800 e6200 e6700 8400 13600 7310 5270 e5000 e5600 e6000 e5800 e6200 e5800 e6000 8500 14500 5080 e5900 e5600 e5200 e5500 e5800 e6000 8500 8600 14500 5080 e5900 e5600 e5200 e5500 5800 8500 8500 8500 8500 8500 8 | OCT NOV DEC JAN FEB MAR AFR MAY JUN JUL AUG S440 5290 5580 66400 66400 66500 76500 76700 15700 7740 4220 5100 62200 5400 66800 66700 66400 66000 7750 13700 7740 4220 5100 62200 5460 66600 66600 66600 7770 13700 7740 4220 5100 62200 5660 66200 66900 66700 8600 7710 13900 7710 4450 5340 65000 5660 66200 66900 66700 86600 7710 13900 7710 4450 5340 65000 65600 66200 66900 66700 86600 7710 13600 7310 4450 56800 66900 | a--Backwater from ice. b--Gage height, 22.20 ft, from graph based on gage reading; site and datum then in use. e--Estimated ### 06115200 MISSOURI RIVER NEAR LANDUSKY, MT--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD .-- Water years 1972 to current year. #### PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: March 1979 to September 1981. WATER TEMPERATURE: March to September 1979. SUSPENDED-SEDIMENT DISCHARGE: October 1971 to September 1991, October 1991 to current year (seasonal records only, March through November). REMARKS.--Daily sediment records rated fair. Daily sediment data not available from Dec. 1 toMar. 25 due to ice cover. Unpublished records of instantaneous water temperature and conductance are available in files of District office. Prior to July 1972, sampling and record computations were under supervision of Corps of Engineers, U.S. Army. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE (water years 1979-81): Maximum daily, 1,240 microsiemens per centimeter (μS/cm), June 20, 1979; minimum daily, 410 μS/cm, July 3, 1980. WATER TEMPERATURE (water year 1979): Maximum, 24.0°C, on several days during June to August 1979; minimum, 0.5°C, on several days during March 1979. SEDIMENT CONCENTRATION: Maximum daily mean, 27,400 mg/L, June 22, 1976; minimum daily mean, 2 mg/L, Dec. 21, 1983. SEDIMENT LOAD: Maximum daily, 1,680,000 tons, June 22, 1976; minimum daily, 33 tons, Dec. 21, 1983. #### EXTREMES FOR CURRENT YEAR .-- SEDIMENT CONCENTRATION: During period of collection, maximum daily mean, 16,600 mg/L, Apr. 16; minimum daily mean, 86 mg/L, Aug. 6. SEDIMENT LOAD: During period of seasonal collection, maximum daily, 392,000 tons, Apr. 16; minimum daily, 986 tons, Sept. 9. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instantaneous
dis-
charge
cfs
(00061 | tance,
wat unf
, uS/cm
25 deg0 | Temper-
ature
air,
deg C | , ature
water
deg C | , diametr
, percent
<.063mr | pended
sedi-
ment
concen-
t tration
mg/L | d Sus- pended sedi- ment load, tons/d | ment,
dry svd
sve dia
percent
<.063mm | | |--|--|--|---|-----------------------------------|---------------------------|-----------------------------------|---
--|---|----| | OCT 2002
02
APR 2003
15
JUN
10
JUL
21 | 1730 | 5460 | 479 | 11.5 | 11.5 | 30 | 258 | 3800 | <1 | 1 | | | 1300 | 6600 | 513 | 12.0 | 14.0 | 67 | 1410 | 25200 | <1 | <1 | | | 1400 | 11700 | 372 | | 15.0 | 44 | 584 | 18400 | 56 | 84 | | | 1315 | 4700 | 389 | 32.5 | 26.0 | 17 | 285 | 3620 | <1 | 9 | | | Date | | Bed
sedi-
ment,
dry svd
sve dia
percent
<.25mm
(80166) | sve dia
percent | sve dia | sve dia | sve dia | Bed
sedi-
ment,
dry svd
sve dia
percent
<8 mm
(80171) | Bed
sedi-
ment,
dry svd
sve dia
percent
<16 mm
(80172) | | | | OCT 2002
02
APR 2003
15
JUN
10
JUL
21 | | 7 | 60 | 91 | 96 | 98 | 99 | 100 | | | | | | 3 | 50 | 87 | 97 | 99 | 100 | 100 | | | | | | 92 | 96 | 98 | 98 | 99 | 99 | 100 | | | | | | 85 | 96 | 99 | 99 | 99 | 100 | 100 | | # 06115200 MISSOURI RIVER NEAR LANDUSKY, MT--Continued SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | MEAN
CONCEN-
TRATION
(MG/L) | LOAD
(TONS/
DAY) | | |----------------------------------|---------------------------------------|--|---|--|--------------------------------------|---|--------------------------------------|--|--|---------------------------------------|--|---|--| | | OCTOBER | | NOVEMBER | | DECEMBER | | JANUA | JANUARY | | FEBRUARY | | MARCH | | | 1
2
3
4
5 | 255
262
255
237
225 | 3760
3740
3510
3270
3240 | 151
150
145
135
121 | 2160
2110
2040
1900
1630 |

 |

 |

 |

 |

 | |

 |

 | | | 6
7
8
9
10 | 219
217
211
208
206 | 3120
2980
2890
2880
2850 | 109
108
114
120
125 | 1470
1460
1540
1660
1710 |

 |

 |

 |

 |

 | |

 |

 | | | 11
12
13
14
15 | 205
203
200
198
193 | 2770
2790
2720
2650
2540 | 130
135
141
147
150 | 1780
1890
2070
2290
2260 |

 | | 16
17
18
19
20 | 188
184
180
175
169 | 2580
2500
2450
2380
2320 | 154
157
162
168
174 | 2220
2220
2280
2330
2450 |

 | | 21
22
23
24
25 | 162
158
162
178
183 | 2250
2230
2270
2490
2520 | 175
175
175
175
174 | 2540
2580
2580
2520
2500 |

 | | 26
27
28
29
30
31 | 178
161
152
150
150 | 2460
2230
2060
2100
2130
2050 | 174
175
175
175
176 | 2590
2690
2600
2570
2650 |

