
Water Resources Data Montana Water Year 2003

Volume 1. Hudson Bay and Upper Missouri River Basins

Water-Data Report MT-03-1

Statement of cooperation with the State of Montana and other agencies

U.S. Department of the Interior

Gale A. Norton, Secretary

U.S. Geological Survey

Charles G. Groat, Director

2004

U.S. Geological Survey 3162 Bozeman Avenue Helena, Montana 59601 406-457-5900

Information about the USGS, Montana District is available on the Internet at http://mt.water.usgs.gov
Information about all USGS reports and products is available by calling 1-888-ASK-USGS or on the Internet via the World Wide Web at http://www.usgs.gov/

Additional earth science information is available by accessing the USGS home page at http://www.usgs.gov/

PREFACE

In the act that established the U.S. Geological Survey more than a century ago, the agency was charged by Congress with the responsibility for "...classification of the public lands, and examination of the geologic structure, mineral resources, and products of the national domain." This charge was simple recognition of the principle that factual information is essential to sound development and management decisions involving natural resources. In keeping with this principle, the Water Resources Division of the Survey publishes annually, by district, hydrologic records for water resources thought to be of particular usefulness to the public and to the scientific community.

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey, who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the collection, processing, and tabulation of the data:

Donald A. Bischoff, Hydrologic Technician

Bruce M. Bochy, Hydrologic Technician

Craig L. Bowers, Hydrologic Technician

Tyrel F. Brandt, Hydrologic Technician

Rodney R. Caldwell, Hydrologist

Thomas E. Cleasby, Hydrologist

DeAnn M. Dutton, Hydrologic Technician

James R. Finley, Hydrologic Technician

Kari L. Finley, Hydrologic Technician

James L. Fisher, Hydrologic Technician

John J. French, Supervisory Hydrologic Technician

Cynthia J. Harksen, Technical Editor

Terry L. Heinert, Hydrologic Technician

Kurt C. Jenewein, Scientific Illustrator

Arthur W. Johnson, Hydrologic Technician

Philip L. Karper, Hydrologic Technician

Stacy M. Kinsey, Hydrologic Technician

John H. Lambing, Hydrologist

Robert G. Legare, Hydrologic Technician

Stephen V. Lynn, Supervisory Hydrologic Technician

Norman A. Midtlyng, Hydrologic Technician

Evonne S. Mitton, Computer Assistant

Timothy J. Morgan, Hydrologic Technician

Steven W. Nichols, Hydrologic Technician

Virginia L. Redstone, Hydrologic Technician

virginia L. Redstone, Trydrologic Techniciai

Kevin L. Sattler, Hydrologic Technician Todd C. Schmitt, Hydrologic Technician

Ronald R. Shields, Scientist Emeritus

Andrew A. Skerda, Hydrologic Technician

William G. Stotts, Hydrologic Technician

LaVerne G. Sultz, Hydrologic Technician

Wayne A. Tice

Greg R. Trunkle, Hydrologic Technician

Peter R. Wright, Hydrologist

This report is one of a series issued State by State under the general direction of R.M. Hirsch, Associate Director for Water. This report was prepared by the U.S. Geological Survey in cooperation with the State of Montana and with other agencies, under the supervision of R.E. Davis, District Chief, and W.J. Carswell, Jr., Regional Hydrologist, Central Region.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE March 26, 2004	Annual, 1 Oct 2002	
4. TITLE AND SUBTITLE	,	<u> </u>	FUNDING NUMBERS
Water Resources Data, Mont Volume 1. Hudson Bay and		is	
6. AUTHOR(S) W.R. Berkas, M.K. White, P	.B. Ladd, F.A. Bailey, and I	K.A. Dodge	
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)	8.1	PERFORMING ORGANIZATION
U.S. Geological Survey, Wat 3162 Bozeman Avenue Helena, MT 59601	er Resources Division		REPORT NUMBER USGS-WDR-MT-03-1
9. SPONSORING / MONITORING AGENCY	Y NAME(S) AND ADDRESS(ES)	10.	SPONSORING / MONITORING
U.S. Geological Survey, Wat 3162 Bozeman Avenue Helena, MT 59601	er Resources Division		AGENCY REPORT NUMBER USGS-WDR-MT-03-1
11. SUPPLEMENTARY NOTES			
Prepared in cooperation with	the State of Montana and w	ith other agencies.	
12a. DISTRIBUTION / AVAILABILITY ST			b. DISTRIBUTION CODE
This report may be purchased National Technical Informati Springfield, VA 22161			No restriction on distribution
and water quality of streams; volume contains discharge re reservoirs and content for 5 sr 7 ground-water wells. Additi sites were collected but are no	stage, contents, and water quecords for 132 streamflow-gamaller reservoirs; and water-tonal water year 2003 data control published in this report. These data represent part	nality of lakes and reservoirs; aging stations; stage or content quality records for 66 streams ollected at crest-stage gage are these data are stored within the of the National Water Data	t of records of stage, discharge, and water levels in wells. This nt records for 5 lakes and large flow stations (34 ungaged), and and miscellaneous-measurement to District office files in Helena a System operated by the U.S.
14. SUBJECT TERMS			15. NUMBER OF PAGES
*Montana, *Hydrologic data,	*Surface water, *Ground w	ater, *Water quality, Flow rat	te, 407
Gaging stations, Lakes, Rese Sampling sites, Water levels,		ediments, Water temperature	PS, 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
YON 5540 01 200 5500		•	C: 1 1E 200 (B 2.00)

CONTENTS

	Pag
Preface	ii
Reports documentation page	i
List of surface-water and ground-water stations, in downstream order, for which records are published in this volume	vi
Introduction	
Cooperation	
General hydrologic setting	
Hydrologic-monitoring activity	
Summary of hydrologic conditions	
Temperature and Precipitation	
Surface water	
Streamflow	
Water quality	
Ground water	1.
Ground-water levels	13
Explanation of the records	1:
Downstream order and station number.	1:
Numbering system for wells and miscellaneous sites	
Special networks and programs	1
Explanation of stage- and water-discharge records	1'
Data collection and computation	1′
Data presentation	
•	
Station manuscript	
Data table of daily mean values	
Statistics of monthly mean data	
Summary statistics	
Identifying estimated daily discharge	
Accuracy of field data and computed results	2
Other data records available	
Publications	
Explanation of precipitation records	
Data collection and computation	
Data presentation	
Explanation of water-quality records	2
Collection and examination of data	2
Water analysis	2.
Surface-water-quality records	2
Classification of records	2
Accuracy of the records	2
Arrangement of records	2
On-site measurements and sample collection	2
Water temperature	2:
Sediment	2
Laboratory measurements	2
Data presentation	2
Remark codes	2
Water-quality control data	2
Blank samples	2
Reference samples	2
Replicate samples	2

Spike samples. 28 Publications 28 Explanation of ground-water-level records. 28 Site identification numbers. 28 Site identification numbers. 28 Data collection and computation. 28 Mater-level tables. 29 Hydrographs. 29 Ground-water-quality data. 29 Data collection and computation. 29 Laboratory measurements 31 Publications . 31 Access to USGS water data. 31 Definition of terms. 32 Definition of terms. 31 Definition of terms. 32 Definition of terms. 33 Definition of terms. 34 Definition of terms. 35 Definition of terms. 34 Definition of terms. 34 Definition of terms. 35 Definition of terms. 35 Definition of terms. 34 Definition of terms. 35 Defini		Page
Publications 28 Explanation of ground-water-level records 28 Size identification numbers 28 Data collection and computation 28 Data presentation 29 Water-level tables 29 Hydrographs 29 Hydrographs 29 Hydrographs 29 Ground-water-quality data 29 Data collection and computation 29 Laboratory measurements 39 Laboratory measurements 31 Publications 31 Access to USGS water data 31 Definition of terms 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey 31 Techniq	Spike samples	28
Site identification numbers		
Data collection and computation	Explanation of ground-water-level records	28
Data presentation	Site identification numbers	28
Water-level tables	Data collection and computation	28
Hydrographs	Data presentation	28
Ground-water-quality data	Water-level tables	29
Data collection and computation	Hydrographs	29
Laboratory measurements	Ground-water-quality data	29
Publications Access to USGS water data	Data collection and computation	29
Access to USGS water data	Laboratory measurements	31
Definition of terms. 31 Techniques of Water-Resources Investigations of the U.S. Geological Survey. 45 Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations. 49 Station records, surface water and water quality. 107 Index. 391 ILLUSTRATIONS Figure 1. Map showing general geographic features of Montana. 2 Streamflow data for water year 2003 compared to long-term data at selected streamflow-gaging stations, Montana. 3 Annual departure from mean annual discharge at two streamflow-gaging stations on unregulated streams in Montana. 9 4 System for numbering wells and miscellaneous sites (latitude and longitude). 15 5 System for numbering wells and miscellaneous sites (township and range). 16 6-8 Maps showing location of: 6 Streamflow-gaging and selected reservoir stations in Montana and adjacent areas, water year 2003. 24 8 Ground-water observation wells in Montana and adjacent areas, water year 2003. 30 9 Schematic diagrams showing diversion from St. Mary River in Part 5 to Milk River in Part 6. 113 10-12 Schematic diagrams showing diversions and storage in: 10 Sun River Basin. 239 11 Lodge Creek Basin. 317 12 Battle Creek and Frenchman River Basins. 329 11 Lodge Creek Basin. 310 24 Percentage-of-normal water content of mountain snowpack in Montana, 2003. 36 Comparisons of instantaneous peak discharge for water year 2003 with instantaneous peak discharge for period of record at selected stations in Montana. 4 Comparisons of minimum daily mean discharge for water year 2003 with minimum daily mean discharge for period of record at selected stations in Montana. 4 Comparisons of minimum daily mean discharge for water year 2003 with instantaneous peak discharge for period of record at selected stations in Montana. 10 Statistical summaries of selected water-quality measurements for long-term water-quality stations in Montana for water year 2003 and the period of record through water year 2003 for selected major reservoirs in Montana for water year 2003 and the period of record thr	Publications	31
Techniques of Water-Resources Investigations of the U.S. Geological Survey	Access to USGS water data	31
Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations	Definition of terms	31
Station records, surface water and water quality	Techniques of Water-Resources Investigations of the U.S. Geological Survey	45
ILLUSTRATIONS Figure 1. Map showing general geographic features of Montana. 2. Streamflow data for water year 2003 compared to long-term data at selected streamflow-gaging stations, Montana. 3. Annual departure from mean annual discharge at two streamflow-gaging stations on unregulated streams in Montana. 4. System for numbering wells and miscellaneous sites (latitude and longitude). 5. System for numbering wells and miscellaneous sites (township and range). 6. Maps showing location of: 6 Streamflow-gaging and selected reservoir stations in Montana and adjacent areas, water year 2003. 7. Surface-water-quality stations in Montana and adjacent areas, water year 2003. 9. Schematic diagram showing diversion from St. Mary River in Part 5 to Milk River in Part 6. 113 10-12. Schematic diagrams showing diversions and storage in: 10. Sun River Basin. 239 11. Lodge Creek Basin. 239 12. Battle Creek and Frenchman River Basins. 239 TABLES Table 1. Precipitation and departure from normal, in inches, and percentage of normal, Montana, water year 2003. 6 2. Percentage-of-normal water content of mountain snowpack in Montana, 2003. 6 3. Comparisons of instantaneous peak discharge for water year 2003 with instantaneous peak discharge for period of record at selected stations in Montana. 10. 4. Comparisons of minimum daily mean discharge for period of record at selected stations in Montana. 11. S. Percentage-of-normal water content of mountain snowpack in Montana, 2003. 6 Statistical summaries of selected water-quality measurements for long-term water-quality stations in Montana for water year 2003 and the period of record through water year 2003 for selected major reservoirs in Montana for water year 2003 and the period of record through water year 2002 metal water-quality stations in Montana for water-supply Paper numbers and parts for water-quality stations, 1940-74. 11. Water-Supply Paper numbers and parts for water-quality stations, 1940-74. 12. Water-Supply Paper numbers and parts for water-quality	Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations	49
Figure 1. Map showing general geographic features of Montana	Station records, surface water and water quality.	107
Figure 1. Map showing general geographic features of Montana	Index	391
2. Streamflow data for water year 2003 compared to long-term data at selected streamflow-gaging stations, Montana	ILLUSTRATIONS	
2. Streamflow data for water year 2003 compared to long-term data at selected streamflow-gaging stations, Montana	Figure 1. Man showing general geographic features of Montana	3
3. Annual departure from mean annual discharge at two streamflow-gaging stations on unregulated streams in Montana	2. Streamflow data for water year 2003 compared to long-term data at selected streamflow-gaging stations,	
4. System for numbering wells and miscellaneous sites (latitude and longitude)	3. Annual departure from mean annual discharge at two streamflow-gaging stations on unregulated streams	
5. System for numbering wells and miscellaneous sites (township and range)		
6-8. Maps showing location of: 6 Streamflow-gaging and selected reservoir stations in Montana and adjacent areas, water year 2003		
6 Streamflow-gaging and selected reservoir stations in Montana and adjacent areas, water year 2003		10
7. Surface-water-quality stations in Montana and adjacent areas, water year 2003		18
8. Ground-water observation wells in Montana, water year 2003	· · · · · · · · · · · · · · · · · · ·	
9. Schematic diagram showing diversion from St. Mary River in Part 5 to Milk River in Part 6		
10-12. Schematic diagrams showing diversions and storage in: 10. Sun River Basin		
10. Sun River Basin		113
11. Lodge Creek Basin		230
TABLES Table 1. Precipitation and departure from normal, in inches, and percentage of normal, Montana, water year 2003		
Table 1. Precipitation and departure from normal, in inches, and percentage of normal, Montana, water year 2003	e e e e e e e e e e e e e e e e e e e	
Table 1. Precipitation and departure from normal, in inches, and percentage of normal, Montana, water year 2003	12. Dattie Creek and Prenchinan River Dashis	323
2. Percentage-of-normal water content of mountain snowpack in Montana, 2003	TABLES	
of record at selected stations in Montana		
period of record at selected stations in Montana		
5. Percentage-of-normal storage, by month, during water year 2003 for selected major reservoirs in Montana		11
6. Statistical summaries of selected water-quality measurements for long-term water-quality stations in Montana for water year 2003 and the period of record through water year 2002		
7. Water-Supply Paper numbers and parts for surface-water stations, 1899-1970	6. Statistical summaries of selected water-quality measurements for long-term water-quality stations in Montana	
8. Water-Supply Paper numbers and parts for water-quality stations, 1947-70		
9. Water-Supply Paper numbers and parts for ground-water stations, 1940-74		
10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations		
		49

[Letter after station name designates types of data: (d) discharge, (c) chemical, (b) biological, (m) microbiological, (t) water temperature, (s) sediment, (e) elevations or contents]

	Station	Dogo
HUDSON BAY RIVER BASIN	number	Page
SASKATCHEWAN RIVER BASIN Old Man River:		
St. Mary River:		
Swiftcurrent Creek above Swiftcurrent Lake, at Many Glacier (d)	05014300	107
Swiftcurrent Creek at Many Glacier (d)	05014500	108
Lake Sherburne at Sherburne (e)	05015500	109
Swiftcurrent Creek at Sherburne (ds)		110
St. Mary River near Babb (d)		112
St. Mary Canal at Intake, near Babb (d)	05018000	114
St. Mary Canal at St. Mary Crossing, near Babb (d)		115
St. Mary River at international boundary (d)	03020300	116
RED ROCK RIVER BASIN		
Red Rock Creek above Lakes, near Lakeview (d)	06006000	118
Red Rock River below Lima Reservoir, near Monida (d)		119
Clark Canyon Reservoir near Grant (e)	06015300	120
Beaverhead River (continuation of Red Rock River):		
Beaverhead River at Barretts (d)	06016000	121
Beaverhead River at Dillon (d)		123
Beaverhead River near Twin Bridges (dcts)	06018500	124
RUBY RIVER BASIN	06010500	120
Ruby River above reservoir, near Alder (d)		128
Ruby River below reservoir, near Alder (d)		129
BIG HOLE RIVER BASIN Big Hole River below Big Lake Creek, at Wisdom (dt)	06024450	130
Big Hole River below Mudd Creek, near Wisdom (d)	06024430	133
Big Hole River near Melrose (dt)	06025500	134
Big Hole River near Glen (d)		137
Jefferson River (continuation of Beaverhead River):		
Jefferson River near Twin Bridges (d)	06026500	138
BOULDER RIVER BASIN		
Boulder River above Kleinsmith Gulch, near Basin (cs)		139
Well 08N06W25AABB01(c)		140
Well 08N05W30BBCD01 (c)		141
Well 08N06W25ADAC02 (c)		142
Well 08N06W25ADAC01 (c)	462500112172301	143 144
Basin Creek below Buckeye Mine near logging road, near Basin (cs)	462347112180401	145
Unnamed Tributary to Grub Creek, SS No. 4, near Rimini (cs)	462501112173501	146
Unnamed Tributary to Grub Creek, SS No. 5, near Rimini (cs)	. 462458112173201	148
Unnamed Tributary to Grub Creek at mouth, SS No. 6, near Rimini (cs)		150
Grub Creek above mouth of Unnamed Tributary, near Rimini (cs)		152
Jack Creek above Bullion Mine tributary, near Basin (cs)		153
Bullion Mine adit near Basin (cs)		154
Bullion Mine tributary at mouth, near Basin (cs)	462153112181701	155
Jack Creek at mouth, near Basin (cs)		156
Basin Creek at Basin (cs)		157 158
Crystal Mine adit near Basin (cs)		159
Uncle Sam Gulch at mouth, near Basin (cs)		160
Cataract Creek at Basin (cs)		161
Boulder River below Little Galena Gulch, near Basin (cs)	06032400	162
Boulder River near Boulder (d)		163
Jefferson River near Three Forks (dcts)		164
MADISON RIVER BASIN		
Firehole River near West Yellowstone (dt)		168
Gibbon River at Madison Junction (dt)		171
Madison River near West Yellowstone (d)		174
Madison River below Hebgen Lake, near Grayling (d)		175 176
madison Kivei at Kiloy Kanon, near Cameron (u)		1/0

	Station	
	number	Page
MISSOURI RIVER BASINContinued		
GALLATIN RIVER BASIN Medican Piver shove Powerplant, poor Med Histor (d)	06040800	177
Madison River above Powerplant, near McAllister (d)		177
Gallatin River near Gallatin Gateway (d)	06043500	181
East Gallatin River below Bridger Creek, near Bozeman (d)		182
Gallatin River at Logan (dcts)	06052500	183
Missouri River at Toston (dcts)	06054500	187
Canyon Ferry Lake near Helena (e)	06058500	191
Prickly Pear Creek near Clancy (cs)	06061500	192
TENMILE CREEK BASIN Well 08N06W24DDCD02 (c)	462522112172402	194
Well 08N06W24DDCD02 (c)		195
Tenmile Creek above Monitor Creek, near Rimini (c)	462720112165101	196
Monitor Creek SS 12, near Rimini (c)	462542112173101	198
Monitor Creek at mouth, near Rimini (c)	462721112164801	199
Ruby Creek RC2A, above Scott Reservoir, near Rimini (c)		201
Banner Creek at bridge, 0.5 mile above City diversion, near Rimini (c)	46265/112143501	202
Poison Creek at mouth, near Rimini (cs)	462838112143901	204 206
Beaver Creek tributary No. 2 near Rimini (cs)	462758112144101	208
Tenmile Creek below Spring Creek, at Rimini (cs)	462922112145401	210
Moores Spring Creek at mouth, near Rimini (cs)	462932112145801	212
Minnehaha Creek below Armstrong Mine, near Rimini (cs)	462917112165601	214
Beattrice Mine tributary at mouth, near Rimini (cs)	462918112170801	216
Minnehaha Creek above City Diversion, near Rimini (cs)	463023112153701	218
Tenmile Creek near Rimini (d)	06062500	220
Tenmile Creek at Tenmile Water Treatment Plant, near Rimini (cs)	00062730	221 222
Tenmile Creek near Helena (cs)	06063000	223
Sevenmile Creek at mouth near Helena (cs)		224
Tenmile Creek at Green Meadow Drive, at Helena (cs)		225
Missouri River below Hauser Dam, near Helena (d)	06065500	226
Missouri River below Holter Dam, near Wolf Creek (dt)		227
Little Prickly Pear Creek at Wolf Creek (d)		230
Dearborn River near Craig (dcts)	06073500	231
Smith River below Eagle Creek, near Fort Logan (dt)	00077200	235 238
SUN RIVER BASIN	00076200	230
Sun River at Simms (d)	06085800	240
Muddy Creek:		
Muddy Creek near Vaughn (dcs)	06088300	241
Muddy Creek at Vaughn (dcs)	06088500	243
Sun River near Vaughn (dcts)		246
Missouri River near Great Falls (d)	06090300	251
Lake Creek near Power (d)	06090650	252
Missouri River at Fort Benton (d).		253
MARIAS RIVER BASIN		
Two Medicine River below South Fork, near Browning (d)		254
Badger Creek below Four Horns Canal, near Browning (d)	06093200	255
Cut Bank Creek near Browning (d)	06098500	257
Cut Bank Creek at Cut Bank (d)		258 260
Marias River near Shelby (d)		262
Marias River near Loma (d)		263
Teton River below South Fork, near Choteau (dcs)		264
Teton River near Dutton (dcs)	06108000	266
Teton River at Loma (dcts)	06108800	268
Missouri River at Virgelle (d)	06109500	272
Judith River near mouth, near Winifred (dcts)		273
Missouri River near Landusky (ds)	06115200	276 279
Armells Creek near Landusky (d)	001132/U 06115300	219
Rock Creek near Landusky (d)		281
· · · · · · · · · · · · · · · · · · ·		

Statio	on	
numb	er	Page
MISSOURI RIVER BASINContinued MARIAS RIVER BASINContinued		
Fort Peck Lake:		
MUSSELSHELL RIVER BASIN		
Musselshell River near Martinsdale (d)	500	282
Musselshell River at Harlowton (d)		283
Musselshell River above Mud Creek, near Shawmut (d)		285
Musselshell River near Lavina (d)		286
Musselshell River near Roundup (d))00)00	287 288
Willow Creek above Linga Reservoir, hear Roundup (d)		289
Musselshell River at Musselshell (d)		290
Musselshell River at Mosby (dcts)		291
Hell Creek near Jordan (d)		295
BIG DRY CREEK BASIN		
Big Dry Creek near Van Norman (d))00	296
Nelson Creek near Van Norman (d)		297
Fort Peck Lake at Fort Peck (e)		298 299
MILK RIVER BASIN	100	299
South Fork Milk River near Babb (d)	200	303
Milk River at western crossing of international boundary (d)	000	304
North Fork Milk River above St. Mary Canal, near Browning (d)	500	305
North Milk River near international boundary (d))00	306
Milk River at Milk River, Alberta (d)	500	307
Verdigris Coulee near the mouth, near Milk River, Alberta (d)	100	309
Milk River at eastern crossing of international boundary (d)	100	310
Big Sandy Creek at reservation boundary, near Rocky Boy (d)	100	311
Big Sandy Creek near Havre (d)	500	312
Beaver Creek at reservation boundary, near Rocky Boy (d)	900	313
Milk River at Havre (d)	500	314
Clear Creek near Chinook (d)	100	316
Lodge Creek:		210
Altawan Reservoir near Govenlock, Saskatchewan (e)	260	318
Spangler Ditch near Govenlock, Saskatchewan (d)	270 250	319 320
Middle Creek below Middle Creek Reservoir, near Govenlock, Saskatchewan (d)		320
Middle Creek near Govenlock, Saskatchewan (d)		322
Middle Creek above Lodge Creek, near Govenlock, Saskatchewan (d)		323
Lodge Creek below McRae Čreek, at international boundary (d)	900	324
Battle Creek:		
Gaff Ditch near Merryflat, Saskatchewan (d))50 500	
Cypress Lake west inflow canal near West Plains, Saskatchewan (d)		327 328
Cypress Lake west inflow canal drain near Oxarat, Saskatchewan (d)		329
Vidora Ditch near Consul, Saskatchewan (d)		330
Richardson Ditch near Consul, Saskatchewan (d)		331
McKinnon Ditch near Consul, Saskatchewan (d)		332
Nashlyn Canal near Consul, Saskatchewan (d)		333
Battle Creek at international boundary (d)		334
Battle Creek near Chinook (d)		335
Milk River near Harlem (d)	.00	336
Peoples Creek near Hays (d)	100	338
Little Peoples Creek near Hays (dcs)	110	339
Peoples Creek below Kuhr Coulee, near Dodson (dcs)	550	341
Milk River near Dodson (d))30	343
Milk River at Cree Crossing, near Saco (d)	000	344
Belanger Creek (head of Frenchman River)	*00	245
Belanger Creek diversion canal near Vidora, Saskatchewan (d)	JUU	345
Cypress Lake: Cypress Lake east outflow canal near Vidora, Saskatchewan (d)	500	346
Of proof Dake out outfor outfill four victors, buskutchewan (d)		2 10

Station	
number	Page
MISSOURI RIVER BASINContinued	
MILK RIVER BASINContinued	
Frenchman River:	
Eastend Reservoir:	
Eastend Canal at Eastend, Saskatchewan (d)	347
Huff Lake:	
Huff Lake pumping canal near Val Marie, Saskatchewan (d)	348
Huff Lake gravity canal near Val Marie, Saskatchewan (d)	349
Newton Lake:	
Newton Lake Main Canal near Val Marie, Saskatchewan (d)	350
Frenchman River at international boundary (d)	351
Reservoirs in Frenchman River basin in Saskatchewan (e)	352
Milk River at Juneberg Bridge, near Saco (d)	354
Beaver Creek:	
Beaver Creek below Guston Coulee, near Saco (d)	355
ROCK CREEK BASIN	
Rock Creek below Horse Creek, near international boundary (d)	356
Milk River at Tampico (d)	358
Milk River at Nashua (dcts)	359
Missouri River near Wolf Point (dcts)	362
REDWATER RIVER BASIN	
Redwater River at Circle (d)	366
POPLAR RIVER BASIN	
Poplar River at international boundary (dcs)	368
East Poplar River at international boundary (dcs)	
Poplar River near Poplar (dcts)	375
BIĠ MUDDY CREEK BASIŃ	
Big Muddy Creek near Antelope (d)06183450	379
Big Muddy Creek diversion canal near Medicine Lake (d)	380
Lake Creek near Dagmar (d)	
Cottonwood Creek near Dagmar (d)	
Sand Creek near Dagmar (d)	383
Missouri River near Culbertson (dcts)	384

INTRODUCTION

The U.S. Geological Survey (USGS), in cooperation with other Federal, State, and local agencies and Tribal governments, collects a large amount of data pertaining to the water resources of Montana each water year. These data, accumulated over many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually, by water year, in this report series entitled, "Water Resources Data, Montana."

This report, volumes 1 and 2, includes records on both surface and ground water from stations within the State and selected stations near the Montana border in adjacent states and Canada. Specifically, it contains (1) discharge records for 246 streamflow-gaging stations; (2) stage or content records for 9 lakes and large reservoirs and content records for 31 smaller reservoirs; (3) water-quality records for 143 stream sites (45 ungaged), 7 ground-water wells, and 3 lake sites; (4) water-level records for 53 observation wells; and (5) precipitation and water-quality records for 2 atmospheric-deposition stations

Volume 1 contains discharge records for 132 streamflow-gaging stations; stage or content records for 5 lakes and large reservoirs and content records for 5 smaller reservoirs; and water-quality records for 66 stream sites (34 ungaged) and 7 wells.

Volume 2 contains discharge records for 114 streamflow-gaging stations; stage or content records for 4 lakes and large reservoirs and content records for 26 smaller reservoirs; water-quality records for 77 stream sites (11 ungaged) and 3 lake sites; water-level records for 53 observation wells; and precipitation and water-quality records for 2 atmospheric-deposition stations.

Additional data for water year 2003 were collected at crest-stage gage and miscellaneous-measurement sites but are not published in this report. These data are stored within files in the USGS office in Helena and are available on request. The locations of streamflow-gaging stations are shown later in the report in figure 6, locations of water-quality stations are shown in figure 7, and locations of observation wells are shown in figure 8.

Records of discharge or stage of streams and contents or stage of lakes and reservoirs were first published in a series of USGS Water-Supply Papers entitled "Surface Water Supply of the United States." These Water-Supply Papers were published in an annual series for water years 1899-1960 and then in a 5-year series for water years 1961-65 and 1966-70. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of Water-Supply Papers entitled "Quality of Surface Waters of the United States." Records of groundwater levels were published from 1935 to 1974 in a series of

Water-Supply Papers entitled "Ground-Water Levels in the United States." Water-Supply Papers may be reviewed in the libraries of the principal cities of the United States or may be purchased from USGS, Branch of Information Services, Box 25286, Denver, Colorado 80225. For water years 1961 through 1970, streamflow data were published by the USGS in annual reports for each State. Water-quality records for water years 1964 through 1970 were similarly published either in separate reports or in conjunction with streamflow records. Beginning with the 1971 water year, data for streamflow, water quality, and ground water are published as a single or multi-volume USGS annual water-data report for each State. These reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report MT-03-1." These water-data reports are for sale, in paper copy or on microfiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161, telephone 1-800-553-6847.

Water-resources information for Montana and the rest of the Nation are available through the World Wide Web as part of the USGS National Water-Information System (NWIS) at:

http://waterdata.usgs.gov/nwis

For Montana, this information includes surface-water, water-quality, and ground-water data. Surface-water information available from the USGS includes provisional real-time streamflow data for stations with satellite telemetry, provisional daily data for the previous 18 months, and daily data for the period of record at each site. Daily, monthly, and annual streamflow statistics also are available as well as annual peak streamflow data. In addition, flood-frequency and basin-characteristics information for selected sites in Montana is available at:

http://mt.water.usgs.gov/freq

Water-quality information available from the USGS includes provisional real-time specific-conductance and water-temperature data for selected sites with satellite telemetry and historical water-quality data for many surface-and ground-water sites in Montana. Ground-water information available from the USGS includes descriptive information for wells, springs, and test holes such as location (latitude and longitude), well depth, site use, water levels, and aquifer.

Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone at (406) 457-5900 or 1-888-ASK-USGS.

1

COOPERATION

The USGS has had cooperative agreements with other agencies and organizations for the systematic collection of streamflow records since 1906, for water-quality records since 1946, and for ground-water levels since 1964. In water year 2003, agencies and organizations that supported data collection through cooperative agreements with the USGS are:

Federal Agencies

Bonneville Power Administration

Bureau of Indian Affairs

Bureau of Land Management

Bureau of Reclamation

Department of State, International Joint Commission

National Park Service

U.S. Army Corps of Engineers

U.S.D.A. Forest Service

U.S. Environmental Protection Agency

U.S. Fish and Wildlife Service

U.S. Geological Survey

Tribal Governments

Blackfeet Nation

Chippewa Cree Tribe of the Rocky Boy's Reservation

Confederated Salish and Kootenai Tribes of the

Flathead Reservation

Crow Tribe

Fort Peck Tribes

Northern Chevenne Tribe

State Agencies

Montana Bureau of Mines and Geology

Montana Department of Environmental Quality

Montana Department of Fish, Wildlife and Parks

Montana Department of Natural Resources and Conservation

Montana Department of Transportation

Montana School of Technology of the University of Montana

Wyoming Department of Environmental Quality Wyoming State Engineer

Federal Energy Regulatory Commission Licensees Avista Corporation

Pacific Power and Light

Local Agencies

Cascade County Conservation District

City of Bozeman

East Bench Irrigation District

Lewis and Clark County Water Quality Protection

Lower Musselshell Conservation District

Lower Yellowstone Irrigation Project

North Powell Conservation District

Teton County Conservation District

GENERAL HYDROLOGIC SETTING

Montana, with an area of about 147,200 square miles (mi²), is the fourth largest State in the Union (fig. 1). The major drainage basins in the State are the Hudson Bay basin (465 mi²) and the upper Missouri River basin (120,700 mi²) east of the Continental Divide, and the upper Columbia River basin (26,000 mi²) west of the divide. The Hudson Bay and upper Missouri River basins drain about 82 percent of the State and provide slightly less than 50 percent of the total streamflow. The upper Columbia River basin drains about 18 percent of the State and provides about 50 percent of the total streamflow.

The western and southwestern parts of the State are in the Northern and Middle Rocky Mountains physiographic provinces. The central and eastern parts are in the Great Plains physiographic province. The Northern and Middle Rocky Mountains are characterized by rugged mountains and intermontane valleys, whereas the Great Plains consists of rolling to dissected plains and small mountain ranges. Altitude in Montana ranges from more than 12,000 feet in the mountains northeast of Yellowstone National Park to about 1,850 feet where the Kootenai River flows from the northwestern part of the State.

Climate and hydrologic conditions differ substantially across the State. Annual precipitation varies considerably throughout the basins, from about 100-120 inches along the Continental Divide in Glacier National Park to about 6-12 inches in parts of eastern and south-central Montana and in some of the western intermontane valleys. The diverse precipitation patterns in Montana result from the effects of geographic and topographic features on warm, moist air from either the Gulf of Mexico or the Pacific Ocean. In mountainous areas, much of the annual precipitation falls as snow during the winter. Although much of the annual precipitation on the Great Plains also falls as snow during the winter, intense rainstorms during the summer can add substantial quantities of precipitation to the annual totals in a short time. In areas east of the mountains, generally one-half of the annual precipitation falls from May through July.

Peak runoff from the basins can result from spring snowmelt, snowmelt mixed with rain, or intense rainfall. In addition, backwater from ice jams commonly creates flooding in many rivers throughout the State. The record flood of April 1952 in northeastern Montana is an example of spring snowmelt flooding. The flood in May 1981 in west-central Montana is an example of flooding caused by snowmelt mixed with rain. The floods of June 1964, June 1975, and May 1978 are examples of flooding predominantly caused by intense rainfall. Flash floods, although restricted in areal extent, are at times numerous in the north-central and eastern parts of the State. In many areas, peak runoff is stored in reservoirs to decrease flooding. The stored water is used for irrigation (the predominant consumptive use of water statewide), power generation, and recreation.

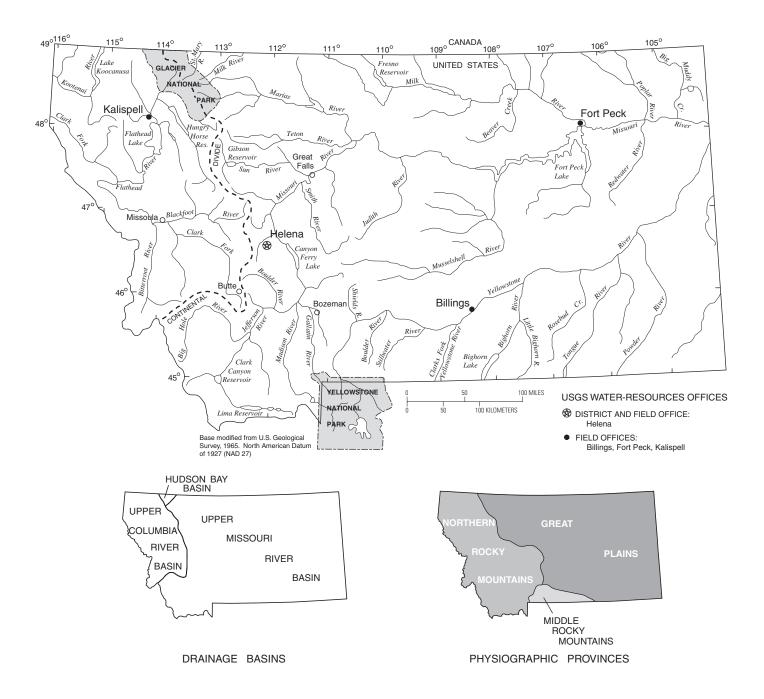


Figure 1. General geographic features of Montana.

Surface water throughout the State generally is suitable for most uses except in parts of eastern Montana where, because of large concentrations of dissolved solids and some individual constituents, recommended standards or criteria for domestic and agricultural uses may be exceeded. The ionic composition of surface water is largely influenced by geology and can vary markedly between the western mountains and the eastern plains. In the western mountains, where the rocks generally are older and resistant to weathering, the streamflow characteristically is a calcium bicarbonate type. The dissolved-solids concentrations in mountain streams seldom exceed 500 milligrams per liter (mg/L), even during base-flow conditions. In the eastern plains, where sedimentary rocks are less resistant to weathering, streamflow commonly is a sodium sulfate type, with dissolved-solids concentrations ranging from about 100 to 8,000 mg/L. In the northeastern part of the State, streamflow typically is a sodium bicarbonate type. Snowmelt and intense rainstorms sometimes produce large quantities of runoff that can dilute concentrations of dissolved solids, modify chemical compositions, and increase concentrations of suspended sediment.

The availability and quality of ground water in Montana are largely controlled by the hydraulic and geochemical properties of diverse rocks and sediments. In western Montana, ground water is available from alluvium along streams and rivers, from basin fill in intermontane valleys, from glacial deposits, and from fractured consolidated rocks. In eastern Montana, ground water is available from alluvial deposits along larger rivers and streams and from sedimentary Outside of the alluvial valleys, ground-water rocks. availability in sedimentary rock is variable. Throughout Montana, alluvial deposits along streams generally are the most productive aquifers, and yields to wells along the major streams may be several hundred gallons per minute. Alluvium can be readily recharged by precipitation, by streams during periods of high flow, and by applied irrigation water. The particle size distribution and sorting of glacial deposits largely determines their potential for yielding water to wells. Where coarse, well-sorted outwash gravels are present, the potential for developing large-yield wells is good, whereas yields from wells completed in poorly sorted glacial till generally are limited to a few gallons per minute. Many fractured consolidated-rock formations yield water but, because of the complexity of the geology, fractured rocks might not yield water in all areas. Wells completed in consolidated rocks generally yield only a few gallons per minute. However, several hundred gallons per minute can be obtained from highly fractured or cavernous formations in some areas. The well depth required to reach a given aquifer varies with location.

HYDROLOGIC-MONITORING ACTIVITY

Nine streamflow-gaging stations were established or reestablished during water year 2003 to aid in the assessment of the State's water resources. The stations are:

06036905 Firehole River near West Yellowstone 06037100 Gibbon River at Madison Junction, Yellowstone National Park

06119600 Musselshell River near Martinsdale 06190540 Boiling River at Mammoth, Yellowstone National Park

06327500 Yellowstone River at Glendive

12323700 Mill Creek at Opportunity

12323720 Willow Creek at Opportunity

12323850 Lost Creek near Galen

12351200 Bitterroot River near Florence

Three water-quality stations were reestablished in the Tongue River and Rosebud Creek basins near the end of water year 2003 to supplement information in an area of potential coal-bed methane development. These stations are:

06295113 Rosebud Creek at reservation boundary, near Kirby

06307600 Hanging Woman Creek near Birney 06307740 Otter Creek at Ashland

Nine miscellaneous surface-water-quality stations were established during water year 2003 to obtain data to characterize the baseline water-quality in an area with the potential for development of coal-bed methane resources. These stations are:

445729106573501 Ash Creek above mouth, near Acme, Wyo.

445832106551401 Youngs Creek above mouth, near Decker

450047106514201 Squirrel Creek above mouth, at Decker

450137106595101 Youngs Creek near reservation boundary, near Decker

450124106585101 Tanner Creek near mouth, near Decker

451302106583201 Rosebud Creek near Battlefield, near Kirby

451618106590001 Indian Creek at mouth, near Kirby

452800107001101 Thompson Creek near Busby

453021107000001 Davis Creek near Busby

Water-quality sampling continued at surface-water sites and ground-water wells that were established in 2002 in the headwaters of Tenmile Creek and Basin Creek near a repository (Luttrell Repository) where mine wastes and mill tailings from nearby abandoned-mine sites are being placed for long-term storage. The sampling of streams and ground water in the area surrounding the repository is intended to detect potential migration of contaminants from the disposal area. Ten surface-water stations and seven ground-water wells were sampled for this study during water year 2003. Seven new surface-water stations were established for the study in 2003:

462442112174601 Grub Creek above confluence with unnamed tributary, near Rimini

462442112174602 Unnamed Tributary to Grub Creek at mouth, SS No. 6, near Rimini

462458112173201 Unnamed Tributary to Grub Creek, SS No. 5, near Rimini

462542112173101 Monitor Creek, SS No. 12 (below SS No. 1), near Rimini

462544112162001 Ruby Creek, RC2A, above Scott Reservoir, near Rimini

462720112165101 Tenmile Creek above confluence with Monitor Creek, near Rimini

462721112164801 Monitor Creek at mouth, near Rimini

Three new water-quality stations were established in the Clark Fork basin to gain additional information on metal sources. These stations are:

12323700 Mill Creek at Opportunity 12323720 Willow Creek at Opportunity 12323850 Lost Creek near Galen

Water-quality sampling was reestablished at station 12335500, Nevada Creek above Reservoir, near Helmville, to supplement data collected at several other sites in the Blackfoot River basin for the purpose of watershed characterization.

Five streamflow-gaging stations were discontinued during or at the end of water year 2003:

06139800 West Fork Beaver Creek near Rocky Boy 06139850 Beaver Creek above Elk Creek, near Rocky Boy

06212500 Red Lodge Creek below Cooney Reservoir, near Boyd

12323248 Silver Bow Creek above Wastewater Plant outflow, at Butte

12346500 Skalkaho Creek near Hamilton

Twenty-one water-quality stations were discontinued:

06032300 High Ore Creek near Basin

06038800 Madison River at Kirby Ranch, near Cameron

06043500 Gallatin River near Gallatin Gateway

06048700 East Gallatin River below Bridge Creek, near Bozeman

06071300 Little Prickly Pear Creek at Wolf Creek

06154410 Little Peoples Creek near Hays

06191500 Yellowstone River at Corwin Springs

462508112173601 Unnamed Tributary of Grub Creek, SS No. 3, near Rimini

462505112173601 Unnamed Tributary of Grub Creek, SS No. 2, near Rimini

462503112173001 Unnamed Tributary of Grub Creek, SS No. 4A, near Rimini

462442112174901 Grub Creek near Rimini

462520112165601 Ruby Creek No. 1A above Scott Reservoir, near Rimini

462527112175201 Tenmile Creek at headwaters, near Rimini

462529112173301 Monitor Creek, SS No. 8, near Rimini 462531112172901 Monitor Creek, SS MS, near Rimini

462535112173601 Monitor Creek, SS No. 11, near Rimini

462537112173301 Monitor Creek, SS No. 10, near Rimini

462538112163301 Ruby Creek No. 2 above Scott Reservoir, near Rimini

462541112172001 Monitor Creek Adit near Rimini 462542112173301 Monitor Creek, 5-MC, near Rimini 462549112161401 Ruby Creek No. 3 above Scott Reservoir, near Rimini

SUMMARY OF HYDROLOGIC CONDITIONS

Temperature and Precipitation

For most of Montana, temperatures from October through January were warmer than normal. During the end of February, below-average temperatures moved across Montana, but during March, temperatures generally rose to above normal. The above-normal temperatures in March caused valley and prairie snow to melt in some areas resulting in high flows in some of the streams. Early in May, record low temperatures were recorded in southwest Montana, but by the end of the month, record high temperatures were noted across the State. Temperatures generally remained above average across the State for the rest of the water year.

Precipitation, departure from normal precipitation, and percentage of normal precipitation for seven climatological divisions of the State are listed in table 1. The precipitation data listed in table 1 are averages of the total monthly precipitation for the National Weather Service (NWS) reporting stations within each of the climatological divisions. No attempt was made to area-weight the division totals. As shown in table 1, for October 2002 through March 2003, precipitation ranged from 69 percent of normal in the southwestern division to 109 percent of normal in the southeastern division. For April 2003 through September 2003, precipitation ranged from 71 percent of normal in the western and southwestern divisions to 86 percent of normal in the northeastern division. Total precipitation for water year 2003 varied across the State from 70 percent of normal in southwestern Montana to 89 percent of normal in southeastern Montana. Overall, all climatological divisions received lessthan-normal precipitation through water year 2003. Total average precipitation amounts for climatological division for water year 2003 ranged from 10.45 inches for the north-central division to 15.45 inches for the western division.

Most NWS stations in Montana measure precipitation in valley or non-mountainous locations. Data for precipitation falling as snow in the mountainous parts of the State during the winter are published by the U.S. Department of Agriculture, Natural Resources Conservation Service, in the report "Montana Water Supply Outlook." Percentages of normal water content of snowpack, by drainage basin, are listed in table 2.

By March 1, 2003, the percentage-of-normal water content of mountain snowpack ranged from 54 to 94 percent.

By April 1, the percentage-of-normal water content increased in most basins from the previous month and ranged from 34 to 115 percent. By May 1, the percentage-of-normal water content ranged from 0 to 99 percent. Overall, the percentage-of-normal water content in snowpack on May 1, 2003, was below normal in the Sun-Teton-Marias (62 percent), Milk (0 percent) and Powder (69 percent) River basins, and near normal (± 20 percent of average) in the remaining basins.

Table 1. Precipitation and departure from normal, in inches, and percentage of normal, Montana, water year 2003¹

	October 2	2002 through N	March 2003	April th	rough Septem	nber 2003	Water year 2003			
Climatological division (number of stations)	Total monthly precipi- tation	Departure from normal, 1971-2000	Percentage of normal	Total monthly precipi- tation	Departure from normal, 1971-2000	Percentage of normal	Total average precipi- tation	Departure from normal, 1971-2000	Percentage of normal	
Western (45)	8.59	-1.74	83	6.86	-2.77	71	15.45	-4.51	77	
Southwestern (22)	3.75	-1.71	69	7.40	-3.10	71	11.15	-4.81	70	
North Central (42)	2.56	-0.75	77	7.89	-2.13	79	10.45	-2.88	78	
Central (35)	3.72	-0.52	88	8.60	-2.20	80	12.32	-2.72	82	
South Central (26)	5.41	-0.02	100	7.78	-3.24	70	13.19	-3.26	79	
Northeastern (27)	2.29	-0.35	87	8.77	-1.52	86	11.06	-1.87	86	
Southeastern (22)	3.87	0.32	109	8.57	-1.89	82	12.44	-1.57	89	

¹Data from U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, 2003, Climatological Data, Montana, v. 105, no. 10 through v. 106, no. 8; Gina Loss, National Oceanic and Atmospheric Administration, written commun., 2003. Normals of precipitation are determined from the base period 1971-2000.

Table 2. Percentage-of-normal water content of mountain snowpack in Montana, 2003¹

Drainage basin	Jan. 1	Feb. 1	Mar. 1	Apr. 1	May 1
		Hudson Bay	y		
St. Mary	70	73	71	88	82
		Missouri			
Upper Missouri	62	74	86	93	95
Sun-Teton-Marias	46	52	54	82	62
Smith-Judith-Musselshell	68	74	94	98	94
Milk	9	17	66	34	0
Upper Yellowstone	69	85	92	103	96
Bighorn	70	77	87	103	86
Tongue	77	79	94	115	94
Powder	67	66	82	104	69
		Upper Colum	bia		
Kootenai	73	71	69	86	86
Clark Fork	60	72	79	100	99
Flathead	59	69	69	86	81

¹Data from J. L. Ward, U.S. Department of Agriculture, Natural Resources Conservation Service, written commun., 2003. Normals for snowpack are determined from the base period 1971-2000.

SURFACE WATER

Streamflow

Streamflow data for water year 2003 can be compared to long-term data for water years 1971-2000 and maximum and minimum monthly mean discharge for the period of record at seven streamflow-gaging stations (fig. 2). Compared to the mean annual discharge (average of the annual mean discharges) for water years 1971-2000, the annual mean discharge shown in figure 2 during water year 2003 was 78 percent of average at Middle Fork Flathead River near West Glacier (station 12358500); 90 percent of average at Clark Fork at St. Regis (station 12354500); 66 percent of average at Missouri River at Toston (station 06054500); 86 percent of average at Yellowstone River at Corwin Springs (station 06191500); 75 percent of average at Yellowstone River at Billings (station 06214500); 64 percent of average at Rock Creek below Horse Creek, near international boundary (station 06169500); and 71 percent of average at Marias River near Shelby (station 06099500).

The annual departure from mean annual discharge at two streamflow-gaging stations on unregulated streams is shown in figure 3. At both Yellowstone River at Corwin Springs and Middle Fork Flathead River near West Glacier, the annual mean discharge during water year 2003 was less than the long-term average for the period of record.

Extraordinary flooding did not occur in any major river basins in Montana during water year 2003. However, flash flooding did occur in March in several small, ungaged drainages during a rapid snowmelt period across the northern and eastern plains and in west-central intermontane valleys in Montana. A comparison of peak discharges at 25 selected streamflow-gaging stations for water year 2003 to peak discharges for the period of record is presented in table 3. Record peak discharges were not recorded for any of these stations, although peak discharge could not be determined at three of the stations in water year 2003. The recurrence intervals for peaks during water year 2003 were less than 2 years at 10 stations, 2-5 years at 10 stations, 5-10 years at 1 station, and 20-50 years at 1 station.

A comparison of minimum daily mean discharge for 24 selected long-term streamflow-gaging stations for water year 2003 to minimum daily mean discharge for the period of record is presented in table 4. Record minimum daily mean discharges were not recorded during water year 2003, although below-normal streamflow conditions prevailed through the year in Montana. Minimum daily discharges had recurrence intervals of less than 2 years at 10 sites, recurrence intervals of 2-5 years at 8 sites, recurrence intervals of 5-10 years at 5 sites, and recurrence intervals of 20-50 years at 1 site.

The percentage-of-normal storage (based on water years 1971-2000), by month, for major reservoirs is listed in table 5.

At the end of water year 2003, storage was normal or within 20 percent of normal in five of the six major reservoirs used to supply water primarily for hydroelectric-power generation, but storage was well below normal in all four reservoirs used to supply water primarily for irrigation.

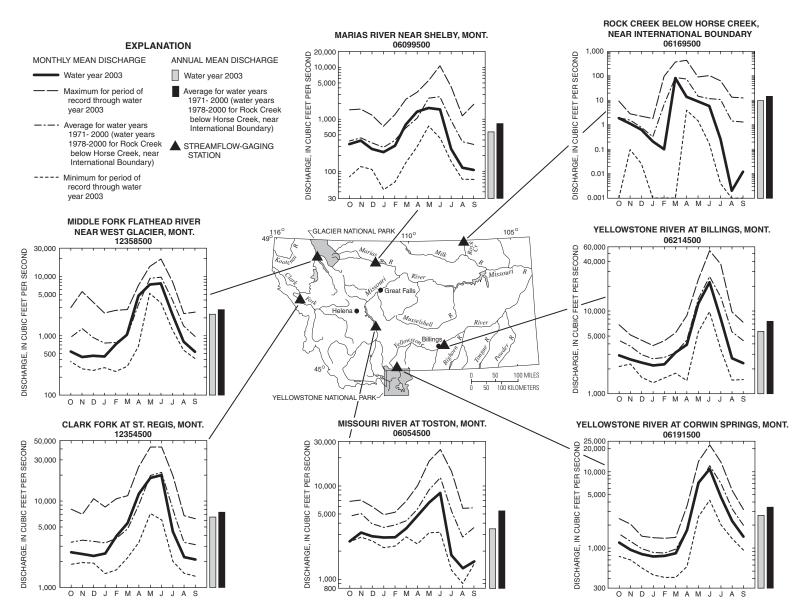


Figure 2. Streamflow data for water year 2003 compared to long-term data at selected streamflow-gaging stations, Montana.

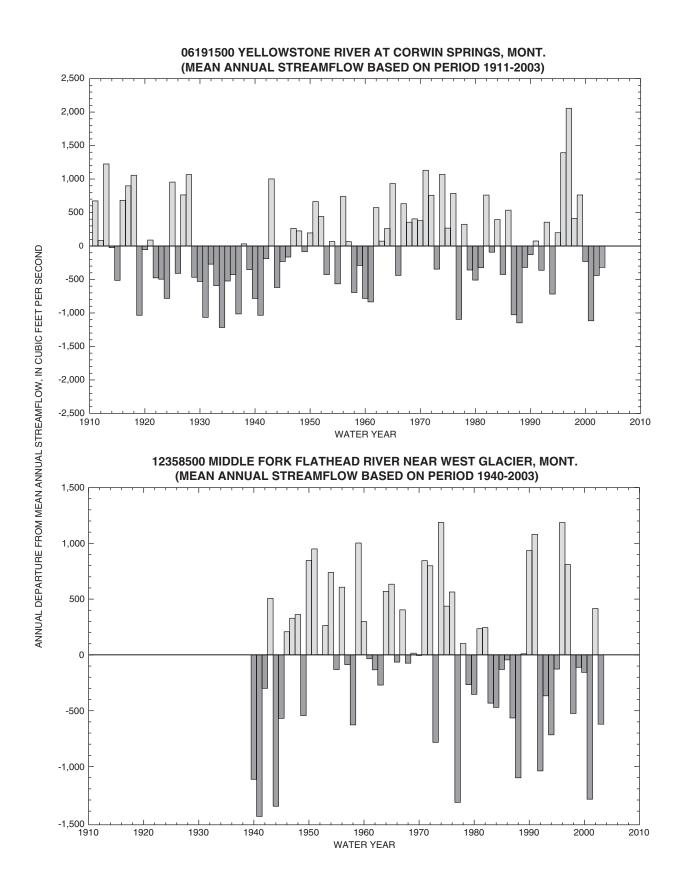


Figure 3. Annual departure from mean annual discharge at two streamflow-gaging stations on unregulated streams in Montana.

Table 3. Comparisons of instantaneous peak discharge for water year 2003 with instantaneous peak discharge for period of record at selected stations in Montana

[Symbols: <, less than; --, not determined; *, outside period of record]

Station		Drainage		eak discharge nter year 200	*	Peak discharge, period of record through water year 2002		
number	Station name	area (square miles)	Date	Cubic feet per second	Recurrence interval (years)	Date	Cubic feet per second	
05014500	Swiftcurrent Creek at Many Glacier	30.9	05/27	1,180	2-5	06/08/64	6,700	
05017500	St. Mary River near Babb	276	05/31	2,960	<2	06/09/64	16,500	
06025500	Big Hole River near Melrose	2,476	05/31	9,520	2-5	06/10/72	14,300	
06054500	Missouri River at Toston	14,669	06/02	20,200	2-5	06/12/97	34,000	
06089000	Sun River near Vaughn	1,854	05/27	3,620	<2	06/09/64	53,500	
06099500	Marias River near Shelby	3,242	03/15	4,180	<2	06/09/64	241,000	
06115200	Missouri River near Landusky	40,987	03/16	unknown		06/03/53	137,000	
06120500	Musselshell River at Harlowton	1,125	04/27	411	<2	06/20/75	7,270	
06154400	Peoples Creek near Hays	220	03/14	391	2-5	06/08/72	8,460	
06174500	Milk River at Nashua	22,332	03/25	4,760	<2	04/18/52	45,300	
06181000	Poplar River near Poplar	3,174	unknown	unknown		04/06/54	37,400	
06191500	Yellowstone River at Corwin Springs	2,623	06/01	23,800	5-10	06/10/96 06/06/97	32,200 32,200	
06200000	Boulder River at Big Timber	523	05/30	5,290	2-5	06/05/97	9,940	
06214500	Yellowstone River at Billings	11,795	06/02	46,500	2-5	06/12/97	82,000	
06289000	Little Bighorn River at State Line, near Wyola	193	05/31	1,460	2-5	06/03/44	2,730	
06308500	Tongue River at Miles City	5,397	03/15	4,000	2-5	06/15/62	13,300	
06329500	Yellowstone River near Sidney	69,103	06/05	49,100	<2	06/21/21	159,000	
12301300	Tobacco River near Eureka	440	05/30	908	<2	05/13/91	3,180	
12304500	Yaak River near Troy	766	05/26	3,440	<2	05/17/97 * 05/54	12,600 *13,400	
12332000	Middle Fork Rock Creek near Philipsburg	123	05/31	1,670	20-50	06/16/74	1,680	
12335500	Nevada Creek above Reservoir, near Helmville	116	unknown	unknown		06/02/53	1,800	
12340000	Blackfoot River near Bonner	2,290	05/30	8,100	<2	06/10/64	19,200	
12354500	Clark Fork at St. Regis	10,709	06/02	44,300	2-5	05/24/48 05/18/97	68,900 68,900	
12358500	Middle Fork Flathead River near West Glacier	1,128	05/26	19,800	<2	06/09/64	140,000	
12370000	Swan River near Bigfork	671	06/02	5,290	2-5	06/20/74	8,890	

Table 4. Comparisons of minimum daily mean discharge for water year 2003 to minimum daily mean discharge for period of record at selected stations in Montana

[Symbol: <, less than]

Station		Drainage area	Minimu	ım daily mean o water year 200	Minimum daily mean discharge, period of record through water year 2002		
number	Station name	(square miles)	Date	Cubic feet per second	Recurrence interval (years)	Date	Cubic feet per second
05014500	Swiftcurrent Creek at Many Glacier	30.9	01/19	17	<2	11/14,16/76	0
05017500	St. Mary River near Babb	276	12/25	59	<2	01/03/53	27
06025500	Big Hole River near Melrose	2,476	09/06	177	2-5	08/17/31	49
06054500	Missouri River at Toston	14,669	08/24	1,180	2-5	01/12/63	700
06089000	Sun River near Vaughn	1,854	09/07	173	<2	05/26/41	23
06099500	Marias River near Shelby	3,242	09/04	70	2-5	08/20/19	10
06115200	Missouri River near Landusky	40,987	09/09	3,650	2-5	12/13/36	1,220
06120500	Musselshell River at Harlowton	1,125	09/08	1.9	5-10	$(^1)$	0
06174500	Milk River at Nashua	22,332	07/05	44	<2	$(^1)$	0
06181000	Poplar River near Poplar	3,174	08/28	2.8	<2	$(^1)$	0
06191500	Yellowstone River at Corwin Springs	2,623	12/24	656	<2	02/05/89	380
06200000	Boulder River at Big Timber	523	02/24	55	2-5	08/26/61	12
06214500	Yellowstone River at Billings	11,795	02/24	1,500	<2	12/12/32	450
06289000	Little Bighorn River at State line, near Wyola	193	02/24	20	20-50	02/02/89	18
06308500	Tongue River at Miles City	5,397	10/01	35	<2	07/09/40	0
06329500	Yellowstone River near Sidney	69,103	08/30	1,720	5-10	05/17/61	570
12301300	Tobacco River near Eureka	440	12/28	35	5-10	01/11/63	20
12304500	Yaak River near Troy	766	09/07	33	5-10	09/19/01	49
12332000	Middle Fork Rock Creek near Philipsburg	123	02/24	25	<2	02/09/53	5.3
12335500	Nevada Creek above Reservoir, near Helmville	116	08/03	3.6	2-5	01/11/44	2.0
12340000	Blackfoot River near Bonner	2,290	01/10	300	2-5	01/04/50	200
12354500	Clark Fork at St. Regis	10,709	01/12	1,800	<2	02/03/89	800
12358500	Middle Fork Flathead River near West Glacier	1,128	01/11	299	2-5	11/27/52	189
12370000	Swan River near Bigfork	671	09/08	287	5-10	01/26-29/30	193

¹At various dates.

	Usable	Percentage-of-normal storage based on 1971-2000 period of record											
Reservoir	capacity		2002			2003							
	(acre-feet)	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
			Hydi	oelectri	c-power	genera	tion						
Canyon Ferry Lake	2,043,000	97	96	98	102	105	108	112	106	101	96	95	92
Fort Peck Lake	18,910,000	72	73	72	70	70	73	71	68	67	65	64	64
Bighorn Lake	1,356,000	64	68	70	72	72	75	77	78	81	77	81	80
Lake Koocanusa	5,748,000	109	122	119	149	178	167	160	145	120	103	92	92
Hungry Horse Reservoir	3,451,000	103	103	105	110	115	125	136	115	108	100	97	100
Flathead Lake	1,791,000	109	111	100	125	143	155	129	103	100	99	99	100
				Ir	rigation								
Lima Reservoir	84,050	20	25	31	34	39	43	49	49	9	9	12	16
Clark Canyon Reservoir	255,600	19	25	31	36	39	43	44	40	25	11	9	13
Gibson Reservoir	99,050	93	92	89	87	86	91	132	107	92	31	13	21
Fresno Reservoir	103,000	88	94	98	98	93	101	96	101	63	61	41	53

Table 5. Percentage-of-normal storage, by month, during water year 2003 for selected major reservoirs in Montana

Water Quality

The USGS operates a network of water-quality stations throughout Montana in cooperation with numerous Federal, State, and local agencies and Tribal governments. network changes from year to year as objectives are achieved or modified, or funding levels change. Some stations are operated for only a few years and commonly are part of a short-term investigation to examine water quality related to a specific condition. Other stations have been in operation for many years and provide a basis for description of long-term water-quality conditions or trends that represent a wide range of hydrologic or land-use variability. Long-term stations typically are located on major streams that represent an important water resource in the area and require data on an ongoing basis for various management concerns. A statewide network of 37 water-quality stations established in 1999 continued in operation through 2003. The network supplements the long-term record of water quality across the State and provides a reference for trends over time. Waterquality sampling that was started in 2001 at four sites in southeastern Montana (Tongue and Powder River basins) continued in 2003 and was subsequently expanded to seven sites (including the Rosebud Creek basin) to assist the States of Montana and Wyoming with assessing the potential effects of coal-bed methane development on water resources in these basins.

Various water-quality measurements are made, either onsite or by laboratory analysis of samples, depending on the objective of the investigation. Several types of water-quality data that describe physical and chemical characteristics are routinely obtained in many sampling programs. Examples of commonly measured water-quality characteristics are dissolved solids, dissolved oxygen, dissolved nitrite plus nitrate, total phosphorus, and suspended sediment. Guideline

concentrations established by the State of Montana¹ serve to illustrate the general range of values protective of human health and aquatic organisms.

The concentration of dissolved solids, which represents the mass (milligrams) of all constituents dissolved in a unit volume (liter) of water, can be determined either from the weight of dry residue that remains after evaporation of a known volume of water that has been filtered to remove particulate material, or estimated from the sum of the individual dissolved major-ion concentrations. An excessive concentration of dissolved solids can render the water unsuitable for certain uses such as human consumption, irrigation of crops, or livestock watering. Water-quality criteria established by the State of Montana² indicate that water might not be suitable when dissolved-solids concentrations exceed 500 mg/L if used for human consumption, 1,200 mg/L if used for crop irrigation, and 10,000 mg/L if used for livestock watering.

Dissolved oxygen in surface water is essential for most aquatic organisms and is an indicator of the biochemical condition of the stream or lake. The solubility of oxygen in water is a function of water temperature and barometric pressure; therefore, the oxygen content in surface water is subject to considerable daily and seasonal change. Biological activities such as photosynthesis and decomposition also can cause rapid and large changes in dissolved-oxygen concentration. Dissolved-oxygen concentrations less than 5.0

¹Montana Department of Health and Environmental Sciences, 1986, Montana water quality, 1986: Helena, Montana Department of Health and Environmental Sciences, 1986 Montana 305(b) Report, 198 p.

²Montana Department of Environmental Quality, 2002, Montana numeric water quality standards: Helena, Mont., Water Quality Division, Circular WBQ-7, 37 p.

mg/L for warm-water fish or 8.0 mg/L for cold-water fish may be detrimental if sustained for extended periods of time.²

Nitrogen (N) is an essential plant nutrient that occurs in several forms in surface water. Common sources of nitrogen are atmospheric deposition, soils, plant fertilizers, animal waste, and sewage or septic effluent. Nitrite and nitrate are forms of nitrogen that can occur in surface water, although nitrite is seldom present in large amounts in oxygenated water. Dissolved nitrate is a major nutrient for plants; consequently, large concentrations of nitrate in streams and lakes can cause rapid growth of aquatic plants. Nitrate concentrations in excess of 0.3 mg/L as N have the potential to cause nuisance growths of algae and other aquatic plants (Ivalou O'Dell, U.S. Geological Survey, written communication, 1994). In addition, human health can be adversely affected if the nitrate concentration exceeds 10 mg/L as N in drinking water.³

Phosphorus (P) is an essential plant nutrient that can stimulate excessive growth of aquatic plants. Total phosphorus includes the inorganic and organic forms of dissolved and suspended phosphorus and is commonly analyzed as an indicator of eutrophication potential. Although phosphorus can originate naturally from igneous and sedimentary rock formations, more common sources include sewage, detergents, fertilizer, and livestock waste. Total phosphorus in streams should not exceed 0.1 mg/L as P to prevent nuisance plant growth according to water-quality criteria established by the State of Montana. Water-quality criteria established by the EPA⁴ also indicate that total phosphorus should not exceed 0.05 mg/L as P in streams discharging directly to lakes or 0.025 mg/L as P within lakes.

Suspended sediment is particulate material eroded from the land surface by either wind or water and maintained in suspension in streams by hydraulic energy. The quantity of suspended sediment in streams typically increases during periods of increased runoff, when large amounts of rainfall or snowmelt can rapidly erode soil and the increased streamflow can scour channel sediments. Although large suspendedsediment concentrations can occur naturally in areas underlain by easily erodible geologic materials, land use that disturbs soils also can contribute substantial quantities of sediment to streams and lakes. The quantity of sediment in suspension has important physical and chemical implications for aquatic life. Sediment in suspension during high flow may be deposited in stream channels or lakes where water velocities decrease. In areas of sediment deposition, aquatic insects or fish eggs can be smothered, thereby rendering the bottom habitat unsuitable for their survival. Many chemical constituents such as some metals, phosphorus, and some pesticides tend to sorb strongly to sediment. As a result, chemicals may be readily transported from land sources into river systems where aquatic organisms could be exposed to toxic concentrations.

Statistical summaries of selected water-quality measurements made at eight long-term water-quality stations in Montana are presented in table 6. The range of values for each type of measurement is described by the minimum and maximum values. To compare current and long-term water-quality conditions, the range of values are summarized for both water year 2003 and the period of record through water year 2002. In addition, the central tendency of data collected over the period of record is described by the median (50th percentile).

GROUND WATER

Ground-Water Levels

Water levels were measured in 53 observation wells during water year 2003. Water levels in most of these wells primarily reflect the response of the ground-water system in the area to natural climatic conditions. However, several wells are within the zone of influence of human activities, and water levels in these wells can be affected by pumping or infiltration of applied irrigation water. Seventeen of the observation wells are equipped with continuous water-level recorders and have varying lengths of record. One of the continuous recorders was converted to near real-time data delivery, with water-level data collected hourly and transmitted every 4 hours via satellite for display as part of the USGS National Water Information System program web site:

http://waterdata.usgs.gov/nwis

Individual data values from the continuous recorders are not presented in this report but are available at the Montana District Office in Helena. Hydrographs are included for the 17 wells equipped with recorders, and periodic water-level data for all 53 wells are presented in this report. Water levels commonly fluctuate throughout the year and from year to year as a result of changes in climatic conditions or human activities. Some of the hydrographs show the effects of the below-normal precipitation in many climatological divisions across Montana during water year 2003.

³U.S. Environmental Protection Agency, 1991, Maximum Contaminant Levels (section 141.62 of subpart G of part 141, National Revised Primary Drinking Water Regulations): U.S. Code of Federal Regulations Title 40, Parts 100 to 149, revised as of July 1, 1991, p. 673.

⁴U.S. Environmental Protection Agency, 1986, Quality criteria for water, 1986: Washington, D.C., Office of Water Regulations and Standards, EPA 440/5-86-001, unpaged.

Table 6. Statistical summaries of selected water-quality measurements for long-term water-quality stations in Montana for water year 2003 and the period of record through water year 2002

[Symbols: <, less than; --, no data]

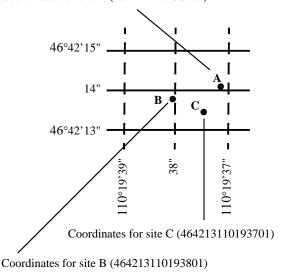
		Water year 2003			Period of record through water year 2002				
Station number	Station name	Number of samples	Mini- mum	Maxi- mum	Number of samples	Mini- mum	Maxi- mum	Median	
Dissolved solids, in milligrams per liter									
06054500	Missouri River near Toston	2	176	197	167	123	299	238	
06178500	East Poplar River at International Boundary	4	896	991	263	97	1,480	940	
06185500	Missouri River near Culbertson	8	330	429	231	221	579	403	
	Yellowstone River near Livingston	2	96	109	260	55	251	154	
06326500	Powder River near Locate	12	591	2,230	206	408	3,450	1,460	
06329500	Yellowstone River near Sidney	2	158	465	295	142	863	469	
12301933	Kootenai River below Libby Dam, near Libby	2	122	143	240	55	211	139	
12388700	Flathead River at Perma	2	95	102	69	89	106	96	
	Dissolved	oxygen, in	milligrar	ns per liter					
06054500	Missouri River near Toston	0			321	6.2	13.8	9.6	
06178500	East Poplar River at International Boundary	4	6.1	8.7	259	.9	17.2	9.2	
	Missouri River near Culbertson	8	7.8	12.8	277	6.0	14.2	9.3	
06192500	Yellowstone River near Livingston	0			198	7.0	14.6	9.5	
	Powder River near Locate	9	6.7	11.7	311	2.7	15.7	8.6	
06329500	Yellowstone River near Sidney	11	6.3	14.0	490	4.4	15.0	8.7	
12301933	Kootenai River below Libby Dam, near Libby	8	9.3	11.4	440	6.9	18.3	10.8	
12388700	Flathead River at Perma	0			99	7.4	18.1	10.5	
	Dissolved nitrite plus	nitrate, in	milligran	ns per liter	as nitrogen	l			
06054500	Missouri River near Toston	4	.015	-	97	<.05	.38	.08	
	East Poplar River at International Boundary	4	<.022	.149	61	<.01	.29	.07	
	Missouri River near Culbertson	8	<.022		157	<.005		.007	
	Yellowstone River near Livingston	4	.017	.238	239	<.05	1.2	.10	
	Powder River near Locate	12	<.022	.814	144	<.01	1.8	.27	
06329500	Yellowstone River near Sidney	11	<.060	.660	235	<.005		.20	
	Kootenai River below Libby Dam, near Libby	8	.036		302	<.05	.79	.10	
	Flathead River at Perma	4	<.022	.020	36	<.005		.02	
	Total phosphorus,	in milligr			phorus				
06054500	Missouri River near Toston	4	.04	.20	177	<.01	.44	.04	
	East Poplar River at International Boundary	4	.05	.12	265	<.01	.40	.03	
	Missouri River near Culbertson	8	.08	.35	217	.01	.93	.08	
	Yellowstone River near Livingston	4	.02	.23	117	<.01	1.2	.03	
	Powder River near Locate	12	.01	6.0	207	.008		.17	
	Yellowstone River near Sidney	11	.02	1.4	366	<.01	2.7	.09	
	Kootenai River below Libby Dam, near Libby	8	<.004	.012	515	<.001	.26	.008	
	Flathead River at Perma	4	.002		83	<.008		.005	
12300700	Suspended s					<.000	.27	.003	
06054500	Missouri River near Toston	4	13	146	231	4	491	18	
	East Poplar River at International Boundary	4	75	121	229	4	322	54	
	Missouri River near Culbertson	8	156	477	178	4 19	2,370	238	
	Yellowstone River near Livingston	6 4		290	160		1,090	10	
	Powder River near Locate	4 11	8 32	16,000	279	2 8	41,400	745	
	Yellowstone River near Sidney	17	30	3,220	398	8 10	15,500	312	
	Kootenai River below Libby Dam, near Libby	6	1	2 70	17 72	1	3 65	2	
12308/00	Flathead River at Perma	4	2	70	72	1	65	4	

EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for water year 2003 that began October 1, 2002, and ended September 30, 2003. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface and ground water, and ground-water-level data. The locations of the stations and wells where the data were collected are shown in figures 6 through 8. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

DOWNSTREAM ORDER AND STATION NUMBER

Since October 1, 1950, hydrologic-station records in USGS reports have been listed in order of downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary entering between two main-stream stations is listed between those stations. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is located with respect to the stream to which it is immediately tributary is indicated by an indention in that list of stations in the front of this report. Each indentation represents one rank. This downstream order and system of indentation indicates which stations are on tributaries between any two stations and the rank of the tributary on which each station is located.


As an added means of identification, each hydrologic station and partial-record station has been assigned a station number. These station numbers are in the same downstream order used in this report. In assigning a station number, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list composed of both types of stations. Gaps are consecutive. The complete 8-digit (or 10-digit) number for each station such as 06090300, which appears just to the left of the station name, includes a 2digit part number "06" plus the 6-digit (or 8-digit) downstream order number "090300." In areas of high station density, an additional two digits may be added to the station identification number to yield a 10-digit number. The stations are numbered in downstream order as described above between stations of consecutive 8-digit numbers.

NUMBERING SYSTEM FOR WELLS AND MISCELLANEOUS SITES

The USGS well and miscellaneous site-numbering system is based on the grid system of latitude and longitude. The

system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, and the next 7 digits denote degrees, minutes, and seconds of longitude; the last 2 digits are a sequential number for wells within a 1-second grid. In the event that the latitude-longitude coordinates for a well and miscellaneous site are the same, a sequential number such as "01," "02," and so forth, would be assigned as one would for wells (see fig. 4). The 8-digit, downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken.

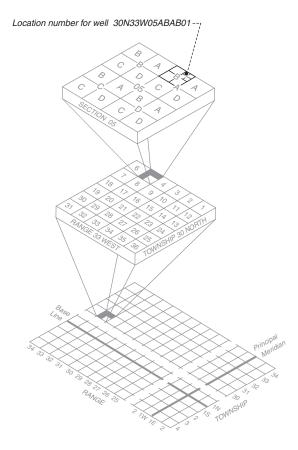

Coordinates for site A (464214110193701)

Figure 4. System for numbering wells and miscellaneous sites (latitude and longitude).

In addition to the well number that is based on latitude and longitude given for each well, another well number is given that is based on the Bureau of Land Management's system of land subdivision. This well number is familiar to the water users of Montana and shows the location of the well by quadrant, township, range section, and position within the section (see fig. 5). The capital letter at the beginning of the location number indicates the quadrant in which the well is located. Four quadrants are formed by the intersection of the base line and the principal meridian—A indicates the northeast quadrant, B the northwest, C the southwest, and D the southeast. The first numeral indicates the township, the second the range, and the third the section in which the well is located. Letters following the section number locate the well within the section. The first letter denotes the quarter section, the second the quarter-quarter section, and the third the quarter-quarterquarter section. The letters are assigned within the section in a counter-clockwise direction beginning with (a) in the northeast quarter of the section. Letters are assigned within each quarter section and quarter-quarter section in the same manner. Where two or more wells are located within the

smallest subdivision, consecutive numbers beginning with 01 are added to the letters in the order in which the wells are inventoried. For example, 30N33W05ABAB01 is the first well inventoried in NW¹/₄NE¹/₄NW¹/₄NE¹/₄ sec. 5, T.30N.,R.33W (northwest quarter of the northeast quarter of the northwest quarter of the northwest quarter of section 5, in township 30 north, range 33 west).

Figure 5. System for numbering wells and miscellaneous sites (township and range).