 |

 |

 |

 |

 |

 | 802
764
672
586
646
652 | 13000
12800
11600
9810
10800
10700 | | | TOTAL | | 82730 | | 65290 | | | | | | | | | | | | APRIL | | YAM | | JUNE | | JULY | | AUGUST | | SEPTEMBER | | | | 1
2
3
4
5 | 534
506
492
646
700 | 8790
8200
7970
11000
12700 | 910
646
600
572
2830 | 20400
13900
12500
11900
64200 | 1150
1180
915
770
680 | 46900
50000
36300
28900
25000 | 470
409
360
353
329 | 10300
8770
7520
7160
6490 | 116
101
90
87
88 | 1320
1150
1030
1040
1060 | 100
100
100
165
208 | 1060
1040
1020
1700
2130 | | | 6
7
8
9
10 | 625
530
460
430
392 | 11300
9160
7950
6830
6210 | 3810
1540
690
680
570 | 89100
34500
15500
15000
12600 | 803
690
594
559
532 | 31700
27000
21700
18900
16900 | 265
266
237
268
307 | 4680
4800
3940
4210
4760 | 86
260
900
330
250 | 1070
3260
11800
4050
3190 | 102
100
100
100
100 | 1020
991
999
986
996 | | | 11
12
13
14
15 | 380
415
419
519
4400 | 5960
6470
6610
8930
85800 | 538
524
558
699
700 | 12000
11800
12900
16500
17000 | 473
760
1900
820
819 | 14000
22600
56900
23700
23200 | 281
246
240
230
307 | 4160
3400
3510
3310
4560 | 275
344
180
155
155 | 3500
4570
2130
1800
1720 | 100
104
181
165
142 | 1010
1070
1900
1800
1530 | | | 16
17
18
19
20 | 16600
3000
1080
1050
1280 | 392000
62900
22400
22000
27000 | 608
718
800
1120
1220 | 13900
17700
20600
31100
35900 | 450
495
459
433
409 | 12400
13400
11800
10900
9920 | 306
293
284
275
262 | 4560
4320
4050
3930
3780 | 161
144
120
108
107 | 1740
1530
1220
1110
1120 | 140
154
159
226
197 | 1520
1730
1790
2620
2210 | | | 21
22
23
24
25 | 1100
870
830
710
580 | 21900
16900
15600
13400
10800 | 910
930
810
670
590 | 25800
25900
22100
18000
15500 | 1160
680
555
548
495 | 30500
16500
13500
13200
11700 | 235
172
128
124
112 | 3030
2160
1600
1490
1280 | 112
117
114
109
103 | 1160
1180
1140
1120
1090 | 165
120
114
114
115 | 1840
1310
1230
1270
1290 | | | 26
27
28
29
30
31 | 620
760
760
672
920 | 12000
15200
16300
14700
20600 | 700
985
799
1580
1220
1050 | 18700
27100
24200
58400
44800
40000 | 415
400
400
456
525 | 9800
9500
9440
10600
12000 | 103
96
96
116
125
136 | 1150
1090
1080
1410
1530
1630 | 107
123
118
107
100
100 | 1120
1350
1280
1140
1060 | 115
115
115
115
115 | 1290
1300
1280
1240
1280 | | | TOTAL | | 887580 | | 799500 | | 638860 | | 119660 | | 62110 | | 42452 | | #### MISSOURI RIVER BASIN #### 06115270 ARMELLS CREEK NEAR LANDUSKY, MT $LOCATION.--Lat\ 47^{\circ}36'38'', long\ 108^{\circ}41'41''\ (NAD\ 27), in\ NE^{1}/_{4}NW^{1}/_{4}SW^{1}/_{4}sec.6,\ T.21\ N.,\ R.24\ E.,\ Fergus\ County,\ Hydrologic\ Unit\ 10040104,\ on\ NE^{1}/_{4}NW^{1}/_{4}SW^{$ right bank at downstream side of bridge on U.S. Highway 191, 1.5 mi south of Fred Robinson Bridge, 22 mi south of Landusky, and at river mile 1.1. DRAINAGE AREA.--397 mi². PERIOD OF RECORD.--February 2000 to current year. REVISED RECORDS.--WSP 1729: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 2,280 ft (NGVD 29). REMARKS.--Records good except those for estimated daily discharges, which are poor. U. S.Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
DAILY MEAN VALUES | | | | | | | | | | | | | |--|---|---|---|--|---|---|--|---|---------------------------------------
---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | e0.00
e0.00
e0.00
e0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | 0.00
0.00
0.00
0.00 | 0.61
0.34
0.63
0.88 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 6
7
8
9
10 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00 | e0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | e0.00
0.00
0.00
0.00
0.00 | 0.00 | 148
45
12
11 | 0.00
0.00
0.00
9.8
6.5 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.10
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | e0.10
e0.00 | e0.00
e0.00
e0.00
e0.00 | | 0.00
0.00
112
1380
519 | 0.00
0.00
0.00
0.00 | 13
18
9.0
5.0
3.1 | 4.5
4.6
3.0
4.2
3.0 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 16
17
18
19
20 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | e0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | 266
85
27
11
4.2 | 152
35
11
6.6
5.4 | 4.5
7.7
5.7
129
68 | 1.4
0.57
0.09
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 21
22
23
24
25 | | 0.00
0.00
0.00
0.00
0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | 0.00
0.00
0.00
0.00
0.00 | e0.00
e0.00
e0.00
e0.00 | 1.6
0.34
0.04
0.00 | 3.7
1.7
0.76
0.29
0.13 | 26
12
6.8
4.3
2.8 | 0.00
0.00
0.89
0.45
0.10 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | 0.00
0.00
e0.30
e0.00
e0.00
e0.00 | e0.00
e0.00
e0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.28
0.59
4.7
2.3
1.2 | 1.9
1.2
0.62
0.26
0.05 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | TOTAL
MEAN
MAX
MIN
AC-FT | 0.00
0.000
0.00
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | 0.10
0.003
0.10
0.00
0.2 | 0.30
0.010
0.30
0.00
0.6 | 0.00
0.000
0.00
0.00
0.00 | 2406.18
77.6
1380
0.00
4770 | 225.65
7.52
152
0.00
448 | 624.39
20.1
148
0.00
1240 | | 0.00
0.000
0.00
0.00
0.00 | | 0.00
0.000
0.00
0.00
0.00 | | STATIST | rics of M | ONTHLY ME | AN DATA F | OR WATER | | | | R YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 0.000
0.000
2001
0.000
2001 | 0.000
0.000
2001
0.000
2001 | 0.001
0.003
2003
0.000
2001 | 0.003
0.010
2003
0.000
2001 | 0.59
2.28
2000
0.000
2001 | 20.7
77.6
2003
0.53
2001 | 2.43
7.52
2003
0.000
2001 | 5.14
20.1
2003
0.000
2001 | 4.10
8.45
2001
0.003
2000 | 8.97
32.1
2001
0.000
2003 | 0.77
2.17
2002
0.000
2000 | 0.000
0.000
2000
0.000
2000 | | SUMMARY | Y STATIST | CICS | FOR | 2002 CALE | | | FOR 2003 V | WATER YEAR | | WATER YEAR | RS 2000 - | 2003 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 384.8
1.0
86
0.0
0.0
763
0.2
0.0
0.0 | Jun 1
0 Jan
0 Jan
9 | 1
1
1 | 3295.8
9.0
1380
0.0
0.0
a2910
12.8
6540
4.2
0.0 | Mar 14
00 Oct 1
00 Oct 1
Mar 14
85 Mar 14 | | 4.54
9.03
1.05
1380
0.00
0.00
a2910
12.85
3290
1.6
0.00 | Mar 14
Mar 14
Feb 1
Mar 14
Mar 14 | 2000
2000
2003 | a--On the basis of slope-area measurement of peak flow. e--Estimated. #### MISSOURI RIVER BASIN #### 06115300 DUVAL CREEK NEAR LANDUSKY, MT LOCATION.--Lat 47°45'17", long 108°42'23" (NAD 27), in SW¹/₄NW¹/₄ SE¹/₄ sec.13, T.23 N., R.23 E., Phillips County, Hydrologic Unit 10040104, at culvert on U.S. Highway 191 at milepost 98, 10.0 miles north of Fred Robinson Bridge, and 11 mi southwest of Landusky. DRAINAGE AREA.--3.3 mi². PERIOD OF RECORD.--February 2000 to current year. GAGE.--Water-stage recorder. Elevation of gage is 2,900 ft (NGVD 29), from topographic map. Prior to Jan. 19, 2000, peak flow gage only at present site and elevation. REMARKS.--Records good except those days with flow, which are fair and those for estimated daily discharges, which are poor. Several observations of water temperature and specific conductance were made during the year. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge, 660 ft³/s, June 29, 1991, gage height, 13.83 ft, present site and elevation. Site operated as crest-stage gage from May 1963 to January 2000. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | 1 0.00 0.0 | | | | | | Din | LI WILI | · · · · · · · · · · · · · · · · · · · | | | | | | |--|---|--|---|------------------------------|--------------------------------------|-----------------------------|------------------------------|---|---|------------------------------|---
---|---| | 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | The color | 2
3
4 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | e0.00
e0.00
e0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 12 | 7
8
9 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | e0.00
e0.00
e0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 17 | 12
13
14 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | e5.5
e13
e20 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 22 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.0 | 17
18
19 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.10
0.22
1.2 | 0.08
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 27 0.00 0.00 0.00 0.00 0.00 e0.00 0 | 22
23
24 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.23
0.02
e0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | MEAN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00< | 27
28
29
30 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | e0.00
e0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | MEAN 0.000 0.000 0.000 0.000 0.064 0.45 0.000 0.001 0.16 0.14 0.000 MAX 0.000 0.000 0.000 0.19 1.78 0.000 0.001 0.17 0.63 0.56 0.000 (WY) 2001 2001 2001 2001 2003 2003 2000 2003 2002 2002 2002 2002 MIN 0.000 | MEAN
MAX
MIN | 0.000
0.00
0.00 | 0.000
0.00
0.00 | 0.000
0.00
0.00 | 0.000
0.00
0.00 | 0.19
2.5
0.00 | 1.78
20
0.00 | 0.000
0.00
0.00 | 0.001
0.02
0.00 | 0.000
0.00
0.00 | 0.000
0.00
0.00 | 0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | | MAX 0.000 0.000 0.000 0.19 1.78 0.000 0.011 0.17 0.63 0.56 0.000 (WY) 2001 2001 2001 2003 2003 2000 2003 2002 2002 2002 2002 MIN 0.000 | STATIST | rics of M | ONTHLY ME | AN DATA H | FOR WATER | YEARS 200 | 0 - 2003 | , BY WATER | YEAR (WY) | | | | | | ANNUAL TOTAL 42.58 60.39 ANNUAL MEAN 0.12 0.17 0.095 HIGHEST ANNUAL MEAN 0.17 2003 LOWEST ANNUAL MEAN 0.003 2001 HIGHEST DAILY MEAN 19 Jul 8 20 Mar 14 20 Mar 14 2003 LOWEST DAILY MEAN 0.00 Jan 1 0.00 Oct 1 0.00 Feb 1 2000 ANNUAL SEVEN-DAY MINIMUM 0.00 Jan 1 0.00 Oct 1 0.00 Feb 1 2000 MAXIMUM PEAK FLOW 118 Mar 14 238 Jul 8 2002 MAXIMUM PEAK STAGE 146.55 Jul 8 2002 ANNUAL RUNOFF (AC-FT) 84 120 69 10 PERCENT EXCEEDS 0.00 0.00 | MAX
(WY)
MIN | 0.000
2001
0.000 | 0.000
2001
0.000 | 0.000
2001
0.000 | 0.000
2001
0.000 | 0.19
2003
0.000 | 1.78
2003
0.000 | 0.000
2000
0.000 | 0.001
2003
0.000 | 0.17
2002
0.000 | 0.63
2002
0.000 | 0.56
2002
0.000 | 0.000
0.000
2000
0.000
2000 | | ANNUAL MEAN 0.12 0.17 0.095 HIGHEST ANNUAL MEAN 0.12 0.17 2003 LOWEST ANNUAL MEAN 19 Jul 8 20 Mar 14 20 Mar 14 2003 LOWEST DAILY MEAN 0.00 Jan 1 0.00 Oct 1 0.00 Feb 1 2000 ANNUAL SEVEN-DAY MINIMUM 0.00 Jan 1 0.00 Oct 1 0.00 Feb 1 2000 MAXIMUM PEAK FLOW 118 Mar 14 238 Jul 8 2002 MAXIMUM PEAK STAGE 14.65 Mar 14 6.55 Jul 8 2002 ANNUAL RUNOFF (AC-FT) 84 120 69 PERCENT EXCEEDS 0.00 0.00 | SUMMARY | Y STATIST | CICS | FOR | 2002 CALE | NDAR YEAR | . 1 | FOR 2003 W | ATER YEAR | | WATER YEAR | RS 2000 - | 2003 | | 50 PERCENT EXCEEDS 0.00 0.00 0.00
90 PERCENT EXCEEDS 0.00 0.00 0.00 | ANNUAL HIGHEST LOWEST HIGHEST ANNUAL MAXIMUM MAXIMUM ANNUAL 10 PERC 50 PERC | MEAN I ANNUAL ANNUAL ANNUAL I DAILY ME SEVEN-DA M PEAK FL M PEAK ST RUNOFF (CENT EXCE | EAN EAN AN OW ACFT) ECS | | 0.1
19
0.0
0.0
84
0.0 | Jul 8
0 Jan 1
0 Jan 1 | | 20
0.00
0.00
118
a4.60
120
0.00 | Mar 14 0 Oct 1 0 Oct 1 Mar 14 Mar 14 0 Mar 14 | | 0.1
0.0
20
0.0
0.0
238
6.5
69
0.0 | 7
03
Mar 14
0 Feb 1
0 Feb 1
Jul 8
5 Jul 8 | 2001
2003
2000
2000
2002 | a--During period of no gage-height record, from crest-stage gage. e--Estimated #### MISSOURI RIVER BASIN #### 06115350 ROCK CREEK NEAR LANDUSKY, MT $LOCATION.--Lat\ 47^{\circ}42'17'', long\ 108^{\circ}32'49''\ (NAD\ 27), in\ NW^{1}/_{4}NW^{1}/_{4}\ Sec.5, T.22\ N., R.25\ E.,
Phillips\ County,\ Hydrologic\ Unit\ 10040104, on\ left\ bank\ at\ Charles\ M.\ Russell\ National\ Wildlife\ Refuge\ boundary\ and\ 14\ mi\ southeast\ of\ Landusky.$ DRAINAGE AREA.--72.9 mi². PERIOD OF RECORD.--November 1999 to current year. GAGE.--Water-stage recorder. Elevation of gage is 2,670 ft (NGVD 29), from topographic map. REMARKS.--Records fair except those for estimated daily discharges, which are poor. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. | | | DISCHAR | GE, CUBI | C FEET PER | | | R YEAR OON VALUES | | 002 TO SI | EPTEMBER | 2003 | | |---|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--|--|---|--------------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.00
0.00
0.00
0.00
0.00 | e2.5
e2.5
e2.5
e2.8
e3.0 | e2.5
e2.0
e2.0
e2.5
e2.5 | e2.0
e2.0
e2.0
e2.0
e2.0 | e2.0
e2.0
e2.0
e2.0
e2.0 | e2.5
e2.5
e2.5
e2.5
e2.5 | 3.6
3.8
4.8
5.2
4.5 | 2.5
2.7
2.5
3.3
9.8 | 0.38
0.19
0.23
0.06
0.07 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 6
7
8
9
10 | 0.00 | e3.0
e3.0
e3.0
e3.0 | e2.5
e2.5
e2.5
e2.5
e2.5 | e2.0
e2.0
e2.0
e2.0
e1.7 | e2.0
e2.0
e2.0
e2.0
e2.0 | e2.5
e2.5
e2.5
e2.5
e3.0 | 3.5
2.9
2.7
3.0
2.4 | 13
9.1
7.1
5.4
4.8 | 0.43
0.53
0.31
1.1 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | 0.00
0.06
0.47
0.47
0.44 | e3.0
e3.0
e3.0
e3.0 | e2.5
e3.0
e3.5
e3.5
e4.0 | e1.5
e1.7
e2.0
e1.7
e1.5 | e2.0
e2.0
e2.0
e2.0
e2.0 | e3.0
e3.0
242
567
313 | 2.4
2.2
2.1
3.5
4.5 | 4.2
4.0
3.8
3.4
3.0 | 2.0
1.3
0.66
0.46
0.54 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 16
17
18
19
20 | 0.58
0.98
2.1
2.6
2.9 | e3.0
e3.0
e3.0
e3.0 | e4.0
e3.5
e3.0
e3.0
e2.5 | e1.4
e1.6
e1.8
e2.0
e1.8 | e2.0
e2.0
e2.0
e2.0
e2.0 | 139
34
21
17
15 | 4.2
3.9
3.3
2.9
2.8 | 3.0 | 0.23
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 21
22
23
24
25 | 3.1
3.2
3.4
3.0
3.1 | e2.2
e2.0
e1.8
e1.7
e1.5 | e2.5
e2.0
e1.5
e1.5 | e1.7
e1.5
e1.5
e1.5
e1.5 | e2.0
e2.0
e1.8
e1.5
e2.0 | 13
165
12
8.4
7.5 | 2.6
2.6
2.3
2.2
2.4 | 1.8
1.6
1.3
1.1 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 3.6
3.0
3.2
3.2
e2.5
e2.5 | e2.0
e2.0
e2.5
e2.2
e2.0 | e1.5
e1.5
e1.5
e2.0
e2.0 | e1.5
e1.7
e1.8
e2.0
e2.0 | e2.5
e2.5
e2.5
 | 5.2
3.1
3.0
3.3
3.7
3.8 | 3.7
2.4
2.1
2.3
2.5 | 0.95
0.82
0.61
0.40
0.20
0.47 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | TOTAL
MEAN
MAX
MIN
AC-FT | 44.40
1.43
3.6
0.00
88 | 77.7
2.59
3.0
1.5
154 | | 55.4
1.79
2.0
1.4
110 | | | | | 10.19
0.34
2.0
0.00
20 | 0.00
0.000
0.00
0.00
0.00 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | | STATIST | rics of M | ONTHLY ME | AN DATA F | OR WATER YE | EARS 200 | 00 - 2003 | , BY WATER | R YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 0.52
1.43
2003
0.000
2002 | 2000
0.000 | | 1.97
2000 | 1.48
2.19
2000
0.66
2002 | 15.3
51.9
2003
0.90
2002 | | 3.27
2003 | 2002
0.34 | 5.27
13.6
2000
0.000
2003 | 0.25
0.79
2002
0.000
2003 | 0.000
0.000
2000
0.000
2000 | | SUMMAR | Y STATIST | ICS | FOR | 2002 CALEND | OAR YEAR | 8 | FOR 2003 W | VATER YEAR | | WATER YEA | RS 2000 | - 2003 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL 10 PERO 50 PERO | MEAN F ANNUAL M ANNUAL M F DAILY M | EAN EAN AN Y MINIMUM OW AGE AC-FT) EDS | | 728.26
2.00
90
0.00
0.00 | Jul 8
Jan 1
Jan 1 | | 2122.5.8
5.8
567
0.0
0.0
853
6.0
4210
3.6
2.0 | Mar 14
00 Oct 1
00 Oct 1
Mar 13
02 Mar 13 | | 2.76
5.82
1.00
567
0.00
a1660
6.99
2000
3.3
0.47 | Mar 14
Jun 19
Jun 19
Jul 8
Jul 8 | 2000
2000
2000 | 0.00 0.00 0.00 90 PERCENT EXCEEDS a--On the basis of slope-area measurement of peak flow. e--Estimated. #### 06119600 MUSSELSHELL RIVER NEAR MARTINSDALE, MT LOCATION.--Lat 46°28'37", long 110°14'54" (NAD 27), in SW¹/₄SW¹/₄SE¹/₄ sec. 5, T.8N., R.12E., Wheatland County, Hydrologic Unit 10040201, on right bank at private road bridge, 1.7 mi downstream from confluence of North and South Forks, 3.2 mi northeast of Martinsdale, and at river mile 362.5. DRAINAGE AREA.--538 mi². PERIOD OF RECORD .-- April 2003 to October 2003 (seasonal records only). GAGE.--Water-stage recorder. Elevation of gage is 4,660 ft (NGVD 29). REMARKS.-Seasonal records good except those for estimated daily discharges, which are poor. Some regulation by Bair and Martinsdale Reservoirs. Diversions for irrigation of about 21,900 acres upstream from station of which about 21,400 acres are flood irrigated. U. S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|-----|-----|-----|----------------------------------|--|----------------------------------|----------------------------------|---------------------------------------|-----------------------------------|----------------------------------|-----|-----| | 1
2
3
4
5 | | | | e20
e25
e22
e20
e20 | 183
126
121
170
123 | 252
219
221
217
172 | 48
48
51
47
46 | 22
21
22
28
27 | 8.9
8.4
7.6
8.8
8.6 | 17
17
18
18 | | | | 6
7
8
9
10 | | | | e22
e20
e18
e17
e17 | 107
110
149
174
192 | 180
170
135
117
117 | 46
44
35
38
40 | 27
25
23
22
22 | 8.5
7.1
7.7
8.5
8.8 | 16
13
12
12
13 | | | | 11
12
13
14
15 | | | | e18
e17
e15
e30
e70 | 184
171
168
170
174 | 143
64
53
52
57 | 53
67
69
67
65 | 22
23
22
18
17 | 11
14
19
19 | 13
15
17
18
18 | | | | 16
17
18
19
20 | | | | e80
e75
e80
e75
e70 | 188
206
243
186
144 | 59
54
51
49
43 | 61
58
56
54
53 | 13
13
12
12
12 | 19
21
19
19 | 22
21
20
19
20 | | | | 21
22
23
24
25 | | | | e65
e60
e75
123
309 | 120
112
114
148
213 | 81
88
85
78
77 | 51
49
44
44
47 | 11
11
11
11
10 | 18
18
18
17 | 20
19
20
21
21 | | | | 26
27
28
29
30
31 | | | | 447
403
337
307
241 | 294
396
387
324
299
304 | 63
53
46
41
39 | 43
48
37
28
25
23 | 9.6
9.7
10
9.6
9.8
9.6 | 15
15
16
16
16 | 22
22
24
29
32
29 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | 3098
103
447
15
6140 | 6000
194
396
107
11900 | 3076
103
252
39
6100 | 1485
47.9
69
23
2950 | 515.3
16.6
28
9.6
1020 | 427.9
14.3
21
7.1
849 | 596
19.2
32
12
1180 | | | SUMMARY STATISTICS FOR 2003 SEASON HIGHEST DAILY MEAN LOWEST DAILY MEAN MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW 447 Apr 26 7.1 Sep 7 465 Apr 26 3.67 Apr 26 a6.4 Sep 3 a--Gage height, 1.49 ft. e--Estimated. #### 06120500 MUSSELSHELL RIVER AT HARLOWTON, MT LOCATION (REVISED).--Lat 46°25'48", long 109°50'24" (NAD 27), in SW¹/₄NW¹/₄ NW¹/₄ sec.27, T.8 N., R.15 E., Wheatland County, Hydrologic Unit 10040201, on right bank at downstream of bridge on U.S. Highway 191, 1.0 mi southwest of Harlowton, 9.6 mi upstream from American Fork, and at river mile 327.8. DRAINAGE AREA.--1,125 mi². PERIOD OF RECORD.--July 1907 to November 1929, March 1930 to December 1932, April to August 1933, February 1934 to current year. Monthly discharge only for some periods, published in WSP 1309. REVISED RECORDS.--WSP 1309: 1912, 1915(M), 1918, 1925. WSP 1729: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 4,171.46 ft (NGVD 29) (levels by Morrison and Maierle, Inc.). Prior to Dec. 8, 1937, nonrecording gages at site 1.2 mi downstream at different
elevations. Dec. 8, 1937 to Aug. 26, 1955, nonrecording gage at previous bridge 50 ft downstream at elevation 2.0 ft higher. Aug. 27, 1955 to Apr. 9, 2003, water-stage recorder 350 ft downstream at same elevation. REMARKS.—Records good except those for Oct. 1 to Apr. 9 and those for June 12-16, which are poor. Some regulation by Bair and Martinsdale Reservoirs. Diversions for irrigation of about 21,900 acres upstream from station of which about 21,400 acres are flood irrigated. U. S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|------------------------------------|---------------------------------|--|--|-----------------------|----------------------------|---------------------------------|--|------------------------------|----------------------------------|----------------------------------|----------------------------| | 1 | 29 | e26 | e37 | e43 | e50 | e30 | 41 | 270 | 294 | 77 | 29 | 12 | | 2 | 33 | e28 | e40 | e45 | e45 | e30 | 48 | 193 | 254 | 77 | 26 | 9.4 | | 3 | 35 | e30 | e35 | e45 | e40 | e28 | 52 | 157 | 229 | 72 | 24 | 8.8 | | 4 | 40 | e29 | e35 | e45 | e40 | e25 | 48 | 156 | 217 | 81 | 23 | 8.3 | | 5 | 40 | e28 | e40 | e45 | e40 | e27 | 45 | 181 | 200 | 85 | 25 | 6.1 | | 6 | 40 | e32 | e45 | e45 | e35 | e27 | 43 | 133 | 197 | 87 | 22 | 3.2 | | 7 | 37 | 35 | e55 | e45 | e30 | e23 | 42 | 123 | 209 | 90 | 22 | 2.3 | | 8 | 36 | 33 | e50 | e45 | e32 | e20 | 43 | 131 | 168 | 83 | 22 | 1.9 | | 9 | 34 | 33 | e50 | e40 | e35 | e25 | 41 | 156 | 143 | 68 | 24 | 2.1 | | 10 | 35 | 32 | e55 | e35 | e38 | e30 | 37 | 179 | 148 | 68 | 26 | 4.1 | | 11 | 42 | 35 | e60 | e40 | e35 | e40 | 36 | 190 | 243 | 84 | 23 | 5.5 | | 12 | 43 | 37 | e60 | e45 | e35 | e60 | 38 | 184 | e150 | 117 | 22 | 7.6 | | 13 | 42 | 35 | e65 | e45 | e35 | e100 | 36 | 176 | e120 | 124 | 31 | 13 | | 14 | 42 | 35 | e65 | e40 | e37 | e130 | 35 | 178 | e100 | 125 | 28 | 16 | | 15 | 43 | 34 | e60 | e37 | e40 | e150 | 55 | 175 | e100 | 124 | 26 | 16 | | 16 | 47 | 36 | e60 | e35 | e40 | e120 | 87 | 183 | e130 | 119 | 25 | 18 | | 17 | 44 | 30 | e55 | e35 | e40 | 84 | 93 | 195 | 115 | 112 | 26 | 21 | | 18 | 43 | 29 | e50 | e38 | e38 | 65 | 89 | 236 | 105 | 103 | 22 | 22 | | 19 | 43 | 31 | e50 | e40 | e38 | 54 | 92 | 252 | 89 | 100 | 21 | 21 | | 20 | 43 | 38 | e45 | e40 | e35 | 47 | 88 | 184 | 91 | 98 | 20 | 20 | | 21 | 42 | 42 | e45 | e35 | e35 | 42 | 81 | 137 | 91 | 94 | 18 | 20 | | 22 | 44 | 46 | e45 | e30 | e25 | 38 | 74 | 112 | 133 | 91 | 17 | 20 | | 23 | 46 | 50 | e40 | e32 | e18 | 38 | 72 | 100 | 153 | 86 | 15 | 19 | | 24 | 47 | 50 | e35 | e35 | e15 | 37 | 90 | 93 | 145 | 78 | 14 | 18 | | 25 | 47 | e25 | e35 | e40 | e17 | 40 | 150 | 119 | 143 | 75 | 13 | 18 | | 26
27
28
29
30
31 | 45
43
42
43
e30
e25 | e27
e30
e33
e35
e35 | e37
e40
e43
e45
e42
e45 | e45
e45
e40
e40
e45
e50 | e20
e25
e28
 | 38
39
41
40
40 | 354
400
364
340
313 | 200
344
374
360
308
321 | 131
112
96
89
84 | 86
96
91
74
54
36 | 12
11
11
11
12
12 | 16
15
15
16
19 | | TOTAL | 1245 | 1019 | 1464 | 1265 | 941 | 1548 | 3327 | 6100 | 4479 | 2755 | 633 | 394.3 | | MEAN | 40.2 | 34.0 | 47.2 | 40.8 | 33.6 | 49.9 | 111 | 197 | 149 | 88.9 | 20.4 | 13.1 | | MAX | 47 | 50 | 65 | 50 | 50 | 150 | 400 | 374 | 294 | 125 | 31 | 22 | | MIN | 25 | 25 | 35 | 30 | 15 | 20 | 35 | 93 | 84 | 36 | 11 | 1.9 | | AC-FT | 2470 | 2020 | 2900 | 2510 | 1870 | 3070 | 6600 | 12100 | 8880 | 5460 | 1260 | 782 | | STATIS' | TICS OF M | ONTHLY ME | AN DATA F | FOR WATER | YEARS 1907 | 7 - 2003, | BY WATER | YEAR (WY |) * | | | | | MEAN | 73.8 | 77.7 | 67.2 | 58.8 | 65.4 | 112 | 175 | 404 | 503 | 161 | 75.4 | 62.8 | | MAX | 226 | 176 | 206 | 250 | 190 | 500 | 632 | 1957 | 2467 | 751 | 292 | 290 | | (WY) | 1919 | 1942 | 1976 | 1918 | 1996 | 1918 | 1943 | 1917 | 1917 | 1975 | 1993 | 1993 | | MIN | 0.000 | 0.000 | 0.000 | 0.000 | 10.0 | 20.4 | 22.1 | 11.8 | 27.9 | 0.84 | 0.000 | 0.000 | | (WY) | 1932 | 1932 | 1932 | 1932 | 1936 | 1935 | 1931 | 1931 | 1930 | 1936 | 1931 | 1931 | #### 06120500 MUSSELSHELL RIVER AT HARLOWTON, MT--Continued | SUMMARY STATISTICS | FOR 2002 CALENDAR YE | AR FOR 2003 WAT | ER YEAR | WATER YEARS | 1907 - 2003* | |---|----------------------|-----------------|------------------|-------------|----------------------------| | ANNUAL TOTAL
ANNUAL MEAN | 18293
50.1 | 25170.3
69.0 | | 155 | | | HIGHEST ANNUAL MEAN | 50.1 | 09.0 | | 483 | 1917 | | LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN | 384 Jun | | Apr 27 | | 1935
Jun 20 1975 | | LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM | 10 Jul
12 Aug | | Sep 8
Sep 5 | | Aug 4 1910
Aug 4 1910 | | MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE | | a411
b4.20 | Apr 27
Mar 15 | | Jun 20 1975
Jun 20 1975 | | INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (AC-FT) | 36280 | c1.4
49930 | Sep 8 | | Aug 29 2001 | | 10 PERCENT EXCEEDS | 113 | 156 | | 356 | | | 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 35
15 | 42
19 | | 75
25 | | ^{*--}During periods of operation (July 1907 to November 1929, March 1930 to December 1932, April to August 1933, February 1934 to current year). a--Gage height, 4.06 ft. b--Backwater from ice. c--Gage height, 2.22 ft. e--Estimated. #### 06123030 MUSSELSHELL RIVER ABOVE MUD CREEK, NEAR SHAWMUT, MT LOCATION.--Lat 46°19'07", long 109°27'35" (NAD 27), in NE¹/₄SW¹/₄SW¹/₄SW²/₄ sec.34, T.7 N., R.18 E., Wheatland County, Hydrologic Unit 10040201, on left bank at private road bridge, 14.1 mi downstream from diversion to Deadmans Basin Reservoir, 3.5 mi southeast of Shawmut, 3.7 mi west of Barber, and at river mile 294.8. DRAINAGE AREA.--1,513 mi². PERIOD OF RECORD.--June 1998 to current season (seasonal records only). REVISED RECORDS.--WDR MT-03-1: 2002-02 (M). GAGE.--Water-stage recorder. Elevation of gage is 3,780 ft (NGVD 29). REMARKS.—Seasonal records good. Diversions for irrigation of about 27,000 acres upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. #### DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES DAY JAN FEB MAR MAY JUN JUL AUG SEP OCT NOV DEC APR 4.6 6.6 6.8 5.4 2.8 6.3 4.9 5.6 5.3 6 0 5.4 5.1 4.6 4.3 4 9 3 2 4.0 2.8 4.5 3.9 4.0 4 6 8.2 2.3 7.3 2.1 4.4 5.1 4.3 1.9 6.5 4.3 2.0 6.4 2.3 6.0 4.1 7.0 2.4 5.3 8.1 5.4 5.2 4.9 17 15 6.1 57 152 35 8.5 7.9 17 72 6.6 6.4 6.3 e15 328.6 TOTAL 1729.4 426.2 292.5 57 6 51.0 74 13.7 9.75 10.6 20 MEAN MAX 3.9 5.8 1.9 AC-FT STATISTICS OF MONTHLY MEAN DATA FOR SEASONS 1998 - 2003 MEAN 57.4 61.7 28.1 25.7 27.2 1998 1998 65.4 1999 MAX 57.6 97.8 70.8 (WY) 9.88 (WY) SUMMARY STATISTICS FOR 2003 SEASON SEASONS 1998 -HIGHEST DAILY MEAN Jun 22 1998 LOWEST DAILY MEAN 1.9 Sep 11 0.18 Sep 28 2001 Apr 27 MAXIMUM PEAK FLOW Jun 22 1998 MAXIMUM PEAK STAGE Apr 27 4.57 3.80 Jun 22 1998 e--Estimated. #### 06126050 MUSSELSHELL RIVER NEAR LAVINA, MT LOCATION.--Lat 46°17'34", long 108°53'31" (NAD 27), in SW¹/₄SW¹/₄SE¹/₄ sec. 6, T.6 N., R.23 E., Golden Valley County, Hydrologic Unit 10040201, on left bank, at private bridge 2.2 mi east of Lavina, 4.4 mi downstream from Big Coulee Creek, and at river mile 245.7. DRAINAGE AREA.--2,970 mi². PERIOD OF RECORD .-- April 1992 to current year (seasonal record only). GAGE.--Water-stage recorder. Elevation of gage is 3,400 ft (NGVD 29). REMARKS.--Seasonal records good. Some regulation by Bair (station number 06116500), Martinsdale (station number 06119000), and Deadman's Basin (station number 06122500) Reservoirs. Diversions for irrigation of about 31,900 acres upstream from station, of which about 29,700 acres is flood irrigated. Several observations of water temperature and specific conductance were made during the year. U.S. Geological Survey satellite telemeter at station. DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES DAY JUN JUL JAN FEB MAR APR MAY AUG SEP OCT NOV DEC 8.8 8.8 6.3 7.1 9.3 9.6 7 5.7 5.9 12 287 245 12 5.9 5.2 6.6 6.6 4.9 5.6 5.6 5.4 12 5.4 7.0 7.5 8.8 8.6 8.1 9.4 8.4 11 8.3 8.0 22 3.6 2.7 3.4 6.0 12 13 17 e20 TOTAL 1321.6 358.0 MEAN 44.1 288 35.3 12.6 11.5 22 MAX 2.7 4.3 AC-FT STATISTICS OF MONTHLY MEAN DATA FOR SEASONS 1992 -MEAN 86.0 8.33 2.7 3.83 36.7 Apr 29 Jun 11 Jun 11 Apr FOR 2003 SEASON 67.8 35.8 0.00 11.13 3.00 SEASONS 1992 - 2003 Jun 14 1997 Sep 26 2001 Jun 14 1997 Jun 14 1997 2.22 0.87 SUMMARY STATISTICS HIGHEST DAILY MEAN LOWEST DAILY MEAN MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE MAX (WY) MIN e--Estimated. #### 06126500 MUSSELSHELL RIVER NEAR ROUNDUP, MT LOCATION.--Lat 46°25'41", long 108°34'19" (NAD 27), in NW¹/₄SE¹/₄SE¹/₄sec. 22, T.8 N., R.25 E., Musselshell County, Hydrologic Unit 10040202, on left bank 20 ft downstream from Halfbreed Creek, 0.1 mi upstream from bridge on U.S. Highway 87, 2.0 mi southwest of Roundup, and at river mile 211.6. DRAINAGE AREA.--4,023 mi². PERIOD OF RECORD.--May 1946 to current year. Monthly discharge only from October 1947 to September 1949, published in WSP 1309. REVISED RECORDS.--WSP 1086: 1946. WSP 1729: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 3,188.15 ft (NGVD 29) (levels by U.S. Army Corps of Engineers). Prior to Sept. 26, 1949, nonrecording gage at present site and elevation. REMARKS.--Records good except those for estimated daily discharge, which are poor. Some regulation by Bair (station number 06116500), Martinsdale (station number
06119000) and Deadman's Basin (station number 06122500) Reservoirs. Diversions for irrigation of about 39,100 acres upstream from station, of which about 35,900 acres are flood irrigated. Several observations of water temperature and specific conductance were made during the year. U.S. Army Corps of Engineers satellite telemeter at station. ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | Ditt | DI MILI | · · · · · · · · · · · · · · · · · · · | | | | | | |--|--|--------------------------------------|--|--|--------------------------------------|--------------------------------------|---|-------------------------------------|-------------------------------------|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | | | | | | | | | | 105
125
132
168
194 | | | | 6
7
8
9
10 | | | | | | | | | | 198
191
187
241
243 | | | | 11
12
13
14
15 | 20
20
17
14
14 | 15
14
14
15
15 | e9.0
e8.5
e9.0
e10 | e4.0
e5.0
e6.0
e6.0
e6.0 | e6.0
e5.0
e6.0
e7.0 | e10
e10
e20
e50
e100 | 5.4
6.0
7.2
7.4
7.9 | 111
127
140
144
111 | 173
435
271
185
105 | 204
197
202
189
205 | 13
8.6
11
14
17 | 10
10
9.8
9.2
9.3 | | 16
17
18
19
20 | 19
22
23
24
25 | 14
13
11
10
9.8 | e9.0
e8.0
e7.0
e6.0
e5.0 | e4.5
e4.0
e5.0
e6.0
e6.0 | e8.0
e7.0
e6.5
e6.5
e7.0 | e200
e120
e90
e70
57 | 7.6
7.0
6.8
6.8 | 92
100
121
139
162 | 166
342
158
99
72 | 217
213
190
162
144 | 18
17
22
29
28 | 8.9
9.1
8.2
7.4
7.4 | | | | | | | | | | | | 134
103
108
113
79 | | | | 26
27
28
29
30
31 | 24
26
28
e25
e20
e15 | e7.0
e8.0
e9.0
e8.0
e7.0 | e5.0
e6.0
e8.0
e8.0
e7.0
e7.0 | e5.0
e7.0
e7.0
e7.0
e7.0
e8.0 | e4.0
e5.0
e6.0
 | 20
18
17
16
10
5.2 | 9.2
36
250
320
307 | 28
52
80
111
128
145 | 173
157
132
86
101 | 49
50
64
82
115
101 | 12
12
15
15
13
12 | 7.5
7.4
7.9
9.0
8.8 | | TOTAL
MEAN
MAX
MIN
AC-FT | 554.00
17.9
28
0.00
1100 | 330.6
11.0
15
6.0
656 | 226.5
7.31
11
4.0
449 | 180.5
5.82
8.0
4.0
358 | 174.5
6.23
10
3.0
346 | 1013.7
32.7
200
3.5
2010 | 1066.3
35.5
320
2.7
2120 | 3225
104
238
28
6400 | 4449
148
435
59
8820 | 4705
152
243
49
9330 | 740.6
23.9
84
8.6
1470 | 252.0
8.40
12
6.6
500 | | | | | | | | | , BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 77.8
335
1994
1.43
2002 | 73.7
242
1994
3.99
2002 | 67.0
283
1976
3.65
2002 | 64.4
222
1976
5.29
2002 | 95.0
414
1971
5.82
1985 | 195
1281
1978
6.81
2002 | 181
788
1975
1.77
2002 | 415
1811
1976
30.0
2002 | 664
4315
1967
36.6
2001 | 296
1308
1975
14.5
2002 | 188
563
1993
2.11
2001 | 126
504
1993
0.009
2002 | | SUMMAR | Y STATIST | 'ICS | FOR | 2002 CALEN | DAR YEAR | . 1 | FOR 2003 WA | TER YEAR | | WATER YEAR | S 1947 - | - 2003 | | ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU | T ANNUAL 'ANNUAL M 'T DAILY ME 'DAILY ME SEVEN-DA IM PEAK FL | EAN
EAN
AN
Y MINIMUM | | | Jun 5
Sep 4
Sep 11 | | 16917.70
46.3
435
a0.00
3.7
b554
c3.17
33560
144
11
5.0 | | | d204
608
17.6
8180
0.00
9610
g13.73
147600
431
99 | Jun {
Sep {
Sep 1
Jun 1}
Mar { | 1975
2002
3 1967
4 2002
L 2002
3 1967
9 1979 | | aOct | ober 1 to | 4. | | | | | | | | | | | b--Gage height, 2.91 ft. c-Backwater from ice. d--Median of yearly mean discharges, 184 ft³/s, 133,330 ac-ft/yr. e--Estimated. f--Gage height, 12.45 ft. g--Ice jam. #### 06127020 WILLOW CREEK ABOVE LMGA RESERVOIR, NEAR ROUNDUP, MT LOCATION.--Lat 46°36′52", long 108°41′40" (NAD 27), in NW¹/₄NW¹/₄SW¹/₄ sec. 27, T.10 N., R.24 E., Musselshell County, Hydrologic Unit 10040202, on right bank, 0.8 mi upstream from Lake Mason Grazing Association Reservoir, and 12 mi northwest of Roundup. DRAINAGE AREA.--124 mi². PERIOD OF RECORD.--September 1995 to current year (seasonal records only). GAGE.--Water-stage recorder. Elevation of gage is 3,660 ft (NGVD 29). REMARKS.--Seasonal records good. Numerous diversions upstream for irrigation. U. S. Geological Survey satellite telemeter at station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|---|-----------|--------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--|---------------------------------------|-----|-----| | 1
2
3
4
5 | | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 6
7
8
9
10 | | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 16
17
18
19
20 | | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 21
22
23
24
25 | | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 26
27
28
29
30
31 | | | | 0.00
0.00
0.00
0.00
0.00 | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | | | | STATIST | TICS OF MON | THLY MEAN | DATA F | OR SEASO | NS 1995 - | - 2003 | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | | | 0.89
3.33
1996
0.000
2000 | 0.82
4.25
1996
0.000
2000 | 2.38
13.1
1997
0.000
2000 | 1.24
6.04
1997
0.000
1999 | 0.17
1.36
1997
0.000
1998 | 0.045
0.20
1996
0.000
1998 | 0.37
1.82
1998
0.000
1999 | | | | SUMMARY | STATISTIC | !S | FOR | 2003 SE | CASON | SEAS | ONS 1995 | - 2003 | | | | | | LOWEST
MAXIMUM | T DAILY MEA
DAILY MEAN
1 PEAK FLOW
1 PEAK STAG | ī
ī | 0 | | or 1
or 1 | 150
a0.
b607
5. | 00 Aug
Jun | 6 1997
7 1996
6 1997
6 1997 | | | | | a--No flow many days most years. b--From rating curve extended above 18 ft³/s on basis of slope-area measurement of peak flow. #### 06127060 WILLOW CREEK AT U.S. CANAL, NEAR ROUNDUP, MT $LOCATION.--Lat\ 46^{\circ}33'17'', long\ 108^{\circ}40'42''\ (NAD\ 27), in\ SW^{1}/_{4}SE^{1}/_{4}NE^{1}/_{4}\ sec.\ 10, T.9\ N., R.24\ E., Musselshell\ County,\ Hydrologic\ Unit\ 10040202, on\ right\ bank,\ 12\ mi\ northwest\ of\ Roundup.$ DRAINAGE AREA.--141 mi². PERIOD OF RECORD.--September 1995 to current year (seasonal records only). GAGE.--Water-stage recorder. Elevation of gage is 3,610 ft (NGVD 29). REMARKS.--Seasonal records good. Regulation by Lake Mason Grazing Association Reservoir upstream from the gage. Numerous diversions upstream from station for irrigation. Several observations of water temperature and specific conductance were made during the year. ## DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|--------------------------------------|-----------|----------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---|---|--
-----|-----| | 1
2
3
4
5 | | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 6
7
8
9 | | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 16
17
18
19
20 | | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 21
22
23
24
25 | | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 26
27
28
29
30
31 | | | | 0.00
0.00
0.00
0.00
0.00 | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | | | | STATIST | ICS OF MON | THLY MEAN | I DATA F | OR SEASON | s 1995 - | 2003 | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | | | 0.51
2.03
1996
0.000
1999 | 0.45
2.95
1996
0.000
1998 | 1.67
9.55
1997
0.000
1998 | 0.32
1.44
1997
0.000
1998 | 0.060
0.48
1997
0.000
1996 | 0.000
0.000
1995
0.000
1995 | 0.072
0.64
1998
0.000
1996 | | | | SUMMARY | STATISTIC | !S | | FOR 2003 | SEASON | 5 | SEASONS 19 | 95 - 2003 | | | | | | LOWEST I | DAILY MEAN
PEAK FLOW
PEAK STAG | Ī | | 0.00 | Apr 1
Apr 1 | | 39 Ju: | n 7 1997
g 26 1995
n 7 1997
n 7 1997 | | | | | a--No flow many days most years. #### 06127500 MUSSELSHELL RIVER AT MUSSELSHELL, MT LOCATION.--Lat 46°31'23", long 108°06'30" (NAD 27), in SE¹/₄SW¹/₄SW¹/₄ sec. 20, T.9 N., R. 29 E., Musselshell County, Hydrologic Unit 10040202, on left bank 0.9 mi upstream from Hawk Creek, 1 mi west of Musselshell, and at river mile 164.5. DRAINAGE AREA.--4,568 mi². PERIOD OF RECORD.--August 1928 to September 1932 (no records December to February for the water years 1930-31), August 1945 to September 1979, October 1982 to September 1983, October 1983 to current season (seasonal record only). Monthly discharge only for some periods, published in WSP 1309. REVISED RECORDS.--WSP 1729: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 2,984.72 ft (NGVD 29) (levels by U.S. Army Corps of Engineers). Prior to Oct. 8, 1949, nonrecording gage at site 1 mi downstream at different elevations. REMARKS.--Records good except those for estimated daily discharges, which are poor. Some regulation by Bair (station number 06116500), Martinsdale (station number 06119000), and Deadman's Basin (station number 06122500) Reservoirs. Diversions for irrigation of about 44,600 acres upstream from station, of which about 39,400 acres is flood irrigated. U. S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. #### DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|--|-------------------------------------|-------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---|---|---------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------| | 1
2
3
4
5 | | | | 8.6
5.5
6.5
3.5
3.6 | 181
112
65
44
28 | 83
89
111
117
124 | 51
56
65
66
80 | 68
55
44
34
25 | e1.0
e1.0
e1.0
e1.0
e0.70 | 4.4
5.8
5.5
4.9
3.1 | | | | 6
7
8
9
10 | | | | 5.7
4.3
3.9
3.9
3.6 | 16
4.4
6.6
14
34 | 113
94
89
88
96 | 84
82
75
77
128 | 19
16
13
10
7.6 | e0.70
e1.0
e1.2
e1.5
e2.5 | 1.9
0.74
0.33
0.23
0.22 | | | | 11
12
13
14
15 | | | | 3.8
4.2
3.9
3.6
3.4 | 49
59
72
81
74 | 99
167
297
212
152 | 127
96
85
80
71 | 6.2
3.9
2.3
1.6
1.0 | e2.0
e1.9
e1.4
e1.4
e1.5 | 2.6
1.5
1.0
0.89
0.75 | | | | 16
17
18
19
20 | | | | 2.8
2.3
2.2
2.2
2.0 | 58
42
65
85 | e200
e260
e185
e125
e100 | 77
127
139
126
104 | 0.70
0.65
0.80
1.2
1.3 | e2.0
e3.0
e3.5
e5.0
6.9 | 2.0
1.8
0.45
0.43
0.01 | | | | 21
22
23
24
25 | | | | 1.8
1.6
1.5
1.4 | 98
89
66
36
21 | e80
e75
e130
e135
e150 | 92
90
82
77
83 | 2.0
3.4
4.4
4.4
5.1 | 6.2
5.4
4.7
4.3
3.6 | 0.48
0.05
0.00
0.00
0.76 | | | | 26
27
28
29
30
31 | | | | 1.6
4.1
3.6
164
198 | 21
13
13
38
63
67 | 102
100
77
61
36 | 79
61
48
43
52
68 | 4.6
3.8
2.9
1.9
1.1
e1.0 | 3.4
5.2
5.6
5.0
4.8 | 1.2
1.6
2.9
9.2
16 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | 458.4
15.3
198
1.3
909 | 1695.0
54.7
181
4.4
3360 | 3747
125
297
36
7430 | 2571
82.9
139
43
5100 | 345.85
11.2
68
0.65
686 | 88.40
2.95
6.9
0.70
175 | 89.74
2.89
19
0.00
178 | | | | STATISTI | CS OF MONTH | LY MEAN D | ATA FOR V | VATER YEA | RS 1929 - | 1983 AND | SEASONS | 1984 - 20 | 03* | | | | | MEAN
MAX
(WY)
MIN
(WY) | 71.0
222
1976
0.000
1932 | 108
460
1971
0.041
1932 | 273
1356
1979
12.7
1932 | 188.5
859
1975
1.22
2001 | 351.2
1670
1976
0.36
1931 | 570.9
4223
1967
0.49
1931 | 235.3
1376
1975
0.000
1930 | 138.2
534
1993
0.000
1931 | 106.5
477
1993
0.000
1931 | 75.64
328
1994
0.000
1932 | 76.5
236
1976
0.000
1932 | 77.5
269
1976
0.000
1932 | | SUMMARY | STATISTICS | | | | | | | | | | | | | 50 PERCE | EAN ANNUAL MEAN NNUAL MEAN DAILY MEAN EVEN-DAY MI PEAK FLOW PEAK STAGE UNOFF (AC-F NT EXCEEDS NT EXCEEDS | NIMUM
T) | 297
.00
330
3.92 | Jun 12
Oct 23
Jun 12
Jun 12 | | | 1.1
0 Jun
0.00 Sep
0.00 Sep
0 Jun
2.96 Mar
164
105 | 1975
1961
19 1967
1 1929
8 1929
19 1997
19 1979 | | 6270
0.00
6420
11.25 | Jun 16
Aug 14
Jun 16
Jun 16 | 1997
2001
1997
1997 | ^{*--}During period of operation. ^{***--}During period of continious operation 1928-29, 1931-32, 1945-79, 1982-83. ***--Seasonal records October 1983 to current season. a--Gage height, 11.57 ft. b--Ice jam. e--Estimated. #### 06130500 MUSSELSHELL RIVER AT MOSBY, MT LOCATION.--Lat 46°59'41", long 107°53'18" (NAD 27), in SW¹/₄NW¹/₄NW¹/₄ sec.11, T.14 N., R.30 E., Petroleum County, Hydrologic Unit 10040205, on right bank, downstream side of bridge on State Highway 20, 0.3 mi west of Mosby, 10.9 mi downstream from Flatwillow Creek, and at river mile 60.0. DRAINAGE AREA.--7,846 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May to November 1929, March 1930 to September 1932, February 1934 to current year. Monthly discharge only for some periods, published in WSP 1309. REVISED RECORDS.--WSP 1559: 1935-36. WSP 1729: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 2,493.23 ft (NGVD 29). Dec. 6, 1962 to Mar. 14, 1966, water-stage recorder at site 900 ft downstream at different elevation. Mar. 15, 1966 to Dec. 11, 1973, water-stage recorder and nonrecording gages at site 400 ft downstream at same elevation. Dec. 12, 1973 to Oct. 1, 1981, nonrecording gage at site 400 ft downstream at same elevation. Oct. 1, 1981 to July 25, 1995, water-stage recorder at site 400 ft upstream from bridge at elevation 2.67 ft higher. See WSP 2116 for history of changes prior to 1962. REMARKS.--Water-discharge records poor Oct. 1 to Mar. 22 and fair Mar. 23 to Sept. 30. Some regulation by Bair (station number 06116500), Martinsdale (station number 06119000) and Deadman's Basin (station number 06122500) Reservoirs. Diversions for irrigation of about 47,000 acres upstream from station. U. S. Geological Survey satellite telemeter at station. ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------------------------------------|--------------------------------------|---|--|---|---|---
---------------------------------------|--|--|--------------------------------------|--------------------------------------|--------------------------------------| | 1
2
3
4
5 | 0.00
0.00
0.00
0.00
0.07 | 0.00
0.00
0.00
0.00 | e0.10
e0.05
e0.05
e0.01
e0.00 | e1.0
e1.0
e1.0
e1.0 | e1.0
e1.0
e1.0
e0.70
e0.50 | e0.20
e0.20
e0.20
e0.15
e0.15 | 0.00
0.00
0.00
0.00 | 21
95
82
59
45 | 0.00
0.00
0.00
0.76
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 6
7
8
9
10 | 0.01
0.07
0.03
0.11
0.09 | 0.00
0.00
e0.00
e0.00
e0.00 | e0.00
e0.00
e0.00
e0.00
e0.10 | e0.50
e0.50
e0.30
e0.10
e0.05 | e0.70
e0.80
e0.90
e1.0
e0.70 | e0.15
e0.10
e0.10
e0.15
e1.0 | 0.00
0.00
0.00
0.00 | 53
43
16
3.4 | 1.6
54
58
46
36 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | 0.00
0.06
0.27
0.10
0.10 | e0.01
e0.05
e0.10
e0.05
e0.01 | e0.90
e1.0
e1.0
e1.0 | e0.05
e0.05
e0.05
e0.05
e0.05 | e1.0
e1.0
e1.0
e1.0 | e10
e30
e100
e200
e400 | 0.00
0.00
0.00
0.00 | 208
86
46
28
1.9 | 47
95
61
87
204 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 16
17
18
19
20 | 0.07
0.14
0.11
0.23
0.20 | e0.00
e0.00
e0.00
e0.00 | e1.5
e2.0
e2.0
e2.0
e1.5 | e0.00
e0.01
e0.01
e0.05
e0.05 | e1.0
e0.80
e0.70
e1.0 | e300
e200
e200
e150
e150 | 0.00
0.00
0.00
0.00 | 25
29
29
33
29 | 165
113
69
47
171 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 21
22
23
24
25 | 0.21
0.00
0.00
0.00
0.00 | e0.00
e0.00
e0.00
e0.00 | e0.50
e0.10
e0.10
e0.10
e0.10 | e0.01
e0.01
e0.01
e0.05
e0.05 | e0.30
e0.10
e0.01
e0.00
e0.01 | e100
e100
95
58
44 | 0.00
0.00
0.00
0.00 | 30
23
25
28
28 | 78
54
35
27
5.2 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 0.00
0.00
0.00
0.00
0.00 | 0.10
e0.01
e0.05
e0.05
e0.10 | e0.10
e0.50
e1.0
e2.0
e1.0
e1.0 | e0.10
e0.20
e0.50
e1.0
e1.5
e2.0 | e0.05
e0.10
e0.20 | 35
30
17
0.56
0.01
0.01 | 0.00
0.00
0.00
0.00
0.00 | 7.3
3.0
0.00
0.00
0.00
0.00 | 2.2
0.70
0.00
0.00
3.5 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1.87
0.060
0.27
0.00
3.7 | 0.53
0.018
0.10
0.00
1.1 | 21.71
0.70
2.0
0.00
43 | 12.25
0.40
2.0
0.00
24 | 19.07
0.68
1.5
0.00
38 | 2221.98
71.7
400
0.01
4410 | 0.00
0.000
0.00
0.00
0.00 | 1094.60
35.3
208
0.00
2170 | 1460.96
48.7
204
0.00
2900 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | | STATIST | TICS OF M | ONTHLY ME | AN DATA F | OR WATER | YEARS 19 | 31 - 2003, | BY WATE | R YEAR (W | Y)* | | | | | MEAN
MAX
(WY)
MIN
(WY) | 79.7
478
1994
0.000
1932 | 79.1
337
1994
0.000
1932 | 71.0
278
1979
0.000
1931 | 76.5
376
1997
0.000
1932 | 172
1858
1971
0.000
1932 | 454
4658
1978
0.000
1932 | 283
1917
1979
0.000
2003 | 521
3772
1975
0.000
1931 | 870
4967
1967
1.91
1935 | 319
2153
1975
0.000
1961 | 113
870
1993
0.000
1934 | 113
787
1986
0.000
1934 | #### 06130500 MUSSELSHELL RIVER AT MOSBY, MT--Continued | SUMMARY STATISTICS | FOR 2002 CALENDAR YEAR | FOR 2003 WATER YEAR | WATER YEARS 1931 - 2003* | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 2961.78 | 4832.97 | | | ANNUAL MEAN | 8.11 | 13.2 | c265 | | HIGHEST ANNUAL MEAN | | | 1089 1978 | | LOWEST ANNUAL MEAN | | | 8.12 2002 | | HIGHEST DAILY MEAN | 1080 Jun 23 | 400 Mar 15 | 15700 Jun 18 1944 | | LOWEST DAILY MEAN | 0.00 Jan 1 | a0.00 Oct 1 | 0.00 Oct 1 1930 | | ANNUAL SEVEN-DAY MINIMUM | 0.00 Jan 7 | 0.00 Oct 22 | 0.00 Oct 1 1930 | | MAXIMUM PEAK FLOW | | unknown | d18000 Jun 18 1944 | | MAXIMUM PEAK STAGE | | b8.23 Mar 15 | f15.10 Mar 12 1979 | | ANNUAL RUNOFF (AC-FT) | 5870 | 9590 | 191600 | | 10 PERCENT EXCEEDS | 8.0 | 43 | 577 | | 50 PERCENT EXCEEDS | 0.09 | 0.01 | 81 | | 90 PERCENT EXCEEDS | 0.00 | 0.00 | 0.10 | ^{*--}During period of operation (1931-32, 1935 to current year). #### WATER-QUALITY RECORDS PERIOD OF RECORD .-- Water years 1975 to current year. PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: October 1974 to September 1981. WATER TEMPERATURE: October 1974 to September 1979, May 2000 to current year (seasonal records only). SUSPENDED-SEDIMENT DISCHARGE: October 1982 to September 1991, October 1991 to 1995 (seasonal records only). INSTRUMENTATION.--Temperature recorder installed March 20, 2000. REMARKS.--Unable to collect sample from July through September visits due to no flow. Daily water temperature record good during period of flow. No daily water temperature data during periods of no flow: Apr. 1-30, May 28 to June 3, June 5, 28, 29, and July 1 to Sept. 30. Unpublished records of instantaneous water temperature and specific conductance are available in files of District office. EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum daily, 4,900 microsiemens per centimeter (μS/cm) at 25°C, Aug. 14, 1977; minimum daily, 678 μS/cm at 25°C, Mar. 23, 1978. WATER TEMPERATURE: Maximum daily, 33.0°C, July 13, 2000, July 3 and Aug. 6, 2001; minimum daily, 0.0°C on many days during winters. SEDIMENT CONCENTRATION: Maximum daily mean, 25,800 mg/L, Aug. 3, 1985; minimum daily mean, 7 mg/L Oct. 30, 1989. SEDIMENT LOAD: Maximum daily, 242,000 tons, Sep. 26, 1986; minimum daily, no load, 1985, 1988 during periods of no flow. EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: During period of seasonal operation and flow, maximum daily, 29.5°C, June 19, 30; minimum daily, 2.5°C, Apr. 3 #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | Ammonia
+
org-N,
water,
unfltrd
mg/L
as N
(00625) | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | Nitrite
water,
fltrd,
mg/L
as N
(00613) | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Phos-
phorus,
water,
unfltrd
mg/L
(00665) | |----------------------------|------|--|---|--|--|---|--|---|--|--|--| | OCT 2002
02
MAR 2003 | 1145 | .15 | | 6050 | 6.5 | 11.5 | | | | | | | 26 | 1115 | 35 | 8.4 | 1640 | 8.5 | 7.5 | 1.0 | .365 | .018 | <.007 | .125 | | MAY
22
JUN | 1030 | 26 | 8.3 | 2480 | 21.0 | 16.0 | .67 | <.022 | E.002 | <.007 | .090 | | 17 | 0950 | 126 | 8.1 | 1410 | 26.0 | 23.5 | 1.3 | <.022 | <.002 | <.007 | .35 | | Date | Time | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | | MAR 2003
26 | 1115 | 490 | 100 | 58.8 | 6.21 | 4 | 198 | 172 | 12.3 | .26 | 5.71 | E--Estimated. a -- No flow occurred on part or all of many days. b--Backwater from ice. c--Median of yearly mean discharge, 200 ft³/s, 144,900 acre-ft/year.d--Gage height, 14.43 ft, from rating extension above 10,000 ft³/s. e--Estimated. f--From floodmark, backwater from ice. #### 06130500 MUSSELSHELL RIVER AT MOSBY, MT--Continued #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | | Residue
water
fltrd
tons/ | , unfltrd
d ug/L | water
l unfltr
ug/L | r, recove:
d -able
ug/L | Copper, , water, d unfltrd r recover , -able, ug/L | water,
unfltrd
recover
-able,
ug/L | recover | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | |----------------
--|---|---|--|---|--|--|---|--|---|--| | MAR 2003
26 | 666 | 1150 | 1.57 | 109 | <2 | <.2 | 1.6 | 8.7 | 1.92 | 8.08 | 12 | | | Date | Time | Suspnd. sedi- ment, sieve diametr percent <.063mm (70331) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | pended
sedi-
ment | Bed
sedi-
ment,
dry svd
sve dia
percent
<.063mm
(80164) | sve dia
percent
<.125mm | sve dia
percent
<.25mm | | Bed sedi- ment, dry svd sve dia percent <1 mm (80168) | | | | OCT 2002
02
MAR 2003
26
MAY
22
JUN
17 | 1145
1115
1030
0950 | 36
99
99 | 51
95
169
658 | .02
9.0
12
224 | <1
2
<1
1 | 1
3
1
3 | 2
7
3
7 | 3
11
8
11 | 4
14
12
13 | | | | | Date | s
dr
sv
pe
< | ent, n
y svd di
e dia s
rcent po
2 mm | sedi- s ment, m ry svd dr ve dia sv ercent pe <4 mm < | ment,
ry svd d
re dia s
ercent p
:8 mm | ment, index syd dispersion of the disper | sedi- s
ment, m
ry svd dr
ve dia sv
ercent pe
<32 mm < | Bed edi- ent, y svd e dia rcent 64 mm 0174) | | | | | | OCT 2
02.
MAR 2
26.
MAY
22. | 003 | 6
15
18 | 9
18
25 | 19
23
37 | 48
35
58 | 72 | 100
100
100 | | | | | | JUN
17. | | 14 | 18 | 26 | 50 | 100 | 100 | | | ## 06130500 MUSSELSHELL RIVER AT MOSBY, MT--Continued #### WATER TEMPERATURE, DEGREES CELSIUS, APRIL 2003 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |-------|-----|-------|------|------|------|------|------|------|------|-----|------|------| | | | APRIL | | | MAY | | | JUNE | | | JULY | | | 1 | | | | 17.5 | 9.5 | 13.0 | | | | | | | | 2 | | | | 17.5 | 10.5 | 14.0 | | | | | | | | 3 | | | | 18.5 | 12.0 | 15.5 | | | | | | | | 4 | | | | 16.5 | 10.0 | 13.5 | 19.0 | 14.5 | 16.5 | | | | | 5 | | | | 10.0 | 6.0 | 7.5 | | | | | | | | 6 | | | | 12.5 | 6.5 | 9.5 | 17.0 | 14.5 | 15.5 | | | | | 7 | | | | 15.5 | 9.0 | 12.0 | 19.5 | 13.0 | 16.0 | | | | | 8 | | | | 14.0 | 9.5 | 12.0 | 23.0 | 14.0 | 18.0 | | | | | 9 | | | | 12.0 | 9.0 | 10.5 | 19.5 | 17.0 | 18.0 | | | | | 10 | | | | 14.5 | 8.0 | 11.0 | 19.0 | 16.0 | 17.0 | | | | | 11 | | | | 14.5 | 9.5 | 12.0 | 21.5 | 15.5 | 18.5 | | | | | 12 | | | | 18.5 | 11.5 | 14.5 | 24.0 | 16.5 | 20.0 | | | | | 13 | | | | 19.0 | 13.5 | 16.0 | 26.5 | 19.0 | 22.5 | | | | | 14 | | | | 22.5 | 12.5 | 17.0 | 26.5 | 20.0 | 23.5 | | | | | 15 | | | | 25.5 | 14.5 | 19.5 | 26.0 | 21.5 | 24.0 | | | | | 16 | | | | 21.0 | 14.0 | 16.5 | 27.5 | 21.5 | 24.0 | | | | | 17 | | | | 20.5 | 13.0 | 16.0 | 28.5 | 22.0 | 24.5 | | | | | 18 | | | | 16.5 | 9.5 | 12.5 | 28.0 | 21.0 | 24.0 | | | | | 19 | | | | 15.5 | 7.5 | 11.0 | 29.5 | 20.5 | 24.0 | | | | | 20 | | | | 19.0 | 9.5 | 14.0 | 23.5 | 20.0 | 22.0 | | | | | 21 | | | | 18.0 | 14.0 | 15.5 | 23.5 | 18.5 | 21.0 | | | | | 22 | | | | 22.0 | 14.5 | 18.0 | 23.5 | 18.0 | 20.0 | | | | | 23 | | | | 21.5 | 17.5 | 19.5 | 23.0 | 15.5 | 19.0 | | | | | 24 | | | | 25.0 | 15.5 | 20.0 | 21.0 | 15.5 | 18.0 | | | | | 25 | | | | 26.5 | 16.5 | 21.5 | 22.5 | 16.0 | 19.0 | | | | | 26 | | | | 26.5 | 19.5 | 22.5 | 24.0 | 16.5 | 20.0 | | | | | 27 | | | | 27.0 | 20.0 | 23.0 | 24.0 | 17.0 | 20.5 | | | | | 28 | | | | | | | | | | | | | | 29 | | | | | | | | | | | | | | 30 | | | | | | | 29.5 | 19.0 | 24.0 | | | | | 31 | | | | | | | | | | | | | | MONTH | | | | | | | | | | | | | | | AUGUST | S | EPTEMBER | 2 | |----------|--------|------|----------|---| | | | | | | | 1 |
 |
 | | | | 2 |
 |
 | | | | 3 |
 |
 | | | | 4 |
 |
 | | | | 5 |
 |
 | | | | _ | | | | | | 6 |
 |
 | | | | 7 |
 |
 | | | | 8 |
 |
 | | | | 9 |
 |
 | | | | 10 |
 |
 | | | | | | | | | | 11 |
 |
 | | | | 12 |
 |
 | | | | 13 |
 |
 | | | | 14 |
 |
 | | | | 15 |
 |
 | | | | 1.0 | | | | | | 16 |
 |
 | | | | 17 |
 |
 | | | | 18 |
 |
 | | | | 19 |
 |
 | | | | 20 |
 |
 | | | | 21 |
 |
 | | | | 22 |
 |
 | | | | 22 | | | | | | 23 |
 |
 | | | | |
 | | | | | 25 |
 |
 | | | | 26 |
 |
 | | | | 27 |
 |
 | | | | 28 | | | | | | 28
29 |
 |
 | | | | 30 |
 |
 | | | | | | | | | | 31 |
 |
 | | | | MONTH |
 |
 | | | | | | | | | #### HELL CREEK BASIN #### 06130650 HELL CREEK NEAR JORDAN, MT $LOCATION.--Lat\ 47^{\circ}34'44'',\ long\ 106^{\circ}55'37''\ (NAD\ 27),\ in\ NW^{1}/_{4}\ NE^{1}/_{4}\ sec.\ 14,\ T.21\ N.,\ R.37\ E.,\ Garfield\ County,\ Hydrologic\ Unit\ 10040104,\ NC^{1}/_{4}\ NC^{1}/_$ on left bank 1.5 mi upstream from Fort Peck Lake, and 19 mi north of Jordan. DRAINAGE AREA.--70.6 mi². PERIOD OF RECORD.--February 2000 to current year. GAGE.--Water-stage recorder. Elevation of gage is 2,270 ft (NGVD 29). Prior to Oct. 1, 2000, at elevation 1.0 ft higher. REMARKS.--Records fair except those for estimated daily discharges, which are poor. U. S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAILT MEAN VALUES | | | | | | | | | | | | | | |-------------------|--
--|---|---|---|---|--|---|--|---|---|--|---------------------------------------| | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 0.00
0.00
0.00
0.00
0.16 | e0.00
e0.00
e0.03
e0.06
e0.04 | e0.00
e0.00
e0.00
e0.00
e0.00 | 0.00
0.00
0.00
e0.01
e0.01 | e1.0
e0.50
e0.00
e0.00
e0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.45
0.47
0.41
0.48
0.26 | 0.05
0.02
0.01
3.7 | e0.05
0.33
0.37
1.5
8.0 | | e0.00
e0.00
e0.00
e0.00
e0.00 | e0.00
e0.00
0.00
0.00 | | | 6
7
8
9 | 0.96
e0.00
e0.00
e0.00
e0.00 | e0.02
e0.02
e0.03
e0.01
e0.00 | e0.00
e0.00
e0.00
e0.01
e0.01 | e0.01
e0.01
e0.01
e0.01
e0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | 0.00
0.00
0.00
0.00 | 0.10
0.07
0.06
0.05
0.02 | 13
2.5
2.5
94
79 | 8.0
10
1.2
0.42
0.30 | 0.00
0.00
46
39
0.30 | e130
e60
e1.0
e0.50
e0.30 | 0.00
0.00
0.00
0.00
0.00 | | | 11
12
13
14
15 | | | | | | 0.00
0.00
318
128
30 | 0.02
0.01
0.01
0.01
0.06 | 2.7
0.81
0.62
0.31
0.16 | 0.23
0.42
0.33
e0.10
e0.05 | 0.03
0.00
0.00
0.00
0.00 | e0.10
e0.00
e0.00
e0.00
e0.00 | 0.00
0.00
0.00
0.00
0.00 | | | 16
17
18
19
20 | 0.00
0.00
0.00
0.00
0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | 0.00
0.00
0.00
0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | 11
2.8
2.1
2.5
2.1 | 0.06
0.00
0.94
14
1.2 | 0.13
0.09
e0.05
0.11
0.15 | e0.03
0.03
0.01
0.00
0.00 | 0.00
0.00
0.00
e0.00
e0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | 0.00
0.00
0.00
0.00
0.00 | | | 21
22
23
24
25 | 0.00
0.00
e0.00
e0.00
e0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | e0.00
e0.00
e0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | 1.4
0.73
0.79
0.44
0.39 | 0.76
0.30
0.06
0.01
0.14 | e0.08
e0.06
e0.04
e0.02
e0.00 | 0.00
0.00
0.00
0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | 0.00
0.00
0.00
0.00
0.00 | | | 26
27
28
29
30
31 | e0.00
e0.00
e0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
e0.50 | e0.00
0.00
0.00
 | 0.38
0.41
0.18
0.10
0.04
0.28 | 6.8
4.7
0.86
0.44
0.21 | e0.00
e0.00
e0.00
e0.00
e0.00
e0.00 | 0.00
0.00
0.00
0.00
0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | 0.00
0.00
0.00
0.00
0.00 | | | TOTAL
MEAN
MAX
MIN
MED
AC-FT | 0.00 | 0.00 | 0.04
0.001
0.01
0.00
0.00
0.00 | 0.56
0.018
0.50
0.00
0.00 | 1.50
0.054
1.0
0.00
0.00
3.0 | 501.64
16.2
318
0.00
0.28
995 | 32.96
1.10
14
0.00
0.18
65 | 280.11
9.04
94
0.00
0.09
556 | 31.37
1.05
10
0.00
0.04
62 | 85.33
2.75
46
0.00
0.00
169 | 191.90
6.19
130
0.00
0.00
381 | 0.00
0.000
0.00
0.00
0.00 | | | STATIST | TICS OF M | ONTHLY ME | AN DATA F | OR WATER | YEARS 200 | 0 - 2003 | , BY WATE | R YEAR (WY |) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 0.13
0.35
2001
0.000
2002 | 2001
0.000 | 0.002
0.003
2002
0.000
2001 | 0.20
0.58
2001
0.000
2002 | 0.54
2.00
2000
0.000
2002 | 5.08
16.2
2003
0.90
2000 | 0.56
1.10
2003
0.012
2001 | 2.72
9.04
2003
0.000
2001 | 9.15
24.2
2001
1.05
2003 | 8.56
18.6
2000
2.75
2003 | 1.99
6.19
2003
0.000
2000 | 0.61
2.44
2000
0.000
2002 | | | SUMMARY | STATIST | ICS | FOR | 2002 CALE | NDAR YEAR | | FOR 2003 T | WATER YEAR | | WATER YE | ARS 2000 - | - 2003 | | | ANNUAL
HIGHEST
LOWEST
HIGHEST
ANNUAL
MAXIMUM
MAXIMUM
ANNUAL
10 PERC
50 PERC | ANNUAL TOTAL ANNUAL MEAN ANNUAL MEAN AUGHEST ANNUAL MEAN AUGHEST DAILY MEAN AUGHEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM AAXIMUM PEAK FLOW ANNUAL RUNOFF (AC-FT) AUGHEST DAILY MEAN AUGHE | | | | 7 Jun 10 0 Jan 1 0 Jan 1 | | 1126 3.8 0.0 0.1 1090 a6 2230 0.6 0.1 0.6 | 2.0 | | 2.
3.
1.
581
0.
0.
0.
1770
1.
0. | 44
09
16
Jun 1:
00 Feb :
Jul 1:
64 Jul 1:
4
00
00 | 1 2000
1 2000
3 2001 | a--From crest-stage gage, during period of no recorded gage-height record. b--From slope-area measurement of peak flow. e--Estimated. #### BIG DRY CREEK BASIN #### 06131000 BIG DRY CREEK NEAR VAN NORMAN, MT LOCATION.--Lat 47°20'58", long 106°21'26" (NAD 27), in NE¹/₄SW¹/₄NW¹/₄ sec. 3, T.18 N., R.42 E., Garfield County, Hydrologic Unit 10040105, on left bank 900 ft downstream from Little Dry Creek, 3.2 mi northeast of Van Norman Post Office, 26 mi east of Jordan, and at river mile 55.1. DRAINAGE AREA.--2,554 mi². PERIOD OF RECORD.--October 1939 to July 1969, July 1970 to current year (discharge measurements only, October 1947 to March 1949). Prior to July 1970, published as "Dry Creek near Van Norman." REVISED RECORDS.--WSP 1309: 1947(M). WSP 1559: 1944(M), 1947. WSP 1729: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 2,330 ft (NGVD 29). Prior to July 24, 1978, at site 400 ft upstream at same elevation. REMARKS.--Records good except those for estimated daily discharges, which are poor. Few small diversions for irrigation of hay meadows upstream from station. U.S. Army Corps of Engineers satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | |---| | DAILY MEAN VALUES | | | DAILT MEAN VALUES | | | | | | | | | | | | |---|--|---------------------------------------|--|--|---------------------------------------|---------------------------------------|---------------------------------------|--|--------------------------------------|--|---|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.9
1.9
1.9
2.2
3.1 | 2.6
2.6
2.6
2.7
2.7 | e2.5
e2.5
e2.5
e2.0
e2.0 | e2.0
e2.5
e2.5
e2.5
e2.5 | e2.5
e2.5
e2.5
e2.0
e2.0 | e2.0
e2.5
e3.0
e2.5
e2.0 | 20
16
15
14
13 | 6.2
6.1
5.7
6.5 | 2.6
2.9
6.2
4.6
4.3 | 12
0.97
0.52
0.34
0.22 | 0.00
0.00
0.00
26
0.14 |
0.01
0.01
0.01
0.01
0.01 | | 6
7
8
9
10 | 3.8
3.4
3.0
2.7
2.6 | e2.5
e2.5
e2.5
e2.5
e2.5 | e2.0
e2.0
e2.0
e2.0
e2.0 | e2.5
e2.5
e2.5
e2.5
e2.0 | e2.0
e2.0
e2.0
e2.0 | e2.0
e2.0
e2.0
e2.0
e2.5 | 12
11
11
9.8
8.8 | 19
13
12
17
40 | 6.5
7.4
6.1
5.3
6.1 | 0.12
0.10
39
386
197 | 0.05
1.5
1.8
27
1.6 | 0.01
0.01
0.01
0.01
0.01 | | 11
12
13
14
15 | 2.4
2.4
2.4
2.3
2.3 | e2.5
e2.5
e2.5
e2.5
e2.5 | e2.0
e2.0
e2.0
e2.0
e2.5 | e2.0
e2.0
e2.0
e2.0
e2.0 | e2.0
e2.0
e2.5
e2.5
e2.0 | e2.5