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Benchmark Network is a network of 61 sites in small drainage basins in 39 States that was established in 1963 to provide consistent streamflow data representative of undeveloped watersheds nationwide, and from which data could be analyzed on a continuing basis for use in comparison and contrast with conditions observed in basins more obviously affected by human activities. At selected sites, water-quality information is being gathered on major ions and nutrients, primarily to assess the effects of acid deposition on stream chemistry. Additional information on the Hydrologic Benchmark Program may be accessed from:

http://water.usgs.gov/hbn/

National Stream-Quality Accounting Network (NASQAN) is a network of sites used to monitor the water

quality of large rivers within the Nation's largest river basins. From 1995 through 1999, a network of approximately 40 stations was operated in the Mississippi, Columbia, Colorado, and Rio Grande River basins. For the period 2000 through 2004, sampling was reduced to a few index stations on the Colorado and Columbia Rivers so that a network of 5 stations could be implemented on the Yukon River. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment (NAWQA) Program; (3) to characterize processes unique to large-river systems such as storage and remobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals. Additional information about the NASQAN Program may be accessed from:

http://water.usgs.gov/nasqan/

The National Atmospheric Deposition Program/ National Trends Network (NADP/NTN) is a network of monitoring sites that provide continuous measurement and assessment of the chemical constituents in precipitation throughout the United States. As the lead Federal agency, the USGS works together with over 100 organizations to provide a long-term, spatial and temporal record of atmospheric deposition generated from this network of 250 precipitationchemistry monitoring sites. The USGS supports 74 of these 250 sites. This long-term, nationally consistent monitoring program, coupled with ecosystem research, provides critical information toward a national scorecard to evaluate the effectiveness of ongoing and future regulations intended to reduce atmospheric emissions and subsequent impacts to the Nation's land and water resources. Reports and other information on the NADP/NTN Program, as well as data from the individual sites, may be accessed from:

http://bqs.usgs.gov/acidrain/

The USGS National Water-Quality Assessment (NAWQA) Program is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; to provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and to provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies.

Assessment activities are being conducted in 42 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents is measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for water-resources managers to use in making decisions and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest.

Communication and coordination between USGS personnel and other local, State, and Federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key Federal, State, and local water-resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies. Additional information about the NAWQA Program may be accessed from:

http://water.usgs.gov/nawqa/

The USGS National Streamflow Information Program (NSIP) is a long-term program with goals to provide framework streamflow data across the Nation. Included in the program are creation of a permanent Federally funded streamflow network, research on the nature of streamflow, regional assessments of streamflow data and databases, and upgrades in the streamflow information delivery systems. Additional information about NSIP may be accessed from:

http://water.usgs.gov/nsip/

EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS

Data Collection and Computation

The base data collected at gaging stations (fig. 6) consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and volume of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from a water-stage recorder that is either downloaded electronically in the field to a laptop computer or similar device or is transmitted using telemetry such as GOES satellite, land-line or cellular-phone modems, or by radio transmission. Measurements of discharge are made with a current meter or acoustic Doppler current profiler, using the general methods adopted by the USGS. These methods are described in standard textbooks, USGS

Water-Supply Paper 2175, and the Techniques of Water-Resources Investigations of the United States Geological Survey (TWRIs), Book 3, Chapters A1 through A19 and Book 8, Chapters A2 and B2. The methods are consistent with the American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standards (ISO).

For stream-gaging stations, discharge-rating tables for any stage are prepared from stage-discharge curves. If extensions to the rating curves are necessary to express discharge greater than measured, the extensions are made on the basis of indirect measurements of peak discharge (such as contracted-opening measurements, slope-area or computation of flow over dams and weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharges are computed from the daily values. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features of the stream channel, the daily mean discharge is computed by the shifting-control method in which correction factors based on individual discharge measurements and notes by engineers and observers are used when applying the gage heights to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the controlling section, the daily mean discharge is computed by the shiftingcontrol method.

At some stations, stage-discharge relation is affected by changing stage. At these stations, the rate of change in stage is used as a factor in computing discharge.

At some stream-gaging stations in the northern United States, the stage-discharge relation is affected by ice in the winter; therefore, computation of the discharge in the usual manner is impossible. Discharge for periods of ice effect is computed on the basis of gage-height record and occasional winter-discharge measurements. Consideration is given to the available information on temperature and precipitation, notes by gage observers and hydrologists, and comparable records of discharge from other stations in the same or nearby basins.

For a lake or reservoir station, capacity tables giving the volume or contents for any stage are prepared from stage-area relation curves defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly changes are computed.

If the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys, the computed contents may be increasingly in error due to the gradual accumulation of sediment.

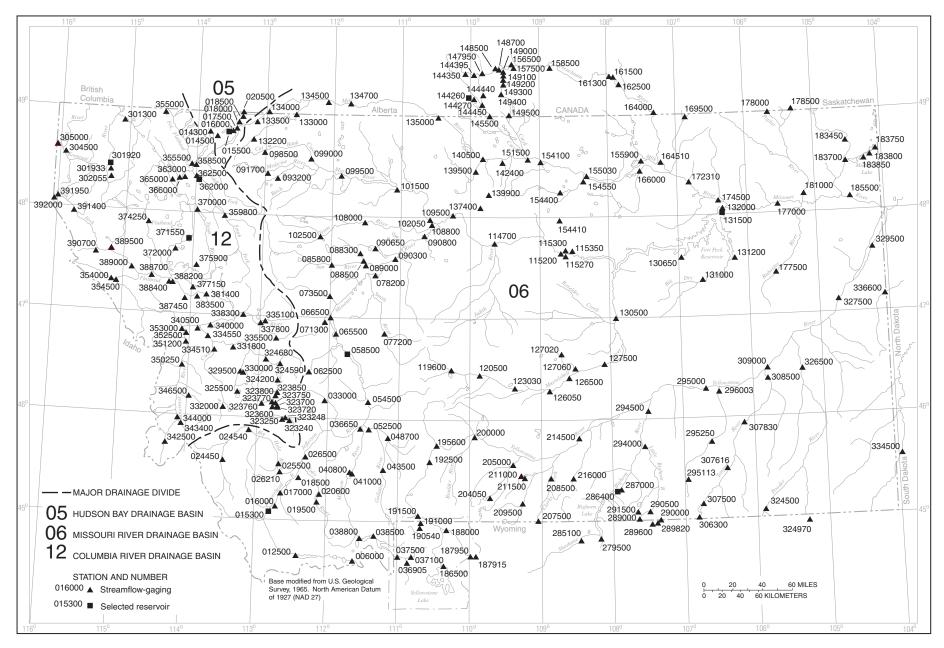


Figure 6. Location of streamflow-gaging and selected reservoir stations in Montana and adjacent areas, water year 2003.

For some stream-gaging stations, periods of time occur when no gage-height record is obtained or the recorded gage height is faulty and cannot be used to compute daily discharge or contents. Such a situation can happen when the recorder stops or otherwise fails to operate properly, the intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated on the basis of recorded range in stage, prior and subsequent records, discharge measurements, weather records, and comparison with records from other stations in the same or nearby basins. Likewise, lake or reservoir volumes may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information.

Data Presentation

The records published for each continuous-record surface-water discharge station (stream-gaging station) consist of four parts: (1) the station manuscript or description; (2) the data table of daily mean values of discharge for the current water year with summary data; (3) a tabular statistical summary of monthly mean flow data for a designated period, by water year; and (4) a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration.

Station Manuscript

The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments follow that clarify information presented under the various headings of the station description.

LOCATION.—Location information is obtained from the most accurate maps available. The location of the gaging station with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for most stations, were determined by methods given in Montana Department of Natural Resources and Conservation River Mile Index^{5,6,7}.

DRAINAGE AREA.—Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the

accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.—This term indicates the time period for which records have been published for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not and whose location was such that its flow reasonably can be considered equivalent to flow at the present station.

REVISED RECORDS.—If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

GAGE.—The type of gage in current use, the elevation of the current gage referred to a standard datum, and a condensed history of the types, locations, and elevations of previous gages are given under this heading.

REMARKS.—All periods of estimated daily discharge are flagged in the daily discharge table. (See section titled Identifying Estimated Daily Discharge.) Information is presented relative to the accuracy of the records, to special methods of computation, and to conditions that affect natural flow at the station. In addition, information may be presented pertaining to average discharge data for the period of record; to extremes data for the period of record and the current year; and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, the outlet works and spillway, and the purpose and use of the reservoir.

COOPERATION.—Records provided by a cooperating organization or obtained for the USGS by a cooperating organization are identified here.

EXTREMES OUTSIDE PERIOD OF RECORD.—Information here documents major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the USGS.

REVISIONS.—Records are revised if errors in published records are discovered. Appropriate updates are made in the USGS distributed data system, NWIS, and subsequently to its Web-based National data system, NWISWeb:

http://water.usgs.gov/nwis/nwis

Users are encouraged to obtain all required data from NWIS or NWISWeb to ensure that they have the most recent data updates. Updates to NWISWeb are made on an annual basis.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because no current or, possibly, future station manuscript would be published for these stations to document the revision in a REVISED RECORDS entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District Office (address given on the back of the title page of this report) to determine if the published records were revised after the station was discontinued. If, however, the data for a discontinued station were obtained by computer

⁵Montana Department of Natural Resources and Conservation, 1976, River mile index of the Yellowstone River: Helena, Mont., 61 p. ⁶Montana Department of Natural Resources and Conservation, 1979,

River mile index of the Missouri River: Helena, Mont., 142 p.

Montana Department of Natural Resources and Conservation, 1984, River mile index of the Columbia River basin: Helena, Mont., p. 1-76.

retrieval, the data would be current. Any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the REMARKS and in the inclusion of a stage-capacity table when daily volumes are given.

Data Table of Daily Mean Values

The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary for the table, the line headed TOTAL gives the sum of the daily figures for each month; the line headed MEAN gives the arithmetic average flow in cubic feet per second for the month; and the lines headed MAX and MIN give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month is expressed in cubic feet per second per square mile (line headed CFSM); or in inches (line headed IN); or in acre-feet (line headed AC-FT). Values for cubic feet per second per square mile and runoff in inches or in acre-feet may be omitted if extensive regulation or diversion is in effect or if the drainage area includes large noncontributing areas. At some stations, monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversion data or reservoir volumes are given. These values are identified by a symbol and a corresponding footnote.

Statistics of Monthly Mean Data

A tabular summary of the mean (line headed MEAN), maximum (MAX), and minimum (MIN) of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those values. The designated period will be expressed as FOR WATER YEARS __-_, BY WATER YEAR (WY), and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. The designated period will consist of all of the station record within the specified water years, including complete months of record for partial water years, and may coincide with the period of record for the station. The water years for which the statistics are computed are consecutive, unless a break in the station record is indicated in the manuscript.

Summary Statistics

A table titled SUMMARY STATISTICS follows the statistics of monthly mean data tabulation. This table consists of four columns with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The

designated period selected, WATER YEARS __-_, will consist of all of the station records within the specified water years, including complete months of record for partial water years, and may coincide with the period of record for the station. The water years for which the statistics are computed are consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (see line headings below), except for the ANNUAL 7-DAY MINIMUM statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When the dates of occurrence do not fall within the selected water years listed in the heading, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration-curve statistics and runoff data also are given. Runoff data may be omitted if extensive regulation or diversion of flow is in effect in the drainage basin.

The following summary statistics data are provided with each continuous record of discharge. Comments that follow clarify information presented under the various line headings of the SUMMARY STATISTICS table.

ANNUAL TOTAL.—The sum of the daily mean values of discharge for the year.

ANNUAL MEAN.—The arithmetic mean for the individual daily mean discharges for the year noted or for the designated period.

HIGHEST ANNUAL MEAN.—The maximum annual mean discharge occurring for the designated period.

LOWEST ANNUAL MEAN.—The minimum annual mean discharge occurring for the designated period.

HIGHEST DAILY MEAN.—The maximum daily mean discharge for the year or for the designated period.

LOWEST DAILY MEAN.—The minimum daily mean discharge for the year or for the designated period.

ANNUAL 7-DAY MINIMUM.—The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. This value should not be confused with the 7-day 10-year low-flow statistic.

MAXIMUM PEAK FLOW.—The maximum instantaneous peak discharge occurring for the water year or designated period. Occasionally the maximum flow for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak flow is given in the table and the maximum flow may be reported in a footnote or in the REMARKS paragraph in the manuscript.

MAXIMUM PEAK STAGE.—The maximum instantaneous peak stage occurring for the water year or designated period. Occasionally the maximum stage for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak stage is given in the table and the maximum stage may be reported in the REMARKS paragraph in the manuscript or in a footnote. If the dates of occurrence of the maximum peak stage and maximum peak flow are different, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information.

INSTANTANEOUS LOW FLOW.—The minimum instantaneous discharge occurring for the water year or for the designated period.

ANNUAL RUNOFF.—Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data:

Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Cubic feet per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area.

Inches (INCHES) indicate the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it.

10 PERCENT EXCEEDS.—The discharge that has been exceeded 10 percent of the time for the designated period.

50 PERCENT EXCEEDS.—The discharge that has been exceeded 50 percent of the time for the designated period.

90 PERCENT EXCEEDS.—The discharge that has been exceeded 90 percent of the time for the designated period.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the waterdischarge tables of annual State data reports are identified. This identification is shown either by flagging individual daily values with the letter "e" and noting in a table footnote, "e– Estimated," or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

Accuracy of Field Data and Computed Results

The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements, and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records.

The degree of accuracy of the records is stated in the REMARKS in the station description. "Excellent" indicates that about 95 percent of the daily discharges are within 5 percent of the true value; "good" within 10 percent; and "fair," within 15 percent. "Poor" indicates that daily discharges have less than "fair" accuracy. Different accuracies may be attributed to different parts of a given record.

Values of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 ${\rm ft^3/s}$; to the nearest tenths between 1.0 and 10 ${\rm ft^3/s}$; to whole numbers between 10 and 1,000 ${\rm ft^3/s}$; and to 3 significant figures above 1,000 ${\rm ft^3/s}$. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharge values listed for partial-record stations.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, values of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Data Records Available

Information of a more detailed nature than that published for most of the stream-gaging stations such as discharge measurements, gage-height records, and rating tables is available from the District office. Also, most stream-gaging station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the District office (see address on the back of the title page of this report).

Publications

The annual series of Water-Supply Papers that give information on quantity of surface waters in Montana are given in table 7. Data for the Hudson Bay basin is given in Part 5, for the Missouri River basin in Part 6, and for the Columbia River basin in Part 12.

Table 7. Water-Supply Paper numbers and parts for surface-water stations, 1899-1970

Year	Part 5	Part 6	Part 12	Year	Part 5	Part 6	Part 12
1899		36,37	38				
1900	49	49	51,52				
1901	66,75	66,75	66,75	1936	805	806	812
1902	83,85	84	85	1937	825	826	832
1903	98,99,100	99	100	1938	855	856	862
1904	130	130	135	1939	875	876	882
1905	171	172	178	1940	895	896	902
1906	207	208	214	1941	925	926	932
1907	245	246	252	1942	955	956	962
1908	245	246	252	1943	975	976	982
1909	265	266	272	1944	1005	1006	1012
1910	285	286	292	1945	1035	1036	1042
1911	305	306	312	1946	1055	1056	1062
1912	325	326	332A	1947	1085	1086	1092
1913	355	356	362A	1948	1115	1116	1122
1914	385	386	392	1949	1145	1146	1152
1915	405	406	412	1950	1175	1176	1182
1916	435	436	442	1951	1208	1209	1216
1917	455	456	462	1952	1238	1239	1246
1918	475	476	482	1953	1278	1279	1286
1919	505	506	512	1954	1338	1339	1346
1920	505	506	512	1955	1388	1389	1396
1921	525	526	532	1956	1438	1439	1446
1922	545	546	552	1957	1508	1509	1516
1923	565	566	572	1958	1558	1559	1566
1924	585	586	592	1959	1628	1629	1636
1925	605	606	612	1960	1708	1709	1716
1926	625	626	632	1961-65	1913	1916	1933
1927	645	646	652	1966-70	2113	2116	2133
1928	665	666	672				
1929	685	686	692	1950	1308	1309	1316
1930	700	701	707	Compilation			
1931	715	716	722	1960	1728	1729	1736
1932	730	731	737	Compilation	1,20	2,22	1,30
1933	745	746	752	Compilation			
1933	760	761	767				
1935	785	786	792				

EXPLANATION OF PRECIPITATION RECORDS

Data Collection and Computation

Rainfall data generally are collected using electronic data loggers that measure the rainfall in 0.01-inch increments every 15 minutes using either a tipping-bucket rain gage or a collection well gage. Twenty-four hour rainfall totals are tabulated and presented. A 24-hour period extends from just past midnight of the previous day to midnight of the current day. Snowfall-affected data can result during cold weather when snow fills the rain-gage funnel and then melts as temperatures rise. Snowfall-affected data are subject to errors. Missing values are indicated by this symbol "---" in the table.

Data Presentation

Precipitation records collected at surface-water gaging stations are identified with the same station number and name as the stream-gaging station. Where a surface-water daily-record station is not available, the precipitation record is published with its own name and latitude-longitude identification number.

Information pertinent to the history of a precipitation station is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, period of record, and general remarks.

The following information is provided with each precipitation station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.—See Data Presentation in the EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS section of this report (same comments apply).

PERIOD OF RECORD.—See Data Presentation in the EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS section of this report (same comments apply).

INSTRUMENTATION.—Information on the type of rainfall collection system is given.

REMARKS.—Remarks provide added information pertinent to the collection, analysis, or computation of records.

EXPLANATION OF WATER-QUALITY RECORDS

Collection and Examination of Data

Surface-water samples for analysis usually are collected at or near stream-gaging stations. The quality-of-water records are given immediately following the discharge records at these stations. The descriptive heading for water-quality records gives the period of record for all water-quality data; the period of daily record for parameters that are measured on a daily basis (specific conductance, water temperature, sediment discharge, and so forth); extremes for the current year; and general remarks.

For ground-water records, no descriptive statements are given; however, the well number, depth of well, sampling date, or other pertinent data are given in the table containing the chemical analyses of the ground water.

Water Analysis

Most of the methods used for collecting and analyzing water samples are described in the TWRIs. A list of TWRIs is provided in this report.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross-section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled at several verticals to obtain a representative sample needed for an accurate mean concentration and for use in calculating load.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum and minimum values (and sometimes mean or median values) for each constituent measured, and are based on 15-minute or 1-hour intervals of recorded data beginning at 0000 hours and ending at 2400 hours for the day of record.

SURFACE-WATER-QUALITY RECORDS

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because discharge data is useful in the interpretation of surface-water quality. Records of surface-water quality in this report involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A *continuous-record station* is a site where data are collected on a regularly scheduled basis. Frequency may be one or more times daily, weekly, monthly, or quarterly. A *partial-record station* is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A *miscellaneous sampling site* is a location other than a continuous- or partial-record station, where samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between continuous records as used in this report and continuous recordings that refer to a continuous graph or a series of discrete values recorded at short intervals. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 7.

Accuracy of the Records

One of four accuracy classifications is applied for measured physical properties at continuous-record stations on a scale ranging from poor to excellent. The accuracy rating is based on data values recorded before any shifts or corrections are made. Additional consideration also is given to the amount of publishable record and to the amount of data that have been corrected or shifted.

Rating classifications for continuous water-quality records

[\(\), less than or equal to; \(\pm \), plus or minus value shown; \(^\)C, degree Celsius; \(> \), greater than: \(% \), percent: \(mg/L \), milligram per liter; \(pH \) unit, standar

greater than; %, percent; mg/L, milligram per liter; pH unit, standard pH unit]

Measured	Rating						
physical property	Excellent	Good	Fair	Poor			
Water temperature	≤ ±0.2 °C	> ±0.2 to 0.5 °C	$> \pm 0.5$ to 0.8 °C	>±0.8 °C			
Specific conductance	≤ ±3%	> ±3 to 10%	$> \pm 10$ to 15%	>±15%			
Dissolved oxygen	\leq ±0.3 mg/L	$> \pm 0.3$ to 0.5 mg/L	$> \pm 0.5$ to 0.8 mg/L	$> \pm 0.8$ mg/L			
pH	\leq ±0.2 unit	> ±0.2 to 0.5 unit	$> \pm 0.5$ to 0.8 unit	> ±0.8 unit			
Turbidity	≤ ±5%	> ±5 to 10%	> ±10 to 15%	>±15%			

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

On-Site Measurements and Sample Collection

In obtaining water-quality data, a major concern is assuring that the data obtained represent the naturally occurring quality of the water. To ensure this, certain measurements, such as water temperature, pH, and dissolved oxygen, must be made on site when the samples are taken. To assure that measurements made in the laboratory also represent the naturally occurring water, carefully prescribed procedures must be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for on-site measurements and for collecting, treating, and shipping samples are given in TWRIs Book 1, Chapter D2; Book 3, Chapters A1, A3, and A4; and Book 9, Chapters A1-A9. These TWRIs are listed in this report. Also, detailed information on collecting, treating, and shipping samples can be obtained from the USGS District office (see address that is shown on the back of title page in this report).

Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at the time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by wasteheat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the District office.

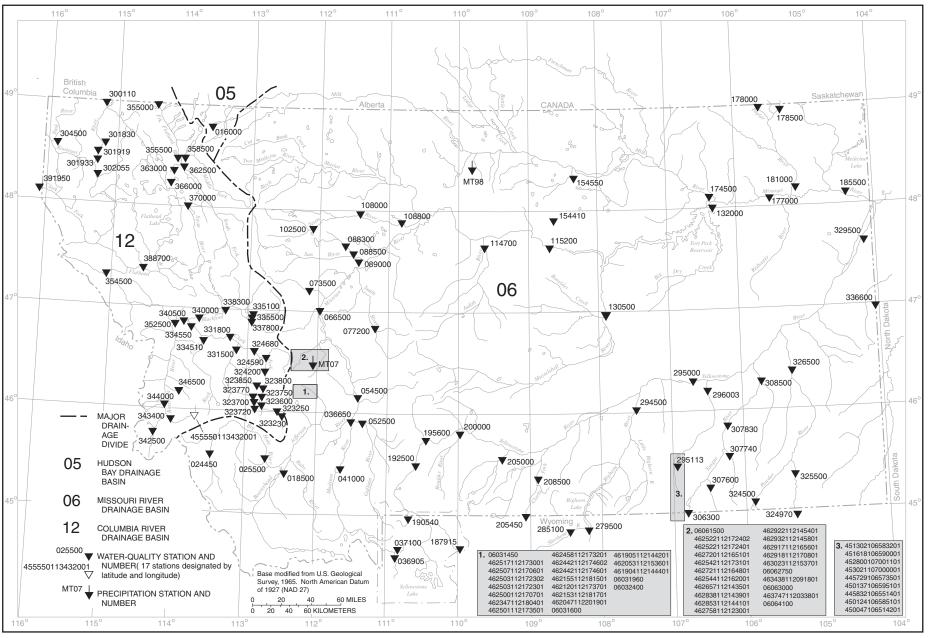


Figure 7. Location of surface-water-quality stations in Montana and adjacent areas, water year 2003.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross section.

During periods of rapidly changing flow or rapidly changing concentration, samples may be collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples are collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observation, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurements

Samples for biochemical oxygen demand (BOD) and indicator bacteria are analyzed locally. All other samples are analyzed in the USGS laboratory in Lakewood, Colorado, unless otherwise noted. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chapter C1. Methods used by the USGS laboratories are given in the TWRIs, Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, and A4. These methods are consistent with ASTM standards and generally follow ISO standards.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.—See Data Presentation information in the EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS section of this report (same comments apply).

DRAINAGE AREA.—See Data Presentation information in the EXPLANATION OF STAGE- AND WATER-DISCHARGE RECORDS section of this report (same comments apply).

PERIOD OF RECORD.—This indicates the time periods for which published water-quality records for the station are available. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.—Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.—Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.—Records provided by a cooperating organization or obtained for the USGS by a cooperating organization are identified here.

EXTREMES.—Maximums and minimums are given only for parameters measured daily or more frequently. For parameters measured weekly or less frequently, true maximums or minimums may not have been obtained. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.—Records are revised if errors in published water-quality records are discovered. Appropriate updates are made in the USGS distributed data system, NWIS, and subsequently to its Web-based National data system, NWISWeb:

http://waterdata.usgs.gov/nwis

Users of USGS water-quality data are encouraged to obtain all required data from NWIS or NWISWeb to ensure that they

have the most recent updates. Updates to the NWISWeb are made on an annual basis.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remark Codes

The following remark codes may appear with the waterquality data in this section:

Printed Output	Remark
E	Estimated value.
>	Actual value is known to be greater than the value shown.
<	Actual value is known to be less than the value shown.
K	Results based on colony count outside the acceptance range (non-ideal colony count).
L	Biological organism count less than 0.5 percent (organism may be observed rather than counted).
D	Biological organism count equal to or greater than 15 percent (dominant).
S	Most probable value.
V	Analyte was detected in both the environmental sample and the associated blanks.
&	Biological organism estimated as dominant.

Water-Quality Control Data

The USGS National Water Quality Laboratory collects quality-control data on a continuing basis to evaluate selected analytical methods to determine long-term method detection levels (LT-MDLs) and laboratory reporting levels (LRLs). These values are re-evaluated each year on the basis of the most recent quality-control data and, consequently, may change from year to year.

This reporting procedure limits the occurrence of false positive error. Falsely reporting a concentration greater than the LT-MDL for a sample in which the analyte is not present is 1 percent or less. Application of the LRL limits the occurrence of false negative error. The chance of falsely reporting a non-detection for a sample in which the analyte is present at a concentration equal to or greater than the LRL is 1 percent or less.

Accordingly, concentrations are reported as less than LRL for samples in which the analyte was either not detected or did not pass identification. Analytes detected at concentrations between the LT-MDL and the LRL and that pass identification

criteria are estimated. Estimated concentrations will be noted with a remark code of "E." These data should be used with the understanding that their uncertainty is greater than that of data reported without the E remark code.

Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this District office are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples. These data are not presented in this report but are available from the District office.

Blank Samples

Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated in the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank sample for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. Many types of blank samples are possible; each is designed to segregate a different part of the overall data-collection process. The types of blank samples collected in this district are:

Field blank—A blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample.

Trip blank—A blank solution that is put in the same type of bottle used for an environmental sample and kept with the set of sample bottles before and after sample collection.

Equipment blank—A blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office).

Sampler blank—A blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample.

Filter blank—A blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample.

Splitter blank—A blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample.

Preservation blank—A blank solution that is treated with the sampler preservatives used for an environmental sample.

Reference Samples

Reference material is a solution or material prepared by a laboratory. The reference material composition is certified for one or more properties so that it can be used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties.

Replicate Samples

Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. Many types of replicate samples are possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this district are:

Concurrent samples—A type of replicate sample in which the samples are collected simultaneously with two or more samplers or by using one sampler and alternating the collection of samples into two or more compositing containers.

Sequential samples—A type of replicate sample in which the samples are collected one after the other, typically over a short time.

Split sample—A type of replicate sample in which a sample is split into subsamples, each subsample contemporaneous in time and space.

Spike Samples

Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis.

Publications

The annual series of Water-Supply Papers that give information on quality of surface waters in Montana are shown in the following table. Data for Hudson Bay and Missouri River basins are given in parts 5-6 and data for Upper Columbia River basin are given in part 12.

Table 8. Water-Supply Paper numbers and parts for water-quality stations, 1947-70

Year	Parts 5-6	Part 12	Year	Parts 5-6	Part 12
1946	1050		1961	1883	1885
1947	1102		1962	1943	1945
1948	1132		1963	1949	1951
1949	1162	1163	1964	1956	1959
1950	1187	1189	1965	1963	1966
1951	1198	1200	1966	1993	1996
1952	1251	1253	1967	2013	2016
1953	1291	1293	1968	2094,	2100
				2095	
1954	1351	1353	1969	2145	2150
1955	1401	1403	1970	2155	2160
1956	1451	1453			
1957	1521	1523			
1958	1572	1574			
1959	1643	1645			
1960	1743	1745			

EXPLANATION OF GROUND-WATER-LEVEL RECORDS

Generally, only ground-water-level data from selected wells with continuous recorders from a basic network of observation wells are published in this report (volume 2). This basic network contains observation wells located so that the most significant data are obtained from the fewest wells in the most important aquifers.

Site Identification Numbers

Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude and (2) a local number that is produced for local needs.

Data Collection and Computation

Measurements are made in many types of wells, under varying conditions of access and at different temperatures; hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent.

Most methods for collecting and analyzing water samples are described in the TWRIs referred to in the On-site Measurements and Sample Collection and the Laboratory Measurements sections in this report. In addition, TWRI Book 1, Chapter D2, describes guidelines for the collection and field analysis of ground-water samples for selected unstable constituents. Procedures for on-site measurements and for collecting, treating, and shipping samples are given in TWRIs

Book 1, Chapter D2; Book 3, Chapters A1, A3, and A4; and Book 9, Chapters A1 through A9. The values in this report represent water-quality conditions at the time of sampling, as much as possible, and that are consistent with available sampling techniques and methods of analysis. These methods are consistent with ASTM standards and generally follow ISO standards. Trained personnel collected all samples. The wells sampled were pumped long enough to ensure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material, possibly metal, comprising the casings.

Water-level measurements in this report are given in feet with reference to land-surface datum (lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. If known, the elevation of the land-surface datum above sea level is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (EOM).

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth of water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given only to a tenth of a foot or a larger unit.

Data Presentation

Water-level data are presented in alphabetical order by county. The primary identification number for a given well is the 15-digit site identification number that appears in the upper left corner of the table. The secondary identification number is the local or county well number. Well locations are shown in figure 8; each well is identified on the map by its local well or county well number.

Each well record consists of three parts: the well description, the data table of water levels observed during the water year, and, for most wells, a hydrograph following the data table. Well descriptions are presented in the headings preceding the tabular data.

The following comments clarify information presented in these various headings.

LOCATION.—This paragraph follows the well-identification number and reports the hydrologic-unit number and a geographic point of reference. Latitudes and longitudes used in this report are reported as North American Datum of 1927 unless otherwise specified.

HYDROGEOLOGIC UNIT.—This entry designates by name and geologic age the aquifer that the well taps.

WELL CHARACTERISTICS.—This entry describes the well in terms of depth, casing diameter and depth or screened interval, method of construction, use, and changes since construction.

INSTRUMENTATION.—This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on continuous, monthly, or some other frequency of measurement.

DATUM.—This entry describes both the measuring point and the land-surface elevation at the well. The altitude of the land-surface datum is described in feet above the altitude datum; it is reported with a precision depending on the method of determination. The measuring point is described physically (such as top of casing, top of instrument shelf, and so forth), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above National Geodetic Vertical Datum of 1929 (NGVD 29); it is reported with a precision depending on the method of determination.

REMARKS.—This entry describes factors that may influence the water level in a well or the measurement of the water level, when various methods of measurement were begun, and the network (climatic, terrain, local, or areal effects) or the special project to which the well belongs.

PERIOD OF RECORD.—This entry indicates the time period for which records are published for the well, the month and year at the start of publication of water-level records by the USGS, and the words "to current year" if the records are to be continued into the following year. Time periods for which water-level records are available, but are not published by the USGS, may be noted.

EXTREMES FOR PERIOD OF RECORD.—This entry contains the highest and lowest instantaneously recorded or measured water levels of the period of published record, with respect to land-surface datum or sea level, and the dates of occurrence.

Water-Level Tables

A table of water levels follows the well description for each well. Water-level measurements in this report are given in feet with reference to either sea level or land-surface datum (lsd). Missing records are indicated by dashes in place of the water-level value.

For wells not equipped with recorders, water-level measurements were obtained periodically by steel or electric tape. Tables of periodic water-level measurements in these wells show the date of measurement and the measured water-level value.

Hydrographs

Hydrographs are a graphic display of water-level fluctuations over a period of time. In this report, current water year and, when appropriate, period-of-record hydrographs are shown. Hydrographs that display periodic water-level measurements show points that may be connected with a dashed line from one measurement to the next. Hydrographs that display recorder data show a solid line representing the mean water level recorded for each day. Missing data are indicated by a blank space or break in a hydrograph. Missing data may occur as a result of recorder malfunctions, battery failures, or mechanical problems related to the response of the recorder's float mechanism to water-level fluctuations in a well.

GROUND-WATER-QUALITY DATA

Data Collection and Computation

The ground-water-quality data in this report were obtained as a part of special studies in specific areas. Consequently, a number of chemical analyses are presented for some wells within a county but not for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality Statewide.

Most methods for collecting and analyzing water samples are described in the TWRIs. Procedures for on-site measurements and for collecting, treating, and shipping samples are given in TWRI, Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, and A4. Also, detailed information on collecting, treating, and shipping samples may be obtained from the USGS District office (see address shown on back of title page in this report).

Laboratory Measurements

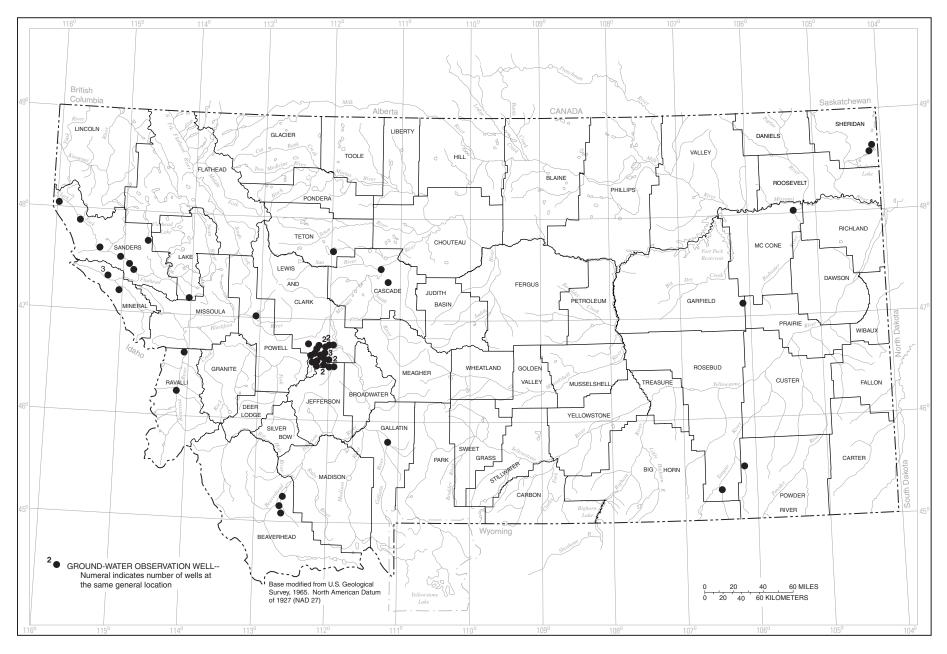
Analysis for sulfide and measurement of alkalinity, pH, water temperature, specific conductance, and dissolved oxygen are performed on site. All other sample analyses are performed at the USGS laboratory in Lakewood, Colorado, unless otherwise noted. Methods used by the USGS laboratory are given in TWRI, Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, and A4.

Publications

Publication of ground-water level data for the United States in Water-Supply Papers was begun by the USGS in 1935. From 1935 through 1939, a single Water-Supply Paper for each year covering the entire nation was issued (Water-Supply Papers 777, 817, 840, 845, and 886). From 1940 through 1974, separate Water-Supply Papers were issued for 6 sections of the United States. Water-level data for Montana are in the Water-Supply Papers listed in the following table,

each report containing one or more calendar years (January-December) of data. Data in this report are for the 12-month water year ending September 30. Information about reports and other data on ground water in Montana may be obtained from the District office, at the address given on the back of the title page.

Table 9. Water-Supply Paper numbers and parts for ground-water stations, 1940-74


Year	WSP No. Pt. 5	Year	WSP No. Pt. 5	Year	WSP No. Pt.5
1940	910	1947	1100	1954	1325
1941	940	1948	1130	1955	1408
1942	948	1949	1160	1956-60	1760
1943	990	1950	1169	1961-65	1845
1944	1020	1951	1195	1966-70	1980
1945	1027	1952	1225	1971-74	2161
1946	1075	1953	1269		

ACCESS TO USGS WATER DATA

The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the World Wide Web (WWW). These data may be accessed from:

http://water.usgs.gov

Water-quality data and ground-water data also are available through the WWW. In addition, data can be provided in various machine-readable formats on various media. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each Water Discipline District Office (See address that is shown on the back of the title page of this report.)

Figure 8. Location of ground-water observation wells in Montana, water year 2003.

DEFINITION OF TERMS

Specialized technical terms related to streamflow, waterquality, and other hydrologic data, as used in this report, are defined below. Terms such as algae, water level, and precipitation are used in their common everyday meanings, definitions of which are given in standard dictionaries. Not all terms defined in this alphabetical list apply to every State. See also table for converting English units to International System (SI) Units. Other glossaries that also define water-related terms are accessible from:

http://water.usgs.gov/glossaries.html

Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity).

Acre-foot (AC-FT, acre-ft) is a unit of volume, commonly used to measure quantities of water used or stored, equivalent to the volume of water required to cover 1 acre to a depth of 1 foot and equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. (See also "Annual runoff")

Adenosine triphosphate (ATP) is an organic, phosphate-rich compound important in the transfer of energy in organisms. Its central role in living cells makes ATP an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter.

Adjusted discharge is discharge data that have been mathematically adjusted (for example, to remove the effects of a daily tide cycle or reservoir storage).

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample. (See also "Biomass" and "Dry weight")

Alkalinity is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample.

Annual runoff is the total quantity of water that is discharged ("runs off") from a drainage basin in a year. Data reports may present annual runoff data as volumes in acre-feet, as discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches.

Annual 7-day minimum is the lowest mean value for any 7-consecutive-day period in a year. Annual 7-day minimum values are reported herein for the calendar year and the

water year (October 1 through September 30). Most low-flow frequency analyses use a climatic year (April 1-March 31), which tends to prevent the low-flow period from being artificially split between adjacent years. The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day, 10-year low-flow statistic.)

Aroclor is the registered trademark for a group of polychlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type, and the last two digits represent the percentage weight of the hydrogen-substituted chlorine.

Artificial substrate is a device that is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is collected. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. (See also "Substrate")

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500°C for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²). (See also "Biomass" and "Dry mass")

Aspect is the direction toward which a slope faces with respect to the compass.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, whereas others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Bankfull stage, as used in this report, is the stage at which a stream first overflows its natural banks formed by floods with 1- to 3-year recurrence intervals.