e2.5
e100
e2300
2010 | 8.1
7.6
7.3
7.9
8.9 | 27
26
29
20
20 | 17
15
15
18
15 | 51
28
17
11
6.1 | 0.32
0.17
0.07
0.04
0.02 | 0.01
0.03
0.01
0.01
0.01 | | | | | | | | | 9.4
9.1
10
10
9.0 | 17
14
10
8.6
7.9 | 12
8.7
7.9
5.7
4.3 | 3.2
1.6
0.78
0.45
0.21 | 0.01
0.00
0.00
0.00
0.00 | 0.01
0.01
0.01
0.01
0.01 | | 21
22
23
24
25 | 2.6
2.5
2.6
2.6
2.6 | e2.5
e2.5
e2.5
e2.0
e2.0 | e2.0
e2.0
e2.0
e2.0
e2.0 | e2.0
e2.0
e2.0
e2.0
e2.0 | e2.0
e2.0
e2.0
e2.0 | 136
88
50
37
28 | 7.6
6.7
6.5
5.9
5.3 | 7.5
7.0
5.7
5.3
5.5 | 5.3
3.1
2.5
2.2
1.7 | 0.11
0.07
0.05
0.03
0.02 | 0.00
0.00
0.00
0.00
0.00 | 0.04
0.05
0.04
0.02
0.02 | | 26
27
28
29
30
31 | 2.6
2.7
2.7
2.7
2.7
2.6 | e2.0
e2.0
e2.5
e2.5
e2.5 | e2.0
e2.0
e2.5
e2.5
e2.5
e2.0 | e2.0
e2.0
e2.0
e2.0
e2.5
e2.5 | e2.5
e2.5
e2.5 | 22
18
18
26
23
28 | 5.1
5.6
5.4
6.2
6.7 | 5.2
4.8
3.8
3.0
2.3
2.2 | 1.4
1.2
1.1
0.83
2.5 | 0.01
0.01
0.01
0.00
0.00
0.00 | 0.00
0.00
0.01
0.01
0.01
0.01 | 0.02
0.01
0.01
0.02
0.02 | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | | | | 278.9
9.30
20
5.1
553 | | | | 58.76
1.90
27
0.00
117 | 0.47
0.016
0.05
0.01
0.9 | | STATIST | TICS OF MO | ONTHLY MEA | | | | | BY WATER | YEAR (WY |) * | | | | | MEAN
MAX
(WY)
MIN
(WY) | 6.31
97.5
1987
0.000
1940 | 2.99
14.2
1987
0.000
1961 | 2.66
33.7
1976
0.000
1961 | 6.47
192
1997
0.000
1940 | 72.8
1004
1997
0.000
1940 | 256
1760
1959
2.75
1961 | 83.9
2043
1952
1.05
1961 | 0.21 | 58.2
552
1944
0.072
1988 | 43.8
458
1993
0.000
1961 | 16.1
367
1954
0.000
1959 | 16.4
391
1986
0.000
1940 | | SUMMARY | STATIST: | ICS | | | | | FOR 2003 WA | TER YEAR | | WATER YEA | RS 1940 - | 2003* | | ANNUAL
ANNUAL
HIGHEST
LOWEST
HIGHEST | MEAN | MEAN
EAN
EAN | | 11736.40
32.2
6330 | | | 9229.78
25.3
2300 | | | 49.7
243
1.1
21300 | | 1978
1985
1947 | | LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS | | | | 0.50
0.57 |) Jan 28
' Jan 26 | | 0.00
0.00
2300
a6.44
0.00 | Jul 29 Aug 17 Mar 14 Mar 14 Jul 29 | | 0.0
0.0
b24600
a15.2
c0.0 | 0 Oct 1
0 Oct 1
Mar 21
6 Mar 21
0 Oct 1 | 1939
1939
1947
1947
1940 | | ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 2.5 | | | 2.5 | | | 2.5 | | | | 90 PERC | LENT EXCE | EDS | | 1.0 | | | 0.01 | | | 0.0 | U | | ^{*--}During period of operation (1940-47, 1949-68, 1970 to current year). ^{**--}Median of yearly mean discharges, 27.4 ft³/s. a--Backwater from ice. b--Gage height, 13.39 ft, at different site and datum. c--No flow at times most years. e--Estimated. #### 06131200 NELSON CREEK NEAR VAN NORMAN, MT LOCATION.--Lat 47°32′08", long 106°09′11" (NAD 27), in SW¹/4 NW¹/4 sec.36, T.21 N., R.43 E., McCone County, Hydrologic Unit 10040104, on left bank at upstream side of bridge on State Highway 24, 1.5 mi upstream from Fort Peck Lake, and 19 mi northeast of Van Norman. DRAINAGE AREA.--100 mi². PERIOD OF RECORD.--October 1975 to September 1985, February 2000 to current year. GAGE.--Water-stage recorder. Elevation of gage is 2,300 ft (NGVD 29). REMARKS.--Records fair. Diversions for irrigation of about 163 acres upstream from station of which about 158 acres are flood irrigated. Some storage in stock ponds upstream. Several observations of water temperature and specific conductance were made during the year. ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | 2.1. | | | | | | | | |---|--|--|--|---|---------------------------------------|---------------------------------------|--|---|---------------------------------------|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.17
0.12
0.21
0.33
0.38 | 0.02
0.01
0.02
0.01
0.07 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 6
7
8
9
10 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.32
0.30
0.23
0.19
0.14 | 0.06
0.06
0.37
0.42
1.1 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
7.2
0.29 | 0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
72
174
82 | | 1.2
0.67
2.8
2.6
1.00 | 0.09
3.0
1.3
0.50
0.40 | 0.00
0.00
0.00
0.00
0.00 | 0.01
1.3
0.50
0.17
0.01 | 0.00
0.00
0.00
0.00 | | 16
17
18
19
20 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 19
8.0
4.5
8.2
5.2 | 0.06
0.02
0.02
0.04
0.01 | 0.59
0.33
0.22
0.14
0.12 | 0.24
0.10
0.02
0.00
17 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 21
22
23
24
25 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 2.5
1.7
1.2
0.97
0.78 | 0.01
0.01
0.06
0.07
0.04 | 0.09
0.05
0.03
0.00 | 0.49
0.02
0.01
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
 | 0.60
0.36
0.29
0.21
0.21 | 0.02
0.02
0.01
0.03
0.03 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | TOTAL
MEAN
MAX
MIN
AC-FT | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | 381.94
12.3
174
0.00
758 | 0.11 | 11.98
0.39
2.8
0.00
24 | 23.17
0.77
17
0.00
46 | 0.00
0.000
0.00
0.00
0.00 | 9.48
0.31
7.2
0.00
19 | 0.00
0.000
0.00
0.00 | | STATIST | CICS OF MO | ONTHLY ME. | AN DATA F | OR WATER | YEARS 197 | 6 - 2003 | , BY WATER | YEAR (WY) | * | | | | | MEAN
MAX
(WY)
MIN
(WY) | 0.18
1.47
1982
0.000
1977 | 0.017
0.14
1979
0.000
1977 | 0.021
0.15
1976
0.000
1977 | 0.38
2.90
1983
0.000
1977 | 2.26
19.0
1982
0.000
1978 | 5.10
37.4
1978
0.000
2002 | 3.28
39.9
1979
0.072
2000 | 1.47
13.1
1978
0.001
2001 | 1.72
5.64
1977
0.000
1981 | 2.57
16.0
1978
0.000
1980 | 1.32
9.37
1981
0.000
1977 | 1.16
15.4
1978
0.000
1976 | | SUMMARY | STATIST | ICS | FOR | 2002 CALE | NDAR YEAR | 1 | FOR 2003 W | ATER YEAR | | WATER YEAR | RS 1976 | - 2003* | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
ANNUAL
10 PERC
50 PERC | MEAN 'ANNUAL MANNUAL MANNUAL MAILY MEA | EAN EAN AN Y MINIMUM OW AGE AC-FT) EDS | | 222.0
0.6
113
0.0
0.0
441
0.6
0.0
0.0 | Aug 7
0 Jan 1
0 Jan 1 | |
429.8
1.1
174
0.0
0.0
318
5.8
853
0.3
0.0 | Mar 14
00 Oct 1
00 Oct 1
Mar 14
19 Mar 14 | | 1.66
7.55
0.14
445
a0.00
0.00
1750
9.30
1220
1.1
0.00 | 7
4
Jul
0 Oct
0 Oct
Jul
0 Jul | 1978
1980
4 1978
1 1975
1 1975
4 1978
4 1978 | | | 211001 | - | | 0.0 | - | | 0.0 | - | | 0.00 | - | | ^{*--}During period of operation (1975-1985, February 2000 to current year). a--No flow at times most years. #### 06131500 FORT PECK LAKE AT FORT PECK, MT LOCATION.--Lat 48°00'26", long 106°23'49" (NAD 27), in sec. 14, T.26 N., R.41 E., McCone County, Hydrologic Unit 10040104, in No. 4 emergency gate shaft of Fort Peck Dam on Missouri River at Fort Peck, 2 mi downstream from Bear Creek, 9.5 mi southwest of Nashua, 9.5 mi upstream from Milk River, and at river mile 1,771.6. DRAINAGE AREA.--57,500 mi². PERIOD OF RECORD.--October 1937 to current year. (Monthend contents only, except October 1938 to September 1940, when elevations were included.) Monthend contents for October 1937 to August 1938, published only in WSP 1309. Daily elevations and contents for May to June 1964, published in WSP 1840-B. Prior to October 1970, published as "Fort Peck Reservoir." Daily elevations on file in Helena district office. REVISED RECORDS .-- WSP 1729: Drainage area. GAGE.--Water-stage recorder. Prior to May 1, 1941, nonrecording gage at same site and elevation. Elevation of gage is 2095.00 (NGVD 29). REMARKS.--Reservoir is formed by earthfill dam completed in 1939; storage began in 1937. The following capacity figures are from capacity table effective July 1, 1973; see previous reports for superseded figures. All elevations are referenced to the National Geodetic Vertical Datum of 1929. Total capacity, 18,910,000 acre-ft between elevation 2,095.00 ft, invert of lower ring gates, and 2,250.00 ft, top of 25 ft gates. Elevation of spillway crest, 2,225.00 ft. Normal operating level, 17,930,000 acre-ft, elevation, 2,246.00 ft. Dead storage, 542,800 acre-ft below elevation 2,095.00 ft. Minimum operating level, 4,283,000 acre-ft, elevation, 2,160.00 ft, for on-site power generation. Figures given herein represent total contents; usable contents published in previous water-supply papers for October 1950 to September 1955. Water is used for navigation, recreation, flood control, and power generation. Elevations materially affected by wind. COOPERATION .-- Elevations and capacity table furnished by U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 19,310,000 acre-ft, July 15-17, 1975, elevation, 2,251.6 ft; minimum since first filling, 5,061,000 acre-ft, Jan. 25, 26, 1956, elevation, 2,167.67 ft, by capacity table used Mar. 1, 1940, to Dec. 31, 1965. EXTREMES FOR CURRENT YEAR.--Maximum contents, 11,860,000 acre-ft, Oct. 1, elevation, 2,217.62 ft; minimum, 10,490,000 acre-ft, Sept. 29, elevation, 2,209.55 ft. #### MONTHEND ELEVATION AND CONTENTS AT 2400 HOURS, SEPTEMBER 2002 TO SEPTEMBER 2003 | Date | Elevation (feet) | Contents (acre-feet) | Change in
Contents
(acre-feet) | |----------|------------------|----------------------|--------------------------------------| | Sept. 30 | 2,217.62 | 11,860,000 | | | Oct. 31 | 2,217.26 | 11,800,000 | -60,000 | | Nov. 30 | 2,216.77 | 11,710,000 | -90,000 | | Dec. 31 | 2,214.58 | 11,340,000 | -370,000 | | CALEND | AR YEAR 2002 | | -1,810,000 | | Jan. 31 | 2,212.61 | 11,000,000 | -340,000 | | Feb. 28 | 2,210.96 | 10,720,000 | -280,000 | | Mar. 31 | 2,212.83 | 11,040,000 | +320,000 | | Apr. 30 | 2,212.76 | 11,030,000 | -10,000 | | May 31 | 2,213.04 | 11,070,000 | +40,000 | | June 30 | 2,213.59 | 11,170,000 | +100,000 | | July 31 | 2,212.34 | 10,960,000 | -210,000 | | Aug. 31 | 2,210.68 | 10,680,000 | -280,000 | | Sept. 30 | 2,209.56 | 10,490,000 | -190,000 | | WATER | YEAR 2003 | | -1,370,000 | #### 06132000 MISSOURI RIVER BELOW FORT PECK DAM, MT LOCATION.--Lat 48°02'39" (NAD 27), long 106°21'21", in NW¹/₄ sec.6, T.26 N., R.42 E., McCone County, Hydrologic Unit 10060001, on right bank 2 mi upstream from Milk River, 6 mi south of Nashua, 8 mi downstream from Fort Peck Dam, and at river mile 1,763.5. DRAINAGE AREA.--57,556 mi². PERIOD OF RECORD.--March 1934 to current year. REVISED RECORDS.--WSP 1729: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 2,018 ft (NGVD 29) (U.S. Army Corps of Engineers bench mark). Prior to Apr. 14, 1938, at site 0.7 mi upstream at different elevation; Apr. 14, 1938, to Sept. 30, 1963, at present site at elevation 2.00 ft higher, all water-stage recorders. Since Oct. 1, 1969, published discharge is determined by flowmeters and spillway discharge at Fort Peck Dam. REMARKS.--Flow completely regulated by Fort Peck Lake. Diversions for irrigation of about 880,400 acres upstream from station. Operational level in Fort Peck Lake was reached beginning 1944 water year. COOPERATION.--Records since Oct. 1, 1969, furnished by U.S. Army Corps of Engineers; 2 to 4 discharge measurements are made each year and the records are reviewed by Geological Survey. Records for March 1934 to September 1969 collected and computed by Geological Survey. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 51,000 ft³/s including 32,000 ft³/s inflow from spillway 1 mi downstream from station, Aug. 8, 1946; maximum gage height observed, 12.30 ft, Mar. 10, 1936 (ice jam), site and elevation then in use; maximum daily reverse flow, 400 ft³/s, Mar. 29, 1943, backwater from Milk River. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | | | | | | | | |---|---|---|---|--|--|---|---|--|---|--|--|--| | DAY OC | T NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1 600
2 460
3 400
4 440
5 510 | 0 5000
0 4900
0 4700 | 9200
9100
9500
10200
10100 | 9800
9900
9800
9800
9800 | 9800
10200
10100
10400
10200 | 9000
9100
9100
7500
8500 | 3900
6300
6300
6200
5800 | 8700
8900
8600
9000
8700 | 9000
8800
9100
8800
8900 | 8600
8500
8000
7900
8000 | 8300
7200
7200
7000
6900 | 6800
7000
7200
7300
7200 | | | 6 470
7 430
8 430
9 470
10 460 | 0 5000
0 5000
0 4800 | 9900
9700
10000
9900
9700 | 9800
9800
9900
9800
9900 | 10300
10000
10300
10000
10300 | 6700
6800
6000
5700
5200 | 5900
5900
6000
6000
6100 | 8100
8500
8500
8400
8400 | 8900
8900
8800
8900 | 8200
8100
8300
8100
8100 | 6900
6800
7300
7100
6600 | 7100
7000
6700
6800
7000 | | | 11 470
12 450
13 400
14 430
15 440 | 0 4700
0 4800
0 4700 | 10000
9900
9800
10100
9900 | 10000
9900
10000
10000 | 10000
10000
10200
9900
9900 | 4700
4100
3800
3700
4000 | 6200
7200
7300
7100
7200 | 8400
8400
8500
8400
8200 | 8900
8900
8800
8900 | 8100
8200
7900
8200
8100 | 6600
6600
6500
6400
7000 | 6900
6900
6900
7200
7000 | | | 16 470
17 450
18 460
19 460
20 460 | 0 4900
0 4700
0 4700 | 9800
9600
9700
9700
9900 | 9600
10000
9800
10000
9900 | 10200
10200
10200
9900
10000 | 3900
4000
3900
3900
3900 | 7300
6900
6700
6800
7300 | 9500
10400
10600
9300
9700 | 8900
9100
8800
8300
8500 | 7800
7800
7900
8000
8000 | 7200
7100
7200
7000
7100 | 7100
7200
6900
7000
7200 | | | 21 470
22 480
23 480
24 480
25 490 | 0 4800
0 4800
0 4900 | 9800
9800
10200
10200
10400 | 10100
10000
9800
8500
8300 | 10000
9800
10300
10200
10100 | 4000
4100
3900
4100
4000 | 7100
7700
8000
7800
8100 | 10500
10800
8700
9000
9000 | 8400
8500
8500
8400
8400 | 8100
8000
8100
8100
8000 | 7200
7000
7100
6900
7300 | 7200
5900
4500
4400
4200 | | | 26 480
27 480
28 490
29 480
30 500
31 490 | 0 9100
0 9200
0 9000
0 9100 | 10300
10100
9700
9800
9700
10000 | 9500
9900
9900
10100
9600
10100 | 10600
10600
10000
 | 3900
3900
4300
4100
3800
4100 | 8400
8400
8400
9100
8700 | 9000
9300
10600
8800
9000
9000 | 8200
8300
8600
8200
8500 | 7900
7900
7900
8000
8200
8400 | 7800
7200
7200
7400
7400
7100 | 4400
4400
4400
4300
4300 | | | TOTAL 14480 MEAN 467 MAX 600 MIN 400 AC-FT 28720 | 0 169300
1 5643
0 9300
0 4700 | 305700
9861
10400
9100
606400 | 303300
9784
10100
8300
601600 | 283700
10130
10600
9800
562700 | 157700
5087
9100
3700
312800 | 210100
7003
9100
3900
416700 | 280900
9061
10800
8100
557200 | 261000
8700
9100
8200
517700 | 250400
8077
8600
7800
496700 | 219600
7084
8300
6400
435600 | 188400
6280
7300
4200
373700 | | | STATISTICS O | F MONTHLY M | EAN DATA | FOR WATER | YEARS 194 | 4 - 2003 | B, BY WATE | ER YEAR (WY | () * | | | | | | MEAN 1113
MAX 2880
(WY) 195
MIN 301
(WY)
199 | 0 21150
6 1998
6 2085 | 9185
13330
1944
1490
1946 | 9850
14010
1971
1390
1946 | 9767
15240
1979
1180
1945 | 7370
13390
1982
1050
1944 | 7187
17230
1979
856
1945 | 8452
18830
1979
950
1944 | 8663
26190
1975
832
1944 | 9892
35030
1975
1163
1945 | 11780
26180
1955
3449
1963 | 11380
27120
1948
2997
1992 | | | SUMMARY STAT | ISTICS | FOR | 2002 CAL | ENDAR YEAR | | FOR 2003 | WATER YEAR | 1 | WATER YE | ARS 1944 | - 2003* | | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUA LOWEST ANNUA LOWEST DAILY ANNUAL SEVEN INSTANTANEOU ANNUAL RUNOF | L MEAN Y MEAN MEAN -DAY MINIMU S LOW FLOW F (AC-FT) | | 2413740
6613
10400
3900
3910
4788000 | Dec 25
Mar 21
Mar 21 | | 2774900
7602
10800
3700
3890
5504000 | May 22
Mar 14
Mar 13 | | 9474
14950
5313
35400
161
161
6863000 | Apr
Mar 2 | 1975
1963
7 1975
6 1978
6 1944
6 1944 | | | 10 PERCENT E | | | 9300 | | | 10000 | | | 14700 | | | | 8100 8400 4080 5400 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS ^{*--}Period of record after operational level in Fort Peck Lake was reached. ## 06132000 MISSOURI RIVER BELOW FORT PECK DAM, MT--Continued WATER-QUALITY RECORDS PERIOD OF RECORD .-- Water years 1964, 1975 to 1987, May 2002 to current year. #### PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Water years 1974 to 1981. WATER TEMPERATURE: Water years, 1974 to 1979; seasonal records, July 2002 to current year. INSTRUMENTATION.--Temperature recorder installed July 31, 2002. REMARKS.--Unpublished records of instantaneous water temperature and specific conductance are available in files of District office. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE (water years 1975-81): Maximum daily, 1,080 microsiemens per centimeter (μS/cm), Nov. 30, 1976; minimum daily, 520 μS/cm, June 29, 1978. WATER TEMPERATURE: Maximum, 18.5°C, Aug. 10, Sept. 4, 19, 2002 and several days in August 2003; minimum, 0.0°C, on several days from December 1977 to January 1978. #### EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: During period of seasonal operation, maximum, 18.5°C, several days in August; minimum, 0.5°C, Apr. 3. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | Baro-
metric
pres-
sure,
mm Hg
(00025) | Dis-
solved
oxygen,
mg/L
(00300) | Dis-
solved
oxygen
percent
of sat-
uration
(00301 | d wat
, unfi
t fie
- st
n un | ter, colling
ltrd
eld, wo
td
its 2 | pecif.
onduc-
tance,
at unf
uS/cm
5 degC
00095) | Temper
ature
air
deg (| e, at
, wa
C de | nper-
ure, u
ter, m | Hard-
ness,
water,
unfltrd
ng/L as
CaCO3
(00900) | wat
flt
mg | cium
ter,
trd,
g/L
915) | Magnes
ium,
water
fltrd
mg/L
(00925 | |--|---------------------------------|---|---|---|---|--|---|---|---|---|---|--|--------------------------------|--|--| | MAR 2003 | 1030 | 4100 | 708 | 10.2 | 94 | 8 | . 4 | 556 | 20.5 | 8 | .5 | 210 | 52 | 4 | 19.6 | | MAY
21 | 1045 | 10500 | 720 | 12.6 | 121 | | . 4 | 557 | 16.0 | | .0 | 210 | 51 | | 19.3 | | JUN | | | | | | | | | | | | | | | | | 30
AUG | 0940 | 8500 | 714 | 10.1 | 105 | | . 4 | 550 | 29.0 | | . 0 | 200 | 49 | | 19.1 | | 26 | 1430 | 7800 | 715 | 9.3 | 105 | 8 | . 2 | 563 | 27.5 | 18 | .0 | 200 | 48 | . 8 | 18.7 | | Date MAR 2003 31 MAY 21 JUN 30 AUG 26 | siu
wat
flt | er, adsord, tind, | ion flt | lin. wat txum, fxd (er, lind) (29) (29) 2 1 9 1 2 1 1 | end | hlor- ide, ater, ltrd, mg/L 0940) .76 .51 .80 | Fluor ide, water fltrd mg/L (00950 .92 .9 .9 .9 | Sili
, wat
, flt
mg | er, vrd, frd, frd, frd, frd, frd, frd, frd, f | ulfate
water,
fltrd,
mg/L
00945)
117
115
115 | Resid water fltrd sum c constituent mg/L (70301 340 337 336 337 | f,
d, Resi
of wat
i- flt
is ton
L acre | er,
rd,
s/
-ft
03) | Resid wate filtr tons (7030 9550 7700 7090 | er,
cd,
s/d
D2) | | Date | org
org
wat
unfl
mg | g-N, Ammo
cer, wai
trd fli
g/L mg
s N as | g/L mg | rate Nit:
er wa
erd, fl:
g/L mg | pl
rite pl
ter, waterd, f
g/L 1 | rtho-
hos-
hate,
ater,
ltrd,
mg/L
as P | Phos-
phorus
water
unfltro
mg/L
(00665 | , wat
d flt
ug | er, v
rd, ur
/L | rsenic
water
nfltrd
ug/L
01002) | Barium
water
fltro
ug/I
(01005 | r, reco
d, -ab | er,
trd
ver
le, | Cadmi
wate
fltr
ug/
(0102 | er,
cd,
L | | MAR 2003
31
MAY | .1 | |)15 <.0 | | | .007 | .010 | 3. | | 3 | 32 | 36 | | <.04 | | | 21
JUN | .1 | | 015 <.0 | | | .007 | .009 | 3. | | 3 | 38 | 35 | | <.04 | | | 30
AUG | .1 | .3 < | 015 <.0 |)13 < | 002 < | .007 | .008 | 3. | 8 | 3 | 35 | 34 | | <.04 | | | 26 | .1 | .6 < | 015 <.0 | 122 <. | 002 < | .007 | .011 | 3. | 8 | 5 | 35 | 37 | | <.04 | 1 | # 06132000 MISSOURI RIVER BELOW FORT PECK DAM, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | Cadmium
water,
unfltrd
ug/L
(01027) | Chrom-
ium,
water,
fltrd,
ug/L
(01030) | Chrom-
ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Iron,
water,
fltrd,
ug/L
(01046) | Iron, water, unfltrd recover -able, ug/L (01045) | water, | | Mangan-
ese,
water,
fltrd,
ug/L
(01056) | Mangan-
ese,
water,
unfltrd
recover
-able,
ug/L
(01055) | |-----------------------|---|--|---|--|--|--|--|--|--|--|--| | MAR 2003
31
MAY | <.04 | <.8 | <.8 | 1.7 | 2.0 | <10 | E10 | <.08 | .06 | 2.7 | 6 | | 21 | .04 | <.8 | <.8 | 1.3 | 2.1 | <10 | 60 | E.05 | .06 | 1.3 | 4 | | JUN
30
AUG | <.04 | <.8 | <.8 | 1.3 | 1.5 | <8 | 70 | <.08 | .06 | 1.3 | 5 | | 26 | < .04 | <.8 | <.8 | 1.4 | 1.9 | <8 | 60 | <.08 | .07 | 2.2 | 6 | | Date | Mercury
water,
fltrd,
ug/L
(71890) | Mercury
water,
unfltrd
recover
-able,
ug/L
(71900) | Nickel,
water,
fltrd,
ug/L
(01065) | Nickel,
water,
unfltrd
recover
-able,
ug/L
(01067) | Selen-
ium,
water,
fltrd,
ug/L
(01145) |
Selen-
ium,
water,
unfltrd
ug/L
(01147) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | Suspnd.
sedi-
ment,
sieve
diametr
percent
<.063mm
(70331) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | | MAR 2003
31
MAY | <.02 | <.02 | 1.64 | 2.17 | .8 | .6 | 1 | E1 | 75 | 3 | 33 | | 21 | <.02 | <.02 | 2.90 | 1.54 | .7 | .8 | 3 | 2 | | | | | 30 | <.01 | <.01 | 2.77 | 2.51 | 1.0 | .7 | 2 | 2 | 88 | 4 | 92 | | 26 | <.02 | <.02 | 2.86 | 3.40 | .7 | 1.0 | <1 | E1 | 63 | 4 | 84 | E--Estimated. #### WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR APRIL 2003 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|-------------------------------------|---------------------------------|---------------------------------|--|--|--------------------------------------|--------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--| | | | APRIL | | | MAY | | | JUNE | | | JULY | | | 1
2
3
4
5 | 5.5
3.0
4.5
5.0
6.5 | 3.0
1.0
0.5
1.0
2.0 | 4.0
1.5
2.0
2.5
4.0 | 10.0
10.0
11.0
9.5
7.0 | 6.0
6.5
6.5
7.0
6.0 | 7.5
8.0
8.5
8.0
7.0 | 10.0
12.0
13.0
10.0
11.0 | 9.0
9.0
9.5
8.5
8.0 | 9.5
10.5
11.0
9.0
9.5 | 15.5
15.5
14.5
15.0
16.0 | 12.0
11.0
10.5
10.0
11.0 | 13.5
13.0
12.0
12.5
13.0 | | 6
7
8
9
10 | 5.0
7.5
8.0
9.5
8.5 | 2.0
2.0
2.5
3.0
3.5 | 3.5
4.5
5.0
6.0 | 8.0
8.5
8.0
7.5
8.5 | 5.5
5.0
6.0
6.5
6.0 | 6.5
6.5
7.0
7.0 | 11.5
12.5
12.5
13.0
11.5 | 8.5
10.0
9.5
11.0
10.0 | 10.0
11.0
11.0
11.5
11.0 | 15.5
15.5
14.0
15.5
15.0 | 11.5
11.0
11.5
11.0 | 13.5
13.0
13.0
13.0
13.0 | | 11
12
13
14
15 | 9.5
9.0
8.5
9.0
7.5 | 3.5
4.0
4.0
4.5
4.5 | 6.0
6.0
6.5
6.0 | 10.5
11.0
11.5
12.0
12.5 | 5.5
6.0
7.5
7.0
7.5 | 7.5
8.5
9.0
9.0 | 11.5
14.0
13.5
13.5 | 10.0
9.5
9.5
10.0
9.5 | 10.5
11.5
11.5
11.5 | 15.5
16.5
16.5
16.0 | 10.5
11.0
12.5
12.0
11.0 | 13.0
13.5
14.0
13.5
13.5 | | 16
17
18
19
20 | 8.0
9.5
6.5
8.5
10.0 | 4.0
4.5
5.5
5.0
4.5 | 5.5
6.5
6.0
6.0
7.0 | 11.0
10.5
8.5
9.5
11.0 | 8.0
7.5
7.0
6.0
6.0 | 9.5
8.5
7.5
8.0
8.5 | 12.5
13.0
14.0
16.0
16.0 | 9.5
9.5
9.5
11.0
10.5 | 10.5
11.0
11.5
13.5
13.0 | 17.0
17.0
17.5
16.0
15.5 | 12.0
12.5
13.0
11.5 | 14.0
14.5
15.0
13.5
13.5 | | 21
22
23
24
25 | 10.5
11.0
10.5
8.5
11.0 | 5.0
5.0
6.0
6.5
6.0 | 7.0
7.5
8.0
7.5
8.0 | 10.5
11.0
12.5
12.5
13.5 | 7.5
8.0
9.0
8.5
9.0 | 9.0
9.5
10.5
10.5 | 12.5
13.5
14.0
13.5
13.0 | 9.5
9.5
10.0
10.5
10.0 | 11.0
11.0
12.0
12.0
11.5 | 16.5
16.5
17.0
16.0
15.5 | 12.0
12.0
12.0
12.0
12.0 | 14.0
14.0
14.0
13.5
13.5 | | 26
27
28
29
30
31 | 8.5
9.5
10.0
8.5
10.0 | 6.5
6.0
5.0
6.0
6.0 | 7.5
7.5
7.0
7.0
7.5 | 14.0
13.0
12.0
14.0
12.0
11.5 | 10.5
10.0
8.5
9.0
8.5
9.0 | 12.0
11.5
10.0
11.0
10.0 | 14.5
14.0
13.5
14.5
15.5 | 10.5
10.5
10.0
10.0 | 12.0
12.0
11.5
12.0
13.0 | 16.0
17.5
17.0
16.0
16.0 | 12.0
13.0
13.0
12.5
11.5 | 14.0
15.0
14.5
14.0
13.5
14.0 | | MONTH | 11.0 | 0.5 | 5.8 | 14.0 | 5.0 | 8.8 | 16.0 | 8.0 | 11.2 | 17.5 | 10.0 | 13.5 | # 06132000 MISSOURI RIVER BELOW FORT PECK DAM, MT--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR APRIL 2003 TO SEPTEMBER 2003--Continued | DAY | MAX | MIN | MEAN | MAX | MIN | MEAN | |----------------------------------|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | | | AUGUST | | 5 | SEPTEMBE | R | | 1
2
3
4
5 | 16.0
17.0
16.0
15.5
17.0 | 11.5
11.5
12.0
12.5
12.0 | 13.5
14.0
13.5
14.0 | 16.5
16.0
16.0
16.0 | 12.5
12.0
11.5
12.0
12.5 | 14.0
13.5
13.5
13.5
13.5 | | 6
7
8
9
10 | 17.5
18.5
18.5
17.0
18.5 | 12.0
13.5
13.5
13.0
13.0 | 14.5
15.5
15.5
14.5
15.5 | 16.0
16.5
16.5
16.0
13.5 | 12.0
12.0
13.0
13.0
12.0 | 13.5
14.0
14.5
14.0
12.5 | | 11
12
13
14
15 | 18.5
18.5
18.0
17.5
17.5 | 13.5
14.5
13.5
13.0
13.0 | 16.0
16.0
15.5
15.0 | 15.0
14.5
13.0
16.0
15.0 | 11.5
12.5
11.0
11.5
12.5 | 13.5
13.0
12.0
13.5
14.0 | | 16
17
18
19
20 | 18.5
18.0
17.0
18.5
16.5 | 13.5
14.0
13.0
14.0
13.0 | 16.0
16.0
15.0
16.0
14.5 | 12.5
11.0
14.0
15.0
14.0 | 10.5
10.0
9.5
10.5
12.5 | 11.5
10.5
11.5
12.5
13.5 | | 21
22
23
24
25 | 16.0
17.0
17.0
16.5
16.5 | 12.0
13.0
13.0
12.5
12.5 | 14.0
14.5
14.5
14.5 | 12.5
14.5
14.0
14.0
16.0 | 11.5
10.5
11.5
10.0
11.0 | 12.0
12.5
12.5
11.5
13.0 | | 26
27
28
29
30
31 | 16.5
14.0
15.5
16.0
17.5
17.0 | 12.0
12.5
12.0
12.0
12.5
12.5 | 14.0
13.0
13.5
13.5
14.5 | 15.5
15.0
15.0
14.5
15.0 | 13.0
11.5
11.5
11.5
10.5 | 14.0
13.0
13.0
12.5
12.5 | | MONTH | 18.5 | 11.5 | 14.5 | 16.5 | 9.5 | 13.0 | #### 06132200 SOUTH FORK MILK RIVER NEAR BABB, MT $LOCATION.--Lat\ 48^{\circ}45'14'',\ long\ 113^{\circ}10'00''\ (NAD\ 27),\ in\ NE^{1}/_{4}NW^{1}/_{4}Sec.34,\ T.35\ N.,\ R.12\ W.,\ Glacier\ County,\ Hydrologic\ Unit\ 10050001,\ NE^{1}/_{4}NW^{1}/_{4}Sec.34,\ T.35\ N.,\ R.12\ W.,\ Glacier\ County,\ Hydrologic\ Unit\ 10050001,\ NE^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}Sec.34,\ T.35\ N.,\ R.12\ W.,\ Glacier\ County,\ Hydrologic\ Unit\ 10050001,\ NE^{1}/_{4}NW^{1}/_{4}Sec.34,\ T.35\ N.,\ R.12\ W.,\ Glacier\ County,\ Hydrologic\ Unit\ 10050001,\ NE^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}Sec.34,\ T.35\ N.,\ R.12\ W.,\ Glacier\ County,\ Hydrologic\ Unit\ 10050001,\ NE^{1}/_{4}NW^{1}/_{4}Sec.34,\ T.35\ N.,\ R.12\ W.,\ Glacier\ County,\ Hydrologic\ Unit\ 10050001,\ NE^{1}/_{4}NW^{1}/_{4}Sec.34,\ T.35\ N.,\ R.12\ W.,\ Glacier\ County,\ Hydrologic\ Unit\ 10050001,\ NE^{1}/_{4}NW^{1}/_{4}Sec.34,\ T.35\ N.,\ R.12\ W.,\ Glacier\ County,\ Hydrologic\ Unit\ 10050001,\ NE^{1}/_{4}NW^{1}/_{4}Sec.34,\ T.35\ N.,\ R.12\ W.,\ Glacier\ County,\ Hydrologic\ Unit\ 10050001,\ NE^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}Sec.34,\ T.35\ N.,\ R.12\ W.,\ Glacier\ County,\ Hydrologic\ Unit\ 10050001,\ NE^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}Sec.34,\ T.35\ N.,\ R.12\ W.,\ Glacier\ County,\ Hydrologic\ Unit\ 10050001,\ NE^{1}/_{4}NW^{1$ Blackfeet Indian Reservation, on right bank 0.4 mi upstream from bridge on FAS 464 ("Duck Lake Road"), 14.4 mi southeast of Babb, 15.2 mi northwest of Browning, and at river mile 17.3. DRAINAGE AREA.--70.4 mi². PERIOD OF RECORD.--May 1961 to current season (seasonal records only). REVISED RECORDS .-- W 1983: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 4,731.6 ft (NGVD 29). REMARKS.--Records good except those for estimated daily discharges, which are poor. Many small diversions for irrigation upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. #### DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|--|--------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|--|--------------------------------------|---|--|-----|-----| | 1
2
3
4
5 | | | e18
e19
e18
e16
e17 | 181
73
52
47
35 | 44
40
37
39
41 | 29
26
25
23
23 |
10
9.0
7.6
6.8
7.1 | 1.9
1.9
2.2
2.8
2.7 | 1.5
1.5
1.6
1.5 | 5.6
5.5
5.2
5.5
5.5 | | | | 6
7
8
9
10 | | | | 30
27
30
58
86 | 38
36
34
35
41 | 25
28
24
33
41 | 7.8
9.1
8.9
8.4
7.1 | 3.0
2.6
2.3
2.2
2.0 | 1.3
1.3
1.4
2.2
2.7 | 5.3
5.0
5.1
5.4
5.8 | | | | 11
12
13
14
15 | | | e13
e17
e50
e400
e250 | 81
72
82
91
72 | 43
38
36
32
30 | 40
33
27
23
21 | 6.3
5.6
4.7
4.1
3.9 | 1.6
1.4
1.3
1.2 | 2.5
2.4
2.6
2.6
3.1 | 5.8
5.9
6.2
6.5
6.3 | | | | 16
17
18
19
20 | | | 178
101
71
54
50 | 58
52
48
44
42 | 30
28
30
36
36 | 19
18
17
19
23 | 3.7
3.6
3.0
2.6
2.3 | 1.1
1.2
1.7
1.7 | 5.5
9.8
9.5
6.7
6.5 | 6.4
6.4
6.2
6.2
6.1 | | | | 21
22
23
24
25 | | | 50
44
65
52
41 | 41
43
48
54
57 | | 22
19
18
20
19 | | 2.8
1.5
1.5
1.8
1.5 | 6.2
5.9
5.7
5.3 | 6.1
6.1
5.9
6.1
6.2 | | | | 26
27
28
29
30
31 | | | 34
25
25
27
40
149 | 53
49
46
43
44 | 38
34
31
27
25
30 | 18
14
13
12
11 | 1.8
1.9
2.1
2.6
2.6
2.2 | 1.4
1.4
1.2
1.4
1.6 | 5.1
5.0
5.2
5.4
5.5 | 6.2
6.1
5.9
6.3
7.5
8.1 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 1887
60.9
400
10
3740 | 1739
58.0
181
27
3450 | 1049
33.8
44
25
2080 | 683
22.8
41
11
1350 | 143.7
4.64
10
1.6
285 | 55.2
1.78
3.0
1.1
109 | 122.2
4.07
9.8
1.3
242 | 186.4
6.01
8.1
5.0
370 | | | | STATIS | TICS OF MO | NTHLY MEA | | | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | 46.0
46.0
1963
46.0
1963 | 32.0
136
1972
5.76
2001 | 66.3
153
1969
20.7
1984 | 86.6
239
1967
10.2
1977 | 90.7
465
1975
0.89
1977 | 37.1
96.6
1975
0.000
1977 | 17.3
42.6
1993
0.38
2001 | 15.0
43.8
1993
0.22
2001 | 16.5
37.0
1986
5.07
1964 | | | | SUMMAR | Y STATISTI | cs | | FOR 200 | | | | | SONS 1961 | | | | | LOWEST
MAXIMU
MAXIMU | T DAILY MEA
DAILY MEA
M PEAK FLO
M PEAK STA
TANEOUS LO | AN
N
W
GE
W FLOW | | 400
1.1
a500
b6.39 | Mar 14
Aug 15
Mar 14
Mar 14 | | | 5590
0
c12000
7
0 | Jun 2
.00 Aug 2
Jun
.17 Feb 2
.00 Aug 2 | 20 1975
23 1973
8 1964
24 1986
23 1973 | | | a--About, occurred during ice breakup event. b--Backwater from ice. c--Gage height, 6.61 ft, from rating extended above 400 ft³/s, on basis of slope-area measurement of peak flow. e--Estimated. #### 06133000 MILK RIVER AT WESTERN CROSSING OF INTERNATIONAL BOUNDARY (International gaging station) LOCATION.--Lat 49°00'27", long 112°32'42" (NAD 27), in NE¹/₄ sec.1, T.1, R.20 W., fourth meridian, in Alberta, Hydrologic Unit 10050001, on left bank 0.8 mi north of international boundary, 22 mi upstream from North Milk River, 23 mi southwest of Milk River, Alberta, and at river mile 656.4. DRAINAGE AREA.--401 mi². PERIOD OF RECORD.--March 1931 to current season (seasonal records only). Prior to October 1961, published as South Fork Milk River near international boundary. REVISED RECORDS.--WSP 1389: 1934(M), 1935, 1936(M), 1937, 1942(M), 1947-48(M). W 1983: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 3,820 ft (NGVD 29). Prior to Aug. 9, 1948, and Aug. 9, 1948, to Oct. 31, 1958, water-stage recorders at sites 0.4 mi and 0.5 mi downstream, respectively, at different elevations. REMARKS.—Records good except those for estimated daily discharges, which are poor. Several diversions for irrigation upstream from station. Environment Canada satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States. ## DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|---|--------------------------------------|------------------------------------|------------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|--|-----|-----| | 1
2
3
4
5 | | | e16
e16
e16
e16
e16 | 256
333
200
133
122 | 127
119
108
113
117 | 52
54
51
46
41 | 14
12
11
9.7
8.8 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 6
7
8
9
10 | | | e15
e14
e14
e14
e15 | 112
104
100
98
126 | 127
129
120
107
108 | 40
38
42
52
53 | 7.7
6.2
5.2
4.3
3.8 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | | e18
e35
e88
e212
e494 | 182
192
213
248
256 | 125
127
109
101
90 | 86
140
98
77
51 | 3.0
1.8
0.71
0.32
0.14 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 16
17
18
19
20 | | | e989
e710
325
238
180 | 207
170
150
137
126 | 79
74
76
78
90 | 27 | 0.04
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 21
22
23
24
25 | | | 161
168
153
182
122 | 119
115
116
137
156 | 95
89
79
72
69 | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 26
27
28
29
30
31 | | | 116
97
95
81
78
107 | 179
161
142
133
128 | 73
87
80
68
59
53 | 26
25
22
19
16 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 4801
155
989
14
9520 | 4851
162
333
98
9620 | 2948
95.1
129
53
5850 | 1318
43.9
140
16
2610 | 88.71
2.86
14
0.00
176 | 0.00
0.000
0.00
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | | | | STATIST | | | N DATA | FOR SEASON: | 3 1931 - 2 | 2003 | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | 68.0
99.0
1963
37.0
1935 | 105
717
1972
1.95
2002 | 208
615
1969
41.5
1941 | 208
679
1967
13.3
1941 | 3.07 | 58.1
348
1951
0.008
1977 | 20.5
142
1951
0.000
1939 | 20.6
168
1951
0.000
1939 | 25.0
133
1952
0.000
1964 | | | | SUMMARY | STATISTIC | | | FOR 200 | 3 SEASON | | | | ONS 1931 | - 2003 | | | | LOWEST
MAXIMUM | DAILY MEADAILY MEAN PEAK FLOW PEAK STAG | AN
I
I
J
BE | | 989
0.00
a1000
b6.40 | Mar 16
Jul 17
Mar 16
Mar 15 | | | 5410
0
c7930
b12 | Jun .00 Jul Jun .55 Mar | 9 1964
31 1931
9 1964
18 1976 | | | a--About b--Backwater from ice. c--Gage height, 9.77 ft. e--Estimated. #### 06133500 NORTH FORK MILK RIVER ABOVE ST. MARY CANAL, NEAR BROWNING, MT (International gaging station) LOCATION.--Lat 48°57'48", long 113°03'43" (NAD 27), in NE¹/₄NE¹/₄SW¹/₄ sec.16, T.37 N., R.11 W., Glacier County, Hydrologic Unit 10050001, Blackfeet Indian Reservation, on left bank 2.3 mi upstream from outlet of canal, 2.3 mi south of international boundary, 29 mi north of Browning, and at river mile 58.3. DRAINAGE AREA.--59.0 mi². PERIOD OF RECORD.--May 1911 to July 1912 and June to July 1918 (published as "near Browning"), May 1919 to current season (seasonal records only). Monthly discharge only for some periods published in WSP 1309. REVISED RECORDS .-- W 1983: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 4,240 ft (NGVD 29). Prior to June 20, 1921, nonrecording gages at several sites within 1 mi of present site at different elevations. June 20, 1921 to Mar. 19, 1997 water-stage recorder at site 0.5 mile downstream from current site at elevation REMARKS.--Records fair except those for estimated daily discharges, which are poor. Many small diversions for irrigation upstream from station. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. COOPERATION .-- This is one of a number of stations which are maintained jointly by the United States and Canada. #### DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|---|--------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----|-----| | 1
2
3
4
5 | | | e20
e21
e19
e18
e19 | 36
31
30
29
29 | 29
28
27
29
29 |
22
21
21
20
20 | 14
15
15
15
15 | 13
12
13
13 | 11
11
11
11 | 14
15
15
14
14 | | | | 6
7
8
9
10 | | | e17
e15
e14
e12
e13 | 29
29
30
34
34 | 30
30
29
32
36 | 20
20
19
25
22 | 16
16
15
15 | 18
17
17
17
16 | 12
12
15
17
13 | 13
14
13
13 | | | | 11
12
13
14
15 | | | e15
e19
e50
e300
e200 | 33
32
40
42
35 | 38
31
28
26
26 | 33
23
19
18
17 | 14
14
13
13 | 15
15
15
14
14 | 13
15
16
13
14 | 13
14
13
14
14 | | | | 16
17
18
19
20 | | | e100
e50
43
36
37 | 32
31
30
29
28 | 25
24
26
28
28 | 17
16
16
17 | 13
13
12
12
12 | 15
15
15
14
13 | 16
18
17
13 | 15
14
13
13 | | | | 21
22
23
24
25 | | | 37
38
43
30
29 | 28
28
30
32
31 | 25
24
23
23
22 | 17
16
16
17
16 | 12
13
13
14
15 | 14
13
13
13
12 | 12
13
13
14
14 | 13
12
12
12
13 | | | | 26
27
28
29
30
31 | | | 29
28
28
29
38
47 | 31
32
31
30
30 | 27
23
22
21
21
22 | 15
15
15
14
14 | 16
15
15
14
13 | 12
12
12
13
12
12 | 12
13
13
14
13 | 13
12
13
e13
e13
e13 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | 946
31.5
42
28
1880 | 832
26.8
38
21
1650 | 558
18.6
33
14
1110 | 433
14.0
16
12
859 | 436
14.1
18
12
865 | 403
13.4
18
11
799 | 413
13.3
15
12
819 | | | | STATIST | ICS OF MON | NTHLY MEA | N DATA FO | R SEASONS | 1911 - 2 | 003* | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | | 23.4
72.1
1997
8.14
2001 | 38.0
167
1948
9.47
2002 | 34.3
164
1967
7.14
1941 | 30.4
147
1995
6.95
1988 | 19.8
101
1995
4.12
1985 | 16.6
65.5
1951
3.30
1940 | 18.4
86.8
1911
3.90
1940 | 17.8
55.0
1996
4.95
1941 | | | | SUMMARY | STATISTIC | | | | 3 SEASON | | | | ONS 1911 | - 2003 | | | | LOWEST : | DAILY MEA
DAILY MEAN
PEAK FLOW
PEAK STAG | AN
I
I
SE | | 300
11
a500
b9.34 | Mar 14
Sep 1
Mar 14
Mar 14 | | | 1320
1.
c3090
d10. | Apr 2
7 Sep 1
May
50 Mar 1 | 2 1953
7 1940
8 1967
9 1997 | | | ^{*--}During periods of operation (May 1911 to July 1912, June to July 1918, May 1919 to current season). a--About, occurred during ice breakup event. b--Backwater from ice. c--Gage height, 7.95 ft, from rating curve extended above 130 ft³/s, on basis of slope-area measurements at gage heights 7.55 ft and 7.95 ft, at previous site and datum. d--Backwater from ice, gage height, 9.07 ft from floodmarks at previous site, which was destroyed. e--Estimated. #### 06134000 NORTH MILK RIVER NEAR INTERNATIONAL BOUNDARY (International gaging station) LOCATION.--Lat 49°01'19", long 112°58'16" (NAD 27), in SW¹/₄NE¹/₄ sec.11, T.1, R.23 W., fourth meridian, in Alberta, Hydrologic Unit 10050001, on right bank 0.4 mi upstream from highway bridge, 1.6 mi north of international boundary, 2.8 mi east of Whiskey Gap, Alberta, 11 mi southeast of Kimball, Alberta, and at river mile 49.9. DRAINAGE AREA.--91.8 mi². Area at site used Apr. 12, 1930, to Aug. 15, 1962, 97.4 mi². PERIOD OF RECORD.--July 1909 to October 1912 (seasonal records only), January 1913 to October 1922, March 1923 to current season (seasonal records only). Records for November and December 1912, published in WSP 1309, have been found to be unreliable and should not be used. Published as "near Kimball, Alberta" 1913-16. Prior to February 1962, published as North Fork Milk River near international boundary. REVISED RECORDS.--WSP 1309: 1909-13, 1915(M), 1920(M), 1937(M). WSP 1559: 1948(M). WSP 1729: 1944(M). W 1983: Drainage area. See also PERIOD OF RECORD. GAGE.--Water-stage recorder. Elevation of gage is 4,112.16 ft, Canadian Geodetic Vertical Datum 1928. Prior to May 1913, nonrecording gage at site 2 mi downstream at different elevation. May 1, 1913, to Apr. 11, 1930, water-stage recorder 700 ft downstream at different elevation. Apr. 12, 1930, to Aug. 15, 1962, water-stage recorder 1,500 ft downstream at different elevation. REMARKS.--Records good except those for estimated daily discharges, which are poor. Since 1917, flow increased during irrigation season by water from St. Mary Canal (station number 05018500). Several small diversions for irrigation upstream from station. Water Survey of Canada satellite telemeter at station. COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States. #### DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | | | | | | D.11 | E I ME | VILLED | | | | | | |---|-----------|-----------|-------------------------------------|---|--|------------------------------------|-------------------------------------|--|------------------------------------|--------------------------------------|-----|-----| | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | | 1
2
3
4
5 | | | e21
e21
e20
e20
e20 | 41
34
35 | 576
572
561
572
569 | 636
632
629
625
625 | 625
625
625
625
625 | 600
600
604
604
593 | 403
399
381
349
341 | 14
14
14
14
14 | | | | 6
7
8
9
10 | | | e20
e19
e18
e16
e17 | 35
36
57
374
417 | 572
533
466
360
301 | 622
614
618
625
604 | 625
622
625
622
614 | 597
593
593
593
593 | 314
280
280
279
275 | 14
13
13
14
14 | | | | 11
12
13
14
15 | | | e18
e21
e106
e353
e247 | 35
36
57
374
417
431
410
413
427
417 | 290
274
306
336
367 | 611
583
600
614
618 | 614
618
618
614
611 | 590
590
590
586
590 | 275
266
216
146
135 | 14
14
14
14
14 | | | | 17
18
19
20 | | | e67
e62
e58
e52 | 403
403
403
403 | 392
388
403
406
406 | 622
614
622
636
643 | 614
614
614
611 | 593
586
590
586
586 | 138
138
137
111
50 | 15
14
13
13 | | | | 21
22
23
24
25 | | | e48
e49
e49
e42 | 403
427
448
459 | 406
406
431
516
547 | 650
643
646
646
639 | 607
607
604
604 | 561
537
530
523
526 | 30
25
24
19
21 | 13
13
13
13 | | | | 26
27
28
29
30
31 | | | e38
36
36
36
46
64 | 463
470
487
540
576 | 561
565
593
629
625
636 | 632
629
625
625
625 | 607
604
600
600
600 | 501
445
417
413
410
406 | 16
15
15
15 | 13
13
e14
e13
e13 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 1781
57.5
353
16
3530 | 9967
332
576
34
19770 | 14565
470
636
274
28890 | 18753 | 19009
613
625
600
37700 | 17126
552
604
406
33970 | 5108
170
403
15
10130 | 420
13.5
15
13
833 | | | | STATISTIC | S OF MONT | THLY MEAN | DATA I | FOR SEASON | IS 1917 - | 2003 | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | | 66.4
402
1981
9.67
2002 | 194
633
1991
23.6
1940 | 422
732
2001
38.6
1918 | 521
745
1976
43.5
1952 | 559
727
1936
84.3
2002 | 529
721
1969
16.0
1982 | 308
702
2002
5.57
1988 | 59.0
524
1951
6.06
1942 | | | | SUMMARY S | TATISTICS | 3 | | FOR 2003 | SEASON | | | SEA | SONS 1917 | - 2003 | | | | HIGHEST DA
LOWEST DA
MAXIMUM PA
MAXIMUM PA | | | | 650
13
a657
b4.73 | Jun 21
Oct 7
Jun 22
Mar 14 | | | 2170
0
c3670
6 | Jun
.00 Mar
Jun
.89 Jun | 7 1995
1 1940
6 1995
6 1995 | | | | aGage h | aight 3 | 22 ft | | | | | | | | | | | a--Gage height, 3.22 ft. b--Backwater from ice. c--From rating curve extended above 1,500 ft^3/s . e--Estimated. #### 06134500 MILK RIVER AT MILK RIVER, ALBERTA (International gaging station) LOCATION.--Lat 49°08'37", long 112°04'44" (NAD 27), in NE¹/₄ sec.21, T.2, R.16 W., fourth meridian, in Alberta, Hydrologic Unit 10050002, on right bank 5 ft downstream from highway bridge at Milk River, Alberta, 22 mi downstream from North Milk River, and at river mile 613.4. DRAINAGE AREA.--1,050 mi². PERIOD OF RECORD.--June 1909 to October 1910 (no winter records), April 1911 to current year. Monthly discharge only for June 1909, published in WSP 1309. REVISED RECORDS.--WSP 1309: 1912. WSP 1599: 1916, 1927(M), 1947(M). W 1983: Drainage area. W 1984: 1983 (M). GAGE.--Water-stage recorder. Elevation of gage is 3,402.78 ft, Canadian Geodetic Vertical Datum 1928. Prior to June 17, 1919, nonrecording gages, and June 17, 1919, to Nov. 2, 1921, water-stage recorder at several sites 300 ft upstream at elevation 0.61 ft higher. Nov. 3, 1921, to Aug. 28, 1947, water-stage recorder at site 60 ft upstream at present elevation. Aug. 29, 1947, to Nov. 10, 1976, water-stage recorder located 700 ft downstream on left bank at present elevation. REMARKS.--Records good except those for estimated daily discharges, which are poor. Since 1917, flow increased during irrigation season by water from St. Mary Canal (station number 05018500). Several diversions for irrigation upstream from station. Environment Canada
satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States. ### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------|------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | | | | | | | | | | | | | | | 1 | 639 | e88 | e58 | e66 | e59 | e37 | 219 | 766 | 727 | 639 | 600 | 388 | | 2 3 | 629 | e94
e108 | e55 | e67 | e59
e58 | e37 | 448
410 | 798
788 | 727
735 | 625
625 | 597
604 | 385
381 | | 4 | 622
600 | e108
e120 | e51
e54 | e68
e70 | e58 | e36
e36 | 260 | 788
784 | 735 | 625 | 611 | 367 | | 5 | 540 | e120
e126 | e54
e55 | e70
e70 | e58
e57 | e35 | 212 | 742 | 720 | 632 | 607 | 334 | | 5 | 340 | 6120 | 633 | e70 | e57 | 633 | 212 | 742 | 710 | 032 | 607 | 334 | | 6 | 463 | 137 | e54 | e70 | e53 | e34 | 195 | 742 | 710 | 636 | 600 | 329 | | 7 | 406 | 136 | e62 | e69 | e53 | e33 | 177 | 756 | 706 | 636 | 597 | 311 | | 8 | 388 | e132 | 72 | e67 | e56 | e32 | 164 | 717 | 699 | 632 | 597 | 280 | | 9 | 346 | e120 | 76 | e65 | e58 | e39 | 152 | 643 | 720 | 625 | 593 | 278 | | 10 | 266 | e113 | 75 | e63 | e60 | e49 | 427 | 540 | 720 | 622 | 590 | 276 | | 11 | 222 | e117 | 76 | e59 | e59 | e54 | 614 | 473 | 706 | 618 | 586 | 273 | | 12 | 176 | e125 | 72 | e47 | e60 | e67 | 664 | 473 | 745 | 622 | 590 | 284 | | 13 | 139 | e120 | 69 | e37 | e58 | e85 | 678 | 441 | 738 | 614 | 586 | 284 | | 14 | 118 | e106 | 69 | e37 | e53 | e424 | 713 | 441 | 720 | 614 | 583 | 248 | | 15 | 114 | e102 | e67 | e42 | e55 | e1410 | 752 | 463 | 706 | 614 | 583 | 185 | | 16 | 111 | e99 | e60 | e49 | e56 | e2650 | 731 | 466 | 682 | 611 | 583 | 165 | | 17 | 108 | e88 | e54 | e49 | e57 | e1410 | 653 | 484 | 671 | 604 | 590 | 168 | | 18 | 100 | e84 | e47 | e48 | e54 | e699 | 600 | 491 | 660 | 600 | 583 | 163 | | 19 | 101 | e99 | e39 | e48 | e55 | 600 | 569 | 501 | 660 | 604 | 579 | 156 | | 20 | 95 | 107 | e34 | e42 | e54 | 470 | 544 | 509 | 685 | 604 | 583 | 151 | | 21 | 94 | 85 | e32 | e35 | e50 | 388 | 530 | 519 | 678 | 607 | 583 | 113 | | 22 | 93 | 98 | e34 | e34 | e45 | 360 | 530 | 516 | 682 | 600 | 565 | 76 | | 23 | e89 | e94 | e37 | e35 | e46 | 328 | 569 | 505 | 678 | 604 | 540 | 58 | | 24 | e77 | e87 | e49 | e37 | e42 | 322 | 590 | 523 | 682 | 600 | 523 | 48 | | 25 | e72 | e76 | e59 | e46 | e43 | 309 | 625 | 607 | 682 | 604 | 512 | 43 | | 26 | e71 | e95 | e55 | e47 | e38 | 244 | 646 | 653 | 667 | 607 | 512 | 38 | | 27 | e70 | e98 | e54 | e46 | e37 | 224 | 625 | 650 | 667 | 611 | 484 | 34 | | 28 | e72 | e93 | e57 | e46 | e37 | 196 | 597 | 671 | 657 | 607 | 427 | 33 | | 29 | e78 | e81 | e60 | e51 | | 185 | 632 | 692 | 653 | 604 | 403 | 30 | | 30 | e82 | e66 | e63 | e54 | | 164 | 703 | 713 | 643 | 607 | 392 | 27 | | 31 | e85 | | e65 | e57 | | 160 | | 710 | | 600 | 396 | | | TOTAL | 7066 | 3094 | 1764 | 1621 | 1470 | 11117 | 15229 | 18777 | 20836 | 19053 | 17179 | 5906 | | MEAN | 228 | 103 | 56.9 | 52.3 | 52.5 | 359 | 508 | 606 | 695 | 615 | 554 | 197 | | MAX | 639 | 137 | 76 | 70 | 60 | 2650 | 752 | 798 | 745 | 639 | 611 | 388 | | MIN | 70 | 66 | 32 | 34 | 37 | 32 | 152 | 441 | 643 | 600 | 392 | 27 | | AC-FT | 14020 | 6140 | 3500 | 3220 | 2920 | 22050 | 30210 | 37240 | 41330 | 37790 | 34070 | 11710 | | STATIS | TICS OF M | ONTHLY ME | AN DATA F | OR WATER | YEARS 191 | 7 - 2003, | , BY WATER | YEAR (WY | *) * | | | | | MEAN | 103 | 56.9 | 34.0 | 30.5 | 61.6 | 230 | 496 | 659 | 720 | 616 | 552 | 351 | | MAX | 555 | 216 | 133 | 268 | 616 | 1025 | 1384 | 1179 | 1633 | 965 | 795 | 713 | | (WY) | 1951 | 1952 | 1952 | 1928 | 1986 | 1972 | 1917 | 1967 | 1953 | 1951 | 1976 | 1959 | | MIN | 7.83 | 8.74 | 2.06 | 0.000 | 0.000 | 3.44 | 94.5 | 236 | 162 | 192 | 29.2 | 3.65 | | (WY) | 1989 | 2002 | 1923 | 1923 | 1922 | 1922 | 1945 | 1918 | 1952 | 2002 | 1982 | 2001 | #### 06134500 MILK RIVER AT MILK RIVER, ALBERTA--Continued | SUMMARY STATISTICS | FOR 2002 CALENDAR YEAR | FOR 2003 WATER YEAR | WATER YEARS 1917 - 2003* | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 153912.92 | 123112 | | | ANNUAL MEAN | 422 | 337 | 327 | | HIGHEST ANNUAL MEAN | | | 489 1953 | | LOWEST ANNUAL MEAN | | | 157 1921 | | HIGHEST DAILY MEAN | 7840 Jun 11 | 2650 Mar 16 | 7840 Jun 11 2002 | | LOWEST DAILY MEAN | 0.92 Jan 1 | 27 Sep 30 | 0.00 Jan 19 1922 | | ANNUAL SEVEN-DAY MINIMUM | 3.2 Jan 25 | 35 Mar 2 | 0.00 Jan 19 1922 | | MAXIMUM PEAK FLOW | | a3000 Mar 16 | 9850 Feb 25 1986 | | MAXIMUM PEAK STAGE | | b7.64 Mar 14 | c12.46 Feb 25 1986 | | ANNUAL RUNOFF (AC-FT) | 305300 | 244200 | 236800 | | 10 PERCENT EXCEEDS | 858 | 682 | 741 | | 50 PERCENT EXCEEDS | 126 | 248 | 158 | | 90 PERCENT EXCEEDS | 4.9 | 46 | 13 | ^{*--}Flow increased during irrigation season by water from St. Mary Canal since 1917. a--About. b--Backwater from ice. c--From floodmarks, backwater from ice. e--Estimated. ### 06134700 VERDIGRIS COULEE NEAR THE MOUTH, NEAR MILK RIVER, ALBERTA (International gaging station) LOCATION.--Lat 49°06'39", long 111°45'31" (NAD 27), in NW¹/₄ sec.12, T.2, R.14 W., fourth meridian, in Alberta, Hydrologic Unit 10050002, on left bank, 0.6 mi upstream from mouth, 5 mi downstream from culvert on provincial highway 501, and 15 mi east of Milk River, Alberta. DRAINAGE AREA.--137 mi², of which 130 mi² is probably noncontributing. PERIOD OF RECORD.--May 1985 to current season (seasonal records only). GAGE.--Water-stage recorder. Elevation of gage is 3,040 ft (NGVD 29). REMARKS.--Records fair except those for estimated daily discharges, which are poor. Nearly all flow is the result of interbasin diversion from St. Mary River into Weston Lake 25 miles upstream. Environment Canada satellite telemeter at station. COOPERATION .-- This is one of a number of stations which are maintained jointly by the United States and Canada. #### DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|--------------------------------------|-------------|---|---------------------------------------|---------------------------------------|---------------------------------------|--|---------------------------------------|---------------------------------------|---|-----|-----| | 1
2
3
4
5 | | | e0.00
e0.00
e0.00
e0.00 | 0.00
0.00
0.00
0.04
0.04 | 0.11
0.04
0.00
0.39 | 1.6
2.1
2.4
2.4
2.9 | 4.9
5.1
5.4
5.4
5.3 | 2.2
2.1
2.3
2.3
2.3 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 6
7
8
9 | | | e0.00
e0.00
e0.00
e0.00 | 0.04
0.04
0.00
0.00
0.00 | 5.7
5.9
3.6
1.6 | 3.0
3.2
3.1
3.7
4.2 | 5.2
5.1
4.8
4.9
4.8 | 1.5
1.5
1.5
1.7 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | | e0.00
e0.00
e0.00
e0.42
e0.99 | 0.00
0.00
0.14
0.25
0.18 | 0.49
0.28
0.18
0.11
0.04 | 4.2
4.3
4.4
4.6
4.8 | 4.6
4.3
4.5
4.7 | 1.1
1.6
1.1
0.32
0.14 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 16
17
18
19
20 | | | e0.71
0.53
0.32
0.11
0.07 | 0.11
0.07
0.04
0.04
0.00 | 0.00
0.00
0.00
0.00
0.00 | 4.9
4.8
4.3
3.7
5.4 | 4.2
4.0
3.8
3.6
3.7 | 0.07
0.04
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 21
22
23
24
25 | | | 0.04
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 5.9
6.0
6.0
6.0 | 3.5
3.4
3.0
3.0
3.2 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 26
27
28
29
30
31 | | | 0.00
0.00
0.00
0.00
0.00 | 0.11
0.07
0.04
0.46
1.2 | 0.00
0.00
0.57
1.1
1.5 | 5.8
5.8
5.7
5.5
5.0 | 3.1
2.8
2.8
2.6
2.3
1.9 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
e0.00
e0.00
e0.00 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 3.19
0.10
0.99
0.00
6.3 | 2.87
0.096
1.2
0.00
5.7 | 25.21
0.81
5.9
0.00
50 | 131.6
4.39
6.0
1.6
261 | 124.5
4.02
5.4
1.9
247 | 23.17
0.75
2.3
0.00
46 | 0.00
0.000
0.00
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | | | | | CS OF MON | | | | NS 1985 - 2 | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | | 5.83
43.9
1996
0.000
2001 | 6.05
29.6
1996
0.048
2002 | 6.59
20.8
1994
0.000
1998 | 7.47
18.1
1989
0.000
2000 | 5.17
16.4
1991
0.000
1999 | 5.96
24.1
1993
0.000
1998 | 6.87
25.5
1985
0.000
1999 | 6.25
26.2
1986
0.000
2000 | | | | SUMMARY | STATISTIC | !S | | FOR 200 | 3 SEASON | | | | SONS 1985 | - 2003 | | | | LOWEST D | DAILY MEAN
PEAK FLOW
PEAK STAG | N
I
E | | 6.0
0.00
15
4.04 | Jun 22
many days
May 6
May 6 | 3 | | 264
0
a280
6 | Mar
.00 Nov
Mar
.51 Mar | 11 1996
19 1985
11 1996
2 1994 | | | a--About, gage height not determined (backwater from ice). e--Estimated. #### 06135000 MILK RIVER AT EASTERN CROSSING OF INTERNATIONAL BOUNDARY
(International gaging station) $LOCATION.--Lat\ 48^{\circ}58'30'', long\ 110^{\circ}25'19''\ (NAD\ 27), in\ NW^{1}/_{4}SW^{1}/_{4}SE^{1}/_{4}\ sec.9,\ T.37\ N.,\ R.9\ E.,\ Hill\ County,\ Hydrologic\ Unit\ 10050002,\ on\ left\ NW^{1}/_{4}SW^{1}/_{4$ bank 1.6 mi south of international boundary, 1.7 mi upstream from Lost River, 10 mi northwest of Simpson, 35.5 mi north of Rudyard, and at river mile 479.6. DRAINAGE AREA.--2.506 mi², revised. PERIOD OF RECORD.--August 1909 to current season (seasonal records only). A few winter records were collected and are on file in the Helena District office. Monthly discharge only for April 1912, published in WSP 1309. REVISED RECORDS.--WSP 1086: 1927, 1935. WSP 1559: 1920(M), 1922(M), 1926, 1928(M), 1929, 1930(M), 1932(M). WSP 1729: 1912-13, 1921-22, 1929(M). WRD MT-94-1(M). W 1983: Drainage area. WRD MT-98-1: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 2,660 ft (NGVD 29). Prior to Mar. 1, 1998, water-stage recorder or nonrecording gages at several sites within 15 mi upstream at different elevation. REMARKS.--Records good except those for Mar. 18 to Apr. 3, which are fair and estimated daily discharges, which are poor. Since 1917, flow increased during irrigation season by water from St. Mary Canal (station number 05018500). Many diversions for irrigation upstream from station. Bureau of Reclamation satellite telemeter at station. COOPERATION .-- This is one of a number of stations which are maintained jointly by the United States and Canada. #### DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAILT MEAN VALUES | | | | | | | | | | | | | |-------------------|--------------|---------|--------------|---------------------------|-----------|-----------|------------|----------|-------------------------|---------|-----|-----| | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | | 1 | | | e40 | 236 | 786 | 664 | 702 | 559 | 360 | 58 | | | | 2 | | | e38 | 206 | 818 | 679 | 680 | 541 | 351 | 54 | | | | 3 | | | e38 | 204 | 833 | 675 | 672 | 547 | 351 | 52 | | | | 4 | | | e36 | 245 | 858 | 684 | 646 | 569 | 352 | 50 | | | | 5 | | | e36 | 546 | 1020 | 697 | 614 | 583 | 351 | 48 | | | | 3 | | | 650 | 310 | 1020 | 057 | 011 | 303 | 331 | 10 | | | | 6 | | | e34 | 477 | 810 | 705 | 608 | 576 | 347 | 46 | | | | 7 | | | e34 | 343 | 746 | 680 | 611 | 570 | 337 | 43 | | | | 8 | | | e32 | 293 | 707 | 659 | 617 | 560 | 311 | 40 | | | | 9 | | | e30 | 274 | 682 | 661 | 616 | 546 | 301 | 37 | | | | 10 | | | e32 | 243 | 666 | 774 | 609 | 542 | 298 | 34 | | | | 11 | | | e36 | 213 | 602 | 659 | 581 | 542 | 263 | 32 | | | | 12 | | | 240 | 197 | 543 | 686 | 567 | 554 | 245 | 31 | | | | 13 | | | 045 | 373 | 500 | 685 | 565 | 551 | 255 | 30 | | | | 14 | | | 643 | 750 | 490 | 697 | 548 | 520 | 247 | 30 | | | | | | | -100 | | | | | | | | | | | 15 | | | 6100 | 898 | 479 | 739 | 531 | 506 | 264 | 33 | | | | 16 | | | e700 | 821 | 481 | 716 | 517 | 503 | 279 | 32 | | | | 17 | | | e4000 | 850 | 481 | 691 | 518 | 498 | 275 | 31 | | | | 18 | | | 2300 | 859 | 494 | 669 | 531 | 514 | 250 | 30 | | | | 19 | | | 1450 | 794 | 510 | 631 | 530 | 514 | 203 | 29 | | | | 20 | | | 920 | 742 | 538 | 705 | 525 | 522 | 182 | 27 | | | | 21 | | | 739 | 699 | 523 | 789 | 520 | 515 | 175 | 26 | | | | 22 | | | 606 | 680 | 519 | 648 | 528 | 527 | 166 | 25 | | | | 23 | | | 551 | 658 | 513 | 663 | 510 | 537 | 157 | 24 | | | | 24 | | | 105 | 648 | 519 | 705 | 517 | 545 | 152 | 23 | | | | 25 | | | 453 | 642 | 492 | 703 | 527 | 511 | 125 | 23 | | | | 23 | | | 401 | 042 | 492 | 720 | 527 | 211 | 125 | 23 | | | | 26 | | | 449 | 676 | 480 | 733 | 538 | 480 | 104 | 23 | | | | 27 | | | 468 | 759 | 497 | 739 | 562 | 472 | 88 | 22 | | | | 28 | | | 451 | 834 | 585 | 752 | 576 | 473 | 75 | e20 | | | | 29 | | | 384 | 804 | 622 | 732 | 578 | 479 | 68 | e18 | | | | 30 | | | 333 | 777 | 624 | 715 | 578 | 448 | 62 | e15 | | | | 31 | | | 268 | | 658 | | 576 | 399 | | e12 | | | | TOTAL | | | 15106 | 16741 | 19076 | 20952 | 17798 | 16203 | 6994 | 998 | | | | MEAN | | | 15196
490 | 558 | 615 | 698 | 1//98 | 523 | 233 | 32.2 | | | | MAX | | | 4000 | 898 | 1020 | 700 | 574
702 | 583 | 360 | 58 | | | | | | | | | | | | | | | | | | MIN | | | 30 | 197 | 479 | | 510 | 399 | 62 | 12 | | | | AC-FT | | | 30140 | 33210 | 37840 | 41560 | 35300 | 32140 | 13870 | 1980 | | | | STATIST | TICS OF MONT | THLY ME | AN DATA 1 | FOR SEASON | rs 1917 - | 2003* | | | | | | | | MEAN | | | 374 | 566 | 712 | 781 | 618 | 543 | 381 | 128 | | | | MAX | | | 1522 | 1691 | 1943 | 2561 | 1046 | 886 | 740 | 566 | | | | (WY) | | | 1978 | 1965 | 1927 | 2002 | 1951 | 1927 | 1972 | 1990 | | | | MIN | | | 9.88 | 80.1 | 257 | 200 | 262 | 77.4 | 2.21 | 0.16 | | | | (WY) | | | 9.88 | 1945 | 1918 | 1952 | 1977 | 1982 | 2001 | 2002 | | | | SUMMARY | STATISTICS | 3 | | | | SON | | SEAS | ONS 1917 | - 2003* | | | | нтспьса | C DAILY MEAN | J | | 400
1
a500
b10.6 | 0 Mar | 17 | | 1 24 0 0 | Jun .00 Feb Jun .03 Mar | 12 2002 | | | | | DAILY MEAN | • | | 1 | .2 Oct | 1 /
21 | | 12400 | 00 Ech | 1 1022 | | | | | 1 PEAK FLOW | | | 2 5 0 0 | 0 Mar | 16 | | Q14400 | .00 FED | 12 2002 | | | | | | , | | a300 | 3 Mar | 16 | | C144UU | O2 Max | 12 1006 | | | | MAYTMON | 1 PEAK STAGE | 9 | | טייות | o Mar | 10 | | מומ | .us Mar | 13 1330 | | | ^{*--}Flow increased during irrigation season by water from St. Mary Canal since 1917. a--About. b--Backwater from ice. c--Gage height, 10.78 ft, from floodmarks. e--Estimated. #### 06137400 BIG SANDY CREEK AT RESERVATION BOUNDARY, NEAR ROCKY BOY, MT LOCATION.--Lat 48°10'27", long 109°49'23" (NAD 27), in SW¹/4NW¹/4NE¹/4 sec. 20, T.28 N., R.15 E., Chouteau County, Hydrologic Unit 10050005, on left bank 0.9 mi downstream from Muddy Creek, 6.0 mi south of Rocky Boy Agency, and at river mile 90.6. DRAINAGE AREA.--24.7 mi². PERIOD OF RECORD.--May 1982 to current year. GAGE.--Water-stage recorder. Elevation of gage is 3,830 ft (NGVD 29). Prior to Sept. 6, 2001, water-stage recorder at site 0.1 mi downstream at different elevation. REMARKS.--Records good except those for estimated daily discharges, which are poor. No known regulation or diversions upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperatures and specific conductance were made during the year. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES V OCT NOV DEC JAN EEB MAR ADD MAY JUN JUL AUG SED | | | | | | | | | | | | |--|--|--|--|--|--|--|--------------------------------------|--|--------------------------------------|--------------------------------------|---|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4.0
3.2
3.0
3.2
3.3 | e1.7
e2.0
e2.1
2.0
e2.2 | e2.4
2.3
e2.0
e1.4
e1.5 | e1.6
e1.7
e1.8
2.0
1.8 | 1.4
e1.4
e1.3
e1.3 | e1.0
e1.1
e1.1
e1.0
e1.0 | 11
7.1
5.3
4.6
4.5 | 6.0
5.7
5.5
7.3
8.5 | 5.8
5.9
6.7
6.6
7.3 | 3.6
3.4
3.3
3.2
3.1 | 1.3
1.2
1.4
1.3 | 0.73
0.77
0.75
0.82
0.76 | | 6
7
8
9
10 | 3.1
3.3
5.3
3.7
3.1 | 2.2
2.4
3.0
5.6
3.6 | e1.9
e2.1
e2.2
2.4
2.3 | 1.6
1.7
1.6
e1.3
e1.2 | e1.3
e1.3
e1.2
e1.2 | e1.0
e1.0
e0.90
e0.90
e1.0 | 4.8
4.0
5.0
7.6
8.1 | 7.6
8.0
8.1
9.9 | 7.4
6.7
6.1
7.2
6.9 |
3.0
3.0
4.0
4.4
3.3 | 1.0
1.2
1.2
1.2 | 0.74
0.77
0.76
0.75
0.82 | | 11
12
13
14
15 | 3.0
3.0
3.1
3.0
3.0 | 3.2
2.9
3.0
3.1
2.9 | 2.1
e2.0
2.0
2.1
2.3 | e1.3
e1.3
e1.4
e1.4 | e1.2
e1.1
e1.1
e1.2
e1.2 | e1.2
e1.6
e4.0
e50
e40 | 7.3
7.7
7.8
11
15 | 8.6
8.1
8.5
8.0
7.7 | 7.0
6.8
6.0
6.0
5.4 | 3.0
2.6
2.4
2.4 | 0.94
0.95
1.00
0.92
0.83 | 0.91
1.4
1.8
1.5 | | 16
17
18
19
20 | 2.8
3.2
2.9
2.6
2.9 | 3.3
2.8
3.0
3.2
3.1 | 2.3
2.2
e2.1
e1.6
e1.3 | 1.5
1.5
1.5
1.5 | e1.2
e1.3
e1.3
e1.4
e1.3 | e26
e20
14
12
13 | 16
11
11
12
8.5 | 9.9
8.3
7.8
7.8
7.3 | 5.9
5.7
4.7
4.7
7.4 | 2.2
2.1
1.9
1.8
1.8 | 0.82
0.92
0.99
0.86
0.88 | 1.6
2.0
1.8
1.7 | | 21
22
23
24
25 | 3.0
2.5
2.2
2.1
2.3 | 3.2
4.0
3.7
e3.0
e2.8 | e1.1
e1.0
e1.1
e1.2
e1.4 | e1.2
e1.1
e1.3
1.5
1.3 | e1.1
e0.80
e0.60
e0.65
e0.70 | 11
14
16
9.4
7.3 | 8.1
7.8
7.6
7.7
7.4 | 7.2
7.0
6.8
6.7
6.4 | 6.1
5.4