Base discharge (for peak discharge) is a discharge value, determined for selected stations, above which peak discharge data are published. The base discharge at each station is selected so that an average of about three peak flows per year will be published. (See also "Peak flow")

Base flow is sustained flow of a stream in the absence of direct runoff. It includes natural and human-induced streamflows. Natural base flow is sustained largely by ground-water discharge.

Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed. (See also "Bedload" and "Sediment")

Bedload is material in transport that is supported primarily by the streambed. In this report, bedload is considered to consist of particles in transit from the bed to an elevation equal to the top of the bedload sampler nozzle (ranging from 0.25 to 0.5 foot) that are retained in the bedload sampler. A sample collected with a pressure-differential bedload sampler also may contain a component of the suspended load.

Bedload discharge (tons per day) is the rate of sediment moving as bedload, reported as dry weight, that passes through a cross section in a given time. NOTE: Bedload discharge values in this report may include a component of the suspended-sediment discharge. A correction may be necessary when computing the total sediment discharge by summing the bedload discharge and the suspended-sediment discharge. (See also "Bedload," "Dry weight," "Sediment," and "Suspended-sediment discharge")

Benthic organisms are the group of organisms inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat.

Biomass pigment ratio is an indicator of the total proportion of periphyton that are autotrophic (plants). This is also called the Autotrophic Index.

Blue-green algae (*Cyanophyta*) are a group of phytoplankton and periphyton organisms with a blue pigment in addition to a green pigment called chlorophyll. Blue-green algae can cause nuisance water-quality conditions in lakes and slow-flowing rivers; however, they are found commonly in streams throughout the year. The abundance of blue-green algae in phytoplankton samples is expressed as the number of cells per milliliter (cells/mL) or biovolume in cubic micrometers per milliliter (mm3/mL). The abundance of blue-green algae in periphyton samples is given in cells per square centimeter (cells/cm2) or biovolume per square centimeter (mm3/cm2). (See also "Phytoplankton" and "Periphyton")

Bottom material (See "Bed material")

Bulk electrical conductivity is the combined electrical conductivity of all material within a doughnut-shaped volume surrounding an induction probe. Bulk conductivity is affected by different physical and chemical properties of

the material including the dissolved solids content of the pore water and lithology and porosity of the rock.

Canadian Geodetic Vertical Datum 1928 is a geodetic datum derived from a general adjustment of Canada's first order level network in 1928.

Cell volume (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are frequently used in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume (μm³) is determined by obtaining critical cell measurements or cell dimensions (for example, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows:

sphere
$$4/3 \pi r^3$$
 cone $1/3 \pi r^2 h$ cylinder $\pi r^2 h$.

pi (π) is the ratio of the circumference to the diameter of a circle; pi = 3.14159....

From cell volume, total algal biomass expressed as biovolume ($\mu m^3/mL$) is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes for all species.

Cells/volume refers to the number of cells of any organism that is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample volume, and generally are reported as cells or units per milliliter (mL) or liter (L).

Cfs-day (See "Cubic foot per second-day")

Channel bars, as used in this report, are the lowest prominent geomorphic features higher than the channel bed.

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. [See also "Biochemical oxygen demand (BOD)"]

Clostridium perfringens (C. perfringens) is a spore-forming bacterium that is common in the feces of human and other warmblooded animals. Clostridial spores are being used experimentally as an indicator of past fecal contamination and presence of microorganisms that are resistant to disinfection and environmental stresses. (See also "Bacteria")

- **Coliphages** are viruses that infect and replicate in coliform bacteria. They are indicative of sewage contamination of water and of the survival and transport of viruses in the environment.
- **Color unit** is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.
- Confined aquifer is a term used to describe an aquifer containing water between two relatively impermeable boundaries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases, the water level can rise above the ground surface, yielding a flowing well.
- **Contents** is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.
- **Continuous-record station** is a site where data are collected with sufficient frequency to define daily mean values and variations within a day.
- **Control** designates a feature in the channel that physically affects the water-surface elevation and thereby determines the stage-discharge relation at the gage. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel.
- **Control structure,** as used in this report, is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater.
- Cubic foot per second (CFS, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second or approximately 449 gallons per minute, or 0.02832 cubic meters per second. The term "second-foot" sometimes is used synonymously with "cubic foot per second" but is now obsolete.
- Cubic foot per second-day (CFS-DAY, Cfs-day, [(ft³/s)/d]) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.98347 acre-feet, 646,317 gallons, or 2,446.6 cubic meters. The daily mean discharges reported in the daily value data tables are numerically equal to the daily volumes in cfs-days, and the totals also represent volumes in cfs-days.
- Cubic foot per second per square mile [CFSM, (ft³/s)/mi²] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area. (See also "Annual runoff")
- **Daily mean suspended-sediment concentration** is the timeweighted concentration of suspended sediment passing a

- stream cross section during a 24-hour day. (See also "Sediment" and "Suspended-sediment concentration")
- **Daily record station** is a site where data are collected with sufficient frequency to develop a record of one or more data values per day. The frequency of data collection can range from continuous recording to periodic sample or data collection on a daily or near-daily basis.
- **Data collection platform** (DCP) is an electronic instrument that collects, processes, and stores data from various sensors, and transmits the data by satellite data relay, line-of-sight radio, and/or landline telemetry.
- **Data logger** is a microprocessor-based data acquisition system designed specifically to acquire, process, and store data. Data are usually downloaded from onsite data loggers for entry into office data systems.
- **Datum** is a surface or point relative to which measurements of height and/or horizontal position are reported. A vertical datum is a horizontal surface used as the zero point for measurements of gage height, stage, or elevation; a horizontal datum is a reference for positions given in terms of latitude-longitude, State Plane coordinates, or UTM coordinates. (See also "Gage datum," "Land-surface datum," "National Geodetic Vertical Datum of 1929," and "North American Vertical Datum of 1988")
- **Diatoms** are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")
- **Diel** is of or pertaining to a 24-hour period of time; a regular daily cycle.
- Discharge, or flow, is the rate that matter passes through a cross section of a stream channel or other water body per unit of time. The term commonly refers to the volume of water (including, unless otherwise stated, any sediment or other constituents suspended or dissolved in the water) that passes a cross section in a stream channel, canal, pipeline, etc., within a given period of time (cubic feet per second). Discharge also can apply to the rate at which constituents, such as suspended sediment, bedload, and dissolved or suspended chemicals, pass through a cross section, in which cases the quantity is expressed as the mass of constituent that passes the cross section in a given period of time (tons per day).
- **Dissolved** refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal and State agencies that collect water-quality data. Determinations of "dissolved" constituent concentrations are made on sample water that has been filtered.
- **Dissolved oxygen** (DO) is the molecular oxygen (oxygen gas) dissolved in water. The concentration in water is a function of atmospheric pressure, temperature, and dissolved-solids

concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved-solids concentration. Photosynthesis and respiration by plants commonly cause diurnal variations in dissolved-oxygen concentration in water from some streams.

Dissolved solids concentration in water is the quantity of dissolved material in a sample of water. It is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. In the mathematical calculation, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to convert it to carbonate. Alternatively, alkalinity concentration (as mg/L CaCO₃) can be converted to carbonate concentration by multiplying by 0.60.

Diversity index (H) (Shannon index) is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\bar{d} = -\sum_{i \approx 1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n} ,$$

where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

Drainage area of a stream at a specific location is that area upstream from the location, measured in a horizontal plane, that has a common outlet at the site for its surface runoff from precipitation that normally drains by gravity into a stream. Drainage areas given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

Drainage basin is a part of the Earth's surface that contains a drainage system with a common outlet for its surface runoff. (See "Drainage area")

Dry mass refers to the mass of residue present after drying in an oven at 105°C, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. (See also "Ash mass," "Biomass," and "Wet mass")

Dry weight refers to the weight of animal tissue after it has been dried in an oven at 65°C until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue. (See also "Wet weight")

Embeddedness is the degree to which gravel-sized and larger particles are surrounded or enclosed by finer-sized particles. (See also "Substrate embeddedness class")

Enterococcus bacteria are commonly found in the feces of humans and other warmblooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at 41°C on mE agar (nutrient medium for bacterial growth) and subsequent transfer to EIA medium. Enterococci include Streptococcus feacalis, Streptococcus feacium, Streptococcus avium, and their variants. (See also "Bacteria")

EPT Index is the total number of distinct taxa within the insect orders Ephemeroptera, Plecoptera, and Trichoptera. This index summarizes the taxa richness within the aquatic insects that are generally considered pollution sensitive; the index usually decreases with pollution.

Escherichia coli (E. coli) are bacteria present in the intestine and feces of warmblooded animals. E. coli are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5°C on mTEC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Estimated (E) value of a concentration is reported when an analyte is detected and all criteria for a positive result are met. If the concentration is less than the method detection limit (MDL), an E code will be reported with the value. If the analyte is identified qualitatively as present, but the quantitative determination is substantially more uncertain, the National Water Quality Laboratory will identify the result with an E code even though the measured value is greater than the MDL. A value reported with an E code should be used with caution. When no analyte is detected in a sample, the default reporting value is the MDL preceded by a less than sign (<). For bacteriological data, concentrations are reported as estimated when results are based on non-ideal colony counts.

Euglenoids (*Euglenophyta*) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark. (See also "Phytoplankton")

Extractable organic halides (EOX) are organic compounds that contain halogen atoms such as chlorine. These organic compounds are semivolatile and extractable by ethyl acetate from air-dried streambed sediment. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The

concentration is reported as micrograms of chlorine per gram of the dry weight of the streambed sediment.

Fecal coliform bacteria are present in the intestines or feces of warmblooded animals. They often are used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5°C plus or minus 0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Fecal streptococcal bacteria are present in the intestines of warmblooded animals and are ubiquitous in the environment. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at 35°C plus or minus 1.0°C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Fire algae (*Pyrrhophyta*) are free-swimming unicells characterized by a red pigment spot. (See also "Phytoplankton")

Flow-duration percentiles are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates.

Gage datum is a horizontal surface used as a zero point for measurement of stage or gage height. This surface usually is located slightly below the lowest point of the stream bottom such that the gage height is usually slightly greater than the maximum depth of water. Because the gage datum itself is not an actual physical object, the datum usually is defined by specifying the elevations of permanent reference marks such as bridge abutments and survey monuments, and the gage is set to agree with the reference marks. Gage datum is a local datum that is maintained independently of any national geodetic datum. However, if the elevation of the gage datum relative to the national datum (North American Vertical Datum of 1988 or National Geodetic Vertical Datum of 1929) has been determined, then the gage readings can be converted to elevations above the national datum by adding the elevation of the gage datum to the gage reading.

Gage height (G.H.) is the water-surface elevation, in feet above the gage datum. If the water surface is below the gage datum, the gage height is negative. Gage height often is used interchangeably with the more general term "stage," although gage height is more appropriate when used in reference to a reading on a gage.

Gage values are values that are recorded, transmitted, and/or computed from a gaging station. Gage values typically are collected at 5-, 15-, or 30-minute intervals.

Gaging station is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained.

Gas chromatography/flame ionization detector (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride.

Geomorphic channel units, as used in this report, are fluvial geomorphic descriptors of channel shape and stream velocity. Pools, riffles, and runs are types of geomorphic channel units considered for National Water-Quality Assessment (NAWQA) Program habitat sampling.

Green algae (*Chlorophyta*) are unicellular or colonial algae with chlorophyll pigments similar to those in terrestrial green plants. Some forms of green algae produce mats or floating "moss" in lakes. The abundance of green algae in phytoplankton samples is expressed as the number of cells per milliliter (cells/mL) or biovolume in cubic micrometers per milliliter (mm³/mL). The abundance of green algae in periphyton samples is given in cells per square centimeter (cells/cm²) or biovolume per square centimeter (mm³/cm²). (See also "Phytoplankton" and "Periphyton")

Habitat, as used in this report, includes all nonliving (physical) aspects of the aquatic ecosystem, although living components like aquatic macrophytes and riparian vegetation also are usually included. Measurements of habitat are typically made over a wider geographic scale than are measurements of species distribution.

Habitat quality index is the qualitative description (level 1) of instream habitat and riparian conditions surrounding the reach sampled. Scores range from 0 to 100 percent with higher scores indicative of desirable habitat conditions for aquatic life. Index only applicable to wadable streams.

Hardness of water is a physical-chemical characteristic that commonly is recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations (primarily calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO₃).

High tide is the maximum height reached by each rising tide. The high-high and low-high tides are the higher and lower of the two high tides, respectively, of each tidal day. See NOAA web site:

http://www.co-ops.nos.noaa.gov/tideglos.html

Hilsenhoff's Biotic Index (HBI) is an indicator of organic pollution that uses tolerance values to weight taxa abundances; usually increases with pollution. It is calculated as follows:

$$HBI = sum \frac{(n)(a)}{N} ,$$

where n is the number of individuals of each taxon, a is the tolerance value of each taxon, and N is the total number of organisms in the sample.

Horizontal datum (See "Datum")

Hydrologic index stations referred to in this report are continuous-record gaging stations that have been selected as representative of streamflow patterns for their respective regions. Station locations are shown on index maps.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the USGS. Each hydrologic unit is identified by an 8-digit number.

Inch (IN., in.), as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were uniformly distributed on it. (See also "Annual runoff")

Instantaneous discharge is the discharge at a particular instant of time. (See also "Discharge")

International Boundary Commission Survey Datum refers to a geodetic datum established at numerous monuments along the United States-Canada boundary by the International Boundary Commission.

Island, as used in this report, is a mid-channel bar that has permanent woody vegetation, is flooded once a year on average, and remains stable except during large flood events.

Laboratory reporting level (LRL) generally is equal to twice the yearly determined long-term method detection level (LT-MDL). The LRL controls false negative error. The probability of falsely reporting a nondetection for a sample that contained an analyte at a concentration equal to or greater than the LRL is predicted to be less than or equal to 1 percent. The value of the LRL will be reported with a "less than" (<) remark code for samples in which the analyte was not detected. The National Water Quality Laboratory (NWQL) collects quality-control data from selected analytical methods on a continuing basis to determine LT-MDLs and to establish LRLs. These values are reevaluated annually on the basis of the most current quality-control data and, therefore, may change. The LRL replaces the term 'non-detection value' (NDV).

Land-surface datum (lsd) is a datum plane that is approximately at land surface at each ground-water observation well.

Latent heat flux (often used interchangeably with latent heatflux density) is the amount of heat energy that converts water from liquid to vapor (evaporation) or from vapor to liquid (condensation) across a specified cross-sectional area per unit time. Usually expressed in watts per square meter. **Light-attenuation coefficient,** also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation:

$$I = I_o e^{-\lambda L} ,$$

where I_o is the source light intensity, I is the light intensity at length L (in meters) from the source, λ is the light-attenuation coefficient, and e is the base of the natural logarithm. The light-attenuation coefficient is defined as

$$\lambda = -\frac{1}{L} \log_e \frac{I}{I}.$$

Lipid is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic.

Long-term method detection level (LT-MDL) is a detection level derived by determining the standard deviation of a minimum of 24 method detection limit (MDL) spike sample measurements over an extended period of time. LT-MDL data are collected on a continuous basis to assess year-to-year variations in the LT-MDL. The LT-MDL controls false positive error. The chance of falsely reporting a concentration at or greater than the LT-MDL for a sample that did not contain the analyte is predicted to be less than or equal to 1 percent.

Low tide is the minimum height reached by each falling tide. The high-low and low-low tides are the higher and lower of the two low tides, respectively, of each tidal day. See NOAA web site:

http://www.co-ops.nos.noaa.gov/tideglos.html.

Macrophytes are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that usually are arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline.

Mean concentration of suspended sediment (Daily mean suspended-sediment concentration) is the time-weighted concentration of suspended sediment passing a stream cross section during a given time period. (See also "Daily mean suspended-sediment concentration" and "Suspended-sediment concentration")

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. (See also "Discharge")

Mean high or **low tide** is the average of all high or low tides, respectively, over a specific period.

Mean sea level is a local tidal datum. It is the arithmetic mean of hourly heights observed over the National Tidal Datum Epoch. Shorter series are specified in the name; for

example, monthly mean sea level and yearly mean sea level. In order that they may be recovered when needed, such datums are referenced to fixed points known as benchmarks. (See also "Datum")

Measuring point (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level.

Megahertz is a unit of frequency. One megahertz equals one million cycles per second.

Membrane filter is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Method detection limit (MDL) is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. It is determined from the analysis of a sample in a given matrix containing the analyte. At the MDL concentration, the risk of a false positive is predicted to be less than or equal to 1 percent.

Method of Cubatures is a method of computing discharge in tidal estuaries based on the conservation of mass equation.

Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

Micrograms per gram (UG/G, μg/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

Micrograms per kilogram (UG/KG, μ g/kg) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion.

Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. One microgram per liter is equivalent to 1 part per billion.

Microsiemens per centimeter (US/CM, μ S/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter

cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in milligrams per liter and is based on the mass of dry sediment per liter of water-sediment mixture.

Minimum reporting level (MRL) is the smallest measured concentration of a constituent that may be reliably reported by using a given analytical method.

Miscellaneous site, miscellaneous station, or miscellaneous sampling site is a site where streamflow, sediment, and/or water-quality data or water-quality or sediment samples are collected once, or more often on a random or discontinuous basis to provide better areal coverage for defining hydrologic and water-quality conditions over a broad area in a river basin.

Most probable number (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes.

Multiple-plate samplers are artificial substrates of known surface area used for obtaining benthic invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt.

Nanograms per liter (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter.

National Geodetic Vertical Datum of 1929 (NGVD 29) is a fixed reference adopted as a standard geodetic datum for elevations determined by leveling. It was formerly called "Sea Level Datum of 1929" or "mean sea level." Although the datum was derived from the mean sea level at 26 tide stations, it does not necessarily represent local mean sea level at any particular place. See NOAA web site:

http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88.

(See "North American Vertical Datum of 1988")

Natural substrate refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives. (See also "Substrate")

Nekton are the consumers in the aquatic environment and consist of large free-swimming organisms that are capable of sustained, directed mobility.

Nephelometric turbidity unit (NTU) is the measurement for reporting turbidity that is based on use of a standard suspension of formazin. Turbidity measured in NTU uses nephelometric methods that depend on passing specific light of a specific wavelength through the sample.

North American Datum of 1927 (NAD 27) is the horizontal control datum for the United States that was defined by a location and azimuth on the Clarke spheroid of 1866.

North American Datum of 1983 (NAD 83) is the horizontal control datum for the United States, Canada, Mexico, and Central America that is based on the adjustment of 250,000 points including 600 satellite Doppler stations that constrain the system to a geocentric origin. NAD 83 has been officially adopted as the legal horizontal datum for the United States by the Federal government.

North American Vertical Datum of 1988 (NAVD 88) is a fixed reference adopted as the official civilian vertical datum for elevations determined by Federal surveying and mapping activities in the United States. This datum was established in 1991 by minimum-constraint adjustment of the Canadian, Mexican, and United States first-order terrestrial leveling networks.

Open or **screened interval** is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface.

Organic carbon (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediment. May be reported as dissolved organic carbon (DOC), particulate organic carbon (POC), or total organic carbon (TOC).

Organic mass or volatile mass of a living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass. (See also "Ash mass," "Biomass," and "Dry mass")

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m²), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.

Organochlorine compounds are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds.

Parameter code is a 5-digit number used in the USGS computerized data system, National Water Information

System (NWIS), to uniquely identify a specific constituent or property.

Partial-record station is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded.

Particle size is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method utilizes the principle of Stokes law to calculate sediment particle sizes. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube, sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification, as used in this report, agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay	>0.00024 - 0.004	Sedimentation
Silt	>0.004 - 0.062	Sedimentation
Sand	>0.062 - 2.0	Sedimentation/sieve
Gravel	>2.0 - 64.0	Sieve
Cobble	>64 - 256	Manual measurement
Boulder	>256	Manual measurement

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. For the sedimentation method, most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

Peak flow (peak stage) is an instantaneous local maximum value in the continuous time series of streamflows or stages, preceded by a period of increasing values and followed by a period of decreasing values. Several peak values ordinarily occur in a year. The maximum peak value in a year is called the annual peak; peaks lower than the annual peak are called secondary peaks. Occasionally, the annual peak may not be the maximum value for the year; in such cases, the maximum value occurs at midnight at the beginning or end of the year, on the recession from or rise toward a higher peak in the adjoining year. If values are recorded at a discrete series of times, the peak recorded value may be taken as an approximation of the true peak, which may occur between the recording instants. If the values are recorded with finite precision, a sequence of equal recorded values may occur at the peak; in this case, the first value is taken as the peak.

- **Percent composition** or **percent of total** is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, mass, or volume.
- **Percent shading** is a measure of the amount of sunlight potentially reaching the stream. A clinometer is used to measure left and right bank canopy angles. These values are added together, divided by 180, and multiplied by 100 to compute percentage of shade.
- **Periodic-record station** is a site where stage, discharge, sediment, chemical, physical, or other hydrologic measurements are made one or more times during a year but at a frequency insufficient to develop a daily record.
- **Periphyton** is the assemblage of microorganisms attached to and living upon submerged solid surfaces. Although primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality.
- **Pesticides** are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.
- pH of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7.0 standard units are termed "acidic," and solutions with a pH greater than 7.0 are termed "basic." Solutions with a pH of 7.0 are neutral. The presence and concentration of many dissolved chemical constituents found in water are affected, in part, by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms also are affected, in part, by the hydrogen-ion activity of water.
- Phytoplankton is the plant part of the plankton. They are usually microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and commonly are known as algae. (See also "Plankton")
- **Picocurie** (PC, pCi) is one trillionth (1 x 10⁻¹²) of the amount of radioactive nuclide represented by a curie (Ci). A curie is the quantity of radioactive nuclide that yields 3.7 x 10¹⁰ radioactive disintegrations per second (dps). A picocurie yields 0.037 dps, or 2.22 dpm (disintegrations per minute).
- **Plankton** is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample.
- **Polychlorinated biphenyls** (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having

- various percentages of chlorine. They are similar in structure to organochlorine insecticides.
- **Polychlorinated naphthalenes** (PCNs) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations.
- **Pool,** as used in this report, is a small part of a stream reach with little velocity, commonly with water deeper than surrounding areas.
- **Primary productivity** is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants.
- **Primary productivity (carbon method)** is expressed as milligrams of carbon per area per unit time [mg C/(m²/time)] for periphyton and macrophytes or per volume [mg C/(m³/time)] for phytoplankton. The carbon method defines the amount of carbon dioxide consumed as measured by radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use with unenriched water samples. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")
- Primary productivity (oxygen method) is expressed as milligrams of oxygen per area per unit time [mg O/(m²/time)] for periphyton and macrophytes or per volume [mg O/(m³/time)] for phytoplankton. The oxygen method defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")
- Radioisotopes are isotopic forms of elements that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes.
- **Reach,** as used in this report, is a length of stream that is chosen to represent a uniform set of physical, chemical, and

biological conditions within a segment. It is the principal sampling unit for collecting physical, chemical, and biological data.

Recoverable from bed (bottom) material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. (See also "Bed material")

Recurrence interval, also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or nonexceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most of the times being less than the average and a few being substantially greater than the average. For example, the 100-year flood is the flow rate that is exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost two-thirds of all exceedances of the 100year flood occur less than 100 years after the previous exceedance, half occur less than 70 years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day, 10-year low flow $(7Q_{10})$ is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-thirds of the nonexceedances of the $7Q_{10}$ occur less than 10 years after the previous nonexceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous nonexceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100-year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10percent chance in any year that the annual minimum 7-daymean flow will be less than the $7Q_{10}$.

Replicate samples are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition.

Return period (See "Recurrence interval")

Riffle, as used in this report, is a shallow part of the stream where water flows swiftly over completely or partially submerged obstructions to produce surface agitation.

River mileage is the curvilinear distance, in miles, measured upstream from the mouth along the meandering path of a stream channel in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council and typically is used to denote location along a river.

Run, as used in this report, is a relatively shallow part of a stream with moderate velocity and little or no surface turbulence.

Runoff is the quantity of water that is discharged ("runs off") from a drainage basin during a given time period. Runoff data may be presented as volumes in acre-feet, as mean discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. (See also "Annual runoff")

Sea level, as used in this report, refers to one of the two commonly used national vertical datums (NGVD 1929 or NAVD 1988). See separate entries for definitions of these datums.

Sediment is solid material that originates mostly from disintegrated rocks; when transported by, suspended in, or deposited from water, it is referred to as "fluvial sediment." Sediment includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are affected by environmental and landuse factors. Some major factors are topography, soil characteristics, land cover, and depth and intensity of precipitation.

Sensible heat flux (often used interchangeably with latent sensible heat-flux density) is the amount of heat energy that moves by turbulent transport through the air across a specified cross-sectional area per unit time and goes to heating (cooling) the air. Usually expressed in watts per square meter.

Seven-day, 10-year low flow $(7Q_{10})$ is the discharge below which the annual 7-day minimum flow falls in 1 year out of 10 on the long-term average. The recurrence interval of the $7Q_{10}$ is 10 years; the chance that the annual 7-day minimum flow will be less than the $7Q_{10}$ is 10 percent in any given year. (See also "Annual 7-day minimum" and "Recurrence interval")

Shelves, as used in this report, are streambank features extending nearly horizontally from the flood plain to the lower limit of persistent woody vegetation.

Sodium adsorption ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Sodium hazard in water is an index that can be used to evaluate the suitability of water for irrigating crops.

Soil heat flux (often used interchangeably with soil heat-flux density) is the amount of heat energy that moves by conduction across a specified cross-sectional area of soil per

unit time and goes to heating (or cooling) the soil. Usually expressed in watts per square meter.

Soil-water content is the water lost from the soil upon drying to constant mass at 105°C; expressed either as mass of water per unit mass of dry soil or as the volume of water per unit bulk volume of soil.

Specific electrical conductance (conductivity) is a measure of the capacity of water (or other media) to conduct an electrical current. It is expressed in microsiemens per centimeter at 25°C. Specific electrical conductance is a function of the types and quantity of dissolved substances in water and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stable isotope ratio (per MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific water, to evaluate mixing of different water, as an aid in determining reaction rates, and other chemical or hydrologic processes.

Stage (See "Gage height")

Stage-discharge relation is the relation between the watersurface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

Substrate embeddedness class is a visual estimate of riffle streambed substrate larger than gravel that is surrounded or covered by fine sediment (<2mm, sand or finer). Below are the class categories expressed as the percentage covered by fine sediment:

 0
 no gravel or larger substrate
 3
 26-50 percent

 1
 > 75 percent
 4
 5-25 percent

 2
 51-75 percent
 5
 < 5 percent</td>

Surface area of a lake is that area (acres) encompassed by the boundary of the lake as shown on USGS topographic maps, or other available maps or photographs. Because surface area changes with lake stage, surface areas listed in this report represent those determined for the stage at the time the maps or photographs were obtained.

Surficial bed material is the upper surface (0.1 to 0.2 foot) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

Surrogate is an analyte that behaves similarly to a target analyte, but that is highly unlikely to occur in a sample. A surrogate is added to a sample in known amounts before extraction and is measured with the same laboratory procedures used to measure the target analyte. Its purpose is to monitor method performance for an individual sample.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is defined operationally as the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative suspended water-sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by directly analyzing the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. (See also "Suspended")

Suspended sediment is the sediment maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. (See also "Sediment")

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 foot above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The analytical technique uses the mass of all of the sediment and the net weight of the water-sediment mixture in a sample to compute the suspended-sediment concentration. (See also "Sediment" and "Suspended sediment")

Suspended-sediment discharge (tons/d) is the rate of sediment transport, as measured by dry mass or volume, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft³/s) x 0.0027. (See also "Sediment," "Suspended sediment," and "Suspended-sediment concentration")

Suspended-sediment load is a general term that refers to a given characteristic of the material in suspension that passes a point during a specified period of time. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration. (See also "Sediment")

Suspended solids, total residue at 105°C concentration is the concentration of inorganic and organic material retained on a filter, expressed as milligrams of dry material per liter of water (mg/L). An aliquot of the sample is used for this analysis.

Suspended, total is the total amount of a given constituent in the part of a water-sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by directly analyzing portions of the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total concentrations of the constituent. (See also "Suspended")

Synoptic studies are short-term investigations of specific water-quality conditions during selected seasonal or hydrologic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources.

Taxa (Species) richness is the number of species (taxa) present in a defined area or sampling unit.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata*, is the following:

Kingdom: Animal
Phylum: Arthropoda
Class: Insecta

Order: Ephemeroptera
Family: Ephemeridae
Genus: Hexagenia
Species: Hexagenia limbata

Thalweg is the line formed by connecting points of minimum

Thalweg is the line formed by connecting points of minimum streambed elevation (deepest part of the channel).

Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term

"temperature recorder" is used in the table descriptions and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water resulting from the mixing of flow proportionally to the duration of the concentration.

Tons per acre-foot (T/acre-ft) is the dry mass (tons) of a constituent per unit volume (acre-foot) of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

Tons per day (T/DAY, tons/d) is a common chemical or sediment discharge unit. It is the quantity of a substance in solution, in suspension, or as bedload that passes a stream section during a 24-hour period. It is equivalent to 2,000 pounds per day, or 0.9072 metric tons per day.

Total is the amount of a given constituent in a representative whole-water (unfiltered) sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a watersuspended sediment mixture and that the analytical method determined at least 95 percent of the constituent in the sample.)

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warmblooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gramnegative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35°C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35°C plus or minus 1.0°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milliliters of sample. (See also "Bacteria")

Total discharge is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total in bottom material is the amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

Total length (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together.

Total load refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load.

Total organism count is the number of organisms collected and enumerated in any particular sample. (See also "Organism count/volume")

Total recoverable is the amount of a given constituent in a whole-water sample after a sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data for whole-water samples, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures may produce different analytical results.

Total sediment discharge is the mass of suspended-sediment plus bed-load transport, measured as dry weight, that passes a cross section in a given time. It is a rate and is reported as tons per day. (See also "Bedload," "Bedload discharge," "Sediment," "Suspended sediment," and "Suspended-sediment concentration")

Total sediment load or Total load is the sediment in transport as bedload and suspended-sediment load. The term may be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It differs from total sediment discharge in that load refers to the material, whereas discharge refers to the quantity of material, expressed in units of mass per unit time. (See also "Sediment," "Suspended-sediment load," and "Total load")

Transect, as used in this report, is a line across a stream perpendicular to the flow and along which measurements are taken, so that morphological and flow characteristics along the line are described from bank to bank. Unlike a cross section, no attempt is made to determine known elevation points along the line.

Turbidity is the reduction in the transparency of a solution due to the presence of suspended and some dissolved

substances. The measurement technique records the collective optical properties of the solution that cause light to be scattered and attenuated rather than transmitted in straight lines; the higher the intensity of scattered or attenuated light, the higher the value of the turbidity. Turbidity is expressed in nephelometric turbidity units (NTU). Depending on the method used, the turbidity units as NTU can be defined as the intensity of light of a specified wavelength scattered or attenuated by suspended particles or absorbed at a method specified angle, usually 90 degrees, from the path of the incident light. Currently approved methods for the measurement of turbidity in the USGS include those that conform to U.S. EPA Method 180.1, ASTM D1889-00, and ISO 7027. Measurements of turbidity by these different methods and different instruments are unlikely to yield equivalent values.

Ultraviolet (UV) absorbance (absorption) at 254 or 280 nanometers is a measure of the aggregate concentration of the mixture of UV absorbing organic materials dissolved in the analyzed water, such as lignin, tannin, humic substances, and various aromatic compounds. UV absorbance (absorption) at 254 or 280 nanometers is measured in UV absorption units per centimeter of pathlength of UV light through a sample.

Unconfined aquifer is an aquifer whose upper surface is a water table free to fluctuate under atmospheric pressure. (See "Water-table aquifer")

Vertical datum (See "Datum")

Volatile organic compounds (VOCs) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings. VOC contamination of drinking-water supplies is a human health concern because many are toxic and are known or suspected human carcinogens.

Water table is that surface in a ground-water body at which the water pressure is equal to the atmospheric pressure.

Water-table aquifer is an unconfined aquifer within which the water table is found.

Water year in USGS reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 2003, is called the "2003 water year."

WDR is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.)

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

Wet mass is the mass of living matter plus contained water. (See also "Biomass" and "Dry mass")

Wet weight refers to the weight of animal tissue or other substance including its contained water. (See also "Dry weight")

WSP is used as an acronym for "Water-Supply Paper" in reference to previously published reports.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and often are large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. (See also "Plankton")

TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY

The USGS publishes a series of manuals, the Techniques of Water-Resources Investigations, describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

Reports in the Techniques of Water-Resources Investigations series, which are listed below, are online at:

http://water.usgs.gov/pubs/twri/

Printed copies are for sale by the USGS, Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office), telephone 1-888-ASK-USGS. Please telephone 1-888-ASK-USGS for current prices, and refer to the title, book number, chapter number, and mention the "U.S. Geological Survey Techniques of Water-Resources

Investigations." Products can then be ordered by telephone, or online at:

http://www.usgs.gov/sales.html,

or by FAX to (303)202-4693 of an order form available online at:

http://mac.usgs.gov/isb/pubs/forms/

Prepayment by major credit card or by a check or money order payable to the "U.S. Geological Survey" is required.

Book 1. Collection of Water Data by Direct Measurement

Section D. Water Quality

- *1–D1.* Water temperature—Influential factors, field measurement, and data presentation, by H.H. Stevens, Jr., J.F. Ficke, and G.F. Smoot: USGS–TWRI book 1, chap. D1. 1975. 65 p.
- 1–D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W.W. Wood: USGS–TWRI book 1, chap. D2. 1976. 24 p.

Book 2. Collection of Environmental Data

Section D. Surface Geophysical Methods

- 2–D1. Application of surface geophysics to ground-water investigations, by A.A.R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS–TWRI book 2, chap. D1. 1974. 116 p.
- 2–D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS–TWRI book 2, chap. D2. 1988. 86 p.

Section E. Subsurface Geophysical Methods

- 2–E1. Application of borehole geophysics to water-resources investigations, by W.S. Keys and L.M. MacCary: USGS–TWRI book 2, chap. E1. 1971. 126 p.
- 2–E2. Borehole geophysics applied to ground-water investigations, by W.S. Keys: USGS–TWRI book 2, chap. E2. 1990. 150 p.

Section F. Drilling and Sampling Methods

2–F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS–TWRI book 2, chap. F1. 1989. 97 p.

Book 3. Applications of Hydraulics

Section A. Surface-Water Techniques

- 3–A1. General field and office procedures for indirect discharge measurements, by M.A. Benson and Tate Dalrymple: USGS–TWRI book 3, chap. A1. 1967. 30 p.
- 3–A2. *Measurement of peak discharge by the slope-area method*, by Tate Dalrymple and M.A. Benson: USGS–TWRI book 3, chap. A2. 1967. 12 p.

- 3–A3. *Measurement of peak discharge at culverts by indirect methods*, by G.L. Bodhaine: USGS–TWRI book 3, chap. A3. 1968. 60 p.
- 3–A4. Measurement of peak discharge at width contractions by indirect methods, by H.F. Matthai: USGS-TWRI book 3, chap. A4. 1967. 44 p.
- 3–A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS–TWRI book 3, chap. A5. 1967. 29 p.
- 3–A6. *General procedure for gaging streams*, by R.W. Carter and Jacob Davidian: USGS–TWRI book 3, chap. A6. 1968. 13 p.
- 3–A7. *Stage measurement at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A7. 1968. 28 p.
- 3–A8. *Discharge measurements at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A8. 1969. 65 p.
- 3–A9. *Measurement of time of travel in streams by dye tracing*, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS–TWRI book 3, chap. A9. 1989. 27 p.
- 3–Al0. *Discharge ratings at gaging stations*, by E.J. Kennedy: USGS–TWRI book 3, chap. Al0. 1984. 59 p.
- 3–A11. *Measurement of discharge by the moving-boat method,* by G.F. Smoot and C.E. Novak: USGS–TWRI book 3, chap. A11. 1969. 22 p.
- 3–A12. *Fluorometric procedures for dye tracing*, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS–TWRI book 3, chap. A12. 1986. 34 p.
- 3–A13. *Computation of continuous records of streamflow*, by E.J. Kennedy: USGS–TWRI book 3, chap. A13. 1983. 53 p.
- 3–A14. *Use of flumes in measuring discharge*, by F.A. Kilpatrick and V.R. Schneider: USGS–TWRI book 3, chap. A14. 1983. 46 p.
- 3–A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS–TWRI book 3, chap. A15. 1984. 48 p.
- 3–A16. *Measurement of discharge using tracers*, by F.A. Kilpatrick and E.D. Cobb: USGS–TWRI book 3, chap. A16. 1985. 52 p.
- 3–A17. Acoustic velocity meter systems, by Antonius Laenen: USGS–TWRI book 3, chap. A17. 1985. 38 p.
- 3–A18. *Determination of stream reaeration coefficients by use of tracers*, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS–TWRI book 3, chap. A18. 1989. 52 p.
- 3–A19. *Levels at streamflow gaging stations*, by E.J. Kennedy: USGS–TWRI book 3, chap. A19. 1990. 31 p.
- 3–A20. Simulation of soluble waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS–TWRI book 3, chap. A20. 1993. 38 p.

3–A21. *Stream-gaging cableways*, by C. Russell Wagner: USGS–TWRI book 3, chap. A21. 1995. 56 p.

Section B. Ground-Water Techniques

- 3–B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS–TWRI book 3, chap. B1. 1971. 26 p.
- 3–B2. Introduction to ground-water hydraulics, a programed text for self-instruction, by G.D. Bennett: USGS–TWRI book 3, chap. B2. 1976. 172 p.
- 3–B3. Type curves for selected problems of flow to wells in confined aquifers, by J.E. Reed: USGS–TWRI book 3, chap. B3. 1980. 106 p.
- 3–B4. *Regression modeling of ground-water flow,* by R.L. Cooley and R.L. Naff: USGS–TWRI book 3, chap. B4. 1990. 232 p.
- 3–B4. Supplement 1. Regression modeling of ground-water flow—Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS–TWRI book 3, chap. B4. 1993. 8 p.
- 3–B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS–TWRI book 3, chap. B5. 1987. 15 p.
- 3–B6. The principle of superposition and its application in ground-water hydraulics, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI book 3, chap. B6. 1987. 28 p.
- 3–B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS–TWRI book 3, chap. B7. 1992. 190 p.
- 3–B8. System and boundary conceptualization in ground-water flow simulation, by T.E. Reilly: USGS–TWRI book 3, chap. B8. 2001. 29 p.