5.4
5.1
4.8 | 1.7
1.7
1.6
1.6 | 0.86
0.88
0.78
0.93
0.77 | 1.7
1.7
1.5
1.5 | | 26
27
28
29
30
31 | 2.2
2.3
2.3
2.2
e1.8
e1.6 | e2.9 3.0 3.0 2.7 2.5 | e1.9
e1.7
e1.7
e1.6
e1.5
e1.6 | 1.4
1.8
1.7
1.6
1.5 | e0.75
e0.80
e0.90
 | 5.8
5.2
5.0
5.3
8.5 | 7.3
6.7
6.3
6.1
6.1 | 7.4
6.7
6.2
5.9
5.7 | 4.6
4.5
5.5
4.8
4.0 | 1.7
1.5
1.4
1.5
1.4 | 0.61
0.76
0.76
0.80
0.86
0.89 | 1.4
1.4
1.5
1.6 | | TOTAL
MEAN
MAX
MIN
AC-FT | 89.2
2.88
5.3
1.6
177 | 88.1
2.94
5.6
1.7
175 | 56.3
1.82
2.4
1.0
112 | 46.5
1.50
2.0
1.1
92 | 31.40
1.12
1.4
0.60
62 | 294.30
9.49
50
0.90
584 | 240.4
8.01
16
4.0
477 | 230.3
7.43
10
5.5
457 | 176.4
5.88
7.4
4.0
350 | 73.8
2.38
4.4
1.3
146 | 30.11
0.97
1.4
0.61
60 | 38.98
1.30
2.0
0.73
77 | | | | | | | | | , BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 5.33
14.0
1986
0.66
2002 | 4.68
11.1
1994
0.92
2002 | 4.17
11.8
1996
0.81
2002 | 3.54
9.44
1996
0.71
2002 | 4.30
21.7
1996
0.76
2002 | 6.51
28.0
1996
0.90
2002 | 10.6
32.6
1994
3.67
2002 | 13.7
68.3
1986
1.84
1988 | 16.5
50.0
1982
1.42
1988 | 12.7
53.7
1993
1.01
2001 | 6.36
29.3
1993
0.50
1988 | 5.28
18.8
1993
0.65
2001 | | SUMMARY | STATIST | ICS | FOR | 2002 CALE | NDAR YEAF | R I | FOR 2003 W | ATER YEAR | | WATER YEAR | RS 1982 - | 2003 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MINSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL ME DAILY ME DAILY ME SEVEN-DAY I PEAK FLO I PEAK STA TANEOUS LO | EAN EAN AN Y MINIMUM OW AGE DW FLOW AC-FT) EDS | | 1406.0
3.8
31
0.5
0.6
2790
8.7
2.6
0.7 | Jun 13
8 Jan 33
2 Jan 27 | L
L | 0.60
0.74
a75 | Mar 14
0 Feb 23
4 Feb 22
Mar 14
2 Mar 14 | | 0.4
0.4
0510
6.0 | Jun 27
2 Aug 10
5 Aug 9
Jun 27
7 Jun 27
3 Jun 26 | 1988
1988
1998
1998 | a--About. b--Backwater from ice. c-On basis of slope-area measurement of peak flow. d--Gage height, 2.32 ft, site and datum then in use. e--Estimated. #### 06139500 BIG SANDY CREEK NEAR HAVRE, MT LOCATION.--Lat 48°31'36", long 109°50'27" (NAD 27), in SW¹/₄SW¹/₄SW¹/₄sec.18, T.32 N., R.15 E., Hill County, Hydrologic Unit 10050005, on right bank, 6 mi upstream from mouth, 7.7 mi west southwest of Havre post office, and 22 mi downstream from Sage Creek. DRAINAGE AREA.--1,805 mi². PERIOD OF RECORD.--February 1946 to November 1953 (monthly discharge only for February 1946, published in WSP 1309 as "Big Sandy Creek near Assinniboine"), annual maximum, water years 1955-67 (published as "Big Sandy Creek near Assinniboine"), and May 1984 to current year (seasonal records only). REVISED RECORDS.--WSP 1729: Drainage area. GAGE.--Water-stage recorder and concrete control. Elevation of gage is 2,510 ft (NGVD 29). REMARKS.--Records good. Diversions for irrigation of about 1,000 acres upstream from station. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. EXTREMES OUTSIDE PERIOD OF RECORD .-- Flood of Mar. 30, 1978, reached a stage of 15.15 ft, from floodmarks, discharge, about 6,000 ft3/s. ## DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|---|---------------------------------------|-------------------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--|--| | 1
2
3
4
5 | | | | 14
15
16
14
14 | 0.46
0.35
0.24
0.32
0.97 | 7.0
7.6
8.4
8.9
9.3 | 0.17
0.12
0.09
0.08
0.02 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | | 6
7
8
9
10 | | | | 13
12
11
10
9.1 | 1.4
1.8
1.9
1.8
2.7 | 10
11
15
12
5.9 | 0.00
0.00
0.00
0.02
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | | 11
12
13
14
15 | | | | 8.4
6.8
4.2
3.9
4.9 | 1.9
1.0
0.93
0.50
0.41 | 4.6
3.3
2.3
2.2
2.0 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | | 16
17
18
19
20 | | | | 5.1
3.8
3.6
3.2
2.4 | 7.0
6.6
7.1
8.2
9.5 | 1.8
1.4
1.1
0.84
0.78 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | | 21
22
23
24
25 | | | | 1.8
1.3
0.86
0.64
0.59 | 9.6
9.2
9.1
8.9
8.9 | 0.79
0.47
0.33
0.24
0.18 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | | 26
27
28
29
30
31 | | | | 0.67
0.52
0.48
0.36
0.47 | 8.7
8.2
7.9
7.7
6.9
6.8 | 0.34
0.41
0.43
0.33
0.26 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | 182.09
6.07
16
0.36
361 | 146.98
4.74
9.6
0.24
292 | 119.20
3.97
15
0.18
236 | 0.50
0.016
0.17
0.00
1.0 | 0.00
0.000
0.00
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | | | | | STATIST | rics of Mo | ONTHLY MEAD | N DATA I | FOR WATER | YEARS 194 | 16 - 1953 | AND SEASO | NS 1954 - | 2003* | | | | | MEAN
MAX
(WY)
MIN
(WY) | 0.48
3.39
1947
0.000
1948 | 6.68
19.5
1947
0.000
1948 | 61.3
343
1947
0.63
1949 | 62.6
1218
1952
0.16
2002 | 14.3
108
1986
0.000
1949 | 26.2
222
1953
0.000
1949 | 18.0
137
1993
0.000
1946 | 5.60
85.9
1993
0.000
1946 | 4.27
54.4
1993
0.000
1946 | 7.96
54.5
1987
0.000
1947 | 0.045
0.31
1953
0.000
1947 | 0.020
0.14
1953
0.000
1947 | | SUMMARY | STATIST: | ICS | | FOR 7 | THE 2003 S | SEASON | | SEAS | SONS 1946 | - 2003* | | | | LOWEST
MAXIMUN | T DAILY ME
DAILY MEA
1 PEAK FLO
1 PEAK STA | AN
WC | | 16
0.0
140
a4.5 | Apr 3
00 many 6
Mar 16
73 Mar 16 | lays
5 | | 5100
5570
a14 | 0.00 Feb | 3 1952
1 1946
3 1952
3 1952 | | | $[\]star$ --During period of operation. a--From floodmarks. #### 06139900 BEAVER CREEK AT RESERVATION BOUNDARY, NEAR ROCKY BOY, MT LOCATION.--Lat 48°13'17", long 109°39'01" (NAD 27), in NW¹/4NW¹/4NE¹/4 sec. 3, T.28 N., R.16 E., Hill County, Hydrologic Unit 10050004, in Rocky Boy's Indian Reservation, on left bank, 20 ft upstream from reservation boundary, 0.4 mi upstream from Blackie Coulee, 6.7 mi southeast of Rocky Boy, 25 mi south of Havre, and at river mile 39.9. DRAINAGE AREA.--16.1 mi². PERIOD OF RECORD.--July 2001 to current year. Miscellaneous measurements and water-quality samples were obtained at this site between 1982 and 1991. GAGE.--Water-stage recorder. Elevation of gage is 4,200 ft (NGVD 29). REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES FEB DAY ОСТ NOV MAR APR TITT. SEP DEC TAN MAY TIIN ATIG 2.9 e1.2 1.9 1.4 1.2 16 6.0 3.8 1.7 0.38 0.28 9.0 6.7 2 3.6 e1.3 e1.4 1.8 $1.4 \\ 1.4$ 1.4 1.1 5.8 3.9 1.6 1.5 0.33 0.26 6.4 1.6 1.1 5.6 4.8 0.25 5.6 1.0 1.3 1.2 5.9 5.3 1.5 0.33 0.23 e1.6 e0.80 1.2 7.0 5 3.0 1.7 1.7 1.3 5.6 6.8 1.4 0.36 0.21 2.6 7.0 6 1.7 e0.90 1.7 1.3 1.3 5.6 6.0 1.3 0.35 2.1 e1.0 e1.1 1.6 e1.2 5.1 6.7 0.49 1.3 7.1 5.1 1.2 0.19 8 3.8 3.0 1.6 1.2 e1.1 7.0 4.6 1.6 0.22 2.6 4.6 1.5 1.5 1.2 e1.1 e1.3 5.8 5.2 1.7 1.3 13 7 9 0.45 0.27 10 e1.0 11 9.3 0.37 0.31 2.9 1.2 11 11 1.6 e0.90
e1.5 11 8.6 5.9 5.7 1.2 0.30 0.32 1.2 1.0 12 e3.0 11 11 1.6 e0.80 8.4 0.30 1.6 8.2 13 11 3.1 e0.70 1.2 e15 10 4.9 0.99 0.30 0.74 0.79 14 8.3 3.1 e0.601.2 41 12 4.9 0.98 0.30 1.2 4.2 15 3.3 2.6 2.0 31 13 7.5 0.89 0.24 0.72 e0.65 2.6 2.5 2.0 e0.701.2 2.4 14 11 9.8 6.0 0.74 0.19 16 0.94 17 2.3 2.4 2.0 e0.90 1.2 18 7.9 4.8 0.65 0.24 1.3 18 2.1 2.4 1.9 e0.90 1.2 11 10 7.5 4.1 0.63 0.28 1.4 7.6 7.4 19 1.9 2.2 1.1 1.3 10 4.2 0.56 0.26 2.4 5.3 20 1.8 0.97 1.00 1.3 8.0 8.9 6.9 0.51 0.28 1.2 2.8 e0.80 8.2 8.4 6.7 0.30 21 1.8 e0.90 e1.1 4.6 0.52 1.2 22 1.8 3.3 e0.70 8.2 6.4 0.49 e0.60 23 1.5 3.2 e0.50 e0.60 e0.60 18 8.2 6.1 3.5 0.49 0.28 0.85 8.7 2.4 1.4 1.8 e0.45e0.70 e0.505.9 3.2 0.71 0.27 0.82 25 1.5 7.7 3.0 0.79 e1.4 e0.45 e1.0 e0.80 6.5 5.5 0.26 7.5 1.5 1.7 e0.50 6.0 2.6 0.83 0.23 0.70 26 e1.4 e1.1 5.8 27 e1.2 6.9 0.71 0.71 0.74 1.6 2.0 e2.0 2.3 28 2.2 1.2 5 0 0.44 2.0 0.81 1.5 6.5 4.6 3.2 0.28 1.9 2.1 5.1 2.6 29 1.3 6.3 4.1 0.30 1.1 1.9 6.5 1.9 0.74 ___ 31 e1 2 1.3 1 2 24 3 8 0 37 0.30 TOTAL 108.5 70.6 38.30 35.15 32.30 281.0 269.9 207.0 132.1 29.05 9.57 19.66 1.13 MEAN 3.50 2.35 1.24 1.15 9.06 9.00 6.68 4.40 0.94 0.31 0.66 4.6 2.0 9.8 6.8 1.7 MAX 11 1.4 41 16 0.51 1.4 1.2 0.45 0.60 0.50 5.1 1.9 0.37 0.19 557 140 76 AC-FT 70 64 535 411 262 58 19 39 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 2001 - 2003, BY WATER YEAR (WY) MEAN 2.04 1.49 0.65 0.85 16.1 2.73 1.81 1.06 3.50 2.35 1.24 1.13 1.15 9.00 6.68 6.67 4.61 2002 2.32 9.06 27 9 MAX 2002 2003 (WY) 0.58 0.63 0.33 0.16 0.55 0.50 4.44 4.40 0.59 0.31 MIN (WY) 2002 2002 2002 2002 2002 2002 2002 2002 2003 2001 2003 2001 FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 2001 - 2003 SUMMARY STATISTICS ANNUAL TOTAL 1804.90 1233.13 ANNUAL MEAN 4.94 3.38 HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN 4.48 2002 2003 HIGHEST DAILY MEAN 101 Jun 12 101 Jun 12 Mar 14 2002 0.02 5 4 0 19 Aug 16 Sep 2 LOWEST DATLY MEAN Jan 0 00 Sep 6 1 2001 ANNUAL SEVEN-DAY MINIMUM 0.22 2001 0.03 Jan 0.03 Sep MAXIMUM PEAK FLOW 78 Mar 134 Jun 12 2002 3.36 MAXIMUM PEAK STAGE Mar 14 3 64 Jun 12 2002 INSTANTANEOUS LOW FLOW 0.00 Sep 5 2001 ANNUAL RUNOFF (AC-FT) 3580 2450 2850 8.2 10 PERCENT EXCEEDS 9 2 8.2 2.4 50 PERCENT EXCEEDS 0.36 0.30 0.35 90 PERCENT EXCEEDS e--Estimated. #### 06140500 MILK RIVER AT HAVRE, MT LOCATION.--Lat 48°33′50″, long 109°41′42″ (NAD 27), in SE¹/₄NE¹/₄NE¹/₄Sec.6, T.32 N., R.16 E., Hill County, Hydrologic Unit 10050004, on left bank, 1.25 mi upstream from Bullhook Creek and 7th Avenue East highway bridge in Havre, 8.2 mi downstream from Big Sandy Creek, 15.8 mi downstream from Fresno Dam, and at river mile 419.2. DRAINAGE AREA.--5,785 mi², of which 670 mi² is probably noncontributing. PERIOD OF RECORD.--May to November 1898, April 1899 to November 1922, March, April 1923, March, April 1952 (gage heights only, in WSP 1260-B), June 1953 (in WSP 1320-B), September 1954 to current year. Monthly discharge only for some periods, published in WSP 1309. REVISED RECORDS.--WSP 1309: 1899-1900, 1902-4, 1907-8, 1909(M), 1912, 1917(M), 1920(M). WSP 1729: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 2,465.24 ft (NGVD 29). Prior to Nov. 4, 1902, nonrecording gage at site 0.75 mi downstream at different elevation. Nov. 4, 1902, to Aug. 6, 1980, nonrecording gages 1.25 mi downstream on 7th Avenue East highway bridges, all at elevations then in use REMARKS.--Records fair except those for estimated daily discharges, which are poor. Diversions for irrigation of about 6,000 acres upstream from station. Since 1917, flow increased during irrigation season by water from St. Mary Canal (station number 05018500). Since 1939, flow regulated by Fresno Reservoir (station number 06136500). U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---|-------------------------------------|--------------------------------------|--|--------------------------------------|---------------------------------------|--|-------------------------------------|--|--|---|--|-------------------------------------| | 1
2
3
4
5 | 410
411
410
413
413 | 48
49
51
49
51 | e50
e50
e40
e15
e45 | e45
e45
e45
e45
e45 | e50
e50
e50
e50
e50 | e60
e60
e60
e60 | 71
73
74
79
68 | 410
405
405
413
430 | 1230
1200
1090
1070
1060 | 626
618
628
766
776 | 972
902
873
843
830 | 210
203
207
233
233 | | 6
7
8
9
10 | 412
407
372
367
366 | 50
47
49
52
48 | e50
46
44
47
46 | e45
e45
e45
e45
e45 | e50
e50
e50
e50
e50 | e60
e60
e60
e60 | 67
64
61
57
59 | 432
435
495
567
607 | 1060
1060
1040
1040
1030 | 773
777
1050
1080
1070 | 787
767
720
688
678 | 235
236
237
218
203 | | 11
12
13
14
15 | 363
341
329
328
327 | 45
52
50
52
54 | 49
46
54
52
e45 | e45
e45
e45
e45
e45 | e50
e50
e50
e50
e50 | e60
e60
e60
e60
e120 | 138
376
411
419
439 | 632
639
642
619
579 | 1020
909
889
885
877 | 1070
1090
1100
1080
1190 | 668
647
652
626
618 | 91
72
64
59
58 | | 16
17
18
19
20 | 263
186
120
103
102 | 55
55
55
53
54 | e50
e50
e50
42
48 | e45
e45
e45
e45
e45 | e50
e50
e50
e50
e50 | e200
e190
e150
e120
e130 | 442
423
421
422
411 | 580
540
506
493
467 | 869
857
862
865
881 | 1210
1170
1170
1150
1010 | 630
628
634
646
646 | 81
66
55
55
59 | | 21
22
23
24
25 | 97
93
95
93 | 56
55
54
30
46 | 46
41
42
45
e40 | e45
e45
e45
e45
e45 | e50
e50
e55
e60
e60 | e170
190
153
121
108 | 412
414
412
413
420 | 466
466
608
701
692 | 710
682
679
680
682 | 991
1030
1030
1020
1070 | 660
666
701
684
652 | 55
55
59
59
60 | | 26
27
28
29
30
31 | 72
53
52
49
38
41 | e50
e50
e50
e50
e50 | e45
e45
e45
e45
e45
e45 | e50
e50
e50
e50
e50 | e60
e60
e | 96
83
78
71
62
63 | 419
411
409
410
412 | 688
685
809
869
1210
1240 | 679
679
684
679
678 | 1070
1090
1070
1020
1040
994 | 631
621
614
570
392
222 | 60
61
63
63
 | | TOTAL
MEAN
MAX
MIN
AC-FT | 7219
233
413
38
14320 | 1510
50.3
56
30
3000 | 1403
45.3
54
15
2780 | 1425
46.0
50
45
2830 | 1455
52.0
60
50
2890 | 2945
95.0
200
60
5840 | 8707
290
442
57
17270 | 18730
604
1240
405
37150 | 26626
888
1230
678
52810 | 30829
994
1210
618
61150 | 20868
673
972
222
41390 | 3473
116
237
55
6890 | | STATIST | FICS OF M | ONTHLY MEA | AN DATA E | FOR WATER | YEARS 1898 | - 2003 | , BY WATER | YEAR (WY) | * | | | | | MEAN
MAX
(WY)
MIN
(WY) | 146
628
1994
0.000
1906 | 76.1
325
1976
0.000
1906 | 53.2
160
1900
0.000
1906 | 57.0
780
1918
0.000
1906 | 90.7
1400
1916
0.000
1922 | 317
2106
1918
5.00
1919 | 520
2700
1899
25.0
1983 | 809
2191
1967
61.4
1905 | 826
2188
1908
35.2
1905 | 774
2045
1902
15.3
1910 | 564
1303
1978
0.000
1910 | 323
956
1993
0.000
1905 | | SUMMARY STATISTICS | | | FOR 2002 CALENDAR YEAR | | | FOR 2003 WATER YEAR | | | | WATER YEARS 1898 - 2003* | | | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 145980
400
2200
15
22
289600
1180
120
24 | Jun 19
Dec 4
Mar 27 | | 125190
344
1240
15
41
1270
4.7
248300
992
103
45 | May 31
Dec 4
Dec 3
May 31 | | 381
727
39.2
a16000
b0.0
c20000
d19.3
275800
1050
135
27 | Apr 12
0 Jul 11
0 Aug 15
Apr 12 | 1898
1905
1899 | | ### 06140500 MILK RIVER AT HAVRE, MT--Continued | SUMMARY STATISTICS | WATER YEARS 1900 - 1916** | WATER YEARS 1917 - 2003*** | |--------------------------|---------------------------|----------------------------| | ANNUAL TOTAL | | | | ANNUAL MEAN | 273.7 | 414 | | HIGHEST ANNUAL MEAN | 571 1916 | 727 1965 | | LOWEST ANNUAL MEAN | 39.2 1905 | 160 1919 | | HIGHEST DAILY MEAN | 9600 Jun 9 1908 | 9150 Mar 20 1918 | | LOWEST DAILY MEAN | a0.00 Aug 16 1904 | 0.00 Jan 1 1922 | | ANNUAL SEVEN-DAY MINIMUM | 0.00 Aug 15 1905 | 0.00 Jan 1 1922 | | MAXIMUM PEAK FLOW | 11000 Jun 9 1908 | f11400 Apr 3 1952 | | MAXIMUM PEAK STAGE | 16.5 Jun 9 1908 | 18.60 Apr 3 1952 | | ANNUAL RUNOFF (AC-FT) | 198300 | 299700 | | 10 PERCENT
EXCEEDS | 640 | 1080 | | 50 PERCENT EXCEEDS | 110 | 164 | | 90 PERCENT EXCEEDS | 5.0 | 30 | ^{*--}During periods of operation (May 1898 to November 1898, April 1899 to Novomber 1922, March 1923 to April 1923, September 1954 to current year. **--Prior to Operation of St. Mary Canal. ***--Post operation of St. Mary Canal. a--Observed. b--Observed, no flow at times in several years. c--Observed from rating curve extended above 5,200 ft³/s. d--Site and datum then in use, from floodmarks. e--Estimated. f--Observed, about. #### 06142400 CLEAR CREEK NEAR CHINOOK, MT $LOCATION.--Lat\ 48^{\circ}34'44'', long\ 109^{\circ}23'26''\ (NAD\ 27), in\ SE^{1}/_{4}NW^{1}/_{4}sec.33, T.33\ N., R.18\ E., Blaine\ County,\ Hydrologic\ Unit\ 10050004,\ on\ N.$ right bank, 7 mi west of Chinook, and at river mile 2.5. DRAINAGE AREA.--135 mi². PERIOD OF RECORD.--June 1984 to current year (seasonal records only). GAGE.--Water-stage recorder. Elevation of gage is 2,470 ft (NGVD 29). REMARKS.--Records good except those for periods of flow over 5 ft³/s, which are poor. Diversions for irrigation of about 2,000 acres upstream from station. Bureau of Reclamation satellite telemeter at station. Several observations of water temperatures and specific conductance were made during the year. | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|--|------------|----------|--|--------------------------------------|---------------------------------------|---------------------------------------|---|---------------------------------------|-----|-----|-----| | 1
2
3
4
5 | | | | 8.6
10
13
13 | 7.0
6.5
7.3
14
25 | 1.1
1.4
3.2
4.1
4.6 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | | 6
7
8
9
10 | | | | 8.0
5.9
4.3
4.5
4.0 | 37
37
32
27
27 | 2.8
3.2
2.9
4.6
5.5 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | | 11
12
13
14
15 | | | | 4.0
4.5
7.5
5.2
9.8 | 27
24
22
17
13 | 8.3
9.0
7.5
5.9
3.8 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | | 16
17
18
19
20 | | | | 27
35
22
16
12 | 13
12
10
11
12 | 4.1
2.9
1.4
0.99 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | | 21
22
23
24
25 | | | | 10
7.6
6.4
5.7
6.7 | 11
6.6
5.3
4.8
3.4 | 0.67
0.53
0.52
0.42
0.23 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | | 26
27
28
29
30
31 | | | | 6.1
5.5
4.6
6.3
6.9 | 2.8
2.6
2.1
1.4
1.0 | 0.08
0.05
0.12
0.04
0.01 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | 291.1
9.70
35
4.0
577 | 422.8
13.6
37
1.0
839 | 81.36
2.71
9.0
0.01
161 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | | | | | STATIST | ICS OF MO | NTHLY MEAN | N DATA E | OR SEASONS | 1984 - : | 2003 | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | | | 11.3
46.0
1994
00.000
2002 | 19.6
137
1986
0.000
2001 | 15.6
74.0
1986
0.000
2001 | 8.83
51.4
1993
0.000
1985 | 2.78
34.9
1993
0.000
1984 | 4.05
47.4
1986
0.000
1984 | | | | | SUMMARY | STATISTIC | CS | | FOR 2003 S | EASON | | SEASONS | 1984 - 20 | 003 | | | | | LOWEST : | DAILY MEA
DAILY MEA
PEAK FLO
PEAK STA | M
M | | 0.00 J | pr 17 | | 360
b0.00
571
8.23 | Sep 25 198
Jul 5 198
Sep 25 198
Sep 25 198 | 34
36 | | | | a--Also occurred May 6, 7. b--No flow at times most years. Figure 11. Schematic diagram showing diversions and storage in Lodge Creek Basin. #### 06144260 ALTAWAN RESERVOIR NEAR GOVENLOCK, SASKATCHEWAN (International gaging station) LOCATION.--Lat 49°10′00", long 109°55′00" (NAD 27), in SW¹/₄ sec.35, T.2, R.30 W., third meridian, Hydrologic Unit 10050007, at dam on Lodge Creek, 6.3 mi southwest of Govenlock, and at river mile 113.5. DRAINAGE AREA.-- 373 mi². PERIOD OF RECORD.--February 1966 to current season (seasonal records only). February 1960 to current season in reports of Department of the Environment, Canada. Water-stage recorder. Elevation of gage is 2,918.0 (Geodetic Survey of Canada datum). Prior to July 7, 1967, nonrecording gage in gate read every ten days during irrigation season. REMARKS.--Reservoir is formed by earthfill dam with concrete spillway and control works as well as an emergency earthen spillway, completed in 1959. The following capacity figures are from revised capacity table effective Jan. 1, 1983. All elevations are referenced to the Geodetic Survey of Canada datum. Usable capacity is 5,440 acre-ft between elevation 2,918.0 ft, bottom of outlet works, and 2,952.0 ft, maximum design level. No dead storage. Water is used for irrigation. Water Survey of Canada satellite telemeter at station. This is one of a number of stations which are maintained jointly by Canada and the United States. REVISED RECORDS .-- W 1983, drainage area. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 8,300 acre-ft, Sept. 26, 1986, elevation, 2,958.10 ft; no contents Mar. 1, 1960, Oct. 6-31, 1984, Mar. 1-18, and Oct. 3-31, 1985. EXTREMES FOR CURRENT SEASON.--Maximum contents, 6,200 acre-ft, Mar. 23, elevation, 2,953.72 ft; minimum, 924 acre-ft, Feb. 28, elevation, 2,936.56 ft. #### SEASONAL MONTHEND CONTENTS, IN ACRE-FT, FEBRUARY 2003 TO OCTOBER 2003 | Date | Contents | |----------|----------| | Feb. 28 | 924 | | Mar. 31 | 5,680 | | Apr. 30 | 5,610 | | May 31 | 4,660 | | June 30 | 4,030 | | July 31 | 2,900 | | Aug. 31 | 2,600 | | Sept. 30 | 2,530 | | Oct. 31 | 2,470 | | | | #### 06144270 SPANGLER DITCH NEAR GOVENLOCK, SASKATCHEWAN (International gaging station) LOCATION.--Lat 49°09'16", long 109°54'58" (NAD 27), in NW¹/₄ sec.26, T.2, R.30 W., third meridian, Hydrologic Unit 10050007, on right bank 0.9 mi south of Altawan Dam, and 6.8 mi southwest of Govenlock. PERIOD OF RECORD.--March 1966 to current season (seasonal records only). March 1950 to current season, in reports of Department of the Environment, Canada. Some estimates of monthly diversion in several years prior to 1932. GAGE.--Water-stage recorder. Elevation of gage is 2,920 ft (NGVD 29). Prior to March 1950, nonrecording gages at several sites within 2 mi of present site at different elevations. March 1950 to July 8, 1960, water-stage recorder at site 350 ft downstream at different elevation. REMARKS.--Records good. Canal diverts water from right bank of Lodge Creek in $SW^{1}/_{4}$ sec. 35, T.2, R.30 W., third meridian, for irrigation of 1,320 acres in Spangler irrigation project. Water Survey of Canada satellite telemeter at station. COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 65 ft³/s, Apr. 22, 1950, July 9, 1985; no flow most of each season. | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|-----|-----|--------------------------------------|---------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----|-----| | 1
2
3
4
5 | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 43
43
44
43
44 | 0.00
0.00
0.00
0.00
0.00 | 22
19
8.0
8.5
6.7 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 6
7
8
9
10 | | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 44
42
36
26
0.04 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 16
17
18
19
20 | | | 0.00
0.00
0.74
0.71
0.28 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 21
22
23
24
25 | | | 0.07
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 41
43
43
43
43 | 0.00
0.00
0.00
0.00
0.00 | 18
37
37
37
36 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 26
27
28
29
30
31 | | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 43
43
43
43
43 | 0.00
0.00
0.00
0.00
0.00 | 36
36
36
35
35
32 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | TOTAL
MEAN
MAX
MIN
AC-FT
| | | 1.80
0.058
0.74
0.00
3.6 | 0.00
0.000
0.00
0.00
0.00 | 488.00
15.7
43
0.00
968 | 365.04
12.2
44
0.00
724 | 375.00
12.1
37
0.00
744 | 64.20
2.07
22
0.00
127 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | | | #### 06144350 MIDDLE CREEK NEAR SASKATCHEWAN BOUNDARY (International gaging station) LOCATION.--Lat 49°25'30", long 110°03'08" (NAD 27), in SW¹/₄ sec.34, T.5, R.1 W., fourth meridian, in Alberta, Hydrologic Unit 10050007, on left bank 2 mi upstream from Middle Creek Reservoir, 2 mi west of Saskatchewan boundary, 18 mi northwest of Govenlock, Saskatchewan, and at river mile 65.7. DRAINAGE AREA.--118 mi². PERIOD OF RECORD.--March 1963 to current season (seasonal records only). Prior to March 1982, published as "Middle Creek near Alberta boundary". June 1910 to April 1915, published as "at McKinnon's Ranch" and September 1949 to current season in reports of Department of the Environment, Canada. REVISED RECORDS.--W 1983: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 3,381.13 ft (Geodetic Survey of Canada datum). Prior to Mar. 1, 1951, nonrecording gages, and Mar. 1, 1951, to July 5, 1961, water-stage recorder, at site 0.3 mi downstream at different elevations. Water Survey of Canada satellite telemeter at station. REMARKS.--Records fair. Minor diversions for irrigation upstream from station. Water Survey of Canada telemeter at station. COOPERATION.--This is one of a number of stations which are maintained jointly by Canada and the United States. | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |---|---|-----|---|--------------------------------------|--|---------------------------------------|--|--|---|--|-----|-----| | 1
2
3
4
5 | | | e0.07
e0.07
e0.07
e0.07
e0.07 | 36
34
9.5
3.0
6.0 | 0.57
0.60
0.57
0.74
2.1 | 0.39
0.39
0.32
0.32 | e0.07
e0.07
e0.07
e0.04
e0.04 | 0.14
0.14
0.14
0.14
0.14 | 0.11
0.11
0.11
0.11
0.11 | 0.11
0.11
0.11
0.11
0.11 | | | | 6
7
8
9
10 | | | e0.07
e0.07
e0.07
e0.07
e0.07 | 8.4
1.8
1.2
1.1
0.95 | 2.1
20
16
7.7
4.5 | 0.14
0.14
0.14
0.14
0.14 | e0.04
e0.04
e0.04
0.04
0.04 | 0.14
0.14
0.14
0.14
0.14 | 0.11
0.11
0.11
0.11
0.11 | 0.07
0.07
0.07
0.04
0.04 | | | | 11
12
13
14
15 | | | e0.07
e0.07
e0.07
e0.07
e0.57 | 0.78
1.0
3.1
3.9 | 5.8
8.9
4.1
3.7
5.6 | 0.11
0.14
0.11
0.11 | 0.07
0.07
0.07
0.07
0.07 | 0.11
0.11
0.11
0.11
0.11 | 0.11
0.11
0.11
0.11
0.11 | 0.04
0.04
0.04
0.04
0.04 | | | | 16
17
18
19
20 | | | e1.4
e2.3
44
48
43 | 16
9.7
5.7
2.5
1.6 | 2.4
1.3
0.85
0.60
0.46 | 0.07
0.07
0.04
0.04
0.07 | 0.07
0.07
0.07
0.07
0.07 | 0.11
0.11
0.11
0.11
0.11 | 0.14
0.11
0.07
0.07
0.11 | 0.04
0.04
0.04
0.04
0.04 | | | | 21
22
23
24
25 | | | 55
70
82
78
34 | 1.2
0.88
0.74
0.71
0.67 | 0.39
0.39
0.39
0.53
0.46 | | 0.11
0.11
0.11
0.11
0.11 | 0.11
0.11
0.11
0.11
0.11 | 0.11
0.11
0.11
0.11
0.11 | 0.04
0.04
0.04
0.04
0.04 | | | | 26
27
28
29
30
31 | | | 22
12
7.1
4.2
3.4
3.4 | 0.67
0.60
0.53
0.53
0.57 | 0.28
0.28
0.28
0.39
0.49
0.42 | 0.07
0.11
0.14
0.11
e0.07 | 0.11
0.11
0.14
0.14
0.14
0.14 | 0.11
0.11
0.14
0.11
0.11 | 0.11
0.11
0.11
0.11
0.11 | 0.04
0.04
e0.04
e0.04
e0.04
e0.04 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | 168.33
5.61
36
0.53
334 | 92.89
3.00
20
0.28
184 | 3.94
0.13
0.39
0.04
7.8 | 0.14
0.04 | 3.74
0.12
0.14
0.11
7.4 | 3.25
0.11
0.14
0.07
6.4 | 1.68
0.054
0.11
0.04
3.3 | | | | | ICS OF MONT | | | | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | | 14.1
74.2
1960
0.000
1950 | 37.3
330
1952
0.043
2001 | 136 | 3.90
45.1
1953
0.078
2000 | 1.83
20.0
1963
0.023
2001 | 0.73
6.99
1993
0.003
2001 | 0.99
24.8
1986
0.000
1962 | 0.45
2.38
1966
0.048
1999 | | | | SUMMARY | STATISTICS | | | | SEASON | | S | SEASONS 19 | 10 - 2003 | * | | | | HIGHEST
LOWEST I
MAXIMUM
MAXIMUM | DAILY MEAN
DAILY MEAN
PEAK FLOW
PEAK STAGE | : | | 82
0.04
118
5.93 | Mar 23
Jun 18
Mar 23
Mar 23 | | 2
a4 | 0.00 M
0.00 M
1980 A
b10.27 A | pr 15 195
ar 1 195
pr 15 195
pr 15 195 | 2
0
2
2 | | | a--From rating curve extended above 600 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow. b--Previous site and datum. e--Estimated. #### 06144395 MIDDLE CREEK BELOW MIDDLE CREEK RESERVOIR, NEAR GOVENLOCK, SASKATCHEWAN (International gaging station) LOCATION.--Lat 49°24'44", long 109°55'06" (NAD 27), in SW¹/₄ sec.25, T.5, R.30 W., third meridian, Hydrologic Unit 10050007, on right bank 9.1 mi downstream from Middle Creek Reservoir, 14 mi northwest of Govenlock, and at river mile 57.6. DRAINAGE AREA.--149 mi². PERIOD OF RECORD.--April 1972 to current season (seasonal records only). July 1909 to May 1931, September 1935 to October 1936, and April 1972 to current season in reports of Department of the Environment, Canada. Published as "at Ross Ranch" 1909-20, "at Downes and Robert's Ranch" 1920-23, and "at Wright's Ranch" 1920-31, 1935-36. Discharge measurements only during 1928 season. REVISED RECORDS .-- W 1983: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 3,300 ft (NGVD 29). Prior to April 1972, non recording gages at two sites within 2 mi of present site, at different elevations. REMARKS.--Records good. Flow completely regulated by Middle Creek Reservoir (station number 06144360). Many diversions for irrigation upstream from station. At high reservoir levels flow may be diverted to Lodge Creek through Middle Creek Reservoir. Diversions for irrigation of 920 acres between Middle Creek Reservoir and station. Water Survey of Canada satellite telemeter at station. COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 77 ft³/s, May 3, 1985; no flow at times most seasons. | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|-----|-----|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|-----|-----| | 1
2
3
4
5 | | | 0.00
0.00
0.00
0.00
0.00 | 1.7
0.21
0.07
0.07
0.04 | 0.00
0.00
0.00
0.00
0.00 | 6.1
2.3
2.9
4.3
3.3 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 6
7
8
9
10 | | | 0.00
0.00
0.00
0.00
0.00 | 0.04
0.04
0.00
0.04
0.07 | 0.04
0.49
0.07
0.04
0.00 | 3.7
5.0
3.0
1.9 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | | 0.00
0.00
0.00
0.00
0.00 | 0.04
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 1.0
1.1
1.3
0.28
0.07 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 16
17
18
19
20 | | | 0.00
0.00
0.00
0.00
0.00 | 1.6
0.25
0.04
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 21
22
23
24
25 | | | 0.00
0.00
0.00
0.00
0.00 | | | 26
27
28
29
30
31 | | | 0.00
0.04
0.04
0.04
6.2 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
31
53 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 29.32
0.95
23
0.00
58 | 4.21
0.14
1.7
0.00
8.4 | 114.64
3.70
53
0.00
227 | 37.45
1.25
6.1
0.00
74 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | | | #### 06144440 MIDDLE CREEK NEAR GOVENLOCK, SASKATCHEWAN (International gaging station) LOCATION.--Lat 49°13'42", long 109°48'57" (NAD 27), in NW¹/₄ sec.23, T.3, R.29 W., third meridian, Hydrologic Unit 10050007, on left bank 43.9 mi downstream from Middle Creek Reservoir, 0.3 mi northwest of Govenlock, and at river mile 22.8. DRAINAGE AREA.--253 mi². PERIOD OF RECORD.--February 1986 to current season (seasonal records only). March 1968 to current season in reports of
Department of the Environment, Canada. GAGE.--Water-stage recorder. Elevation of gage is 3,010 ft (NGVD 29). REMARKS.--Records fair. Natural flow of stream is affected by Middle Creek Reservoir (station 06144360), several smaller reservoirs, diversions for irrigation, and return flow from irrigated areas. At high reservoir levels flow may be diverted to Lodge Creek through Middle Creek Reservoir. Water Survey of Canada satellite telemeter at station. COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States. | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |---|---|-----|---|--------------------------------------|--|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|--|-----|-----| | 1
2
3
4
5 | | | e0.00
e0.00
e0.00
e0.00
e0.00 | 3.2
22
13
16
13 | 1.9
1.9
1.8
2.1
3.5 | 5.9
25
13
8.3
5.9 | 0.25
0.18
0.11
0.07
0.04 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 6
7
8
9 | | | e0.00
e0.00
e0.00
e0.00
e0.00 | 8.5
6.5
5.4
5.4
5.1 | 5.0
5.5
5.4
4.9
4.7 | 4.0
6.0
4.0
3.1
2.8 | 0.04
0.04
0.04
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | | | 4.7
6.5
4.6
5.1
9.5 | | 3.2
3.1
3.4
3.7
3.0 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 16
17
18
19
20 | | | 1.9
30
102
107 | 13
8.5
6.9
7.9
6.2 | 2.3
2.3
1.9
1.2
0.88 | 2.3
1.7
1.3
1.1 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 21
22
23
24
25 | | | 47
26
21
9.3
9.1 | 5.0
4.3
3.8
3.4
3.0 | 0.74
0.60
0.49
0.39
0.28 | 1.2
1.8
1.7
1.2
0.85 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 26
27
28
29
30
31 | | | 8.4
5.0
3.7
6.5
6.1
3.1 | 2.9
2.5
2.3
2.2
2.0 | 0.25
0.18
0.14
0.14
0.07
0.07 | 0.64
0.49
0.49
0.39
0.32 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 461.10 | 202.4 | 65 72 | 111.08
3.70
25
0.32
220 | 0.77
0.025
0.25
0.00
1.5 | 0.00
0.000
0.00
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | | | | STATISTI | CS OF MONT | | | | | 2003* | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | | 11.6
53.2
1997
0.000
2002 | 5.34
36.4
1996
0.83
1992 | 2.61
6.79
1997
0.27
1992 | 0.001 | 0.000 | 0.14
2.20
1993
0.000
1986 | 3.24
56.9
1986
0.000
1987 | 0.58
4.04
1987
0.000
1991 | | | | SUMMARY | STATISTICS | | | | | | | | SONS 1986 | | | | | HIGHEST
LOWEST D
MAXIMUM
MAXIMUM | DAILY MEAN
DAILY MEAN
PEAK FLOW
PEAK STAGE | | | 107
0.00
151
5.90 | Mar 19
Jul 9
Mar 19
Mar 19 | | | 724
0
1190
9 | Sep
.00 Feb
Sep
.81 Sep | 26 1986
19 1986
25 1986
25 1986 | | | $[\]star$ --During periods of operation. e--Estimated. #### 06144450 MIDDLE CREEK ABOVE LODGE CREEK, NEAR GOVENLOCK, SASKATCHEWAN (International gaging station) LOCATION.--Lat 49°06'01", long 109°49'02" (NAD 27), in NE¹/₄ sec.4, T.2, R.29 W., third meridian, Hydrologic Unit 10050007, on left bank, 0.7 mi upstream from Lodge Creek, and 9 mi south of Govenlock. DRAINAGE AREA.--276 mi². PERIOD OF RECORD.--March 1962 to October 1966 and February 1986 to current season. Seasonal records only. March 1911 to May 1931 and March 1962 to current season in reports of Department of the Environment, Canada. Published as "at Hammond's Ranch" 1911-31. GAGE.--Water-stage recorder. Elevation of gage is 2,830 ft (NGVD 29). Prior to Mar. 1, 1962, nonrecording gage at site 1,000 ft downstream at different REMARKS.--Records good. Natural flow of stream affected by Middle Creek Reservoir (station 06144360), several smaller reservoirs, diversions for irrigation, and return flow from irrigated areas. At high reservoir levels flow may be diverted to Lodge Creek through Middle Creek Reservoir. Water Survey of Canada satellite telemeter at station. COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States. | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|---|---------|---|--------------------------------------|---|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--|-----|-----| | 1
2
3
4
5 | | | e0.00
e0.00
e0.00
e0.00 | 1.2
0.46
0.28
0.18
0.11 | 3.8
3.6
3.0
2.7
3.0 | 1.4
0.60
0.21
0.18
0.18 | 0.04
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | | | 6
7
8
9
10 | | | e0.00
e0.00
e0.00
e0.00 | 0.11
4.0
11
8.9
6.7 | 19
29
15
4.0
2.1 | 2.2
0.85
0.25
0.11
0.04 | 0.00
0.04
0.04
0.04
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | | e0.00
e0.00
e0.00
e0.00
e0.00 | 5.2
3.5
2.3
1.9
4.9 | 1.1
0.53
0.21
0.07
0.04 | 0.04
0.00
0.00
1.4
1.7 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 16
17
18
19
20 | | | e0.85
e13
20
23
29 | 17
16
9.8
11
12 | 0.04
0.04
0.85
2.1
2.1 | 1.7
1.6
2.0
2.2
2.6 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 21
22
23
24
25 | | | 29
78
70
54
18 | 13
13
13
11
7.5 | 2.2
2.2
2.0
1.8
1.7 | 2.9
2.5
2.4
2.4 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 26
27
28
29
30
31 | | | 11
10
10
9.7
9.5
4.3 | 5.7
4.2
3.9
4.0
4.0 | 1.8
1.7
0.81
0.39
1.6
0.81 | 0.57
0.25
0.14
0.11
0.04 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 389.35
12.6
78
0.00
772 | 195.84
6.53
17
0.11
388 | 109.29
3.53
29
0.04
217 | 32.17
1.07
2.9
0.00
64 | 0.16
0.005
0.04
0.00
0.3 | 0.00
0.000
0.00
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | | | | STATISTI | CS OF MONTH | HLY MEA | AN DATA | FOR SEASON | IS 1911 - | 2003* | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | | 13.0
71.8
1997
0.000
1919 | 53.1
457
1917
0.000
1991 | 13.2
222
1927
0.000
1989 | 6.72
61.1
1965
0.000
1926 | 3.92
35.1
1923
0.000
1914 | 0.53
9.76
1915
0.000
1911 | 2.60
63.3
1986
0.000
1912 | 0.58
8.35
1987
0.000
1913 | | | | SUMMARY | STATISTICS | | | FOR 2003 | SEASON | | | | ONS 1911 | | | | | LOWEST D | DAILY MEAN
DAILY MEAN
PEAK FLOW
PEAK STAGE | | | 111 | Mar 22
Jun 12
Mar 22
Mar 22 | | | a1170
0
738
13 | Apr
.00 Mar
Sep
.84 Sep | 24 1922
13 1911
26 1986
26 1986 | | | ^{*--}During periods of operation. a--Maximum peak flow not determined. e--Estimated. #### 06145500 LODGE CREEK BELOW MCRAE CREEK, AT INTERNATIONAL BOUNDARY (International gaging station) LOCATION.--Lat 49°00'19", long 109°43'02" (NAD 27), in SW¹/₄ sec.5, T.1, R.28 W., third meridian, in Saskatchewan, Hydrologic Unit 10050007, on right bank 0.3 mi downstream from McRae Creek, 0.4 mi north of international boundary, 0.8 mi northeast of Willow Creek Port of Entry, 31 mi north of Havre, MT, and at river mile 84.3. DRAINAGE AREA.--825 mi², of which 88 mi² are noncontributing. PERIOD OF RECORD.--October 1951 to current season (seasonal records only). Prior to October 1951, records were collected on both McRae Coulee (1927-51) and Lodge Creek above McRae Coulee (1910-51). Summations are equivalent to records at this site. Prior to March 1965, published as "below McRae Coulee." REVISED RECORDS .-- W 1983: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 2,731.0 ft (International Boundary Survey datum). REMARKS.--Records good. Natural flow affected by numerous storage reservoirs, diversions for irrigation of about
3,000 acres, and return flow from irrigated areas. Water Survey of Canada satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States. | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |---|--|-----|--|--------------------------------------|--|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--|-----|-----| | 1
2
3
4
5 | | | 0.04
0.04
0.04
0.04
0.04 | 35
27
82
92
68 | 11
9.9
9.7
9.4
13 | 2.2
2.2
2.3
2.1
1.9 | 0.49
0.32
0.18
0.11
0.07 | 0.04
0.04
0.04
0.04
0.04 | 0.04
0.04
0.04
0.04
0.04 | 0.07
0.07
0.07
0.07
0.07 | | | | 6
7
8
9 | | | e0.04
e0.04
e0.04
e0.04 | 35
32
32
26 | 53
36
25
35 | 0.99
0.78
0.74
0.60 | 0.04
0.04
0.04
0.04 | 0.04
0.04
0.04
0.04
0.04 | 0.04
0.04
0.04
0.04
0.04 | 0.11
0.07
0.04
0.04
0.04 | | | | 11
12
13
14
15 | | | 0.04
0.04
0.04
0.04
0.04 | 25
18
15
18
25 | 45
40
38
42
38 | 0.88
0.95
0.71
1.0
0.78 | 0.04
0.04
0.04
0.04
0.04 | 0.04
0.04
0.04
0.04
0.04 | 0.04
0.04
0.04
0.04
0.04 | 0.04
0.04
0.07
0.07
0.07 | | | | 16
17
18
19
20 | | | 0.14
16
121
290
388 | 47
116
118
95
75 | 39
52
47
40
34 | 0.42
0.28
0.14
0.11 | 0.04
0.04
0.04
0.04
0.04 | 0.04
0.04
0.04
0.04
0.04 | 0.04
0.04
0.04
0.04
0.04 | 0.07
0.07
0.07
0.07
0.07 | | | | 21
22
23
24
25 | | | 249
326
413
357
299 | 58
48
40
33
27 | 26
21
14
11
7.8 | 0.18
0.39
1.8
1.5 | 0.04
0.04
0.04
0.04
0.04 | 0.04
0.04
0.04
0.04
0.04 | 0.04
0.04
0.04
0.04
0.07 | 0.07
0.07
0.07
0.07
0.07 | | | | 26
27
28
29
30
31 | | | 203
129
93
69
55
46 | 26
17
15
15
13 | 5.3
4.5
4.1
3.7
3.1
2.5 | 1.2
1.0
1.1
1.0
0.74 | 0.04
0.04
0.04
0.04
0.04 | 0.04
0.04
0.04
0.07
0.07 | 0.07
0.11
0.07
0.07
0.07 | 0.07
0.07
0.07
0.11
0.07
0.07 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 3054.74
98.5
413
0.04
6060 | 1322
44.1
118
13
2620 | 761.0
24.5
53
2.5
1510 | 30.80
1.03
2.3
0.11
61 | 2.21
0.071
0.49
0.04
4.4 | 1.33
0.043
0.07
0.04
2.6 | 1.42
0.047
0.11
0.04
2.8 | 2.10
0.068
0.11
0.04
4.2 | | | | | CS OF MONT | | | | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | | 55.3
374
1997
0.000
1953 | 137
1899
1952
0.000
1992 | 39.8
500
1967
0.000
1992 | 24.3
294
1965
0.000
1963 | 9.86
174
1955
0.000
1958 | 2.27
33.1
1993
0.000
1954 | 13.7
678
1986
0.000
1952 | 1.45
52.3
1987
0.000
1953 | | | | | STATISTICS | | | | | N | | SEA | SONS 1952 | | | | | HIGHEST
LOWEST D
MAXIMUM
MAXIMUM | DAILY MEAN
AILY MEAN
PEAK FLOW
PEAK STAGE | | | 413
0.
487
5. | Mar 2
04 Mar
Mar 2
76 Mar 2 | 3
1
3
3 | | 7770
0
a9890
16 | Sep
.00 Mar
Sep
.36 Sep | 26 1986
1 1952
25 1986
25 1986 | | | a--From rating curve extended above $4,000~{\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow. e--Estimated. Figure 12. Schematic diagram showing diversions and storage in Battle Creek and Frenchman River Basins. #### 06147950 GAFF DITCH NEAR MERRYFLAT, SASKATCHEWAN (International gaging station) $LOCATION.--Lat\ 49^{\circ}26'05", long\ 109^{\circ}50'07"\ (NAD\ 27), in\ NW^{1}/_{4}\ sec. 34, T.5, R.29\ W., third meridian, Hydrologic Unit\ 10050008, on\ left\ bank\ about\ 200\ ft\ downstream\ from\ headgates, and\ 4\ mi\ southwest\ of\ Merryflat.$ PERIOD OF RECORD.--March 1972 to current season (seasonal record only). March 1964 to current season in reports of Department of the Environment, Canada. GAGE.--Water-stage recorder. Elevation of gage is 3,350 ft (NGVD 29). REMARKS.--Records poor. Water is diverted from left bank of Battle Creek in NW¹/₄ sec.34, T.5. R.29 W., third meridian, for irrigation of about 890 acres along Battle Creek. Water Survey of Canada satellite telemeter at station. COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 42 ft³/s, Apr. 22, 1971; no flows at times each season. # DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|-----|-----|---|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--|---------------------------------------|--|-----|-----| | 1
2
3
4
5 | | | e0.00
e0.00
e0.00
e0.00 | e23
e9.4
e0.88
e0.88 | 23
17
1.1
0.92
0.85 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.04
0.04 | 0.00
0.00
0.00
0.00
0.04 | 0.04
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 6
7
8
9
10 | | | e0.00
e0.00
e0.00
e0.00
e0.00 | e0.64
e0.35
e3.1
15 | 0.81
0.74
0.67
0.60
0.60 | 0.00
0.00
0.00
0.00
0.00 | 0.04
0.04
0.04
0.04
0.04 | 0.04
0.04
0.04
0.04
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | | e0.00
e0.00
e0.00
e0.00
e0.00 | 31
30
32
35
33 | 0.57
0.60
0.71
0.71
0.71 | 0.00
0.00
0.00
0.00
0.00 | 0.04
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 16
17
18
19
20 | | | e0.00
e0.00
e0.00
e0.18
e0.35 | 36
37
32
27
25 | 0.64
0.49
0.39
0.32
0.25 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 21
22
23
24
25 | | | e0.25
e0.88
e1.4
e1.8
e7.3 | 24
24
24
23
24 | 0.21
0.18
0.14
0.07
0.04 | 0.00
0.00
0.00
0.00
0.04 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 26
27
28
29
30
31 | | | e8.9
e8.2
e8.2
e8.5
e8.1 | 23
19
20
22
23 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 73.06
2.36
19
0.00
145 | 628.10
20.9
37
0.35
1250 | 52.32
1.69
23
0.00
104 | 0.04
0.001
0.04
0.00
0.08 | 0.32
0.010
0.04
0.00
0.6 | 0.24
0.008
0.04
0.00
0.5 | 0.04
0.001
0.04
0.00
0.08 | 0.00
0.000
0.00
0.00
0.00 | | | #### 06148500 CYPRESS LAKE WEST INFLOW CANAL NEAR WEST PLAINS, SASKATCHEWAN (International gaging station) LOCATION.--Lat 49°28'18", long 109°37'08" (NAD 27), in SE¹/₄ sec.18, T.6, R.27 W., third meridian, Hydrologic Unit 10050008, on left bank 2.5 mi downstream from canal headgates, 5.5 mi northeast of West Plains, and 13 mi northwest of Consul. PERIOD OF RECORD.--March 1939 to current season (seasonal records only). Monthly discharge only for some periods, published in WSP 1309. GAGE.--Water-stage recorder. Elevation of gage is 3,210 ft (NGVD 29). Prior to Oct. 16, 1956, at site 2.3 mi upstream at different elevation. REMARKS.--Records good. Canal diverts water from Battle Creek in NW¹/₄ sec.1, T.6, R.28 W., third meridian, for storage in Cypress Lake. Part or all of flow may be returned to Battle Creek via Cypress Lake West Inflow Canal Drain (station 06148700) 0.4 mi downstream. Water Survey of Canada satellite telemeter at station. COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 884 ft³/s, Apr. 27, 1965; no flow at times each season. # DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|-----|-----|---|---------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|-----|-----| | 1
2
3
4
5 | | | e0.00
e0.00
e0.00
e0.00
e0.00 | e82
e129
e90
e17
e9.0 |
0.14
0.07
0.04
0.04
2.9 | 19
19
19
20
19 | 0.21
0.18
0.14
0.14 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 6
7
8
9
10 | | | e0.00
e0.00
e0.00
e0.00
e0.00 | e15
e17
e25
e23
e19 | 5.4
5.9
3.2
1.9 | 19
19
19
19 | 0.14
0.14
0.18
0.18
0.14 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | | e0.00
e0.00
e0.00
e0.00
e0.00 | 19
18
20
27
37 | 0.53
0.21
0.25
0.21
0.07 | 19
19
20
19 | 0.14
0.18
0.14
0.14 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 16
17
18
19
20 | | | e0.00
e0.00
e0.07
e101
e155 | 46
52
49
48
45 | 0.07
0.04
0.04
0.04
0.04 | 20
20
20
20
20 | 0.14
0.11
0.11
0.07
0.07 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 21
22
23
24
25 | | | e161
e143
e130
e119
e109 | 23
2.3
1.7
1.6
1.5 | 0.04
14
17
16
17 | 18
18
19
16
2.5 | 0.07
0.04
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 26
27
28
29
30
31 | | | e91
e33
e28
e20
e12
e38 | 2.0
0.92
0.46
0.21
0.14 | 17
17
18
18
19 | 1.0
0.71
0.53
0.39
0.28 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 1140.07
36.8
161
0.00
2260 | 820.83
27.4
129
0.14
1630 | 194.23
6.27
19
0.04
385 | 463.41
15.4
20
0.28
919 | 2.94
0.095
0.21
0.00
5.8 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | | | #### 06148700 CYPRESS LAKE WEST INFLOW CANAL DRAIN NEAR OXARAT, SASKATCHEWAN (International gaging station) LOCATION.--Lat 49°28'25", long 109°36'38" (NAD 27), in NW¹/₄ sec.17, T.6, R.27 W., third meridian, Hydrologic Unit 10050008, on left bank about 500 ft downstream from drain gate on Cypress Lake west inflow canal, 0.5 mi upstream from Battle Creek, and 4 mi northwest of Oxarat. PERIOD OF RECORD.--March 1963 to current season (seasonal records only). March 1955 to current season in reports of Department of the Environment, Canada. GAGE.--Water-stage recorder. Elevation of gage is 3,200 ft (NGVD 29). REMARKS.--Records poor. Drain used as an emergency bypass to return diverted water to Battle Creek. It may also be used to return stored water from Cypress Lake when lake stage is high. COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 450 ft³/s, Apr. 20, 1955; no flow at times each season. # DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|-----|-----|--|---|---|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|-----|-----| | 1
2
3
4
5 | | | e0.00
e0.00
e0.00
e0.00
e0.00 | e0.04
e0.04
e0.00
e0.00
e0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | 0.04
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 6
7
8
9
10 | | | e0.00
e0.00
e0.00
e0.00
e0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | 0.00
0.04
0.04
0.04
0.04 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.04
0.04
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | | e0.00
e0.00
e0.00
e0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | 0.07
0.07
0.07
0.07
0.07 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 16
17
18
19
20 | | | e0.00
e0.04
e0.04
e0.35
e0.25 | e0.00
e0.00
e0.00
e0.00 | e0.00
e0.04
e0.04
e0.04
e0.04 | 0.07
0.07
0.04
0.04
0.04 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 21
22
23
24
25 | | | e0.18
e0.14
e0.11
e0.07
e0.04 | e0.00
e0.00
e0.00
e0.00 | e0.04
e0.04
0.04
0.04
0.00 | 0.04
0.04
0.04
0.04
0.04 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 26
27
28
29
30
31 | | | e0.00
e0.00
e0.00
e0.00
e0.04
e0.04 | e0.00
e0.00
e0.00
e0.00
e0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.04
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 1.30
0.042
0.35
0.00
2.6 | 0.08
0.003
0.04
0.00
0.2 | 0.32
0.010
0.04
0.00
0.6 | 1.05
0.035
0.07
0.00
2.1 | 0.00
0.000
0.00
0.00 | 0.08
0.003
0.04
0.00
0.2 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | | | #### 06149000 CYPRESS LAKE WEST OUTFLOW CANAL NEAR WEST PLAINS, SASKATCHEWAN (International gaging station) LOCATION.--Lat 49°28'14", long 109°35'18" (NAD 27), in SW¹/₄ sec.16, T.6, R.27 W., third meridian, Hydrologic Unit 10050008, on left bank 1.1 mi downstream from Cypress Lake West Dam, 6 mi northeast of West Plains, and 13 mi north of Consul. PERIOD OF RECORD.--March 1940 to current season (seasonal records only). Monthly discharge only for some periods, published in WSP 1309. GAGE.--Water-stage recorder. Elevation of gage is 3,180 ft (NGVD 29). Prior to Sept. 18, 1952, at site 1 mi upstream and 300 ft downstream from Cypress Lake West Dam at different elevation. REMARKS.--Records fair except for estimated daily discharges, which are poor. Canal diverts water from Cypress Lake in NW¹/₄ sec.15, T.6, R.27 W., third meridian, for irrigation of 5,500 acres in Battle Creek basin in Saskatchewan. Water may be delivered to Battle Creek or diverted into Vidora Ditch at gate structure near lower end of canal. Water Survey of Canada satellite telemeter at station. COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 304 ft³/s, May 4, 1951; no flow at times each season. # DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|-----|-----|--|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|-----|-----| | 1
2
3
4
5 | | | e0.00
e0.00
e0.00
e0.00 | e10
e16
e13
e5.9
e5.8 | 0.32
0.32
0.32
0.25
0.28 | 57
29
0.14
0.07
0.04 | 0.32
0.32
0.32
4.4
7.1 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 6
7
8
9
10 | | | e0.00
e0.00
e0.00
e0.00 | e4.1
2.0
2.2
2.0
1.7 | 0.25
0.25
48
79
81 | 0.07
0.07
0.07
0.18
0.28 | 7.0
6.9
6.5
3.7
0.14 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | | e0.00
e0.00
e0.00
e0.00 | 3.6
4.8
6.8
15 | 87
87
91
93
98 | 0.32
0.28
0.28
0.25
0.21 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 16
17
18
19
20 | | | e0.00
e0.00
e0.32
e0.28
e0.21 | 8.5
3.3
3.3
3.2
3.0 | 96
99
103
89
54 | 0.25
0.28
0.28
0.32
0.35 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 21
22
23
24
25 | | | e0.18
e0.14
e0.25
e23
e17 | 0.49
0.39
0.39
0.39
0.39 | 53
53
53
51
49 | 0.39
0.39
0.39
0.39
0.35 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 26
27
28
29
30
31 | | | e9.1
e6.6
e6.4
e4.3
e1.7
e1.7 | 0.35
0.35
0.39
0.35
0.32 | 49
50
50
51
53
56 | 0.35
0.35
0.35
0.32
0.32 | 0.00
0.00
0.00
0.00
0.00 |
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
e0.00
e0.00
e0.00 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 71.18
2.30
23
0.00
141 | 133.01
4.43
16
0.32
264 | 1674.99
54.0
103
0.25
3320 | 93.34
3.11
57
0.04
185 | 36.70
1.18
7.1
0.00
73 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | | | #### 06149100 VIDORA DITCH NEAR CONSUL, SASKATCHEWAN (International gaging station) LOCATION.--Lat 49°27'27", long 109°35'30" (NAD 27), in SW¹/₄ sec.9, T.6, R.27 W., third meridian, Hydrologic Unit 10050008, on left bank 0.5 mi downstream from headgate near lower end of Cypress Lake west outflow canal, 12 mi north of Consul. PERIOD OF RECORD.--March 1963 to current season (seasonal records only). March 1952 to current season in reports of Department of the Environment, Canada. GAGE.--Water-stage recorder. Elevation of gage is 3,200 ft (NGVD 29). Prior to Aug. 1, 1963, at elevation 1.0 ft higher. REMARKS.—Records fair. Canal diverts water from Cypress Lake west outflow canal in NE¹/₄ sec.8, T.6, R.27 W., third meridian, for irrigation of about 2,140 acres in the Battle Creek basin. Water may be delivered either to this canal or returned to Battle Creek from Cypress Lake. Water Survey of Canada satellite telemeter at station. COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 101 ft³/s, May 26, 1988; no flow at times each season. # DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|-----|-----|--------------------------------------|--------------------------------------|---------------------------------------|---|---|--------------------------------------|--------------------------------------|---------------------------------------|-----|-----| | 1
2
3
4
5 | | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 53
31
0.11
e0.07
e0.07 | e0.04
e0.04
e0.04
e0.04
e0.04 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 6
7
8
9
10 | | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
18
34
35 | e0.07
e0.07
e0.07
e0.07
e0.07 | e0.04
e0.04
e0.04
e0.04
e0.04 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 38
39
44
49
58 | e0.07
e0.07
e0.07
e0.07
e0.07 | e0.04
e0.04
e0.04
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 16
17
18
19
20 | | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 56
58
62
68
52 | e0.07
e0.07
e0.07
e0.07
e0.07 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 21
22
23
24
25 | | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 53
54
55
54
52 | e0.07
e0.07
e0.07
e0.07
e0.07 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 26
27
28
29
30
31 | | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 52
52
50
50
51
52 | e0.07
e0.07
e0.04
e0.04
e0.04 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | 1186.00
38.3
68
0.00
2350 | 85.91
2.86
53
0.04
170 | 0.52
0.017
0.04
0.00
1.0 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | | | #### 06149200 RICHARDSON DITCH NEAR CONSUL, SASKATCHEWAN (International gaging station) LOCATION.--Lat 49°21'50", long 109°32'12" (NAD 27), near center of south line of sec.11, T.5, R.27 W., third meridian, Hydrologic Unit 10050008, on left bank 420 ft downstream from headgate, 4.8 mi north of Consul. PERIOD OF RECORD.--March 1963 to current season (seasonal records only). 1910-12, 1914, 1916-20, 1922-33, 1935, July 1946 to current season in reports of Department of the Environment, Canada. Estimates of seasonal diversion only in most seasons prior to 1946. GAGE.--Water-stage recorder. Prior to June 26, 1949, nonrecording gages at different sites and elevations. June 26, 1949, to Aug. 28, 1963, water-stage recorder at present site at elevation 1.00 ft higher. REMARKS.--Records fair. Ditch diverts from left bank of Battle Creek in $SW^{1}/_{4}$ sec. 11, T.5, R.27 W., third meridian, for irrigation of about 1,330 acres along Battle Creek. Water Survey of Canada satellite telemeter at station. COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 72 ft³/s, June 15, 1974; no flow at times each season. | | | | | 2.1. | | | | | | | | |-----|-----|---------|--|--------|--|---|---|---|---|---|---| | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
| 0.00 | | | | | | 0.00 | 0.00 | 32 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 55 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | 0.00 | 0.00 | 56 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 49 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | 0.00 | 0.00 | 37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9.2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | 0.00 | 0.00 | 3.7 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | 0.00 | 0.00 | | 0.00 | | | | | | 0.00 | 0.00 | 590.90 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1170 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | JAN | JAN FEB | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 | 0.00 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 32 0.00 0.00 47 0.00 0.00 55 0.00 0.00 56 0.00 0.00 56 0.00 0.00 55 0.00 0.00 53 0.00 0.00 53 0.00 0.00 37 0.00 0.00 20 0.00 0.00 37 0.00 0.00 3.7 0.00 0.00 3.7 0.00 0.00 3.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td>0.00 32 0.00 0.00 0.00 43 0.00 0.00 0.00 47 0.00 0.00 0.00 55 0.00 0.00 0.00 56 0.00 0.00 0.00 56 0.00 0.00 0.00 53 0.00 0.00 0.00 53 0.00 0.00 0.00 53 0.00 0.00 0.00 37 0.00 0.00 0.00 37 0.00 0.00 0.00 37 0.00 0.00 0.00 3.7 0.00 0.00 0.00 0.00 0.00 0.00</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> | 0.00 32 0.00 0.00 0.00 43 0.00 0.00 0.00 47 0.00 0.00 0.00 55 0.00 0.00 0.00 56 0.00 0.00 0.00 56 0.00 0.00 0.00 53 0.00 0.00 0.00 53 0.00 0.00 0.00 53 0.00 0.00 0.00 37 0.00 0.00 0.00 37 0.00 0.00 0.00 37 0.00 0.00 0.00 3.7 0.00 0.00 0.00 0.00 0.00 0.00 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | #### 06149300 MCKINNON DITCH NEAR CONSUL, SASKATCHEWAN (International gaging station) LOCATION.--Lat 49°20′00", long 109°29′40" (NAD 27), in NW¹/4 sec.30, T.4, R.26 W., third meridian, Hydrologic Unit 10050008, on right bank 1.0 mi downstream from headgate on Battle Creek, and 2.7 mi northeast of Consul. PERIOD OF RECORD.--March 1963 to current season (seasonal records only). 1911-26, 1929-31, and March 1938 to current season in reports of Department of the Environment, Canada. Estimates of seasonal diversions only in many years prior to 1947. GAGE.--Water-stage recorder. Prior to September 1949, nonrecording gages at various sites and elevations. Sept. 4, 1949, to Aug. 29, 1963, water-stage recorder at present site at elevation 1.00 ft higher. REMARKS.--Records good. Ditch diverts from right bank of Battle Creek in NE¹/₄ sec.30, T.4, R.26 W., third meridian, for irrigation of about 1,320 acres along Battle Creek. Water Survey of Canada satellite telemeter at station. COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 68 ft³/s, June 18, 1975; no flow at times each season. | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|-----|-----|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|-----|-----| | 1
2
3
4
5 | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 6
7
8
9
10 | | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
13
15
23
37 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 41
38
56
61
54 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 16
17
18
19
20 | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 50
44
42
38
28 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 21
22
23
24
25 | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 12
4.8
0.28
0.11
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 26
27
28
29
30
31 | | | 0.00
0.00
0.00
0.00
0.00 | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | 557.19
18.0
61
0.00
1110 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | | | #### 06149400 NASHLYN CANAL NEAR CONSUL, SASKATCHEWAN (International gaging station) LOCATION.--Lat 49°13′57", long 109°33′27" (NAD 27), in NE¹/₄ sec.22, T.3, T.27 W., third meridian, Hydrologic Unit 10050008, on left bank 0.8 mi downstream from headgate on Battle Creek, and 5.9 mi south of Consul. PERIOD OF RECORD.--March 1963 to current season (seasonal records only); 1912, 1914-35, 1938 to current season in reports of Department of the Environment, Canada. Prior to March 1950, estimates of seasonal diversions only in many seasons. Prior to Mar. 1, 1971, published as "Stirling and Nash Ditch". GAGE.--Water-stage recorder. Prior to Sept. 21, 1949, water-stage recorder at present site or nonrecording gages at site 0.5 mi downstream at different elevations. REMARKS.--Records good. Ditch diverts water from left bank of Battle Creek in SW¹/₄ sec.27, T.3, R.27 W., third meridian, for irrigation of about 1,880 acres along Battle Creek. Water Survey of Canada satellite telemeter at station. COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 85 ft³/s, Apr. 14, 1952; no flow at times each season. # DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |-------------|-----|-----|--------|--------|--------|-------|-------|-------|-------|-------|-----|-----| | 1 | | | 0.00 | 38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 2 | | | 0.00 | e33 | 10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 1
2
3 | | | 0.00 | e23 | 18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 4 | | | 0.00 | e22 | 19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 4
5 | | | 0.00 | 22 | 21 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 5 | | | 0.00 | 22 | 21 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 6 | | | 0.00 | 19 | 19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 7 | | | 0.00 | 16 | 0.74 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 8 | | | 0.00 | 13 | 0.21 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 9 | | | 0.00 | 5.8 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 10 | | | 0.00 | 0.32 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 11 | | | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 12 | | | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 13 | | | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 14 | | | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 15 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | 15 | | | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 16 | | | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 17 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 18 | | | 0.74 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 19 | | | 22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 20 | | | 35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 21 | | | 42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 22 | | | 42 | 0.00 | 31 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 23 | | | 44 | 0.00 | 36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 24 | | | 41 | 0.00 | 21 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 25 | | | 41 | 0.00 | 0.95 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 25 | | | 41 | 0.00 | 0.95 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 26 | | | e35 | 0.00 | 0.35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 27 | | | e31 | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 28 | | | e32 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 29 | | | e34 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 30 | | | 41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 31 | | | 40 |
 0.00 | | 0.00 | 0.00 | | 0.00 | | | | TOTAL | | | 480.74 | 192.45 | 177.43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | MEAN | | | 15.5 | 6.42 | 5.72 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | | | MAX | | | 44 | 38 | 3.72 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | MIN | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | AC-FT | | | 954 | 382 | 352 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | AC-FI | | | 204 | 304 | 352 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | #### 06149500 BATTLE CREEK AT INTERNATIONAL BOUNDARY (International gaging station) LOCATION.--Lat 49°00'07", long 109°25'18" (NAD 27), in SE¹/₄ sec.4, T.1, R.26 W., third meridian, Hydrologic Unit 10050008, on left bank 600 ft north of international boundary, in Saskatchewan, 8 mi upstream from Woodpile Coulee, 30 mi north of Chinook, MT, and at mile 69.8. DRAINAGE AREA.--997 mi², of which 378 mi² is probably noncontributing. PERIOD OF RECORD.--April 1917 to current season (seasonal records only most seasons). Monthly discharge only for March 1918 and March 1928, published in WSP 1309. REVISED RECORDS.--WSP 1389: 1935(M), 1936, 1937-38(M). WSP 1729: 1924, 1926, 1932 (monthly discharge only). W 1983: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 2,729.8 ft (International Boundary Commission Survey Datum). REMARKS.--Records good except those for estimated daily discharges, which are poor. Natural flow of stream affected by storage reservoirs, diversions for irrigation of about 9,500 acres, and return flow from irrigated areas. Water may be diverted into or from Frenchman River basin through Cypress Lake. Water Survey of Canada satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. COOPERATION.--This is one of a number of stations which are maintained jointly by Canada and the United States. | | | | | | <i>D</i> 11 | ibi mibi ii | · · · · · · · · · · · · · · · · · · · | | | | | | |--------------------------------------|--|---------|--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--|---------------------------------------|--------------------------------------|---|-----|-----| | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | | 1
2
3
4
5 | | | e4.2
e3.9
e3.5
e3.5
e3.5 | 73
54
29
19
33 | 37
37
32
22
12 | 32
31
30
25
25 | 15
14
12
9.5
9.1 | 0.49
0.39
0.32
0.28 | 0.04
0.04
0.04
0.00
0.00 | 10
9.3
8.5
8.2
7.6 | | | | 6
7
8
9
10 | | | e3.5
e3.2
e2.8
e2.5
e3.2 | 39
57
67
69
54 | 8.8
8.7
36
36
23 | 22
16
13
13 | 9.7
9.6
9.7
10 | 0.25
0.21
0.18
0.14
0.11 | 0.00
0.00
0.00
0.00
0.00 | 7.4
7.0
6.5
6.6
7.0 | | | | 11
12
13
14
15 | | | e3.5
e3.9
e4.2
e4.6
e6.4 | 61
60
46
60
71 | | | 12
11
11
8.9
7.8 | 0.07
0.04
0.04
0.04
0.00 | 0.00
0.00
0.00
0.00
0.00 | 7.1
7.3
7.3
7.7
7.7 | | | | 16
17
18
19
20 | | | e11
e18
e53
e212
e530 | 98
104
107
88
80 | 48
91
66
59
75 | 11
10
17
24
21 | 6.3
4.6
3.7
3.3
3.7 | 0.00
0.00
0.00
0.00
0.92 | 0.00
0.00
0.00
0.00 | 7.8
7.9
8.3
8.6
8.6 | | | | 21
22
23
24
25 | | | | 72
46
29
22
19 | 79
70
43
22
25 | 16
13
10
9.5
8.3 | 3.2
2.7
2.1
1.5
1.2 | 1.1
0.92
0.71
0.57
0.42 | 0.00
0.00
4.3
8.2
8.6 | 9.2
9.6
8.7
8.9
9.6 | | | | 26
27
28
29
30
31 | | | 105
67
83
67
47 | 23
29
28
28
32 | 45
60
49
48
35
30 | 7.1
6.3
5.9
5.4
9.2 | 0.92
0.92
0.95
0.92
0.81
0.64 | 0.32
0.18
0.14
0.11
0.07 | 9.5
10
11
11
11 | 9.2
9.0
9.1
e8.5
e7.8
e6.7 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 2451.4
79.1
530
2.5
4860 | 1597
53.2
107
19
3170 | 1331.5
43.0
91
8.7
2640 | 465.7
15.5
32
5.4
924 | 198.76
6.41
15
0.64
394 | 8.37
0.27
1.1
0.00 | 73.72
2.46
11
0.00
146 | 252.7
8.15
10
6.5
501 | | | | STATISTI | CS OF MON | THLY MI | EAN DATA FO | OR SEASON | NS 1917 - | 2003 | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | | 49.9
353
1997
0.000
1936 | 126
1526
1952
4.34
1981 | 57.7
538
1927
0.77
1937 | 32.5
261
1927
0.000
1937 | 0.000 | 6.95
50.7
1975
0.000
1919 | 7.98
332
1986
0.000
1919 | 7.95
57.7
1987
0.000
1920 | | | | SUMMARY | STATISTICS | | FOR | | | | | | SONS 1917 | | | | | LOWEST D | DAILY MEAN
AILY MEAN
PEAK FLOW
PEAK STAGI | N
E | | 530
0.00
a700
b6.83 | Mar 20
Aug 15
Mar 20
Mar 20 | | | 5590
0
c9780
11 | Apr
.00 Mar
Sep
.57 Sep | 15 1952
1 1918
25 1986
25 1986 | | | a--About, occurred during period affected by backwater from ice. b--Backwater from ice. c--From rating table extended above $4,400~\mathrm{ft}^3/\mathrm{s}$ on basis of slope-area measurement of peak flow. #### 06151500 BATTLE CREEK NEAR CHINOOK, MT $LOCATION.--Lat\ 48^{\circ}39'05",\ long\ 109^{\circ}13'47"\ (NAD\ 27),\ in\ NW^{1}/_{4}SW^{1}/_{4}NE^{1}/_{4}\ sec.3,\ T.33\ N.,\ R.19\ E.,\ Blaine\ County,\ Hydrologic\ Unit\ 10050008,\ on\ left\ bank,\ 4\ mi\ north\ of\ Chinook,\ and\ at\ river\ mile\ 14.$ DRAINAGE AREA.--1,539 mi². PERIOD OF RECORD.--April 1905 to September 1921 (monthly discharge only, published in WSP 1309), June 1984 to current year (seasonal records only). Published as North Fork Milk River near Chinook prior to 1913. GAGE.--Water-stage recorder. Elevation of gage is 2,410 ft (NGVD 29). Apr. 22, 1905 to Apr. 8, 1918, chain gage 100 ft downstream, and Apr. 9, 1918 to Sept. 30, 1921, chain gage on bridge 600 ft downstream at same elevation but different from present elevation. REMARKS.—Records fair. Diversions for irrigation of about 11,000 acres upstream from station. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. | | | | | | Ditti | DI WILLIAM | VILLEE | | | | | | |--------------------------------------|--|-----------|----------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|-----|-----|-----| | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | | 1
2
3
4
5 | | | | 55
66
66
52
39 | 28
31
34
36
41 | 27
24
23
23
25 | 15
6.9
13
17
19 | 4.2
3.8
1.8
1.7
0.34 | 3.1
1.6
1.6
3.0
3.3 | | | | | 6
7
8
9
10 | | | | 29
33
42
51
56 | 38
29
23
19
21 | 18
14
14
15
14 | 14
17
14
11 | 0.21
0.20
0.18
0.16
0.14 | 3.1
3.2
1.8
3.3
1.8 | | | | | 11
12
13
14
15 | | | | 54
46
48
48 | 36
27
22
28
36 | 12
12
11
10
10 | 7.9
7.7
9.5
9.5
9.9 | 0.13
0.48
0.69
0.65
0.44 | 0.99
0.42
0.40
0.39
0.45 | | | | | 16
17
18
19
20 | | | | 53
65
84
102
89 | 50
51
44
67
53 | 8.0
2.5
4.1
9.5
9.2 | 9.5
9.0
8.8
11 | 0.46
0.26
0.16
0.14
0.12 | 0.94
0.80
0.66
0.65
0.78 | | | | | 21
22
23
24
25 | | | | 72
67
56
43
34 | 48
57
56
53
38 | 6.5
20
19
16
14 | 11
9.0
9.0
8.9
8.8 | 0.11
0.10
0.56
8.4
0.88 | 0.66
0.59
0.56
0.53
0.42 | | | | | 26
27
28
29
30
31 | | | | 29
24
22
28
27 | 27
21
27
40
34
33 | 18
20
14
12
16 | 8.8
8.8
9.0
9.0
9.0 | 0.12
2.8
1.4
0.39
0.13 | 0.37
0.34
0.38
0.34
0.35 | | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | 1522
50.7
102
22
3020 | 1148
37.0
67
19
2280 | 440.8
14.7
27
2.5
874 | 332.5
10.7
19
6.9
660 | 32.04
1.03
8.4
0.10
64 | 36.82
1.23
3.3
0.34
73 | | | | | STATISTI | CS OF MON | THLY MEAN | DATA FOR | SEASONS | 1984 - 2 | 003 | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | | | 59.9
539
1996
0.031
2002 | 24.6
101
1986
0.000
2002 | 20.9
48.3
2002
0.085
1984 | 12.9
57.6
2000
0.016
1984 | 2.58
15.3
2002
0.000
1984 | 49.3
910
1986
0.000
1984 | | | | | SUMMARY | STATISTIC | CS | | FOR 20 | 03 SEASO | N | SEAS | ONS 1984 | - 2003 | | | | | LOWEST : | DAILY MEA
DAILY MEA
PEAK FLO
PEAK STA | 4
4 | | 102
0.10
107
2.71 | Apr 1 | 2
9 | 19400 | 00 Jul 1 | 6 1986 | | | | #### 06154100 MILK RIVER NEAR HARLEM, MT LOCATION.--Lat 48°29'22", long 108°45'28" (NAD 27), in NE¹/₄SE¹/₄NE¹/₄ sec.32, T.32 N., R.23 E., Blaine County, Hydrologic Unit 10050004, Fort Belknap Indian Reservation, on right bank 30 ft downstream from U.S. Highway 2 bridge, 0.6 mi northeast of unincorporated community of Fort Belknap Agency, 3.5 mi southeast of Harlem, and at river mile 332.2. DRAINAGE AREA.--9,822 mi². PERIOD OF RECORD.--October 1959 to September 1969, October 1982 to current year (seasonal record beginning 1994 water year). Gage heights only for period Apr. 3-25, 1952, published as "at Fort Belknap" in
1260-B. REVISED RECORDS .-- WSP 1729: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 2,319.48 ft (NGVD 29). Apr. 3-25, 1952, nonrecording gage on old bridge 200 ft downstream at different elevation. Nov. 1, 1959, to Mar. 12, 1968, nonrecording gage or water-stage recorder at several sites within 0.5 mi of present site at different elevation. REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow increased during irrigation season by water from St. Mary Canal (station number 05018500). Flow mainly regulated by Fresno Reservoir (station number 06136500) since 1939. Diversions for irrigation of about 60,000 acres of which about 13,000 acres lie downstream from station. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 1952 reached a stage of about 23.5 ft, present site and elevation. | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |---------|-----------|--------------|--------------|----------|-----------|----------|-------------|-----------|-------|------|------|--------------| | 1 | | | e70 | 243 | 447 | 487 | 446 | 473 | 165 | 78 | | | | 2 | | | e70 | 215 | 446 | 543 | 436 | 412 | 117 | 77 | | | | 3 | | | e70 | 220 | 448 | 556 | 384 | 403 | 66 | 77 | | | | 4 | | | e70 | 236 | 453 | 533 | 395 | 413 | 78 | 83 | | | | 5 | | | e70 | 223 | 481 | 501 | 427 | 446 | 98 | 76 | | | | | | | | | | | | | | | | | | 6 | | | e70 | 207 | 537 | 519 | 460 | 409 | 96 | 73 | | | | 7 | | | e70 | 190 | 556 | 531 | 411 | 411 | 110 | 77 | | | | 8 | | | e70 | 175 | 530 | 525 | 408 | 417 | 108 | 75 | | | | 9 | | | e70 | 165 | 517 | 551 | 374 | 415 | 100 | 76 | | | | 10 | | | e70 | 115 | 569 | 597 | 472 | 405 | 103 | 73 | | | | | | | | | | | | | | | | | | 11 | | | e70 | 129 | 642 | 605 | 485 | 371 | 103 | 75 | | | | 12 | | | e70 | 158 | 669 | 610 | 447 | 354 | 89 | 75 | | | | 13 | | | e70 | 143 | 689 | 592 | 438 | 338 | 72 | 72 | | | | 14 | | | e500 | 306 | 690 | 569 | 414 | 296 | 42 | 80 | | | | 15 | | | e1000 | 470 | 623 | 523 | 389 | 262 | 37 | 78 | | | | 3.5 | | | 1.400 | 504 | | -16 | 400 | 0.45 | 2.2 | | | | | 16 | | | e1400 | 504 | 559 | 516 | 423 | 245 | 93 | 66 | | | | 17 | | | e2000 | 531 | 550 | 506 | 493 | 229 | 107 | 79 | | | | 18 | | | e1900 | 549 | 549 | 467 | 541 | 255 | 110 | 81 | | | | 19 | | | e1800 | 537 | 492 | 457 | 485 | 248 | 117 | 81 | | | | 20 | | | e1800 | 545 | 451 | 530 | 503 | 244 | 106 | 80 | | | | 21 | | | 1710 | 587 | 415 | 551 | 492 | 231 | 94 | 76 | | | | 22 | | | 1720 | 573 | 330 | 533 | 416 | 227 | 92 | 75 | | | | 23 | | | 1660 | 557 | 279 | 425 | 409 | 204 | 91 | 80 | | | | 24 | | | 936 | 538 | 260 | 407 | 414 | 213 | 85 | 76 | | | | 25 | | | 791 | 503 | 373 | 391 | 433 | 252 | 85 | 74 | | | | 23 | | | ,,, | 303 | 3,3 | 371 | 100 | 202 | 0.5 | , - | | | | 26 | | | 671 | 483 | 433 | 386 | 444 | 234 | 84 | 77 | | | | 27 | | | 572 | 468 | 398 | 395 | 480 | 199 | 80 | 77 | | | | 28 | | | 460 | 449 | 311 | 391 | 517 | 181 | 80 | 74 | | | | 29 | | | 355 | 442 | 266 | 403 | 547 | 203 | 78 | e75 | | | | 30 | | | 287 | 447 | 315 | 417 | 561 | 220 | 78 | e70 | | | | 31 | | | 270 | | 357 | | 521 | 204 | | e70 | | | | | | | | | | | | | | | | | | TOTAL | | | 20742 | 10908 | 14635 | 15017 | 14065 | 9414 | 2764 | 2356 | | | | MEAN | | | 669 | 364 | 472 | 501 | 454 | 304 | 92.1 | 76.0 | | | | MAX | | | 2000 | 587 | 690 | 610 | 561 | 473 | 165 | 83 | | | | MIN | | | 70 | 115 | 260 | 386 | 374 | 181 | 37 | 66 | | | | AC-FT | | | 41140 | 21640 | 29030 | 29790 | 27900 | 18670 | 5480 | 4670 | | | | STATIS | TICS OF M | ONTHLY ME | AN DATA F | OR WATER | YEARS 196 | 0 - 1993 | AND SEASO | NS 1994 - | 2003* | | | | | MEAN | 69.42 | 84.49 | 71.79 | 444 | 569 | 662 | 593 | 572 | 395 | 345 | 94.4 | 71.8 | | MAX | 139 | 200 | 198 | 2287 | 2935 | 3506 | 1506 | 2484 | 726 | 1913 | 289 | 198 | | (WY) | 1990 | 1987 | 1987 | 1996 | 1965 | 1967 | 1965 | 1965 | 1965 | 1986 | 1987 | 1987 | | MIN | 1990 | 26.5 | 25.9 | 37.1 | 54.4 | 129 | 232 | 138 | 1965 | 20.9 | 31.2 | 25.9 | | (WY) | 19.0 | 26.5
1985 | 25.9
1985 | 2002 | 1961 | 2001 | 232
1985 | 2001 | 10.3 | 1988 | 1964 | 25.9
1985 | | (W I) | T203 | TAOD | T202 | 2002 | TAGT | 2001 | TAOD | 2001 | 1200 | 1200 | 1204 | TAOD | ### 06154100 MILK RIVER NEAR HARLEM, MT--Continued | SUMMARY STATISTICS | FOR 2003 SEA | ASON | WATER YEARS 1 | .960 - 1993* | SEASONS 1 | 994 - 2003* | |--|--------------|------------------|---------------------|----------------------------|-------------|---------------------------| | ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN | | | 349.5
857
139 | 1965
1984 | | | | HIGHEST DAILY MEAN | 2000 | Mar 17
Sep 15 | 12900
c0.00 | Sep 29 1986
Aug 10 1988 | 6190
2.5 | Mar 18 1996
Apr 6 2001 | | ANNUAL SEVEN-DAY MINIMUM
MAXIMUM PEAK FLOW | a2350 | Mar 23 | 0.00 | Aug 24 1988
Sep 29 1986 | 6450 | Mar 18 1996 | | MAXIMUM PEAK STAGE
INSTANTANEOUS LOW FLOW | b17.44 | Mar 17 | 25.73
0.00 | Sep 29 1986
Aug 1 1988 | 23.88 | Mar 18 1996 | | ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS | | | 253200
682 | 1145 1 1900 | | | | 50 PERCENT EXCEEDS
90 PERCENT EXCEEDS | | | 180
39 | | | | ^{*--}During period of operation (1960-69, 1983 to current year. Seasonal record station beginning 1994 water year). a--Gage height, 15.17 ft. b--Backwater from ice. c--No flow on many days in August and Semptember 1988. e--Estimated. #### 06154400 PEOPLES CREEK NEAR HAYS, MT LOCATION.--Lat 48°13'25", long 108°42'48" (NAD 27), in SW¹/₄ sec.35, T.29 N., R.23 E., Blaine County, Hydrologic Unit 10050009, on right bank 45 ft downstream from bridge on State Highway 66, 2.5 mi downstream from Myrtle Creek, 16.4 mi north of Hays, and at river mile 47.2. DRAINAGE AREA.--220 mi². PERIOD OF RECORD.--December 1966 to current year. GAGE.--Water-stage recorder. Elevation of gage is 2,714.10 ft (NGVD 29). REMARKS.--Records poor. Some storage in numerous stock and beaver ponds and diversions for irrigation of about 1,300 acres upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | <i>D</i> , 11 | ET WIE | · · · · · · · · · · · · · · · · · · · | | | | | | |--------------------------------------|---|---|--|--|---|---|---------------------------------------|---|--------------------------------------|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e0.00
e0.00
e0.00
e0.00 | e0.00
e0.00
0.04
0.02
0.01 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.10 | 1.1
1.1
1.4
1.5 | 0.99
0.74
0.64
0.74
2.2 | 0.04
0.03
0.04
0.03
0.05 | 0.17
0.20
0.21
0.24
0.22 | 0.12
0.11
0.11
0.05
0.01 | 0.00
0.00
0.00
0.00
0.00 | | 6
7
8
9
10 | e0.00
e0.00
e0.00 | 0.04
0.07
0.08
0.11
e0.10 | e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10 | e0.10
e0.10 | e0.05
e0.05 | 1.3
1.6
1.2
0.73
0.75 | 2.4
2.3
3.0
3.5
3.5 | 0.04
0.04
0.06
0.08
0.05 | 0.22
0.20
0.26
0.19
0.13 | 0.00
0.01
0.02
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | e0.00
e0.00
e0.00
e0.00 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.05
e0.05
e0.05
e0.05
e0.05 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.05
e0.10
185
309
141 | 0.64
0.72
0.45
0.45
0.86 | 2.4
1.9
1.3
0.88
0.59 | 0.09
0.10
0.12
0.16
0.20 | 0.08
0.08
0.09
0.13
0.10 | 0.00
0.00
0.00
0.00 | 0.02
0.03
0.03
0.07
0.03 | | 16
17
18
19
20 | e0.00 | e0.10 | e0.10 | e0.05
e0.05
e0.05
e0.05
e0.05 | e0.10
e0.10
e0.10
e0.10
e0.05 | 117
87
43
19
16 | 5.3
9.7
9.9
9.3
7.6 | 0.45
0.29
0.20
0.22
0.17 | 0.23
0.17
0.23
0.26
0.31 | 0.09
0.09
0.09
0.10
0.11 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 21
22
23
24
25 | e0.00 | e0.10
e0.10 | e0.05 | e0.05
e0.05 | | 12
9.3
6.7
5.2
3.6 | | 0.22
0.22
0.12
0.16
0.13 | 0.30
0.30
0.29
0.28
0.25 | 0.11
0.13
0.14
0.15
0.18 | | | | 26
27
28
29
30
31 | e0.00
e0.00
e0.00
e0.00
e0.00 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.05
e0.05 | e0.05
e0.05
e0.05
e0.05
e0.05
e0.05 | e0.10
e0.10
e0.10 | 3.0
2.9
2.5
2.0
1.8
1.4 | 0.56
0.42
0.63
0.82
1.1 | 0.10
0.08
0.07
0.03
0.04
0.05 | 0.28
0.30
0.31
0.23
0.17 | 0.16
0.13
0.10
0.11
0.12
0.11 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | TOTAL
MEAN
MAX
MIN
AC-FT | 0.00
0.000
0.00
0.00
0.00 | 2.47
0.082
0.11
0.00
4.9 | 2.65
0.085
0.10
0.05
5.3 |
2.00
0.065
0.10
0.05
4.0 | 2.55
0.091
0.10
0.05
5.1 | 968.30
31.2
309
0.05
1920 | 72.64
2.42
9.9
0.42
144 | 29.63
0.96
3.5
0.03
59 | 5.04
0.17
0.31
0.03
10 | 4.44
0.14
0.26
0.08
8.8 | 0.43
0.014
0.12
0.00
0.9 | 0.18
0.006
0.07
0.00
0.4 | | STATIST | rics of M | ONTHLY ME | AN DATA F | OR WATER | YEARS 196 | 7 - 2003 | , BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 3.43
37.1
1987
0.000
1972 | 3.32
20.5
1987
0.000
1972 | 1987 | 3.47
30.0
1971
0.000
1972 | 1971 | 28.9
285
1979
0.000
2002 | 17.5
122
1979
0.048
2002 | 29.8
190
1975
0.007
2001 | 20.7
123
1982
0.034
2001 | 1975
0.000 | 2.36
21.3
1975
0.000
1967 | | | SUMMAR | Y STATIST | 'ICS | FOR | 2002 CALE | NDAR YEAR | . 1 | FOR 2003 W | ATER YEAR | | WATER YEA | RS 1967 - | - 2003 | | LOWEST
HIGHES | MEAN
F ANNUAL
ANNUAL M
F DAILY M | MEAN
IEAN
IEAN | | 48.6
0.1
5.0 | 3 | | 1090.33 | 9 | | 10.9
47.8
0.1
1000 | | 1979
2001
7 1979 | | ANNUAL
MAXIMUI
MAXIMUI | M PEAK FL
M PEAK ST | AN Y MINIMUM OW AGE OW FLOW | | 0.0 | 0 Jan 18
0 Jan 18 | | 0.00
0.00
391
7.7:
0.00 | O Oct 1
O Oct 1
Mar 14
Mar 14
O Oct 1 | | 0.1
1000
a0.0
0.0
b8460
15.0
0.0
7910
21
1.0 | 0 Dec 1
0 Dec 1
Jun 8
3 Jun 8
0 Jan 2 | 1 1966
1 1966
3 1972
3 1972
2 1995 | | 10 PERC
50 PERC
90 PERC | CENT EXCE | AC-FT)
EDS
EDS
EDS | | 0.1
0.0
0.0 | 0
0
0 | | 1.4
0.10
0.00 | 0 | | 21
1.0
0.0 | 0 | | ^{*--}Median of yearly mean discharge, 4.92 $\rm ft^3/s$, 3,560 ac-ft/yr.a--No flow at times most years. b--From floodmark, from rating curve extended above 490 ft³/s on basis of slope-area measurement of peak flow. e--Estimated. #### 06154410 LITTLE PEOPLES CREEK NEAR HAYS, MT LOCATION.--Lat 47°57′58", long 108°39′36" (NAD 27), in SE¹/₄SE¹/₄NW¹/₄ sec.32, T.26 N., R.24 E., Blaine County, Hydrologic Unit 10050009, on right bank 0.5 mi upstream from west entrance to Mission Canyon, 2 mi southeast of Hays, and at river mile 23.1. DRAINAGE AREA.--13.0 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--August 1972 to current year. REVISED RECORDS.--WDR MT-81-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 3,769.72 ft (NGVD 29). August 1972 to June 24, 1976, gage at former site at elevation 10.00 ft higher. Prior to Apr. 22, 1987, gage located 330 ft downstream. REMARKS.--Water-discharge records fair. No known regulation or diversion upstream from station. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR MAY JUN JUL AUG SEP APR 1 1.5 1.4 1.3 1.1 1.0 1.0 1.3 2.4 3.4 1.8 1.1 1.2 2 1.5 1.3 1.0 1.0 1.3 2.4 3.2 1.7 1.4 1.1 1.1 1.1 3.2 1.1 1.5 1.4 1.3 1.1 1.0 1.0 1.3 2.4 1.6 1.1 2.6 1.6 4 1.5 1.5 1.3 1.1 1.0 1.0 1.3 1.1 5 1.5 1.4 1.2 1.2 1.0 0.96 1.4 2.8 2.9 1.6 1.2 1.1 2.9 6 1.5 1.4 1.2 1.1 1.0 1.0 1.4 3.0 1.6 1.2 1.1 1.2 1.4 1.3 1.6 1.5 1.1 1.0 1.0 2.9 2.8 1.4 1.2 1.5 1.5 1.2 0.98 1.4 2.7 1.5 1.2 1.2 8 1.1 1.0 2.8 1.1 1.0 3.1 1.2 1.2 1.2 10 1.5 1.4 1.1 1.0 0.96 1.5 6.2 1.4 11 1.5 1.4 1.2 1.1 1.0 0.95 1.7 8.4 2.9 1.4 1.2 1.1 12 1.5 1.3 1.2 1.1 1.0 0.97 1.7 8.2 2.8 1.4 1.2 1.1 13 1.5 1.5 1.3 1.2 1.1 1.0 1.0 1.8 8 2 2.8 $1.4 \\ 1.4$ 1.2 1 1 1.3 1.0 2.8 1.2 14 1.1 1.0 2.0 8.1 1.1 1.2 2.0 1.2 1.3 1.0 1.1 7.2 2.8 1.3 1.1 16 1.5 1.3 1.2 1.1 1.0 1.5 1.9 6.4 2.8 1.3 1.2 1.1 1.2 1.2 1.2 1.9 5.9 2.8 1.3 1.2 17 1.5 1.3 1.1 1.0 1.1 1.1 1.5 1.5 2.2 2.7 1.3 18 1.3 1 0 1.0 1 0 5 3 1.2 1 1 1.3 1.2 19 1.1 1.0 0.97 4.9 20 1.5 1.3 1.2 1.0 0.97 2.2 4.7 2.5 1.3 1.2 21 1.5 1.0 2.1 2.3 1.3 1.2 1.1 4.5 1.3 1.2 1.1 1.2 2.1 4.0 1.2 22 1.4 1.3 0.99 0.99 1.1 2.3 1.3 1.1 2.3 1.3 23 1 4 1.3 1 0 1 0 1 1 3 8 1 1 24 1.2 1.3 2.2 1.2 25 1.4 1.3 1.2 1.0 1.1 2.3 3.7 2.1 1.3 1.2 1.1 26 1.4 1.2 1.0 1.0 1.2 2.4 2.1 1.3 1.2 1.4 1.2 1.2 2.5 3.1 2.1 1.3 1.2 1.1 27 1.3 1.0 1.0 28 1.3 1.0 1.0 29 1.4 1.2 1.0 1.2 2.4 1.9 1.2 1.2 1.4 1.1 ___ 1.2 1.2 1.2 30 1.3 1.0 2.4 3.4 1.8 1.2 31 1.0 3.4 TOTAL 45.6 40.5 37.4 32.99 28.39 33.23 56.4 137.8 78.5 42.9 37.0 33.8 1.21 1.35 1.07 1.88 2.62 1.19 1.01 4.45 1.38 MEAN 1.47 1.06 1.13 1.6 1.5 1.3 1.2 2.5 8.4 3.4 1.8 1.3 1.2 MAX 1.3 1.1 1.1 MTN 1.4 1.3 0.99 0.99 0.95 2.4 1.8 1.2 1.1 273 67 AC-FT 90 85 80 65 56 66 156 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1972 - 2003, BY WATER YEAR (WY) MEAN 2.35 2.16 2.00 1.89 1.78 2.29 4.47 11.9 8.18 5.31 2.90 2.55 3.75 3.51 1986 3.84 1976 21.5 1979 75.6 26.6 1975 32.9 MAX 6.92 4.60 5.52 8.11 8.42 1987 1987 1986 1996 1974 1993 1993 1978 (WY) MIN 1.11 1.07 0.93 0.90 0.95 1.07 1.20 1.45 1.98 1.38 1 19 1 13 2002 2003 2002 2002 2003 2003 (WY) 2002 2002 2002 1997 2000 2003 SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1972 - 2003 ANNUAL TOTAL ANNUAL MEAN 2.21 1.66 3.99* HIGHEST ANNUAL MEAN 11.6 1974 LOWEST ANNUAL MEAN 1.46 500 May 25 1974 HIGHEST DAILY MEAN 43 Jun 23 8 4 May 11 LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM 0.85 0.95 Mar 11 0.67 May 21 1997 4 Jan May 18 0.97 MAXIMUM PEAK FLOW 9.8 May 10 a576 May 25 1974 b4.57 MAXIMUM PEAK STAGE .80 May 10 May 25 1974 INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) 21 1997 0 .67 May 1600 1200 2890 10 PERCENT EXCEEDS 3.9 6.6 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS 1.0 2.8 1.0 2.2 1.3 ^{*--}Median of yearly mean discharge, 3.10 ${\rm ft}^3/{\rm s}$. a--From rating curve extended above 44 ${\rm ft}^3/{\rm s}$, on basis of slope-area measurement of peak flow. b--From floodmark, at site and datum then in use. ### 06154410 LITTLE PEOPLES CREEK NEAR HAYS, MT--Continued WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1977 to June 2003, discontinued. REMARKS.--Unpublished records of instantaneous water temperature and specific conductance for many days are available in files of the District office. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | water,
fltrd,
mg/L | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | ide,
water,
fltrd,
mg/L | fltrd,
mg/L | water,
fltrd,
mg/L | water,
fltrd,
mg/L | | water,
fltrd,
tons/
acre-ft | 22.0
22.7
Residue
water,
fltrd,
tons/d
(70302) | fltrd,
mg/L
as N | water
fltrd,
mg/L
as N | |-------------------------------------|---|--|---|---|--|--
--|--|---|--| | Sodium, water, fltrd, mg/L(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chloride,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L | Sulfate
water,
fltrd,
mg/L | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L | Residue
water,
fltrd,
tons/
acre-ft | Residue
water,
fltrd,
tons/d | Ammonia
water,
fltrd,
mg/L
as N | Nitrite + nitrate water fltrd, mg/L as N | | water,
fltrd,
mg/L
(00930) | linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | ide,
water,
fltrd,
mg/L
(00940) | ide,
water,
fltrd,
mg/L
(00950) | water,
fltrd,
mg/L | water,
fltrd,
mg/L | water,
fltrd,
sum of
consti-
tuents
mg/L | water,
fltrd,
tons/
acre-ft | Residue
water,
fltrd,
tons/d | water,
fltrd,
mg/L
as N | + nitrate water fltrd, mg/L as N | | | | .98 | 31 | | | | | | | (00031) | | | | .,, | | 11.3 | 81.5 | 311 | .42 | 2.52 | <.04 | <.06 | | | 214 | 1.13 | . 3 | 11.7 | | 320 | .44 | | | <.06 | | | Date | water
fltrd
mg/L
as N | phos-
e phate
, water
, fltrd
mg/L
as P | , Arseni
, water
unfltr
ug/I | water
d unfltr
ug/L | ium, water unfltr recove d -able ug/L | Copper , water d unfltr r recove , -able ug/L | , water
d unfltro
r recove:
, -able
ug/L | d
r | | | | MAY 2003
07 | <.008 | <.02 | E2 | <.04 | <.8 | 1.9 | 40 | | | | | | <.008 | <.02 | <2 | <.04 | <.8 | .9 | 30 | | | | | MAY
07
JUN | 2003
7 | water, nfltrd u ecover r -able, ug/L 01051) (| water, nfltrd u ecover r -able, ug/L 01067) (| Zinc, water, unfltrd ecover d -able, p ug/L < | sedi-
ment,
sieve
liametr c
ercent t | pended
sedi-
ment
oncen-
ration
mg/L | sedi-
ment
load,
tons/d | | | | | | MAY 2003
07
JUN
25
Dat
MAY
0' | Water fltrd Date mg/L as N (00613 MAY 2003 07 <.008 JUN 25 <.008 | Nitrite | Water, water, Arseni fltrd, fltrd, water mg/L mg/L mg/L unfltrd water as N as P ug/I (00613) (00671) (01002) | Nitrite phos- Nitrite phate, water, water, water water water fltrd, fltrd, water wat | Nitrite phos- water wa | Nitrite | Nitrite phase water, water, water, water, water, water, fltrd, fltrd, water water, water, recover | Nitrite phos- phate, water, w | #### 06154550 PEOPLES CREEK BELOW KUHR COULEE, NEAR DODSON, MT LOCATION.--Lat 48°21'49", long 108°21'16" (NAD 27), in NW¹/₄NW¹/₄NE¹/₄ sec.16, T.30 N., R.26 E., Phillips County, Hydrologic Unit 10050009, on right bank 10 ft downstream from bridge on county highway, 2.4 mi downstream from Kuhr Coulee, 5.5 mi southwest of Dodson, and at river mile 7.8. DRAINAGE AREA.--675 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--April 1918 to November 1921 (fragmentary), June 1951 to September 1973, October 1981 to September 1988 (published as "near Dodson"), October 1988 to current year. Monthly discharge only for some periods, published in WSP 1309. GAGE.--Water-stage recorder. Elevation of gage is 2,309.18 ft (NGVD 29) (levels by Bureau of Indian Affairs). Prior to June 1951, nonrecording gage at site 0.5 mi upstream at different elevation. June 1, 1951 to Sept. 30, 1988, water-stage recorder at sites 2.5 mi upstream at different elevation. REMARKS.--Water-discharge records fair. Diversions for irrigation of about 3,300 acres upstream from station. U. S. Geological Survey satellite telemeter at station. | ci ai statio | 11. | | | | | | | | | | | | | |--|---
---|--|--|---
--|--|--|--|---|---|--|--| | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP | | | | | | | | | | | | | | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | e0.10
e0.10
e0.05
e0.05
e0.05 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.05
e0.10
e0.05
e0.05
e0.05 | 0.21
1.2
2.0
3.6
4.1 | 0.22
0.03
0.01
0.22
3.6 | 0.03
0.02
0.01
0.25
0.77 |
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 0.00
0.00
0.00
0.00 | e0.01
e0.10
e0.10
e0.10
e0.10 | e0.05
e0.05
e0.05
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.05
e0.05 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.05
e0.05
e0.05
e0.05
e0.05 | 6.0
4.8
1.1
0.89
0.56 | 4.9
8.7
12
16
19 | 2.0
2.6
2.4
3.7
2.4 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.05
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 0.00
0.00
0.00
0.00
0.00 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.05
e0.05
e0.05
e0.05
e0.05 | e0.10
e0.10
e0.10
e0.05
e0.05 | e0.05
e0.10
e10
e640
630 | 0.17
0.11
0.26
0.45
1.2 | 19
18
17
15 | 2.7
4.4
7.6
6.5
7.6 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 0.00
0.00
0.00
0.00
0.00 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.05
e0.05
e0.05
e0.05 | e0.05
e0.05
e0.05
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.05 | 263
160
67
26
10 | 3.9
7.2
9.9
16
13 | 7.6
5.0
3.6
2.4
1.5 | 14
11
8.2
6.3
4.6 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 0.00
0.00
0.00
0.00
0.00 | e0.10
e0.10
e0.05
e0.05
e0.05 | e0.05
e0.05
e0.05
e0.05
e0.10 | e0.01
e0.00
e0.00
e0.00
e0.00 | e0.05
e0.05
e0.05
e0.05
e0.05 | 7.2
9.3
7.0
5.3
5.1 | 12
9.5
7.2
4.8
2.7 | 1.0
0.83
0.49
0.29
0.04 | 3.6
2.5
1.2
0.42
0.08 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 0.00
0.00
0.00
0.00
0.00 | e0.05
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.10
e0.10 | e0.00
e0.00
e0.00
e0.01
e0.10
e0.10 | e0.10
e0.05
e0.10 | 3.2
1.9
1.3
1.1
0.72
0.33 | 1.8
0.96
1.4
0.82
0.50 | 0.03
0.25
0.87
0.66
0.44 | 0.09
0.27
0.17
0.02
0.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 0.00
0.000
0.00
0.00
0.00 | 2.21
0.074
0.10
0.00
4.4 | 2.40
0.077
0.10
0.05
4.8 | 1.72
0.055
0.10
0.00
3.4 | 2.35
0.084
0.10
0.05
4.7 | 1849.15
59.6
640
0.05
3670 | 118.33
3.94
16
0.11
235 | 170.80
5.51
19
0.01
339 | 95.43
3.18
14
0.00
189 | 0.00
0.000
0.00
0.00
0.00 | 0.05
0.002
0.05
0.00
0.1 | 0.00
0.000
0.00
0.00
0.00 | | | | 8.36
195
1987
0.000
1959 | 5.68
63.6
1987
0.000
1957 | 4.47
61.5
1987
0.000
1953 | 5.19
64.1
1971
0.000
1956 | 30.0
369
1971
0.000
1956 | 78.4
385
1996
0.000
2002 | 53.9
520
1965
0.57
1962 | 53.4
575
1986
0.094
1998 | 41.2
332
1953
0.001
2001 | 22.1
128
1983
0.000
1918 | 3.33
31.2
1993
0.000
1919 | 12.7
480
1986
0.000
1918 | | | | Y STATIST | CICS | FOR | 2002 CALE | NDAR YEA | R | FOR 2003 V | NATER YEAR | | WATER YEAR | RS 1918 - | 2003* | | | | | | | | | 1918
1918
1986
1952 | | | | | | | | | | | OCT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 | OCT NOV 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 e0.10 | OCT NOV DEC 0.00 0.00 e0.10 0.00 0.00 e0.10 0.00 0.00 e0.05 0.00 0.00 e0.05 0.00 0.00 e0.05 0.00 e0.01 e0.05 0.00 e0.10 e0.05 0.00 e0.10 e0.10 e0.05 e0.05 e0.10 0.00 e0.05 e0.10 0.00 e0.10 e0.1 | OCT NOV DEC JAN 0.00 0.00 e0.10 e0.10 e0.10 0.00 0.00 e0.05 e0.10 0.00 0.00 e0.05 e0.10 0.00 e0.10 e0.05 e0.10 0.00 e0.10 e0.10 e0.05 e0.05 0.00 e0.10 e0.10 e0.00 0.00 e0.10 e0.10 e0.00 0.00 e0.10 e0.05 e0.10 e0.10 e0.00 0.00 e0.10 e0.10 e0.10 e0.10 e0.00 0.00 e0.10 e0.10 e0.00 0.00 e0.10 e0.10 e0.00 0.00 e0.10 e0.10 e0.00 0.00 e0.10 e0.00 e0.00 e0.00 0.00 e0.10 e0.00 e0.00 e0.00 e0.00 0.00 e0.00 e0 | DISCHARGE, CUBIC FEET PER SECONDA OCT NOV DEC JAN FEB 0.00 0.00 e0.10 e0.10 e0.10 e0.10 0.00 0.00 e0.00 e0.10 e0.10 e0.10 0.00 0.00 e0.05 e0.10 e0.10 0.00 e0.10 e0.10 e0.05 e0.05 0.00 e0.10 e0.05 e0.00 e0.05 0.00 e0.10 e0.05 e0.10 e0.05 0.00 e0.10 e0.05 e0.10 e0.05 0.00 e0.10 e0.05 e0.00 e0.05 e0.05 e0.00 e0.05 0.00 e0.05 e0.05 e0.00 e0.05 0.00 e0.10 e0.10 e0.10 e0.00 e0.10 0.00 e0.10 e0.10 e0.00 e0.05 0.00 e0.10 e0.00 e0.00 e0.05 0.00 e0.10 e0.00 e0.00 e0.05 0.00 e0.10 e0.00 e0.00 e0.00 e0.05 0.00 e0.10 e0.00 e0.00 e0.00 e0.05 0.00 e0.10 e0.00 | DISCHARGE, CUBIC FEET PER SECOND, WATE DAILY MEAN OCT NOV DEC JAN FEB MAR 0.00 0.00 e0.10 e0.10 e0.10 e0.10 e0.05 0.00 0.00 e0.10 e0.10 e0.10 e0.10 e0.10 0.00 0.00 e0.05 e0.10 e0.10 e0.10 e0.05 0.00 0.00 e0.05 e0.10 e0.10 e0.05 0.00 0.00 e0.05 e0.10 e0.10 e0.05 0.00 e0.01 e0.05 e0.10 e0.10 e0.05 0.00 e0.10 e0.05 e0.10 e10 0.00 e0.10 e0.10 e0.05 e0.05 e0.10 e0.00 0.00 e0.10 e0.05 e0.05 e0.10 e0.05 0.00 e0.10 e0.05 e0.00 e0.05 f0.00 e0.05 e0.00 e0.0 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR O DAILY MEAN VALUES OCT NOV DEC JAN FEB MAR APR 0.00 0.00 e0.10 e0.10 e0.10 e0.10 e0.05 0.21 0.00 0.00 e0.00 e0.10 e0.10 e0.10 e0.05 0.21 0.00 0.00 e0.05 e0.10 e0.10 e0.05 2.0 0.00 0.00 e0.05 e0.10 e0.10 e0.05 3.6 0.00 0.00 e0.05 e0.10 e0.10 e0.05 3.6 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 4.1 0.00 e0.11 e0.05 e0.10 e0.10 e0.05 6.0 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 1.1 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 4.8 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 1.1 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 1.1 0.00 e0.10 e0.10 e0.05 e0.10 e0.10 e0.05 0.89 e0.50 0.89 0.00 e0.10 e0.10 e0.05 e0.10 e0.10 e0.05 0.89 0.00 e0.10 e0.10 e0.05 e0.10 e0.10 e0.50 0.89 0.00 e0.10 e0.10 e0.05 e0.10 e0.10 e0.50 0.89 0.00 e0.10 e0.10 e0.05 e0.10 e0.10 e0.50 0.89 0.00 e0.10 e0.10 e0.05 e0.10 e0.10 e0.10 0.26 0.00 e0.10 e0.10 e0.05 e0.10 e0.10 e0.10 0.26 0.00 e0.10 e0.10 e0.05 e0.05 e1.00 10 0.26 0.00 e0.10 e0.10 e0.05 e0.05 e0.10 e0.10 0.26 0.00 e0.10 e0.05 e0.05 e0.05 e640 0.45 0.00 e0.10 e0.05 e0.05 e0.10 160 7.2 0.00 e0.10 e0.05 e0.05 e0.10 160 7.2 0.00 e0.10 e0.05 e0.05 e0.10 160 7.2 0.00 e0.10 e0.05 e0.05 e0.00 e0.10 13 0.00 e0.10 e0.05 e0.05 e0.00 e0.10 13 0.00 e0.10 e0.05 e0.05 e0.00 e0.05 1.2 e0.00 e0.00 e0.00 e0.00 e0.05 1.2 0.00 e0.00 e0 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 20 DAILY MEAN VALUES OCT NOV DEC JAN FEB MAR APR MAY 0.00 0.00 e0.10 e0.10 e0.10 e0.10 e0.05 0.21 0.22 0.00 0.00 0.00 e0.10 e0.10 e0.10 e0.10 1.2 0.03 0.00 0.00 0.00 e0.05 e0.10 e0.10 e0.05 2.0 0.01 0.00 0.00 0.00 e0.05 e0.10 e0.10 e0.05 2.0 0.01 0.00 0.00 e0.05 e0.10 e0.10 e0.05 3.6 0.22 0.00 0.00 e0.05 e0.10 e0.10 e0.05 4.1 3.6 0.00 e0.01 e0.05 e0.10 e0.10 e0.05 4.1 3.6 0.00 e0.00 e0.05 e0.10 e0.10 e0.05 4.8 8.7 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 6.0 4.9 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 1.1 12 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 1.1 12 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 0.56 19 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.1 12 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.1 12 0.00 e0.10 e0.10 e0.05 e0.10 e0.10 e0.05 1.1 18 0.00 e0.10 e0.10 e0.05 e0.10 e0.10 e0.05 1.1 18 0.00 e0.10 e0.10 e0.05 e0.10 e0.10 e0.10 0.26 17 0.00 e0.10 e0.10 e0.05 e0.10 e0.10 e0.10 0.26 17 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 e0.10 e0.10 0.26 17 0.00 e0.10 e0.10 e0.05 e0.05 e0.10 e0.10 0.26 17 0.00 e0.10 e0.10 e0.05 e0.05 e0.10 e0.05 e0.10 0.26 17 0.00 e0.10 e0.10 e0.05 e0.05 e0.10 e0.05 e0.00 0.26 17 0.00 e0.10 e0.10 e0.05 e0.05 e0.00 e0.05 e0.00 0.26 17 0.00 e0.10 e0.10 e0.05 e0.05 e0.00 e0.05 e0.00 0.26 17 0.00 e0.10 e0.10 e0.05 e0.05 e0.00 e0.05 e0.00 0.26 17 0.00 e0.10 e0.05 e0.05 e0.05 e0.00 e0.05 e0.00 e0.05 e0.00 e0. | OCT NOV DEC JAN FEB MAR APR MAY JUN 0.00 0.00 e0.10 e0.10 e0.10 e0.10 e0.05 0.11 0.22 0.03 0.00 0.00 e0.10 e0.10 e0.10 e0.10 e0.05 0.21 0.22 0.03 0.00 0.00 e0.05 e0.10 e0.10 e0.05 2.0 0.01 0.01 0.00 0.00 e0.05 e0.10 e0.10 e0.05 2.0 0.01 0.01 0.00 0.00 e0.05 e0.10 e0.10 e0.05 2.0 0.01 0.01 0.00 0.00 e0.05 e0.10 e0.10 e0.05 2.0 0.01 0.01 0.00 0.00 e0.05 e0.10 e0.10 e0.05 2.0 0.01 0.01 0.00 0.00 e0.05 e0.10 e0.10 e0.05 2.0 0.01 0.07 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 4.1 3.6 0.27 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 4.8 8.7 2.6 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 1.1 12 2.4 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 1.1 12 2.4 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 1.1 12 2.4 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.1 12 2.4 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.1 12 2.4 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.1 12 2.4 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.1 12 2.4 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.1 12 2.4 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.1 12 2.4 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.1 12 2.4 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.89 16 3.7 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.89 16 3.7 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.56 19 2.4 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.1 18 4.4 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.1 18 4.4 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.2 12 7.6 0.00 e0.10 e0.10 e0.05 e0.10 e1.0 1.1 18 4.4 0.00 e0.10 e0.10 e0.05 e0.10 e1.0 1.2 12 7.6 0.00 e0.10 e0.10 e0.05 e0.05 e0.05 e640 0.15 12 12 7.6 0.00 e0.10 e0.10 e0.05 e0.05 e0.05 e640 0.12 12 12 7.6 0.00 e0.10 e0.10 e0.05 e0.05 e0.05 e0.05 e0.05 e640 0.15 6.0 1.2 12 12 7.6 0.00 e0.10 e0.05 e0.05 e0.05 e0.05 e640 0.12 12 12 7.6 0.00 e0.10 e0.05 e0.05 e0.05 e0.05 e0.05 e640 0.12 12 12 7.6 0.00 e0.10 e0.05 e0. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER DAILY MEAN VALUES OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 0.00 0.00 e0.10 e0.10 e0.10 e0.11 e0.15 0.21 0.22 0.03 0.00 0.00 0.00 e0.10 e0.10 e0.10 e0.10 e0.15 0.21 0.22 0.03 0.00 0.00 0.00 e0.05 e0.10 e0.10 e0.10 e0.15 1.2 0.03 0.02
0.00 0.00 0.00 e0.05 e0.10 e0.10 e0.05 1.2 0.00 0.00 1.00 0.00 0.00 e0.05 e0.10 e0.10 e0.05 1.2 0.00 1.00 1.00 0.00 0.00 e0.05 e0.10 e0.10 e0.05 1.2 0.00 1.00 1.00 0.00 0.00 e0.05 e0.10 e0.10 e0.05 1.2 0.00 1.00 1.00 0.00 0.00 e0.00 e0.05 e0.10 e0.10 e0.05 1.2 0.00 0.00 0.00 e0.00 e0.05 e0.10 e0.10 e0.05 1.2 0.00 0.00 0.00 e0.00 e0.05 e0.10 e0.10 e0.05 1.2 0.00 0.00 0.00 e0.00 e0.05 e0.10 e0.10 e0.05 1.2 0.00 0.00 0.00 e0.00 e0.05 e0.10 e0.10 e0.05 1.2 0.00 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 0.00 0.00 0.00 e0.10 e0.10 e0.10 e0.10 e0.10 1.2 0.03 0.02 0.00 0.00 0.00 0.00 e0.10 e0.10 e0.10 e0.10 e0.10 1.2 0.03 0.02 0.00 0.00 0.00 0.00 0.00 e0.10 e0.10 e0.10 e0.10 e0.5 0.00 1.01 0.01 0.01 0.00 0.00 0.00 0 | | | ^{*--}During period of operation (1918-21 (fragmentary), 1951-73, 1982 to current year. a--Backwater from ice. b--Gage height, 15.91 ft, from floodmark, at different site and datum. c--Backwater from ice, from floodmark in gage house, at different site and datum. ### PERIOD OF RECORD.--Water years 1989-92, 1994, May 1999 to current year. REMARKS.—Due to no flow for July through September, a fourth sample was not collected this year. Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | Date | | Instan-
taneous
dis-
charge,
cfs
(00061) | field,
std
units
(00400) | wat unf
uS/cm
25 degC
(00095) | | ature,
water,
deg C
(00010) | org-N,
water,
unfltrd
mg/L
as N
(00625) | water
fltrd,
mg/L
as N
(00631) | Nitrite
water,
fltrd,
mg/L
as N
(00613) | | |----------------|--|---|--|--|--|--|---|---|--|--|--| | | 19
MAY | 1230 | 19 | 8.3 | 583 | | 1.5 | 2.2 | .313 | .024 | | | | 07
JUN | 1215 | 8.0 | 8.6 | 1420 | 0.0 | 7.0 | .52 | <.022 | <.002 | | | | 25 | 1215 | .03 | 9.3 | 1330 | 22.5 | 19.0 | .78 | <.022 | <.002 | | | | | | Date | Orthorphose phate water fltromg/I as I (0067) | Phoser, Phoser, phorus d, water unfltr mg/l | s, sieve
r, diamet
rd percen
L <.063m | pende, sedi-
sedi-
e men-
tr concer
nt tration mg/1 | ed Sus- pende sedi- ment n- load tons | ed
:
: | | | | | | | MAR 2003
19
MAY | .038 | 3 .32 | 56 | 199 | 10 | | | | | | | | 07 | < .00 | 7 .026 | 89 | 54 | 1.2 | | | | | | | | 25 | <.007 | 7 .033 | 76 | 5 | .00 |) | | | | Date | Time | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | | MAY 2003
07 | 1215 | 390 | 68.5 | 53.8 | 7.74 | 4 | 174 | 261 | 12.1 | .46 | 3.68 | | Date | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d | water
unfltrd | water, | | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Nickel,
water,
unfltrd
recover
-able,
ug/L
(01067) | unfltrd
recover | | MAY 2003
07 | 484 | 961 | 1.31 | 20.8 | E2 | <.2 | <.8 | 3.8 | .28 | 4.52 | 4 | $\mathtt{E--Estimated}.$ #### 06155030 MILK RIVER NEAR DODSON, MT LOCATION.--Lat 48°24'11", long 108°17'35" (NAD 27), in NE¹/₄SE¹/₄NW¹/₄ sec.36, T.31 N., R.26 E., Phillips County, Hydrologic Unit 10050004, on left bank 30 ft downstream from U.S. Highway 2 bridge, 0.95 mi downstream from Dodson Dam, 1.9 mi west of Dodson, and at river mile 273.2. DRAINAGE AREA.--11,192 mi². PERIOD OF RECORD.--October 1982 to current year (seasonal record beginning water year 1994). GAGE.--Water-stage recorder. Elevation of gage is 2,250 ft (NGVD 29). REMARKS.--Records good except those for estimated daily discharges, which are poor. Numerous diversions for irrigation upstream from station. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |---|--|---------------------------------------|--|---------------------------------------|--|------------------------------------|--|---|--------------------------------------|--|---|--| | 1
2
3
4
5 | | | e50
e50
e50
e50
e60 | 139
124
116
103
100 | 6.8
6.0
6.2
7.8
9.3 | | 56
58
17 | 6.5
4.5
5.2 | 0.14
0.20
0.26
0.10
0.00 | 0.41
0.32
0.39
0.53
0.58 | | | | 6
7
8
9
10 | | | e50
e50
e50
e50
e60 | 102
231
188
11
10 | 9.2
10
12
11
9.8 | e5.0
e5.0
e5.0
e5.0 | 5.7
7.4
9.8
13
9.5 | 10
8.9
3.8
3.7
4.2 | 0.00
0.00
0.00
0.00
0.00 | 131
205
116
113
107 | | | | 11
12
13
14
15 | | | e60
e60
e70
e200
e400 | 9.7
10
10
9.7
8.9 | 13
16
43
72
106 | 9.0
16
19
33
64 | 8.4
13
13
10
4.3 | 3.3
1.4
0.35
0.07
0.00 | 0.00
0.00
0.00
0.00
0.00 | 101
93
82
74
79 | | | | 16
17
18
19
20 | | | e950
e1500
2320
1980
1410 | 8.7
9.6
9.3
10 | 117
55
56
50
29 | 54
71
52
35
21 | 3.5
3.5
3.8
4.8
4.7 | 0.32
0.00
0.00
0.00
0.00 | 0.06
0.06
0.00
0.00 | 76
84
64
73
80 | | | | 21
22
23
24
25 | | | 986
1130
1140
1070
786 | 18
35
76
74
75 | 16
9.5
8.3
8.5
6.1 | 22
43
78
65
71 | 3.4 | 0.00
0.07
0.12
0.00
0.00 | 0.00
0.24
0.06
0.00 | 79
79
79
73
74 | | | | 26
27
28
29
30
31 | | | 664
591
492
320
232
174 | 73
51
25
11
8.1 | 4.9
4.9
6.1
5.8
6.4
6.6 | 69
57
61
57
55 | 3.2
3.5
4.5
6.4
9.3
9.4 | 0.54
0.70
0.00
0.00
0.00
0.00 | 0.00
0.00
0.07
0.25
0.36 | 75
74
77
86
87
e90 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 17055
550
2320
50
33830 | 1668.0 | 728.2 | | 313.9
10.1
58
3.2
623 | 2.04 |
1.87
0.062
0.36
0.00
3.7 | 2353.23
75.9
205
0.32
4670 | | | | STATISTI | CS OF MON | THLY MEAN | I DATA FO | OR WATER Y | EARS 1982 | - 1993 A | ND SEASONS | 3 1994 - 2 | 2003* | | | | | MEAN
MAX
(WY)
MIN
(WY) | 83.2
230
1990
18.2
1985 | 129
526
1986
20.3
1985 | 454
2252
1996
15.9
1985 | 190
1691
1996
2.35
1999 | 182
1685
1986
3.41
2001 | 234
655
1995
16.4
1983 | 173
599
1991
8.72
2001 | 64.3
362
1993
2.04
2003 | 128
1727
1986
0.062
2003 | 194
2688
1987
5.07
1991 | 106
421
1987
25.3
1985 | 77.8
275
1987
17.3
1985 | | SUMMARY | STATISTI | | | | ASON | SE | ASONS 1994 | 1 - 2003* | | WATER Y | EARS 1982 | - 1993 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MISTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL ME DAILY DEAK FLO COMMON C | AN AN N MINIMUM GE W FLOW C-FT) DS DS | | 2320 M
0.00 A
2560 M
15.75 M | | 5
a5 | | ar 20 1996
ay 6 2001
ar 17 1994
ar 14 1996 | 5
-
4
5 | 13200
29 | Sep 2
.00 Sep 1
.00 Sep 1
.00 Sep 1
.5ep 2
.79 Sep 2 | 1996
1985
6 1986
6 1983
6 1986
6 1986
6 1990 | ^{*--}Seasonal record beginning water year 1994. a--Gage height, 22.71 ft. b--Backwater from ice. c--No flow at times most years. e--Estimated. ### 06155900 MILK RIVER AT CREE CROSSING, NEAR SACO, MT $LOCATION~(REVISED).--Lat~48^{\circ}32'25",~long~107^{\circ}31'10"~(NAD~27),~in~NW^{1}/_{4}SE^{1}/_{4}~sec.11,~T.32~N.,~R.32~E.,~Phillips~County,~Hydrologic~Unit~NAD~27),~in~NW^{1}/_{4}SE^{1}/_{4}SE^{1}/_{4}~sec.11,~T.32~N.,~R.32~E.,~Phillips~County,~Hydrologic~Unit~NAD~27),~in~NW^{1}/_{4}SE^$ 10050004, on right bank 25 ft upstream from bridge on Phillips County road, 500 ft upstream from Nelson Canal, 9.9 mi northwest of Saco, and at river mile 176.4. DRAINAGE AREA.--13,118 mi². PERIOD OF RECORD.--May 2000 to current year (seasonal records only). GAGE.--Water-stage recorder. Elevation of gage is 2,188 ft (NGVD 29). REMARKS.--Seasonal records good except those for estimated daily discharges, which are poor. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |-----------|-----------|--------|-------|--------|---------------------------------|------------|------|--|----------------------------|------|-----|-----| | 1 | | | e100 | 338 | 72
91
64
50
72 | 121 | 115 | 118 | 111 | 20 | | | | 2 | | | e100 | 284 | 91 | 127 | 111 | 119 | 117 | 20 | | | | 3 | | | e100 | 234 | 64 | 139 | 111 | 119 | 125 | 21 | | | | 4 | | | e100 | 199 | 50 | 135 | 115 | 122 | 121 | 21 | | | | 5 | | | | | | | 122 | 150 | 103 | 21 | | | | 6 | | | e100 | 169 | 151
197
217
213
206 | 146 | 121 | 149 | 79
58
45
38
32 | 21 | | | | 7 | | | e100 | 168 | 197 | 168 | 108 | 141
155
142
141 | 58 | 22 | | | | 8 | | | e100 | 163 | 217 | 173 | 120 | 155 | 45 | 22 | | | | 9 | | | e100 | 210 | 213 | 164 | 120 | 142 | 38 | 116 | | | | 10 | | | e100 | 312 | 206 | 150 | 133 | | | 207 | | | | 11 | | | e100 | 169 | 188
175
175
168
172 | 153 | 151 | 129
111
107
120
117 | 29 | 145 | | | | 12 | | | e100 | 97 | 175 | 145 | 169 | 111 | 28 | 138 | | | | 13 | | | e100 | 69 | 175 | 143 | 160 | 107 | 26 | 136 | | | | 14 | | | e100 | 60 | 168 | 146
179 | 166 | 111
107
120
117 | 25 | 133 | | | | 15 | | | e100 | 0.5 | 1/2 | 1/9 | | | | 128 | | | | 16 | | | e240 | 66 | 211 | 199 | 133 | 104
100
89
90
90 | 27 | 120 | | | | 17 | | | e500 | 59 | 277 | 228 | 131 | 100 | 27 | 115 | | | | 18 | | | e1000 | 56 | 306 | 235 | 120 | 89 | 27 | 112 | | | | 19 | | | e1500 | 52 | 259 | 218 | 100 | 90 | 27 | 108 | | | | 20 | | | e2000 | 54 | 211
277
306
259
221 | 205 | 97 | 90 | 29 | 113 | | | | 21 | | | e2600 | 52 | 221 | 182 | 94 | 81
54
50
52
60 | 29 | 104 | | | | 22 | | | e2300 | 47 | 212 | 170 | 114 | 54 | 27 | 100 | | | | 23 | | | e1800 | 44 | 189 | 149 | 142 | 50 | 26 | 112 | | | | 24 | | | e1600 | 43 | 169 | 147 | 132 | 52 | 24 | 112 | | | | 25 | | | e1300 | 45 | 148 | 187 | 126 | 60 | 23 | 107 | | | | 26 | | | e900 | 92 | 137 | 213 | 141 | 59 | 23 | 110 | | | | 27 | | | 796 | 119 | 131 | 176 | 136 | 58 | 22 | 107 | | | | 28 | | | 657 | 109 | 110 | 148 | 135 | 63 | 21 | 106 | | | | 29 | | | 598 | 103 | 113 | 121 | 130 | 91 | 21 | 124 | | | | 30 | | | 527 | 89 | 115 | 113 | 122 | 85 | 21 | 124 | | | | 31 | | | 430 | | 116 | | 116 | 59
58
63
91
85
88 | | e120 | | | | TOTAL | | | 20248 | 3743 | 5146 | 4914 | 3921 | 3154 | 1338 | 2965 | | | | MEAN | | | 653 | 125 | 166 | 164 | 126 | 102 | 44.6 | 95.6 | | | | MAX | | | 2600 | 338 | 306 | 235 | 169 | 155 | 125 | 207 | | | | MIN | | | 100 | 43 | 50 | 113 | 94 | 50 | 21 | 20 | | | | AC-FT | | | 40160 | 7420 | 10210 | 9750 | 7780 | 3154
102
155
50
6260 | 2650 | 5880 | | | | STATISTIC | | | | | 2000 - 20 | | | | | | | | | MEAN | | | 252 | 56.1 | 74.8 | 218 | 140 | 109
225
2002
16.7
2001 | 48.2 | 42.4 | | | | MAX | | | 653 | 125 | 166 | 517 | 244 | 225 | 108 | 91.3 | | | | (WY) | | | 2003 | 2003 | 2003 | 2002 | 2002 | 2002 | 2002 | 2004 | | | | MIN | | | 38.3 | 20.5 | 9.44 | 68.1 | 28.3 | 16.7 | 18.6 | 12.6 | | | | (WY) | | | 2002 | 2002 | 2001 | 2001 | 2001 | 2001 | 2000 | 2002 | | | | SUMMARY | CTATTCTT | 70 | | EOD. | 2002 6576 | NT. | CE | ACOME SOOK | 2002 | | | | | нтсирот | DATIV ME | N NI | | 260 | ∩ M ₂ ~ | 21 | 2600 |) Mar
2.6 May
) Mar
L.16 Mar
2.6 May | 21 2002 | | | | | LOWEST | DATLY MEA | V. | | 200 | 0 0c+ | 1 | 2000 | 2.6 May | 28 2001 | | | | | MAXIMIM | PEAK FLO | W | | unknow | n occ | - | c260 |) Mar | 21 2003 | | | | | MAXIMUM | PEAK STA | GE | | a1 | 1.16 Mar | 21 | a11 | L.16 Mar | 21 2003 | | | | | INSTANTA | NEOUS LO | W FLOW | | b1 | 9 Oct | 1 | 2 | 2.6 May | 28 2001 | | | | | | | | | | | | | | | | | | a--Backwater from ice. b--Gage height, 2.37 ft. c--Daily mean discharge. e--Estimated. #### 06156500 BELANGER CREEK DIVERSION CANAL NEAR VIDORA, SASKATCHEWAN (International gaging station) LOCATION.--Lat 49°29'39", long 109°21'54" (NAD 27), in NW¹/₄ sec.19, T.6, R.25 W., third meridian, Hydrologic Unit 10050013, on left bank 0.3 mi downstream from diversion weir and 12 mi north of Vidora. PERIOD OF RECORD.--March 1946 to current season (seasonal records only). Monthly discharge only for some periods, published in WSP 1309. GAGE.--Water-stage recorder. Elevation of gage is 3,200 ft (NGVD 29), from Cypress Lake elevation. REMARKS.--Records fair. Canal diverts water from right bank of Belanger Creek in SW¹/₄ sec.30, T.6, R.25 W., third meridian, for storage in Cypress Lake. Water Survey of Canada satellite telemeter at station. COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 696 ft³/s, June 28, 1998; no flow at times each season. # DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|-----|-----|---|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----|-----| | 1
2
3
4
5 | | | e0.00
e0.00
e0.00
e0.00
e0.00 | 92
36
1.4
5.0
2.1 | 10
10
5.9
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 6
7
8
9
10 | | | e0.00
e0.00
e0.00
e0.00
e0.00 |
0.07
0.00
0.07
26
53 | 0.00
0.07
0.04
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | | e0.00
e0.00
e0.00
e0.00
e0.00 | 25
18
15
24
33 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 16
17
18
19
20 | | | e0.00
e0.00
e0.00
e95
e183 | 57
54
37
25
19 | 0.00
0.00
0.00
0.00
3.3 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 21
22
23
24
25 | | | e191
e177
e204
e172
e103 | 15
13
12
12
12 | 7.3
7.1
7.1
7.1
6.8 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 26
27
28
29
30
31 | | | e52
29
16
7.5
8.9
48 | 14
15
16
12
11 | 7.4
7.3
7.2
7.3
7.2
4.0 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 1286.40
41.5
204
0.00
2550 | 654.64
21.8
92
0.00
1300 | 105.11
3.39
10
0.00
208 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | | | #### 06157500 CYPRESS LAKE EAST OUTFLOW CANAL NEAR VIDORA, SASKATCHEWAN (International gaging station) LOCATION.--Lat 49°29'12", long 109°21'08" (NAD 27), in SE¹/₄ sec.19, T.6, R.25 W., third meridian, Hydrologic Unit 10050013, on right bank 500 ft upstream from Belanger Creek, and 12.3 mi north of Vidora. PERIOD OF RECORD.--April to October 1940, April 1943 to current season (seasonal records only). Monthly discharge only for some periods, published in WSP 1309. GAGE.--Water-stage recorder. Elevation of gage is 3,180 ft (NGVD 29). Prior to Sept. 26, 1946, at elevation 2.24 ft higher and Sept. 26, 1946, to May 18, 1950, at elevation 1.54 ft higher. REMARKS.--Records fair except those for estimated daily discharges, which are poor. Canal diverts water from Cypress Lake for irrigation in Frenchman River basin in Saskatchewan. Water Survey of Canada satellite telemeter at station. COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 202 ft³/s, Apr. 19, 1952; no flow at times most seasons. # DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAV | 7737 | FFD | MAD | 7 DD | 242.37 | TITAT | 7777 | AIIO | CED | OCITI | NOT | DEC | |--------------------------------------|------|-----|--|---|--|--|--------------------------------------|--------------------------------------|--------------------------------------|---|-----|-----| | DAY
1
2
3
4
5 | JAN | FEB | MAR
e0.18
e0.18
e0.18
e0.18 | APR
e0.60
e0.64
e0.67
e0.71
e1.3 | MAY 11 9.7 8.8 8.9 9.3 | JUN 0.81 0.85 0.85 0.85 0.85 | JUL 3.8 3.3 2.9 2.5 2.2 | AUG
0.00
0.00
0.00
0.00 | SEP
0.00
0.00
0.00
0.00 | OCT
0.00
0.00
0.00
0.00
0.00 | NOV | DEC | | 6
7
8
9 | | | e0.18
e0.18
e0.18
e0.18
e0.18 | e2.0
e2.7
e2.8
e2.8
e2.7 | 10
8.8
5.4
4.4
3.8 | 0.78
0.78
0.78
0.78
0.74
0.78 | 2.0
1.7
1.6
1.4 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.04
0.11
0.11 | | | | 11
12
13
14
15 | | | e0.18
e0.18
e0.21
e0.21
e0.21 | e2.8
e3.1
e3.3
e3.2
e3.2 | 3.3
3.1
3.2
3.0
2.8 | 0.78
0.78
0.74
0.78
0.71 | 1.1
0.88
0.74
0.64
0.53 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.18
0.21
0.21
0.25
0.28 | | | | 16
17
18
19
20 | | | e0.21
e0.42
e2.6
e8.1
e8.8 | 4.0
3.2
2.7
4.4
3.7 | 2.8
2.6
2.6
2.5
2.4 | 0.67
0.64
0.57
0.74
6.6 | 0.46
0.35
0.21
0.11
0.07 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.32
0.35
0.39
0.39
0.35 | | | | 21
22
23
24
25 | | | e7.1
e5.8
e4.5
e3.2
e1.9 | 3.2
3.7
11
11
9.8 | 1.5
1.1
0.85
0.78 | 10
10
9.6
9.1
8.3 | 0.04
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.42
0.39
0.42
0.57 | | | | 26
27
28
29
30
31 | | | e0.67
e0.53
e0.42
e0.35
e0.46
e0.57 | 8.5
7.5
10
14
13 | 0.78
0.78
0.71
0.71
0.67
0.71 | 7.4
6.5
5.7
4.9
4.3 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.64
0.67
0.78
e0.81
e0.85
e0.85 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 48.42
1.56
8.8
0.18
96 | 142.22
4.74
14
0.60
282 | 117.73
3.80
11
0.67
234 | 96.84
3.23
10
0.57
192 | 27.73
0.89
3.8
0.00
55 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | 10.27
0.33
0.85
0.00
20 | | | #### 06158500 EASTEND CANAL AT EASTEND, SASKATCHEWAN (International gaging station) LOCATION.--Lat 49°30'21", long 108°50'54" (NAD 27), in NW¹/₄ sec.25, T.6, R.22 W., third meridian, Hydrologic Unit 10050013, on left bank 600 ft downstream from Eastend Reservoir headgate, 1.5 mi west of Eastend. PERIOD OF RECORD.--March 1937 to current season (seasonal records only). Monthly discharge only for some periods, published in WSP 1309. GAGE.--Water-stage recorder. Elevation of gage is 2,998.58 ft (Canadian Geodetic Vertical Datum 1928). Prior to June 1973, at sites within 1 mi, at different elevations. REMARKS.--Records good. Canal diverts water from Eastend Reservoir in $NW^1/_4$ sec.25, T.6, R.22 W., third meridian, on right bank for irrigation of about 3,100 acres in the Frenchman River basin in Saskatchewan. Water Survey of Canada satellite telemeter at station. COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 91 ft³/s, May 18, 1993; no flow at times each season. | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|-----|-----|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|-----|-----| | 1
2
3
4
5 | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 77
72
65
60
59 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 6
7
8
9
10 | | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 48
34
28
20
4.9 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 16
17
18
19
20 | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 21
22
23
24
25 | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 89
88
87
85
83 | 0.00
0.00
0.00
0.00 | 42
65
69
69
74 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 26
27
28
29
30
31 | | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 81
79
78
75
77 | 0.00
0.00
0.00
0.00
0.00 | 74
71
66
46
17
0.64 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | 958.00
30.9
89
0.00
1900 | 467.90
15.6
77
0.00
928 | 593.64
19.1
74
0.00
1180 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | | | #### 06161300 HUFF LAKE PUMPING CANAL NEAR VAL MARIE, SASKATCHEWAN (International gaging station) LOCATION.--Lat
49°22'20", long 107°53'05" (NAD 27), in NW¹/₄ sec.7, T.5, R.14 W., third meridian, Hydrologic Unit 10050013, on right bank 50 ft downstream from pump discharge outlet, and 11 mi northwest of Val Marie. PERIOD OF RECORD.--March 1963 to current season (seasonal records only). Published as Val Marie West Pumping Canal near Val Marie, Saskatchewan, March 1963 to October 1980. July 1950 to current season in reports of Department of the Environment, Canada. GAGE.--Water-stage recorder. Prior to 1956 and subsequent to 1960, records obtained from occasional discharge measurements and records of pump operation. REMARKS.--Records fair. Canal diverts water from Huff Lake in NW¹/₄ sec.7, T.5, R.14 W., third meridian, on left bank for irrigation of about 2,100 acres in the Frenchman River basin in Saskatchewan. COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 31 ft³/s, May 30 to June 2, 7-10, 1975, May 5, 6, 7, 9, 1977; no flow at times each season. | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|-----|-----|---------------------------------------|---------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----|-----| | 1
2
3
4
5 | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 22
22
23
23
10 | 0.00
0.00
0.00
0.00 | 25
25
25
24
23 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 6
7
8
9
10 | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
11
5.7
0.00
0.00 | 0.00
0.00
0.00
0.00 | 24
22
13
2.9
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
18
21 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 16
17
18
19
20 | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 21
23
22
23
23 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 21
22
23
24
25 | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 23
23
23
23
22 | 0.00
0.00
0.00
0.00 | 19
25
25
25
25 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 26
27
28
29
30
31 | | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 21
22
22
16
22
21 | 0.00
0.00
0.00
0.00 | 25
26
26
26
25
25 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 0.00
0.000
0.00
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | 389.00
12.5
23
0.00
772 | 116.70
3.89
23
0.00
231 | 272.00
8.77
26
0.00
540 | 183.90
5.93
25
0.00