Section C. Sedimentation and Erosion Techniques

- 3–C1. *Fluvial sediment concepts*, by H.P. Guy: USGS–TWRI book 3, chap. C1. 1970. 55 p.
- 3–C2. Field methods for measurement of fluvial sediment, by T.K. Edwards and G.D. Glysson: USGS–TWRI book 3, chap. C2. 1999. 89 p.
- *3–C3.* Computation of fluvial-sediment discharge, by George Porterfield: USGS–TWRI book 3, chap. C3. 1972. 66 p.

Book 4. Hydrologic Analysis and Interpretation

Section A. Statistical Analysis

- 4–A1. *Some statistical tools in hydrology*, by H.C. Riggs: USGS–TWRI book 4, chap. A1. 1968. 39 p.
- 4–A2. *Frequency curves*, by H.C. Riggs: USGS–TWRI book 4, chap. A2. 1968. 15 p.

4–A3. Statistical methods in water resources, by D.R. Helsel and R.M. Hirsch: USGS–TWRI book 4, chap. A3. 1991. Available only online at http://water.usgs.gov/pubs/twri/twri4a3/. (Accessed August 30, 2002.)

Section B. Surface Water

- 4–B1. *Low-flow investigations*, by H.C. Riggs: USGS–TWRI book 4, chap. B1. 1972. 18 p.
- 4–B2. *Storage analyses for water supply*, by H.C. Riggs and C.H. Hardison: USGS–TWRI book 4, chap. B2. 1973. 20 p.
- 4–B3. Regional analyses of streamflow characteristics, by H.C. Riggs: USGS–TWRI book 4, chap. B3. 1973. 15 p.

Section D. Interrelated Phases of the Hydrologic Cycle

4–D1. Computation of rate and volume of stream depletion by wells, by C.T. Jenkins: USGS–TWRI book 4, chap. D1. 1970. 17 p.

Book 5. Laboratory Analysis

Section A. Water Analysis

- 5–A1. Methods for determination of inorganic substances in water and fluvial sediments, by M.J. Fishman and L.C. Friedman, editors: USGS–TWRI book 5, chap. A1. 1989. 545 p.
- 5–A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.: USGS–TWRI book 5, chap. A2. 1971. 31 p.
- 5–A3. *Methods for the determination of organic substances in water and fluvial sediments*, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS–TWRI book 5, chap. A3. 1987. 80 p.
- 5–A4. *Methods for collection and analysis of aquatic biological and microbiological samples*, by L.J. Britton and P.E. Greeson, editors: USGS–TWRI book 5, chap. A4. 1989. 363 p.
- 5–A5. Methods for determination of radioactive substances in water and fluvial sediments, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS–TWRI book 5, chap. A5. 1977. 95 p.
- 5–A6. *Quality assurance practices for the chemical and biological analyses of water and fluvial sediments*, by L.C. Friedman and D.E. Erdmann: USGS–TWRI book 5, chap. A6. 1982. 181 p.

Section C. Sediment Analysis

5–C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS–TWRI book 5, chap. C1. 1969. 58 p.

Book 6. Modeling Techniques

Section A. Ground Water

- 6–A1. A modular three-dimensional finite-difference ground-water flow model, by M.G. McDonald and A.W. Harbaugh: USGS–TWRI book 6, chap. A1. 1988. 586 p.
- 6–A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS–TWRI book 6, chap. A2. 1991. 68 p.
- 6–A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS–TWRI book 6, chap. A3. 1993. 136 p.
- 6–A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS–TWRI book 6, chap. A4. 1992. 108 p.
- 6–A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS–TWRI book 6, chap. A5. 1993. 243 p.
- 6–A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler: USGS–TWRI book 6, chap. A6. 1996. 125 p.
- 6–A7. User's guide to SEAWAT: A computer program for simulation of three-dimensional variable-density groundwater flow, by Weixing Guo and Christian D. Langevin: USGS–TWRI book 6, chap. A7. 2002. 77 p.

Book 7. Automated Data Processing and Computations

Section C. Computer Programs

- 7–C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS–TWRI book 7, chap. C1. 1976. 116 p.
- 7–C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L.F. Konikow and J.D. Bredehoeft: USGS–TWRI book 7, chap. C2. 1978. 90 p.
- 7–C3. A model for simulation of flow in singular and interconnected channels, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS–TWRI book 7, chap. C3. 1981. 110 p.

Book 8. Instrumentation

Section A. Instruments for Measurement of Water Level

8–A1. *Methods of measuring water levels in deep wells,* by M.S. Garber and F.C. Koopman: USGS–TWRI book 8, chap. A1. 1968. 23 p.

8–A2. *Installation and service manual for U.S. Geological Survey manometers*, by J.D. Craig: USGS–TWRI book 8, chap. A2. 1983. 57 p.

Section B. Instruments for Measurement of Discharge

8–B2. Calibration and maintenance of vertical-axis type current meters, by G.F. Smoot and C.E. Novak: USGS–TWRI book 8, chap. B2. 1968. 15 p.

Book 9. Handbooks for Water-Resources Investigations

Section A. National Field Manual for the Collection of Water-Quality Data

- 9–A1. National field manual for the collection of water-quality data: Preparations for water sampling, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A1. 1998. 47 p.
- 9–A2. National field manual for the collection of water-quality data: Selection of equipment for water sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A2. 1998. 94 p.
- 9–A3. National field manual for the collection of waterquality data: Cleaning of equipment for water sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A3. 1998. 75 p.
- 9–A4. National field manual for the collection of water-quality data: Collection of water samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A4. 1999. 156 p.
- 9–A5. National field manual for the collection of water-quality data: Processing of water samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A5. 1999, 149 p.
- 9–A6. National field manual for the collection of water-quality data: Field measurements, edited by F.D. Wilde and D.B. Radtke: USGS–TWRI book 9, chap. A6. 1998. Variously paginated.
- 9–A7. National field manual for the collection of water-quality data: Biological indicators, edited by D.N. Myers and F.D. Wilde: USGS–TWRI book 9, chap. A7. 1997 and 1999. Variously paginated.
- 9–A8. National field manual for the collection of waterquality data: Bottom-material samples, by D.B. Radtke: USGS–TWRI book 9, chap. A8. 1998. 48 p.
- 9–A9. National field manual for the collection of water-quality data: Safety in field activities, by S.L. Lane and R.G. Fay: USGS–TWRI book 9, chap. A9. 1998. 60 p.

Other USGS Methods Report:

OFR 93-125. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory--Determination of inorganic and organic constituents in water and fluvial sediments, by M.J. Fishman, ed., 1993. 217 p.

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print) [P, present;--, no data]

·					Per	iod of record	l (by water ye	ar)		_
	Part S-Hudson Bay Basin Part S-Hudson Part Part S-Hudson Part Part									
Station	Station name	Station name Drainage area (square miles) Daily or monthly Daily or monthly Daily or monthly Part Specific conduct area Specific condu								
number		` •	•		conduct-	tempera-	Sediment	Chemistry	Sediment	Biology
		Part 5	5Hudson B	ay Basin						
05010000	Belly River at international boundary	74.8	1947-64	1948-64						
05010500	North Fork Belly River at international boundary	10.1	1947-55	1948-55						
05010700	Mountain View Irrigation District Canal near Mtn. View, Alberta		1935-78							
05011000	Belly River near Mountain View, Alberta	121	1912-78	1912-78						
05011500	Waterton River near international boundary	61.0	1947-64	1948-64						
05012000	Street Creek at international boundary	6.0	1948-55							
05012500	Boundary Creek at international boundary	21.0	1948-64	1948-64						
05013000	Waterton River near Waterton Park, Alberta	238		1933,						
05013500	St. Mary Lake near St. Mary	130	1929-61							
05013600	St. Mary River near St. Mary	130	1961-62							
05013700	St. Mary River above Swiftcurrent Creek, near Babb	173	1902-15	1902-15						
05013900	Grinnell Creek at Grinnell Glacier, near Many Glacier	1.1	1959-71	1965-66,						
05014000	Grinnell Creek near Many Glacier	3.32	1949-78	1950-78						
05014300	Swiftcurrent Creek above Swiftcurrent Lake, nr Many Glacier		2003	2003						
05014500	Swiftcurrent Creek at Many Glacier	30.9	1912-P	1913-P		1966-69			1966	
05015000	Canyon Creek near Many Glacier	7.1	1918-37	1921-27, 1929-31,						
05015500	Lake Sherburne at Sherburne	64.1	1915-P							
05016000	Swiftcurrent Creek at Sherburne	64.6		1913-P				1990-92	1996-P	
05016400	Swiftcurrent Creek at mouth, near Babb								1996	
05016500	Swiftcurrent Creek near Babb	98.6	1902-10	1904-07,						
05017000	Lower St. Mary Lake near Babb	276	1929-55							
05017500	St. Mary River near Babb	276	1901-02, 1910-25, 1950-P	1902, 1911-25, 1951-P				1965		
05018000	St. Mary Canal at intake, near Babb		1918-50, 1997-P							
05018500	St. Mary Canal at St. Mary Crossing, near Babb		1918-P							

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	d (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 5Huc	lson Bay Bas	sinContinue	<u>d</u>					
05019000	St. Mary Canal at Hudson Bay Divide, near Browning		1917-66					1965, 1981-83		
05019500	St. Mary River below St. Mary Canal, near Babb	286	1929-50	1929-33, 1935-50						
05020000 05020500	Kennedy Creek near Babb St. Mary River at international boundary	60.8 465	1905 1902-P	1964,1975 1903-P	 1978-81	 1978-79		 1978-93	 1978-93	 1978-93
		Part 6-	-Missouri Ri	iver Basin						
06006000 06007000 06008000 06010000 06010500	Red Rock Creek above Lakes, near Lakeview Tom Creek near Lakeview Odell Creek above Taft Ranch, near Lakeview Red Rock River near Lakeview Red Rock River at Metzel Fork, near Monida	39.2 6.43 17.7 237 264	1997-P 1989 1993-98 1933-37 1925-29	1997-P 1989 1994-98 	 	 	 	 	 	
06010600	Red Rock River at Brundage Bridge, near Lakeview	277	1988-89	1989						
06011000	Red Rock River at Kennedy Ranch, near Lakeview	323	1936-67	1937-42, 1945-54, 1956-67, 1984						
06011400	Long Creek near Lakeview	36		1960-67, 1969,1984						
06011500	Red Rock River above Lima Reservoir, near Monida	431	1911, 1914-18, 1925,1930							
06011900	Red Rock River tributary near Monida	0.37		1960-67, 1984						
06012000	Lima Reservoir near Monida	570	1940-P							
06012500	Red Rock River below Lima Reservoir, near Monida	570	1911-19, 1925-69, 1974-82, 1985-P	1912-18, 1926-69, 1974-82, 1985-P						
06013000	Red Rock River at Lima	602	1907-11							
06013200	Traux Creek near Lima	4.06		1960-74, 1984						
06013400	Muddy Creek near Dell	63.4		1960-74, 1984						
06013500	Big Sheep Creek below Muddy Creek, near Dell	278	1936, 1946-53, 1977-79	1946-53, 1960-91		1977-79	1977-79		1977-79	
06013900	Sage Creek tributary near Dell	0.34		1959-67						
06014000	Red Rock River near Dell	1,421	1942-67	1943-67						

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

_					Per	iod of record	l (by water yea	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 6Misso	ouri River B	asinContinu	<u>ied</u>					
06014500	Red Rock River at Red Rock	1,548	1890, 1951-52, 1974-83	1974-83						
06015000	Horse Prairie Creek near Grant	325	1946-53	1946-53						
06015300	Clark Canyon Reservoir near Grant	2,321	1964-P							
06015400	Beaverhead River near Grant	2,322	1962-83	1963-83						
06015430	Clark Canyon near Dillon	18.0		1969, 1974-P						
06015500	Grasshopper Creek near Dillon	348	1921-33, 1946-54, 1955-58, 1960-61	1921-32, 1946-53, 1955-58, 1960-73, 1975				1986		
06016000	Beaverhead River at Barretts	2,737	1907-P	1908-P	1965-78	1965-78		1965-78, 1986		
06016500	Rattlesnake Creek near Dillon	23.9	1946-49							
06016900	Beaverhead River tributary near Dillon	0.93		1960-74						
06017000	Beaverhead River at Dillon	2,895	1950-52, 1963-71 2002-P	1951-52, 1964-71 2002-P						
06017500	Blacktail Deer Creek near Dillon	312	1946-54, 1955-66	1946-53, 1955-66, 1984						
06017600	Blacktail Deer Creek at Dillon							1986		
06018000	Beaverhead River near Dillon	3,484	1951-52, 1963-83	1951-52, 1964-83						
06018200	Beaverhead River tributary No. 2 near Dillon	0.88		1958-65						
06018500	Beaverhead River near Twin Bridges	3,619	1935-P	1936-44, 1946-P		2001-P	1962-74	1950-51, 1962-81, 1986, 1999-P	1999-P	
06019000	Ruby River above Warm Springs Creek, near Alder	145	1948-53	1948-53						
06019400	Sweetwater Creek near Alder	81.5		1974-91						
06019500	Ruby River above Reservoir, near Alder	534	1938-P	1939-P					1994	
06019800	Idaho Creek near Alder	11.0		1960-85						
06020000	Ruby River at damsite, near Alder	592	1911-14, 1935-37							
06020600	Ruby River below Reservoir, near Alder	596	1962-P	1963-P					1994	
06021000	Ruby River near Alder	614	1929-39, 1946-61	1929-39, 1947-60						
06021500	Ruby River at Laurin	650	1946-61	1947-60						
06022000	Ruby River below Ramshorn Creek, near Sheridan	843	1946-53	1947-53						

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

			Period of record (by water year)									
		Drainage	Discharge	or contents			Water	quality				
Station	Station name	area				Daily			Periodic			
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-	Water tempera- ture	Sediment	Chemistry	Sediment	Biology		
		Part 6Misse	ouri River B	asinContinu	<u>ied</u>							
06022500	Ruby River near Sheridan	863	1946-51									
06023000	Ruby River near Twin Bridges	935	1940-43, 1946-65, 1979-81	1942-73, 1947-65, 1980-81		1979-81		1986	1965			
06023500	Big Hole River near Jackson	44.0	1948-54	1948-53								
06024000	Miner Creek near Jackson	17.6	1948-54	1948-53								
06024450	Big Hole River below Big Lake Creek, at Wisdom	575	1988-P	1988-P		1988-P						
06024470	Swamp Creek near Wisdom	66.1	1995-96	1995-96								
06024500	Trail Creek near Wisdom	71.4	1948-54, 1966-72	1948-53, 1967-72								
06024510	West Fork Ruby Creek near Wisdom	13.4	1995-96	1995-96								
06024540	Big Hole River below Mudd Creek, near Wisdom	1,267	1997-P	1998-P								
06024580	Big Hole River near Wise River	1,611	1979-81	1980-81								
06024590	Wise River near Wise River	214	1973-85	1973-85								
06025000	Big Hole River near Dewey	1,990	1910-13									
06025100	Quartz Hill Gulch near Wise River	14.3		1974-P								
06025250	Big Hole River at Maiden Rock, near Divide	2,199	1997-2002	1998-2002								
06025270	Moose Creek above McClean Creek, near Divide	31.9	1998-99	1998-99								
06025300	Moose Creek near Divide	42.3		1960-74								
06025480	Rock Creek below Browns Lake, near Glen	23.0	1998-99	1998-99								
06025500	Big Hole River near Melrose	2,476	1923-P	1924-40, 1942-P		1960-64, 1977-P	1960-64	1957, 1961, 1961-64				
06025700	Willow Creek diversions to Birch Creek, near Glen		1946-53, 1955-66									
06025800	Willow Creek near Glen	35.6	1962-66, 1997-99	1998-99				1963-65	1964-65			
06026000	Birch Creek near Glen	36.0	1946-53, 1955-76	1946-53, 1955-76				1959-62	1960-61			
06026210	Big Hole River near Glen	2,655	1997-P	1998-P								
06026400	Big Hole River near Twin Bridges	2,762	1979-81	1980-81				1986				
06026500	Jefferson River near Twin Bridges	7,632	1940-43, 1958-72, 1994-P	1942-43, 1958-72, 1994-P		1994-2002	1960-62, 1965-72	1958-62, 1965-72	1971-72			
06027000	Jefferson River near Silver Star	7,683	1910-16, 1920-39	1911-16, 1921-39, 1966								
06027200	Jefferson River at Silver Star	7,683	1972-74	1973-74				1973-74	1974			
06027500	Bell Creek near Waterloo	5.63	1941-42									
06027700	Fish Creek near Silver Star	38.9	1959-91	1959-91								

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of recor	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 6Misso	ouri River Ba	asinContinu	<u>ed</u>					
06028000	Big Pipestone Creek near Whitehall	108	1910-11							
06028500	Little Pipestone Creek near Whitehall	30.7	1935-40	1935-40						
06028700	Big Pipestone Creek at Whitehall							1986		
06029000	Whitetail Creek near Whitehall	30.8	1949-68	1950-53, 1955-68, 1981						
06029500	Little Whitetail Creek near Whitetail	91.0	1911							
06030000	Whitetail Creek at Whitehall	179	1911							
06030200	Jefferson River tributary near Whitehall	1.85		1960-75						
06030300	Jefferson River tributary No. 2 near Whitehall	4.50		1958-P						
06030500	Boulder River above Rock Creek, near Basin	19.4	1936, 1946-53, 1955-57	1947-53, 1955-57, 1975,1981						
06031000	Rock Creek at CCC Camp, near Bernice	9.87	1936							
06031450	Boulder River above Kleinsmith Gulch, near Basin							1997-P	1997-P	
06031500	Boulder River at Basin	219	1921-23					1997-99	1997-99	
06031600	Basin Creek at Basin							1997-P	1997-P	
06031950	Cataract Creek near Basin	30.6		1973-P				1997-99	1997-99	
06031960	Cataract Creek at Basin							1997-P	1997-P	
06032000	Boulder River near Basin	292	1919-20					1997-99	1997-99	
06032300	High Ore Creek near Basin	8.86	1997	1997			1997	1997-2002	1997-2002	
06032400	Boulder River below Little Galena Gulch near Boulder	318	1997	1997			1997	1997-P	1997-P	
06032500	Muskrat Creek near Boulder	6.09	1912-14							
06033000	Boulder River near Boulder	381	1929-72, 1985-P	1929-72, 1975,1981, 1985-P				1997-99	1997-99	
06033500	North Fork Little Boulder River near Boulder	18.8	1926-27							
06033900	Boulder River near Cardwell	756						1986	1997	
06034000	South Boulder River near Jefferson Island	27.5	1926-33	1926-33						
06034300	South Boulder River near Cardwell							1986		
06034500	Jefferson River at Sappington	9,277	1895-1905, 1938-69	1895-1905, 1939-69, 1975						
06034700	Sand Creek at Sappington	9.41		1960-74						
06034800	Jefferson River tributary No. 3 near Sappington	1.14		1960-74						
06035000	Willow Creek near Harrison	83.8	1938-2002	1938-2002		2002				
06035500	Norwegian Creek near Harrison	22.4	1938-43, 1946-51	1938-43, 1947-51						

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	/ear)								
		Drainage	Discharge	or contents			Water	quality								
Station	Station name	area				Daily			Periodic							
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology						
		Part 6Miss	ouri River B	asinContinu	<u>ıed</u>											
06036500	Willow Creek near Willow Creek	165	1919-33, 1946-53, 1955-57	1920-29, 1931-32, 1947-53, 1955-56				1986								
06036600	Jefferson River tributary No. 4 near Three Forks	0.53		1960-74, 1982-83												
06036650	Jefferson River near Three Forks	9,532	1978-P	1979-P		1980-81 2000-P		1986-87, 1999-P	1999-P							
06036700	Jefferson River tributary No. 5 near Three Forks	3.69		1960-73, 1980, 1982-83												
06036800	Firehole River near Old Faithful, Yellowstone National Park							1958								
06036905	Firehole River near West Yellowstone	282	1984-96 2003	1984-96 2003	1983-88	1983-93 2003		1987,1989								
06037000	Gibbon River near West Yellowstone	118	1913-16, 1984-96	1984-96	1983-88	1983-93		1987, 1989								
06037100	Gibbon River at Madison Junction, Yellowstone Nat'l Park	126	2003	2003		2003										
06037500	Madison River near West Yellowstone	420	1913-73, 1983-86, 1989-P	1914-17, 1919-73, 1984-86, 1989-P	1983-86	1983-86		1959, 1986-95	1989-90 1992-95							
06037600	Madison River above Hebgen Lake, near West Yellowstone							1993-94	1993-94							
06037700	South Fork Madison River above Denny Creek, near West Yellowstone							1987-88								
06038000	Hebgen Lake near Grayling	904	1936-P													
06038500	Madison River below Hebgen Lake, near Grayling	905	1909-P	1940-P				1986-95	1992-95							
06038550	Cabin Creek near West Yellowstone	30.3		1974-P												
06038800	Madison River at Kirby Ranch, near Cameron	1,065	1959-63, 1978-P	1960-61, 1963, 1985-P		1995-2002	1960	1959	1959-60							
06039000	West Fork Madison River near Lakeview	11.9	1936													
06039200	West Fork Madison River near Cameron	220	1965-67	1966-67				1986-88								
06039500	Madison River at Lyon	1,346	1928-32					1959								
06040000	Madison River near Cameron	1,669	1952-63, 1968-70	1952-58, 1960-63, 1968-70				1988, 1993-95	1993-95							
06040010	Blaine Spring Creek near Cameron	3.42	1971-72													
06040300	Jack Creek near Ennis	51.5	1973-86, 1992	1974-86, 1991-92				1980								
06040400	Meadow Creek near McAllister							1986								
06040500	Ennis Lake near McAllister	2,181	1936-P													

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	(by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 6Misso	ouri River Ba	asinContinu	ed					
06040800 06041000	Madison River above Powerplant, near McAllister Madison River below Ennis Lake, near McAllister	4,690 2,186	2002-P 1901-P	2002-P 1943-P		 1977-P		1972-73, 1986-87, 1991-95	 1991-95	1972-73
06041300	Hot Springs Creek near Norris	72.5						1986-87, 1993-94	1993-94	
06041500	Madison River near Norris	2,288	1890-93, 1910					1993-95	1993-95	
06041700	Cherry Creek near Norris							1986-87, 1993-94	1993-94	
06042000	Madison River below Cherry Creek, near Norris	2,387	1897-1905	1898-1905						
06042500	Madison River near Three Forks	2,511	1893-97, 1928-32, 1941-50	1894-96 1929-32, 1942-50						
06042600	Madison River at Three Forks	2,531						1986-87 1990, 1993-95	1990, 1993-95	
06043000	Taylor Creek near Grayling	98.0	1946-54, 1955-57, 1966-67	1947-53, 1955-57, 1967						
06043200	Squaw Creek near Gallatin Gateway	40.4		1959-75						
06043300	Logger Creek near Gallatin Gateway	2.48		1959-P						
06043500	Gallatin River near Gallatin Gateway	825	1889-94, 1930-69, 1971-81, 1985-P	1890-94, 1931-81, 1985-P		2001-2002		1949-51, 1986-87, 1998		1998
06044000	Gallatin River near Salesville	833	1895-1905, 1910-13, 1921-23	1896-1905, 1912-13, 1921-23						
06044100	Wilson Creek near Gallatin Gateway	5.33	1952-53							
06044200	West Fork Wilson Creek near Gallatin Gateway	3.81	1952-53							
06044300	Big Bear Creek near Gallatin Gateway	13.2	1952-53							
06044400	Little Bear Creek near Gallatin Gateway	3.87	1952-53							
06044500	South Cottonwood Creek near Gallatin Gateway	21.9	1951-53							
06045000	Gallatin River at Axtell Bridge, near Gallatin Gateway	927	1950-54							
06045200	Fish Creek near Gallatin Gateway		1952-53							
06045300	Yellow Dog Creek near Belgrade	6.85	1952-53							
06045350	Godfrey Creek near Belgrade	6.32	1952-53							
06045400	Baker Creek near Manhattan		1952-53							
06045500	Gallatin River near Belgrade	965	1950-54					1949		
06046000	Gallatin River near Manhattan	970	1950-54					1949		

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

			Period of record (by water year)										
		Drainage	Discharge	or contents			Water	quality					
Station	Station name	area		_		Daily			Periodic				
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-	Water tempera- ture	Sediment	Chemistry	Sediment	Biology			
		Part 6Miss	ouri River Ba	asinContinu	<u>ied</u>								
06046100	Ridgley Creek near Manhattan		1952-53										
06046200	Gallatin River above Camp Creek, near Manhattan							1949					
06046300	Camp Creek near Belgrade	34.5	1952-53										
06046400	Randall Creek near Manhattan		1952-53										
06046500	Rocky Creek near Bozeman	50.5	1951-53	1952-53, 1959-91				1949					
06046520	Unnamed Creek near Bozeman	2.63		1997									
06046700	Pitcher Creek near Bozeman	2.33		1960-75, 1981									
06047000	Bear Canyon near Bozeman	17.0	1951-53	1952-53, 1959-73, 1975,1981									
06047500	Sourdough Creek near Bozeman	28.2	1951-53										
06048000	East Gallatin River at Bozeman	148	1939-61	1940-61, 1981				1949,1951					
06048500	Bridger Creek near Bozeman	62.5	1946-69, 1971-72, 1987	1946-69, 1971-72, 1981,1987				1949					
06048600	Lyman Creek near Bozeman	1.75	1952-53					1949					
06048700	East Gallatin River below Bridger Creek, near Bozeman	226	2002-P	2002-P		2002							
06048800	Deer Creek near Bozeman		1953										
06048900	East Gallatin River near Belgrade		1952-53										
06049000	Middle Cottonwood Creek near Bozeman	4.25	1951-53										
06050000	Hyalite Creek at Hyalite Ranger Station, near Bozeman	48.2	1895-96, 1898-1900, 1902,1904, 1935-95	1898-1899, 1902, 1935-95				1949					
06050100	Hyalite Creek near Belgrade		1952										
06050200	Bostwick Creek near Belgrade	5.04	1952-53					1949					
06050400	Thompson Creek near Belgrade		1952-53										
06050450	Ben Hart Creek near Belgrade		1952-53										
06050500	Ross Creek near Belgrade	1.25	1951-53					1949,1951					
06050700	Truman Creek near Belgrade	2.94	1952-53										
06051000	Reese Creek near Belgrade	21.5	1951-53										
06051200	Bear Creek near Belgrade	4.30	1952-53										
06051300	Foster Creek near Belgrade		1953										
06051500	Dry Creek at Andrus Ranch, near Manhattan	96.2	1952-53										
06051700	Reynolds (Quagle) Creek near Manhattan		1953										
06052000	Dry Creek at Brownell Ranch, near Manhattan	104	1951										
06052050	Story Creek near Manhattan		1952-53										

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment 1965, 1999-P 1965, 1973-95, 1999-P	Biology
		Part 6Misso	ouri River Ba	asinContinu	<u>ed</u>					
06052100	Cowan Creek near Manhattan		1952-53							
06052200	Gibson Creek near Manhattan		1952-53					1949,1951		
06052300	Bull Run Creek near Manhattan		1952-53							
06052500	Gallatin River at Logan	1,795	1893-1905, 1928-P	1895-1900, 1902-1905, 1929-33, 1935-P		1979-85, 2001-P		1949,1951, 1957,1986, 1999-P		
06053000	Sixteenmile Creek at Ringling	79.0	1950-55	1951-55						
06053050	Lost Creek near Ringling	9.59		1974-P						
06053400	Sixteenmile Creek near Toston							1986		
06053500	Broadwater East Canal near Toston		1941-49							
06054000	Broadwater West Canal near Toston		1941-49							
06054500	Missouri River at Toston	14,669	1890-91, 1910-16, 1941-P	1890, 1910-16, 1941-P	1973-81	1949-53 1973-P	1949-53	1949-51, 1972-95, 1999-P	1973-95,	1972-94
06055000	Crow Creek near Townsend	48.6	1912-13					1950,1986, 1988-91	1989-90	
06055500	Crow Creek near Radersburg	76.6	1901, 1919-29, 1966-72, 1989-90	1901, 1920-29, 1966-72, 1975,1981, 1989-90						
06056200	Castle Creek tributary near Ringling	2.51		1960-74, 1981, 1989-90						
06056300	Cabin Creek near Townsend	11.8		1960-P						
06056500	Deep Creek near Townsend	65.4	1910-15							
06056600	Deep Creek below North Fork Deep Creek, near Townsend	87.7		1959-73, 1975,1981, 1989-90						
06057000	Missouri River near Townsend	15,343	1891-1904	1892-1903, 1964						
06057400	Beaver Creek above Weasel Creek, near Winston	21.5						1950, 1988-91	1989-90	
06057500	Lake Sewell near Helena	15,894	1936-53							
06058000	Missouri River at Canyon Ferry	15,894	1889							
06058500	Canyon Ferry Lake near Helena	15,904	1953-P							
06058502	Missouri River below Canyon Ferry Dam, near Helena	15,904			1968-87			1968-87		
06058700	Mitchell Gulch near East Helena	8.09		1959-2002						
06058900	Prickly Pear Creek below Anderson Gulch, near Jefferson City	14.0		1989-90				1988-90	1989-90	
06059000	Dutchman Creek near Alhambra	9.78	1921-24							

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)				
		Drainage	Discharge or contents		Water quality							
Station	Station name	area				Daily			Periodic Sediment 1999-P 1989-90 1997-99 1997-98 2002-P 2002-P			
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry		Biology		
	<u> </u>	art 6Misso	ouri River Ba	asinContinu	ed							
06059500	Warm Springs Creek at Alhambra	20.6	1921-24									
06060000	Clancy Creek at Clancy	33.1	1921-23									
06060500	Lump Gulch at Foley's Ranch, near Clancy	33.0	1921-24									
06061000	Lump Gulch at Zastrow's Ranch, near Clancy	43.4	1908-13	1909-13, 1981								
06061500	Prickly Pear Creek near Clancy	192	1908-16, 1921-33, 1945-69, 1978-2002	1911-16, 1923-33, 1946-53, 1955-69, 1975, 1979-2002				1950, 1999-P	1999-P			
06061700	Jackson Creek near East Helena	3.44		1961-75, 1981, 1989-90								
06061800	Crystal Creek near East Helena	3.77		1961-75, 1981, 1989-90								
06061900	McClellan Creek near East Helena	33.2		1961-75, 1981, 1989-90				1988-90	1989-90			
06062000	Prickly Pear Creek at East Helena	251	1908-13					1995				
06062010	Prickly Pear Creek below East Helena							1971				
06062500	Tenmile Creek near Rimini	30.9	1914-94, 1997-P	1915-94, 1997-P				1981, 1997-99	1997-99			
06062700	Little Porcupine Creek tributary near Helena	0.39		1959-73, 1981,1989								
06062750	Tenmile Creek at Tenmile Water Treatment Plant, near Rimini	51.1	1997-P	1997-P				1999-P	1999-P			
06063000	Tenmile Creek near Helena	96.5	1908-54, 1997-98	1909-54, 1975,1981, 1997-98				1950-51, 1997-98 2002-P				
06063500	Sevenmile Creek at Birdseye	31.9	1908-13									
06064000	Sevenmile Creek near Helena		1908									
06064100	Tenmile Creek at Green Meadow Drive, at Helena	161	1997-98	1997-98				2002-P	2002-P			
06064150	Tenmile Creek above Prickly Pear Creek, near Helena	188	1997-98	1997-98								
06064500	Lake Helena near Helena	610	1945-P									
06065000	Hauser Lake near Helena	16,876	1936-P									
06065500	Missouri River below Hauser Dam, near Helena	16,876	1923-42 1995-P	1923-42, 1995-P								
06066000	Holter Lake near Wolf Creek	17,149	1936-P									
06066500	Missouri River below Holter Dam, near Wolf Creek	17,149	1945-P	1946-P		2000-P						
06067000	Little Prickly Pear Creek above Deadman Creek, near Marysville	20.1	1909-11									

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

		Period of recor						ord (by water year)				
		Drainage	Discharge	or contents			Water	quality				
Station	Station name	area				Daily			Periodic			
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry		Biology		
		Part 6Misso	ouri River B	asinContinu	<u>ed</u>							
06067500	Deadman Creek near Marysville	9.52	1909-11									
06068000	Lost Horse Creek near Marysville	13.1	1909-11									
06068500	Little Prickly Pear Creek near Marysville	44.4	1913-33	1913-32								
06069000	Marsh Creek near Marysville	6.07	1909-12									
06070000	Canyon Creek near Canyon Creek	73.8	1921-23									
06070500	Cottonwood Creek near Canyon Creek	16.5	1921-22									
06071000	Little Prickly Pear Creek near Canyon Creek	183	1909-11, 1913-24	1909-11, 1913-24								
06071080	Sieben Ranch ditch below Clark Creek, near Wolf Creek								1964-67			
06071100	Little Prickly Pear Creek at Sieben Ranch, near Wolf Creek	270	1962-67	1962-67			1962-67	1964	1966			
06071130	Little Prickly Pear Creek above Medicine Rock Creek, near Wolf Creek								1964-67			
06071180	Medicine Rock Creek near Wolf Creek								1964-67			
06071200	Lyons Creek near Wolf Creek	29.9		1959-73, 1975					1964-67			
06071220	Little Prickly Pear Creek below Lyons Creek, near Wolf Creek								1965-67			
06071230	Little Prickly Pear Creek above Sheep Creek, near Wolf Creek								1964			
06071240	Sheep Creek near Wolf Creek								1964-67			
06071290	Wolf Creek at Wolf Creek								1964-64			
06071300	Little Prickly Pear Creek at Wolf Creek	381	1962-67, 1992-P	1962-65, 1967,1975, 1992-P		2001-2002	1962-67	1964	1964-67			
06071400	Dog Creek near Craig	15.7		1960-75								
06071500	Missouri River at Craig	17,739	1890-92									
06071600	Wegner Creek at Craig	35.7		1960-91								
06072000	Dearborn River above Falls Creek, near Clemons	69.6	1908-12									
06072500	Falls Creek near Clemons	37.6	1908-12									
06073000	Dearborn River near Clemons	123	1921-23, 1929-53	1921-23 1929-53, 1964,1975								
06073500	Dearborn River near Craig	325	1946-69, 1994-P	1946-69, 1975, 1994-P		1993-P		1991, 1999-P	1999-P			
06073600	Black Rock Creek near Augusta	5.54		1974-P								
06074000	Missouri River at Cascade	18,493	1902-15, 1953	1903-15								
06074500	Smith River near White Sulphur Springs	30.7	1923-31, 1934-36	1923-31, 1934-36								
06075500	Smith River above Fivemile Creek, near White Sulphur Springs	73.2	1934-43	1934-43								
06075600	Fivemile Creek near White Sulphur Springs	6.42		1960-74								

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

		Period of record (by water year)										
		Drainage	Discharge	or contents	Water quality	quality						
Station	Station name	area			•	Daily			Periodic			
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-	Water tempera- ture	Sediment	Chemistry	Sediment	Biology		
		Part 6Misso	ouri River B	asinContinu	<u>ied</u>							
06075700	North Fork Smith River near mouth, near White Sulphur Springs	185						1993-95	1993-95	1993-95		
06075800	South Fork Smith River at mouth, near White Sulphur Springs	174						1993-95	1993-95	1993-95		
06075900	Big Birch Creek at mouth, near White Sulphur Springs	49.6						1993-95	1993-95	1993-95		
06076000	Newlan Creek near White Sulphur Springs	7.27	1946-54	1946-53, 1960-73								
06076500	Newlan Creek near damsite, near White Sulphur Springs	44.8	1950-57	1951-57								
06076550	Newlan Creek at mouth, near White Sulphur Springs							1993-95	1993-95	1993-95		
06076600	Camas Creek at mouth, near White Sulphur Springs							1993-95	1993-95	1992-95		
06076650	Benton Gulch at mouth, near White Sulphur Springs	57.6						1993-95	1993-95	1993-95		
06076690	Smith River near Fort Logan	846	1978-96	1978-96				1993-95	1993-95	1993-95		
06076700	Sheep Creek near Neihart	5.22		1960-91								
06076800	Nugget Creek near Neihart	1.50		1959-73								
06077000	Sheep Creek near White Sulphur Springs	42.8	1941-72	1942-72, 1975,1981				1956,1980	1980			
06077090	Sheep Creek near mouth, near White Sulphur Springs	192						1993-95	1993-95	1991, 1993-95		
06077200	Smith River below Eagle Creek, near Fort Logan	1,088	1996-P	1997-P		1997-P						
06077300	Trout Creek near Eden	13.2		1974-84								
06077500	Smith River near Eden	1,594	1951-69	1951-69, 1975,1981								
06077700	Smith River tributary near Eden	1.44		1960-73, 1975								
06077800	Goodman Coulee near Eden	22.1		1959-82								
06078000	Smith River at Truly	2,006	1905-07, 1929-32	1905-07, 1929-32, 1953				1991				
06078200	Missouri River near Ulm	20,941	1957-P	1948,1953, 1958-P								
06078230	Sand Coulee Creek above Cottonwood Creek, at Centerville	78.8	1995-96	1995-96				1994-96				
06078250	Cottonwood Creek near Stockett		1995-96	1995-96				1994-96				
06078260	Number Five Coulee below Giffen Spring, near Stockett	16.7	1995-96	1995-96				1994-96				
06078270	Sand Coulee at Sand Coulee	6.36	1995-96	1995-96				1994-96				
06078500	North Fork Sun River near Augusta	258	1911-12, 1946-68, 1989-93	1911-12, 1946-68, 1989-93					1989-93			
06079000	South Fork Sun River near Augusta	252	1911-12									
06079500	Gibson Reservoir near Augusta	575	1930-P					1951				
06079600	Beaver Creek at Gibson Dam, near Augusta	20.8		1959-73								

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic Sediment	
number	2-11-11-1	(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry		Biology
		Part 6Misso	ouri River B	asinContinu	ed					
06080000	Sun River near Augusta	609	1889-91, 1904-40	1890, 1905-29, 1964						
06080500	Pishkun Reservoir near Augusta		1936-95					1951		
06080700	Spring Valley Canal below Spring Valley drop, near Fairfield		1967-68							
06080800	Spring Valley Canal above Upper Turnbull drop, near Fairfield		1967-68							
06080900	Sun River below diversion dam, near Augusta	609	1967-80	1964, 1968-80	1968-79			1968-79		
06081000	Floweree Big Canal near Augusta		1912							
06081500	Willow Creek near Augusta	96.1	1905-25	1905-1910, 1912-25						
06082000	Willow Creek Reservoir near Augusta		1936-95							
06082200	Sun River below Willow Creek, near Augusta	827	1967-74	1964, 1968-75						
06082500	Smith Creek near Augusta	25.0	1906-13	1906-12						
06083000	Nilan Reservoir near Augusta		1951-95							
06083500	Ford Creek near Augusta	19.4	1906-13	1906-12, 1964						
06084000	Smith Creek below Ford Creek, near Augusta	74.0	1946-52	1946-52, 1964,1975				1951		
06084500	Elk Creek at Augusta	157	1905-25	1905-24, 1964,1975						
06085000	Crown Butte Canal at Riebling		1912							
06085500	Crown Butte Canal near Simms		1912							
06085800	Sun River at Simms	1,320	1953, 1966-79. 1997-P	1964, 1966-79, 1997-P				1996-98	1996-98	
06086000	Sun River at Fort Shaw	1,417	1912-28	1913-28						
06086500	Sun River Canal at Sun River	´	1912							
06087000	Sun River Canal at Vaughn		1912							
06087500	Sun River at Sun River	1,454	1905-12	1906-12						
06087900	Muddy Creek tributary near Power	3.15		1963-78, 1986						
06088000	Muddy Creek near Power	137	1935-40, 1982-83	1982-83				1992		
06088100	Spring Coulee near Power	30.4	1982-83	1982				1992		
06088200	Tank Coulee near Power	31.0	1982-83	1982				1992		
06088300	Muddy Creek near Vaughn	282	1968-87, 1996-P	1968-87, 1996-P	1968-82	1968-79	1968-82	1968-82, 1992-P		

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

Q					Period of record (by water year)							
		Drainage	Discharge	or contents			Water	quality				
Station	Station name	area				Daily			Periodic			
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-	Water tempera- ture	Sediment	Chemistry	1968, 1971-81, 1993-P 1987-94 1996-P 1994-95	Biology		
		Part 6Miss	ouri River B	asinContinu	<u>ed</u>							
06088500	Muddy Creek at Vaughn	314	1925-26. 1934-68, 1971-P	1925, 1934-37, 1939-68, 1971-P	1968, 1972-82	1968, 1971-79	1971-82	1968, 1972-82, 1992-P	1971-81,			
06089000	Sun River near Vaughn	1,849	1897, 1934-P	1934-Р	1969-P	1969-79 1999-P		1969-P		1987-94		
06089300	Sun River tributary near Great Falls	21.0		1956-73, 1975, 1979-80								
06090100	Missouri River at Black Eagle Dam, at Great Falls							1951				
06090130	Missouri River below Rainbow Dam, near Great Falls							1971				
06090300	Missouri River near Great Falls	23,292	1953, 1956-P	1952-P				1994-95	1994-95			
06090500	Belt Creek near Monarch	368	1951-82	1952-82		1977-81						
06090550	Little Otter Creek near Raynesford	39.5		1974-P								
06090570	Big Otter Creek near Belt	197	1994-98	1994-98								
06090590	Anaconda Drain at Belt	0.05	1995-96	1995-96				94-96				
06090600	Belt Creek near Belt	700	1905-07									
06090610	Belt Creek near Portage	799	1980-83	1981-83		1981-83		1981-83	1981-83			
06090650	Lake Creek near Power	83.8	1990-P	1990-P	1992-96	1992-95	1992-95	1990-96				
06090700	Highwood Creek near Highwood	57.8	1905-06									
06090720	Highwood Creek near Portage	122	1980-83	1981-83		1981-83		1981-83	1981-83	1981		
06090800	Missouri River at Fort Benton	24,749	1890-P	1891-1899, 1901-P		1981-82	1980	1969-73 1981-86	1965, 1980-86	1969-73 1981-86		
06090810	Ninemile Coulee near Fort Benton	16.9		1972-73, 1975-90								
06091000	Two Medicine River near East Glacier	51.1	1912-13, 1918-24, 1962-64	1912, 1918-21, 1923-24, 1963-64								
06091500	Two Medicine River at Midvale		1902-03									
06091700	Two Medicine River below South Fork, near Browning	250	1977-P	1977-P				1988-89				
06091850	Two Medicine Canal wasteway to Mission Lake, near Blackfoot							1971				
06091852	Mission Lake near Blackfoot							1971-75				
06091853	Spring Creek at Mission Lake outlet, near Cut Bank							1971				
06091900	Two Medicine Canal near Cut Bank							1956				
06092000	Two Medicine River near Browning	317	1907-25, 1951-77	1907, 1909-12, 1914-24, 1951-77				1956				
06092500	Badger Creek near Browning	133	1951-73	1951-73								

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water yea	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 6Misso	ouri River B	asinContinu	<u>ied</u>					
06093200	Badger Creek below Four Horns Canal, near Browning	152	1973-P	1974-P				1988-89		
06093300	Badger Canal near Dupuyer							1956		
06093500	Badger Creek near Family	239	1907-25	1910-13, 1915-24						
06093600	Two Medicine River near Cut Bank							1982-84		
06094000	Swift Reservoir near Dupuyer	75.3	1916, 1936-64, 1967-95							
06094500	Birch Creek at Swift Dam, near Dupuyer	75.3	1913-29	1913-26, 1929						
06095000	Birch Creek near Dupuyer	105	1907-37	1909-37, 1964						
06095500	Lake Frances near Valier		1936-95							
06096000	Birch Creek at Nelson's Ranch, near Dupuyer	111	1914-26	1914-15, 1917-21, 1923-26						
06096500	Birch Creek at Hall's Ranch, near Dupuyer	122	1913-20	1913-15, 1917-20						
06097000	Birch Creek at Robare	128	1914-26	1915, 1917-23, 1925-26						
06097100	Blacktail Creek near Heart Butte	16.4		1975-91						
06097200	Blacktail Creek near Dupuyer							1982-84		
06097500	Dupuyer Creek at Dupuyer	65.7	1908-13							
06098000	Dupuyer Creek near Valier	137	1912-37	1913-29, 1932-37, 1948,1964						
06098100	Birch Creek near Valier	471	1978-83	1978-83				1955, 1978-83		
06098500	Cut Bank Creek near Browning	123	1918-25, 1991-P	1918, 1920-24, 1991-P				1991-92		
06098700	Powell Coulee near Browning	12.7		1974-P						
06098900	Big Rock Coulee near Santa Rita	185						1982-84, 1991-92		
06099000	Cut Bank Creek at Cut Bank	1,041	1905-20, 1922-24, 1951-73, 1982-P	1906-12, 1914-17, 1919-20, 1922-24, 1951-73, 1975, 1982-P				1951, 1982-89, 1991-92		

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 6Misso	ouri River B	asinContinu	ed					
06099100	Spring Creek near Cut Bank	91						1982-84, 1991-92		
06099300	Cut Bank Creek at mouth, near Cut Bank	1,213						1991-92		
06099500	Marias River near Shelby	3,242	1902-08, 1911-P	1902-04, 1906-07, 1911-46, 1948-P		1950-51	1950-51			
06099700	Middle Fork Dry Fork Marias River near Dupuyer	20.2		1960-74, 1986						
06100000	Dry Fork Marias River near Valier	131	1911-15						1980	
06100200	Heines Coulee tributary near Valier	0.60		1960-75, 1986						
06100300	Lone Man Coulee near Valier	14.1		1960-P						
06100500	Dry Fork Marias River at Fowler	314	1921-31	1920-31						
06101000	Willow Creek near Devon	310	1921-25							
06101200	Willow Creek near Galata	839	1977-82	1978-82						
06101300	Lake Elwell near Chester	4,923	1956-95							
06101500	Marias River near Chester	4,927	1921, 1945-47, 1955-P	1921,1946, 1956-P		1994-P		1964-72, 1978-86, 1991	1978-86	1978-86
06101520	Favot Coulee tributary near Ledger	0.86		1974-P						
06101560	Pondera Coulee near Chester	598	1976-85	1964, 1976-85						
06101600	Marias River tributary No. 3 near Chester	0.26		1962-76, 1978						
06101700	Fey Coulee tributary near Chester	2.47		1963-91						
06101800	Sixmile Coulee near Chester	30.3		1963-77, 1979,1986						
06101900	Dead Indian Coulee near Fort Benton	2.73		1963-77, 1986						
06102000	Marias River near Brinkman	6,425	1922-56	1908, 1922-56						
06102050	Marias River near Loma	7,137	1960-72 2001-P	1960-72					1965	
06102100	Dry Fork Coulee tributary near Loma	0.84		1959-73						
06102200	Marias River tributary at Loma	1.62		1956-60, 1962-73						
06102300	Maris River tributary No. 2 at Loma	0.25		1956-60, 1962-73						
06102500	Teton River below South Fork, near Choteau	105	1947-55 1998-P	1948-54, 1964, 1998-P				1998-P	1998-P	

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number	5	(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 6Misso	ouri River B	asinContinu	<u>ed</u>					
06103000	Teton River at Strabane	128	1904-06, 1908-25	1908-25						
06103500	McDonald Creek near Strabane	5.17	1913-14, 1917-20							
06104000	McDonald Creek near Choteau	10.4	1917-20							
06104500	Teton River near Choteau	221	1906, 1913-19							
06105000	Deep Creek at Frazer's Ranch, near Choteau	37.7	1912							
06105500	Willow Creek near Choteau	88.2	1912-17							
06105800	Bruce Coulee tributary near Choteau	1.70		1963-2002						
06106000	Deep Creek near Choteau	223	1911-25	1911-24, 1964						
06106500	Muddy Creek near Bynum	71.1	1912-25	1913-18, 1920, 1922-24						
06107000	North Fork Muddy Creek near Bynum	61.3	1912-24	1913-17, 1919-24						
06107500	Muddy Creek near Agawam	274	1917							
06108000	Teton River near Dutton	1,307	1954-P	1955-P				1998-P	1998-P	
06108200	Kinley Coulee near Dutton	9.67		1963-78						
06108300	Kinley Coulee tributary near Dutton	2.65		1963-78						
06108500	Teton River near Fort Benton	1,989	1929-32					1991		
06108800	Teton River at Loma	2,010	1998-P	1999-P		2000-Р		1998-P	1965, 1998-P	
06109000	Missouri River at Loma	34,221	1935-53							
06109500	Missouri River at Virgelle	34,379	1935-P	1935-P				1975-85 1991	1975-85, 1991	1975-85
06109530	Little Sandy Creek tributary near Virgelle	0.80		1972, 1974-2002						
06109560	Alkali Coulee tributary near Virgelle	0.96		1974-P						
06109750	Middle Fork Judith River below Lost Fork, near Utica	108	1972-75	1972-75						
06109775	Middle Fork Judith River at Ranger Station, near Utica							1964		
06109780	Middle Fork Judith River near Utica	160	1972-79	1972-79						
06109800	South Fork Judith River near Utica	58.7	1958-79	1959-79						
06109900	Judith River tributary near Utica	7.15		1960-74						
06109950	Judith River tributary No. 2, near Utica	6.97		1959-67						
06110000	Judith River near Utica	328	1920-75	1920-32, 1934-75						
06110500	Ackley Lake near Hobson		1938-95							

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	riod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number	Station manie	(square miles)	Daily or monthly	Annual peak	Specific conduct-	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 6Miss	ouri River B	asinContinu	<u>ied</u>					
06111000	Ross Fork Creek near Hobson	337	1946-54, 1955-62	1947-53, 1955-62, 1975						
06111500	Big Spring Creek near Lewistown	20.9	1932-57	1932-40						
06111700	Mill Creek near Lewistown	3.14		1960-91						
06112000	Cottonwood Creek near Lewistown	45.6	1946-51							
06112100	Cottonwood Creek near Moore	47.9	1957-63	1958-73, 1975,1978						
06112500	Sage Creek at Windham	58.6	1920-22							
06112800	Bull Creek tributary near Hilger	0.99		1974-P						
06113000	Judith River near Lewistown	1,939	1910-11							
06113500	Judith River near Winifred	2,160	1929-32					1991		
06114000	Wolf Creek at Neubert Ranch, near Stanford	79.2	1920-26	1920-26						
06114500	Wolf Creek near Stanford	112	1950-53, 1955-62	1950-53, 1955-58, 1960-62, 1975,1978						
06114550	Wolf Creek tributary near Coffee Creek	1.73		1974-P						
06114700	Judith River near mouth, near Winifred	2,731	2001-P	2001-P		2001-P		2001-P	2001-P	
06114900	Taffy Creek tributary near Winifred	2.95		1974-2002						
06115000	Missouri River at Power Plant Ferry, near Zortman	40,763	1934-68	1934-67						
06115200	Missouri River near Landusky	40,987	1934-P	1934-P			1972-P	1976-94	1972-P	1979-94
06115270	Armells Creek near Landusky		2000-P	2000-P						
06115300	Duval Creek near Landusky	3.31	2000-P	1963-P						
06115350	Rock Creek near Landusky		2000-P	2000-P						
06115500	North Fork Musselshell River near Delpine	31.4	1940-79	1941-79						
06116000	North Fork Musselshell River at Delpine	48.6	1909-12, 1922-32	1909-11, 1922-32						
06116500	Bair Reservoir near Delpine	48.6	1939-95							
06116900	Checkerboard Creek near Delpine	21.1	1909-15							
06117000	Checkerboard Creek at Delpine	23.9	1922-32	1922-30, 1932						
06117500	Spring Creek near Martinsdale	32.5	1922-24							
06117800	Big Coulee near Martinsdale	2.86		1972, 1974-2002						
06118000	North Fork Musselshell River near Martinsdale	233	1907-14	1908-14						
06118500	South Fork Musselshell River above Martinsdale	287	1942-79	1942-79						
06119000	Martinsdale Reservoir near Martinsdale		1939-95							
06119500	South Fork Musselshell River near Martinsdale	300	1907-15, 1930-32	1908-14, 1930,1932						

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	(by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 6Misso	ouri River B	asinContinu	ed					
06119600	Musselshell River at Martinsdale	538	2003	2003						
06120000	Big Elk Creek at Twodot	89.1	1953-56							
06120500	Musselshell River at Harlowton	1,125	1907-P	1909-P		2001-2002		1988-91	1988-91	
06120600	Antelope Creek tributary near Harlowton	0.47		1956-73						
06120700	Antelope Creek tributary near mouth, near Harlowton	1.92		1956-73						
06120800	Alkali Creek near Harlowton	21.2		1956-91						
06120900	Antelope Creek at Harlowton	88.7		1950, 1954-73, 1976, 1978-80						
06121000	American Fork near Harlowton	94.6	1907-14, 1924-32	1908-11, 1913, 1924-30, 1932						
06121500	Lebo Creek near Harlowton	59.1	1907-14, 1924-32	1910,1913, 1924-32						
06122000	American Fork below Lebo Creek, near Harlowton	166	1946-67	1947-67, 1975						
06122500	Deadmans Basin Reservoir near Shawmut		1941-95							
06122800	Musselshell River near Shawmut	1,479	1986-98	1986-97						
06123000	Musselshell River at Shawmut	1,496	1902-07							
06123030	Musselshell River above Mud Creek, near Shawmut	·	1998-P	1998-P						
06123200	Sadie Creek near Harlowton	2.10		1971, 1973-P						
06123500	Musselshell River near Ryegate	1,979	1946-79	1947-79						
06124000	Careless Creek near Living Springs	21.2	1920-23							
06124500	West Careless Creek near Living Springs	23.5	1920-21							
06124600	East Fork Roberts Creek tributary near Judith Gap	0.74		1974-P						
06125000	Roberts Creek at Hedgesville	322	1920-23							
06125500	Careless Creek at Wallum	471	1934-42	1934-37, 1939-42						
06125520	Swimming Woman Creek tributary near Living Springs	1.27		1974-P						
06125680	Big Coulee Creek tributary near Cushman	1.23		1974-P						
06125700	Big Coulee Creek near Lavina	232	1957-72	1958-72						
06126000	Musselshell River at Lavina	2,928	1906							
06126050	Musselshell River near Lavina	2,970	1992-P	1992-P						
06126300	Currant Creek near Roundup	220		1958-59, 1961-73						
06126470	Halfbreed Creek near Klein	53.2	1978-91	1978-91				1978-81, 1984	1978-81, 1984	

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

			<u> </u>		Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number	2- 	(square miles)	Daily or monthly	Annual peak	Specific conduct-	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 6Miss	ouri River B	asinContinu	<u>ıed</u>					
06126500	Musselshell River near Roundup	4,023	1946-P	1946-48, 1950-P				1978-81	1978-81	
06127000	South Willow Creek near Roundup		1922-23							
06127020	Willow Creek above LMGA Reservoir, near Roundup	124	1995-P	1996-P						
06127060	Willow Creek at U.S. Canal, near Roundup	141	1995-P	1996-P						
06127100	South Willow Creek tributary near Roundup	1.38		1962-76						
06127150	East Parrot Creek near Roundup	20.2						1979-80	1979-80	
06127160	West Parrot Creek near Roundup	20.5						1978-81	1978-81	
06127200	Musselshell River tributary near Musselshell	10.8		1963-77, 1991						
06127300	Fattig Creek near Delphia	22.9						1978-81	1978-81	
06127500	Musselshell River at Musselshell	4,568	1928-32, 1945-79, 1983-P	1929-30, 1932, 1946-79, 1983-P				1988-91	1988-91	
06127505	Fishel Creek near Musselshell	16.5		1974-P						
06127520	Home Creek near Sumatra	1.98		1973-P						
06127570	Butts Coulee near Melstone	6.71		1963-P						
06127585	Little Wall Creek tributary near Flatwillow	9.77		1974-P						
06127600	Musselshell River near Mosby	5,941	1963-66				1963-66	1963-66	1964-66	
06127900	Flatwillow Creek near Flatwillow	188	1911-32, 1934-56	1911-32, 1934-36, 1938-56						
06128200	Flatwillow Creek near Winnett	642	1921-32, 1948-51	1923-29, 1931-32, 1948-51						
06128400	South Fork Bear Creek near Roy	39.6		1962-76						
06128500	South Fork Bear Creek tributary near Roy	5.40		1962-P						
06128900	Box Elder Creek tributary near Winnett	16.2		1955-73						
06129000	Box Elder Creek near Winnett	684	1930-33, 1934-38, 1958-72	1931-32, 1934-38, 1959-71, 1978						
06129100	North Fork McDonald Creek tributary near Heath	2.24		1960-75						
06129200	Alkali Creek near Heath	3.76		1960-74						
06129400	South Fork McDonald Creek tributary near Grassrange	0.51		1963-77						
06129500	McDonald Creek at Winnett	421	1930-32, 1934-45, 1953-56	1931-32, 1934-45, 1953-73, 1975						

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 6Misso	ouri River B	asinContinu	ed					
06129700	Gorman Coulee near Cat Creek	2.32		1955-59, 1962-73, 1977,1980, 1991-P						
06129800	Gorman Coulee tributary near Cat Creek	0.81		1955-2002						
06130000	Flatwillow Creek near Mosby	1,855	1964-66				1964-66	1964-66	1964-66	
06130500	Musselshell River at Mosby	7,846	1929-35, 1934-P	1929, 1931-32, 1934-P		2000-Р	1983-95	1975-95, 1999-P	1975-1997, 1999-P	1975-95
06130600	Cat Creek near Cat Creek	36.5		1958-73, 1977,1980						
06130610	Bair Coulee near Mosby	1.79		1974-P						
06130620	Blood Creek tributary near Valentine	1.97		1974-P						
06130650	Hell Creek near Jordan	70.6	2000-P	2000-P						
06130680	Big Dry Creek at Jordan	521						1976-77	1976-77	
06130700	Sand Creek near Jordan	317	1957-67	1958-67, 1986						
06130800	Second Creek tributary near Jordan	0.52		1954, 1958-73						
06130850	Second Creek tributary No. 2 near Jordan	2.08		1958-90						
06130900	Second Creek tributary No. 3 near Jordan	0.72		1958-72						
06130915	Russian Coulee near Jordan	3.45		1974-P						
06130925	Thompson Creek tributary near Cohagen	1.23		1974-95						
06130935	Crow Rock Creek near Cohagen	213						1978-80	1978-80	1978-80
06130940	Spring Creek tributary near Van Norman	1.39		1974-P						
06130950	Little Dry Creek near Van Norman	1,224	1980	1958-75, 1986,1995				1976-77	1976-77	
06131000	Big Dry Creek near Van Norman	2,554	1939-P	1940-P				1978,1981	1978	
06131100	Terry Coulee near Van Norman	0.48		1974-P						
06131120	Timber Creek near Van Norman	287	1982-85, 1988	1982-85, 1988				1976-79	1976-80	
06131200	Nelson Creek near Van Norman	100	1976-85, 2000-P	1976-85, 1991, 2000-P				1976-79	1976-79	
06131300	McGuire Creek tributary near Van Norman	0.79		1974-P						
06131500	Fort Peck Lake at Fort Peck	57,500	1938-P							
06132000	Missouri River below Fork Peck Dam, at Fort Peck	57,556	1936-P	1934-P		2002-Р		1964, 1975-87, 2002-P	1975-87, 2002-P	1975-86
06132200	South Fork Milk River near Babb	70.4	1961-P	1961-P				1990-92		
06132250	Livermore Creek near Babb	25.0		1962-67						

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
	<u>P</u>	art 6Miss	ouri River B	asinContinu	<u>ıed</u>					
06132400	Dry Fork Milk River near Babb	17.9		1962-91						
06132500	South Fork Milk River near international boundary, near Browning	287	1905-31					1964		
06132700	Milk River near Del Bonita	325	1962-65	1906-08, 1911, 1913-17, 1919, 1923-24, 1927, 1929-30, 1962-67						
06133000	Milk River at western crossing of international boundary	401	1931-P	1931-38, 1940-P				1960,1973, 1984-86, 1993		
06133500	North Fork Milk River above St. Mary Canal, near Browning	60.2	1911-12, 1919-P	1911-12, 1924, 1926-27, 1937, 1941-42, 1944-45, 1948, 1950-51, 1953-P				1960,1965, 1973-74, 1982-83, 1990-92		
06134000	North Milk River near international boundary	91.8	1909-P	1911, 1913-P				1960,1965, 1973-74, 1981, 1984-86, 1993		
06134500	Milk River at Milk River, Alberta	1,050	1909-P	1909, 1913-P				1960,1965		
06134600	Red River at international boundary	138						1995		
06134700	Verdigris Coulee near the mouth, near Milk River, Alberta	137	1985-P	1985-P						
06134800	Van Cleeve Coulee tributary near Sunburst	10.8		1963-91						
06134850	Milk River near Writing-on-Stone Provincial Park, Alberta	1,690	1978-83	1978-82						
06134890	Miners Coulee near international boundary		1966-94							
06134930	Bear Creek near international boundary		1966-94							
06134950	Milk River near Pendant D'Oreille	2,330	1978-83	1978-82						
06135000	Milk River at eastern crossing of international boundary	2,525	1910-P	1910-11, 1913-15, 1917, 1919-P				1960,1965, 1974, 1984-86, 1993-94		
06135500	Sage Creek at Q Ranch, near Wild Horse, Alberta	175	1935-83	1936-41, 1943, 1946-83				1965		

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 6Miss	ouri River Ba	asinContinu	ed					
06136000	Sage Creek at international boundary	220	1946-84	1946-83				1965		
06136400	Spring Coulee tributary near Simpson	2.49		1972, 1974-2002						
06136500	Fresno Reservoir near Havre	3,766	1940-P							
06136700	Milk River below Fresno Dam, near Havre	3,400	1952-53					1950-53		
06137000	Milk River above Havre	3,826	1928-33							
06137400	Big Sandy Creek at reservation boundary, near Rocky Boy	24.7	1982-P	1982-P				1982-84, 1987-89		
06137500	Big Sandy Creek near Big Sandy	83.3	1946-51							
06137540	Duck Creek near Box Elder							1982-84		
06137550	Camp Creek near Box Elder	7.2						1983-84		
06137570	Boxelder Creek near Rocky Boy	48.2	1975-97	1976-97				1977-81 1983-84, 1993	1977-81, 1993	1977-81
06137575	Boxelder Creek at Box Elder	67.1						1983		
06137580	Sage Creek near Whitlash	7.26	1976-82, 1985-90	1977-82, 1985-90						
06137600	Sage Creek tributary No. 2 near Joplin	2.21		1974-P						
06137900	England Coulee at Hingham	0.93		1960-74						
06138000	Sage Creek near Kremlin	914	1946-51	1946-48, 1950-52						
06138500	Big Sandy Creek near Box Elder	1,629	1927-39	1927-32, 1934-36, 1938						
06138570	Big Sandy Creek above Gravel Coulee, near Laredo	1,639						1982-84		
06138700	South Fork Spring Coulee near Havre	6.47		1960-P						
06138800	Spring Coulee near Havre	17.8		1959-73						
06139000	Big Sandy Creek near Laredo	1,752	1918-20							
06139500	Big Sandy Creek near Havre	1,805	1946-53, 1984-P	1946-53, 1955-67, 1969,1978, 1984-P				1986-90	1986-90	
06139800	West Fork Beaver Creek near Rocky Boy	2.92	2001-2002							
06139850	Beaver Creek above Elk Creek, near Rocky Boy	7.63	2001-2002							
06139900	Beaver Creek at reservation boundary, near Rocky Boy	16.1	2001-P					1982-84		
06140000	Beaver Creek near Havre	87.4	1918-21	1919-21, 1966-86						
06140400	Bullhook Creek near Havre	39.6		1960-71, 1973-75, 1986						

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
	<u>I</u>	Part 6Miss	ouri River Ba	asinContinue	<u>ed</u>					
06140500	Milk River at Havre	5,785	1898-1923, 1954-P	1899-1922, 1952-53, 1955-P				1964-72		
06141000	Boxelder Creek near Havre	23.7	1919-22							
06141500	Boxelder Creek at P.X. Ranch, near Havre	33.3	1918							
06141600	Little Boxelder Creek at mouth, near Havre	95.9	1986-92, 1994-96	1986-92, 1994-96						
06141900	Milk River tributary near Lohman	0.11		1960-74						
06142000	Clear Creek near Bearpaw	69.6	1918-22							
06142400	Clear Creek near Chinook	135	1984-P	1984-P						
06142500	Fort Belknap Canal near Chinook		1903-21							
06143000	Milk River at Lohman	6,166	1918-26, 1934-51	1919,1923, 1925, 1934-48, 1950-52						
06144000	Paradise Valley Canal near headgate, near Chinook		1906-08, 1920-21							
06144100	Walburger Coulee below diversion, near Govenlock, Sask.	32.6	1963-79	1963-78						
06144250	Lodge Creek at Alberta boundary	342	1951, 1963-67					1960		
06144260	Altawan Reservoir near Govenlock, Saskatchewan	373	1966-P							
06144270	Spangler Ditch near Govenlock, Saskatchewan		1966-P							
06144300	Lodge Creek below Spangler Project, near Govenlock, Sask.		1963-66							
06144350	Middle Creek near Saskatchewan boundary	118	1963-P	1952, 1963-P						
06144360	Middle Creek Reservoir near Govenlock	130	1966-95							
06144395	Middle Creek below Middle Creek Reservoir, near Govenlock, Saskatchewan	149	1972-P	1974-78, 1983, 1986-87						
06144400	Middle Creek near Battle Creek, Saskatchewan	177	1963-72	1963-71, 1994						
06144440	Middle Creek near Govenlock, Saskatchewan	253	1986-P	1986-P						
06144450	Middle Creek above Lodge Creek, near Govenlock, Sask.	276	1962-66, 1986-P	1986-Р						
06144500	Lodge Creek at international boundary	753	1910-52	1911-15, 1917-52						
06145000	McRae Creek at international boundary	59.0	1927-52	1927-28, 1930-33, 1935-47, 1950-52						

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water yea	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 6Misso	ouri River B	asinContinu	<u>ied</u>					
06145500	Lodge Creek below McRae Creek, at international boundary	825	1951-P	1952-P				1960,1964, 1973, 1977-80, 1987-89		
06146000	North Chinook Canal near Havre		1921-24, 1928-68							
06146500	Reser Ditch near Chinook		1905-06							
06147000	West Fork Ditch near Chinook		1905-07							
06147500	Lodge Creek at Chinook	1,175	1906-08							
06147950	Gaff Ditch near Merryflat, Saskatchewan		1972-P							
06148000	Battle Creek above Cypress Lake west inflow canal, near West Plains, Saskatchewan	270	1939-66	1939-66				1960		
06148500	Cypress Lake west inflow canal near West Plains, Sask.		1939-P							
06148700	Cypress Lake west inflow canal drain near Oxarat, Sask.		1963-P							
06149000	Cypress Lake west outflow near West Plains, Sask.		1940-P					1960		
06149100	Vidora Ditch near Consul, Saskatchewan		1963-P							
06149200	Richardson Ditch near Consul, Saskatchewan		1963-P							
06149300	McKinnon Ditch near Consul Saskatchewan		1963-P							
06149400	Nashlyn Canal near Consul, Saskatchewan		1963-P							
06149500	Battle Creek at international boundary	997	1917-P	1917-P				1960,1964, 1972-74, 1987-89		1972
06150000	Woodpile Coulee near international boundary	60.2	1927-77	1927-30, 1932-47, 1950-63, 1965-76, 1986						
06150500	East Fork Battle Creek near international boundary	89.5	1927-76	1927-33, 1935-63, 1965-67, 1969, 1971-76, 1986						
06151000	Lyons Creek at international boundary	66.7	1927-94	1927-30, 1932, 1934-47, 1950-52, 1954-63, 1965-94						
06151500	Battle Creek near Chinook	1,623	1905-21, 1984-P	1905-14, 1917-21, 1952, 1984-P						

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

			<u> </u>		Per	iod of record	l (by water ye	ar)		<u> </u>
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 6Misse	ouri River Ba	asinContinu	<u>ied</u>					
06152000	Cook Canal near Chinook		1905-19							
06152500	Matheson Canal near Chinook		1905-21, 1928-49, 1951-56							
06153000	Paradise Valley Canal near Chinook		1903-19							
06153400	Fifteenmile Creek tributary near Zurich	1.60		1974-P						
06153500	Harlem Canal near Zurich		1904-21							
06154000	Milk River Canal A near Harlem		1905, 1910-20, 1986-87							
06154100	Milk River near Harlem	9,822	1959-69, 1983-P	1952, 1960-69, 1978, 1983-P				1959-69 1994		
06154140	Fifteenmile Creek tributary near Harlem	2.31	1983-92	1983-92						
06154150	White Bear Creek below Fifteenmile Creek, near Dodson							1982-84		
06154350	Peoples Creek tributary near Lloyd	2.51		1974-P						
06154390	Peoples Creek near Cleveland							1982-84		
06154400	Peoples Creek near Hays	220	1966-P	1967-P				1960-61, 1963,1994		
06154410	Little Peoples Creek near Hays	13	1973-P	1973-P				1977-2002	1977-85 1988-2002	1977-85
06154430	Lodge Pole Creek at Lodge Pole	19.5	1987-2000	1987-2000				1982-84, 1988-92, 1994	1988-92	
06154490	Willow Creek near Dodson	5.16	1983-92	1983-92						
06154500	Peoples Creek near Dodson	670	1918-22, 1951-73, 1982-88	1952-66, 1968-73, 1982-88				1982-88		
06154510	Kuhr Coulee tributary near Dodson	1.25	1983-92	1983-P						
06154550	Peoples Creek below Kuhr Coulee, near Dodson	675	1918-21, 1951-73, 1982-P	1989-P				1989-92, 1994, 1999-P		
06155000	Nelson Reservoir near Saco		1928-95							
06155005	Dodson North Canal near Dodson					1973				
06155030	Milk River near Dodson	11,192	1983-P	1983-P				1994		
06155100	Black Coulee near Malta	6.64		1956-67, 1986						
06155200	Alkali Creek near Malta	162		1956-59, 1961-73, 1986						
06155300	Disjardin Coulee near Malta	4.84		1956-2002						

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area		,		Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 6Miss	ouri River B	asinContinu	<u>ied</u>					
06155400	South Fork Taylor Coulee near Malta	5.08		1956-73, 1986						
06155500	Milk River at Malta	11,762	1902-22, 1952	1903-09, 1911-13, 1915-22, 1952						
06155600	Murphy Coulee tributary near Hogeland	2.62		1974-P						
06155900	Milk River at Cree Crossing, near Saco	13,118	2000-P	2000-P						
06156000	Whitewater Creek near international boundary	458	1927-80	1927-33, 1935-79				1965, 1977-80		
06156100	Lush Coulee near Whitewater	9.58		1972, 1974-P						
06156500	Belanger Creek diversion canal near Vidora, Saskatchewan		1946-P							
06157000	Cypress Lake near Vidora, Saskatchewan	107	1939-P							
06157500	Cypress Lake east outflow canal near Vidora, Saskatchewan		1940, 1943-P							
06158000	Frenchman River above Eastend Reservoir, near Ravenscrag, Saskatchewan	601	1912-18, 1937-67	1913-15, 1917, 1937-66				1960		
06158500	Eastend Canal at Eastend, Saskatchewan		1937-P							
06159000	Eastend Reservoir at Eastend, Saskatchewan	619	1937-P							
06159500	Frenchman River below Eastend Reservoir, near Eastend, Saskatchewan	619	1909-16, 1918-31, 1935-36, 1939-91	1909, 1911-15, 1918-31, 1940-91						
06160500	Frenchman River at Morrison's, near Eastend, Saskatchewan	800	1937-55	1939-52				1960		
06160600	Frenchman River below Eastern Irrigation Project, near Eastend, Saskatchewan	835	1937-55, 1962-75	1939-52, 1962-75						
06161000	Frenchman River at 50-mile, near Bracken, Saskatchewan	1,248	1914-31, 1935-55	1914-17, 1919-31, 1936-52						
06161300	Huff Lake pumping canal near Val Marie, Saskatchewan		1963-P							
06161500	Huff Lake gravity canal near Val Marie, Saskatchewan		1946-P							
06162000	Huff Lake near Val Marie, Saskatchewan	1,274	1940-P							
06162500	Newton Lake main canal near Val Marie, Saskatchewan		1937-P							
06163000	Newton Lake near Val Marie, Saskatchewan	1,349	1937-P							
06163050	Frenchman River below Newton Lake, near Val Marie, Sask.	1,349	1976-94							
06163400	Denniel Creek near Val Marie, Saskatchewan	251	1963-77	1963-76						
06163500	Frenchman River below Val Marie, Saskatchewan	1,725	1937-53, 1963-76	1937-52, 1962-67, 1969-75				1960		

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

		<u> </u>			Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		<u>, </u>
Station	Station name	area			•	Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 6Misso	ouri River B	asinContinu	<u>ied</u>					
06164000	Frenchman River at international boundary	2,120	1917-P	1917-P				1960,1964 1973, 1987-89		
06164500	Frenchman Canal near Saco		1921, 1928-68							
06164510	Milk River at Juneburg Bridge, near Saco	17,670	1978-P	1978-P				1978-96		
06164590	Beaver Creek near Zortman	10.1	1983-92	1984-92				1984,1994		
06164600	Beaver Creek tributary near Zortman	3.89		1974-P						
06164615	Little Warm Creek at reservation boundary, near Zortman	6.31	1983-92	1983-92				1983-90		
06164620	Little Warm Creek near Lodge Pole							1982-83		
06164623	Little Warm Creek tributary near Lodge Pole	2.42	1983-92	1983-P				1994		
06164630	Big Warm Creek near Zortman	8.58	1983-87	1983-87				1983-84		
06164640	Big Warm Creek near Lodge Pole							1982-83		
06164800	Beaver Creek above Dix Creek, near Malta	929	1967-69, 1976-82	1967-69, 1974, 1976-82, 1986						
06165000	Beaver Creek near Malta	1,010	1917-21							
06165200	Guston Coulee near Malta	2.06		1974-P						
06165500	Beaver Creek overflow near Bowdoin		1903-13	1903-06, 1909, 1912						
06166000	Beaver Creek below Guston Coulee, near Saco (Beaver Creek near Bowdoin)	1,208	1920-21, 1981-P	1982-93, 1995-P				1980-85		
06166500	Beaver Creek near Saco	1,224	1903-06, 1908-13							
06167000	Beaver Creek near Brady's Ranch, at Ashfield	1,327	1918							
06167100	Beaver Creek above dam, near Saco	1,338						1982-83, 1985		
06167500	Beaver Creek near Hinsdale	1,785	1918-21, 1952							
06168000	Bowray Ditch near Barnard		1914							
06168500	Rock Creek at international boundary	241	1914-16, 1927-62	1927-61						
06169000	Horse Creek at international boundary	73.5	1914-62	1915-33, 1935-61						
06169500	Rock Creek below Horse Creek, near international boundary	328	1916-26, 1956-P	1917, 1919-26, 1952, 1957-P				1964,1965, 1977-96	1979-96	1979-96
06169600	South Creek tributary near Opheim	2.15	1983-87	1983-87						