365 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | | | #### 06161500 HUFF LAKE GRAVITY CANAL NEAR VAL MARIE, SASKATCHEWAN (International gaging station) LOCATION.--Lat 49°22'10", long 107°53'06" (NAD 27), in SW¹/₄, sec. 7, T. 5, R.14 W., third meridian, Hydrologic Unit 10050013, on right bank 100 ft downstream from Huff Lake headgate and 11 mi northwest of Val Marie. PERIOD OF RECORD.--March 1946 to current season (seasonal records only). Published as Val MarieWest Gravity Canal near Val Marie, Saskatchewan, March 1946 to October 1980. Monthly figures only prior to March 1947, published in WSP 1309. GAGE.--Water-stage recorder. Elevation of gage is 2,662.88 ft (Canadian Geodetic Vertical Datum 1928). Prior to Sept. 27, 1949, at site 0.5 mi downstream at different datum. REMARKS.--Records fair. Canal diverts water from Huff Lake in SW¹/₄, sec. 7, T. 5, R.14 W., third meridian, on left bank for irrigation of about 1,900 acres in the Frenchman River basin in Saskatchewan. Since 1962, records have been based on gate openings in Huff Lake Dam. COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 68 ft³/s, July 24, 1996; no flow at times each season. ## DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|-----|-----|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|--|--------------------------------------|--------------------------------------|-----|-----| | 1
2
3
4
5 | | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 20
26
36
34
30 | 0.00
0.00
0.00
0.00 | 32
26
22
20
17 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 6
7
8
9
10 | | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 29
25
17
14
7.9 | 0.00
0.00
0.00
0.00 | e14
e7.1
e0.00
e0.00
e0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
30
32 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | e0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 16
17
18
19
20 | | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 26
26
30
40
28 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 21
22
23
24
25 | | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 36
39
41
42
36 | 0.00
0.00
0.00
0.00 | 32
44
44
37
32 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 26
27
28
29
30
31 | | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 32
37
43
36
26
19 | 0.00
0.00
0.00
0.00
0.00 | 34
32
32
38
39
36 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | 599.00
19.3
43
0.00
1190 | 238.90
7.96
36
0.00
474 | 400.00
12.9
44
0.00
793 | 138.10
4.45
32
0.00
274 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | | | #### 06162500 NEWTON LAKE MAIN CANAL NEAR VAL MARIE, SASKATCHEWAN (International gaging station) LOCATION.--Lat $49^{\circ}18'18''$, long $107^{\circ}48'05''$ (NAD 27), in NE $^{1}/_{4}$ sec. 15, T.4, R.14 W., third meridian, Hydrologic Unit 10050013, on right bank about 500 ft downstream from Newton Lake headgate, and 5.4 mi northwest of Val Marie. PERIOD OF RECORD.--April 1937 to current season (seasonal records only). Published as Val Marie Main Canal near Val Marie, Saskatchewan, March 1962 to October 1980. Prior to April 1947 monthly discharge only, published in WSP 1309. Prior to March 1962, published as Val Marie Canal near Val Marie. GAGE.--Water-stage recorder. Elevation of gage is 2,622.03 ft (Canadian Geodetic Vertical Datum 1928). Prior to May 21, 1963, at several sites within 2 mi of present site at different elevations. REMARKS.--Records good except those for estimated daily discharges, which are poor. Canal diverts water from Newton Lake in SE¹/₄ sec.22, T.4, R.14 W., third meridian, on left bank for irrigation of about 4,700 acres in the Frenchman River basin in Saskatchewan. COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 131 ft³/s, May 23, 1997; no flow at times each season. # DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------|-----|-----|-------|-------|---------|--------|---------|--------|-------|-------|-----|-----| | 1 | | | 0.00 | 0.00 | 0.00 | 66 | 0.00 | 56 | 0.00 | 0.00 | | | | 2 | | | 0.00 | 0.00 | 0.00 | 48 | 0.00 | 35 | 0.00 | 0.00 | | | | 3 | | | 0.00 | 0.00 | 0.00 | 48 | 0.00 | 15 | 0.00 | 0.00 | | | | 4
5 | | | 0.00 | 0.00 | 0.00 | 47 | 0.00 | 8.1 | 0.00 | 0.00 | | | | 5 | | | 0.00 | 0.00 | 0.00 | 31 | 0.00 | 9.5 | 0.00 | 0.00 | | | | 6 | | | 0.00 | 0.00 | 0.00 | 6.0 | 0.00 | 11 | 0.00 | 0.00 | | | | 7 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3.6 | 0.00 | 0.00 | | | | 7
8 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 9 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | | | | 10 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 11 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 12 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 13 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 14 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 15 | | | 0.00 | 0.00 | 0.64 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | 16 | | | 0.00 | 0.00 | 64 | 0.00 | e71 | 0.00 | 0.00 | 0.00 | | | | 17 | | | 0.00 | 0.00 | 96 | 0.00 | e88 | 0.00 | 0.00 | 0.00 | | | | 18 | | | 0.00 | 0.00 | 96 | 0.00 | e83 | 0.00 | 0.00 | 0.00 | | | | 19 | | | 0.00 | 0.00 | 105 | 0.00 | e97 | 0.00 | 0.00 | 0.00 | | | | 20 | | | 0.00 | 0.00 | 115 | 0.00 | e100 | 0.00 | 0.00 | 0.00 | | | | 21 | | | 0.00 | 0.00 | 119 | 0.00 | e98 | 0.00 | 0.00 | 0.00 | | | | 22 | | | 0.00 | 0.00 | 113 | 0.00 | 94 | 0.00 | 0.00 | 0.00 | | | | 23 | | | 0.00 | 0.00 | 105 | 0.00 | 92 | 0.00 | 0.00 | 0.00 | | | | 24 | | | 0.00 | 0.00 | 105 | 0.00 | 90 | 0.00 | 0.00 | 0.00 | | | | 25 | | | 0.00 | 0.00 | 105 | 0.00 | 89 | 0.00 | 0.00 | 0.00 | | | | 26 | | | 0.00 | 0.00 | 103 | 0.00 | 88 | 0.00 | 0.00 | 0.00 | | | | 27 | | | 0.00 | 0.00 | 101 | 0.00 | 89 | 0.00 | 0.00 | 0.00 | | | | 28 | | | 0.00 | 0.00 | 98 | 0.00 | 88 | 0.00 | 0.00 | 0.00 | | | | 29 | | | 0.00 | 0.00 | 90 | 0.00 | 97 | 0.00 | 0.00 | 0.00 | | | | 30 | | | 0.00 | 0.00 | 77 | 0.00 | 91 | 0.00 | 0.00 | 0.00 | | | | 31 | | | 0.00 | | 66 | | 79 | 0.00 | | 0.00 | | | | TOTAL | | | 0.00 | 0.00 | 1558.64 | 246.00 | 1434.00 | 138.20 | 0.00 | 0.00 | | | | MEAN | | | 0.000 | 0.000 | 50.3 | 8.20 | 46.3 | 4.46 | 0.000 | 0.000 | | | | MAX | | | 0.00 | 0.00 | 119 | 66 | 100 | 56 | 0.00 | 0.00 | | | | MIN | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | AC-FT | | | 0.00 | 0.00 | 3090 | 488 | 2840 | 274 | 0.00 | 0.00 | | | #### 06164000 FRENCHMAN RIVER AT INTERNATIONAL BOUNDARY (International gaging station) left bank 50 ft north of international boundary, 22 mi northeast of Whitewater, MT, and at river mile 76.4. DRAINAGE AREA.--2,120 mi², of which 343 mi² probably is noncontributing. PERIOD OF RECORD.--April 1917 to current season (seasonal records only for most years). REVISED RECORDS.--WSP 1389: 1938(M), 1939-41, 1942(M), 1943, 1950(M). W 1983: Drainage area. GAGE.--Water-stage recorder and concrete control since August 1949. Elevation of gage is 2,420 ft (NGVD 29). Prior to June 23, 1937, water-stage recorder at site 0.5 mi upstream at different elevation. June 23, 1937, to October 1952, water-stage recorder at site 100 ft downstream at present REMARKS.--Seasonal records fair. Natural flow of stream affected by several storage reservoirs, diversions for irrigation of about 14,500 acres, and return flow from irrigated areas. Water may be diverted into or from Battle Creek basin through Cypress Lake. Water Survey of Canada satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. COOPERATION.--This is one of a number of stations which are maintained jointly by the United States and Canada. #### DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|---|--------|--|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--|--|---|-----|-----| | 1
2
3
4
5 | | | e3.5
e3.5
e3.5
e5.3
e7.1 | 319
262
142
102
121 | 62
57
56
55
69 | 42
44
41
37
35 | 0.81
0.78
0.74
0.71
0.49 | 19
17
28
23
19 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 6
7
8
9
10 | | | e7.1
e3.5
e1.8
e1.8
e3.5 | 132
197
228
243
240 | 115
158
175
151
141 | 32
31
31
30
24 | 0.32
0.25
0.18
0.18
0.14 | 17
13
8.0
5.5
3.0 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | | e3.5
e5.3
e8.8
e18
e26 | 190
187
178
100
61 | 150
142
137
133
121 | 17
13
12
12
11 | 0.11
0.11
19
65
46 | 1.5
0.92
0.67
0.46
0.32 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 16
17
18
19
20 | | | e177
e883
1460
1320
1270 | 53
63
77
91
144 | 80
47
29
22
40 | 9.3
7.5
6.0
3.7
3.4 | 38
32
31
32
24 | 0.21
0.14
0.11
0.07
0.07 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 21
22
23
24
25 | | | 1350
1130
1160
1080
667 | 190
188
187 | 42
45
48
65
56 | 3.4
3.2
3.2
3.2
3.0 | 17
14
13
10
9.5 | 0.07
0.04
0.04
0.04
0.04 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 26
27
28
29
30
31 | | | 643
713
791
795
727
441 | 185
108
76
73
72 | 52
41
40
39
39
39 | 2.8
2.6
2.4
1.5
0.99 | 14
22
17
12
20
20 | 0.04
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
4.8 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 14709.2
474
1460
1.8
29180 | 4577
153
319
53
9080 | 2446
78.9
175
22
4850 | 468.19
15.6
44
0.99
929 | 460.32
14.8
65
0.11
913 | 157.24
5.07
28
0.00
312 | 0.00
0.000
0.00
0.00 | 4.80
0.15
4.8
0.00
9.5 | | | | STATIST | ICS OF MONT | HLY ME | EAN DATA FO | R SEASONS | 1917 - | 2003* | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | | 181
1490
1997
0.000
2002 | 402
5313
1952
0.35
2000 | 138
1051
1927
2.54
1937 | 84.7
886
1923
0.39
1937 | 53.0
602
1955
0.021
1984 | 17.1
199
2002
0.000
1934 | 7.21
65.9
1951
0.000
1919 | 10.4
77.7
1966
0.000
1932 | | | | SUMMARY | STATISTICS | | | | | EASON | 2 | SEASONS 19 | 17 - 2003 | * | | | | LOWEST
MAXIMUM | DAILY MEAN
DAILY MEAN
PEAK FLOW
PEAK STAGE | | | 146
155 | 0 Ma
0.00 Au
0 Ma
9.85 Ma | ar 18
1g 27
ar 18
ar 18 | 192
a221
k | 200 Ap
0.00 Ju
700 Ap
519.90 Ap | r 15 1952
1 28 1919
r 15 1952
r 15 1952 | | | | ^{*--}Seasonal record most years. a-From rating curve extended above 2,300 ft^3/s on basis of slope-area measurement of peak flow. b--From floodmark. e--Estimated. #### RESERVOIRS IN FRENCHMAN RIVER BASIN IN SASKATCHEWAN (International gaging stations) All elevations listed for the following reservoirs are referenced to the National Geodetic Vertical Datum of 1929. 06157000 CYPRESS LAKE.--Lat 49°27'30", long 109°30'25" (NAD 27), in SE¹/₄ sec.12, T.6, R.27 W., third meridian, Hydrologic Unit 10050013, on south shore, and 12 mi north of Consul. DRAINAGE AREA, 107 mi². PERIOD OF RECORD, February 1939 to current season (seasonal records only). Records prior to October 1946, published only in WSP 1309. March to May 1952 daily elevations and contents, published in WSP 1260-B. Water-stage recorder. Elevation of gage is at mean sea level (Geodetic Survey of Canada datum; subtract 33.67 ft to obtain Reclamation Service datum). Prior to 1969 season, at Reclamation Service datum. Prior to 1940, nonrecording gage on natural lake at "South" station. February 1940 to Apr. 28, 1955, elevation obtained from average of nonrecording gage readings at west and east dams. Apr. 29, 1955, to Aug. 21, 1984, gage located at east dam. REMARKS, This is an offstream reservoir formed by two earthfill dams on a natural lake of the same name which is the head of the Frenchman River. There are concrete control works at both dams. The following capacity figures are from capacity table effective January 1971; see previous reports for superseded figures. Usable capacity, 79,500 acre-ft between elevation 3,187.0 ft, bottom of west outlet works, and 3,201.9 ft, maximum design level. Dead storage, 24,300 acre-ft. Water is diverted from Battle Creek on west, 12 mi northwest of Consul, and from Belanger Creek, in the Frenchman River basin, on the east, 12 mi north of Vidora. Water is released to the same streams for irrigation. Figures given herein represent total contents. Water Survey of Canada satellite telemeter at station. This is one of a number of stations which are maintained jointly by Canada and the United States. REVISED RECORDS, W 1983: Drainage area. EXTREMES FOR PERIOD OF RECORD: Maximum contents, 117,300 acre-ft, Apr. 21, 1955, elevation, 3,203.36 ft; minimum observed since first filling, 8,190 acre-ft, Nov. 17, 1992, elevation, 3,183.17 ft. EXTREMES FOR CURRENT SEASON: Maximum contents, 28,260 acre-ft, May 4, elevation, 3,187.84 ft; minimum, 14,180 acre-ft, Oct. 23, elevation, 3,184.68 ft. 06159000 EASTEND RESERVOIR.--Lat 49°30'26", long 108°51'08" (NAD 27), in NW¹/₄ sec.25, T.6, R.22 W., third meridian Hydrologic Unit 10050013, at dam on Frenchman River, 1.6 mi west of Eastend, and at mile 300.5. DRAINAGE AREA, 619 mi². PERIOD OF RECORD, February 1937 to current season (seasonal records only). Prior to 1958, published as East End Reservoir at East End. Nonrecording gages read about once a day during irrigation season and twice a day during high stages February 1937 to July 1979. Water-stage recorder. Elevation of gage is at mean sea level (Geodetic Survey of Canada datum). REMARKS,
Reservoir is formed by earthfill dam completed in 1939, breached during flood in 1952 and rebuilt the same year with a concrete spillway and control works. The following capacity figures are from capacity table effective September 1982. Usable capacity, 1,690 acre-ft between elevation 2,993.5 ft, bottom of outlet works, and 3,012.0 ft, maximum design level. No dead storage. Water is used for irrigation. Water Survey of Canada satellite telemeter at station. This is one of a number of stations which are maintained jointly by Canada and the United States. REVISED RECORDS (SEASONS), WSP 1309: 1948(M). WSP 1729: Drainage area. WSP 2116: 1937-65. W 1983: Drainage area. EXTREMES FOR PERIOD OF RECORD: Maximum contents, about 3,700 acre-ft, Apr. 15, 1952, elevation, about 3,015 ft, dam overtopped; no contents at times. EXTREMES FOR CURRENT SEASON: Maximum contents, 2,370 acre-ft, May 7, elevation, 3,013.66 ft; minimum, 395 acre-ft, Sept. 11, elevation, 3,007.07 ft. 06162000 HUFF LAKE.--Lat 49°22'16", long 107°53'07" (NAD 27), in SW¹/₄ sec.7, T.5, R.14 W., third meridian, Hydrologic Unit 10050013, near dam on Frenchman River, 11 mi northwest of Val Marie, and at mile 169.7. DRAINAGE AREA, 1,274 mi². PERIOD OF RECORD, February 1940 to current season (seasonal records only). February 1940 to October 1979, published as Val Marie West Reservoir. Records prior to October 1946, published only in WSP 1309. April to May 1952 daily elevations and contents, published in WSP 1260-B. Water-stage recorder. elevation of gage is at mean sea level (Geodetic Survey of Canada datum). May 1952 to May 1954, reference point on control structure. May 1954 to May 10, 1966, nonrecording gages. May 11, 1966, to Oct. 31, 1979, recording gage on riparian gatewell. REMARKS, Reservoir is formed by earthfill dam with concrete control works completed in 1939. The following capacity figures are from capacity table effective February 1983. Usable capacity, 3,610 acre-ft between elevation 2,663.2 ft, bottom of outlet works, and 2,676.5 ft, maximum design level. Dead storage, 11 acre-ft. Water is used for irrigation. Figures given herein represent total contents. Water Survey of Canada satellite telemeter at station. This is one of a number of stations which are maintained jointly by Canada and the United States. REVISED RECORDS (SEASONS), WSP 1309: 1947-50. EXTREMES FOR PERIOD OF RECORD: Maximum contents, 5,160 acre-ft, Mar. 26, 1997, elevation, 2,678.91 ft; no contents Feb. 28, Mar. 31, 1950, Oct. 22-31, 1984, Mar. 1-7, Aug. 6 to Sept. 14, 1985 and Feb. 28 to Apr. 11, 2002. EXTREMES FOR CURRENT SEASON: Maximum contents, 4,010 acre-ft, Mar. 23, elevation, 2,677.10 ft; minimum, 265 acre-ft, Sept. 26, elevation, 2.666.60 ft. 06163000 NEWTON LAKE.--Lat 49°18'12", long 107°48'20" (NAD 27), in NE¹/₄ sec.15, T.4, R.14 W., third meridian, Hydrologic Unit 10050013, at dam on Frenchman River, 5.4 mi northwest of Val Marie, and at mile 156.2. DRAINAGE AREA, 1,349 mi². PERIOD OF RECORD, February 1937 to current season (seasonal records only). February 1937 to October 1979, published as Val Marie Reservoir. Water-stage recorder. Elevation of gage is at mean sea level (Geodetic Survey of Canada datum). Prior to May 11, 1966, nonrecording gages. REMARKS, Reservoir is formed by earthfill dam with concrete control works; construction began in 1936; storage began in 1937; construction completed in 1938. The following capacity figures are from capacity table effective February 1983. Usable capacity, 9,950 acre-ft between elevation 2,616.1 ft, bottom of outlet works, and 2,635.4 ft maximum design level. No dead storage. Water is used for irrigation. Water Survey of Canada satellite telemeter at station. This is one of a number of stations which are maintained jointly by Canada and the United States. REVISED RECORDS (SEASONS), WSP 2116: 1937-65. WSP 1729: 1949. EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 18,920 acre-ft, Apr. 19, 1952, elevation, 2,638.80 ft; no contents at times. EXTREMES FOR CURRENT SEASON: Maximum contents, 12,750 acre-ft, Mar. 20, elevation, 2,637.19 ft; minimum, 3,130 acre-ft, Oct. 31, elevation, 2629.08 ft. #### RESERVOIRS IN FRENCHMAN RIVER BASIN IN SASKATCHEWAN--Continued #### SEASONAL MONTHEND CONTENTS, IN ACRE-FEET, FEBRUARY 2003 TO OCTOBER 2003 | | | Eastend | | | |----------|--------------|-----------|-----------|-------------| | Date | Cypress Lake | Reservoir | Huff Lake | Newton Lake | | Feb. 28 | 18,670 | 486 | 3,360 | 10,960 | | Mar. 31 | 24,390 | 1,780 | 3,350 | 10,420 | | Apr. 30 | 27,370 | 2,320 | 3,660 | 10,830 | | May 31 | 23,860 | 1,070 | 2,710 | 8,790 | | June 30 | 22,940 | 1,490 | 2,960 | 8,630 | | July 31 | 20,130 | 469 | 1,120 | 4,620 | | Aug. 31 | 18,120 | 419 | 298 | 4,110 | | Sept. 30 | 17,460 | 465 | 278 | 3,900 | | Oct. 31 | 17,140 | 480 | 572 | 3,130 | #### 06164510 MILK RIVER AT JUNEBERG BRIDGE, NEAR SACO, MT LOCATION.--Lat 48°30'32", long 107°13'02" (NAD 27), in NE¹/₄NE¹/₄ sec.30, T.32 N., R.35 E., Phillips County, Hydrologic Unit 10050014, on left bank 25 ft upstream from Juneberg bridge on Phillips County road, 1.5 mi downstream from Frenchman River, 6.9 mi northeast of Saco, and at river mile 152.3. DRAINAGE AREA. --17,670 mi². PERIOD OF RECORD.--October 1977 to current year. GAGE.--Water-stage recorder. Elevation of gage is 2,130 ft (NGVD 29). REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow increased during irrigation season by water from St. Mary Canal which diverts from the St. Mary River near Babb (station number 05017500). Flow regulated by Fresno Reservoir (station number 06136500), two reservoirs in Lodge Creek basin in Saskatchewan (station numbers 06144260 and 06144360 and four reservoirs in Frenchman River basin in Saskatchewan. There are many small dams for the diversion of irrigation canals upstream. U. S. Army Corps of Engineers satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | - | olo elli ilke | E, CODIC | 122112 | | | VALUES | 102211200 | 21001 | I TEMBER 2 | ,,,, | | |---------------------------------------|----------------------------------|--------------------------------------|--|--|-----------------------------------|---|---|--|------------------------------------|--|---------------------------------------|-----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 140
144
144
143
125 | 90
90
90
91
90 | e90
e90
e70
e70
e70 | e90
e90
e100
e100
e100 | e100
e90
e80
e80
e80 | e100
e90
e90
e90
e120 | 1180
910
688
483
306 | 173
158
156
136
157 | 153
164
170
227
180 | 140
275
265
268
268 | 268
267
265
279
275 | 109
126
132
142
139 | | 6
7
8
9 | 113
101
109
100
98 | 90
89
88
e70
e70 | e90
e90
e90
e90 | e100
e100
e100
e80
e80 | e80
e80
e80
e80
e80 | e100
e70
e70
e70
e70 | 242
219
234
293
551 | 204
362
441
606
519 | 155
185
207
199
187 | 282
267
351
411
407 | 289
305
289
253
245 | 113
82
74
62
55 | | 11
12
13
14
15 | 98
100
97
97
94 | e80
e80
e100
e100 | e100
e120
e120
e120
e120 | e70
e70
e70
e70
e70 | e90
e90
e90
e80
e80 | e80
e90
e100
e130
e130 | 502
336
264
242
240 | 433
364
357
336
323 | 178
167
151
155
169 | 340
345
194
181
245 | 232
212
174
178
186 | 54
53
44
43
43 | | 16
17
18
19
20 | 93
89
89
91
91 | e100
e100
e100
e100
e100 | e120
e90
e90
e90
e70 | e70
e80
e80
e90 | e80
e90
e100
e100
e90 | e130
e600
e1100
e2000
e2500 | 217
173
160
156
158 | 344
377
423
374
283 | 205
224
246
246
232 | 325
338
252
217
207 | 220
222
213
205
202 | 52
55
53
53
57 | | 21
22
23
24
25 | 93
94
91
91
91 | e100
e100
e80
e80
e80 | e70
e70
e70
e70
e70 | e80
e70
e70
e70
e70 | e80
e70
e70
e70
e70 | e3000
e2700
e2500
e2200
e2100 | 165
172
194
224
231 | 239
224
206
185
168 | 214
196
183
180
200 | 209
263
304
385
329 | 187
166
147
148
157 | 59
57
55
53
52 | | 26
27
28
29
30
31 | 90
89
92
93
84
93 | e80
e90
e90
e90
e90 | e70
e70
e80
e90
e80
e80 | e80
e90
e100
e100
e100
e100 | e100
e100
e100
 | e2000
1900
1590
1520
1430
1370 | 239
291
292
256
208 | 152
144
138
128
123
140 | 236
230
172
138
126 | 335
335
345
338
282
276 | 160
158
160
168
114
96 | 51
50
51
51
 | | TOTAL
MEAN
MAX
MIN
AC-FT | 3157
102
144
84
6260 | 2698
89.9
100
70
5350 | 2700
87.1
120
70
5360 | 2630
84.8
100
70
5220 | 2380
85.0
100
70
4720 | 30040
969
3000
70
59580 | 9826
328
1180
156
19490 | 8373
270
606
123
16610 | 5675
189
246
126
11260 | 8979
290
411
140
17810 | 6440
208
305
96
12770 | 2071
69.0
142
43
4110 | | STATIST
MEAN
MAX
(WY)
MIN |
289
4043
1987
24.9 | 152
597 | 120
406
1987
44.8
1986 | 'OR WATER 118 271 1987 33.1 | 219
1758
1996
49.1 | 1010
4075
1979
47.4 | , BY WATER
760
6221
1978
38.4 | 462
2545
1986
56.4 | 473
2258
1982
103 | 418
1844
1991
29.6 | 238
693
1993
9.35 | 236
1517
1986
22.7 | | (WY)
SUMMARY | 2002
STATIST | | | 1985
2002 CALI | 2002
ENDAR YEAR | 2002 | 2002
FOR 2003 V | 1989
WATER YEAR | 2001 | 1984
WATER YEAR | 1984
S 1978 - | 1984 | | LOWEST
HIGHEST | | IEAN
IEAN | | 65155
179
1610 | Jun 27 | | 84969
233
3000 | Mar 21 | | 375*
1042
70.1
12300 | Apr 3 | | 25 May 11 22 25 324 90 42 129200 Sep 14 12 Sep Mar 21 Mar 43 49 b13.10 a3000 168500 345 120 1986 Aug 20 1984 4 Juĺ 27 1984 Apr 3 1978 Mar 2.1 4.0 b26.70 c12400 271900 693 150 LOWEST DAILY MEAN MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS ANNUAL RUNOFF (AC-FT) ANNUAL SEVEN-DAY MINIMUM ^{*--}Median of yearly mean discharge 221 ft^3/s . a--About. b--Backwater from ice. c--Gage height, 24.20 ft. e--Estimated. #### 06166000 BEAVER CREEK BELOW GUSTON COULEE, NEAR SACO, MT LOCATION.--Lat 48°21'25", long 107°34'48" (NAD 27), in SE¹/₄SW¹/₄NW¹/₄ sec. 16, T.30 N., R.32 E., Phillips County, Hydrologic Unit 10050014, on right bank, 25 ft upstream from bridge on county road, 13 mi southwest of Saco, 22.5 river miles downstream from Guston Coulee, and at mile 61.1. DRAINAGE AREA. --1,208 mi². PERIOD OF RECORD.--April 1920 to September 1921, April 1981 to current year (seasonal records only). GAGE.--Water-stage recorder. Elevation of gage is 2,215 ft (NGVD 29). REMARKS.--Seasonal records fair. Some regulation by numerous small reservoirs on tributary streams. Diversions for irrigation upstream from gage. U.S. Geological Survey satellite telemetry at station. Several observations of water temperature and specific conductance were made during the year. ## DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |---|---------------------------------------|--------|---|--------------------------------------|--|--------------------------------------|--|---------------------------------------|---|---------------------------------------|-----|-----| | 1
2
3
4
5 | | | e0.00
e0.00
e0.00
e0.00
e0.00 | 12
25
17
6.5
4.6 | 3.7
2.7
3.4
6.6 | 2.2
22
28
26
24 | 0.38
0.28
0.16
0.06
0.01 | 1.1
0.64
0.45
0.39
0.40 | 0.00
0.00
0.00
0.00
0.00 | 0.0
0.0
0.00
0.00
0.00 | | | | 6
7
8
9
10 | | | e0.00
e0.00
e0.00
e0.00 | 1.3 | 39
38
46
38
79 | 20
15
8.8
14
28 | 0.00
0.00
0.63
6.7
5.8 | 0.45
0.59
0.75
1.7
8.3 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | | e0.00
e0.00
e0.00
e0.00
e1.0 | 1.6
3.3
4.2
4.1
4.3 | 84
93
154
150
108 | 16
7.9
5.2
4.6
5.9 | 5.3
6.2
11
11
8.1 | 11
11
6.3
4.4
4.8 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 16
17
18
19
20 | | | e10
e50
e100
e200
e300 | 3.3
2.8
2.9
2.7
2.1 | 90
73
56
52
45 | 9.4
12
7.0
5.4
6.7 | 5.7
2.1
1.2
3.9
24 | 2.1
2.1
1.4
1.2 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 21
22
23
24
25 | | | e250
e200
139
105
82 | 9.1 | 39
30
34
33
16 | 5.2
3.0
2.2
2.7
2.0 | 18
3.7
2.2
13
14 | 1.2
0.98
0.67
0.51
0.46 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 26
27
28
29
30
31 | | | 58
39
25
12
14
e10 | 15
26
25
13
8.4 | 13
9.7
8.0
0.11
0.00
0.00 | 1.1
0.83
0.65
0.49
0.43 | 14
15
15
8.5
4.4
2.9
1.8 | 0.42
0.30
0.17
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 1595.00 | 211.4 | 1377.21
44.4
154
0.00
2730 | 0 5 | C 1 C | 2 10 | 0 000 | 0.00
0.000
0.00
0.00
0.00 | | | | | ICS OF MONT | | | | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | | 53.6
204
1986
0.000
1995 | 20.2
140
1987
0.000
1995 | 60.2
718
1986
0.000
1984 | 35.9
315
1982
0.000
2001 | 46.1
223
1998
0.021
1985 | 7.44
40.7
1993
0.000
2001 | 61.2
1187
1986
0.000
1984 | 22.9
342
1987
0.000
1985 | | | | | STATISTICS | 3 | | | 2003 SEASOI | | | | 981 - 2003 | | | | | HIGHEST
LOWEST I
MAXIMUM
MAXIMUM | DAILY MEAN
PEAK FLOW
PEAK STAGE | E
1 | | 300
0.(
unknov
7.1 | Mar 20
00 Mar 1
vn
14 Mar 20 |)
1
) | 11
b23 | 900
a0.00
500
14.68 | Sep 27 19
Apr 5 19
Sep 26 19
Sep 26 19 | 86
81
86
86 | | | ^{*--}During period of operation (1981 to current year). a--No flow at time each year. b--From slope-area measurement of peak flow. e--Estimated. #### 06169500 ROCK CREEK BELOW HORSE CREEK, NEAR INTERNATIONAL BOUNDARY (Hydrologic bench-mark station) LOCATION.--Lat 48°58'10", long 106°50'20" (NAD 27), in NE¹/₄NW¹/₄ sec.15, T.37 N., R.37 E., Valley County, Hydrologic Unit 10050015, on right bank 2 mi south of international boundary, 3 mi downstream from Horse Creek, 21 mi northwest of Opheim, MT, and at river mile 82.0. DRAINAGE AREA.--328 mi². PERIOD OF RECORD.--March 1916 to October 1926, September 1956 to current year (seasonal records only prior to October 1978). Monthly discharge only for some periods, published in WSP 1309. Published as Rock Creek near Barnard, Mt. 1916-17. Prior to September 1956, records were collected at both Horse Creek (1914-56) and Rock Creek above Horse Creek (1914-56). Summations are equivalent to records at this site. REVISED RECORDS.--WSP 1509: 1925(M), WSP 1729: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 2,530 ft (NGVD 29). March 1916 to October 1926, nonrecording gages at several sites within 500 ft upstream at different elevation. REMARKS.--Records good except those for estimated daily discharges, which are poor. Several small diversions for irrigation upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Apr. 15, 1952, reached a stage of 12.6 ft, from floodmarks, discharge, 5,110 ft³/s, by slopearea measurement of peak flow. ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------------------------------------|--|--------------------------------------|---|--|---|---|-------------------------------------|--|-------------------------------------|--|---------------------------------------|---------------------------------------| | 1
2
3
4
5 | 1.5
1.4
1.5
1.4 | 1.3
1.2
1.1
1.1 | e1.2
e0.90
e0.70
e0.70
e0.80 | e0.40
e0.35
e0.35
e0.40
e0.45 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.05
e0.05
e0.05
e0.05
e0.05 | 15
15
12
14
13 | 6.0
5.9
5.4
5.2
6.3 | 3.2
3.6
4.3
11 | 1.0
0.86
0.72
0.59 | 0.01
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 6
7
8
9
10 | 1.6
1.8
1.9
2.0
2.1 | e1.1
e1.1
e1.1
e1.1 | e0.80
e0.76
e0.60
e0.60 | e0.45
e0.45
e0.45
e0.45
e0.30 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.05
e0.05
e0.05
e0.05
e0.05 | 11
11
21
37
42 | 6.7
8.9
18
23
18 | 12
12
12
11
8.7 | 0.40
0.36
0.35
0.40
0.39 | 0.00
0.01
0.01
0.01
0.01 | 0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | 2.0
2.0
2.0
1.9 | e1.1
e1.1
e1.1
e1.1 | e0.50
e0.50
e0.50
e0.50
e0.50 | e0.20
e0.15
e0.15
e0.10
e0.10 | e0.15
e0.15
e0.15
e0.10 | e0.05
e0.05
e0.50
e1.0 | 31
22
16
14 | 14
12
10
8.7
7.6 | 8.0
7.3
6.3
5.9
6.9 | 0.40
0.38
0.32
0.31
0.27 | 0.00
0.00
0.00
0.00 | 0.01
0.01
0.01
0.01
0.01 | | 16
17
18
19
20 | 2.0
2.0
1.9
1.9
2.0 | e1.1
e1.1
e1.1
e1.1 | e0.60
e0.60
e0.70
e0.70 | e0.10
e0.10
e0.15
e0.15
e0.10 | e0.15
e0.15
e0.15
e0.15
e0.10 | e50
e150
e250
668
376 | 12
11
11
10 | 7.3
15
22
15 | 6.1
5.7
4.5
4.5
4.1 | 0.21
0.13
0.09
0.07
0.04 | 0.00
0.00
0.00
0.00 | 0.01
0.02
0.02
0.02
0.02 | | 21
22
23
24
25 | 2.3
2.4
2.1
1.8
1.8 | e1.1
e1.1
e1.1
e1.1 | e0.70
e0.70
e0.70
e0.70
e0.70 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.05
e0.05
e0.05
e0.05 | 250
192
167
133
86 | 10
9.4
8.3
7.6
7.2 | 8.7
7.0
5.9
5.1
4.6 |
3.0
3.0
2.4
2.0 | 0.03
0.02
0.02
0.01
0.01 | 0.00
0.00
0.00
0.00 | 0.03
0.03
0.03
0.02
0.02 | | 26
27
28
29
30
31 | 2.0
2.1
2.3
2.3
1.9
1.5 | e1.1
e1.1
e1.0
e1.2
e1.2 | e0.60
e0.50
e0.40
e0.40
e0.40 | e0.15
e0.15
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10 | 58
39
30
23
19 | 6.9
6.5
6.2
6.1
6.0 | 4.0
3.5
3.3
3.1
2.8
2.8 | 1.7
1.7
1.6
1.1 | 0.01
0.01
0.01
0.01
0.01
0.01 | 0.00
0.00
0.00
0.00
0.00 | 0.02
0.02
0.02
0.02
0.02 | | TOTAL
MEAN
MAX
MIN
AC-FT | 58.7
1.89
2.4
1.4
116 | 33.5
1.12
1.3
1.0
66 | 19.66
0.63
1.2
0.40
39 | 6.55
0.21
0.45
0.10
13 | 2.90
0.10
0.15
0.05
5.8 | 2519.10
81.3
668
0.05
5000 | 414.2
13.8
42
6.0
822 | 276.8
8.93
23
2.8
549 | 172.5
5.75
16
1.1
342 | 7.94
0.26
1.0
0.01
16 | 0.05
0.002
0.01
0.00
0.1 | 0.37
0.012
0.03
0.00
0.7 | | STATIST | rics of M | MONTHLY ME | AN DATA | FOR WATER | YEARS 19 | 56 - 2003, | BY WATER | YEAR (WY |) * | | | | | MEAN
MAX
(WY)
MIN
(WY) | 1.85
9.33
1987
0.001
1989 | 1.50
2.79
1981
0.10
1989 | 0.75
2.19
1980
0.026
1996 | 0.29
1.78
1981
0.000
1984 | 5.93
96.1
1981
0.000
1980 | 80.7
369
1976
0.000
1965 | 82.9
437
1969
3.97
1992 | 15.2
89.0
1982
1.46
1992 | 12.8
102
1991
0.17
1988 | 9.59
63.6
1969
0.004
1988 | 1.25
13.4
1975
0.000
1959 | 1.08
12.5
1986
0.000
1958 | #### 06169500 ROCK CREEK BELOW HORSE CREEK, NEAR INTERNATIONAL BOUNDARY--Continued | SUMMARY STATISTICS | FOR 2002 CALENDAR YEAR | FOR 2003 WATER YEAR | WATER YEARS 1956 - 2003* | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 2822.24 | 3512.27 | | | ANNUAL MEAN | 7.73 | 9.62 | 14.1** | | HIGHEST ANNUAL MEAN | | | 37.4 1999 | | LOWEST ANNUAL MEAN | | | 1.88 1998 | | HIGHEST DAILY MEAN | 451 Jun 11 | 668 Mar 19 | 3460 Apr 7 1969 | | LOWEST DAILY MEAN | 0.00 Jan 1 | 0.00 Aug 2 | 0.00 Mar 1 1957 | | ANNUAL SEVEN-DAY MINIMUM | 0.00 Jan 1 | 0.00 Aug 11 | 0.00 Mar 1 1957 | | MAXIMUM PEAK FLOW | | a764 Mar 19 | c4420 Apr 7 1969 | | MAXIMUM PEAK STAGE | | b7.87 Mar 17 | b13.40 Mar 29 1978 | | INSTANTANEOUS LOW FLOW | | | d0.00 Mar 1 1957 | | ANNUAL RUNOFF (AC-FT) | 5600 | 6970 | 10250 | | 10 PERCENT EXCEEDS | 9.5 | 12 | 14 | | 50 PERCENT EXCEEDS | 1.1 | 0.70 | 1.0 | | 90 PERCENT EXCEEDS | 0.00 | 0.01 | 0.00 | ^{*--}During period of operation (September 1956 to current year; seasonal records only prior to October 1978.) **--Median of yearly discharge, 9.62 ft³/s, 6,970 acre-ft/yr (October 1978 to current year). a--Gage height, 6.53 ft. b--Backwater from ice. c--Gage height, 12.03 ft. d--At times most years. e--Estimated. #### 06172310 MILK RIVER AT TAMPICO, MT LOCATION.--Lat 48°18'29", long 106°49'19" (NAD 27), in SW¹/₄SW¹/₄SW¹/₄ sec.32, T.30 N., R.38 E., Valley County, Hydrologic Unit 10050012, on right bank, at county bridge 0.8 miles downstream from Buggy Creek and 0.3 miles northeast of Tampico, and at river mile 98.7. DRAINAGE AREA.--21,078 mi². PERIOD OF RECORD.--October 1973 to September 1977, May 1987 to current year (seasonal record beginning 1995 water year). GAGE.--Water-stage recorder. Elevation of gage is 2,110 ft (NGVD 29). REMARKS.--Records good except those for Mar. 1 to Sept. 16, which are poor. Flow increased during irrigation season by water from St. Mary Canal which diverts from the St. Mary River near Babb. Flow regulated by Fresno and Nelson Reservoirs, five reservoirs in Lodge Creek basin in Saskatchewan, and four reservoirs in Frenchman River basin in Saskatchewan. Many small dams for the diversion of irrigation canals upstream, the closest being Vandalia Dam 19 mi upstream. Diversions upstream from station for irrigation of about 126,000 acres of which about 17,000 acres lies downstream from station. Several observations of water temperature and specific conductance were made during the year. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Apr. 17, 1952 reached an observed stage of 38.67 ft at gage 200 ft downstream from Vandalia Dam, furnished by the U.S. Army Corps of Engineers; discharge about 45,000 ft³/s. ## DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |---|------------------------------------|---|--|--------------------------------------|--------------------------------------|--|---------------------------------------|---|----------------------------------|--|--|---| | 1
2
3
4
5 | | | e130
e130
e130
e120
e130 | 1360
1170
965
769
618 | 215
194
180
154
144 | 58
55
54
52
55 | 44
40
37
37
38 | 92
95
88
82
83 | 47
115
456
354
358 | 62
63
64
66 | | | | 6
7
8
9
10 | | | e120
e100
e100
e100
e100 | 503
435
395
390
431 | 186
405
972
1040
1080 | 70
76
103
146
153 | 37
37
41
44
42 | 79
83
87
96
97 | 167
141
113
102
92 | 69
68
69
69 | | | | 11
12
13
14 | | | e100
e100
e120
e150
e160 | 637
677
548
440
375 | 1260
1490
1010
621
517 | 178
211
200
215
183 | 116
144
155
103
74 | 90
89
83
73
64 | 85
76
72
66
60 | 86
190
181
168
165 | | | | 16
17
18
19
20 | | | e200
e1500
e3500
e4300
e4400 | 337
299
251
224
204 | 556
540
592
557
464 | 155
153
234
364
277 | 67
69
82
85
75 | 59
58
56
58
60 | 59
61
67
68
68 | 163
157
154
149
144 | | | | 21
22
23
24
25 | | | 4280
4420
5250
4050
3040 | 186
177
181
214
215 | 383
271
234
215
181 | 236
207
184
131
103 | 68
65
64
65
72 | 60
60
58
56
54 | 71
75
73
71
66 | 139
138
137
134
137 | | | | 26
27
28
29
30
31 | | | 3190
2810
2180
1780
1610
1490 | 221
234
266
300
262 | 150
131
117
103
86
64 | 277
236
207
184
131
103
88
77
69
57
47
 | 75
83
93
104
102
93 | 52
52
50
49
48
47 | 66
65
63
63 | 137
139
140
141
153
162 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 49790
1606
5250
100
98760 | 13284
443
1360
177
26350 | 14112
455
1490
64
27990 | 4191
140
364
47
8310 | 2251
72.6
155
37
4460 | 2158
69.6
97
47
4280 | 3303
110
456
47
6550 | 3781
122
190
62
7500 | | | | STATIST | | | | | | 74 - 1994, | AND SEASO | NS 1995 - | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 211
791
1974
55.2
1989 | 178
433
1974
49.3
1989 | 1050
3809
1994
46.6
2002 | 771
3911
1996
3.35
1992 | 551
4555
1975
6.59
2001 | 568
1852
1974
11.7
1977 | 507
2515
1991
8.35
1977 | 206
769
1993
4.63
1988 | 0.52 | 182
906
1994
29.1
2002 | 217
710
1976
90.0
1989 | 152
363
1976
66.9
1989 | | SUMMARY | STATISTI | CS | | FOR 2003 | SEASON | SEA | ASONS 1995 | 5 - 2003* | | WATER YEA | ARS 1974 | - 1994* | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL 10 PERC 50 PERC | ANNUAL MEANUAL MEA | CAN CAN AN MINIMUM AGE DW FLOW AC-FT) CDS | | 5250
37
5490
18.20 | Mar 23
Jul 3
Mar 23
Mar 23 | a11000 | 0 Mar
1.8 Jun
0 Mar
7.64 Mar | 27 1997
7 2002
27 1997
27 1997 | | 400
998
84
8180
0.
0.
c8210
25,
0.
308500
920
128
13 | May
00 Aug
00 Sep
May
40 Jul | 1975
1988
26 1974
28 1988
7 1988
6 1974
4 1991
28 1988 | ^{*}--During period of operation (1974-1977, 1987 to current year. Seasonal records beginning 1995 water year). a--Estimated daily discharge, ungaged bypass flow. b--Backwater from ice. c--Gage height, 23.65 ft. e--Estimated. #### 06174500 MILK RIVER AT NASHUA, MT LOCATION.--Lat 48°07'47", long 106°21'50" (NAD 27), in NE¹/₄NE¹/₄ sec.1, T.27 N., R.41 E., Valley County, Hydrologic Unit 10050012, on right bank at downstream side of former highway bridge site, 0.6 mi southwest of Nashua, 2.0 mi upstream from Porcupine Creek, and at river mile 22.7. DRAINAGE AREA.--22.332 mi². PERIOD OF RECORD .-- October 1939 to current year. #### WATER-DISCHARGE RECORDS REVISED RECORDS.--WSP 1729: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 2,027.75 ft (NGVD 29). REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. Flow increased during irrigation season by water from St. Mary Canal which diverts from the St. Mary River near Babb. Flow regulated by Fresno Reservoir (station number 06136500), two reservoirs in Lodge Creek basin in Saskatchewan, and four reservoirs in Frenchman River basin in Saskatchewan. Diversions for irrigation of about 140,000 acres upstream from station. U.S. Army Corps of Engineers satellite
telemeter at station. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e80 e100 e100 e100 e100 e100 e80 e90 e100 e100 62 e90e90 e100 e100 e100e100 e115 e100 e100 e100 e100 455 179 e100 e110 e90 e100 e100 e110 e90 e90 e100 e100 e90 e90 e100 e90 e100 e90 e100 e90 e100 e110 e90 e100 e90 e100 e120 e90 e90 e150 e100 e100 e180 e110 e140 e90 e100 e300 e110 e130 e100 e100 e500 e110 285 1 a e1000 e1500 e110 e110 e90 e100 22 e100 e9n e2000 75 70 e110 e110 e100 e90 e90 e3000 e100 e90 e90 e90 e4000 e100 e90 e9n e90 e100 e90 e90 e90 e90 e90 e90 e90 e100 e100 e90 e90 e100 e100 e100 e100 e110 e100 e110 e100 e100 e90 e100 TOTAL MEAN 96.8 94.6 98.8 99.5 MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1940 2003, BY WATER YEAR (WY) MEAN MAX 39.7 36.0 (WY) 12.6 MIN 34.4 61.2 38.9 56.5 15.1 10.5 28.0 3.56 3.42 FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR SUMMARY STATISTICS WATER YEARS 1940 - 2003 ANNUAL TOTAL 642* ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 57.7 Jun 28 Mar 25 Apr Jul 0.00 Jul LOWEST DAILY MEAN Мау ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW Мау Jul 0.00 Jul a4790 Mar Apr MAXIMUM PEAK STAGE b17.46 Mar 31.38 INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) c40 Jul 0.00 Jul 14 1984 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS ^{*--}Median of yearly discharge, $540 \text{ ft}^3/\text{s}$. a--Gage height, 12.03 ft, may have been greater during estimated record. b--Backwater from ice. c--Gage height, 1.55 ft. e--Estimated. #### 06174500 MILK RIVER AT NASHUA, MT--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1950-53, October 1959 to August 1994, May 1999 to current year. PERIOD OF DAILY RECORD.-- рH, water, unfltrd field, Instan- taneous dis- WATER TEMPERATURE (seasonal records): April 2001 to current year. INSTRUMENTATION.--Temperature recorder installed Mar. 1, 2001. REMARKS.--Water temperature records rated fair. Missing temperature data for May 17-21, 28 due to equipment problems. Unpublished records of instantaneous water temperature and specific conductance are available in files of District office. EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE (seasonal records): Maximum, 28.5°C, June 24, 2001; maximum may have been higher during period of lost record; minimum, 0.0°C, Apr. 1, 2001, many days in April 2002. EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: During period of seasonal operation, maximum, 27.0°C, Aug. 13-15; minimum, 1.0°C, Apr. 3 and 5. Specif. conduc- tance, wat. unf #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 Temper- ature, Temper- ature. Ammonia Nitrite nitrate water fltrd, Nitrite water, fltrd, org-N, water, unfltrd | | Date | Time | dis-
charge,
cfs
(00061) | field,
std
units
(00400) | wat unf
uS/cm
25 degC
(00095) | ature,
air,
deg C
(00020) | ature,
water,
deg C
(00010) | unfltrd
mg/L
as N
(00625) | fltrd,
mg/L
as N
(00631) | fltrd,
mg/L
as N
(00613) | | |----------------|-------------------------------------|--|--|--|--|---|--|---|---|---|--| | | MAR 2003 | | 4500 | 0.0 | 405 | 10.0 | - 0 | 4.0 | 405 | 01.0 | | | | 24
MAY | 1145 | 4690 | 8.0 | 435 | 18.0 | 5.0 | 4.2 | .427 | .010 | | | | 05
JUN | 1345 | 258 | 8.5 | 893 | 14.0 | 13.0 | .89 | <.022 | <.002 | | | | 24
AUG | 1320 | 215 | 8.5 | 1580 | 17.5 | 21.0 | .85 | <.022 | <.002 | | | | 25 | 1415 | 72 | 8.6 | 1130 | 30.5 | 22.5 | .81 | <.022 | <.002 | | | | | | Date | Orth phos phat wate fltr mg/as (0067 | e, Phoser, phored, wate
L unflt | us, siem
er, diame
trd perce
/L <.06 | i- pend
t, sed:
ve mendetr conce
ent trat:
3mm mg, | ded Susi- pend
i- pend
nt sedi
en- mer
ion load
/L tons | ded
i-
nt
d,
s/d | | | | | | | MAR 2003 | <.00 | 7 1.46 | 5 98 | 2210 | 2800 | 10 | | | | | | | MAY
05 | <.00 | | | 5: | | 36 | | | | | | | JUN
24 | .02 | 1 .14 | 13 83 | 136 | 5 5 | 79 | | | | | | | AUG
25 | .01 | .13 | 34 89 | 7: | 2 1 | 14 | | | | Date | Time | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | fltrd,
mg/L | adsorp-
tion
ratio | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | | MAY 2003
05 | 1345 | 240 | 53.5 | 25.6 | 8.98 | 3 | 102 | 239 | 14.9 | . 26 | 4.44 | | AUG
25 | 1415 | 310 | 69.5 | 33.6 | 8.73 | 4 | 149 | 288 | 26.3 | . 4 | 8.29 | | | | Residue
water,
fltrd,
sum of | Residue
water, | | | Cadmium | Chrom-
ium,
water,
unfltrd | Copper,
water, | Lead,
water, | Nickel,
water,
unfltrd | Zinc,
water, | | Date | water,
fltrd,
mg/L
(00945) | consti-
tuents
mg/L | fltrd,
tons/
acre-ft | water,
fltrd,
tons/d | water | water,
unfltrd
ug/L | recover
-able,
ug/L | recover
-able,
ug/L | recover
-able,
ug/L
(01051) | | recover
-able,
ug/L
(01092) | | MAY 2003
05 | 245 | 597 | .81 | 416 | E2 | <.2 | E.7 | 4.5 | 1.02 | 5.87 | 7 | | 25 | 278 | 747 | 1.02 | 145 | 13 | E.02 | 1.0 | 4.7 | 1.32 | 6.80 | 6 | | EEstim | ated. | | | | | | | | | | | ### 06174500 MILK RIVER AT NASHUA, MT--Continued #### WATER TEMPERATURE, DEGREES CELSIUS, APRIL 2003 TO SEPTEMBER 203 | DAY | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | MAX | MIN
JUNE | MEAN | MAX | MIN | MEAN | |----------------------------------|--|--|--|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--| | 1
2
3
4
5 | 4.5
4.0
3.0
2.5
3.5 | 4.0
1.5
1.0
1.5 | 4.5
3.0
2.0
2.0
2.0 | 15.5
16.5
18.0
17.0
16.0 | 13.5
14.0
14.5
15.5
14.5 | 14.5
15.0
16.0
16.0
15.0 | 21.5
20.5
20.5
20.5
19.0 | 19.5
18.5
18.5
18.5
17.0 | 20.0
19.5
19.5
19.0
18.0 | 25.5
25.5
25.0
24.5
25.5 | 23.0
24.0
23.5
23.0
23.0 | 24.0
24.5
24.5
24.0
24.0 | | 6
7
8
9
10 | 3.5
5.0
6.5
8.5
9.5 | 2.0
2.5
3.0
4.5
7.0 | 2.5
3.5
4.5
6.5
8.5 | 14.5
13.5
12.5
10.5
11.5 | 13.0
12.0
10.5
10.0
9.5 | 13.5
12.5
11.5
10.0
10.5 | 18.5
18.0
19.5
19.5 | 17.0
16.0
16.5
18.0
18.0 | 17.5
17.0
18.0
18.5
18.5 | 24.0
24.0
23.0
22.5
23.0 | 22.5
22.0
20.0
20.0
22.0 | 23.0
23.0
22.0
21.5
22.5 | | 11
12
13
14
15 | 11.0
12.0
13.0
13.0 | | | | | | | | | 24.5
25.0
25.5
26.0
26.5 | | | | 16
17
18
19
20 | 12.5
13.0
12.5
13.0
14.5 | 10.5
10.5
11.5
11.0 | 11.5
11.5
12.0
12.0
12.5 | 17.0
17.0
16.5
15.5 | 16.0
16.0
15.5
14.0
13.5 | 16.0
16.5
16.0
15.0
14.5 | 23.5
24.5
24.5
24.5
25.0 | 21.5
22.0
22.0
22.0
23.0 | 22.5
23.0
23.5
23.0
24.0 | 25.5
25.5
26.5
26.5
26.5 | 23.5
24.0
24.5
25.5
25.0 | 24.5
24.5
25.5
26.0
26.0 | | 21
22
23
24
25 | 15.0
16.0
16.5
16.0
16.5 | 12.5
13.0
13.5
15.0
14.0 | 13.5
14.5
15.0
15.0 | 15.5
17.0
18.0
19.5
20.0 | 14.5
14.5
16.0
17.0
18.0 | 15.0
15.5
17.0
18.0
19.0 | 24.0
23.0
22.5
21.5
21.0 | 22.5
22.0
21.0
20.0
19.0 | 23.5
22.5
21.5
21.0
20.0 | 26.5
26.0
26.0
25.5
26.0 | 24.5
24.5
25.0
25.5
25.0 | 25.5
25.5
25.5
25.5
25.5 | | 26
27
28
29
30
31 | 15.5
15.5
15.0
14.0
15.5 | 14.5
13.0
12.5
12.5
13.0 | 14.5
14.0
13.5
13.5
14.0 | 21.5
22.0
22.5
22.5
22.5
22.5 | 19.0
20.0
20.0
20.5
20.0
20.0 | 20.0
21.0
21.0
21.5
21.5
21.5 | 21.5
21.5
22.5
22.5
23.5 | 18.5
19.5
20.0
20.5
22.0 | 20.0
20.5
21.0
22.0
23.0 | 25.5
25.5
26.0
26.0
26.0
26.0 | 24.5
24.5
24.5
24.0
23.5
24.0 | 25.0
25.0
25.0
25.0
25.0
24.5 | | MONTH | 16.5 | | | | | | | | | 26.5 | | | | | | AUGUST | | S | | | | | | | | | | 1
2
3
4
5 | 25.5
25.0
25.0
24.5
25.0 | 23.5
23.5
23.0
22.5
23.5 | 24.5
24.5
24.0
23.5
24.0 | 21.0
21.0
21.0
22.0
21.0 | 20.0
20.0
19.5
19.5
20.0 | 20.5
20.5
20.5
20.5
20.5 | | | | | | | | 9 | 25.0
25.5
26.0
26.0
25.5 | 23.0
23.0
24.0
24.5
24.0 | 24.0
24.0
25.0
25.0
25.0 | 21.5
22.5
23.0
22.5
22.5 | 20.0
20.5
21.5
21.5
20.5
| 21.0
21.5
22.0
22.0
21.0 | | | | | | | | 11
12
13
14
15 | 26.0
26.5
27.0
27.0
27.0 | 23.5
24.0
25.0
25.5
25.0 | 25.0
25.5
26.0
26.0
26.0 | 20.5
20.5
19.0
17.5 | 19.0
18.5
17.0
16.0
16.5 | 20.0
19.0
17.5
17.0
17.0 | | | | | | | | 16
17
18
19
20 | 26.0
25.5
24.5
25.0
24.5 | 24.5
24.0
23.0
23.5
23.0 | 25.5
24.5
24.0
24.0
24.0 | 17.0
15.5
15.0
15.5 | 15.0
13.5
13.5
14.0
14.5 | 16.0
14.5
14.0
14.5
15.0 | | | | | | | | 21
22
23
24
25 | 23.5
23.0
23.0
23.0
22.5 | 22.5
22.0
22.0
22.5
22.0 | 23.0
22.5
22.5
22.5
22.5 | 14.5
14.0
14.5
13.5
14.0 | 13.5
13.5
13.5
12.5
13.0 | 14.0
13.5
14.0
13.0
13.5 | | | | | | | | 26
27
28
29
30
31 | 22.5
22.0
20.5
20.5
20.5
21.0 | 21.5
20.0
20.0
19.0
19.0
20.0 | 22.0
21.0
20.0
19.5
20.0
20.0 | 15.5
15.5
15.5
15.5
14.5 | 14.0
14.5
14.5
13.5
13.0 | 15.0
15.0
15.0
15.0
13.5 | | | | | | | 23.0 12.5 17.0 MONTH 27.0 19.0 23.5 #### 06177000 MISSOURI RIVER NEAR WOLF POINT, MT LOCATION.--Lat 48°04′00", long 105°31′55" (NAD 27), in SW¹/4NW¹/4 sec.28, T.27 N., R.48 E., McCone County, Hydrologic Unit 10060001, on right bank 500 ft downstream from bridge on State Highway 13, 5 mi southeast of Wolf Point, 7.8 mi downstream from Wolf Creek, and at river mile 1,701.4. DRAINAGE AREA.--82,290 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--September 1928 to current year. REVISED RECORDS.--WSP 1146: 1931. WSP 1729: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 1,958.57 ft (NGVD 29). Prior to Apr. 13, 1930, nonrecording gages at Wolf Point ferry landing 5.5 mi upstream at different elevation. REMARKS.-- Water-discharge records good except those for estimated daily discharges, which are fair. Flow partly regulated by Fort Peck Lake and many other reservoirs upstream from station. Diversion for irrigation of about 1,010,400 acres upstream from station. U.S. Army Corps of Engineers satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 14, 1908, reached a stage of about 20 ft, (site and elevation then in use). ### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------------------------------------|--|---|--|---|--|--|--|---|--|--|--|--| | 1
2
3
4 | 5200
5140
5350
5160 | 5140
5190
5200
5220 | 9260
9290
9190
9130 | 10300
10400
10100
10200 | | e10200
e9200
e9300
e9300 | 6500
6250
7030
7860 | 9310
9290
9120
8850 | 8830
9020
8820
8830 | 8370
8420
8380
7990 | 8090
8220
6820
6780 | 7140
6930
6760
6750 | | 5 | 5150 | 5210 | 9830 | 9990 | e10500 | e7800 | 7660 | 9130 | 8850 | 7490 | 6880 | 6910 | | 6
7
8
9 | 5200
5250
5240
5120 | 5150
5300
5260
5320 | 10200
10400
10000
10100 | 10100
10100
10100
10100 | e10300
e10400
e10200
e10400 | e8800
e7000
e7000
e6200 | 7370
7000
6880
6760 | 9820
8750
8870
9030 | 8800
8850
8760
8940 | 7530
7650
7830
7980 | 6770
7050
6760
6910 | 7030
7160
7120
7030 | | 10 | 5120 | 5190 | 10000 | e9700 | e10200 | e5900 | 6450 | 9440 | 8800 | 8040 | 6930 | 6750 | | 11
12
13
14
15 | 5070
5110
5030
5110
5180 | 5210
5190
5200
5100
5150 | 10000
10100
10100
10000
10000 | e10000
e10100
e10000
e10100
e10100 | e10400
e10100
e10100
e10300
e10000 | e5400
e4900
e4300
e4000
e3900 | 6520
6600
7140
7580
7640 | 9710
10300
11100
10900
10600 | 8860
9280
9010
9200
9030 | 7970
7840
7970
7890
7860 | 6660
6880
6990
7050
6970 | 6770
6790
6730
6670
6960 | | 16
17
18
19
20 | 5080
4980
5180
4990
4980 | 5180
5280
5220
5180
5160 | 10000
9940
9930
9720
10000 | e10100
e9800
e10100
e9900
e10100 | e10000
e10300
e10300
e10300
e10000 | e4200
e4700
e5700
e6200
e7200 | 7870
7690
7600
7600
7290 | 10300
9660
11400
11300
10900 | 9110
9180
9100
8870
8550 | 8040
7800
7770
7760
7850 | 6710
6910
6960
7010
6940 | 7340
6680
6650
6660
6660 | | 21
22
23
24 | 5040
5130
5130
5220 | 5260
5240
5310
5200 | 9910
9980
10100
10100 | e10000
e10200
e10100
e10000 | e10200
e10100
e10000
e10400 | e8700
10300
10200
9630 | 7460
7140
7380
7800 | 9790
11200
11300
9910 | 8620
8790
8730
8460 | 7700
7620
7660
7630 | 6810
6940
6660
7200 | 6620
6620
6290
5210 | | 25 | 5170 | 5280 | e10000 | e8700 | e10300 | 9460 | 8050 | 9420 | 8330 | 7570 | 6900 | 4780 | | 26
27
28
29
30
31 | 5220
5110
5090
5130
5140
5210 | 5910
8070
9440
9220
9180 | e10500
e10400
10200
10200
10100
10200 | e8500
e9700
e10100
e10000
e10200
e9800 | e10200
e10700
e10700
 | 9600
8820
8030
7780
7700
7010 | 8170
8290
8320
8350
8910 | 9320
9310
9150
10300
9430
8760 | 8180
8330
8270
8240
8360 | 7620
7650
7740
7890
7640
7730 | 6860
6940
7040
6810
6880
7060 | 4750
4720
4710
4680
4620 | | MEAN
MAX
MIN | 159230
5136
5350
4980
315800 | 172160
5739
9440
5100
341500 | 308880
9964
10500
9130
612700 | 308690
9958
10400
8500
612300 | 287100
10250
10700
10000
569500 | 228430
7369
10300
3900
453100 | 223160
7439
8910
6250
442600 | 305670
9860
11400
8750
606300 | 263000
8767
9280
8180
521700 | 242880
7835
8420
7490
481800 | 216390
6980
8220
6660
429200 | 190490
6350
7340
4620
377800 | | STATIS | TICS OF I | MONTHLY MI | EAN DATA | FOR WATER | YEARS 1943 | 3 - 2003 | 3, BY WATI | ER YEAR (WY | () * | | | | | MEAN
MAX
(WY)
MIN
(WY) | 11430
29130
1956
3151
1993 | 9152
22210
1998
2328
1947 | 9030
13420
1944
1338
1943 | 9714
14270
1971
995
1943 | 9923
15820
1976
1195
1943 | 8902
16750
1976
2301
1945 | 9538
27180
1952
1470
1945 | 9254
21800
1979
1182
1945 | 9418
26040
1975
1268
1945 | 10270
36270
1975
1171
1945 | 12010
27110
1955
3515
1963 | 11750
27150
1955
3274
1992 | | SUMMAR | Y STATIS | TICS | FOF | 2002 CAL | ENDAR YEAR | | FOR 2003 | WATER YEAR | ! | WATER YEA | RS 1943 - | - 2003* | | ANNUAL
HIGHES
LOWEST
HIGHES | TOTAL MEAN TANNUAL ANNUAL TDAILY DAILY | | | 2526650
6922
11000
4000
4010 | Aug 24
Mar 21 | | 2906080
7962
11400 | May 18 | | 10030
15850
5607
45100 | Apr 19 | 1955
1963
9 1952
5 1942 | | ANNUAL
MAXIMU
MAXIMU | SEVEN-DA
M PEAK FI
M PEAK S' | TAGE | | | Mar 21 | | 4490
a11500
b9 | May 18
Mar 15
Mar 11
May 18 | | 906
c46800
15.6
d320 | Jan 12
Apr 19
4 Mar 27
Dec 10 | 2 1943
9 1952
7 1960
0 1941 | | ANNUAL
10 PER
50 PER
90 PER | RUNOFF CENT EXCI CENT EXCI CENT EXCI | LOW FLOW
(AC-FT)
EEDS
EEDS
EEDS | | 5012000
9950
5460
4530 | | | 5764000
10200
7980
5160 | | | 7269000
15700
9030
4560 | | | #### 06177000 MISSOURI RIVER NEAR WOLF POINT, MT--Continued | SUMMARY STATISTICS | WATER | YEARS | 1929-19 | 39** | | | |--|------------------|-------------------|---|-------------------|----------------------|----------------------| | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL FUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | 84
91
£6680 | 00
91
00
40
10
00
14.40 | Nov
Feb
Mar | 25
29
10
25 | 1937
1938
1939 | | *After Fort Peck Lake reache
**Prior to Fort Peck Lake re
aGage height, 4.41 ft.
bBackwater from ice.
cGage height, 9.98 ft.
dOccurred outside period of
eEstimated.
fFrom rating curve extended | aching
record | operat | ional l | evel | (1 | 929-1939). | #### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1949-51, 1961-62, 1965-68, 1970-73, May 2002 to current year. #### PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: July 1979 to September 1985, seasonal records May 2002 to current year. INSTRUMENTATION.--Temperature recorder installed
May 16, 2002. REMARKS.--Seasonal daily water temperature record good. Unpublished records of instantaneous water temperature and specific conductance are available in files of District office. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: Maximum, 21.5°C, Aug. 12-14, 2003; minimum, 0.0°C, many days during winter periods. #### EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: During period of seasonal operation, maximum, 21.5°C, Aug. 12-14; minimum, 1.0°C, Apr. 3, 4. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instar
taneo
dis
charg
cfs
(0006 | us metr
- pres
e, sure
mm H | ic Dis
- solv
, oxyge
g mg/ | ed perce
n, of sa
L urati | red wate
n, unflt
nt fiel
t- std | r, condu
rd tand
d, wat u
uS/c
s 25 de | c-
e, Tempe
inf atur
m air
gC deg | e, ature
, water
C deg C | , unflt;
, mg/L a | ,
r, Calciu
rd water
as fltrd
3 mg/I | water,
l, fltrd,
mg/L | |-----------------------|------|--|---|--|---|---|---|--|--------------------------------|---|--|--| | APR 2003
01
MAY | 1200 | 6470 | 710 | 11.2 | 102 | 8.4 | 560 | 5.0 | 8.0 | 190 | 46.5 | 18.3 | | 08 | 1115 | 8890 | 715 | 12.0 | 110 | 8.5 | 562 | 14.0 | 8.5 | 200 | 49.4 | 18.8 | | JUL
08
AUG | 1015 | 7310 | 716 | 8.9 | 100 | 8.4 | 561 | 24.0 | 18.0 | 230 | 55.7 | 20.9 | | 26 | 1015 | 6370 | 720 | 9.1 | 102 | 8.3 | 570 | 26.5 | 18.0 | 210 | 51.6 | 19.9 | | Date | | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d
(70302) | | APR 20
01
MAY | | 5.18 | 1 | 43.7 | 150 | 6.87 | .66 | 6.4 | 126 | 344 | .47 | 6010 | | 08 | | 3.89 | 1 | 40.1 | 159 | 8.79 | .85 | 6.9 | 120 | 344 | .47 | 8260 | | JUL
08
AUG | | 4.03 | 1 | 40.7 | 158 | 8.75 | . 9 | 6.7 | 117 | 350 | .48 | 6900 | | 26 | | 3.64 | 1 | 38.1 | 165 | 8.53 | .9 | 7.4 | 115 | 344 | .47 | 5920 | # 06177000 MISSOURI RIVER NEAR WOLF POINT, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | Ammonia + org-N, water, unfltrd mg/L as N (00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | Nitrite
+
nitrate
water
fltrd,
mg/L
as N
(00631) | Nitrite
water,
fltrd,
mg/L
as N
(00613) | Ortho-
phos-
phate,
water,
fltrd,
mg/L
as P
(00671) | Phos-
phorus,
water,
unfltrd
mg/L
(00665) | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | Barium,
water,
fltrd,
ug/L
(01005) | Barium,
water,
unfltrd
recover
-able,
ug/L
(01007) | Cadmium
water,
fltrd,
ug/L
(01025) | |-----------------------|--|--|---|--|--|--|--|--|--|--|--| | APR 2003
01 | .90 | .060 | .128 | .004 | E.005 | .22 | 2.3 | 6 | 33 | 95 | < .04 | | MAY
08 | .28 | <.015 | E.014 | <.002 | <.007 | .092 | 3.1 | 5 | 37 | 54 | <.04 | | JUL
08
AUG | .26 | <.015 | <.022 | <.002 | <.007 | .057 | 3.2 | 4 | 35 | 63 | < .04 | | 26 | .17 | <.015 | <.022 | <.002 | E.004 | .035 | 2.9 | 4 | 35 | 52 | <.04 | | Date | Cadmium
water,
unfltrd
ug/L
(01027) | Chrom-
ium,
water,
fltrd,
ug/L
(01030) | Chrom-
ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | Copper,
water,
fltrd,
ug/L
(01040) | | Iron,
water,
fltrd,
ug/L
(01046) | Iron,
water,
unfltrd
recover
-able,
ug/L
(01045) | Lead,
water,
fltrd,
ug/L
(01049) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Mangan-
ese,
water,
fltrd,
ug/L
(01056) | Mangan-
ese,
water,
unfltrd
recover
-able,
ug/L
(01055) | | APR 2003
01
MAY | .10 | <.8 | 3.4 | 2.3 | 10.3 | <10 | 5850 | <.08 | 5.04 | 3.4 | 143 | | 08
JUL | .05 | <.8 | 1.6 | 1.4 | 4.2 | <10 | 2140 | <.08 | 1.82 | 1.5 | 52 | | 08
AUG | .04 | <.8 | E.6 | 1.4 | 2.9 | <8 | 1330 | <.08 | 1.04 | 1.9 | 33 | | 26 | < .04 | <.8 | E.4 | 1.4 | 2.8 | <8 | 740 | <.08 | .61 | 1.4 | 26 | | Date | Mercury
water,
fltrd,
ug/L
(71890) | Mercury
water,
unfltrd
recover
-able,
ug/L
(71900) | | Nickel,
water,
unfltrd
recover
-able,
ug/L
(01067) | Selen-
ium,
water,
fltrd,
ug/L
(01145) | Selen-
ium,
water,
unfltrd
ug/L
(01147) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | Suspnd.
sedi-
ment,
sieve
diametr
percent
<.063mm
(70331) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | | APR 2003
01 | <.02 | E.02 | 2.37 | 9.50 | .7 | .8 | 1 | 30 | 94 | 279 | 4870 | | MAY
08
JUL | <.02 | <.02 | 2.88 | 5.52 | .8 | .7 | 1 | 11 | 43 | 140 | 3360 | | 08
AUG | <.02 | <.02 | 2.15 | 3.73 | .9 | .7 | 1 | 7 | 57 | 74 | 1460 | | 26 | <.02 | <.02 | 2.70 | 4.12 | .7 | 1.0 | <1 | 3 | 38 | 56 | 963 | E--Estimated. # 06177000 MISSOURI RIVER NEAR WOLF POINT, MT--Continued WATER TEMPERATURE, DEGREES CELSIUS, APRIL 2003 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------| | 1
2
3
4
5 | 8.0 | 6.5
2.0
1.0
1.0
2.5 | 7.5
4.0
1.5
2.0
3.5 | 11.0
11.0
12.0
12.0
10.5 | 9.0
9.0
10.0
10.5
9.0 | 10.0
10.0
11.0
11.0
9.5 | | JUNE 12.5 11.5 12.0 13.0 11.5 | 12.5
12.0
13.0
13.5
12.0 | 19.0
19.5
19.0
17.5
17.5 | JULY
16.5
17.5
17.5
15.0 | 18.0
18.5
18.0
16.0
16.5 | | 6
7
8
9
10 | 9.0 | 4.0
5.0
5.0
6.5
8.0 | 4.5
5.5
6.0
7.5
9.0 | 9.0
8.0
8.0
8.0 | 7.5
7.0
7.0
7.5
7.5 | 8.0
7.5
7.5
8.0
8.0 | 12.0
12.0
14.0
14.0 | 10.5
10.5
11.5
13.0
13.0 | 11.0
11.0
12.5
13.5 | 17.5
17.5
17.0
17.5
18.0 | 16.0
16.0
15.5
15.0 | 17.0
17.0
16.0
16.0 | | 11
12
13
14
15 | 11.0
10.5 | 9.0
10.0 | 9.5
10.0
10.0
9.0
9.5 | 10.0
11.0
11.5
12.5
13.5 | 7.5
9.0
10.5
10.5 | 8.5
10.0
11.0
11.5
12.5 | 13.5
15.0
17.0
17.5
17.0 | 12.5
12.5
13.5
15.5 | 13.0
13.5
15.0
16.5
16.0 | 18.0
18.0
19.0
19.0 | 16.5
16.5
17.0
17.5 | 17.5
17.5
18.0
18.5
18.0 | | 16
17
18
19
20 | 9.5
9.0
9.0
8.5
9.5 | 8.0
7.0
8.5
8.0
7.5 | 8.5
8.5
8.5
8.5
8.5 | 13.5
12.0
11.5
9.5
10.5 | 12.0
11.0
9.5
8.5
8.5 | 12.5
11.5
10.0
9.0
9.5 | 16.5
16.5
17.0
18.5
19.0 | 14.5
14.0
14.5
15.0
17.0 | 15.5
15.5
16.0
16.5
18.0 | 19.0
19.5
21.0
20.5
20.5 | 17.0
17.5
19.0
19.0
18.0 | 18.0
18.5
20.0
20.0
19.0 | | 21
22
23
24
25 | 11.0
12.0
12.0
12.0
11.0 | 9.5
11.0 | 9.5
11.0
11.5
11.0 | 11.5
12.0
13.5
15.0
15.5 | 10.0
11.5 | 10.5
11.0
12.5
13.5
14.5 | 18.5
17.0
15.5
15.0
14.5 | 16.0
14.5
13.5
13.5 | 17.0
15.5
14.5
14.0
13.5 | 19.0
18.5
19.5
19.5
19.0 | 17.0
16.5
17.0
18.0
17.0 | 18.0
17.5
18.0
18.5
17.5 | | 26
27
28
29
30
31 | 11.0
10.0
10.0
10.0 | 10.0
8.5
8.5
9.0
8.5 | 10.0
9.5
9.5
10.0
9.5 | 16.5