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	d (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
]	Part 6Misso	ouri River B	asinContinu	ed					
06169700	South Creek tributary No. 2 near Opheim	1.62	1983-87	1983-87						
06169800	South Creek tributary No. 3 near international boundary	.32	1983-87	1983-87						
06170000	McEachern Creek at international boundary	182	1924-77	1924-76				1965, 1978-80		
06170050	Rock Creek below McEachern Creek, near international boundary	650	1983-87	1983-87						
06170080	Starbuck Coulee near international boundary	4.16	1983-87	1983-87						
06170200	Willow Creek near Hinsdale	283	1965-73	1965-73, 1979						
06170500	Rock Creek Canal near Hinsdale		1918-20							
06171000	Rock Creek near Hinsdale	1,313	1906-07, 1912-20	1906-07, 1912, 1914-20, 1952						
06171500	Milk River at Hinsdale	20,897	1908-14, 1952							
06172000	Milk River near Vandalia	20,926	1915-25, 1928-39, 1952	1915, 1917-25, 1929-39, 1952				1970-73		
06172000	Milk River at Vandalia	20,944	1970-73, 1983-86	1970-73, 1983-87						
06172200	Buggy Creek near Tampico	105	1958-67	1958-67, 1972, 1982						
06172300	Unger Coulee near Vandalia	11.1		1958-P						
06172310	Milk River at Tampico	21,078	1973-77, 1987-P	1974-77, 1988-P				1974-77		
06172350	Mooney Coulee near Tampico	14.3		1961-75, 1982						
06172400	Milk River tributary No. 2 near Glasgow	1.79		1958-60						
06172500	Sheepshed Reservoir	11.3	1955-67							
06173000	Halfway Reservoir	16.2	1955-62							
06173300	Willow Creek tributary near Fort Peck	0.86		1972, 1974-91						
06173500	Burnett Northwest Reservoir	5.0	1954-59, 1960-67							
06174000	Willow Creek near Glasgow	538	1954-87	1954-87, 1993					1960-64	
06174200	Milk River near Glasgow	21,965	1952					1969-73		1969-73
06174300	Milk River tributary No. 3 near Glasgow	1.82		1974-P						

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number	- 11-1-1	(square miles)	Daily or monthly	Annual peak	Specific conduct-	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 6Miss	ouri River B	asinContinu	<u>ied</u>					
06174500	Milk River at Nashua	22,332	1939-P	1940-P		2000-Р		1950-53, 1959-94, 1999-P	1974-94, 1999-P	1974-94
06174550	Middle Fork Porcupine Creek near Baylor							1982-83		
06174600	Snow Coulee at Opheim	3.11		1972, 1974-P						
06174700	West Fork Porcupine Creek near Baylor							1982-83		
06175000	Porcupine Creek at Nashua	725	1908-24, 1982-92	1909, 1912-21, 1923-24, 1939, 1982-93				1982-89		
06175400	Frazer Reservoir outlet near Frazer							1960-63 1966-97, 1969-72		
06175500	Little Porcupine Creek at Frazer	280	1909-16, 1918-19							
06175505	Little Porcupine Creek below diversion, at Frazer							1982-83		
06175540	Prairie Elk Creek near Oswego	352	1975-85	1976-85				1976-79	1976-79	
06175550	East Fork Sand Creek near Vida	8.51		1963-77						
06175580	Sand Creek near Wolf Point	201						1976-77	1976-77	
06175600	West Fork Wolf Creek near Lustre	6.57		1956-67						
06175700	East Fork Wolf Creek near Lustre	9.61		1956-2002						
06175800	Wolf Creek tributary near Wolf Point	2.46		1955-67						
06175900	Wolf Creek tributary No. 2 near Wolf Point	6.10		1955-84						
06176000	Wolf Point ditch at Wolf Point		1909-10							
06176500	Wolf Creek near Wolf Point	251	1908-14, 1950-53, 1982-92	1910-12, 1950-54, 1956-70, 1972-73, 1982-93				1982-84		
06176950	Missouri River tributary No. 6 near Wolf Point	0.53		1973-91						
06177000	Missouri River near Wolf Point	82,290	1928-P	1929-P		1979-85 2002-P		1949-51, 1961-62, 1965-68, 1970-73 2002-P	2002-P	
06177020	Tule Creek tributary near Wolf Point	1.91		1974-P						
06177025	Tule Creek near Poplar							1982		
06177050	East Fork Duck Creek near Brockway	12.4		1955-2002						
06177100	Duck Creek near Brockway	54.0		1957-73						

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water yea	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 6Misso	ouri River B	asinContinu	<u>ed</u>					
06177150	Redwater River at Brockway	216		1957-73, 1986				1980-83		
06177200	Tusler Creek near Brockway	90.2		1957-72						
06177250	Tusler Creek tributary near Brockway	3.17		1957-73, 1986						
06177300	Redwater River tributary near Brockway	0.29		1954,1957, 1959-73						
06177350	South Fork Dry Ash Creek near Circle	5.74		1955-60, 1962-72, 1986						
06177400	McCune Creek near Circle	29.9	1982-85	1955-58, 1960-73, 1982-86						
06177500	Redwater River at Circle	547	1929-72, 1974-P	1929-30, 1932-72, 1975-P				1975-85	1975-85	
06177520	Horse Creek near Circle	101						1977-79, 1982	1977-79	
06177650	Redwater River near Richey	1,071	1982-86	1983-85	1982-85			1982-85	1982-84	
06177700	Cow Creek tributary near Vida	1.71	1982-85	1963-P						
06177720	West Fork Sullivan Creek near Richey	14.8		1972, 1974-92						
06177800	Gady Coulee near Vida	0.91		1962-91						
06177820	Horse Creek tributary near Richey	0.63		1974-P					1076.05	
06177825	Redwater River near Vida	1,974	1975-85	1976-85				1976-85	1976-85	1077.79
06178000	Poplar River at international boundary	358	1931-P	1931, 1933-P				1964-65, 1976-P	1977-P	1977-78
06178150	Poplar River near Scobey	572						1975-80	1977-79	1977-78
06178500	East Poplar River at international boundary	541	1931-P	1931-32, 1935-43, 1945-P	1982-P			1964-65, 1975-P	1975-P	1977-81
06179000	East Fork Poplar River near Scobey	722	1935-40, 1975-79	1975-79				1975-95	1977-95	1977-78
06179100	Butte Creek tributary near Four Buttes	1.60		1972, 1974-P						
06179200	Poplar River above West Fork, near Bredette	1,745						1976-81, 1985-93	1977-81	1977-78
06179500	West Fork Poplar River at international boundary	139	1931-53	1931-33, 1935-37, 1939-52				1976-83	1977-79	1977-78
06180000	West Fork Poplar River near Richland	428	1935-49	1935-49, 1990,1994						

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	,
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 6Misso	ouri River B	asinContinu	<u>ed</u>					
06180200	West Fork Poplar River near Four Buttes	732						1975-76		
06180400	West Fork Poplar River near Bredette	1,010						1976-93	1977-84	1977-78
06180500	Poplar River near Bredette	2,940	1934-47	1934-47						
06180600	Poplar River above Slims Coulee, near Poplar							1991-93		
06181000	Poplar River near Poplar	3,174	1908-24, 1947-69, 1975-79, 1982-P	1909,1915, 1921,1923, 1946, 1948-63, 1965-69, 1975-79, 1982-P		2000-Р		1975-81, 1987-94, 1999-P	1975-81, 1987-94, 1999-P	1975-78, 1987-94
06181200	Missouri River tributary No. 2 near Brockton	1.60		1962-76						
06181500	Big Muddy Creek at international boundary	29.0	1949-52							
06181995	Beaver Creek at international boundary	149	1977-94	1978-94				1977-91	1977-91	1977-78
06182000	Beaver Creek near international boundary	224	1949-53							
06182500	Big Muddy Creek at Daleview	279	1947-72	1948-72, 1975						
06182700	Middle Fork Big Muddy Creek near Flaxville	3.12		1972, 1974-83						
06183000	Big Muddy Creek at Plentywood	850	1948-53	1948-53, 1955-67						
06183100	Box Elder Creek near Plentywood	9.40		1956-73, 1976						
06183200	Box Elder Creek at dam site, near Plentywood	19.9		1953,1955, 1957-63						
06183300	Marron Creek tributary near Plentywood	6.08		1955-2002						
06183400	Spring Creek at Highway 16, near Plentywood	16.9		1956-73, 1976						
06183450	Big Muddy Creek near Antelope	967	1979-P	1979-P				1979-93	1979-87	
06183500	Big Muddy Creek at Reserve	1,044	1920-25, 1950-53	1920-21, 1923-24, 1950-53						
06183700	Big Muddy Creek diversion canal near Medicine Lake		1985-P							
06183750	Lake Creek near Dagmar	101	1985-89, 1995-P	1986-89, 1996-P						
06183800	Cottonwood Creek near Dagmar	126	1985-89, 1995-P	1986-89, 1996-P						
06183850	Sand Creek near Dagmar	122	1985-89, 1995-P	1986-89, 1995-P						
06183900	Wolf Creek near Reserve							1982-84		
06184000	Wolf Creek near Medicine Lake	165	1918-19							

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
	<u> </u>	Part 6Misso	ouri River B	asinContinu	<u>ied</u>					
06184200	Lost Creek tributary near Homestead	1.90		1972, 1974-P						
06184400	Smoke Creek near Flaxville							1982		
06184500	Smoke Creek near Poplar	283	1918							
06185000	Big Muddy Creek near Culbertson	2,447	1908-21	1909-14, 1916-21						
06185100	Big Muddy Creek tributary near Culbertson	7.38		1963-77						
06185110	Big Muddy Creek near mouth, near Culbertson	2,684	1982-92	1982-92				1982-89		
06185150	Hardscrabble Creek near Culbertson	121						1981-83	1981-83	
06185200	Missouri River tributary No. 3 near Culbertson	1.23		1963-77						
06185300	Missouri River tributary No. 4 near Bainville	11.6		1963-77						
06185400	Missouri River tributary No. 5 at Culbertson	3.67		1963-P						
06185500	Missouri River near Culbertson	91,557	1941-51, 1958-P	1942-51, 1959-P		2002-P	1972-76	1965-86, 1992-94, 1997-P	1972-86, 1997-P	1969-86, 2003
		Part 6Y	Yellowstone	River Basin						
06186000	Yellowstone Lake at Bridge Bay, Yellowstone National Park	1,006	1921-86							
06186500	Yellowstone River at Yellowstone Lake outlet, Yellowstone National Park	991	1922-82, 1984-86, 1989-P	1923-86, 1989-P	1984-85	1984-85				
06187000	Yellowstone River near Canyon Hotel, Yellowstone National Park	1,157	1913-51	1913-18, 1821-51						
06187500	Tower Creek at Tower Falls, Yellowstone National Park	50.4	1922-43	1923-43						
06187550	Yellowstone River at Tower Junction, Yellowstone National Park	1,342	1984-86	1984-86	1984-85	1984-85				
06187915	Soda Butte Creek at park boundary, at Silver Gate	31.2	1999-P	1999-P				1999-2001	1999-2001	2000-2001
06187950	Soda Butte Creek near Lamar Ranger Station, Yellowstone National Park	99	1989-P	1989-P				1989		
06188000	Lamar River near Tower Falls Ranger Station, Yellowstone National Park	660	1922-69, 1985-86, 1988-P	1923-69, 1985-86, 1989-P			1985-86, 1989-92	1989	1985-86, 1988-92,	
06188500	East Fork Blacktail Deer Creek near Mammoth, Yellowstone National Park	10.3	1938-41							
06189000	Blacktail Deer Creek near Mammoth, Yellowstone National Park	15	1938-45, 1989-93	1938-45, 1989-93				1989		
06189500	Bear Creek at Jardine	40.8	1946-49							
06190000	Lupine Creek near Mammoth, Yellowstone National Park	4.67	1938-41							
06190370	Gardner River above Mammoth Springs Outflow, near Mammoth, Yellowstone National Park							1988-93		

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	riod of record	d (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area			_	Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
	<u>P</u>	art 6Yellow	stone River	BasinConti	nued					
06190415	Mammoth Springs Outflow at Mammoth, Yellowstone National Park							1988-94		
06190500	Gardner River at Mammoth, Yellowstone National Park	200	1922-39	1923-38						
06190525	Gardner River Sinkhole Diversion at Mammoth, Yellowstone National Park							1989-92		
06190530	Clematis Creek at Mammoth, Yellowstone National Park	2.71						1990-92		
06190540	Boiling River at Mammoth, Yellowstone National Park		1989-94 2003	1989-95 2003	1989-90	1989-90 2003		1967, 1988-94		
06191000	Gardner River near Mammoth, Yellowstone National Park	202	1938-72, 1984-P	1939-72, 1984-P	1985	1985		1988-93	1989	
06191400	LaDuke Hot Springs near Corwin Springs							1988-94		
06191500	Yellowstone River at Corwin Springs	2,619	1889-93, 1910-P	1890-93, 1911-P	1984-85	1977-81, 1984-85 2002	1985-92	1956-57, 1969-74, 1988-90 1999-2001	1965, 1985-92 1999-2001	1969-74 2000-2001
06191800	Big Creek near Emigrant	60.9	1973-79, 1983-85	1974-79, 1983-85						
06192000	Mill Creek near Pray	148	1951-56	1951-56						
06192500	Yellowstone River near Livingston	3,551	1897-1905, 1928-32, 1937-P	1897-1905, 1929-32, 1938-P		2000-Р	1985-86	1970-94, 1999-P	1965, 1979-94, 1999-P	1979-94
06193000	Shields River near Wilsall	87.8	1935-57	1936-57						
06193500	Shields River at Clyde Park	543	1921-23, 1929-32, 1934-67	1921-23, 1929-32, 1934-67					1965	
06194000	Brackett Creek near Clyde Park	57.9	1921-23, 1934-57	1921-23, 1934-57						
06194500	Canyon Creek near Chadbourn	21.5	1923							
06195000	Bangtail Creek at Chadbourn	13.3	1923							
06195500	Willow Creek near Chadbourn	29.7	1923							
06195600	Shields River near Livingston	852	1979-P	1979-P		2000-P		1999-P	1999-P	
06196000	North Fork Big Timber Creek near Big Timber	36.6	1907-12							
06196500	South Fork Big Timber Creek near Big Timber	28.1	1907-11							
06197000	Big Timber Creek near Big Timber	74.9	1912-24	1912-16, 1918-24, 1971						
06197020	Big Timber Creek near mouth, near Big Timber								1965	
	- · · · · · · · · · · · · · · · · · · ·									

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	riod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number	- 11-1	(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
	<u>Pa</u>	rt 6Yellow	stone River	BasinContin	<u>ued</u>					
06197500	Boulder River near Contact	226	1910-16, 1929, 1950-69, 1970-74, 1981-83	1910-16, 1929, 1951-69, 1971-75, 1982-83			1972	1971-73	1971-73 1981-83	
06197800	East Boulder River below Dry Fork Creek, near McLeod								1981-83	
06198000	East Fork Boulder River near McLeod	85.6	1907-10, 1981-83	1908-09, 1982-83					1981-83	1982-83
06198450	West Fork Boulder River at West Boulder Reservoir near McLeod								1981-83	
06198500	West Fork Boulder River near Bruffeys	91.6	1904-10	1904-1908, 1910						
06199000	West Boulder River at McLeod	135	1907-14	1907-14					1981-83	
06199500	Boulder River near McLeod	476	1912-14							
06200000	Boulder River at Big Timber	523	1947-53, 1955-P	1947-53, 1955-P		2000-Р		1965, 1999-P	1965, 1981-83, 1999-P	
06200400	Sweet Grass Creek near Melville	46.3	1907-12							
06200500	Sweet Grass Creek above Melville	63.8	1913-25, 1937-69	1914-24, 1937-69, 1971,1975						
06201000	Sweet Grass Creek below Melville	143	1907-24, 1937-43, 1946-52	1907-16, 1918-24, 1937-42, 1946-52						
06201500	Sweet Grass Creek near Greycliff	368	1941-42							
06201550	Yellowstone River tributary near Greycliff	2.72		1960-74						
06201600	Bridger Creek near Greycliff	61.5		1960-75						
06201650	Work Creek near Reed Point	32.5		1959-73, 1978						
06201700	Hump Creek near Reed Point	7.61		1960-P						
06201750	Berry Creek near Columbus	23.5		1958-73, 1978						
06201800	Stillwater River above Woodbine Creek, near Nye	160	1924-27							
06202000	Woodbine Creek near Nye	19.4	1924-27							
06202500	Stillwater River near Nye	180	1929-32							
06202510	Stillwater River above Nye Creek, near Nye	193	1980-91	1980-91					1981-83	1982-83
06202530	Stillwater River above West Fork, at Nye	193							1971-73	
06202590	West Fork Stillwater River above Cathedral Creek, near Nye								1981-83	
06202597	Castle Creek near Nye								1973	
06202598	West Fork Stillwater River below Castle Creek, near Nye	122							1971-73 1981-83	

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	riod of record	(by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 6Yellow	stone River	BasinContin	<u>nued</u>					
06202600	Stillwater River at Nye	337	1969-77	1970-76						
06202610	Stillwater River at Beehive	371					1972-73	1971-73, 1982-83	1973, 1982-83	1982-83
06203000	East Rosebud Creek near Roscoe	105	1920-21							
06203500	East Rosebud Creek at Roscoe	125	1921-24							
06204000	Mystic Lake near Roscoe	46.9	1936-P							
06204050	West Rosebud Creek near Roscoe	52.1	1965-P	1966-P						
06204150	Fishtail Creek near Dean								1981-83	
06204220	Butcher Creek near Luther	9.69						1960	1960-61	
06204240	Butcher Creek near Roscoe								1960-61	
06204260	Butcher Creek near Fishtail								1960-61	
06204300	Butcher Creek near Absarokee	39.6	1960-62					1960		
06204500	Rosebud Creek near Absarokee	394	1935-69	1935-69						
06204700	Rosebud Creek at Absarokee	401	1910-14							
06205000	Stillwater River near Absarokee	975	1910-14, 1935-P	1911-14, 1935-P		2001-2002		1999-P	1965,1981, 1999-P	
06205050	Stillwater River near Columbus								1982-83	
06205100	Allen Creek near Park City	7.17		1961-2002						
06205200	Yellowstone River at Laurel	8,189						1951-52, 1974-79	1975-78	1974-79
06207500	Clarks Fork Yellowstone River near Belfry	1,154	1921-P	1922-P			1984	1966-88	1965,1971 1984	
06207510	Big Sand Coulee at Wyoming-Montana State line	134	1973-81	1973-80			1973-81			
06207520	Silver Tip Creek below Amoco dam, near Belfry							1972		
06207523	Silver Tip Creek below Sinclair oil field, near Belfry							1972		
06207530	Silver Tip Creek above Gobblers Draw, near Belfry							1971		
06207540	Silver Tip Creek near Belfry	88.0	1968-75	1968-75			1969-72, 1974	1969-75	1970-75	
06207600	Jack Creek tributary near Belfry	0.85		1975-91						
06207700	North Fork Bluewater Creek near Bridger	8.1							1960-61, 1964-68	
06207800	Bluewater Creek near Bridger	28.1	1960-70	1960-70, 1978			1962-70	1960	1964-65	
06207850	Bluewater Creek at Sanford Ranch	43.9					1964-70		1960-61 1964-70	
06207870	Bluewater Creek near Fromberg	46.6					1964-70	1960	1960-61, 1964-68	
06207900	Bluewater Creek at Fromberg	53.2	1961-64				1962-64	1960,1980	1960-761, 1964-68, 1970,1980	

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	(by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 6Yellow	stone River	BasinConti	<u>nued</u>					
06208000	Clarks Fork Yellowstone River at Fromberg	1,940	1905-14	1905-13						
06208400	Elbow Creek near Joliet	48.6	1984	1984				1984	1984	
06208500	Clarks Fork Yellowstone River at Edgar	2,022	1921-69, 1987-P	1922-32, 1934-69, 1987-P		2000-P	1972-73	1964-65, 1999-P	1965,1973, 1999-P	2000-Р
06208800	Clarks Fork Yellowstone River near Silesia	2,093	1970-87	1970-86			1984	1984	1984	
06209000	Glacier Lake near Red Lodge	3.77	1939-47, 1960-64							
06209010	Rock Creek below Glacier Lake, near Red Lodge	3.89	1960-64							
06209500	Rock Creek near Red Lodge	105	1932-82, 1985-86, 2000-P	1932, 1934-82, 1985-86, 2000-P		2001-2002				
06210000	West Fork Rock Creek below Basin Creek, near Red Lodge	63.1	1937-57	1938-56						
06210500	West Fork Rock Creek near Red Lodge	66.9	1932-44	1932, 1934-44						
06211000	Red Lodge Creek above Cooney Reservoir, near Boyd	143	1937-P	1937-P						
06211500	Willow Creek near Boyd	53.3	1937-P	1937-P						
06212000	Cooney Reservoir near Boyd	206	1937-95							
06212500	Red Lodge Creek below Cooney Reservoir, near Boyd	210	1937-P	1938-P						
06213000	Red Lodge Creek near Boyd	234	1932-37							
06213500	Rock Creek at Joliet	539	1946-53	1946-53						
06214000	Rock Creek at Rockvale	569	1920-22, 1952-40, 1984-90	1921-22, 1932,1934, 1935-40, 1985-90						
06214050	Clarks Fork Yellowstone River near Laurel	2,783						1969-73		1969-73
06214100	Yellowstone River near Laurel	11,036						1969-72		1969-72
06214150	Mills Creek at Rapelje	3.32		1974-2002						
06214500	Yellowstone River at Billings	11,805	1904-05, 1928-P	1904-05, 1918, 1929-P		2001-2002	1977-81	1963-93 1999-P	1965, 1975-93 1999-P	1975-93 2000-P
06215000	Pryor Creek above Pryor	39.6	1921-24, 1967-74	1921-24, 1967-74				1987-90		
06215500	Lost Creek near Pryor	9.72	1921-24	1922-24						
06216000	Pryor Creek at Pryor	117	1921-24, 1966-P	1922-24, 1967-P						
06216200	West Wets Creek near Billings	8.80		1955-P						
06216300	West Buckeye Creek near Billings	2.64		1955-73, 1978						

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
	<u>Pa</u>	art 6Yellow	stone River	BasinConti	nued					
06216500	Pryor Creek near Billings	440	1911-24, 1938-54	1912-24, 1938-53, 1955-73, 1978						
06216900	Pryor Creek near Huntley	582	1979-99	1978-99						
06217000	Pryor Creek at Huntley	606	1904-17	1905-06, 1908, 1910-15, 1978						
06217300	Twelvemile Creek near Shepherd	9.05		1973-P						
06217500	Yellowstone River at Huntley	12,840	1908-16	1908-16				1951-52, 1971-81	1975-81	1972-81
06217700	North Fork Crooked Creek tributary near Shepherd	6.85		1962-P						
06217750	Fly Creek at Pompeys Pillar	285	1969-81	1969-81				1969-81		
06217800	Yellowstone River tributary No. 2 near Pompeys Pillar	0.70		1962-73						
06217950	Buffalo Creek near Custer	221	1980-83	1980-83						
06218000	Yellowstone River at Junction (at Custer)	14,427	1906-08					1969-70		1969-70
06286258	Big Coulee near Lovell, Wyoming	30.1	1970-78							
06286270	Porcupine Creek near Lovell, Wyoming	135	1964-67							
06286340	Dry Head Creek near Pryor	58.0	1965-66							
06286350	Dry Head Creek above Hoodoo Creek, near Pryor	80.0	1966-68	1966-67						
06286370	Big Bull Elk Creek near St. Xavier	35.0	1965-68							
06286390	Black Canyon Creek near St. Xavier	52.0	1965-66	1965-66						
06286395	Black Canyon Creek below Three Springs Creek, near St. Xavier	75.0	1966-68	1966-67						
06286400	Bighorn Lake near St. Xavier	19,626	1965-P							
06286490	Bighorn Canal near St. Xavier		1966-P							
06286500 06287000	Bighorn Canal below wasteway, near St. Xavier	10.667	1947-52 1934-P	 1935-P		 1970-79		1067.91		 1969-70
	Bighorn River near St. Xavier	19,667 98.3	193 4- F 1911-14,	1935-F 1939-53,		1970-79		1967-81		1909-70
06287500	Soap Creek near St. Xavier	98.3	1911-14, 1939-53, 1968-72	1939-33, 1963, 1968-72, 1978						
06287700	Soap Creek near mouth, near St. Xavier	111	1914-24	1914-18, 1920-24						
06288000	Rotten Grass Creek near St. Xavier	147	1911-22, 1968-73	1914-17, 1968-72, 1978						
06288200	Beauvais Creek near St. Xavier	100	1967-77	1968-78				1967-78	1968-78	1969-78
06288500	Bighorn River near Hardin	20,722	1904-25, 1928-33	1904-24, 1929-33		1968-74		1951, 1969-73, 1987-89		1970-73

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
	<u>Pa</u>	rt 6Yellow	stone River	BasinConti	<u>nued</u>					
06288960	Little Bighorn River near Parkman, Wyoming	137	1970-72	1972						
06288990	West Fork Little Bighorn River near Parkman, Wyoming	38.2	1970-72, 1983-87							
06289000	Little Bighorn River at State line, near Wyola	182	1939-P	1939-P				1993-2001	1993-2001	1993-2001
06289500	Little Bighorn River near Wyola	251	1912-24	1912-24				1993-2001	1993-2001	1993-2001
06290000	Pass Creek near Wyola	111	1935-56, 1983-P	1935-56, 1978, 1983-P						
06290200	Little Bighorn River tributary near Wyola	4.43		1973-86						
06290500	Little Bighorn River below Pass Creek, near Wyola	428	1939-75, 1977-P	1939-P			1970-73	1970-75, 1977	1970-73	
06291000	Owl Creek near Lodge Grass	163	1939-45, 1980-92	1939-42, 1944-45, 1980-92						
06291200	Lodge Grass Creek at State Line, near Wyola	16.7	1983-84	1983-89						
06291500	Lodge Grass Creek above Willow Creek Diversion, near Wyola	80.7	1939-74, 1983-P	1939-74, 1978, 1983-P						
06292000	Lodge Grass Creek near Wyola	88.9	1921-24							
06292500	Lodge Grass Creek near Lodge Grass	143	1912-16, 1921-24	1912-15, 1921-24						
06293000	Lodge Grass Creek at Lodge Grass	170	1916-20							
06293300	Long Otter Creek near Lodge Grass	11.7		1973-P						
06293500	Little Bighorn River near Crow Agency	1,181	1912-24, 1928-33, 1938-60	1912, 1914-24, 1929-32, 1938-60						
06293900	Little Bighorn River at Crow Agency	1,190	1905-06							
06294000	Little Bighorn River near Hardin	1,294	1953-P	1953-P			1970-77	1970-79, 1987-89, 1993-2001	1971-75, 1977, 1993-2001	1993-2001
06294400	Andresen Coulee near Custer	2.35		1963-P						
06294500	Bighorn River above Tullock Creek, near Bighorn	22,414	1982-P	1982-P		2000-P		1999-P	1999-P	
06294600	East Cabin Creek tributary near Hardin	8.63	1982-85	1973-P						
06294690	Tullock Creek near Bighorn	446	1975-82	1975-82						
06294700	Bighorn River at Bighorn	22,885	1945-81	1945-81			1960-72	1960-92	1960-72, 1975-92	1975-92
06294800	Unknown Creek near Bighorn	14.6		1962-76, 1979,1991						
06294840	Yellowstone River at Myers	37,674						1974-77		1975-77

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	d (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number	2	(square miles)	Daily or monthly	Annual peak	Specific conduct-	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 6Yellow	stone River	BasinContir	nued					
06294850	Buckingham Coulee near Myers	2.63		1962-76, 1979,1991						
06294900	Middle Fork Froze to Death Creek tributary near Ingomar	1.36		1962-76						
06294920	East Fork Sarpy Creek near Colstrip	79.2						1981-83	1981-83	
06294930	Sarpy Creek tributary near Colstrip	4.44		1972-P						
06294940	Sarpy Creek near Hysham	453	1973-84	1974-84				1975-84	1975-84	
06294950	Starved to Death Creek near Sanders	36.9	1980-85	1980-85						
06294960	Anderson Creek at Vananda	5.71		1973-84, 1991						
06294980	East Fork Armells Creek near Colstrip	97.3						1975-85	1975-85	
06294985	East Fork Armells Creek tributary near Colstrip	1.87		1973-P						
06294991	West Fork Armells Creek near Forsyth	148						1975-77	1975-77	
06294995	Armells Creek near Forsyth	370	1974-84, 1988-95	1975-84, 1988-95				1975-86, 1988-95	1975-86, 1988-95	
06295000	Yellowstone River at Forsyth	40,146	1921-23, 1977-P	1921-23, 1978-P			1978-81	1974-82 1999-2001	1975-82 1999-2001	1975,1978, 1979, 2000-2001
06295020	Short Creek near Forsyth	3.23		1962-P						
06295050	Little Porcupine Creek near Forsyth	614		1958-73, 1975,1978, 1986,1993						
06295100	Rosebud Creek near Kirby	35.5	1982-85, 1988	1960-74, 1982-2002						
06295110	Rosebud Creek at Kirby							1978-79	1978-79	
06295113	Rosebud Creek at reservation boundary, near Kirby	123	1980-P	1980-P				1980-84 2003	1980-84 2003	2003
06295130	Rosebud Creek tributary near Busby	1.14		1963-77						
06295200	Whitedirt Creek near Lame Deer	1.58		1959-73						
06295250	Rosebud Creek near Colstrip	799	1974-P	1975-P				1975-85	1975-84	
06295350	Greenleaf Creek near Colstrip	30.5						1975	1975	
06295380	Cow Creek near Colstrip	27.2						1980-85	1980-85	
06295400	Rosebud Creek above Pony Creek, near Colstrip	961						1975-78	1975-77	
06295420	Snider Creek near Brandenberg	11.9						1978	1978	
06295500	Rosebud Creek near Rosebud	1,193	1938-43	1938-43				1975-77	1975-77	
06296000	Rosebud Creek near Forsyth	1,279	1947-54	1948-53, 1655-57, 1959, 1961-67, 1969,1978						

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
	<u> </u>	Part 6Yellow	stone River	BasinConti	<u>nued</u>					
06296003	Rosebud Creek at mouth, near Rosebud	1,302	1974-P	1975-P				1975-86, 1988-93, 1999-P	1975-86, 1988-93, 1999-P	
06296100	Snell Creek near Hathaway	10.5	1982-85	1963-77, 1979, 1982-P						
06296115	Reservation Creek near Miles City	6.29		1973-P						
06296120	Yellowstone River near Miles City	42,847			1969-84			1969-84	1975-84	1974-81
06306000	Tongue River near Acme, Wyoming	894	1939-57							
06306100	Squirrel Creek near Decker	33.6	1975-85	1976-85				1976-85	1976-85	
06306250	Prairie Dog Creek near Acme, Wyoming	358	1971-79							
06306300	Tongue River at State line, near Decker	1,453	1960-P	1961-P	1983-87 2001-P	1966-76 2001-P		1966-P		1986-88
06306500	Tongue River near Decker	1,585	1928-38	1928-38						
06306800	Deer Creek near Decker	47.7						1975-77	1975-76	
06306900	Spring Creek near Decker	34.7		1958-86				1978,1980	1978,1980	
06306950	South Fork Leaf Rock Creek near Kirby (Leaf Rock Creek near Kirby)	4.53	1982-85	1958, 1960-96						
06307000	Tongue River Reservoir near Decker	1,770	1938-P							
06307500	Tongue River at Tongue River Dam, near Decker	1,770	1939-P	1939-P	1981-87			1951, 1976-95	1976-96	
06307510	Fourmile Creek near Birney	22.3						1975	1975	
06307520	Canyon Creek near Birney	50.2		1972-91						
06307525	Prairie Dog Creek above Jack Creek, near Birney	6.57	1979-83	1979-83				1978-81, 1983	1978-83	
06307528	Prairie Dog Creek near Birney	19.6	1979-84	1979-84				1978-80, 1983	1978-83	
06307530	Bull Creek near Birney	45.8						1975	1975	
06307540	Hanging Woman Creek at State line, near Otter	90.2						1980, 1982-83	1980, 1982-83	
06307560	East Trail Creek near Otter	31.3	1976-81	1977-81				1977-80	1977-78, 1980	
06307563	Corral Creek near Otter	26.5						1980-83	1980-83	
06307567	Horse Creek near Birney	16.0						1983	1983	
06307570	Hanging Woman Creek below Horse Creek, near Birney	321						1978-83, 1986-87	1978-83, 1986-87	
06307600	Hanging Woman Creek near Birney	470	1974-84, 1986-95 2003	1974-84, 1986-95 2003	1981-83, 1986-87			1975-95 2003	1975-95 2003	2003
06307610	Tongue River below Hanging Woman Creek, near Birney	2,533						1974-79	1975-79	1975-79
06307615	Cook Creek near Birney	62.6						1975-77	1975-77	

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 6Yellow	stone River	BasinConti	nued					
06307616	Tongue River at Birney Day School, near Birney	2,621	1980-P	1980-P				1980-93	1980-86	
06307620	Tie Creek near Birney	18.7		1973-84, 1991						
06307640	Spring Creek near Ashland	1.56		1962-76						
06307660	Walking Horse Creek near Ashland	3.33		1963-78						
06307665	Otter Creek near Otter	40.9						1978-84	1978-84	
06307670	Bear Creek at Otter	90.4						1975-76	1975-76	
06307700	Cow Creek near Fort Howes Ranger Station, near Otter	8.37		1972-P						
06307717	Otter Creek below Fifteenmile Creek, near Otter	453	1982-86	1982-85	1983-85			1982-85	1982-85	
06307720	Brian Creek near Ashland	8.03		1973-P						
06307725	Otter Creek above Tenmile Creek, near Ashland	466						1978-81	1978-81	
06307730	Threemile Creek near Ashland	51.5						1975	1975	
06307735	Home Creek near Ashland	58.7						1977-84	1977-84	
06307740	Otter Creek at Ashland	707	1973-85, 1988-95 2003	1973-85, 1988-95 2003	1981-85			1975-85, 1988-95 2003	1975-85, 1988-95 2003	2003
06307760	Stebbins Creek near Ashland	5.41		1963-77						
06307780	Stebbins Creek at mouth, near Ashland	20.8		1963-91						
06307800	Tongue River near Ashland	3,830	1956-73	1967-72						
06307810	Beaver Creek near Ashland	92.3						1975-76	1975-76	
06307830	Tongue River below Brandenberg Bridge, near Ashland	3,948	1973-84, 2000-P	1974-84, 2000-P	2001-P	2001-P	1975-81	1974-81, 2000-P	1975, 1978-81, 2000-P	2003
06307840	Liscom Creek near Ashland	47.6						1975,1977	1975,1977	
06307890	Foster Creek near Volborg	116						1975-77	1975-77	
06307930	Jack Creek near Volborg	5.47		1973-2002						
06308000	Tongue River near Miles City	4,539	1929-33							
06308100	Sixmile Creek tributary near Epsie	0.80		1972-91						
06308160	Pumpkin Creek near Loesch	102						1976-79	1976-79	
06308170	Little Pumpkin Creek near Volborg	101						1976-77	1976-77	
06308190	Pumpkin Creek near Volborg	386						1976-77	1976-77	
06308200	Basin Creek tributary near Volborg	0.14		1955-P						
06308300	Basin Creek near Volborg	11.1		1955-73						
06308330	Deer Creek tributary near Volberg	1.65		1973-P						
06308340	LaGrange Creek near Volberg	3.66		1973-P						
06308400	Pumpkin Creek near Miles City	697	1972-85	1973-85				1976-85	1976-85	
06308500	Tongue River at Miles City	5,379	1938-42, 1946-P	1938-41, 1946-P		2000-P	1978-86	1949-94, 1999-P	1975-94, 1999-P	1975-94

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of recor	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 6Yellow	stone River	BasinConti	<u>nued</u>					
06309000	Yellowstone River at Miles City	48,253	1922-23, 1928-P	1923, 1929-P				1948-52, 1965	1965	
06309020	Rock Springs Creek tributary at Rock Springs	0.96		1963-78, 1987						
06309040	Dry House Creek near Angela	38.6		1963-77, 1987						
06309060	North Fork Sunday Creek tributary No. 2 near Angela	0.22		1962-91						
06309075	Sunday Creek near Miles City	714	1975-84	1975-84						
06309078	Tree Coulee near Kinsey	4.13		1972, 1974-2002						
06309079	Muster Creek near Kinsey	28.5						1978-80	1978-80	1978-80
06309080	Deep Creek near Kinsey	11.5		1962-P						
06309090	Ash Creek near Locate	6.23		1962-76						
06309145	Custer Creek near Kinsey	151						1978-80	1978-80	1978-80
06324500	Powder River at Moorhead	8,086	1929-72, 1974-P	1923, 1929-72, 1975-P	1986-89 2001-P		1975-96	1949, 1951-53, 1956-57, 1969-72, 1975-92 2001-P	1975-1997 2001-P	1969-72
06324700	Sand Creek near Broadus	10.2		1955-84						
06324710	Powder River at Broadus	8,748	1975-92	1976-92			1976-92	1979, 1988-90	1976-92, 1995	
06324995	Badger Creek at Biddle	6.06		1972-P						
06325000	Little Powder River at Biddle	1,541	1938-43							
06325400	East Fork Little Powder River tributary near Hammond	3.45		1974-84						
06325500	Little Powder River near Broadus	1,974	1947-53, 1957-72	1947-53, 1956-72, 1978				2002-P	2002-P	
06325550	Little Powder River at mouth, near Broadus							1978-79, 1988-90 2001-2002	1988-89 2001-2002	
06325650	Powder River near Powderville							1978-90	1988	
06325700	Deep Creek tributary near Powderville	3.00		1973-P						
06325950	Cut Coulee near Mizpah	2.23		1973-P						
06326000	Powder River near Mizpah	12,132	1928-33					1989		
06326050	Mizpah Creek at Olive	129						1976-79	1976-79	
06326200	Mizpah Creek near Volberg	510						1976-79	1976-77	
06326300	Mizpah Creek near Mizpah	797	1975-86	1975-86				1976-84, 1989-90	1976-84	