16.5
16.5
16.0
15.5
15.0 | 14.5
14.5
14.5
14.0
13.5
13.0 | 15.5
15.5
15.5
15.0
14.5
13.5 | 14.5
16.0
16.0
16.5
18.0 |
13.0
14.0
14.5
14.5
15.0 | 14.0
15.0
15.5
15.5 | 18.0
18.5
19.5
19.5
19.0
18.5 | 16.0
16.5
17.0
17.5
17.0 | 17.0
17.5
18.0
18.5
18.0 | | MONTH | 12.0 | 1.0 | 8.1 | | | 11.2 | 19.0 | 10.5 | 14.4 | 21.0 | 15.0 | 17.8 | | | | AUGUST | | | SEPTEMB | ER | | | | | | | | 1
2
3
4
5 | 18.5
18.0
18.0
18.5
18.5 | 16.5
16.5
16.5
17.0
17.0 | 17.5
17.5
17.5
17.5
18.0 | 17.5
17.0
16.5
16.0
16.0 | 16.0
16.0
15.0
15.0 | 17.0
16.5
16.0
15.5
16.0 | | | | | | | | 6
7
8
9
10 | 18.5
20.0
21.0
21.0
20.0 | 17.0
18.0
19.0
19.5
18.5 | 18.0
19.0
20.0
20.5
19.5 | 16.5
17.0
17.5
17.5 | 15.5
15.5
16.0
16.5
14.0 | 16.0
16.5
17.0
17.0 | | | | | | | | 11
12
13
14
15 | 21.0
21.5
21.5
21.5
20.5 | 18.5
19.5
20.0
19.5
18.5 | 19.5
20.5
21.0
20.5
19.5 | 14.5
14.5
14.0
14.0 | 13.5
14.0
12.5
12.0
13.0 | 14.0
14.0
13.0
13.0 | | | | | | | | 16
17
18
19
20 | 20.0
20.0
19.5
20.0
19.5 | 18.5
18.5
18.5
18.5
18.0 | 19.5
19.5
19.0
19.0 | 13.5
13.0
11.5
13.0
13.5 | 13.0
11.0
10.0
11.0
12.5 | 13.0
12.0
10.5
12.0
13.0 | | | | | | | | 21
22
23
24
25 | 18.5
18.0
19.0
19.0 | 17.0
16.5
17.5
17.5 | 18.0
17.5
18.0
18.0 | 13.5
13.0
13.0
12.5
13.0 | 12.5
12.0
12.5
11.0 | 13.0
12.5
12.5
11.5
12.0 | | | | | | | | 26
27
28
29
30
31 | 18.0
17.0
16.0
16.0
16.5 | 16.5
16.0
15.0
14.5
14.5 | 17.5
16.5
15.5
15.5
15.5 | 13.5
14.0
13.5
13.0
12.5 | 12.5
12.5
12.0
12.0
11.0 | 13.0
13.0
13.0
12.5
11.5 | | | | | | | 21.5 14.5 18.3 17.5 10.0 13.8 MONTH #### REDWATER RIVER BASIN #### 06177500 REDWATER RIVER AT CIRCLE, MT LOCATION.--Lat 47°24′51", long 105°34′30" (NAD 27), in SW¹/₄SW¹/₄ sec.11, T.19 N., R.48 E., McCone County, Hydrologic Unit 10060002, on left bank at Circle, 1 mi upstream from Horse Creek, and at river mile 110.2. DRAINAGE AREA.--547 mi². PERIOD OF RECORD.--April to November 1929, March to November 1930, July 1931 to December 1932, March to June 1933, February to November 1934, April 1935 to December 1936, April 1937 to June 1972, October 1974 to current year. Monthly discharge only for some periods, published in WSP 1309. Prior to October 1967, published as Redwater Creek at Circle. REVISED RECORDS.--WSP 1006: 1929-30, 1932-33, 1935-39. WSP 1509: 1929, 1934. WSP 1729: Drainage area. GAGE.--Water-stage recorder. Sharp-crested weir since Sept. 24, 1938. Elevation of gage is 2,394.32 ft (NGVD 29) (levels by U.S. Army Corps of Engineers). Prior to June 1, 1941, and Mar. 23, 1943, to Feb. 16, 1948, nonrecording gage at site 0.3 mi upstream at same elevation. June 1, 1941, to Mar. 22, 1943, nonrecording gage at site 200 ft upstream at elevation 2.8 ft lower. Feb. 26, 1948, to May 7, 1950, nonrecording gage at site 200 ft upstream at present elevation. REMARKS.--Records fair except those for estimated daily discharges, which are poor. Diversions for irrigation of about 1,200 acres upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | | DISCHAR | GE, CUB | IC FEET FI | | ILY MEAN | | CIOBER 2 | .002 TO SE | FIENIDEN | 2003 | | |--------------------------------------|---|---|--|--|---|---|--------------------------------------|--|--------------------------------------|--------------------------------------|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.06
e0.05
e0.05
e0.05
e0.05 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.15
e0.10
e0.15
e0.10
e0.10 | e0.20
e0.30
e0.50
e0.30
e0.30 | 0.71
0.58
0.49
0.41
0.32 | 0.55
0.55
0.54
0.53
0.67 | 0.36
0.42
0.43
0.43
0.43 | 0.32
0.27
0.26
0.24
0.25 | 0.12
0.12
0.11
0.09
0.07 | 0.02
0.02
0.02
0.01
0.01 | | 6
7
8
9
10 | e0.05
e0.05
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.20
e0.20
e0.20
e0.20
e0.20 | 0.28
0.57
0.54
1.9 | 0.75
0.73
0.73
0.71
0.73 | 0.44
0.48
0.44
0.55
0.49 | 0.23
0.22
0.25
0.32
0.26 | 0.05
0.04
0.05
0.12
0.10 | 0.01
0.02
0.02
0.02
0.02 | | 11
12
13
14
15 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.15
e0.15
e0.15 | e0.20
e0.30
e0.50
e25.0
e200 | 1.4
1.3
1.3
1.3 | 0.71
0.64
1.0
1.4
1.5 | 0.58
0.66
0.57
0.53
0.44 | 0.25
0.23
0.20
0.21
0.19 | 0.05
0.04
0.03
0.03
0.03 | 0.02
0.02
0.03
0.03
0.03 | | 16
17
18
19
20 | 0.10
0.10
0.13
0.19
e0.20 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.20
e0.20
e0.20
e0.20
e0.20 | 90
39
27
23
19 | 1.1
1.2
1.1
1.2 | 1.8
1.9
1.7
1.5 | 0.41
0.45
0.36
0.35
0.34 | 0.21
0.21
0.20
0.20
0.20 | 0.03
0.02
0.02
0.02
0.01 | 0.03
0.03
0.03
0.04
0.04 | | 21
22
23
24
25 | e0.20
e0.20
e0.15
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.20
e0.15
e0.15
e0.15
e0.15 | 14
11
9.0
5.6
4.0 | 0.90
0.71
0.32
0.55
0.55 | 1.1
0.95
0.82
0.74
0.59 | 0.49
0.50
0.48
0.62
0.59 | 0.19
0.17
0.15
0.15
0.15 | 0.01
0.01
0.01
0.01
0.01 | 0.04
0.05
0.04
0.04
0.04 | | 26
27
28
29
30
31 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.10
e0.10
e0.10
e0.10
e0.10 | e0.10
e0.15
e0.15
e0.10
e0.10
e0.15 | e0.15
e0.20
e0.20 | 2.9
2.1
1.6
1.2
1.1
0.88 | 0.52
0.55
0.49
0.44
0.52 | 0.47
0.44
0.37
0.33
0.32
0.31 | 0.45
0.41
0.39
0.36
0.32 | 0.15
0.16
0.16
0.13
0.13 | 0.01
0.00
0.00
0.00
0.00
0.00 | 0.04
0.05
0.05
0.05
0.05 | | TOTAL
MEAN
MAX
MIN
AC-FT | 3.23
0.10
0.20
0.05
6.4 | 3.00
0.10
0.10
0.10
6.0 | 3.10
0.10
0.10
0.10
6.1 | 3.25
0.10
0.15
0.10
6.4 | 4.10
0.15
0.20
0.10
8.1 | 479.98
15.5
200
0.20
952 | 25.15
0.84
1.9
0.28
50 | 26.38
0.85
1.9
0.31
52 | 13.77
0.46
0.66
0.32
27 | 6.39
0.21
0.32
0.13
13 | 1.22
0.039
0.12
0.00
2.4 | 0.92
0.031
0.05
0.01
1.8 | | STATIST | TICS OF M | MONTHLY ME | AN DATA | FOR WATER | YEARS 19 | 29 - 2003, | , BY WATER | YEAR (WY | () * | | | | | MEAN
MAX
(WY)
MIN
(WY) | 0.51
19.2
1987
0.000
1941 | 0.36
7.11
1987
0.000
1931 | 0.43
8.58
1952
0.000
1936 | 0.35
6.13
1976
0.000
1936 | 14.9
141
1943
0.000
1939 | 72.1
476
1994
0.045
1941 | 17.0
418
1952
0.070
1961 | 3.66
32.1
1979
0.023
1961 | 14.5
167
1944
0.003
1961 | 11.1
116
1957
0.000
1939 | 1.98
37.4
1932
0.000
1939 | 2.38
139
1986
0.000
1940 | #### REDWATER RIVER BASIN #### 06177500 REDWATER RIVER AT CIRCLE, MT--Continued | SUMMARY STATISTICS | FOR 2002 CALENDAR YEAR | FOR 2003 WATER YEAR | WATER YEARS 1929 - 2003* | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 270.14 | 570.49 | 11 5+4 | | ANNUAL MEAN | 0.74 | 1.56 | 11.5** | | HIGHEST ANNUAL MEAN | | | 61.6 1952 | | LOWEST ANNUAL MEAN | | | 0.04 1941 | | HIGHEST DAILY MEAN | 37 Mar 28 | 200 Mar 15 | 4510 Mar 31 1952 | | LOWEST DAILY MEAN | 0.00 Jan 1 | 0.00 Aug 27 | 0.00 Oct 8 1929 | | ANNUAL SEVEN-DAY MINIMUM | 0.04 Jul 28 | 0.00 Aug 24 | 0.00 Nov 20 1929 | | MAXIMUM PEAK FLOW | | a200 Mar 15 | c6960 Jun 29 1986 | | MAXIMUM PEAK STAGE | | b8.80 Mar 15 | 12.93 Mar 4 1994 | | ANNUAL RUNOFF (AC-FT) | 536 | 1130 | 8310 | | 10 PERCENT EXCEEDS | 1.2 | 1.1 | 7.1 | | 50 PERCENT EXCEEDS | 0.11 | 0.12 | 0.20 | | 90 PERCENT EXCEEDS | 0.05 | 0.03 | d0.00 | ^{*--}During period of operation (1932, 1936, 1938-71, 1975 to current year). **--Median of yearly discharges, 6.04 ft³/s. a--About. b--Backwater from ice. c--From rating curve extended above 3,500 ft³/s, gage height, 12.85 ft, from floodmark. e--Estimated. #### 06178000 POPLAR RIVER AT INTERNATIONAL BOUNDARY (International gaging station) LOCATION.--Lat 48°59'25", long 105°41'46" (NAD 27), in NE¹/₄NE¹/₄SE¹/₄ sec.6, T.37 N., R.46 E., Daniels County, Hydrologic Unit 10060003, on left bank 0.7 mi south of
international boundary, 1.5 mi upstream from Coal Creek, 18.5 mi northwest of Scobey, MT, and at river mile 135.7. DRAINAGE AREA.--358 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--March 1931 to current season (seasonal records only for most years). Published as Middle Fork Poplar River at international boundary, March 1931 to November 1975. REVISED RECORDS.--WSP 1389: 1931, 1935-37(M), 1939-40, 1942(M), 1943, 1948(M), 1950(M). WSP 1729: Drainage area. W 1984: Drainage GAGE.--Water-stage recorder and concrete control since September 1977. Elevation of gage is 2,460 ft (NGVD 29). REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. U.S. Geological Survey satellite telemeter at station. A few small diversions for irrigation upstream from station. COOPERATION .-- This is one of a number of stations which are maintained jointly by the United States and Canada. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 12,700 ft³/s, Apr. 6, 1954, gage height, 10.25 ft, from floodmark, from rating curve extended above 2,500 ft³/s, on basis of slope-area measurement of peak flow; no flow at times. #### DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |---|---|---------------------------------------|---|---------------------------------------|--|---|--|--|---|--|--------------------------------------|---| | 1
2
3
4
5 | | | e0.30
e0.30
e0.30
e0.0
e0.0 | 15
11
13
14
21 | 15
15
15
15
17 | 5.1
5.8
8.2
8.6
8.0 | 2.2
1.7
1.3
0.98
0.74 | 0.11
0.06
0.06
0.14
0.13 | 0.32
0.36
0.42
0.51
0.54 | 0.29
0.33
0.30
0.32
0.38 | | | | 6
7
8
9
10 | | | e0.0
e0.0
e0.0
e0.0
e0.0 | 15
18
21
32
32 | 26
55
68
66
71 | 8.6
7.7
7.4
7.5
7.5 | 0.48
0.35
0.50
0.67
0.52 | 0.11
0.14
0.15
0.14
0.10 | 0.57
0.55
0.53
0.36
0.35 | 0.41
0.46
0.95
1.3 | | | | 11
12
13
14
15 | | | e0.0
e0.0
e0.0
e2.0 | 26
22
19
22
33 | 72
51
43
40
33 | 7.8
7.9
7.9
7.5
8.0 | 0.36
0.53
0.50
0.53
0.43 | 0.07
0.05
0.04
0.04
0.05 | 0.31
0.35
0.37
0.26
0.25 | 1.4
1.5
1.6
1.9
2.2 | | | | 16
17
18
19
20 | | | e300
e600
e500
434
238 | 34
32
31
27
24 | 34
46
47
35
26 | 8.3
6.8
5.8
4.9
4.3 | 0.29
0.26
0.33
0.17
0.12 | 0.06
0.04
0.03
0.05
0.13 | 0.28
0.38
0.36
0.32
0.43 | 2.4
2.5
2.4
2.5 | | | | 21
22
23
24
25 | | | 112
71
53
41
35 | 21
19
18
17
17 | 21
20
18
15 | 4.4
4.3
4.0
4.1
5.0 | 0.17
0.16
0.13
0.12
0.16 | 0.23
0.22
0.14
0.05
0.09 | 0.59
0.44
0.33
0.29
0.29 | 2.4
2.4
2.5
2.5
2.4 | | | | 26
27
28
29
30
31 | | | 30
27
24
22
20
17 | 16
17
17
16
16 | 11
9.7
9.4
7.7
6.6
5.8 | 4.2
3.6
3.2
2.8
2.6 | 0.11
0.11
0.10
0.10
0.10
0.11 | 0.07
0.12
0.31
0.43
0.37
0.31 | 0.29
0.27
0.28
0.29
0.29 | 2.5
2.7
2.7
2.2
e2.0
e1.5 | | | | TOTAL
MEAN
MAX
MIN
MED
AC-FT | | | | 636
21.2
34
11
19
1260 | 927.2
29.9
72
5.8
21
1840 | 181.8
6.06
8.6
2.6
6.3
361 | 14.33
0.46
2.2
0.10
0.33
28 | 4.04
0.13
0.43
0.03
0.11
8.0 | 11.18
0.37
0.59
0.25
0.35
22 | 52.64
1.70
2.7
0.29
2.0
104 | | | | STATIST | CICS OF MO | NTHLY M | EAN DATA FO | R SEASONS | 1931 - | 2003* | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 0.000
0.000
1936
0.000
1936 | 20.2
61.3
1981
0.000
1936 | 418
1999
0.000 | 81.6
699
1952
5.52
1988 | 17.2
86.2
1982
3.05
1992 | 14.4
191
1963
0.16
1988 | 8.63
120
1993
0.041
1988 | 0.000 | 0.007 | 2.68
11.8
1955
0.039
1989 | 4.90
9.35
1955
0.12
1937 | 0.000
0.000
1936
0.000
1936 | | SUMMARY | STATISTI | | FOR 2 | | | | FOR 2003 | | | | | | | LOWEST
MAXIMUM | DAILY ME. DAILY MEA PEAK FLO PEAK STA | AN
N
W
GE | | 150
0.00 | Apr 12
Mar 1 | | a600
0.00
unknown
a6.90 | Mar 17
Mar 4
Mar 16 | | 5000
0.00
b127000
10.25 | Apr 6
Jun 30
Apr 6
Apr 6 | 1954
1932
1954
1954 | ^{*--}Seasonal record most years. a--Backwater from ice b--From rating curve extended above 2,500 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow. e--Estimated. ## 06178000 POPLAR RIVER AT INTERNATIONAL BOUNDARY--Continued WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1964-65, 1976 to current year. REMARKS.--Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | mm Hg | Dis-
solved
oxygen,
mg/L
(00300) | Dis-
solved
oxygen,
percent
of sat-
uration
(00301) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conductance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | unfltrd
mg/L as
CaCO3 | Magnes alcium ium, water, water fltrd, fltrd mg/L mg/L 00915) (00925 | i,
l, | |---|--|--
--|--|--|---|--|--
--|--|--|----------| | MAR 2003
20 | 1315 | 220 | 702 | 10.8 | 92 | 8.1 | 364 | 6.0 | 5.0 | 120 | 21.5 15.0 | | | MAY
14 | 1200 | 41 | 700 | 10.2 | 110 | 8.4 | 1600 | 12.0 | 14.5 | 420 | 49.6 72.6 | | | JUN
16 | 0900 | 9.0 | 711 | 10.8 | 124 | 8.3 | 1220 | 21.0 | 18.5 | 320 | 37.2 54.5 | | | AUG
13 | 0900 | .03 | 706 | 7.7 | 98 | 8.9 | 1950 | 29.0 | 23.5 | 260 | 20.0 50.5 | | | | | | | | | | | | | | | | | Date | Pota
sium
wate
fltr
mg/
(0093 | r, Sodi
r, adsor
d, tio
L rat: | on fltr
lo mg/ | r, la
d, mg/L
L CaC | ty, flt Chl end id o, wat as flt O3 mg | rd, flt:
/L mg | e, Silic
er, wate
rd, fltr
/L mg/ | er, wate
d, flt:
'L mg | er, const
rd, tuer
/L mg, | er, rd, Resid of wate ti- fltr nts tons /L acre- | r, Residue
d, water,
/ fltrd,
ft tons/d | | | MAR 2003 | 16.0 | | 0.5 | 0 14 | 2 0 | | 2 10 5 | . 25 | 0 000 | 2.0 | 121 | | | 20
MAY | 16.2 | | 27. | | | 57 .1: | | | | | | | | 14
JUN | 14.2 | | 217 | 61 | | 35 .4 | 18.7 | | 1050 | | | | | 16
AUG | 8.6 | | 174 | 49 | | 06 .4 | 1.5 | | 776 | | | | | 13 | 9.8 | 6 9 | 342 | 63 | 1 13. | 3 .6 | . 5 | 5 422 | 1240 | 1.68 | .10 | | | | | | | | | | | | | | | | | Date | Ammon
+
org-
wate
unflt
mg/
as
(0062 | N, Ammon
r, wate
rd flt:
L mg,
N as | er, wate
cd, fltr
'L mg/
N as | te Nitr
r wat
d, flt
L mg
N as | phoite phaser, waterd, flt N as | te, Phoser, phore rd, water water reference re | us, Arsen
er, wate
trd fltr
/L ug/ | er, wate
d, unfli
'L ug | er wate
trd flt:
/L ug, | er, recov
rd, -abl
/L ug/ | r,
rd Cadmium
er water,
e, fltrd,
L ug/L | | | Date MAR 2003 20 | org-
wate
unflt
mg/
as | N, Ammon
r, wate
rd flt:
L mg,
N as | nia nitra
er, wate
ed, fltr
/L mg/
N as
08) (0063 | te Nitr
r wat
d, flt
L mg
N as
1) (006 | pho
ite pha
er, wat
rd, flt
/L mo
N as
13) (006 | os-
ite, Phos
ier, phor
ird, wate
i/L unfli | us, Arsen
er, wate
trd fltr
/L ug/ | er, waterd, unflight unflight unflight unflight unflight (010) | er wate
trd flt:
/L ug,
02) (0100 | wate um, unflt er, recov ed, -abl /L ug/ | r,
rd Cadmium
er water,
e, fltrd,
L ug/L | | | MAR 2003
20
MAY
14 | org-
wate
unflt
mg/
as
(0062 | N, Ammon
r, wate
rd flt:
L mg,
N as
5) (006) | hia nitra er, wate cd, fltr /L mg/ N as 08) (0063 | te Nitr r wat d, flt L mg N as 1) (006 | pholite phaser, wat flt mg N as 13) (006 | es-
ete, Phos
er, phor
rd, wat
r/L unfl
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended
recommended | us, Arsener, waterd fltr ug/65) (0100 | er, wated, unfl: (L ug: (00) (010) | er wate
trd flt:
/L ug,
02) (0100 | wate um, unflt er, recov ed, -abl /L ug/ 05) (0100 | r, rd Cadmium er water, e, fltrd, L ug/L 7) (01025) | | | MAR 2003
20
MAY
14
JUN
16 | org-
wate
unflt
mg/
as
(0062 | N, Ammoi
r, wate
rd flt:
L mg,
N as
5) (0066 | + nitra er, wate erd, fltr (L mg/ N as 08) (0063 | te Nitrr wat d, flt L mg N as 1) (006 | pho phae phae phae phae phae phae phae phae | s- te, Phose er, phori erd, wate f/L unfl' P mg (771) (006) | us, Arsener, waterd fltr (100) (0100)
(0100) | er, waterd, unflict ug. (010) | er wate
trd flt:
/L ug,
02) (0100 | wate um, unflt er, recov cd, -abl /L ug/ 05) (0100 | r, rd Cadmium er water, e, fltrd, L ug/L 7) (01025) | | | MAR 2003
20
MAY
14
JUN | org-
wate
unflt
mg/
as
(0062 | N, Ammoi
r, wate
rd flt:
L mg,
N as
5) (0066 | + nitra arr, water, water, water, water, fltr (L mg/N as) (0063) | te Nitrr wat d, flt L mg N as 1) (006 6 .0 2 .0 2 <.0 | pho pha wat rd, flt mg l3) (006 | tte, Phoi- eer, phorn rd, wat- f/L unfl- P mg, r71) (006) 34 .26 28 .073 | us, Arser water, water fltrd fltrd fltrd sign (0100 2.6 3 4.4 2 4.2 | er, waterd, unflict ug 00) (010) 5 2 4 3 | er wate
trd flts
/L ug,
02) (0100
45 | wate um, unflt er, recov cd, -abl /L ug/ 05) (0100 | r, rd Cadmium er water, e, fltrd, L ug/L 7) (01025) <.04 <.04 | | | MAR 2003
20
MAY
14
JUN
16
AUG | + org-
wate
unfit
mg/
as
(0062
1.8
1.5 | N, Ammon
rr, wat
rd fltr
L mg
N as
5) (0066
01
<.01
<.02
<.02
.03
.04
.05
.05
.05
.05
.05
.05
.05
.05
.05
.05 | + nitra arr, wate rd, fltr (0063 | te Nitr r wat d, flt L mg N as 1) (006 6 .0 2 .0 2 <.0 2 <.0 m-, rr, copper wat e, flt L ug | pho pha | ns- ite, Phoi. ite, Phoi. ite, Phoi. ite, Phoi. ite, phor. ph | us, Arserer, wate trd filtr (1 ug/65) (0100 2.6 3 4.4 2 4.2 0 7.8 4.4 2 4.2 4.2 1 1 ror wate unfit er, recoverd, -abl (/L ug/L ug/4 1 ug/L ug/L ug/4 1 ug/L ug/4 1 ug/4 1 ug/4 1 ug/4 ug/4 ug/4 ug/4 ug/4 ug/4 ug/4 | er, wat. d, unfli (L ug 00) (010) 5 2 4 3 2 4 3 7 11, er, er, trd Leac rer wat. Le, flt: Lu ug | er water trd fltr dig (| wate unflt rer, recov rd, -abl ug/ 05) (0100 50 77 51 37 d, er, Manga erd ere wate le, fltr /L ug/ | r, rd Cadmium er water, e, fltrd, L ug/L 7) (01025) <.04 <.04 <.04 <.04 Mangan- ese, n- water, , unfltrd r, recover d, -able, L ug/L | | | MAR 2003
20
MAY
14
JUN
16
AUG
13 | cadmi wate unflu ug/(0102 | N, Ammon
rr, waterd fltr
L mg
N as
5) (0066
03
03
03
03
03
03
03
03 | hiia nitra arr, wate rd, fltr mg/ as 88) (0063 as 85 .86 ll <.02 chromom-wate unflt recover and recove | te Nitr r wat d, flt L mg N as 1) (006 6 .0 2 .0 2 <.0 2 <.0 m-, r, rd Copp er wat e, flt L ug 4) (010 | pho pha | ns- ite, Phoi. ite, Phoi. ite, Phoi. ite, Phoi. ite, phorn ind, wate unfl' if Market i | us, Arserer, wate trd fltr ug/ (0100 | er, wat. d, unfil L ug 00) (010) 5 2 4 3 2 4 3 7 11, er, erd Lead ver wat. (L ug 15) (010) | er water trd fltr fltr graph (0100) (| wate um, wate unflt rer, recov rd, -abl ug/ 05) (0100 50 77 51 37 d, er, Manga erd ese wate le, fltr UL ug/ (0105 | r, rd Cadmium er water, e, fltrd, L ug/L 7) (01025) <.04 <.04 <.04 <.04 Mangan- ese, n- water, unfltrd r, recover d, -able, L ug/L 6) (01055) | | | MAR 2003
20
MAY
14
JUN
16
AUG
13 | + org-wate unflt mg/ as (0062 | N, Ammon
r, waterd fltr
rd fltr
L mg
N as
5) (0066
<.00
<.00
<.00
<.00
chreater waterd fltr
L ug
7) (0100 | hia nitra er, wate rd, fltr Mg/ N as 08) (0063 35 .86 11 <.02 15 <.02 15 <.02 Chro ium om- wate ner, recov cunflt recov d, -abl L'L ug/ 80) (0103 | te Nitr r wat d, flt. L mg N as 1) (006 6 .0 2 .0 2 <.0 2 <.0 7 <.0 6 copp er wat e, flt. L ug 4) (010 | pho pha | sette, Pho: tte, phor tte, phor er, phor rd, wate (/L unfl' s P mg (71) (006) 34 .26 28 .07 15 .04 107 .05 Der, er, trd Irol wate le, flt ug (42) (010 4 18 | us, Arser er, wate trd fltr ug/ Lug/55) (0100 2.6 3 4.4 2 4.2 0 7.8 Iron wate unflt er, recoverd, -abl ug/ 46) (0104 | er, wat. d, unfil L ug 00) (0100 2 4 3 7 1, er, er, fil Leadrer wat. ee, filt: L ug 15) (0100 | er wate filt trd filt ug (02) (0100 45 82 47 34 Lead wate unfil er, record, -ab. /L ug (49) (0109 8 .59 | wate um, wate unflt er, recov rd, -abl /L (0100 50 77 51 37 d, er, Manga erd er wate le, fltr (U105) (0105) 17.6 | r, rd Cadmium er water, e, fltrd, L ug/L 7) (01025) <.04 <.04 <.04 <.04 <.04 .04 .04 .0 | | | MAR 2003
20
MAY
14
JUN
16
AUG
13
Date | + org-wate unflt mg/as (0062 1.8 1.5 .80 1.2 Cadmi wate unflt ug/(0102 .05
.04 | N, Ammon
r, waterd fltr
L mg
N as
5) (0066
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00 | thia nitra arr, waterd, fltr mg/ as 88) (0063 as 85 .86 arr continue water and market | te Nitr r wat d, flt L mg N as 1) (006 6 .0 2 .0 2 <.0 2 <.0 2 <.0 m-, rr, copper wat e, flt L ug 4) (010 | pho pha pha water, water, rd, flt mg N as 13) (006 48 .1 03 .0 02 .0 02 <.0 Copp water, unfler, record, august of the control con | nete, Phoise, per phore of the | us, Arser wate firm wate firm for the firm of | er, wath unfil (L ug (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) | er water trd fltr fltr fltr graph (0100) (01 | wate um, wate um, control of the con | r, rd Cadmium er water, e, fltrd, L ug/L 7) (01025) <.04 <.04 <.04 <.04 .04 .04 .04 .0 | | | MAR 2003
20
MAY
14
JUN
16
AUG
13
Date | + org-wate unflt mg/ as (0062 | N, Ammon
r, waterd fltr
I mg
N as
5) (0066
00
<.00
<.00
<.00
00
00
00
00 | thia nitra arr, water depth arrow water as a series with a series water as a series water arrow and arrow arrow and a series water arrow a | te Nitr r wat d, flt. L mg N as 1) (006 6 .0 2 .0 2 <.0 2 <.0 2 <.0 m-, r, rd Copp er wat e, flt. L ug 4) (010 2. 3. | pho pha | rete, Phote, Pho | us, Arser er, wate to the control of | er, wat. d, unfil L ug 00) (010) 5 2 4 3 2 4 3 7 11, erd Lead wat. ee, filt: (L ug (5) (010) 1 .1: 0 E.0' 0 < .06 | er water trd fltr dig, | wate um, wate umflt rer, recov rd, -abl ug/ 05) (0100 50 77 51 37 d, er, Manga ese wate le, fltr r/L ug/ (0105) 17.6 51 17.6 65 11.5 | r, rd Cadmium er water, e, fltrd, L ug/L 7) (01025) <.04 <.04 <.04 <.04 Mangan- ese, n- water, unfltrd r, recover d, able, L ug/L 6) (01055) 31 16 10 | | E--Estimated. # 06178000 POPLAR RIVER AT INTERNATIONAL BOUNDARY--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | Mercury
water,
fltrd,
ug/L
(71890) | Mercury
water,
unfltrd
recover
-able,
ug/L
(71900) | Nickel,
water,
fltrd,
ug/L
(01065) | Nickel,
water,
unfltrd
recover
-able,
ug/L
(01067) | Selen-
ium,
water,
fltrd,
ug/L
(01145) | Selen-
ium,
water,
unfltrd
ug/L
(01147) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | Suspnd. sedi- ment, sieve diametr percent <.063mm (70331) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | Sus-
pended
sedi-
ment
load,
tons/d
(80155) | |-----------------------|--|--|--|--|---|--|--|--|---|--|---| | MAR 2003
20
MAY | <.02 | E.01 | 2.16 | 2.25 | E.3 | <.5 | 2 | 5 | 88 | 22 | 13 | | 14 | <.02 | <.02 | 3.53 | 3.43 | .6 | .7 | 3 | 4 | 33 | 182 | 20 | | JUN
16
AUG | <.02 | <.02 | 2.22 | 2.17 | E.3 | E.4 | <2 | E2 | 40 | 28 | .68 | | 13 | <.02 | <.02 | 1.56 | 2.42 | E.4 | <.5 | 2 | 2 | 46 | 51 | .00 | E--Estimated. #### 06178500 EAST POPLAR RIVER AT INTERNATIONAL BOUNDARY (International gaging station) LOCATION.--Lat 49°00'00", long 105°24'32" (NAD 27), in SW¹/₄SW¹/₄ sec.3, T.1 N., R.26 W., second meridian, in Saskatchewan, Hydrologic Unit 10060003, on left bank 10 ft north of international boundary, 400 ft southwest of Canadian East Poplar Port of Entry, 14 mi north of Scobey, MT, and at river mile 21.9. DRAINAGE AREA.--541 mi². (WY) 1993 1993 1993 1982 1982 1992 1992 1978 1992 1977 1992 1992 #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--March 1931 to current year (seasonal records only in most seasons prior to October 1974). Prior to March 1962, published as East Fork Poplar River at international boundary. REVISED RECORDS.--WSP 1389: 1932, 1939, 1942-43, 1947. W 1983: Drainage area. GAGE.--Water-stage recorder and concrete control. Elevation of gage is 2,410.92 ft (International Boundary Commission Survey Datum). Prior to Oct. 5, 1953, water-stage recorder at site 80 ft upstream at same elevation. REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. U.S. Geological Survey satellite telemeter at station. Since September 1975 flow regulated by Morrison Dam at Cookson Reservoir 3.1 mi upstream. COOPERATION.--This is one of a number of stations which are maintained jointly by Canada and the United States. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 2.1 2.6 2.4 2.2 2.3 2.1 3.4 2.1 1.9 e1.8 4.1 1.9 1.9 8.1 e1.6 2.2 2.1 2.0 2.5 8.4 3.3 2.0 1.8 1.8 e1.4 $\frac{1.4}{1.4}$ 2.6 2.7 e3.5 2.4 2 1 2.1 3 0 1 8 5 2.4 2.2 2.3 2.1 2.9 1.9 e3.0 6.9 2.0 1.8 2.4 2.4 2.3 2.3 2.6 7 1 2.0 1.9 e2.5 e2.5 2 0 2.9 1 8 6 7 1.8 1.9 1.8 2.6 2.8 2.0 1.8 2.6 8 e2.2 2.4 2.2 2.3 2.0 1.7 3.0 5.9 1.8 2.0 1.8 2 2 1.6 2.7 e2 2 2 5 2 0 3 4 6 3 2.1 2 0 10 2.3 2.2 2.0 3.4 6.3 2.2 1.9 2.0 11 e3.0 2.4 2.4 2.2 2.0 1.6 3.1 5.6 2.8 2.1 1.9 1.9 12 2.1 2.0 1.9 3.0 2.1 2.0 2.8 2.4 2.0 2.1 13 2.4 2.1 2.1 2.9 6.7 2.8 1.8 2.2 2.0 2.4 2.8 2.7 14 2.5 6.8 1.9 2.0 15 2.5 2.4 2.4 2.0 2.0 3.2 2.8 2.7 2.1 1.8 2.6 2.4 2.4 2.1 2.0 4.9 2.7 2.7 2.1 16 4.3 1.9 17 2.7 2.4 2.4 2.1 2.1 8.5 2.7 3.9 2.7 1.9 1.9 2.2 2.7 18 2.6 2.4 2.4 2.1 2.0 7.1 4.3 2.4 1.9 1.7 2.2 4.5 2.0 1.9 19 2.4 20 2.4 2.4 2.4 2.2 2.1 3.8 2.7 6.5 2.3 1.9 1.9 2.2 2.4 2.1 2.6 2.3 21 2.4 2.4 2.0 3.4 6.7 2.3 1.9 1.7 22 2.4 2.4 2.4 2.0 2.0 3.3 2.5 6.7 2.3 1.9 1.7 2.2 23 2.4 2.2
$\frac{2.4}{2.4}$ 2.0 3.4 2.5 6.7 1.9 2.3 1.9 1.9 2.3 1.9 24 2.4 6.6 25 2.4 2.2 2.3 2.0 1.8 3.0 2.4 6.5 2.2 2.0 e1.5 2.1 6.7 2.5 2.3 2.6 2.2 2.0 e2.0 2.1 26 27 2.4 2.2 2.3 2.0 1.9 2.8 2.9 6.6 2.2 2.0 e2.0 2.1 2.8 2.5 2.1 2.2 2.3 2.0 2.8 5.9 1.9 e2.0 2.1 2.0 29 2.5 2.3 2.4 2.5 2.6 4.1 2.0 e2.0 2.0 30 2.5 2.2 2.3 2.0 ___ 2.5 2.6 6 0 2.0 1.9 2 0 2.0 31 2.4 2.3 2.1 ---2.6 4.5 1.8 2.0 77.8 71.9 TOTAL 76.1 70.8 66.2 56.1 89.8 82.0 188.3 61.2 58.0 61.0 2.14 2.00 2.90 6.07 2.59 1.97 1.87 MEAN 2.45 2.36 2.32 2.73 2.03 3.5 2.5 2.4 2.4 2.1 3.4 8.4 3.4 2.2 2.0 2.3 8.5 2 1 1 8 MIN 1 9 1 4 1 5 1 8 140 163 373 115 AC-FT 151 143 131 111 178 154 121 121 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1977 - 2003, BY WATER YEAR (WY)* MEAN 2.46 2.26 2.65 11.3 40.7 2.37 22.8 5.28 2.83 2.50 4.65 MAX 4 37 4 40 280 306 23 2 6 84 4 10 1980 1980 1980 1997 1999 1982 1979 1979 1999 1997 1979 1980 (WY) 1.27 1.26 0.93 1.91 1.80 2.98 1.72 1.79 1.58 1.53 1.64 #### 06178500 EAST POPLAR RIVER AT INTERNATIONAL BOUNDARY--Continued | SUMMARY STATISTICS | FOR 2002 CALENDAR YEAR | FOR 2003 WATER YEAR | WATER YEARS 1977 - 2003* | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 1019.3 | 959.2 | | | ANNUAL MEAN | 2.79 | 2.63 | 6.75 | | HIGHEST ANNUAL MEAN | | | 32.3 1982 | | LOWEST ANNUAL MEAN | | | 2.13 1992 | | HIGHEST DAILY MEAN | 12 May 2 | 8.5 Mar 17 | 2930 Apr 15 1982 | | LOWEST DAILY MEAN | 1.4 Sep 24 | 1.4 Oct 3 | c0.70 Feb 28 1998 | | ANNUAL SEVEN-DAY MINIMUM | 1.9 Sep 27 | 1.6 Mar 4 | 0.80 Jan 16 1982 | | MAXIMUM PEAK FLOW | - | all Mar 17 | d4020 Apr 23 1975 | | MAXIMUM PEAK STAGE | | b5.97 Oct 3 | 12.80 Mar 25 1943 | | INSTANTANEOUS LOW FLOW | | | 0.70 Feb 28 1998 | | ANNUAL RUNOFF (AC-FT) | 2020 | 1900 | 4890 | | 10 PERCENT EXCEEDS | 3.5 | 3.6 | 6.7 | | 50 PERCENT EXCEEDS | 2.3 | 2.3 | 2.5 | | 90 PERCENT EXCEEDS | 2.0 | 1.9 | 1.7 | ^{*--}Since initial filling of Cookson Reservior. a--Gage height, 5.94 ft. b--Backwater from beavers. #### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1964-65, 1975 to current year. PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: February 1982 to current year. WATER TEMPERATURE: June 1975 to September 1983. INSTRUMENTATION.--Specific conductance monitor installed April 1995. REMARKS.--Daily specific conductance records fair. Missing conductance data for June 28 to Sept. 25 due to equipment problems. Unpublished records of instantaneous water temperature and specific conductance are available in files of District office. EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum daily mean, 2,040 microsiemens per centimeter (µS/cm) at 25.0°C, Feb. 10-12, 1997; minimum daily mean, 363 μS/cm at 25.0°C, July 2, 1991. WATER TEMPERATURE: Maximum, 29.5°C, July 6, 1975, July 25, 26, 1978; minimum, 0.0°C on many days during winters most years. EXTREMES FOR CURRENT YEAR .-- SPECIFIC CONDUCTANCE: During period of usable record (October to June), maximum daily mean, 1,630 microsiemens per centimeter (µS/ cm) at 25.0°C, Jan. 14-26 and Feb. 18-24; minimum daily mean, 1,030 µS/cm at 25.0°C, Mar. 18-20. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | Baro-
metric
pres-
sure,
mm Hg
(00025) | Dis-
solved
oxygen,
mg/L
(00300) | Dis-
solved
oxygen,
percent
of sat-
uration
(00301) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | |-----------------------|--|---|---|--|---|---|--|--|---|---|--| | MAY 2003
14 | 0915 | 6.7 | 706 | 8.4 | 85 | 8.3 | 1530 | 7.5 | 12.0 | 360 | 56.2 | | JUN
16 | 1200 | 2.8 | 712 | 6.1 | 74 | 8.3 | 1440 | 23.0 | 21.0 | 360 | 62.0 | | AUG
13
SEP | 1200 | 1.8 | 707 | 8.7 | 113 | 8.5 | 1440 | 36.0 | 24.5 | 300 | 44.1 | | 09 | 1245 | 1.9 | 700 | 8.2 | 96 | 8.4 | 1490 | 22.0 | 18.5 | 350 | 55.9 | | Date | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | | MAY 2003
14
JUN | 54.0 | 14.4 | 5 | 211 | 534 | 7.04 | . 4 | 8.5 | 318 | 991 | 1.35 | | 16
AUG | 49.7 | 8.77 | 5 | 221 | 517 | 6.28 | .3 | 11.1 | 289 | 958 | 1.30 | | 13
SEP | 46.5 | 8.17 | 5 | 205 | 476 | 6.77 | .3 | 12.0 | 287 | 896 | 1.22 | | 09 | 52.1 | 9.81 | 5 | 238 | 471 | 7.25 | . 4 | 10.7 | 296 | 952 | 1.29 | c--No flow at times prior to filling Cookson Reservior. d--Gage height, 12.01 ft. e--Estimated. # 06178500 EAST POPLAR RIVER AT INTERNATIONAL BOUNDARY--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | Resi
wat
flt
ton
(703 | er,
rd,
s/d | Ammonia
+
org-N
water
unfltro
mg/L
as N
(00625 | , Ammoni
, water
d fltrd
mg/L
as N | , water
, fltrd,
mg/L
as N | | wate
fltr
mg/
as | se, Pho
er, pho
ed, was
'L unfi
P m | ter,
ltrd
g/L | rsenic
water,
fltrd,
ug/L
01000) | wat
unfl | er trd: | arium,
water,
fltrd,
ug/L
01005) | Bariu
wate
unflt
recov
-abl
ug/ | er,
erd
er
e, | |----------------|--|-------------------|---|--|--|-----------------------------|--|--|---|---|---------------------------------|--|---|--|--| | MAY 2003 | 3
17. | 9 | 1.6 | .462 | .149 | .017 | <.00 |)7 .1 | 10 | 3.7 | 6 | ; | 68 | 75 | | | JUN
16 | 7. | 24 | .82 | E.009 | <.022 | E.002 | <.00 | 7 .0 | 50 | 5.9 | 6 | i | 58 | 66 | | | AUG
13 | 4. | 35 | 1.2 | <.015 | <.022 | <.002 | <.00 | 7 .1 | 22 | 6.2 | 6 | i | 54 | 64 | | | SEP
09 | 4. | 88 | .67 | <.015 | <.022 | <.002 | <.00 | 7 .0 | 46 | 4.0 | 5 | i | 49 | 55 | | | Date | Cadm
wat
flt
ug
(010 | er,
rd,
/L | Cadmium
water
unfltro
ug/L
(01027 | , water
d fltrd
ug/L | unfltrd
, recover
, -able,
ug/L | Copper | recov
-abl
ug/ | er,
ord Iro
ver wa
.e, fl: | on, u
ter, r
trd,
g/L | Iron,
water,
nfltrd
ecover
-able,
ug/L
01045) | flt | d, und, reserved, red, | Lead,
water,
nfltrd
ecover
-able,
ug/L
01051) | Manga
ese
wate
fltr
ug/
(0105 | er,
ed,
L | | MAY 2003
14 | 3
<.0 | 4 | .05 | <.8 | E.6 | 1.5 | 5.1 | . 1: | 2 | 1970 | <.0 | 18 | . 95 | 60.0 | | | JUN
16 | <.0 | 4 | <.04 | <.8 | <.8 | 1.3 | 2.5 | 5 1' | 7 | 460 | <.0 | 8 | .36 | 11.6 | | | AUG
13 | <.0 | 4 | <.04 | <.8 | <.8 | 1.1 | 2.5 | 5 1 | 0 | 70 | <.0 | 8 | .50 | 5.5 | | | SEP
09 | <.0 | 4 | <.04 | <.8 | <.8 | 1.2 | 2.0 | 1 | 8 | 410 | <.0 | 8 | .38 | 4.4 | | | Date | Mangan-
ese,
water,
unfltrd
recover
-able,
ug/L
(01055) | wa
fl
u | cury unter, retrd, | ecover
-able,
ug/L | ickel, un
water, re
fltrd, -
ug/L | fltrd
cover wable, fug/L | Selen-
ium,
water,
Eltrd,
ug/L
)1145) | Selen-
ium,
water,
unfltrd
ug/L
(01147) | Zinc,
water
fltrd
ug/L
(01090 | , reco
, -ab
ug | c,
er,
trd
ver
ole, | Suspnd
sedi-
ment,
sieve
diamet:
percent
<.063mm
(70331 | pen
sed
me:
r conc
t trat
m mg | ded
i-
nt
en-
ion
/L | Sus-
pended
sedi-
ment
load,
tons/d
80155) | | MAY 2003 | 133 | <. | 02 | <.02 | 3.83 4 | .44 | E.5 | .8 | 2 | 7 | | 92 | 12 | 1 | 2.2 | | JUN
16 | 72 | <. | 02 | <.02 | 2.89 2 | .55 | E.3 | <.5 | 1 | 2 | | 94 | 9 | 1 | .69 | | AUG
13 | 83 | <. | 02 | <.02 | 2.56 3 | .13 | <.5 | E.4 | <1 | 3 | | 40 | 7 | 5 | .36 | | SEP
09 | 41 | <. | 02 | <.02 | 1.93 2 | .69 | E.3 | E.4 | <1 | 2 | | 74 | 10 | 5 | .54 | $\mathtt{E--Estimated}.$ #### 06178500 EAST POPLAR RIVER AT INTERNATIONAL BOUNDARY--Continued ## SPECIFIC CONDUCTANCE, US/CM @ 25 DEGREES CENTIGRADE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN |
FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----|-----|------| | 1 | 1500 | 1530 | 1540 | 1590 | 1600 | 1620 | 1080 | 1400 | 1500 | | | | | 2 | 1500 | 1530 | 1540 | 1590 | 1600 | 1600 | 1080 | 1410 | 1500 | | | | | | 1500 | 1530 | 1540 | 1590 | 1600 | 1590 | 1080 | 1410 | 1500 | | | | | 4 | 1510
1510 | 1530
1530 | 1540
1540 | 1590
1600 | 1600
1610 | 1590
1590 | 1090
1090 | 1410
1420 | 1500
1500 | | | | | 5 | 1510 | 1530 | 1540 | 1000 | 1010 | 1590 | 1090 | 1420 | 1500 | | | | | 6 | 1510 | 1530 | 1540 | 1600 | 1610 | 1590 | 1100 | 1430 | 1500 | | | | | 7 | 1510 | 1530 | 1540 | 1600 | 1610 | 1600 | 1100 | 1450 | 1500 | | | | | 8 | 1510 | 1530 | 1540 | 1600 | 1610 | 1590 | 1110 | 1460 | 1500 | | | | | 9 | 1510 | 1530 | 1550 | 1600 | 1610 | 1590 | 1110 | 1470 | 1500 | | | | | 10 | 1510 | 1530 | 1540 | 1600 | 1620 | 1590 | 1120 | 1490 | 1500 | | | | | 11 | 1510 | 1540 | 1550 | 1600 | 1620 | 1590 | 1160 | 1500 | 1500 | | | | | 12 | 1510 | 1540 | 1540 | 1610 | 1620 | 1570 | 1200 | 1510 | 1500 | | | | | 13 | 1510 | 1540 | 1540 | 1620 | 1620 | 1480 | 1230 | 1520 | 1500 | | | | | 14 | 1520 | 1540 | 1540 | 1630 | 1620 | 1390 | 1270 | 1530 | 1500 | | | | | 15 | 1520 | 1540 | 1550 | 1630 | 1620 | 1290 | 1300 | 1530 | 1500 | | | | | 16 | 1520 | 1540 | 1550 | 1630 | 1620 | 1180 | 1300 | 1530 | 1480 | | | | | 17 | 1520 | 1540 | 1550 | 1630 | 1620 | 1050 | 1310 | 1530 | 1450 | | | | | 18 | 1520 | 1540 | 1550 | 1630 | 1630 | 1030 | 1320 | 1530 | 1450 | | | | | 19 | 1520 | 1540 | 1560 | 1630 | 1630 | 1030 | 1330 | 1530 | 1450 | | | | | 20 | 1520 | 1540 | 1560 | 1630 | 1630 | 1030 | 1340 | 1520 | 1450 | | | | | 21 | 1520 | 1540 | 1570 | 1630 | 1630 | 1040 | 1340 | 1530 | 1450 | | | | | 22 | 1520 | 1540 | 1570 | 1630 | 1630 | 1040 | 1350 | 1530 | 1450 | | | | | 23 | 1520 | 1540 | 1570 | 1630 | 1630 | 1040 | 1360 | 1530 | 1450 | | | | | 24 | 1520 | 1540 | 1570 | 1630 | 1630 | 1050 | 1360 | 1530 | 1450 | | | | | 25 | 1530 | 1540 | 1570 | 1630 | 1620 | 1050 | 1370 | 1530 | 1450 | | | | | 26 | 1530 | 1540 | 1580 | 1630 | 1610 | 1060 | 1380 | 1520 | 1450 | | | 1520 | | 27 | 1530 | 1540 | 1580 | 1620 | 1610 | 1060 | 1380 | 1520 | 1450 | | | 1520 | | 28 | 1530 | 1540 | 1590 | 1600 | 1610 | 1060 | 1380 | 1520 | | | | 1510 | | 29 | 1530 | 1540 | 1590 | 1600 | | 1070 | 1390 | 1520 | | | | 1500 | | 30 | 1530 | 1540 | 1590 | 1600 | | 1070 | 1390 | 1510 | | | | 1480 | | 31 | 1530 | | 1590 | 1600 | | 1080 | | 1500 | | | | | | MEAN | 1517 | 1537 | 1557 | 1613 | 1617 | 1297 | 1247 | 1494 | | | | | | MAX | 1530 | 1540 | 1590 | 1630 | 1630 | 1620 | 1390 | 1530 | | | | | | MIN | 1500 | 1530 | 1540 | 1590 | 1600 | 1030 | 1080 | 1400 | | | | | #### 06181000 POPLAR RIVER NEAR POPLAR, MT LOCATION.--Lat $48^{\circ}10'15''$, long $105^{\circ}10'42''$ (NAD 27), in NE $^{1}/_{4}$ NE $^{1}/_{4}$ sec.19, T.28 N., R.51 E., Roosevelt County, Hydrologic Unit 10060003, on right bank 4 mi north of Poplar, and at river mile 11. DRAINAGE AREA.---3,174 mi². PERIOD OF RECORD.--August 1908 to October 1924, August 1947 to September 1969, June 1975 to September 1979, October 1981 to current year. Monthly discharge only for some periods, published in WSP 1309. #### WATER-DISCHARGE RECORDS REVISED RECORDS.--WSP 1176. 1948. WSP 1389: 1911. WSP 1729: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 1,953.16 ft (NGVD 29). Prior to May 1, 1911, nonrecording gage at site 4.2 mi upstream at different elevation. May 1, 1911, to Oct. 4, 1913, nonrecording gage at site 14 mi upstream at different elevation. Oct. 5, 1913, to Oct. 31, 1924, nonrecording gage at site 2.2 mi upstream at different elevation. Aug. 10, 1947, to Sept. 30, 1969, water-stage recorder at present site and elevation. REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. Diversions for irrigation of about 5,500 acres upstream from station. Flow partially regulated by Coronach Dam, on the East Fork Poplar River, 2 mi north of international boundary. U. S. Geological Survey satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 10, 1946, reached a stage of 18.1 ft, from floodmark, discharge, 40,000 ft³/s, from slope-area measurement of peak flow made at site 20 mi upstream. ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------------------------------------|--|--------------------------------------|--|---------------------------------------|--------------------------------------|---|-------------------------------------|------------------------------------|-------------------------------------|--|--|-------------------------------------| | 1
2
3
4
5 | 20
20
20
20
21 | e30
e30
e30
e30
e30 | e25
e20
e20
e20
e25 | e10
e10
e10
e15
e15 | e6.0
e6.0
e6.0
e6.0 | e9.0
e9.0
e9.0
e8.5
e8.5 | 165
151
111
118
131 | 79
78
77
78
82 | 67
67
67
65
65 | 32
32
32
28
25 | 5.7
5.4
5.1
7.3
7.0 | 3.1
2.9
2.9
3.0
3.0 | | 6
7
8
9
10 | 22
23
25
25
25 | e30
e30
e30
e30
e25 | e25
e25
e30
e30
e30 | e15
e15
e15
e10
e10 | e6.0
e6.0
e6.0
e6.0 | e8.5
e8.5
e8.5
e9.0
e9.0 | 144
136
131
125
117 | 97
115
119
122
144 | 61
57
54
57
63 | 23
22
22
25
31 | 6.6
7.0
6.7
6.5
6.7 | 3.1
3.1
3.1
3.0
3.0 | | 11
12
13
14
15 | 24
24
24
25
26 | e25
e25
e30
e30
e30 | e30
e30
e30
e35
e35 | e9.5
e9.5
e9.0
e9.0 | e6.5
e7.0
e7.5
e8.0
e8.5 | e9.0
e9.5
e10
e15
e100 | 111
107
108
109 | 203
216
234
245
227 | 70
85
73
68
64 | 25
29
30
26
24 | 6.4
5.7
5.7
5.2
4.7 | 3.2
3.5
3.7
4.0
4.2 | | 16
17
18
19
20 | 27
28
28
28
29 | e30
e30
e35
e35
e35 | e35
e35
e30
e25
e20 | e8.5
e7.0
e7.0
e6.0
e6.0 | e9.0
e9.0
e9.0
e9.0
e8.5 | e300
e1300
e4000
e2800
1680 | 104
105
105
106
104 | 197
179
165
152
139 | 59
56
53
49
47 | 23
22
21
18
14 | 4.3
3.8
3.6
3.5
3.4 | 4.6
4.8
4.9
5.3 | | 21
22
23
24
25 | 28
e25
e20
e25
e30 | e35
e30
e30
e20
e20 | e20
e15
e15
e15
e10 | e5.0
e5.0
e6.5
e6.5 | e8.0
e7.0
e7.0
e7.0
e8.0 | 1070
798
620
474
376 | 105
101
98
95
90 | 130
123
119
112
103 | 49
46
44
43
42 | 12
11
10
9.1
8.9 | 3.3
3.5
3.2
3.0
3.0 | 6.1
6.6
6.6
6.4
6.7 | | 26
27
28
29
30
31 | e30
e30
e30
e25
e30
e30 | e20
e20
e25
e25
e25 | e10
e10
e10
e10
e10
e10 | e6.0
e6.0
e6.0
e6.0
e6.0 | e9.0
e9.0
e9.0 | 302
268
232
204
186
172 | 89
90
87
85
82 | 94
89
83
77
73
69 | 41
41
39
36
34 | 8.7
8.7
7.7
6.5
5.9
5.8 | 3.0
3.0
2.8
2.9
3.0
3.1 | 6.6
6.7
6.6
6.5
6.4 | | TOTAL
MEAN
MAX
MIN
AC-FT | 787
25.4
30
20
1560 | 850
28.3
35
20
1690 | 690
22.3
35
10
1370 | 269.5
8.69
15
5.0
535 | 206.0
7.36
9.0
6.0
409 | 15013.0
484
4000
8.5
29780 | 3319
111
165
82
6580 | 4020
130
245
69
7970 | 1662
55.4
85
34
3300 | 598.3
19.3
32
5.8
1190 | 144.1
4.65
7.3
2.8
286 | 139.2
4.64
6.7
2.9
276 | | STATIST | CICS OF MC | NTHLY MEA | N DATA F | OR WATER | YEARS 19 | 08 - 2003 | , BY WATER | YEAR (WY | * | | | | | MEAN
MAX
(WY)
MIN
(WY) | 28.1
81.5
1925
2.19
1959 | 26.7
93.5
1919
4.25
1959 | 16.6
50.0
1915
1.28
1986 | 8.50
30.0
1915
0.013
1950 | 27.0
743
1996
0.10
1959 | 334
2445
1960
0.18
1965 | 664
4918
1952
37.3
1992 | 123
421
1955
17.4
1992 | 85.7
336
1953
2.77
1988 | 77.0
800
1993
0.68
1984 | 27.2
220
1993
0.043
1988 | 23.9
206
1911
0.15
1988 | #### 06181000 POPLAR RIVER NEAR POPLAR, MT--Continued | SUMMARY STATISTICS | FOR 2002 CALENDAR YEAR | FOR 2003 WATER YEAR | WATER YEARS 1908 - 2003* | |--------------------------|------------------------|---------------------|--------------------------| | SUMMARI STATISTICS | FOR 2002 CALENDAR IEAR | FOR 2005 WAIER IEAR | WAIER IEARS 1906 - 2005" | | ANNUAL TOTAL | 13216.0 | 27698.1 | | | ANNUAL MEAN | 36.2 | 75.9 | 120** | | HIGHEST ANNUAL MEAN | | | 435 1952 | | LOWEST ANNUAL MEAN | | | 13.7 1988 | | HIGHEST DAILY MEAN | 206 Jun 16 | 4000 Mar 18 | 34200 Apr 7 1954 | | LOWEST DAILY MEAN | 8.0 Jan 24 | 2.8 Aug 28 | b0.00 Dec 16 1917 | | ANNUAL SEVEN-DAY MINIMUM | 8.0 Jan 24 | 3.0 Aug 24 | 0.00 Jan 4 1950 | | MAXIMUM PEAK FLOW | | unknown | 37400 Apr 6 1954 | | MAXIMUM PEAK STAGE | | a13.55 Mar 18 | c17.86 Apr 6 1954 | | ANNUAL RUNOFF (AC-FT) | 26210 | 54940 | 86690 | | 10 PERCENT EXCEEDS | 82 | 122 | 175 | | 50 PERCENT EXCEEDS | 21 | 24 | 23 | | 90 PERCENT EXCEEDS | 8.0 | 5.0 | 2.9 | ^{*--}During period of operation ($1908-24\ 1947-69$, 1975-79, 1982 to current year). **--Median of yearly mean discharge, $82.1\ \mathrm{ft}^3/\mathrm{s}$. a--Backwater from ice. #### WATER-QUALITY RECORDS PERIOD
OF RECORD.--Water years 1975-81, 1987-94, May 1999 to current year. #### PERIOD OF DAILY RECORD .-- WATER TEMPERATURE: Seasonal records from April 2000 to current year. INSTRUMENTATION.--Temperature recorder installed Sept. 27, 1999; new probe installed Oct. 23, 2002. REMARKS.--Seasonal daily water temperature record good. Unpublished records of instantaneous water temperature and specific conductance are available in files of District office. #### EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE (seasonal records): Maximum, 33.0°C, Aug. 12, 18, 19, 2003; minimum, 0.0°C on many days during winter periods. #### EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: During period of seasonal operation, maximum, 33.0°C, Aug. 12, 18, 19; minimum, 0.0°C, Apr.2. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | Date | Time | Instan-
taneous
dis-
charge,
cfs
(00061) | sure, o | solved p
xygen, c
mg/L u | oxygen, u
percent
of sat-
uration | pH,
water,
unfltrd
field,
std
units
00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | water, n | nfltrd
ng/L as
CaCO3 | Calcium
water,
fltrd,
mg/L
(00915) | |-----------------------|--|---|------------------------------------|--|---|--|--|---|------------------------------|--|--| | MAR 2003
21
MAY | 1100 | 1080 | 717 | 12.8 | 101 | 8.5 | 308 | 4.0 | 3.0 | 77 | 15.2 | | 15
JUN | 1015 | 235 | 714 | 9.2 | 100 | 8.6 | 1400 | 18.5 | 16.0 | 240 | 36.8 | | 24
AUG | 0937 | 44 | 721 | 8.8 | 99 | 8.8 | 1580 | 11.5 | 18.0 | 230 | 26.4 | | 25 | 1045 | 3.2 | | | | 8.6 | 2570 | 30.0 | 22.0 | 330 | 30.6 | | Date | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | sium,
water,
fltrd,
mg/L | Sodium
adsorp-
tion
ratio | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Chlor ide water fltrd mg/L (00940 | , ide
, water
, fltrd
mg/L | , Silica
, water
, fltrd
mg/L | , water,
, fltrd,
mg/L | Residue
water,
fltrd,
sum o
consti-
tuents
mg/L
(70301) | Residue
f water,
fltrd, | | MAR 2003
21 | 9.47 | 12.4 | 2 | 31.7 | 114 | 3.07 | .12 | 8.6 | 34.1 | 187 | . 25 | | 15 | 36.8 | 8.10 | 6 | 230 | 483 | 13.1 | .5 | 11.0 | 262 | 888 | 1.21 | | JUN
24 | 40.5 | 8.49 | 8 | 295 | 501 | 56.0 | .5 | 4.7 | 273 | 1000 | 1.37 | | AUG
25 | 61.3 | 10.2 | 11 | 440 | 515 | 354 | .5 | 4.1 | 320 | 1530 | 2.08 | b--No flow at times. c--From floodmark, from slope-area measurement of peak flow. e--Estimated. ### 06181000 POPLAR RIVER NEAR POPLAR, MT--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | MAR 2003
21
MAY
15
JUN
24
AUG
25 | flt
ton
(703
3
547
564 | due wa er, uni rd, rs/d a cool (00) | ater,
fltrd
mg/L
as N
0625) (| Ammonia water, fltrd, mg/L as N (00608) .043 <.015 <.015 | Nitrite + nitrate water fltrd, mg/L as N (00631) .798 <.022 <.022 <.022 | Nitrite water, fltrd, mg/L as N (00613) .032 .005 <.002 <.002 | pho
pha
wat
flt
mo
as | ate, er, pard, erd, erd, erd, erd, erd, erd, erd, e | Phos-phorus, water, unfltrd mg/L (00665) .40 .23 .06 | Arsenic water, fltrd, ug/L (01000) 1.9 2.9 3.1 2.8 | Arsenic water unfltrd ug/L (01002) 2 4 3 E5 | Barium, | Barium,
water,
unfltrd
recover
-able,
ug/L
(01007)
92
104
61
72 | |---|--|--|--|--|---|---|--|---|--|--|--|---|---| | Date MAR 2003 21 MAY 15 JUN 24 AUG | w
f
(0
3 | ater,
ltrd, ι
ug/L | Cadmium water, unfiltrd ug/L (01027) .12 .17 | Chromium, water, fltrd, ug/L (01030) <.8 <.8 <.8 | unfltr
recove
-able
ug/L | d Copper wate | er, uner, recd, - (L) (10) (0) | opper,
vater,
ifltrd
ecover
able,
ug/L
1042)
8.2
8.3
4.8 | Iron,
water
fltrd
ug/L
(01046
127
12
<8 | recove, -able | d Lead,
r water
, fltrd
ug/L | , -able,
ug/L | ese,
water,
fltrd,
ug/L | | 25 | < | .07 | <.07 | <.8 | <.8 | 2.6 | 5 | 3.4 | E4 | 1340 | <.16 | .52 | 10.5 | | Date | Mangan-
ese,
water,
unfltrd
recover
-able,
ug/L
(01055) | Mercury
water
fltrd
ug/L
(71890) | , recov
, -abl
ug/ | er,
ord Nick
ver wat
le, flt
'L ug | wa
kel, unf
ker, red
krd, -a
g/L u | ltrd
over w
ble, f
g/L | Selen-
ium,
water,
fltrd,
ug/L
)1145) | Sele
ium
wate
unfli
ug
(011 | m, Zi
er, wa
trd fl
/L u | Zin
wat
nc, unfl
ter, reco
trd, -ab
g/L ug
090) (010 | er, men
trd sie
ver diam
le, perce
/L <.06 | i- pend
t, sedi
ve men
etr conce
ent trati
3mm mg/ | ed Sus-
- pended
t sedi-
n- ment
on load, | | MAR 2003
21 | 147 | <.02 | .02 | 2 2.5 | 74 8. | 08 | E.3 | <.! | 5 | 2 19 | 7: | 2 214 | 624 | | 15
JUN | 188 | <.02 | .03 | 3 4.6 | 58 16. | 5 | 1.0 | 1.: | 2 | 3 36 | 9 | 9 460 | 292 | | 24
AUG | 91 | <.02 | <.02 | 2 2.9 | 90 4. | 99 | E.4 | E. | 4 < | 1 6 | 9: | 9 82 | 9.7 | | 25 | 75 | <.02 | <.02 | 3.0 | 9 4. | 96 < | <1.0 | 1. | 1 E | 1 E3 | 9 | 6 54 | . 47 | $\mathtt{E--Estimated}.$ ### 06181000 POPLAR RIVER NEAR POPLAR, MT--Continued ### WATER TEMPERATURE, DEGREES CELSIUS, APRIL 2003 TO SEPTEMBER 2003 | DAY | MAX | MIN | MEAN | |--|--|--|--|---|---|---|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--| | | | APRIL | | | MAY | | | JUNE | | | JULY | | | 1
2
3
4
5 | 9.0
5.5
1.0
3.0
5.5 | 5.5
0.0
0.0
0.0
0.5 | 7.5
2.0
0.0
1.0
3.0 | 18.0
16.5
19.0
16.0
12.5 | 12.0
12.5
12.5
12.5
10.5 | 15.0
14.5
15.5
14.5
11.5 | 17.0
19.5
21.0
18.5
18.0 | 15.5
15.0
15.5
16.0
14.5 | 16.5
17.0
18.0
17.0
16.0 | 29.0
28.5
26.5
26.0
26.5 | 21.0
22.0
22.0
19.0
19.5 | 25.0
25.5
24.0
22.5
23.0 | | 6
7
8
9
10 | 4.0
7.0
9.5
13.0
13.5 | 2.0
3.0
5.0
7.0
9.0 | 3.0
5.0
7.0
10.0
11.0 | 11.0
11.5
11.0
10.0
9.5 | 9.5
8.0
8.0
8.5
8.0 | 10.0
9.5
9.5
9.5
9.0 | 15.0
20.0
19.0 | 13.5
13.0
12.5
16.5
15.5 | 15.0
14.0
16.5
17.5 | 24.0
25.0
21.5
24.5
25.0 | 18.5
17.5
18.0
17.5
19.0 | 21.5
21.5
19.5
20.5
22.0 | | 11
12
13
14
15 | 14.0 | 9.5
11.0
13.0
11.5
11.0 | 12.0
13.5
14.5
13.0
12.5 | 12.0
15.0
14.5
17.0
19.0 | 6.5
10.0
13.0
12.5
14.5 | 9.0
12.5
13.5
14.5
16.5 | 21.0 | 15.0
15.0
17.0
19.5
21.0 | 16.5
18.0
20.5
22.5
23.0 | 27.0
28.0
29.0
26.5
28.5 | 19.0
20.5
22.0
21.5
20.0 | 23.0
24.5
25.5
24.0
24.5 | | 16
17
18
19
20 | 11.0
13.0
11.5
13.0
14.5 | 8.5
7.5
10.0
8.5
10.0 | 9.5
10.0
10.5
11.0
12.0 | 18.0
15.0
14.0
11.5
13.5 | | 16.0
14.0
12.5
10.5 | 26.5
26.5 | 20.5
21.0
20.5
19.5
21.0 | 23.0
23.5
23.5
22.5
24.0 | 27.0
27.0
30.5
32.0
30.0 | 21.5
21.5
22.5
23.5
22.0 | 24.0
24.0
26.5
27.5
26.0 | |
21
22
23
24
25 | 16.5
17.0
18.0
15.5
17.0 | 11.0
12.0
13.0
14.0
13.0 | 13.5
14.0
15.0
14.5
14.5 | 15.5
18.0
20.5
22.0
22.5 | 12.0
13.0
16.0
16.0 | 13.5
15.5
18.0
19.0
19.5 | 23.0
22.5
20.0 | 20.0
18.0
17.0
17.0 | 20.5 | 28.5
28.5
29.5
29.5
25.0 | 21.5
20.5
21.0
22.5
21.0 | 24.5
24.5
25.0
25.5
23.5 | | 26
27
28
29
30
31 | 14.5
14.0
15.0
15.5
17.0 | 12.0
9.5
9.5
11.0
11.0 | 13.5
12.0
12.0
13.0
14.0 | 23.5
23.5
24.0
24.0
21.5
19.5 | 18.0
19.5
18.5
19.5
17.0
16.0 | 20.5
21.5
21.0
21.5
19.0
17.5 | | 14.5
16.5
17.0
17.0 | 17.5
19.0
19.5
21.0
23.0 | 28.0
29.5
31.0
27.0
28.5
29.0 | 19.0
21.5
21.5
21.0
18.5
20.0 | 23.0
25.0
26.0
23.5
23.5
24.0 | | MONTH | 18.0 | 0.0 | 10.0 | 24.0 | 6.5 | 14.5 | 27.5 | 12.5 | 19.5 | 32.0 | 17.5 | 24.0 | | | | | | | | | | | | | | | | | | AUGUST | | S | EPTEMBER | | | | | | | | | 1
2
3
4
5 | 30.0
29.0
25.0
27.5
29.5 | 19.0
19.0 | 24.0
24.0
22.5
23.0
24.5 | 31 0 | EPTEMBER
15.5
14.5
11.5
14.0
15.5 | 22.5
19.0
19.5
22.0
22.0 | | | | | | | | 1
2
3
4 | 29.0
25.0
27.5 | 19.0
19.0
19.5
19.5
20.5 | 24.0
24.0
22.5
23.0
24.5
25.0
26.0
26.0
24.0 | 31.0
24.5
27.5
31.5
30.5 | 15.5
14.5
11.5
14.0
15.5 | 22.5
19.0
19.5
22.0 | | | | | | | | 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 | 29.0
25.0
27.5
29.5
26.5
30.5
31.0
27.5
28.0
31.5
33.0
32.5
32.5 | 19.0
19.0
19.5
19.5
20.5
21.0
22.0
22.0
22.0
21.0
21.5
23.0
22.5 | 23.5
25.0
26.0
24.0 | 31.0
24.5
27.5
31.5
30.5
31.0
32.0
28.0
24.0
16.0 | 15.5
14.5
11.5
14.0
15.5
16.5
17.5
15.0
12.5
11.0
11.5
9.0
7.0 | 22.5
19.0
19.5
22.0
22.0
22.5
23.0
22.0
19.5
14.0
17.0
13.5
12.0
15.0 | | | | | | | | 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 | 29.0
25.0
27.5
29.5
26.5
30.5
31.0
27.5
28.0
31.5
33.0
32.5
32.5 | 19.0
19.0
19.5
19.5
20.5
21.0
22.0
22.0
22.0
21.0
21.5
23.0
22.5 | 23.5
25.0
26.0
24.0
24.0
25.5
27.5
27.5 | 31.0
24.5
27.5
31.5
30.5
31.0
32.0
28.0
24.0
16.0
24.0
17.0
16.5
23.0 | 15.5
14.5
11.5
14.0
15.5
16.5
17.5
15.0
12.5
11.0
11.5
9.0
7.0 | 22.5
19.0
19.5
22.0
22.0
22.5
23.0
22.0
19.5
14.0
17.0
13.5
12.0
15.0 | | | | | | | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | 29.0
25.0
27.5
29.5
26.5
30.5
31.0
27.5
28.0
31.5
32.5
32.5
32.0
31.5
30.5
33.0
33.0
33.0 | 19.0
19.0
19.5
19.5
20.5
21.0
20.0
22.0
22.0
21.5
22.5
22.0
21.5
22.5
22.0 | 23.5
25.0
26.0
24.0
24.0
25.5
27.5
27.5
27.5
27.5
26.0
25.5
25.5
26.5 | 31.0
24.5
27.5
31.5
30.5
31.0
32.0
28.0
24.0
16.0
24.0
17.0
16.5
23.0
18.0 | 15.5
14.5
11.5
14.0
15.5
16.5
15.5
17.5
15.0
12.5
11.0
9.0
7.0
9.5
8.5
6.0
6.5 | 22.5
19.0
19.5
22.0
22.0
22.5
23.0
22.0
19.5
14.0
17.0
13.5
15.0
13.0
11.5
7.5
10.0
12.5 | | | | | | | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | 29.0
25.0
27.5
29.5
26.5
30.5
31.0
27.5
28.0
31.5
32.5
32.5
32.5
32.5
32.5
32.5
32.5
32.5
32.5
32.5
32.5
32.5
32.5
32.5
32.5
32.5
32.5
32.5
32.5
32.5
32.5
32.5 | 19.0
19.0
19.5
19.5
20.5
21.0
20.0
22.0
22.0
21.0
21.5
22.5
22.0
21.5
22.5
22.0
21.5
22.5
22.0 | 23.5
25.0
26.0
24.0
24.0
25.5
27.5
27.5
27.5
26.0
25.5
25.5
26.5
23.0
22.5
24.0
24.5
24.0 | 31.0
24.5
27.5
31.5
30.5
31.0
32.0
28.0
24.0
16.0
24.0
17.0
16.5
23.0
18.0
9.5
15.5
15.5
11.0
15.5
15.5 | 15.5
14.5
11.5
14.0
15.5
16.5
17.5
15.0
12.5
11.0
9.0
7.0
9.5
6.0
6.5
9.0
8.0
7.5
5.5 | 22.5
19.0
19.5
22.0
22.0
22.0
19.5
14.0
17.0
13.5
12.0
15.0
13.0
11.5
7.5
10.0
12.5
12.5 | | | | | | | SEP 0.51 $0.44 \\ 0.33$ 0.31 0.30 0.31 0.32 0.31 0.35 0.40 0.47 0.46 0.45 0.40 0.40 0.32 0.26 0.27 0.51 0.66 0.92 0.85 0.82 0.72 5.8 5.0 4.4 b0.00 17.37 0.00 0.20 3190 22630 38 0.00 Aug Jul Aug 2 1981 23 1984 Mar 22 1999 Apr 14 1982 #### BIG MUDDY CREEK BASIN #### 06183450 BIG MUDDY CREEK NEAR ANTELOPE, MT LOCATION.--Lat 48°40'22", long 104°30'42" (NAD 27), in SW¹/₄SW¹/₄NW¹/₄ sec. 27, T.34 N., R.55 E., Sheridan County, Hydrologic Unit 10060006, on right bank, 3 mi southwest of Antelope, and 7 mi south of Plentywood, MT. DRAINAGE AREA.--967 mi². Prior to 1981, drainage area published as 1,171 mi². PERIOD OF RECORD.--October 1978 to current year. REVISED RECORDS.--WDR MT-81-1: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 2,000 ft (NGVD 29). REMARKS.--Records good except those for estimated daily discharges, which are poor. Several known diversions for irrigation upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of instantaneous water temperature and specific conductance were made during the year. #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES FEB DAY ОСТ NOV DEC MAR APR MAY .TITN TITT. AHG TAN 1.5 5.2 e5.5 e3.5 e2.0 e1.0 86 23 8.1 6.3 2.3 6.4 6.1 5.7 2 $\frac{1.4}{1.4}$ 5.3 5.3 e5.0 e3.5 e3.5 e1.5 e1.5 e1.0 55 18 8.0 2.2 e4.0 e1.0 33 20 8.3 2.1 1.3 5.3 e3.0 e1.0 39 24 8.3 5.2 e1.5 9.0 2.5 5 1.4 5.1 e3.5 e3.5 e1.0 36 23 2.3 6 2.4 5.2 e3.5 e3.5 e1.5 e1.0 32 8.3 4.8 e1.5 e1.5 4.5 4.4 5.5 e3.5 e3.5 e3.5 40 48 e1.0 8.6 2.4 8 4.6 e5.5 e3.5 e1.0 57 7.9 2.4 4.4 e1.5 e1.5 6.8 e5.0 e4.0 e3.0e1.0 47 68 14 2.3 10 e5.0 e1.0 103 2.1 e4.0 44 14 e2.5 7.9 11 5.8 e5.5 e4.0 e2.5 e1.5 e1.0 50 102 14 1.8 e5.5 e2.0 e2.0 14 e2.5 58 8.4 12 6.0 e4.0 e1.5 104 1.6 6.1 13 e5.5 e4.0 e2.0 e5.0 77 110 15 8.8 1.6 7.0 5.7 14 e5.5 e4.0e2.0e1.5 e2074 100 13 1.5 e5.5 e1.5 64 1.4 15 6.9 e4.0 e50 15 e2.5 85 6.5 7.2 e400 54 74 16 6.0 16 e5.5 e4.0e2.5 e2.0 1.3 47 e5.5 e3.5 e2.5 e2.0 e1500 63 21 6.5 5.9 e2300 e2000 e1300 832 41 37 33 30 0 26 0.32 a16.89 4.6 0.75 unknown 27510 49 Sep 18 Sep Mar Mar 18 55 47 41 36 15 10 8.4 8.6 | 21 | 7.0 | e5.5 | e3.0 | e1.5 | e1.0 | 832 | 30 | 36 | 8.6 | 4.4 | 0.72 | 0.66 | |----------|------------|------------|-------------|------------|-----------|-----------|------------|---------------|-------|-----------|-----------|--------| | 22 | e6.0 | e5.5 | e3.0 | e1.5 | e1.0 | 479 | 23 | 32 | 7.1 | 3.8 | 0.68 | 0.61 | | 23 | e5.0 | e5.0 | e3.0 | e1.5 | e1.0 | 337 | 22 | 27 | 6.7 | 3.3 | 0.61 | 0.61 | | 24 | e5.5 | e5.0 | e3.5 | e1.5 | e1.0 | 263 | 18 | 23 | 6.6 | 3.3 | 0.51 | 0.55 | | 25 | e5.5 | e5.0 | e3.5 | e1.5 | e1.5 | 200 | 14 | 19 | 6.1 | 3.6 | 0.49 | 0.61 | | 23 | 63.3 | 63.0 | 65.5 | C1.5 | C1.5 | 200 | 11 | 10 | 0.1 | 3.0 | 0.40 | 0.01 | | 26 | e5.5 | e5.0 | e3.5 | e1.5 | e1.5 | 136 | 13 | 17 | 5.7 | 3.2 | 0.46 | 0.77 | | 27 | e5.5 | e5.5 | e3.5 | e2.0 | e1.5 | 99 | 23 | 17 | 6.0 | 3.1 | 0.44 | 0.87 | | 28 | e5.5 | e5.5 | e3.5 | e1.5 | e1.5 | 78 | 24 | 14 | 6.6 | 3.1 | 0.43 | 1.00 | | 29 | e5.5 | e5.0 | e3.5 | e2.0 | | 64 | 21 | 11 | 7.4 | 2.9 | 0.36 | 0.96 | | 30 | e5.5 | e5.0 | e3.0 | e2.0 | | 53 | 20 | 9.8 | 6.9 | 2.7 | 0.42 | 0.92 | | 31 | 5.3 | | e3.0 | e2.0 | | 49 | | 8.3 | | 2.5 | 0.46 | | | 31 | 3.3 | | 65.0 | C2.0 | | 1,5 | | 0.5 | | 2.5 | 0.10 | | | TOTAL | 157.1 | 159.4 | 113.0 | 75.5 | 43.5 | 10177.5 | 1214 | 1410.1 | 303.6 | 158.8 | 41.57 | 15.00 | | MEAN | 5.07 | 5.31 | 3.65 | 2.44 | 1.55 | 328 | 40.5 | 45.5 | 10.1 | 5.12 | 1.34 | 0.50 | | MAX | 7.6 | 5.5 | 5.5 | 3.5 | 2.0 | 2300 | 86 | 110 | 21 | 8.8 | 2.5 | 1.0 | | MTN | 1.3 | 5.0 | 3.0 | 1.5 | | 1.0 | 13 | 8.3 | 5.7 | 2.5 | 0.36 | 0.26 | | AC-FT | 312 | 316 | 224 | 150 | 86 | 20190 | 2410 | 2800 | 602 | | 82 | 30 | | 710 11 | 312 | 310 | 221 | 130 | 00 | 20170 | 2110 | 2000 | 002 | 313 | 02 | 30 | | STATIST | TCS OF M | ONTHIV ME | א מדעם זומי | OR WATER | VEARS 19 | 79 - 2003 | BY WATER | YEAR (WY) | | | | | | 01111101 | 1200 01 11 | .01,111111 | | on militar | 121110 17 | ., 2005, | 21 1111211 | . 12111 (111) | | | | | | MEAN | 5.33 | 5.88 | 3.56 | 1.86 | 24.1 | 141 | 113 | 25.9 | 15.8 | 25.2 | 8.77 | 4.32 | | MAX | 25.0 | 11.8 | 6.86 | 6.38 | 290 | 851 | 826 | 120 | 62.0 | 226 | 92.5 | 35.7 | | (WY) | 1987 | 1999 | 1982 | 1983 | 1996 | 1999 | 1982 | 1979 | 1979 | 1993 | 1987 | 1997 | | MIN | 0.14 | 0.88 | 0.45 | 0.000 | 0.000 | 2.65 | 5.04 | 5.29 | 0.23 | 0.031 | 0.000 | 0.000 | | (WY) | 1989 | 1989 | 1986 | 1989 | 1989 | 2002 | 1988 | 1992 | 1988 | 1985 | 1984 | 1984 | | (112) | 1,0, | 2505 | 1,00 | 1707 | 1,00 | 2002 | 1700 | 1,,2 | 1,00 | 1700 | 1701 | 1701 | | SUMMARY | STATIST | 'ICS | FOR | 2002 CALE | NDAR YEA | R F | OR 2003 W | ATER YEAR | | WATER YEA | RS 1979 - | - 2003 | | | | | | | | | | | | | | | | ANNUAL | TOTAL | | | 3766.7 | | | 13869.0 | 7 | | | | | | ANNUAL | MEAN | | | 10.3 | | | 38.0 | l | | 31.2 | * | | | HIGHEST | ANNUAL | MEAN | | | | | | | | 93.2 | | 1979 | | LOWEST | ANNUAL M | IEAN | | | | | | | | 4.7 | 3 | 1992 | | HIGHEST | DAILY M | IEAN | | 356 | Apr 1 | 5 | 2300 | Mar 18 | | 3160 | Mar 23 | 3 1999 | | TOTTO | | | | 1 0 | | 1 | | | | 1.0.0 | | | LOWEST DATLY MEAN MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT
EXCEEDS ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) 18 19 20 21 7.2 7.6 7.2 7.0 e5.5 e5.5 e5.5 e5.5 e3.5 e3.5 e3.0 e3.0 e2.5 e2.5 e2.0 e1.5 1.0 7470 23 4.0 Jan 1 Jan e2.0 e2.0 e1.5 e1.0 ^{*--}Median of yearly mean discharge, $25.1 \text{ ft}^3/\text{s}$. a--Backwater from ice. b--No flow many days most years. e--Estimated. #### 06183700 BIG MUDDY CREEK DIVERSION CANAL NEAR MEDICINE LAKE, MT $LOCATION.--Lat\ 48^{\circ}30'34'', long\ 104^{\circ}32'55''\ (NAD\ 27), in\ SE^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 22,\ T.32\ N.,\ R.55\ E.,\ Sheridan\ County,\ Hydrologic\ Unit\ 10060006,$ on right bank, on dike road about 2 ft upstream from canal headgate and 2.2 miles northwest of Medicine Lake. PERIOD OF RECORD.--August 1985 to September 1991, October 1991 to current season (seasonal records). GAGE.--Water-stage recorder. Elevation of gage is 1,940 ft (NGVD 29). REMARKS.--Records fair except those for estimated daily discharges, which are poor. Canal diverts water into Medicine Lake at the Medicine Lake National Wildlife Refuge. Several observations of water temperature and specific conductance were made during the year. #### DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | | | | | | | | | - | | | | | |---|---|--|---|--------------------------------------|---------------------------------------|---------------------------------------|---|--|---------------------------------------|---|---------------------------------------|--| | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | | 1
2
3
4
5 | | | e0.00
e0.00
e0.00
e0.00
e0.00 | | | 20.0 | | 0.00
0.00
0.00
0.00 | | 0.00
0.00
0.00
0.00
0.00 | | | | 6
7
8
9
10 | | | e0.00
e0.00
e0.00
e0.00
e0.00 | 11
12
16
27
22 | 13
25
30
35
42 | e6.0
e6.0
e6.0
e7.0 | 1.1
0.79
0.07
0.37
0.14 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | | e0.00
e0.00
e0.50
e1.0 | | 61
64
66
68
63 | | 0.00
0.12
0.28
0.78
1.1 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 16
17
18
19
20 | | | e130
e700
824
784
842 | 31
27
21
16
12 | 57
51
46
39
34 | e9.0
e8.0
e8.0
e6.0
e5.0 | 0.92
0.50
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | | | 21
22
23
24
25 | | | 815
627
335
193
132 | 10
7.8
5.9
5.7
5.6 | 29
28
28
19
15 | e5.0
e5.0
e4.0
e4.0
e4.0 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | | | 26
27
28
29
30
31 | | | 101
70
54
42
36
27 | 5.2
5.4
6.3
7.6
7.5 | 12
11
10
9.2
9.4
9.5 | e4.0
e4.0
e4.0
e4.0
e0.50 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
e10
e7.0
e5.0
e3.0 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 5733.50
185
842
0.00
11370 | 493.0
16.4
39
5.2
978 | 911.2
29.4
68
6.5
1810 | 198.00
6.60
10
0.50
393 | 15.47
0.50
2.4
0.00
31 | 0.00
0.000
0.00
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | 25.00
0.81
10
0.00
50 | | | | | | | | | YEARS 1985 | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 0.28
1.10
1990
0.000
1988 | 5.11
23.4
1986
0.000
1988 | 100
434
1999
0.000
2002 | 50.7
260
1997
0.000
1988 | 15.0
46.5
1999
0.000
1987 | 9.04
28.5
1994
0.000
1987 | 23.8
144
1993
0.000
1987 | 6.06
31.3
1987
0.000
1988 | 3.72
37.3
1997
0.000
1987 | 2.89
7.97
1999
0.000
1988 | 1.66
4.97
1990
0.000
1988 | 0.580
2.80
1990
0.000
1988 | | SUMMARY | / STATISTI | CS | | FOR 2003 | SEASON | WA | TER YEARS | 1985 - 19 | 991* | SEASONS | 1992 - 2 | 2003* | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUN MAXIMUN ANNUAL 10 PERC | C ANNUAL MATTER ANNUAL MEDITY | EAN
EAN
AN
/ MINIMU
DW
AGE
AC-FT)
EDS | м | 842
0.00
1070
a12.18 | Mar 20
Mar 1
Mar 20
Mar 20 | | 14.5
31.6
0.17
1300
b0.00
0.00
1300

10540
29
2.6
0.00 | 19
Mar 2 19
Feb 11 19
Feb 11 19
Mar 2 19 | 989
988
986
986
986 | 1340
0.00
c1360
d12.18 | Mar 23
Sep 22
Mar 23
Jul 24 | 1999
1992
1999
1993 | ^{*--}During periods of operation 1985 - 1991, 1992 to current year. Seasonal records beginning water year 1992. a--Backwater from ice and trash. b--No flow at times most years. c--Gage height, 10.99 ft. d--Site and datum then in use. e--Estimated. #### 06183750 LAKE CREEK NEAR DAGMAR, MT $LOCATION.--Lat\ 48^{\circ}33'51'', long\ 104^{\circ}10'38''\ (NAD\ 27), in\ SE^{1}/_{4}SE^{1}/_{4}SW^{1}/_{4}\ sec.\ 31, T.33\ N., R.58\ E., Sheridan\ County,\ Hydrologic\ Unit\ 10060006,$ on left bank, at downstream end of dike, just north of Medicine Lake National Wildlife Refuge and 1.7 mi southeast of Dagmar. DRAINAGE AREA.--101 mi². PERIOD OF RECORD. -- September 1985 to October 1989, March 1995 to current year (seasonal records only since 1986). GAGE.--Water-stage recorder. Elevation of gage is 1,979 ft (NGVD 29). REMARKS.--Records poor. Numerous diversions upstream for irrigation. Several observations of water temperature and specific conductance were made during the year. #### DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|--|----------|--|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--|---|---|-----|-----| | 1
2
3
4
5 | | | e0.00
e0.00
e0.00
e0.00 | 64
e60
e50
e45
e40 | 0.45
0.47
0.41
0.30
0.33 | 0.00
0.00
0.00
0.00
0.00 | 0.45
0.37
0.24
0.13
0.04 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 6
7
8
9
10 | | | e0.00
e0.00
e0.00
e0.00 | 39
39
37
34
31 | 1.4
4.5
3.9
3.2
3.2 | 0.00
0.00
0.07
0.17
0.25 | 0.00
0.00
0.16
0.36
0.28 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | | e0.00
e0.00
e0.00
e0.00 | 28
25
22
19
14 | 3.7
3.3
3.5
4.5
4.0 | 0.33
0.44
0.43
0.36
0.33 | 0.18
0.06
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 16
17
18
19
20 | | | e0.00
e0.00
e0.00
e10
e950 | 12
13
12
11
9.4 | 3.0
1.6
0.53
0.45
0.46 | 0.28
0.22
0.19
0.18
0.11 |
0.00
0.19
0.12
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 21
22
23
24
25 | | | 533
256
178
143
114 | 7.9
6.6
5.0
3.8
2.8 | 0.41
0.38
0.34
0.29
0.25 | 0.07
0.05
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | | | 26
27
28
29
30
31 | | | 89
75
64
58
54
62 | 1.7
1.8
0.71
0.51
0.48 | 0.23
0.19
0.13
0.10
0.00 | 0.00
0.00
0.00
0.00
0.31 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
e0.00
e0.00
e0.00 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 2586.00
83.4
950
0.00
5130 | 635.70
21.2
64
0.48
1260 | 45.52
1.47
4.5
0.00
90 | 3.79
0.13
0.44
0.00
7.5 | 2.58
0.083
0.45
0.00
5.1 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | | | | STATIS | STICS OF M | ONTHLY | MEAN DATA | A FOR SEAS | SONS 1986 | - 2003* | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | | 12.3
83.4
2003
0.000
1988 | 10.7
45.1
1997
0.000
1988 | 0.93
3.35
1986
0.000
1998 | 0.32
2.81
2000
0.000
1997 | 0.35
1.40
1999
0.000
1986 | 0.039
0.26
1999
0.000
1986 | 0.000
0.000
1986
0.000
1986 | 0.000
0.000
1986
0.000
1986 | | | | SUMMAR | RY STATIST | ics | | | FOR 2003 | SEASON | | SEASONS | 1986 - | 2003* | | | | LOWEST | ST DAILY M
C DAILY ME
JM PEAK FL
JM PEAK ST | AN
OW | | | 950 | Mar 20
Mar 1
Mar 20
Mar 20 | | 950
a0.00
950
b10.05 | Mar 20
Oct 1
Mar 20
Mar 20 | 2003
1985
2003
2003 | | | ^{*--}During periods of operation (September 1985 to October 1989, March 1995 to current year). a-No flow many days most years. b-Backwater from ice. e-Estimated. #### 06183800 COTTONWOOD CREEK NEAR DAGMAR, MT LOCATION.--Lat $48^{\circ}30'35''$, long $104^{\circ}10'23''$ (NAD 27), in $SE^{1}/_{4}NE^{1}/_{4}SE^{1}/_{4}$ sec. 21, T.32 N., R.58 E., Sheridan County, Hydrologic Unit 10060006, on right bank, at bridge on county road 1.2 mi southeast of Medicine Lake National Wildlife Refuge, and 5.3 mi south of Dagmar. DRAINAGE AREA.--126 mi². PERIOD OF RECORD.--August 1985 to September 1989, March 1995 to current year. Seasonal records only. GAGE.--Water-stage recorder. Elevation of gage is 1,975 ft (NGVD 29). REMARKS.--Records fair except those for estimated daily discharges, which are poor. Several observations of water temperature and specific conductance were made during the year. DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|---|------------------------------------|---------------------------------|---------------------------------------|--|---------------------------------------|--|---------------------------------------|---|---|-----|-----| | 1
2
3
4
5 | | e0
e0
e0 | .00
.00
.00
.00 | 1.2
1.3
1.3
1.4 | 1.4
1.3
1.2
1.2 | 0.53
0.51
0.54
0.57 | 0.17
0.17
0.17
0.16
0.14 | 0.02
0.02
0.00
0.04
0.06 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | | | 6
7
8
9
10 | | e0
e0
e0
e0 | .00 | 1.8
5.1
5.9
4.6
4.0 | 2.3
9.9
9.1
9.1 | 0.62
0.97
1.8
1.8
3.3 | 0.12
0.11
0.13
0.21
0.21 | 0.05
0.05
0.04
0.14
0.14 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | e0
e0
e0
e1 | .00 | 4.3
4.6
4.2
3.2
2.6 | 11
8.4
7.8
8.3
7.7 | 3.6
12
9.7
3.6
1.4 | 0.17
0.16
0.20
0.20
0.18 | 0.13
0.10
0.11
0.10
0.08 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | | | 16
17
18
19
20 | | e100
1390
1810
588
175 | | 2.9
6.1
8.3
7.3
6.2 | 5.7
4.4
3.6
3.2
2.5 | 0.81
0.54
0.43
0.37
0.32 | 0.18
0.17
0.15
0.14
0.14 | 0.04
0.02
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 21
22
23
24
25 | | 104
62
39
26
15 | | 5.0
4.1
3.2
2.8
2.4 | 1.9
1.6
1.3
1.1 | 0.31
0.28
0.26
0.26
0.25 | 0.14
0.12
0.10
0.08
0.09 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 26
27
28
29
30
31 | | 10
6
3
2
1
1 | .2
.5
.1
.5 | 2.1
2.0
1.8
1.8 | 0.94
0.82
0.72
0.62
0.52
0.52 | 0.24
0.25
0.23
0.22
0.21 | 0.08
0.07
0.07
0.05
0.03
0.02 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
e0.00
e0.00
e0.00 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | 4344
1
0
8 | | 104.3
3.48
8.3
1.2
207 | 123.64
3.99
13
0.52
245 | 1.55 | 4.13
0.13
0.21
0.02
8.2 | 1.14
0.037
0.14
0.00
2.3 | 0.00
0.000
0.00
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | | | | STATIST | TICS OF MONT | | | R SEASO | NS 1986 | - 2003* | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | 3
2
0.
1 | 5.4
140
003
000
988 | 9.02
32.6
1987
0.000
1988 | 1.54
6.95
1999
0.000
1988 | 1.64
13.7
2000
0.000
1987 | 5.64
27.4
1997
0.000
1986 | 0.14
0.71
1999
0.000
1986 | | 0.009
0.096
2001
0.000
1986 | | | | SUMMARY | STATISTICS | | | | | | | | EASONS 198 | | | | | LOWEST
MAXIMUM | T DAILY MEAN
DAILY MEAN
M PEAK FLOW
M PEAK STAGE | | | 18
b33 | a0.00
80
8.43 | Mar 18
Mar 1
Mar 18
Mar 18 | | 18
b3: | 310 Ma
a0.00 Oc
380 Ma
8.76 Ma | r 18 2003
t 1 1985
r 18 2003
r 22 1997 | | | ^{*--}During periods of operation (1885-1889, 1995 to current year; seasonal records only). a-No flow most year. b--Gage height, 8.43 ft, from floodmark. e--Estimated. #### 06183850 SAND CREEK NEAR DAGMAR, MT $LOCATION.--Lat\ 48^{\circ}29'38'', long\ 104^{\circ}16'23''\ (NAD\ 27), in\ SE^{1}/_{4}NW^{1}/_{4}sec.\ 26, T.32\ N., R.57\ E., Sheridan\ County, Hydrologic\ Unit\ 10060006, LOCATION.--Lat\ 48^{\circ}29'38'', long\ 104^{\circ}16'23''\ (NAD\ 27), in\ SE^{1}/_{4}NW^{1}/_{4}sec.\ 26, T.32\ N., R.57\ E., Sheridan\ County, Hydrologic\ Unit\ 10060006, LOCATION.--Lat\ 48^{\circ}29'38'', long\ 104^{\circ}16'23''\ (NAD\ 27), in\ SE^{1}/_{4}NW^{1}/_{4}sec.\ 26, T.32\ N., R.57\ E., Sheridan\ County, Hydrologic\ Unit\ 10060006, LOCATION.--Lat\ 48^{\circ}29'38'', long\ 104^{\circ}16'23''\ (NAD\ 27), in\ SE^{1}/_{4}NW^{1}/_{4}sec.\ 26, T.32\ N., R.57\ E., Sheridan\ County, Hydrologic\ Unit\ 10060006, LOCATION.--Lat\ 48^{\circ}29'38'', long\ 104^{\circ}16'23''\ (NAD\ 27), in\ SE^{1}/_{4}NW^{1}/_{4}sec.\ 26, T.32\ N., R.57\ E., Sheridan\ County, Hydrologic\ Unit\ 10060006, LOCATION.--Lat\ 48^{\circ}29'38'', long\ 104^{\circ}16'23''\ (NAD\ 27), in\ SE^{1}/_{4}NW^{1}/_{4}sec.\ 26, T.32\ N., R.57\ E., Sheridan\ County, Hydrologic\ Unit\ 10060006, LOCATION.--Lat\ 48^{\circ}29'38'', long\ 104^{\circ}16'23''\ (NAD\ 27), 104^{\circ}16''\ (NAD\ 27), long\ 104^{\circ}16''\ (NAD\ 27),$ at Medicine Lake National Wildlife Refuge boundary, on right bank at downstream end of culvert on county road, 1.0 mi upstream from mouth, and 7 mi southwest of Dagmar. DRAINAGE AREA.--122 mi². PERIOD OF RECORD.--August 1985 to September 1989, March 1995 to current year (seasonal records). GAGE.--Water-stage recorder. Elevation of gage is 1,945 ft (NGVD 29). REMARKS.--Records good except those for estimated daily discharges, which are poor. No known diversions for irrigation upstream from station. Several observations of water temperature and specific conductance were made during the year. #### DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES | DAY | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |--------------------------------------|--|--------|--|---|-----------------------------------|-------------------------------------|--|--|---|--|-----|-----| | 1
2
3
4
5 | | | e0.00
e0.00
e0.00
e0.00
e0.00 | e2.0
e2.0
e2.0
e2.0
e3.0 | 2.1
2.1
2.0
2.1
2.9 | 1.1
1.1
0.93
0.79
1.3 | 0.43
0.73
0.86
0.83
0.44 | e0.05
e0.05
e0.05
e0.05
e0.10 | e0.00
e0.00
e0.00
e0.00
e0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 6
7
8
9 | | | e0.00
e0.00
e0.00
e0.00
e0.00 | e4.0
e6.0
e7.0
e6.0
e5.0 | 5.1
9.9
17
14
13 | 1.8
4.2
5.0
7.8 | 0.07
0.01
0.01
1.3
2.3 | e0.10
e0.10
e0.10
e0.15
e0.15 | e0.00
e0.00
e0.00
e0.00 | 0.00
0.00
0.00
0.00
0.00 | | | | 11
12
13
14
15 | | | e0.00
e0.00
e0.00
e0.00
e0.00 | e5.0
e5.0 | 12
10
9.2
8.6
9.2 | 14
35
41
26
16 |
1.5
1.3
1.1
0.95
0.51 | e0.15
e0.15
e0.15
e0.15
e0.10 | 0.00
0.00
0.00
0.00 | 0.00
e0.00
e0.00
e0.00
e0.00 | | | | 16
17
18
19
20 | | | e1.0
e15
e200
e100
e80 | e6.0
e8.0
e10
e10
e10 | 8.1
7.4
7.3
6.2
5.1 | 11
8.2
6.6
5.3
4.4 | 0.31
e0.20
e0.20
e0.20
e0.20 | e0.10
e0.05
e0.05
e0.00
e0.00 | 0.00
0.00
0.00
0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | | | | 21
22
23
24
25 | | | e65
e50
e40
e30
e25 | e9.0
e8.0
e7.0
5.9
4.6 | 4.3
3.5
3.4
2.9
2.4 | 4.1
3.8
2.6
2.1
1.8 | e0.20
e0.20
e0.15
e0.15
e0.15 | e0.00
e0.00
e0.00
e0.00
e0.00 | 0.00
0.00
0.00
0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | | | | 26
27
28
29
30
31 | | | e20
e10
e6.0
e4.0
e3.0
e2.0 | 3.7
3.4
2.8
3.0
2.5 | 2.2
1.8
1.4
1.3
1.1 | 1.8
1.6
1.2
0.85
0.85 | e0.10
e0.10
e0.10
e0.10
e0.05
e0.05 | e0.00
e0.00
e0.00
e0.00
e0.00
e0.00 | 0.00
0.00
0.00
0.00
0.00 | e0.00
e0.00
e0.00
e0.00
e0.00
e0.00 | | | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 651.00
21.0
200
0.00
1290 | 156.9
5.23
10
2.0
311 | 178.7
5.76
17
1.1
354 | 222.22
7.41
41
0.79
441 | 14.80
0.48
2.3
0.01
29 | 1.80
0.058
0.15
0.00
3.6 | 0.00
0.000
0.00
0.00 | 0.00
0.000
0.00
0.00 | | | | STATISTI | CS OF MONT | THLY M | EAN DATA F | OR SEASONS | 3 1986 - | 2003* | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | | 10.8
33.1
1999
0.000
1988 | 0.000 | 0.000 | 0.000 | 3.57
21.6
1997
0.000
1986 | 0.33
3.34
1997
0.000
1986 | 0.061
0.80
1997
0.000
1986 | 0.000
0.000
1986
0.000
1986 | | | | SUMMARY | STATISTICS | 3 | FOR 2 | 003 SEASON | 1 | | | 1986 - 2 | 2003 SEAS | SONS* | | | | LOWEST D | DAILY MEAN
AILY MEAN
PEAK FLOW
PEAK STAGE | | 200
a0.0
b284
c5.7 | Mar 18
0 Mar 1
Mar 18
0 Mar 18 | | | | 200
a0.00
b284
d5.80 | Mar 18 | 1985
2003 | | | ^{*--}During periods of operation (1985-1989, 1995 to current year; seasonal records only). a--No flow most years. b--Result of culvert computation of peak flow. c--From corkline on crest-stage gage. d--From floodmark, probable date, backwater from ice. #### 06185500 MISSOURI RIVER NEAR CULBERTSON, MT (National stream quality accounting network station) LOCATION.--Lat 48°07'30", long 104°28'20" (NAD 27), in SE¹/₄NW¹/₄ sec.3, T.27 N., R.56 E., Richland County, Hydrologic Unit 10060005, on right bank at upstream side of bridge on State Highway 16, 2.5 mi southeast of Culbertson, 10 mi downstream from Big Muddy Creek, and at river mile 1,620.76. DRAINAGE AREA.--91,557 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--July 1941 to December 1951, April 1958 to current year. REVISED RECORDS.--WSP 1729: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 1,883.4 ft (NGVD 29) (U.S. Army Corps of Engineers bench mark). July 1 to Nov. 6, 1941, water-stage recorder at site 400 ft upstream at elevation 0.11 ft higher. Nov. 7, 1941, to Aug. 17, 1950, water-stage recorder at site 580 ft downstream at present elevation. Aug. 18, 1950, to Dec. 31, 1951, nonrecording gage on bridge at present elevation. Apr. 1, 1958, to Nov. 1, 1967, water-stage recorder at site 580 ft downstream at present elevation. REMARKS.--Water-discharge records good except those for estimated daily discharges, which are fair. Flow partly regulated by Fort Peck Lake (station number 06131500) and many other reservoirs upstream from station. Diversions for irrigation of about 1,030,400 acres upstream from station. U.S. Army Corps of Engineers satellite telemeter at station. ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | DAY OCT MOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP | | | | | | | | | | | | | | |--|--|--|--|--------------------------------------|--|-------------------------------|-----------------------------------|---|---|------------------------------|--|--|--| | 2 5240 5270 9780 e10400 e10300 e10400 8100 9340 8950 8280 7550 9701 6920 4 5290 5290 9780 e10200 e10300 e300 7830 9370 9100 8390 7550 6720 5 5340 5280 e10800 e10300 e10300 e3000 8840 9470 8950 8200 6790 6630 6 5240 5300 e10300 e10200 e10400 e3000 8840 9100 9140 7610 6720 6680 7 5230 5250 e10600 e10200 e10400 e3000 8940 10100 9100 7390 6700 6780 8 5280 5280 e10800 e10200 e10500 e10500 8940 10100 9100 9060 7400 6750 6980 9 5290 5380 e10300 e10200 e10500 e7200 8440 10000 9060 7400 6750 6980 10 5210 5370 e10400 e10200 e10500 6400 7830 9570 9110 7850 6470 7010 10 5210 5370 e10400 e10200 e10500 6400 7500 9970 9220 7750 6510 7100 11 5100 5380 10200 e9800 e10300 e5600 7220 10300 9290 7900 6630 6710 12 5090 5320 10100 e10100 e10500 e5600 7220 10300 9290 7900 6630 6710 13 5090 5320 10100 e10100 e10500 e5600 7220 10300 9290 7900 6630 6710 13 5090 5300 9880 e10100 e10200 e10200 e7000 7070 10600 9400 7750 6520 6730 14 5100 5370 9860 e10100 e10200 e10200 e7000 7070 10600 9400 7750 6520 6730 15 5100 5330 9810 e10200 e10200 e10400 e400 7600 11700 9430 7820 6690 6770 16 5170 5300 9810 e10200 e10400 e400 7600 11700 9430 7820 6690 6770 17 5250 5320 9760 e10200 e10400 e400 77630 11000 9200 7770 6610 7710 18 5070 5380 9880 e10200 e10400 e400 77630 1100 9210 7770 6610 7180 18 5070 5380 9880 e10200 e10400 e400 7890 11500 9290 7640 6620 6740 17 5250 5320 9760 e10200 e10400 e300 7880 11500 9290 7640 6620 6730 18 5070 5380 9880 e10200 e10400 e300 7880 11500 9290 7640 6620 6730 19 5100 5400 98800 e10200 e10400 e300 7880 11500 9290 7660 6600 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 7770 6780 6660 7770 777 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 6 5240 5300 e10300 e10300 e10100 e10600 e8000 9180 9510 9140 7610 6720 6680 7 5230 5250 e10600 e10200 e10400 e9000 8940 10100 9100 7390 6700 6780 8940 10100 9100 7390 6700 6780 8940 10100 9100 7390 6700 6780 8940 10100 9100 7390 6700 6780 8940 10100 9100 7390 6700 6780 8940 10100 9100 7390 6700 6780 8940 10100 9100 7390 6700 7700 1000 9100 7390 6700 7700 1000 9100 7390 9100 7390 9100 7390 9100 7390 9100 7390 9100 7390 9100 7390 9100 7390 9100 7390 9100 7390 9100 7390 9100 7390 9100 7390 9100 9100 9100 9100 9100 9100 9100 9 | 2
3
4 | 5240
5230
5290 | 5270
5240
5290 | 9780
9800
9780 | e10400
e10500
e10200 | e10300
e10100
e10400 | e10400
e9400
e9500 | 8100
7830
7800 | 9340
9570
9470 | 8950
9100
9100 | 8280
8290
8390 | 7650
7910
7650 | 6990
6920
6720 | | 12 5090 5320 10100 e10100 e10500 e5600 7220 10300 9290 7900 6630 6710 13 5090 5360 9880 e10200 e10200 e4400 7060 11700 9430 7750 6520 6790 14 5100 5370 9860 e10200 e10400 e4400 7060 11700 9430 7820 6690 6770 6770 15 5100 5330 9810 e10200 e10400 e4400 7060 11700 9430 7820 6690 6770 6770 1660 7150
7150 | 7
8
9 | 5230
5280
5290 | 5250
5280
5380 | e10600
e10800
e10300 | e10200
e10200
e10200 | e10400
e10500
e10300 | e9000
e7200
e7200 | 8940
8440
8050 | 10100
10000
9420 | 9100
9060
9020 | 7390
7400
7750 | 6700
6750
6910 | 6780
6980
7100 | | 17 | 12
13
14 | 5090
5090
5100 | 5320
5360
5370 | 10100
9880
9860 | e10100
e10200
e10100 | e10500
e10200
e10200 | e5600
e5000
e4400 | 7220
7070
7060 | 10300
10600
11700 | 9290
9400
9430 | 7900
7750
7820 | 6630
6520
6690 | 6710
6790
6770 | | S100 | 17
18
19 | 5250
5070
5120 | 5320
5380
5450 | 9760
9580
9580 | e10200
e10000
e10200 | e10100
e10400
e10400 | e4600
e6100
e9900 | 7990
8030
7880 | 11100
10400
11100 | 9210
9320
9230 | 7770
7830
7560 | 6610
6530
6740 | 7180
7060
6720 | | 27 | 22
23
24 | 5100
5160
5230 | 5420
5440
5480 | e9800
e10100
e10200 | e10100
e10300
e10200 | e10300
e10200
e10100 | e9900
e11200
e10900 | 7480
7450
7320 | 10700
11000
11500 | 8740
8820
8860 | 7560
7490
7430 | 6630
6610
6730 | 6670
6610
6530 | | MEAN 5211 5697 10050 10080 10320 8274 7979 10310 8965 7719 6838 6439 MAX 5360 9860 10800 10500 10800 11200 9180 12000 9430 8390 7910 7180 MIN 5070 5240 9560 8700 10000 4100 7060 8630 8190 7360 6470 4730 AC-FT 320400 339000 618000 619800 573400 508800 474800 634100 533500 474600 420400 383200 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1941 - 2003, BY WATER YEAR (WY)* MEAN 10600 9196 9159 9917 10520 10310 10500 9557 9723 10200 11290 11030 MAX 28570 22440 13280 14400 17450 20690 32840 26220 26650 37050 25300 26590 (WY) 1949 1952 1944 1986 1976 1976 1976 1979 1979 1975 1975 1975 1948 1948 MIN 1237 1126 1061 1010 1167 2674 1965 1353 1366 1273 3823 3771 (WY) 1942 1942 1942 1943 1942 1943 1942 1950 1945 1945 1945 1945 1945 1945 1945 MANUAL MEAN | 27
28
29
30 | 5360
5350
5270
5250 | 5670
6940
8990
9860 | e10600
e10500
e10300
e10300 | e8700
e9800
e10200
e10100 | e10300
e10800
 | e10000
e9300
e9800
10200 | 8390
8480
8560
8550 | 9580
9520
9290
9660 | 8350
8310
8280
8190 | 7360
7440
7460
7540 | 6690
6690
6910
6800 | 4830
4780
4740 | | MEAN 10600 9196 9159 9917 10520 10310 10500 9557 9723 10200 11290 11030 MAX 28570 22440 13280 14400 17450 20690 32840 26220 26650 37050 25300 26590 (WY) 1949 1952 1944 1986 1976 1979 1979 1975 1975 1948 1948 MIN 1237 1126 1061 1010 1167 2674 1965 1353 1366 1273 3823 3771 (WY) 1942 1942 1943 1942 1950 1945 | MEAN
MAX
MIN | 5211
5360
5070 | 5697
9860
5240 | 10050
10800
9560 | 10080
10500
8700 | 10320
10800
10000 | 8274
11200
4100 | 7979
9180
7060 | 10310
12000
8630 | 8965
9430
8190 | 7719
8390
7360 | 6838
7910
6470 | 6439
7180
4730 | | MAX 28570 22440 13280 14400 17450 20690 32840 26220 26650 37050 25300 26590 (WY) 1949 1952 1944 1986 1976 1976 1979 1975 1975 1948 1948 MIN 1237 1126 1061 1010 1167 2674 1965 1353 1366 1273 3823 3771 (WY) 1942 1942 1943 1942 1950 1945 <t< td=""><td>STATIS</td><td>STICS OF</td><td>MONTHLY ME</td><td>EAN DATA</td><td>FOR WATER</td><td>YEARS 194</td><td>1 - 2003</td><td>, BY WATE</td><td>R YEAR (W)</td><td>7)*</td><td></td><td></td><td></td></t<> | STATIS | STICS OF | MONTHLY ME | EAN DATA | FOR WATER | YEARS 194 | 1 - 2003 | , BY WATE | R YEAR (W) | 7)* | | | | | ANNUAL TOTAL 2586330 2974540 ANNUAL MEAN 7086 8149 10170 HIGHEST ANNUAL MEAN 19910 1952 LOWEST ANNUAL MEAN 4083 1942 HIGHEST DAILY MEAN 11800 Aug 26 12000 May 15 69200 Mar 27 1943 LOWEST DAILY MEAN 4300 Mar 23 4100 Mar 15 575 Nov 22 1941 ANNUAL SEVEN-DAY MINIMUM 4400 Mar 21 4840 Mar 11 709 Nov 19 1941 MAXIMUM PEAK FLOW 12000 May 14 c78200 Mar 26 1943 MAXIMUM PEAK STAGE 510.37 Dec 30 519.66 Apr 14 1979 | MAX
(WY)
MIN | 28570
1949
1237 | 22440
1952
1126 | 13280
1944
1061
1942 | 14400
1986
1010
1943 | 17450
1976
1167
1942 | 20690
1976
2674
1950 | 32840
1979
1965 | 26220
1979
1353 | 26650
1975
1366 | 37050
1975
1273 | 25300
1948
3823 | 26590
1948
3771 | | ANNUAL TOTAL 2586330 2974540 ANNUAL MEAN 7086 8149 10170 HIGHEST ANNUAL MEAN 19910 1952 LOWEST ANNUAL MEAN 4083 1942 HIGHEST DAILY MEAN 11800 Aug 26 12000 May 15 69200 Mar 27 1943 LOWEST DAILY MEAN 4300 Mar 23 4100 Mar 15 575 Nov 22 1941 ANNUAL SEVEN-DAY MINIMUM 4400 Mar 21 4840 Mar 11 709 Nov 19 1941 MAXIMUM PEAK FLOW 12000 May 14 c78200 Mar 26 1943 MAXIMUM PEAK STAGE 510.37 Dec 30 519.66 Apr 14 1979 | SUMMAR | RY STATIS | TICS | FOR | 2002 CAL | ENDAR YEAR | | FOR 2003 | WATER YEAR | 2 | WATER YEA | RS 1941 - | - 2003* | | ANNUAL RUNOFF (AC-FT) 5130000 5900000 7366000 10 PERCENT EXCEEDS 9870 10400 15800 9410 90 PERCENT EXCEEDS 4810 5270 4500 | ANNUAI
ANNUAI
HIGHES
LOWEST
HIGHES
ANNUAI
MAXIMU
MAXIMU
INSTAN
ANNUAI
10 PEF
50 PEF | TOTAL MEAN TANNUAL TANNUAL TOALLY TOALLY TOALLY MEAN SEVEN-D MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN | MEAN
MEAN
MEAN
EAN
AY MINIMUN
LOW
TAGE | И | 2586330
7086
11800
4300
4400 | Aug 26
Mar 23 | | 8149 12000 4100 4840 a12000 b10. 5900000 10400 8280 | May 15
Mar 15
Mar 13
May 14
37 Dec 30 | | 19910
4083
69200
575
709
c78200
b19.6
575
7366000
15800
9410 | Nov 22
Nov 19
Mar 26
6 Apr 14 | 1942
7 1943
2 1941
9 1941
5 1943
4 1979 | #### 06185500 MISSOURI RIVER NEAR CULBERTSON, MT--Continued (National stream quality accounting network station) | SUMMARY STATISTICS | FOR WATER YEARS 194 | 1-51** | WATER YEARS | 1958 - 2003*** | |---|------------------------|-----------------|-------------|----------------| | ANNUAL TOTAL | | | | | | ANNUAL MEAN | 9245 | | 10330 | | | HIGHEST ANNUAL MEAN | 14520 | 1948 | 16580 | 1975 | | LOWEST ANNUAL MEAN | 4083 | 1942 | 6121 | 1963 | | HIGHEST DAILY MEAN | 69200 Mar 27 | 1943 | 52000 | Apr 18 1979 | | LOWEST DAILY MEAN | 575 Nov 22 | | 2000 | Nov 20 1964 | | ANNUAL SEVEN-DAY MINIMUM | 709 Nov 19 | | 2130 | Nov 19 1964 | | MAXIMUM PEAK FLOW | | 1943 | d55000 | Mar 23 1960 | | MAXIMUM PEAK STAGE | b15.12 Mar 26 | 1943 | b19.66 | Apr 14 1979 | | ANNUAL RUNOFF (AC-FT) | 6698000 | | 7482000 | | | 10 PERCENT EXCEEDS | 21000 | | 15100 | | | 50 PERCENT EXCEEDS | 6910 | | 9600 | | | 90 PERCENT EXCEEDS | 1400 | | 5710 | | | *-During period of operation (**Before operational level a | t Fort Peck Lake was r | eached. | | | | ***After operational level a | t Fort Peck Lake was r | eached. | | | | aGage height, 6.32 ft. | | | | | | bBackwater from ice. | | .1 20 000 513 | 1 | | | cGage height, 14.80 ft, from | rating curve extended | above 30,000 it | /S. | | | dGage height, 19.14 ft. | | | | | | eEstimated. | | | | | #### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1946, 1965 to 1986, 1991 to 1994, October 1996 to current year. #### PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: July 1965 to September 1981. WATER TEMPERATURE: July 1965 to September 1979, seasonal records starting July 18, 2002 to current year. SUSPENDED-SEDIMENT DISCHARGE: October 1971 to September 1976. INSTRUMENTATION.--Temperature probe installed July 17, 2002. REMARKS.--Daily water temperature records good. Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office. #### EXTREMES FOR PERIOD OF DAILY RECORD: SPECIFIC CONDUCTANCE: Maximum daily, 941 microsiemens per centimeter (μS/cm) at 25°C, Jan. 19, 1980; minimum daily, 338 μS/cm at 25°C, Mar. 30, 1967. WATER TEMPERATURE: Maximum 26.0°C, Aug. 14, 2003; minimum, 0.0°C, on many days during winter period. SEDIMENT CONCENTRATION: Maximum daily mean, 2,940 mg/L, Aug. 15, 1974; minimum daily mean, 30 mg/L, Jan. 13, 1975. SEDIMENT LOAD: Maximum daily, 147,000 tons, June 5, 1975; minimum daily, 421 tons, Jan. 13, 1975. #### EXTREMES FOR CURRENT YEAR: WATER TEMPERATURE: During period of seasonal operation, maximum 26.0°C, July 19 and Aug. 14; minimum, 1.5°C, Apr. 3-5. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 | | | | Turbid- | UV | UV | | | | | | | |----------|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | | | ity, | absorb- | absorb- | | |
Dis- | pН, | Specif. | | | | | Instan- | wat unf | ance, | ance, | Baro- | | solved | water, | conduc- | | | | | taneous | lab, | 254 nm, | 280 nm, | metric | Dis- | oxygen, | unfltrd | tance, | Temper- | | | | dis- | Hach | wat flt | wat flt | pres- | solved | percent | field, | wat unf | ature, | | Date | Time | charge, | 2100AN | units | units | sure, | oxygen, | of sat- | std | uS/cm | _air, | | | | cfs | NTU | /cm | /cm | mm Hg | mg/L | uration | units | 25 degC | deg C | | | | (00061) | (99872) | (50624) | (61726) | (00025) | (00300) | (00301) | (00400) | (00095) | (00020) | | OCT 2002 | | | | | | | | | | | | | 22 | 1130 | 5100 | 20 | .046 | .030 | 737 | 11.6 | 92 | 8.5 | 585 | -3.5 | | APR 2003 | | | | | | | | | | | | | 07 | 1030 | 9000 | 88 | .126 | .091 | 730 | 12.8 | 102 | 8.4 | 694 | 12.0 | | 29 | 1100 | 8600 | 50 | .054 | .037 | 720 | 10.6 | 104 | 8.4 | 592 | 18.0 | | MAY | | | | | | | | | | | | | 19 | 1115 | 11500 | 170 | .076 | .053 | 735 | 9.8 | 89 | 8.3 | 658 | 2.0 | | JUN | | | | | | | | | | | | | 02 | 1115 | 9040 | 40 | .047 | .031 | 718 | 7.8 | 83 | 8.4 | 580 | 21.0 | | 23 | 1130 | 8930 | 48 | .049 | .032 | 714 | 12.6 | 145 | 8.5 | 577 | 18.5 | | JUL | | | | | | | | | | | | | 14 | 1115 | 7940 | 45 | .048 | .034 | 720 | 7.9 | 98 | 8.5 | 582 | 30.0 | | AUG | 1000 | 6540 | 2.1 | 0.40 | 004 | | 10.0 | 100 | 0.4 | | 20.0 | | 25 | 1230 | 6540 | 31 | .049 | .034 | 720 | 10.0 | 129 | 8.4 | 575 | 32.0 | # 06185500 MISSOURI RIVER NEAR CULBERTSON, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | Temper-
ature,
water,
deg C
(00010) | Hard-
ness,
water,
unfltrd
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium
adsorp-
tion
ratio
(00931) | Sodium,
water,
fltrd,
mg/L
(00930) | Alka-
linity,
wat flt
fxd end
lab,
mg/L as
CaCO3
(29801) | Alka-
linity,
wat flt
inc tit
field,
mg/L as
CaCO3
(39086) | Bicar-
bonate,
wat flt
incrm.
titr.,
field,
mg/L
(00453) | Carbon-
ate,
wat flt
incrm.
titr.,
field,
mg/L
(00452) | |----------------------------|---|--|---|---|---|--|---|---|---|---|--| | OCT 2002
22 | 4.0 | 210 | 51.9 | 19.6 | 3.34 | 1 | 44.1 | E166 | 161 | 196 | . 0 | | APR 2003
07 | 4.0 | 210 | 45.9 | 22.7 | 5.74 | 2 | 74.8 | 182 | 166 | 203 | .0 | | 29
MAY
19 | 12.0
9.5 | 210
210 | 51.2
48.9 | 20.6 | 4.02
4.61 | 1
2 | 46.4
57.9 | 167
192 | 154
150 | 186
183 | 1 | | JUN
02 | 15.5 | 210 | 50.1 | 19.7 | 3.95 | 1 | 43.5 | 164 | 149 | 173 | . 0 | | 23
JUL | 19.0 | 210 | 51.2 | 20.4 | 3.89 | 1 | 43.8 | 162 | 134 | 160 | 2 | | 14
AUG | 23.0 | 200 | 47.8 | 18.3 | 3.46 | 1 | 40.8 | 162 | 135 | 164 | .0 | | 25 | 25.0 | 210 | 52.8 | 19.7 | 3.79 | 1 | 40.8 | 161 | 135 | 150 | 7 | | Date | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L
(70301) | Residue
water,
fltrd,
tons/
acre-ft
(70303) | Residue
water,
fltrd,
tons/d
(70302) | Residue
on
evap.
at
180degC
wat flt
mg/L
(70300) | Ammonia + org-N, water, fltrd, mg/L as N (00623) | Ammonia + org-N, water, unfltrd mg/L as N (00625) | Ammonia
water,
fltrd,
mg/L
as N
(00608) | | OCT 2002
22
APR 2003 | 9.37 | .84 | 6.53 | 127 | 359 | .51 | 5180 | 376 | .14 | .26 | <.015 | | 07
29 | 8.68
8.50 | .65
.88 | 7.09
6.77 | 162
129 | 429
361 | .62
.52 | 11100
8950 | 457
386 | .42
.17 | .65
.35 | .049
<.015 | | MAY
19 | 10.5 | .9 | 6.96 | 177 | 419 | .65 | 14900 | 480 | .19 | .63 | <.015 | | JUN
02
23 | 9.29
9.16 | .9 | 7.12
6.93 | 124
124 | 349
342 | .50
.50 | 8990
8790 | 368
365 | .15
.16 | .28 | <.015
<.015 | | JUL
14
AUG | 9.24 | .9 | 6.40 | 122 | 330 | .48 | 7610 | 355 | .17 | .41 | <.015 | | 25 | 9.57 | .9 | 7.34 | 121 | 337 | .49 | 6380 | 361 | .17 | .26 | <.015 | | Date | Nitrite + nitrate water fltrd, mg/L as N (00631) | Nitrite
water,
fltrd,
mg/L
as N
(00613) | Ortho- phos- phate, water, fltrd, mg/L as P (00671) | Phos-
phorus,
water,
fltrd,
mg/L
(00666) | Phos-
phorus,
water,
unfltrd
mg/L
(00665) | Total carbon, suspnd sedimnt total, mg/L (00694) | Inor-
ganic
carbon,
suspnd
sedimnt
total,
mg/L
(00688) | Organic
carbon,
suspnd
sedimnt
total,
mg/L
(00689) | Organic
carbon,
water,
fltrd,
mg/L
(00681) | Pheo-
phytin
a,
phyto-
plank-
ton,
ug/L
(62360) | Chloro-
phyll a
phyto-
plank-
ton,
fluoro,
ug/L
(70953) | | OCT 2002
22 | <.022 | <.002 | E.005 | .009 | .083 | . 9 | <.1 | . 9 | 2.4 | 1.0 | 3.4 | | APR 2003
07
29 | .099
<.022 | .003 | .013
E.006 | .023 | .27
.159 | 2.2
1.4 | <.1
.1 | 2.1
1.3 | 5.4
2.5 | 1.8 | 6.2
3.6 | | MAY
19 | .023 | <.002 | .010 | .016 | .35 | 3.5 | .8 | 2.7 | 3.2 | 1.7 | 4.2 | | JUN
02
23 | <.022
<.022 | <.002
<.002 | .009 | .011 | .186
.131 | 1.9
1.8 | .3 | 1.6
1.8 | 2.3 | . 4 | 2.1
4.7 | | JUL
14
AUG | <.022 | <.002 | .009 | .012 | .179 | 1.3 | . 4 | . 9 | 2.4 | .6 | E2.3 | | 25 | <.022 | <.002 | .008 | .011 | .113 | 1.4 | .3 | 1.1 | 2.5 | .5 | 2.0 | E--Estimated. # 06185500 MISSOURI RIVER NEAR CULBERTSON, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | Arsenic
water,
fltrd,
ug/L
(01000) | Arsenic
water
unfltrd
ug/L
(01002) | Barium,
water,
fltrd,
ug/L
(01005) | Barium,
water,
unfltrd
recover
-able,
ug/L
(01007) | Boron,
water,
fltrd,
ug/L
(01020) | Cadmium
water,
fltrd,
ug/L
(01025) | Cadmium
water,
unfltrd
ug/L
(01027) | Chrom-
ium,
water,
fltrd,
ug/L
(01030) | Chrom-
ium,
water,
unfltrd
recover
-able,
ug/L
(01034) | Copper,
water,
fltrd,
ug/L
(01040) | Copper,
water,
unfltrd
recover
-able,
ug/L
(01042) | |----------------------------|---|--|--|--|--|--|--|---|---|---|--| | OCT 2002
22 | 2.9 | | | | 115 | | | | | | | | APR 2003
07 | 2.6 | | | | 156 | | | | | | | | 29
MAY | 2.5 | | | | 108 | | | | | | | | 19
JUN | 2.3 | 7 | 43 | 106 | 128 | < .04 | .14 | <.8 | 3.8 | 2.0 | 12.0 | | 02
23
JUL | 2.6
2.7 |
5 |
36 |
85 | 102
111 | <.04 | .07 | <.8 | 3.6 | 1.9 |
5.5 | | 14
AUG | 2.8 | 4 | 39 | 74 | 120 | < .04 | .07 | <.8 | 1.6 | 1.5 | 5.7 | | 25 | 2.5 | 4 | 38 | 67 | 101 | < .04 | .04 | <.8 | 1.1 | 2.3 | 8.5 | | Date | Iron,
water,
fltrd,
ug/L
(01046) | Iron,
water,
unfltrd
recover
-able,
ug/L
(01045) | Lead,
water,
fltrd,
ug/L
(01049) | Lead,
water,
unfltrd
recover
-able,
ug/L
(01051) | Lithium
water,
fltrd,
ug/L
(01130) | Mangan-
ese,
water,
fltrd,
ug/L
(01056) | Mangan-
ese,
water,
unfltrd
recover
-able,
ug/L
(01055) | Mercury
water,
fltrd,
ug/L
(71890) | Mercury
water,
unfltrd
recover
-able,
ug/L
(71900) | Nickel,
water,
fltrd,
ug/L
(01065) | Nickel,
water,
unfltrd
recover
-able,
ug/L
(01067) | | OCT 2002
22
APR 2003 | <10 | | | | 58.0 | | | | | | | | 07
29 | <10
<10 | | | | 51.5
59.6 | | | | | | | | MAY
19
JUN | <10 | 7640 | <.08 | 6.42 | 62.5 | 1.4 | 154 | <.02 | .02 | 3.15 | 12.1 | | 02 | <8
<8 |
3020 |
E.04 | 2.43 | 56.6
58.7 |
.7 |
65 |
<.02 |
E.01 | 2.43 |
6.80 | | JUL
14 | <8 | 3000 | <.08 | 2.34 | 50.4 | .7 | 61 | <.02 | E.01 | 2.45 | 5.92 | | AUG 25 | <8 | 2290 | <.08 | 1.71 | 60.2 | .7 | 56 | <.02 | <.02 | 2.20 | 6.12 | | Date | Selen-
ium,
water,
fltrd,
ug/L
(01145) | Selen-
ium,
water,
unfltrd
ug/L
(01147) | Stront-
ium,
water,
fltrd,
ug/L
(01080) | Vanad-
ium,
water,
fltrd,
ug/L
(01085) | Zinc,
water,
fltrd,
ug/L
(01090) | Zinc,
water,
unfltrd
recover
-able,
ug/L
(01092) | 2,6-Di-
ethyl-
aniline
water
fltrd
0.7u GF
ug/L
(82660) |
CIAT,
water,
fltrd,
ug/L
(04040) | Aceto-
chlor,
water,
fltrd,
ug/L
(49260) | Ala-
chlor,
water,
fltrd,
ug/L
(46342) | alpha-
HCH,
water,
fltrd,
ug/L
(34253) | | OCT 2002
22 | . 8 | | 467 | 2.0 | | | <.006 | <.006 | <.006 | <.004 | <.005 | | APR 2003
07
29 | E.4
.7 | | 417
480 | 1.3
1.9 | | | <.006
<.006 | <.006
<.006 | <.006
<.006 | <.004
<.004 | <.005
<.005 | | MAY
19 | . 7 | . 9 | 453 | .9 | 1 | 35 | <.006 | <.006 | <.006 | <.004 | <.005 | | JUN
02
23 | . 8 |
.7 | 482
469 | 1.1
1.7 |
1 |
14 | <.006
<.006 | <.006
<.006 | <.006
<.006 | <.004
<.004 | <.005 | | JUL
14 | .7 | .9 | 485 | 2.6 | 1 | 13 | <.006 | <.006 | <.006 | <.004 | <.005 | | AUG
25 | .6 | 1.3 | 485 | 1.3 | 1 | 9 | <.006 | <.006 | <.006 | <.004 | <.005 | E--Esimated. # 06185500 MISSOURI RIVER NEAR CULBERTSON, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | Date | alpha-
HCH-d6,
surrog,
wat flt
0.7u GF
percent
recovry
(91065) | Atra-
zine,
water,
fltrd,
ug/L
(39632) | Azin-
phos-
methyl,
water,
fltrd
0.7u GF
ug/L
(82686) | Ben-
flur-
alin,
water,
fltrd
0.7u GF
ug/L
(82673) | Butyl-
ate,
water,
fltrd,
ug/L
(04028) | Car-
baryl,
water,
fltrd
0.7u GF
ug/L
(82680) | Carbo-
furan,
water,
fltrd
0.7u GF
ug/L
(82674) | Chlor-
pyrifos
water,
fltrd,
ug/L
(38933) | Cis-
per-
methrin
water
fltrd
0.7u GF
ug/L
(82687) | Cyana-
zine,
water,
fltrd,
ug/L
(04041) | DCPA,
water
fltrd
0.7u GF
ug/L
(82682) | |----------------------|---|---|---|---|---|--|---|---|---|--|---| | OCT 2002
22 | 93.3 | <.007 | <.050 | <.010 | <.002 | <.041 | <.020 | <.005 | <.006 | <.018 | <.003 | | APR 2003
07 | 85.3 | <.007 | <.050 | <.010 | <.002 | <.041 | <.020 | <.005 | <.006 | <.018 | <.003 | | 29
MAY | 101 | <.007 | <.050 | <.010 | <.002 | E.004 | <.020 | <.005 | <.006 | <.018 | <.003 | | 19
JUN | 105 | E.003 | <.050 | <.010 | <.002 | <.041 | <.020 | <.005 | <.006 | <.018 | <.003 | | 02
23
JUL | 94.4
104 | <.007
<.007 | <.050
<.050 | <.010
<.010 | <.002
<.002 | <.041
<.041 | <.020
<.020 | <.005
<.005 | <.006
<.006 | <.018
<.018 | <.003 | | 14
AUG | 97.3 | <.007 | <.050 | <.010 | <.002 | <.041 | <.020 | <.005 | <.006 | <.018 | <.003 | | 25 | 91.5 | <.007 | <.050 | <.010 | <.002 | <.041 | <.020 | <.005 | <.006 | <.018 | <.003 | | Date | Desulf-
inyl
fipro-
nil,
water,
fltrd,
ug/L
(62170) | Diazi-
non,
water,
fltrd,
ug/L
(39572) | Diazi-
non-d10
surrog.
wat flt
0.7u GF
percent
recovry
(91063) | Diel-
drin,
water,
fltrd,
ug/L
(39381) | Disul-
foton,
water,
fltrd
0.7u GF
ug/L
(82677) | EPTC,
water,
fltrd
0.7u GF
ug/L
(82668) | Ethal-
flur-
alin,
water,
fltrd
0.7u GF
ug/L
(82663) | Etho-
prop,
water,
fltrd
0.7u GF
ug/L
(82672) | Desulf-
inyl-
fipro-
nil
amide,
wat flt
ug/L
(62169) | Fipro-
nil
sulfide
water,
fltrd,
ug/L
(62167) | Fipro-
nil
sulfone
water,
fltrd,
ug/L
(62168) | | OCT 2002
22 | <.004 | <.005 | 103 | <.005 | <.02 | <.002 | <.009 | <.005 | <.009 | <.005 | <.005 | | APR 2003
07 | <.004 | <.005 | 111 | <.005 | <.02 | <.002 | <.009 | <.005 | <.009 | <.005 | <.005 | | 29
MAY | <.004 | <.005 | 105 | <.005 | <.02 | <.002 | <.009 | <.005 | <.009 | <.005 | <.005 | | 19
JUN | <.004 | <.005
<.005 | 119
100 | <.005
<.005 | <.02 | <.007 | <.009 | <.005
<.005 | <.009 | <.005
<.005 | <.005 | | 02
23
JUL | <.004 | <.005 | 102 | <.005 | <.02 | <.002 | <.009 | <.005 | <.009 | <.005 | <.005 | | 14
AUG | <.004 | <.005 | 107 | <.005 | < .02 | <.002 | <.009 | <.005 | <.009 | <.005 | <.005 | | 25 | <.004 | <.005 | 90.7 | <.005 | <.02 | <.002 | <.009 | <.005 | <.009 | <.005 | <.005 | | Date | Fipro-
nil,
water,
fltrd,
ug/L
(62166) | Fonofos
water,
fltrd,
ug/L
(04095) | Lindane
water,
fltrd,
ug/L
(39341) | Linuron
water
fltrd
0.7u GF
ug/L
(82666) | Mala-
thion,
water,
fltrd,
ug/L
(39532) | Methyl
para-
thion,
water,
fltrd
0.7u GF
ug/L
(82667) | Metola-
chlor,
water,
fltrd,
ug/L
(39415) | Metri-
buzin,
water,
fltrd,
ug/L
(82630) | Moli-
nate,
water,
fltrd
0.7u GF
ug/L
(82671) | Naprop-
amide,
water,
fltrd
0.7u GF
ug/L
(82684) | p,p'-
DDE,
water,
fltrd,
ug/L
(34653) | | OCT 2002
22 | <.007 | <.003 | <.004 | <.035 | <.027 | <.006 | <.013 | <.006 | <.002 | <.007 | <.003 | | APR 2003
07
29 | <.007
<.007 | <.003
<.003 | <.004
<.004 | <.035
<.035 | <.027
<.027 | <.006
<.006 | <.013
<.013 | <.006
<.006 | <.002
<.002 | <.007
<.007 | <.003
<.003 | | MAY
19 | <.007 | <.003 | <.004 | <.035 | <.027 | <.006 | <.013 | <.006 | <.004 | <.007 | <.003 | | JUN
02
23 | <.007
<.007 | <.003
<.003 | <.004
<.004 | <.035
<.035 | <.027
<.027 | <.006
<.006 | <.013
<.013 | <.006
<.006 | <.002
<.002 | <.007
<.007 | <.003
<.003 | | JUL
14 | <.007 | <.003 | <.004 | <.035 | <.027 | <.006 | <.013 | <.006 | <.002 | <.007 | <.003 | | AUG
25 | <.007 | <.003 | <.004 | <.035 | <.027 | <.006 | <.013 | <.006 | <.002 | <.007 | <.003 | E--Estimated. # 06185500 MISSOURI RIVER NEAR CULBERTSON, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued | | | | Pendi- | | | | | | | | | |----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | | Peb- | meth- | | | Pron- | | Pro- | Propar- | | Tebu- | | | Para- | ulate, | alin, | Phorate | Prome- | amide, | Propa- | panil, | gite, | Sima- | thiuron | | | thion, | water, | water, | water | ton, | water, | chlor, | water, | water, | zine, | water | | | water, | fltrd | fltrd | fltrd | water, | fltrd | water, | fltrd | fltrd | water, | fltrd | | Date | fltrd, | 0.7u GF | 0.7u GF | 0.7u GF | fltrd, | 0.7u GF | fltrd, | 0.7u GF | 0.7u GF | fltrd, | 0.7u GF | | | ug/L | | (39542) | (82669) | (82683) | (82664) | (04037) | (82676) | (04024) | (82679) | (82685) | (04035) | (82670) | | OCT 2002 | | | | | | | | | | | | | 22 | <.010 | < .004 | <.022 | <.011 | <.01 | < .004 | <.010 | <.011 | < .02 | <.005 | < .02 | | APR 2003 | <.010 | <.004 | <.UZZ | <.U11 | <.01 | <.004 | <.U1U | <.U11 | <.0∠ | <.003 | <.02 | | 07 | <.010 | < .004 | < .022 | <.011 | < .01 | < .004 | <.010 | <.011 | < .02 | < .005 | < .02 | | 29 | <.010 | < .004 | <.022 | <.011 | E.01 | <.004 | <.010 | <.011 | <.18 | <.005 | <.02 | | MAY | | | | | 2.01 | | | | | | 2 | | 19 | <.010 | < .004 | < .022 | <.011 | < .01 | E.004 | <.010 | <.011 | < .02 | < .005 | < .02 | | JUN | | | | | | | | | | | | | 02 | <.010 | < .004 | <.022 | <.011 | <.01 | < .004 | < .010 | <.011 | < .02 | < .005 | < .02 | | 23 | <.010 | < .004 | <.022 | <.011 | <.01 | < .004 | < .010 | <.011 | < .02 | < .005 | < .02 | | JUL | | | | | | | | | | | | | 14 | <.010 | < .004 | <.022 | <.011 | <.01 | < .004 | <.010 | <.011 | < .25 | < .005 | < .02 | | AUG | | | | | | | | | | | | | 25 | <.010 | < .004 | < .022 | <.011 | <.01 | < .004 | <.010 | <.011 | < .09 | < .005 | < .02 | | | Terba-
cil,
water,
fltrd | Terbu-
fos,
water,
fltrd | Thio-
bencarb
water
fltrd | Tri-
allate,
water,
fltrd | Tri-
flur-
alin,
water,
fltrd | Suspnd. sedi- ment, sieve diametr | Sus-
pended
sedi-
ment
concen- | Sus-
pended
sedi-
ment | |----------------|-----------------------------------|-----------------------------------|------------------------------------|------------------------------------|---|-----------------------------------|--|---------------------------------| | Date | 0.7u GF
ug/L
(82665) | 0.7u GF
ug/L
(82675) | 0.7u GF
ug/L
(82681) | 0.7u GF
ug/L
(82678) | 0.7u GF
ug/L
(82661) | percent
<.063mm
(70331) | tration
mg/L
(80154) | load,
tons/d
(80155) | | OCT 2002 | | | | | | | | | | 22
APR 2003 | <.034 | <.02 | <.005 | <.002 | <.009 | 28 | 156 | 2150 | | 07 | < .034 | < .02 | < .005 | < .002 | <.009 | 46 | 366 | 8890 | | 29 | < .034 | < .02 | < .005 | < .002 | < .009 | 36 | 299 | 6940 | | MAY | | | | | | | | | | 19 | <.034 | < .02 | <.005 | .003 | <.009 | 65 | 477 | 14800 | | JUN | | | | | | | | | | 02 | <.034 | < .02 | <.005 | < .002 | <.009 | 34 | 281 | 6860 | | 23 | <.034 | < .02 | <.005 | < .002 | <.009 | 41 | 269 | 6490 | | JUL | | | | | | | | | | 14
AUG | <.034 | <.02 | <.005 | <.002 | <.009 | 48 | 229 | 4910 | | 25 | < .034 | < .02 | < .005 | < .002 | <.009 | 41 | 176 | 3110 | | | | | | | | | | | E--Estimated. # 06185500 MISSOURI RIVER NEAR CULBERTSON, MT--Continued WATER TEMPERATURE, DEGREES CELSIUS, APRIL 2003 TO SEPTEMBER 2003 | DAY | MAX |
MIN | MEAN | |----------------------------------|--------------------------------------|--|--------------------------------------|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--| | 1
2
3
4
5 | 5.5
5.0
2.5
2.0
2.5 | 5.0
2.5
1.5
1.5 | 5.5
4.0
2.0
1.5
2.0 | 13.5
13.0
13.5
13.0 | MAY
12.0
12.0
11.5
12.0
11.0 | 12.5
12.5
12.5
12.5
11.5 | 16.5
16.0
17.0
16.5
15.5 | JUNE
15.0
15.0
15.0
15.5 | 15.5
15.0
16.0
15.5
15.0 | 22.5
23.0
22.5
22.0
22.0 | 20.0
20.5
21.5
20.5
20.5 | 21.0
22.0
22.0
21.5
21.0 | | 6
7
8
9
10 | 3.5
4.5
6.0
8.0
10.5 | 2.0
3.5
4.0
6.0
7.5 | 2.5
4.0
5.0
6.5
9.0 | 11.0
10.0
9.5
9.0
9.0 | 10.0
9.0
8.5
8.5
7.5 | 10.5
9.5
8.5
9.0
8.0 | 15.0
14.5
14.5
15.0
16.0 | 14.5
13.0
13.0
14.0
14.5 | 14.5
14.0
13.5
14.5 | 21.0
20.5
19.5
20.5
21.0 | 19.5
19.0
18.5
18.5 | 20.5
20.0
19.0
19.5
20.0 | | 11
12
13
14
15 | 11.5
13.0
14.0
13.5
12.5 | 9.0
10.5
12.0
12.0
11.0 | 10.0
11.5
13.0
12.5
11.5 | 9.5
11.0
11.5
13.0
14.0 | 7.0
8.5
10.5
11.0
11.5 | 8.0
9.5
11.0
12.0
13.0 | 15.5
17.0
18.5
19.5
20.5 | 15.0
15.0
15.5
17.5 | 15.5
16.0
17.0
18.5
19.5 | 22.0
23.0
24.0
23.5
24.0 | 19.5
20.5
21.5
22.5
22.0 | 20.5
21.5
22.5
23.0
23.0 | | 16
17
18
19
20 | 11.0
11.0
11.0
12.0
12.5 | 9.0
9.0
10.0
10.0 | 9.5
10.0
10.5
10.5
11.5 | 14.0
13.5
12.5
11.0
10.5 | 13.0
12.5
11.0
9.5
8.5 | 13.5
13.0
12.0
10.0
9.5 | 21.0
21.0
20.5
20.5
21.5 | 19.5
19.5
19.0
18.5
19.5 | 20.0
20.5
20.0
19.5
20.5 | 24.0
23.5
24.5
26.0
25.5 | 22.0
22.0
22.0
23.0
24.0 | 23.0
23.0
23.5
24.5
24.5 | | 21
22
23
24
25 | 13.0
14.0
15.0
15.0 | 11.0
12.0
13.0
14.0
13.5 | 12.0
13.0
14.0
14.5
14.5 | 11.5
13.5
14.5
16.0
17.5 | 10.0
11.0
13.0
13.5
15.0 | 10.5
12.0
14.0
14.5
16.0 | 21.0
20.5
19.5
18.5
16.0 | 20.0
19.0
18.0
16.0
15.0 | 20.5
19.5
19.0
17.0
15.5 | 24.0
24.0
23.5
24.0
23.0 | 23.0
22.5
21.5
22.0
21.5 | 23.5
23.0
22.5
23.0
22.5 | | 26
27
28
29
30
31 | 14.0
12.5
12.5
13.0
13.0 | 12.5
11.5
11.0
11.0 | 13.5
12.0
11.5
12.0 | 19.0
19.5
20.5
20.5
19.0
18.5 | 16.5
18.5
18.5
18.5
18.0
16.5 | 17.5
19.0
19.5
19.5
18.5
17.0 | 16.5
17.5
18.0
20.0
21.0 | 14.5
16.0
16.5
17.0
18.5 | 15.5
16.5
17.0
18.5
19.5 | 23.0
22.5
23.5
23.0
23.0
23.0 | 21.0
21.0
21.0
21.5
21.0
21.5 | 22.0
21.5
22.0
22.5
22.0
22.0 | | MONTH | 15.0 | 1.5 | 9.5 | 20.5 | 7.0 | 13.0 | 21.5 | 13.0 | 17.0 | 26.0 | 18.5 | 22.0 | | | | AUGUST | | | SEPTEMB | ER | | | | | | | | 1
2
3
4
5 | 23.0
22.5
21.5
21.0
22.5 | 21.0
21.0
20.5
20.0
20.0 | 22.0
21.5
21.0
20.5
21.0 | | 17.5
17.5
17.0
17.0 | 18.5
18.0
18.0
18.0 | | | | | | | | 6
7
8
9
10 | 23.0
23.0
24.5
24.0
24.5 | 21.0
21.0
21.5
23.0
22.0 | 22.0
22.0
23.0
23.5
23.5 | 19.0
19.0
20.0
19.0
17.5 | 17.5
17.5
18.0
17.5
16.0 | 18.0
18.0
18.5
18.5 | | | | | | | | 11
12
13
14
15 | 24.5
25.0
25.5
26.0
25.5 | 22.0
22.5
23.0
24.0
24.0 | 23.0
23.5
24.0
25.0
24.5 | 16.5
16.0
14.5
14.0
14.0 | 15.5
14.5
13.0
12.0
12.5 | 16.0
15.5
13.5
13.0
13.5 | | | | | | | | 16
17
18
19
20 | 25.0
24.0
23.0
24.0
23.0 | 23.0
22.5
21.5
21.5
21.5 | 24.0
23.0
22.0
22.5
22.5 | 13.5
12.5
11.5
12.5
12.5 | 12.5
11.0
10.0
10.0 | 13.0
11.5
11.0
11.5
12.0 | | | | | | | | 21
22
23
24
25 | 22.5
21.5
22.0
22.0
22.5 | 20.5
20.0
20.0
20.0
20.5 | 21.5
20.5
21.0
21.0
21.5 | 12.0
12.5
13.0
11.5
12.5 | 11.5
10.5
11.5
10.5 | 12.0
11.5
12.0
11.0 | | | | | | | | 26
27
28
29
30
31 | 21.5
20.0
19.5
18.5
18.5 | 20.0
19.0
18.0
17.0
16.5
16.5 | 21.0
19.5
18.5
17.5
17.5 | 12.5
12.5
13.0
12.5
12.0 | 11.0
11.5
11.0
11.0
10.0 | 12.0
12.0
12.0
11.5
11.0 | | | | | | | 26.0 16.5 21.5 20.0 10.0 14.0 MONTH Page Page | A | | BasinContinued | | |--|------------|---|-----| | | | Uncle Sam Gulch at mouth, near | 160 | | Access to USGS water data | 31 | Well 08N05W30BBCD01 | 141 | | Acid neutralizing capacity, definition of | 31 | Well 08N05W30BCBD01 | 144 | | Acre-foot, definition of | 31 | Well 08N06W25AABB01 | 140 | | Adenosine triphosphate, definition of | 31 | Well 08N06W25ADAC01 | 143 | | Adjusted discharge, definition of | 31 | Well 08N06W25ADAC02 | 142 | | Alder, Ruby River above reservoir, near | 128 | Battle Creek basin, schematic diagram of | 325 | | Ruby River below reservoir, near | 129 | Battle Creek, at international boundary | 334 | | Algae, blue-green, definition of | 32 | near Chinook | 335 | | Fire, definition of | 35 | Beattrice Mine tributary at mouth, near Rimini | 216 | | Green, definition of | 36 | Beaver Creek | | | Algal growth potential, definition of | 31 | (tributary to Milk River) at reservation boundary, | | | Alkalinity, definition of | 31 | near Rocky Boy | 313 | | Altawan Reservoir near Govenlock, Saskatchewan | 318 | below Guston Coulee, near Saco | 355 | | Annual 7-day minimum, definition of | 32 | (tributary to Tenmile Creek) tributary No. 2, near Rimini | 208 | | Annual runoff, definition of | 31 | Beaverhead River, at Barretts | 121 | | Antelope, Big Muddy Creek near | 379 | at Dillon | 123 | | Aquifer, water table, definition of | 44 | near Twin Bridges | 124 | | Armells Creek near Landusky | 279 | Bed material, definition of | 32 | | Aroclor, definition of | 32 | Bedload discharge, definition of | 32 | | Artificial substrate, definition of | 32 | Bedload, definition of | 32 | | Ash mass, definition of | 32 | Belanger Creek diversion canal near Vidora, Saskatchewan | 345 | | Aspect, definition of | 32 | Benthic organisms, definition of | 32 | | _ | | Big Dry Creek near Van Norman | 296 | | В | | Big Hole River basin, gaging-station records in | 130 | | Dobb St Mary Canal at Intalya maan | 114 | Big Hole River, below Big Lake Creek, at Wisdom | 130 | | Babb, St. Mary Canal at Intake, near | 114 | below Mudd Creek, near Wisdom | 133 | | at St. Mary Crossing, near | 115
303 | near Glen | 137 | | | | near Melrose | 134 | | St. Mary River near | 112 | Big Muddy Creek basin, gaging-station records in | 379 | | Bacteria, definition of | 32
33 | Big Muddy Creek diversion canal near Medicine Lake | 380 | | Colinbages definition of | 33 | Big Muddy Creek, near Antelope | 379 | | Coliphages, definition of | 35
35 | Big Sandy Creek, at reservation boundary, near Rocky Boy | 311 | | Enterococcus, definition of Escherichia coli, definition of | 35
35 | near Havre | 312 | | Fecal coliform, definition of | 35
35 | Biochemical oxygen demand, definition of | 32 | | | 35 | Biomass, definition of | 32 | | Fecal streptococcal, definition of | 43 | Algal growth potential, definition of | 31 | | Badger Creek below Four Horns Canal, near Browning | 255 | Ash mass, definition of | 32 | | | 32 | Dry mass, definition of | 34 | | Bankfull stage, definition ofBanner Creek, at bridge, 0.5 mile above City diversion, | 32 | Organic mass, definition of | 38 | | near Rimini | 202 | Pigment ratio, definition of | 32 | | Barretts, Beaverhead River at | 121 | Volatile mass, definition of | 38 | | | 32 | Wet mass, definition of | 44 | | Base discharge, definition of | 32 | Blue-green algae, definition of | 32 | | | 32
157 | Bottom material, definition of | 32 | | Basin Creek, (tributary to Boulder River) at Basin | 145 | Boulder River (tributary to Jefferson River) above Kleinsmith | | | below Buckeye Mine near logging road, near Basin | 157 | Gulch, near Basin | 139 | | Basin, Basin Creek at | | below Little Galena Gulch, near Basin | 162 | | Basin Creek below Buckeye Mine near logging road, near | | near Boulder | 163 | | Boulder River below Little Colone Cyleb magn | 139
162 | Well 08N05W30BBCD01 | 141 | | Boulder River below Little Galena Gulch, near | | Well 08N05W30BCBD01 | 144 | | Boullion Mine Adit, near | 154
155 | Well 08N06W25AABB01 | 140 | | Bullion Mine tributary at mouth, near | | Well 08N06W25ADAC01 | 143 | | Cataract Creek above Uncle Sam Gulch, near | 158 | Well 08N06W25ADAC02 | 142 | | Cataract Creek at | 161 | Boulder River basin, gaging-station records in | 139 | | Crystal Mine Adit, near | 159 | Boulder, Boulder River near | 163 | | Jack Creek above Bullion Mine Tributary, near | 153 | Bozeman, East Gallatin River below Bridger Creek, near | 182 | | Jack Creek at mouth, near | 156 | Browning, Badger Creek below Four Horns Canal, near | 255 | | | Page | | Page |
--|------|--|------| | BrowningContinued | | D | | | Cut Bank Creek near | 257 | 2 | | | Milk River, North Fork, above St. Mary Canal, near | 305 | Dagmar, Cottonwood Creek near | 382 | | Two Medicine River below South Fork, near | 254 | Lake Creek near | 381 | | Bulk electrical conductivity, definition of | 32 | Sand Creek near | 383 | | Bullion Mine, adit near Basin | 154 | Daily mean suspended-sediment concentration, definition of | 34 | | tributary at mouth, near Basin | 155 | Daily record station, definition of | 34 | | • | | Data collection platform, definition of | 34 | | C | | Data logger, definition of | . 34 | | | | Datum, definition of | 34 | | Cameron, Madison River, at Kirby Ranch, near | 176 | Dearborn River near Craig | 231 | | Canadian Geodetic Vertical Datum 1928, definition of | 33 | Definition of terms | . 31 | | Canyon Ferry Lake near Helena | 191 | Diatom, definition of | | | Cataract Creek, above Uncle Sam Gulch, near Basin | 158 | Diel, definition of | 34 | | at Basin | 161 | Dillon, Beaverhead River at | | | Cell volume (biovolume), definition of | 33 | Discharge, definition of | 34 | | Cells/volume, definition of | 33 | Annual 7-day minimum, definition of | . 32 | | Cfs-day, definition of | 33 | Instantaneous discharge, definition of | | | Channel bars, definition of | 33 | Mean discharge, definition of | | | Chemical oxygen demand, definition of | 33 | Dissolved oxygen, definition of | | | Chester, Marias River near | | Dissolved solids concentration, definition of | | | Chinook, Battle Creek near | 335 | Dissolved, definition of | 34 | | Clear Creek near | 316 | Diversity index, definition of | 34 | | Choteau, Teton River below South Fork, near | 264 | Dodson, Milk River near | 343 | | Circle, Redwater River at | 366 | Peoples Creek below Kuhr Coulee, near | 341 | | Clancy, Prickly Pear Creek near | 192 | Downstream order and station number, explanation of | 15 | | Clark Canyon Reservoir near Grant | | Drainage area, definition of | 34 | | Clear Creek near Chinook | | Drainage basin, definition of | 34 | | Clostridium perfringens, definition of | 33 | Dry mass, definition of | 34 | | Coliphages, definition of | 33 | Dry weight, definition of | 34 | | Color unit, definition of | 33 | Dutton, Teton River near | 266 | | Confined aquifer, definition of | 33 | Duval Creek near Landusky | 280 | | Consul, Saskatchewan, Cypress Lake near | | | | | McKinnon Ditch near | | E | | | Nashlyn Canal near | | | 100 | | Richardson Ditch near | 331 | East Gallatin River below Bridger Creek, near Bozeman | | | Vidora Ditch near | 330 | East Poplar River at international boundary | | | Contents, definition of | 33 | Eastend, Saskatchewan, Eastend Canal at | | | Continuous-record station, definition of | 33 | Eastend Reservoir at | | | Control structure, definition of | 33 | Embeddedness, definition of | | | Control, definition of | 33 | Enterococcus bacteria, definition of | | | Cooperation | 1 | EPT Index, definition of | | | Cottonwood Creek near Dagmar | | Escherichia coli (E. coli), definition of | | | Craig, Dearborn River near | 231 | Estimated (E) value, definition of | | | Crystal Mine Adit near Basin | 159 | Euglenoids, definition of | | | Cubic foot per second per square mile, definition of | 33 | Explanation of ground-water-level records | | | Cubic foot per second, definition of | 33 | Explanation of precipitation records | | | Cubic foot per second-day, definition of | 33 | Explanation of stage- and water-discharge records | | | Culbertson, Missouri River near | 384 | Explanation of the records | | | Cut Bank Creek at Cut Bank | 258 | Explanation of water-quality records | | | near Browning | 257 | Extractable organic halides, definition of | 33 | | Cut Bank, Cut Bank Creek at | 258 | F | | | Cypress Lake, east outflow canal near Vidora, Sask | 346 | 1 | | | near Consul Saskatchewan | 352 | Fecal coliform bacteria, definition of | 35 | | west inflow canal drain near Oxarat, Saskatchewan | 328 | Fecal streptococcal bacteria, definition of | | | west inflow canal near West Plains, Saskatchewan | | Fire algae, definition of | | | west outflow canal near West Plains, Saskatchewan | 329 | Firehole River near West Yellowstone | | | | | Flow (discharge), definition of | | | | | Flow-duration percentiles, definition of | | | | | • | | INDEX | Fort Logan, Smith River below Eagle Creek, near | 253
235
299 | Horizontal datum, definition of | | |---|-------------------|--|------| | Fort Logan, Smith River below Eagle Creek, near | | Huff Lake gravity canal, near Val Marie, Saskatchewan | 2.40 | | Fort Peck Lake at Fort Peck | 299 | | 349 | | Fort Peck Lake at Fort Peck | | Huff Lake near Val Marie, Saskatchewan | | | | 298 | Huff Lake pumping canal, near Val Marie, Saskatchewan | 348 | | schematic diagram of | 352 | Hydrologic conditions, summary of | | | | 325 | Hydrologic index stations, definition of | | | | 351 | Hydrologic unit, definition of | 36 | | | | Hydrologic-monitoring activity | | | G | | I | | | Gaff Ditch near Merryflat, Saskatchewan | 326 | 1 | | | | 35 | Inch, definition of | 36 | | | 35 | Instantaneous discharge, definition of | | | | 36 | International Boundary Commission Survey Datum, | | | | 36 | definition of | 36 | | | .81 | Introduction | 1 | | | .81 | Island, definition of | 36 | | | .83 | | | | near Gallatin Gateway 1 | .81 | J | | | | 36 | | | | General hydrologic setting | 2 | Jack Creek above Bullion Mine Tributary, near Basin | | | | 36 | Jack Creek at mouth, near Basin | | | Gibbon River at Madison Junction, YNP | 71 | Jefferson River basin, gaging-station records in | | | | .37 | Jefferson River, near Three Forks | | | | 318 | near Twin Bridges | | | | 323 | Jordan, Hell Creek near | | | | 321 | Judith River near mouth, near Winifred | 273 | | Middle Creek near | 322 | т | | | Spangler Ditch near | 319 | L | | | | 20 | Laboratory reporting level, definition of | 36 | | | .75 | Lake Creek, (tributary to Big Muddy Creek) near Dagmar | | | | 251 | (tributary to Missouri River) near Power | | | Green algae, definition of | 36 | Lakes and Reservoirs | 232 | | | 13 | Altawan Reservoir near Govenlock, Saskatchewan | 318 | | Ground-water-level records, explanation of | 28 | Canyon Ferry Lake near Helena | | | Ground-water-quality data, explanation of | 29 | Clark Canyon Reservoir near Grant | | | | .52 | Cypress Lake near Consul, Saskatchewan | | | Unnamed Tributary of, SS No. 4, near Rimini 1 | 46 | Eastend Reservoir at Eastend, Saskatchewan | | | | | Fort Peck Lake at Fort Peck | | | Н | | Huff Lake near Val Marie, Saskatchewan | | | | 2. | Newton Lake near Val Marie, Saskatchewan | | | 1 2 | 36 | Sherburne, Lake, at Sherburne | | | <i>'</i> | 36 | Lakeview, Red Rock Creek above Lakes, near | | | | 36 | Land-surface datum, definition of | | | | 336 | Landusky, Armells Creek near | | | , | 283 | Duval Creek near | | | , , | 312 | Missouri River near | | | | 314 | Rock Creek near | | | J / 1 | 339 | Latent heat flux, definition of | | | 1 | 338 | Lavina, Musselshell River near | | | , , | .91 | Light-attenuation coefficient, definition of | | | • | 226 | Lipid, definition of | | | , | 224 | Little Peoples Creek near Hays | | | | 225 | Little Prickly Pear Creek at Wolf Creek | 230 | | • | 222 | Lodge Creek basin, Saskatchewan, Schematic diagram of | 317 | | | 223 | | 324 | | | 295 | Logan Gallatin River at | | | 8 , | 36 | Logan, Gallatin River at Loma, Marias River near | | | | 36 | Loma, Manas Kivei neal | 268 | | | Page | | Page | |---|------------|---|------| | Long-term method detection level, definition of | 37 | Milk RiverContinued | | | Low flow, 7-day 10-year, definition of | 41 | North Fork, above St. Mary Canal, near Browning | 305 | | Low tide, definition of | 37 | South Fork, near Babb | 303 | | | | Milligrams per liter, definition of | 38 | | M | | Minimum reporting level, definition of | 38 | | NA 1 (1 C' '4' C | 27 | Minnehaha Creek, above City diversion, near Rimini | 218 | | Macrophytes, definition of | 37 | below Armstrong Mine, near Rimini | 214 | | Madison River basin, gaging-station records in | 168 | Miscellaneous site, definition of | 38 | | Madison River, above Powerplant, near McAllister | 177 | Missouri River basin, gaging-station records in | 119 | | at Kirby Ranch, near Cameron | 176
178 | Missouri River, at Fort Benton | 253 | | below Ennis Lake, near McAllister | | at Toston | | | below Hebgen Lake, near Grayling | 175 | at Virgelle | 272 | | near West Yellowstone | 174 | below Fort Peck Dam | 299 | | Many Glacier, Swiftcurrent Creek above Swiftcurrent Lake, at | | below Hauser Dam, near Helena | 226 | | Swiftcurrent Creek at | 108
254 | below Holter Dam, near Wolf Creek | 227 | | Marias River basin, gaging-station records in | 262 | near Culbertson | 384 | | · | | near Great Falls | | | near Loma | 263 | near Landusky | | | near Shelby | 260
282 | near Ulm | 238 | | Martinsdale, Musselshell River near | | near Wolf Point | | | McAllister, Madison River above Powerplant, nearbelow Ennis Lake, near | 177 | Monida, Red Rock River below Lima Reservoir, near | 119 | | McKinnon Ditch near Consul, Saskatchewan | 178
332 | Monitor Creek, at mouth, near Rimini | | | | | SS12 near Rimini | | | Mean concentration of suspended sediment, definition of | 37 | Moores Spring Creek at mouth, near Rimini | | | Mean discharge, definition of | 37
37 | Mosby, Musselshell River at | | | Mean high tide, definition of | | Most probable number (MPN), definition of | | | Mean low tide, definition of | 37
37 | Muddy Creek, at Vaughn | | | Mean sea level, definition of | 37 | near Vaughn | | | | 380 |
Multiple-plate samplers, definition of | | | Medicine Lake, Big Muddy Creek diversion canal near Megahertz, definition of | 37 | Musselshell River basin, gaging-station records in | | | Melrose, Big Hole River near | 134 | Musselshell River, above Mud Creek, near Shawmut | 285 | | Membrane filter, definition of | 37 | at Harlowton | | | Merryflat, Saskatchewan, Gaff Ditch near | 326 | at Mosby | | | Metamorphic stage, definition of | 37 | at Musselshell | | | Method detection limit, definition of | 37 | near Lavina | | | Method of Cubatures, definition of | 37 | near Martinsdale | | | Methylene blue active substances, definition of | 37 | near Roundup | 287 | | Micrograms, per gram, definition of | 37 | N | | | per kilogram, definition of | 37 | N | | | per liter, definition of | 38 | Nanograms per liter, definition of | 38 | | Microsiemens per centimeter, definition of | 38 | Nashlyn Canal near Consul, Saskatchewan | | | Middle Creek, above Lodge Creek, near Govenlock, Sask | 323 | Nashua, Milk River at | | | below Middle Creek Reservoir, near Govenlock, Sask | 321 | National Geodetic Vertical Datum of 1929, definition of | | | near Govenlock, Saskatchewan | 322 | Natural substrate, definition of | | | near Saskatchewan boundary | 320 | Nekton, definition of | | | Milk River basin, gaging-station records in | 303 | Nelson Creek near Van Norman | | | Milk River, Alberta, Milk River at | 307 | Nephelometric turbidity unit, definition of | | | Verdigris Coulee near the mouth, near | 309 | Newton Lake Main Canal, near Val Marie, Saskatchewan | | | Milk River, at eastern crossing of international boundary | 310 | Newton Lake near Val Marie, Saskatchewan | | | at Cree Crossing, near Saco | 344 | North American Datum of 1927, definition of | | | at Havre | 314 | North American Datum of 1983, definition of | | | at Juneberg Bridge, near Saco | 354 | North American Vertical Datum of 1988, definition of | | | at Milk River, Alberta | 307 | North Milk River near international boundary | | | at Nashua | 359 | Number system for wells and miscellaneous sites, | | | at Tampico | 358 | explanation of | 15 | | at western crossing of international boundary | 304 | Numbering system for wells and miscellaneous sites | | | near Dodson | 343 | <i>5</i> , | _ | | near Harlem | 336 | | | | | | | | 395 | | Page | | Page | |--|------|--|------| | O | | Redwater River at Circle | 366 | | | | Replicate samples, definition of | | | Open or screened interval, definition of | 38 | Reservoirs (see Lakes and Reservoirs) | | | Organic carbon, definition of | 38 | Return period, definition of | | | Organic mass, definition of | 38 | Richardson Ditch near Consul, Saskatchewan | 331 | | Organism count/area, definition of | 38 | Riffle, definition of | 41 | | Total, definition | 43 | Rimini, Banner Creek at bridge, 0.5 mile above City | | | Volume, definition of | 38 | diversion, near | 202 | | Organochlorine compounds, definition of | 39 | Beattrice Mine tributary at mouth, near | 216 | | Oxarat, Saskatchewan, Cypress Lake west inflow canal | | Beaver Creek tributary No. 2, near | 208 | | drain near | 328 | Grub Creek above mouth of Unnamed Tributary, near | 152 | | D | | Minnehaha Creek above City diversion, near | 218 | | P | | Minnehaha Creek below Armstrong Mine, near | 214 | | Parameter Code, definition of | 39 | Monitor Creek at mouth, near | 199 | | Partial-record station, definition of | 39 | Monitor Creek SS12, near | | | Particle size, definition of | 39 | Moores Spring Creek at mouth, near | | | Particle-size classification, definition of | 39 | Poison Creek at mouth, near | 204 | | Peak flow, definition of | 39 | Ruby Creek near RC2A, above Scott Reservoir, near | 201 | | Peoples Creek, below Kuhr Coulee, near Dodson | 341 | Tenmile Creek above City diversion, near | 206 | | near Hays | 338 | Tenmile Creek above Monitor Creek, near | 196 | | Percent composition, definition of | 39 | Tenmile Creek at Tenmile Water Treatment Plant, near . | 221 | | Percent shading, definition of | 39 | Tenmile Creek below Spring Creek, at | | | Periodic station, definition of | 39 | Tenmile Creek near | | | Periphyton, definition of | 39 | Unnamed Tributary of Grub Creek, SS No. 4, near | 146 | | Pesticides, definition of | 39 | Unnamed tributary to Grub Creek at mouth, | | | pH, definition of | 39 | SS No. 6, near | | | Phytoplankton, definition of | 39 | Unnamed tributary to Grub Creek, SS No. 5, near | | | Fire algae, definition of | 35 | River mileage, definition of | 41 | | Picocurie, definition of | 39 | Rock Creek | | | Plankton, definition of | 40 | (tributary to Milk River), below Horse Creek, near | | | Poison Creek at mouth, near Rimini | 204 | international boundary | | | Polychlorinated biphenyls (PCB s), definition of | 40 | (tributary to Missouri River) near Landusky | | | Polychlorinated naphthalenes, definition of | 40 | Rocky Boy, Beaver Creek at reservation boundary, near | | | Pool, definition of | 40 | Big Sandy Creek at reservation boundary, near | | | Poplar River basin, gaging-station records in | 368 | Roundup, Musselshell River near | | | Poplar River, at international boundary | 368 | Willow Creek above LMGA Reservoir, near | | | near Poplar | 375 | Willow Creek at U.S. Canal, near | | | Poplar, Poplar River near | 375 | Ruby Creek RC2A, above Scott Reservoir, near Rimini | | | Power, Lake Creek near | 252 | Ruby River basin, gaging-station records in | | | Precipitation records, explanation of | 22 | Ruby River, above reservoir, near Alder | | | Prickly Pear Creek near Clancy | 192 | below reservoir, near Alder | | | Primary productivity, definition of | 40 | Run, definition of | | | Carbon method, definition of | 40 | Runoff, definition of | 41 | | Oxygen method, definition of | 40 | S | | | Publications, Techniques of Water-Resources Investigations . | 44 | 3 | | | _ | | Saco, Beaver Creek below Guston Coulee, near | 355 | | Q | | Milk River at Cree Crossing, near | 344 | | Quality of atroomflow | 12 | Milk River at Juneberg Bridge, near | 354 | | Quality of streamflow | 12 | Sand Creek near Dagmar | | | R | | Saskatchewan River basin, gaging-station records in | 107 | | | | Reservoir in | 109 | | Radioisotopes, definition of | 40 | Sea level, definition of | | | Reach, definition of | 40 | Sediment, definition of | 41 | | Records, explanation of | 15 | Sensible heat flux, definition of | 41 | | Recoverable, bottom material, definition of | 40 | Sevenmile Creek at mouth, near Helena | 224 | | Recurrence interval, definition of | 40 | Shawmut, Musselshell River above Mud Creek, near | 285 | | Red Rock Creek above Lakes, near Lakeview | 118 | Shelby, Marias River near | 260 | | Red Rock River below Lima Reservoir, near Monida | 119 | Shelves, definition of | 41 | #### INDEX | | Page | | Page | |--|------|--|------------------| | Sherburne, Lake Sherburne at | 109 | Tenmile Creek, above City diversion, near Rimini | 206 | | Swiftcurrent Creek at | 110 | above Monitor Creek, near Rimini | 196 | | Simms, Sun River at | 240 | at Green Meadow Drive, at Helena | 225 | | Smith River below Eagle Creek, near Fort Logan | 235 | at Tenmile Water Treatment Plant, near Rimini | 221 | | Sodium adsorption ratio, definition of | 41 | below Colorado Gulch, near Helena | 222 | | Soil heat flux, definition of | 41 | below Spring Creek, at Rimini | 210 | | Soil-water content, definition of | 41 | near Helena | 223 | | Spangler Ditch near Govenlock, Saskatchewan | 319 | near Rimini | 220 | | Special networks and programs | 16 | Well 08N06W24DDCD01 | 195 | | Specific conductance, definition of | 41 | Well 08N06W24DDCD02 | 194 | | St. Mary River and upper Milk River basin, schematic | | Terms, definition of | 31 | | diagram of | 113 | Teton River at Loma | 268 | | St. Mary Canal, at Intake, near Babb | 114 | below South Fork, near Choteau | 264 | | at St. Mary Crossing, near Babb | 115 | near Dutton | 266 | | St. Mary River, at international boundary | 116 | Thalweg, definition of | 43 | | near Babb | 112 | Thermograph, definition of | 43 | | Stable isotope ratio, definition of | 41 | Three Forks, Jefferson River near | 164 | | Stage (see gage height) | 41 | Time-weighted average, definition of | 43 | | Stage-discharge relation, definition of | 41 | Tons per acre-foot, definition of | 43 | | Station manuscript, stage- and water-discharge records, | | Tons per day, definition of | 43 | | explanation of | 19 | Toston, Missouri River at | 187 | | Station number, explanation of | 15 | Total coliform bacteria, definition of | 43 | | Streamflow, definition of | 41 | Total discharge, definition of | 43 | | Hydrologic conditions of | 7 | Total length, definition of | 43 | | Quality of | 12 | Total load, definition of | 43 | | Substrate embeddedness class, definition of | 41 | Total organism count, definition of | 43 | | Substrate, definition of | 41 | Total recoverable, definition of | 43 | | Artificial, definition of | 32 | Total sediment discharge, definition of | 43 | | Natural substrate, definition of | 38 | Total sediment load, definition of | 43 | | Summary of hydrologic conditions | 5 | Total, bottom material, definition of | 43 | | Sun River basin, gaging-station records in | 240 | Total, definition of | 43 | | schematic diagram of | 239 | Transect, definition of | 44 | | Sun River, at Simms | 240 | Turbidity, definition of | 44 | | near Vaughn | 246 | Twin Bridges, Beaverhead River near | 124 | | Surface area, definition of | 42 | Jefferson River near | 138 | | Surface water, hydrologic conditions of | 7 | Two Medicine River below South Fork, near Browning | 254 | | Surface-water-quality records | 23 | TWRI (Techniques of Water-Resources Investigations), list of | 44 | | Surficial bed material, definition of | 42 |
| | | Surrogate, definition of | 42 | U | | | Suspended sediment, definition of | 42 | | | | Suspended solids, total residue at 105 °C concentration, | | Ulm, Missouri River near | 238 | | definition of | 42 | Ultraviolet (UV) absorbance (absorption), definition of | 44 | | Suspended, definition of | 42 | Uncle Sam Gulch at mouth, near Basin | 160 | | Recoverable, definition of | 42 | Unconfined aquifer, definition of | 44 | | Total, definition of | 42 | Unnamed tributary to Grub Creek, SS No. 4, near Rimini | 146 | | Suspended-sediment concentration, definition of | 42 | at mouth, SS No. 6, near Rimini | 150 | | Suspended-sediment discharge, definition of | 42 | SS No. 5, near Rimini | 148 | | Suspended-sediment load, definition of | 42 | V | | | Swiftcurrent Creek, above Swiftcurrent Lake, at Many Glacier | 107 | V | | | at Many Glacier | 108 | Val Marie, Sask., Huff Lake gravity canal near | 349 | | at Sherburne | 110 | Huff Lake pumping canal near | 348 | | Synoptic studies, definition of | 42 | Newton Lake Main Canal near | 350 | | • • • | | Van Norman, Big Dry Creek near | 296 | | T | | Nelson Creek near | 290 | | | | | 243 | | Tampico, Milk River at | 358 | Vaughn, Muddy Creek at | 243 | | Taxa (Species) richness, definition of | 42 | Muddy Creek near Sun River near | 241 | | Taxonomy, definition of | 42 | Suii Kivei iieai | ∠ 4 0 | ### INDEX 397 Page | | Page | |---|------| | Verdigris Coulee near the mouth, near Milk River, Alberta | 309 | | Vertical datum, definition of | 44 | | Vidora Ditch near Consul, Saskatchewan | 330 | | Vidora, Saskatchewan, Belanger Creek diversion canal near . | 345 | | Cypress Lake east outflow canal near | 346 | | Virgelle, Missouri River at | 272 | | Volatile organic compounds, definition of | 44 | | compounds, assume of minimum | | | W | | | Water table, definition of | 44 | | Water year, definition of | 44 | | Water-quality records, explanation of | 23 | | Water-table aquifer, definition of | 44 | | WDR, definition of | 44 | | Weighted average, definition of | 44 | | West Plains, Saskatchewan, Cypress Lake west inflow | | | canal near | 327 | | Cypress Lake west outflow canal near | 329 | | West Yellowstone, Firehole River near | 168 | | West Yellowstone, Madison River near | 174 | | Wet mass, definition of | 44 | | Wet weight, definition of | 44 | | Willow Creek (tributary to Musselshell River) above LMGA | | | Reservoir, near Roundup | 288 | | at U.S. Canal, near Roundup | 289 | | Winifred, Judith River near mouth, near | 273 | | Wisdom, Big Hole River below Big Lake Creek, at | 130 | | Big Hole River below Mudd Creek, near | 133 | | Wolf Creek, Little Prickly Pear Creek at | 230 | | Missouri River below Holter Dam, near | 227 | | Wolf Point, Missouri River near | 362 | | WSP, definition of | 44 | | , | • | | Y | | | Yellowstone National Park, Gibbon River at Madison Junction | 171 | | Z | | | Zooplankton, definition of | 44 | ### **Conversion Factors** | Multiply | Ву | To obtain | |--|------------------------|---| | | Length | | | inch (in.) | 2.54×10^{1} | millimeter (mm) | | | 2.54×10^{-2} | meter | | foot (ft) | 3.048×10^{-1} | meter (m) | | mile (mi) | 1.609×10^0 | kilometer (km) | | | Area | | | | | 2 | | acre | 4.047×10^3 | square meter (m ²) | | | 4.047×10^{-1} | square hectometer (hm²) | | | 4.047×10^{-3} | square kilometer (km ²) | | square mile (mi ²) | 2.590×10^{0} | square kilometer (km ²) | | | Volume | | | gallon (gal) | 3.785×10^{0} | liter (L) | | | 3.785×10^{-3} | cubic meter (m ³) | | | 3.785×10^{0} | cubic decimeter (dm ³) | | million gallons (Mgal) | 3.785×10^3 | cubic meter (m ³) | | | 3.785×10^{-3} | cubic hectometer (hm ³) | | cubic foot (ft ³) | 2.832×10^{-2} | cubic meter (m ³) | | . , | 2.832×10^{1} | cubic decimeter (dm ³) | | cubic-foot-per-second-per-day | | , , | | $[(ft^3/s/d]$ | 2.447×10^3 | cubic meter (m ³) | | | 2.447×10^{-3} | cubic hectometer (hm ³) | | acre-foot (acre-ft) | 1.223×10^3 | cubic meter (m ³) | | | 1.223×10^{-3} | cubic hectometer (hm ³) | | | 1.223×10^{-6} | cubic kilometer (km ³) | | | Flow rate | | | cubic foot per second (ft ³ /s) | 2.832×10^{1} | liter (L/s) | | • • • | 2.832×10^{-2} | cubic meter per second (m ³ /s) | | | 2.832×10^{1} | cubic decimeter per second (dm ³ /s) | | gallon per minute (gal/min) | 6.309×10^{-2} | liter per second (L/s) | | | 6.309×10^{-5} | cubic meter per second (m ³ /s) | | | 6.309×10^{-2} | cubic decimeter per second (dm ³ /s) | | million gallons per day (Mgal/d) | 4.381x10 ⁻² | cubic meter per second | | | $4.381x10^{1}$ | cubic decimeter per second (dm ³ /s) | | | Mass | | | ton, short (2,000 lb) | 9.072x10 ⁻¹ | megagram (Mg) or metric ton | | | Water Temperature | | | degrees Celsius (°C) | °F = (1.8 x °C) + 32 | degrees Fahrenheit (°F) |