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
	<u>P</u> :	art 6Yellow	stone River	BasinConti	nued					
06326400	Meyers Creek near Locate	9.42		1962-76, 1982						
06326500	Powder River near Locate	13,068	1938-P	1938-P	1951-62, 1975-81, 1988-90		1975-84	1948-63, 1975-94, 1999-P	1965, 1974-94 1999-P	1975-94
06326507	Locate Creek near Ismay							1982-83	1982-83	
06326510	Locate Creek tributary near Locate	0.91		1973-91						
06326520	Powder River at mouth, near Terry	13,512						1978,1989		
06326530	Yellowstone River near Terry	63,447						1974-83	1975-83	1975-80
06326550	Cherry Creek tributary near Terry	2.52		1973-91						
06326555	Cherry Creek near Terry	358	1980-81, 1990-94	1980-81, 1990-94	1990-94		1990-94	1978-81	1978-81, 1990-94	
06326580	Lame Jones Creek tributary near Willard	0.51		1974-P						
06326600	O'Fallon Creek near Ismay	669	1978-92	1962-92				1978-84	1978-84	1978-80
06326650	O'Fallon Creek tributary near Ismay	0.16		1962-76						
06326700	Deep Creek near Baker	3.79		1962-76, 1978						
06326800	Pennel Creek tributary near Baker	0.86		1962-91						
06326850	O'Fallon Creek at Mildred	1,396	1975-78	1976-78						
06326900	Yellowstone River tributary No. 4 near Fallon	0.67		1962-76						
06326940	Spring Creek tributary near Fallon	3.10		1972-P						
06326950	Yellowstone River tributary No. 5 near Marsh	0.87		1962-P						
06326952	Clear Creek near Lindsay	101	1982-85, 1988	1982-86						
06326953	Clear Creek near Hoyt	138		1980				1978-80	1978-80	1978-80
06326960	Timber Fork Upper Sevenmile Creek tributary near Lindsay	1.13		1974-P						
06326995	Upper Sevenmile Creek near Lindsay	137						1978-80	1978-80	1978-80
06327000	Upper Sevenmile Creek near Glendive		1921-22							
06327450	Cains Coulee at Glendive	3.72		1991-P						
06327500	Yellowstone River at Glendive	66,788	1898-1911, 1932-34 2003	1903-10, 1932-34 2003				1950		
06327550	South Fork Horse Creek tributary near Wibaux	1.34		1973-P						
06327700	Griffith Creek near Glendive	15.5		1955-63, 1965-67						
06327720	Griffith Creek tributary near Glendive	3.48		1965, 1974-P						
06327790	Krug Creek tributary No. 2 near Wibaux	0.44		1974-P						
06327800	Krug Creek tributary near Wibaux	1.74		1955-61						
06327850	Glendive Creek near Glendive	300						1978-81	1978-81	

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 6Yellow	stone River	BasinConti	nued					
06328000	Deer Creek near Glendive	198	1921-22					1978-80	1978-80	1978-80
06328100	Yellowstone River tributary No. 6 near Glendive	2.93		1974-P						
06328200	Lower Sevenmile Creek near Bloomfield	25.2	1982-85	1983-87						
06328400	Thirteenmile Creek tributary near Bloomfield	0.67		1972, 1974-91						
06328700	Linden Creek at Intake	4.20		1958-73, 1980						
06328800	Indian Creek at Intake	0.46		1958-73						
06328900	War Dance Creek near Intake	3.69		1958-73, 1980						
06329000	Cottonwood Creek near Intake	85.3						1978-81	1978-81	
06329200	Burns Creek near Savage	233	1958-67, 1975-84, 1986	1958-67, 1975-84, 1986				1976-79, 1984,1986	1976-79, 1984,1986	
06329350	Alkali Creek near Sidney	0.49		1974-P						
06329500	Yellowstone River near Sidney	69,083	1910-31, 1933-P	1911-31, 1934-P			1972-81, 1983-P	1948-P	1965, 1972-P	1970-95
06329510	Fox Creek tributary near Lambert	5.01		1972, 1974-96						
06329520	Fox Creek near Lambert	183						1981-83	1981-83	
06329540	Lone Tree Creek near Sidney	39.4						1981-83	1981-83	
06329570	First Hay Creek near Sidney	29.1		1963-P						
06333500	Little Missouri River at Alzada	671	1904-07					1949-51		
06333850	North Creek near Alzada	1.25	1951	1951-52, 1956-77						
06333900	North Creek spreader diversion near Alzada	1.29	1952-56							
06334000	Little Missouri River near Alzada	904	1911-25, 1928-32, 1935-69	1912-25, 1929-32, 1935-69						
06334100	Wolf Creek near Hammond	10.1		1955-2002						
06334200	Willow Creek near Alzada	122		1958-73						
06334330	Little Missouri River tributary near Albion	1.49		1972-P						
06334610	Hawks Nest Creek tributary near Albion	0.92		1973-2002						
06334625	Coal Creek tributary near Mill Iron	0.64		1974-P						
06334630	Boxelder Creek at Webster	1,092	1959-73	1960-73, 1975				1972-73		
06334640	North Fork Coal Bank Creek near Mill Iron	15.6		1962-76						
06334720	Soda Creek tributary near Webster	2.22		1962-91						
06336447	Duck Creek near Wibaux	46.5	1978-85	1978-85				1979	1978-79	
06336450	Spring Creek near Wibaux	4.00	1955-73	1956-73						

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 12	Kootenai R	iver Basin						
06336500	Beaver Creek at Wibaux	351	1938-69, 1979-83	1872,1921, 1929, 1938-69, 1979-83				1979-84	1979-84	
06336510	Upper Hay Creek tributary No. 2 near Wibaux	4.1	1978-82	1978-82						
06336515	Hay Creek near Wibaux	11.4	1978-82	1978-82						
06336545	Little Beaver Creek near Wibaux	96.2	1978-81	1978-81				1979-80	1979-80	
06336550	Beaver Creek near Wibaux		1958-64							
12300000	Kootenay River at Newgate, British Columbia	7,660	1931-72	1931-71				1949,1965		
12300110	Lake Koocanusa at international boundary							1972-P		1972-82, 2003
12300200	Young Creek near Rexford	36.0	1973-75	1974-75						
12300400	Cayuse Creek near Trego	5.29		1972-84						
12300500	Fortine Creek near Trego	110	1947-53	1947-54, 1958, 1960-73						
12300800	Deep Creek near Fortine	18.9		1954-91						
12301000	Grave Creek near Fortine	54.9	1923-24							
12301300	Tobacco River near Eureka	440	1958-P	1948, 1959-P		1971-85		1971-76		1974-76
12301500	Kootenai River near Rexford	8,420	1929-40, 1968-71	1929-40, 1948, 1968-71			1968-71	1967-72	1968-71	
12301550	Pinkham Creek near Rexford	75.7	1973-81	1973-81						
12301600	Lake Koocanusa below Pinkham Creek, near Rexford							1972-76		1972-76
12301700	Kootenai River tributary near Rexford	0.86		1959-70						
12301800	Gold Creek near Rexford	6.12		1959-69						
12301810	Big Creek near Rexford	137	1972-81	1973-82						
12301830	Lake Koocanusa at Tenmile Creek, near Libby							1972-P		1972-P
12301850	Kootenai River at Worland Bridge, near Libby	8,892	1961-71	1961-71						
12301900	Little Jackson Creek near Libby	2.60		1961-69						
12301919	Lake Koocanusa at Forebay, near Libby							1972-P		1972-82, 2003
12301920	Lake Koocanusa near Libby	8,985	1972-P							
12301921	Libby Dam near Libby							1964		
12301933	Kootenai River below Libby Dam, near Libby	8,985	1972-P	1972-P		2001-P	1968-76	1967-P	1968-71	1973-82
12301990	Fisher River above Wolf Creek, near Libby	768						1967-70	1968-70	
12301993	Wolf Creek tributary near Libby	2.76		1974-84						
12301997	Richards Creek near Libby	9.50		1973-91						
12301999	Wolf Creek near Libby	216	1967-77	1967-77			1968-70	1967-70	1969-70	

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	d (by water yea	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 12Koot	enai River B	asinContinu	<u>ued</u>					
12302000	Fisher River near Jennings	780	1951-69	1948, 1951-69, 1974		-				
12302050	Peoples Creek near Libby	2.54		1961-67, 1976						
12302055	Fisher River near Libby	838	1967-P	1948, 1969-P		1968-85	1968-76	1967-76, 1999-P	1969-72, 1974-76, 1999-P	1974-76
12302400	Shaughnessy Creek near Libby	1.16		1959-91						
12302500	Granite Creek near Libby	23.6	1933-34, 1936-44, 1960-69	1933, 1937-44, 1948,1954, 1959-69, 1974						
12303000	Kootenai River at Libby	10,240	1911-91	1911-91				1969-72, 1978		1969-73
12303100	Flower Creek near Libby	11.1	1960-92	1960-92						
12303400	Ross Creek near Troy	23.8		1972-91				1971, 1976-78	1976-78	
12303430	Stanley Creek near Troy	12.8						1976-78	1976-78	
12303440	Camp Creek near Troy	11.3		1972-91						
12303490	Lake Creek near Troy	179						1976-78	1976-78	
12303500	Lake Creek at Troy	210	1945-57, 1983-95	1945-57, 1974, 1983-96						
12304000	Callahan Creek at Troy	85.8	1911-12, 1914-16							
12304040	Basin Creek near Yaak	27.4	1990-2000	1990-2000						
12304060	Blacktail Creek near Yaak	8.66		1964, 1972-84						
12304120	Zulu Creek near Yaak	5.27		1972-84						
12304200	Yaak River near Yaak	493	1957-62	1956-62						
12304250	Whitetail Creek near Yaak	2.48		1960-74						
12304300	Cyclone Creek near Yaak	5.73		1960-91						
12304400	Fourth of July Creek near Yaak	7.84		1960-74						
12304500	Yaak River near Troy	766	1910-16, 1956-P	1948,1954, 1956-P		1963-85 2000-P		1999-P	1999-P	
		Part 12	Pend Oreille	River Basin						
12323170	Silver Bow Creek above Blacktail Creek, at Butte		1984-94	1984-94						
12323200	Blacktail Creek near Butte	14.7	1984-88	1984-88						

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	(by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		_
Station	Station name	area				Daily			Periodic	
number	2	(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 12Pend (Oreille River	BasinConti	nued					
12323220	Basin Creek near Butte	37.6	1984-86							
12323230	Blacktail Creek at Harrison Avenue, at Butte							1993-95, 1997-P	1993-95, 1997-P	
12323240	Blacktail Creek at Butte	95.4	1988-P	1989-P						
12323248	Silver Bow Creek above Wastewater Plant Outflow, at Butte		1999-2002	2000-2002						
12323250	Silver Bow Creek below Blacktail Creek, at Butte	105	1984-P	1984-P				1993-95, 1997-P	1993-95, 1997-P	
12323300	Smith Gulch near Silver Bow	4.36		1959-2002						
12323500	German Gulch Creek near Ramsay	40.6	1955-69	1955-69, 1975						
12323600	Silver Bow Creek at Opportunity	284	1988-P	1989-P			1993-95	1993-95, 1997-P	1993-95, 1997-P	
12323700	Mill Creek at Opportunity	43.2	2003	2003				2003	2003	
12323720	Willow Creek at Opportunity		2003	2003				2003	2003	
12323750	Silver Bow Creek at Warm Springs	394	1972-79, 1994-P	1972-79, 1989, 1993-P			1993-95	1971, 1993-P	1993-P	
12323760	Warm Springs Creek near Anaconda	157	1998-P	1998-P						
12323770	Warm Springs Creek at Warm Springs	163	1984-P	1984-P		2000-P		1993-P	1993-P	
12323800	Clark Fork near Galen	572	1988-P	1989-P		1991-2002		1971-74 1988-P	1988-P	1971-74
12323850	Lost Creek near Galen	60.5	2003	2003				2003	2003	
12324000	Racetrack Creek near Anaconda	39.5	1911-13							
12324100	Racetrack Creek below Granite Creek, near Anaconda	39.5	1914-17, 1957-73	1958-73, 1975						
12324200	Clark Fork at Deer Lodge	916	1979-P	1979-P		1979-83, 1992-98, 2001-2002	1985-P	1963, 1969-71, 1985-P	1985-P	1969-71
12324250	Cottonwood Creek at Deer Lodge	45.4		1964, 1975-91						
12324300	Clark Fork near Garrison	1,139	1961-62							
12324590	Little Blackfoot River near Garrison	407	1973-P	1973-P		2000-Р		1963, 1985-P	1985-P	
12324600	Clark Fork at Garrison	1,550						1963, 1969-71		1970-71
12324660	Gold Creek at Goldcreek	64.1	1964-66							
12324680	Clark Fork at Goldcreek	1,704	1978-P	1978-P		1992-98		1992-P	1993-P	
12324700	Clark Fork tributary near Drummond	4.61		1958-95						
12324800	Morris Creek near Drummond	12.6		1960-74, 1980						
12325000	Georgetown Lake near Philipsburg	50.1	1939-97							

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	riod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 12Pend (Oreille River	BasinConti	nued					
12325500	Flint Creek near Southern Cross	52.6	1940-98, 2000-P	1941-98						
12326000	Trout Creek above main canal, near Philipsburg	4.09	1946-49							
12326500	Trout Creek near Southern Cross	36.1	1946-51							
12327000	Trout Creek near Philipsburg	34.9	1939-43, 1945-46							
12327090	Flint Creek above Fred Burr Creek, near Philipsburg	108	1994-98	1994-98						
12327100	Fred Burr Creek near Philipsburg	15.7	1994-96	1994-96						
12327500	Marshall Creek near Philipsburg	22.8	1942-43							
12328000	Marshall Creek at mouth, near Philipsburg	23.2	1939-42							
12328500	Flint Creek near Philipsburg	192	1939-41					1972-73		1972-73
12329000	Flint Creek above Maxville Siding, at Maxville	207	1939-41							
12329500	Flint Creek at Maxville	208	1941-P	1942-P						
12330000	Boulder Creek at Maxville	71.3	1939-P	1940-P						
12330100	Flint Creek below Boulder Creek, near Maxville							1971		
12330500	Flint Creek near Maxville	325	1946-49							
12331000	Flint Creek near Hall	325	1939							
12331100	Flint Creek below Douglas Creek, near Hall	339	1994-98	1995-98						
12331500	Flint Creek near Drummond	490	1990-P	1991-P				1972-73, 1985-P	1985-P	1972-73
12331600	Clark Fork at Drummond	2,378	1967-68, 1973-83	1967, 1973-83				1971-74		1971-74
12331700	Edwards Gulch at Drummond	4.69		1960-62, 1974-91, 1996-2002						
12331800	Clark Fork near Drummond	2,501	1993-P	1993-P				1993-P	1993-P	
12331900	Clark Fork near Clinton	2,629	1979-90, 1992-94	1980-90, 1992-94				1963		
12332000	Middle Fork Rock Creek near Philipsburg	123	1937-P	1938-P						
12332500	East Fork Rock Creek Reservoir near Philipsburg	30.3	1939-95							
12333000	East Fork Rock Creek near Philipsburg	30.3	1935-43							
12333500	Rock Creek near Quigley	749	1922-27	1922						
12334000	Ranch Creek near Quigley	42.7	1922-27	1922-27						
12334500	Rock Creek below Ranch Creek, near Quigley	794	1911-12							
12334510	Rock Creek near Clinton	885	1972-P	1972-P		1979-83, 1995-2002		1985-P	1985-P	
12334550	Clark Fork at Turah Bridge, near Bonner	3,641	1985-P	1986-P		1992-98	1985-P	1985-P	1985-P	
12334600	Blackfoot River near Lincoln	15.1	1969-70	1969-70, 1975				1969-70		
12334620	Blackfoot River below First Gulch, near Lincoln	25.9						1995-97	1995-97	

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	riod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
	<u>Pa</u>	rt 12Pend (Oreille River	BasinCont	<u>inued</u>					
12334650	Blackfoot River below Alice Creek, near Lincoln	96.9	1971-75	1971-75				1971-74, 1995-97	1971-73, 1995-97	1973
12334680	Landers Fork near Lincoln	130						1995-97	1995-97	
12334700	Blackfoot River below Seven-up Pete Creek, near Lincoln	255						1973, 1995-97	1995-97	1973, 1995-97
12334800	Blackfoot River at Dalton Mountain Road Bridge, near Lincoln	399						1973, 1995-97	1995-97	1973, 1995-97
12334900	Blackfoot River at Blackfoot Canyon Campground, near Lincoln	437						1973		1973 1995-97
12335000	Blackfoot River near Helmville	481	1940-54	1941-53, 1964, 1974-75						
12335100	Blackfoot River above Nevada Creek, near Helmville	494	2000-P			2000-2002		1995-97 2003	1995-97 2003	
12335500	Nevada Creek above Reservoir, near Helmville	116	1939-P	1940-P				1980, 2003	1980,1994- 2000,2003	
12336000	Nevada Creek near Finn	144	1934-39							
12336500	Nevada Creek Reservoir near Finn	142	1939-95			-				
12337000	Nevada Creek near Helmville	165	1946-49							
12337500	Douglas Creek near Helmville	84.8	1946-47							
12337800	Nevada Creek at mouth, near Helmville		2002-P					2002-P	2002-P	
12338000	North Fork Blackfoot River near Ovando	228	1921-23							
12338100	Rock Creek above Salmon Creek, near Ovando	7.60	1998	1998						
12338300	North Fork Blackfoot River above Dry Gulch, near Ovando	314	1998-P	1998-P		2001-2002		1995-97	1995-97	
12338500	Blackfoot River near Ovando	1,274	1940-63	1941-64, 1975						
12338540	Monture Creek above Dunham Creek, near Ovando	64.7		1978-91						
12338550	Dunham Creek at mouth, near Ovando	31.7		1978-91						
12338600	Monture Creek at Forest Service boundary, near Ovando	105		1964, 1974-91						
12338690	Monture Creek near Ovando	140	1973-83	1974-83						
12338700	Blackfoot River at Scotty Brown Bridge, near Ovando	1,428						1995-97	1995-97	1995-97
12339000	Blackfoot River at Clearwater	1,550	1921-23							
12339300	Deer Creek near Seeley Lake	19.8		1974-91						
12339450	Clearwater River near Clearwater	345	1975-92	1975-92, 1997				1995-97	1995-97	
12339500	Clearwater River at Clearwater	391	1921-23							
12339800	Blackfoot River near Potomac	2,046	1957-65	1957-65						
12339900	West Twin Creek near Bonner	7.33		1959-91						

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 12Pend C	Oreille River	BasinConti	nued					
12340000	Blackfoot River near Bonner	2,290	1898-99, 1901, 1903-05 1939-P	1899-1901, 1903-05, 1940-P		2000-Р	1986-95	1963, 1985-P	1985-P	
12340200	Marshall Creek near Missoula	5.63		1959-73, 1980						
12340500	Clark Fork above Missoula	5,999	1929-P	1908, 1930-P		1977-83	1986-P	1969-71 1986-P	1986-P	1969-71
12341000	Rattlesnake Creek at Missoula	79.7	1899-1901, 1958-67	1899,1948, 1958-59, 1961-64, 1966-67						
12341500	Clark Fork at Missoula	6,084	1898-1907	1899-1907				1963		
12342000	Painted Rocks Lake near Conner	317	1940-95							
12342500	West Fork Bitterroot River near Conner	317	1941-P	1941-P				2001-P	2001-P	
12342950	Trapper Creek near Conner	28.5		1974-91						
12343000	West Fork Bitterroot River near Darby	552	1910-17	1911-17						
12343400	East Fork Bitterroot River near Conner	381	1956-72 2001-P	1956-72 2001-P				2001-P	2001-P	
12343500	East Fork Bitterroot River at Conner	405	1910-16, 1937-57	1937-57						
12344000	Bitterroot River near Darby	1,049	1937-P	1938-P		2001-P		1956, 1997-98 2001-P	1997-98 2001-P	
12344300	Burke Gulch near Darby	6.50		1958-82						
12344500	Lake Como near Darby	54.6	1939-99					1956		
12345000	Rock Creek near Darby	55.4	1946-53, 1957-59	1948-53, 1958-59						
12345500	Rock Creek Canal near Darby		1946, 1948-53							
12345800	Camas Creek near Hamilton	5.05		1958-73						
12345850	Sleeping Child Creek near Hamilton	65.2	1973-77	1972-91				1956		
12346000	Bitterroot River near Grantsdale	1,414	1902-07							
12346500	Skalkaho Creek near Hamilton	87.8	1949-53, 1957-79, 2001-P	1948-54, 1958-79, 2001-P				1956,1980, 2001-P	1980, 2001-P	
12347000	Skalkaho Creek at Brennan's ranch, near Hamilton	96.2	1920-24	1920-24, 1948						
12347360	Bitterroot River at Hamilton							1997-98	1997-98	
12347500	Blodgett Creek near Corvallis	25.9	1947-69	1947-69, 1972				1956		
12348000	Blodgett Creek near Hamilton	28.3	1938-43	1938-43						

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	riod of record	d (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 12Pend (Oreille River	BasinConti	<u>nued</u>					
12348200	Bitterroot River near Corvallis	1,711	1959-63							
12348500	Willow Creek near Corvallis	21.9	1920-24, 1957-66	1920-22, 1958-73				1956		
12349000	Willow Creek at Anfinson Ranch, near Corvallis	23.2	1938-43	1938-43						
12349500	Fred Burr Creek near Victor	17.7	1947-51							
12350000	Bear Creek near Victor	26.8	1938-55, 1957-59	1938-54, 1958-59				1956		
12350200	Gash Creek near Victor	3.37		1958-73						
12350250	Bitterroot River at Bell Crossing, near Victor	1,963	1987-P	1987-P				1997-98	1997-98	
12350300	Big Creek near Victor							1956		
12350500	Kootenai Creek near Stevensville	28.9	1949-53, 1957-63	1948-53, 1958-73				1956		
12351000	Burnt Fork Bitterroot River near Stevensville	73.2	1920, 1922-24, 1938-62	1920, 1922-24, 1938-73				1956	1965	
12351200	Bitterroot River near Florence	2,354	1957-66 2003	1958-66, 1974,1982 2003				1956, 1997-98	1997-98	
12351400	Eightmile Creek near Florence	19.5	1957-63	1958-73				1956		
12351500	Lolo Creek near Lolo	231	1911-15							
12352000	Lolo Creek above Sleeman Creek, near Lolo	250	1951-60	1951-60, 1972,1974						
12352200	Hays Creek near Missoula	4.16		1959-66, 1968-74, 1980						
12352500	Bitterroot River near Missoula	2,814	1898-1901, 1903-04, 1989-P	1899-1901, 1903-04, 1990-P		2000-Р		1997-P	1997-P	
12352980	Bitterroot River at Maclay Bridge, near Missoula	2,850						1970-73		1970-73
12353000	Clark Fork below Missoula	9,003	1929-P	1930-P		1977-82		1979-95	1979-95	1979-95
12353250	Ninemile Creek near Alberton	50.2		1972, 1974-82						
12353280	Ninemile Creek near Huson	170	1973-83	1974-83						
12353300	Clark Fork near Alberton	9,272	1959-63					1969-71		1970-71
12353400	Negro Gulch near Alberton	8.02		1959-73, 1984-91						
12353450	Fish Creek below West Fork, near Tarkio	242				1985-91				
12353500	Clark Fork at Tarkio	9,882	1945-49							
12353650	Clark Fork at Superior	10,210				1985-91				
12353800	Thompson Creek near Superior	12.2		1961-79, 1982						

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area			•	Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
	<u>Par</u>	t 12Pend (Oreille River	BasinConti	nued					
12353820	Dry Creek near Superior	46.3	1982-86	1982-91						
12353850	East Fork Timber Creek near Haugan	2.72		1961-75, 1979						
12353900	St. Regis River tributary near St. Regis	1.16	1959-61							
12354000	St. Regis River near St. Regis	303	1910-17, 1958-75, 2002-P	1911-17, 1934,1948, 1954, 1959-75, 2002-P		1985-91				
12354100	North Fork Little Joe Creek near St. Regis	14.7		1960-74						
12354500	Clark Fork at St. Regis	10,709	1910-P	1911-23, 1929-P		2002		1999-P		
12354700	Clark Fork near Paradise	10,794				1985-91				
12355000	Flathead River at Flathead, British Columbia	427	1929-95, 1999-P	1929-94, 2000-P		1975-91	1975-79, 1985-91,	1949-50, 1965,1970, 1975-93, 1999-P	1965,1970, 1975-93 1999-P	1970, 1975-93
12355100	Starvation Creek near Flathead, British Columbia	16.4	1986-87	1986-87						
12355150	Tuchuck Creek near Flathead, British Columbia	10.1	1986-88	1986-88						
12355350	Big Creek at Big Creek Ranger Station, near Columbia Falls	82.1		1964, 1973-91				1980	1980	
12355500	North Fork Flathead River near Columbia Falls	1,548	1910-17, 1929-P	1911-17, 1929-P	1976-79	1976-P	1976-79	1950,1970, 1976-79 1999-P	1976-79, 1999-P	1970, 1976-79
12355600	Middle Fork Flathead River at Schafer Ranger Station, near Essex							1970		1970
12355700	Middle Fork Flathead River near Essex	408	1957-61	1942-43, 1945-53, 1956-61, 1964						
12355900	Middle Fork Flathead River above Bear Creek, near Essex							1970		1970
12356000	Skyland Creek near Essex	8.09	1946-52	1946-52, 1954, 1959-75						
12356500	Bear Creek near Essex	20.4	1946-52	1946-52, 1964, 1975-91						
12357000	Middle Fork Flathead River at Essex	510	1940-53, 1956-64	1940-54, 1956-64						
12357300	Moccasin Creek near West Glacier	2.38		1959-75						
12357400	Middle Fork Flathead River tributary at West Glacier	0.14		1960-74						

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
	<u>Par</u>	t 12Pend (Oreille River	BasinCont	<u>inued</u>					
12357500	Middle Fork Flathead River at West Glacier	943	1911-23, 1929-33, 1943-48	1911-23, 1929-33, 1944-48						
12358000	McDonald Creek at Apgar	175	1912-14							
12358500	Middle Fork Flathead River near West Glacier	1,128	1939-P	1940-P				1949-50, 1970, 1998-P	1999-P	1970
12358900	South Fork Flathead River above Harrison Creek, near Swan Lake							1970		1970
12359000	South Fork Flathead River at Spotted Bear Ranger Station, near Hungry Horse	958	1948-57, 1959-67	1948-57, 1960-67						
12359500	Spotted Bear River near Hungry Horse	184	1949-56	1948-56, 1964						
12359800	South Fork Flathead River above Twin Creek, near Hungry Horse	1,160	1964-82, 1985-P	1964-82, 1985-P				1970		1970
12360000	Twin Creek near Hungry Horse	47.0	1948-56, 1965-67	1948-56, 1964-67						
12360500	Lower Twin Creek near Hungry Horse	22.4	1948-56	1948-56						
12360600	Soldier Creek near Hungry Horse	4.77	1965-67	1965-66						
12361000	Sullivan Creek near Hungry Horse	71.3	1948-56, 1959-76	1948-56, 1960-76						
12361500	Graves Creek near Hungry Horse	27.0	1948-56, 1965-67	1948-56, 1964-67						
12361600	Canyon Creek near Hungry Horse	5.8	1965-67	1965-66						
12361700	Goldie Creek near Hungry Horse	3.29	1965-67	1966						
12361880	Wounded Buck Creek near Hungry Horse	13.6	1965-67	1965-66						
12361950	Hungry Horse Creek near Hungry Horse	23.3	1969-72	1970						
12361960	Emery Creek near Hungry Horse	26.4	1965-67	1965-66						
12362000	Hungry Horse Reservoir near Hungry Horse	1,654	1951-P							
12362500	South Fork Flathead River near Columbia Falls	1,663	1910-16, 1923-P	1911-P		1964-68, 1979-P		1949-50		
12363000	Flathead River at Columbia Falls	4,464	1922-23, 1928-P	1894, 1922-23, 1928-P	1996-67, 1979-81	1949-50, 1963-67, 1979-P	1965-67	1949-50, 1963-67, 1970, 1979-94	1965,1967, 1979-94	1979-94
12363500	Flathead River near Kalispell	4,500					1968-69		1968	
12363900	Rock Creek near Olney	3.61		1961-75						
12363920	Stillwater River at Olney	146	1973-82	1973-82						
12364000	Logan Creek at Tally Lake, near Whitefish	183	1931-34, 1936-42, 1945-47	1936-42, 1945-47						
12364500	Logan Creek near Whitefish	199	1931							

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 12Pend C	Oreille River	BasinConti	inued					
12365000	Stillwater River near Whitefish	524	1930-50, 1972-P	1931-50, 1964, 1973-P						
12365500	Stillwater River near Kalispell	338	1907,1922, 1928-31							
12365800	Swift Creek near Whitefish	78.0	1973-81	1973-81						
12366000	Whitefish River near Kalispell	170	1928-50, 1972-P	1929-50, 1964, 1973-P				1999-P	1999-P	
12366100	Trumbull Creek near Columbia Falls	9.0		1997-P						
12367000	Ashley Creek near Kila	44.2	1916							
12367500	Ashley Creek near Kalispell	201	1931-50, 1972-74	1931-32, 1935-50, 1973-74				1969-70		1969-70
12367800	Ashley Creek below Kalispell							1969-70		1969-70
12368500	Flathead River at Therriault Ferry, near Kalispell		1934-45							
12369000	Flathead River near Bigfork	6,300	1909-12, 1928-37, 1939-45							1969-71
12369200	Swan River near Condon	69.1	1973-92	1973-92						
12369250	Holland Creek near Condon	22.3		1974-91						
12369650	North Fork Lost Creek near Swan Lake	13.0		1982-91						
12370000	Swan River near Bigfork	671	1910-11, 1922-P	1922-P		2000-Р		1999-P	1999-P	
12370500	Dayton Creek near Proctor	18.5		1959-91						
12370900	Teepee Creek near Polson	2.18	1983-87	1960-74, 1980, 1983-87				1983-85	1983-85	
12371000	Turtle Lake near Polson		1939-P							
12371100	Hell Roaring Creek near Polson	6.22	1917-32	1917-32, 1948, 1959-67, 1980						
12371500	Flathead Lake at Somers	7,086	1900, 1908-98							
12371550	Flathead Lake at Polson	7,086	1999-P					1969-71		1969-71
12372000	Flathead River near Polson	7,096	1907-P	1894, 1908-P		1977-83				
12372500	Little Bitterroot Lake near Marion	31.8	1939-P							
12373000	Little Bitterroot River near Marion	31.8	1910-16							
12373500	Hubbart Reservoir near Niarada	114	1939-P							

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

Station					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 12Pend (Oreille River	BasinCont	inued_					
12374000	Little Bitterroot River near Hubbart	134	1909-16							
12374250	Mill Creek above Bassoo Creek, near Niarada	19.6	1983-P	1983-P				1983-85	1983-85	
12374300	Mill Creek near Niarada	28.2		1959-73						
12374500	Little Bitterroot River near Niarada	223	1908-10, 1916-17							
12374800	Cromwell Creek near Niarada	14.3	1983-89	1983-89				1983-85	1983-85	
12374900	Garden Creek near Hot Springs	3.57		1959-73						
12375000	Upper Dry Fork Reservoir near Lonepine	8.53	1940-P							
12375500	Dry Fork Reservoir near Lonepine	17.8	1939-P							
12375800	Little Bitterroot River near Perma							1987-92	1987-92	
12375900	South Crow Creek near Ronan	7.57	1982-P	1983-P				1983-85	1983-85	
12376000	Crow Creek near Ronan	46.1	1906-17	1907-11, 1913-17						
12376500	Mud Creek near Ronan	30.4	1908-11							
12376700	Lower Crow Reservoir near Charlo		1939-P							
12376900	Crow Creek at mouth, near Ronan							1987-92	1987-92	
12377000	Crow Creek at Lozeaus ranch, near Ronan	139	1911-16							
12377150	Mission Creek above reservoir, near St. Ignatius	12.4	1982-P	1982-P				1983-85	1983-86	
12377200	Mission Reservoir near St. Ignatius		1939-P							
12377300	St. Mary's Lake near St. Ignatius		1939-P							
12377500	Dry Creek near St. Ignatius	24.7	1908-16	1909-16						
12377900	Pablo Reservoir near Polson		1939-P							
12378000	Mission Creek near St. Ignatius	74.8	1906-17	1907-17						
12378200	McDonald Reservoir near Charlo		1939-P							
12378300	Kicking Horse Reservoir near Charlo		1939-P							
12378400	Ninepipe Reservoir near Charlo		1939-P							
12378500 12379000	Post Creek at Fitzpatrick's ranch, near Ronan	28.4 29.7	1906-11							
	Post Creek at Deschamp's ranch, near Ronan	47.6	1911 1911-17							
12379500 12379600	Post Creek near St. Ignatius Mission Creek at National Bison Range, at Moiese	236	1911-17					 1987-92	 1987-92	
12379000 12380000	Upper Jocko Lake near Arlee	2.99	1968-P					1967-92	1907-92	
12380500	Lower Jocko Lake near Arlee	7.39	1906-F 1939-P							
12381000	Jocko River above South Fork, near Jocko	14.9	1939-1							
12381000	South Fork Jocko River near Arlee	56.0	1912-10 1982-P	1983-P				1983-86	1983-86	
12381500	Jocko River below South Fork, near Jocko	72.3	1912-16					1705-00		
12382000	Middle Fork Jocko River near Jocko	19.5	1912-16							
12382500	Falls Creek near Jocko	3.57	1912-16							
12383000	Jocko River near Jocko	140	1918-19							

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	l (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
	<u>Pa</u>	rt 12Pend (Dreille River	BasinConti	nued					
12383500	Big Knife Creek near Arlee	6.88	1910-16, 1983-P	1982-P				1983-85	1983-85	
12384000	Big Knife Creek near Jocko	7.44	1909-11							
12384500	Jocko River below Big Knife Creek, near Jocko	154	1909-16							
12386000	East Finley Creek near Jocko	5.48	1909-16						-	
12386500	Indian Ditch near Jocko		1909-16							
12387000	Finley Creek near Jocko	36.7	1909-16							
12387100	Agency Creek near Jocko	4.00	1909-16							
12387200	Blodgett Creek near Jocko	5.48	1909							
12387450	Valley Creek near Arlee	15.3	1983-P	1983-P				1983-85	1983-85	
12387500	Valley Creek near Ravalli	64.1	1909-10							
12388000	Jocko River at Ravalli	348	1907-11							
12388200	Jocko River at Dixon	380	1990-P	1990-P				1987-92	1987-92	
12388400	Revais Creek below West Fork, near Dixon	23.4	1983-P	1983-P				1983-85, 1991-92	1983-85 1991-92	
12388500	Revais Creek near Dixon	26.3	1911-19	1911-16, 1918-19						
12388650	Camas Creek near Hot Springs	4.46	1983-87	1983-87				1983-85	1983-85	
12388700	Flathead River at Perma	8,795	1984-P	1984-P		2000-Р		1971-73, 1984-92 1997-P	1984-92, 1999-P	1971-73
12389000	Clark Fork near Plains	19,958	1910-P	1912-P				1969-70		1969-70
12389150	McGregor Creek tributary near Marion	2.55		1972-82						
12389200	Thompson River near Marion	104						1975-76	1975-76	1975-76
12389300	Thompson River ab Little Thompson River, near Thompson Falls	321						1975-76	1975-76	1975-76
12389400	Little Thompson River near Thompson Falls	129						1975-76	1975-76	1975-76
12389450	West Fork Thompson River near Thompson Falls	35.7						1975-76	1975-76	1975-76
12389500	Thompson River near Thompson Falls	642	1911-16, 1956-P	1948, 1956-P				1975-76	1975-76	1975-76
12390000	Thompson Falls Reservoir at Thompson Falls	20,968	1939-P							
12390500	Prospect Creek near Thompson Falls	145	1911							
12390700	Prospect Creek at Thompson Falls	182	1956-P	1956-P						
12391000	Clark Fork at Thompson Falls	21,113	1952-59	1952-59				1963, 1969-73		1970-73
12391100	White Pine Creek near Trout Creek	8.75		1974-84						
12391200	Canyon Creek near Trout Creek	8.64		1972, 1974-91						
12391300	Noxon Rapids Reservoir near Noxon	21,833	1959-P							
12391400	Clark Fork below Noxon Rapids Dam, near Noxon	21,833	1960-P	1960-P						
12391420	Rock Creek near Noxon	32						1998	1998	

Table 10. Montana active and discontinued streamflow-gaging, water-quality, and crest-stage gage stations (active stations in bold print)--Continued

					Per	iod of record	d (by water ye	ar)		
		Drainage	Discharge	or contents			Water	quality		
Station	Station name	area				Daily			Periodic	
number		(square miles)	Daily or monthly	Annual peak	Specific conduct-ance	Water tempera- ture	Sediment	Chemistry	Sediment	Biology
		Part 12Pend C	Oreille Rive	r BasinCont	<u>inued</u>					
12391430	Skeleton Creek near Noxon	2.10		1973-84						
12391500	Bull River near Heron	45.7						1971		
12391525	Snake Creek near Noxon	3.11		1972-84						
12391550	Bull River near Noxon	139	1973-82	1973-82						

WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 STATION RECORDS, SURFACE WATER AND WATER QUALITY SASKATCHEWAN RIVER BASIN

05014300 SWIFTCURRENT CREEK ABOVE SWIFTCURRENT LAKE, AT MANY GLACIER, MT

 $LOCATION.--Lat~48^{\circ}47'43'', long~113^{\circ}40'45''~(NAD~27), in~NE^{1}/_{4}~sec.15, T.35~N., R.16~W., Glacier~County, Hydrologic~Unit~10010002, Glacier~National~Park, on left~bank~.7~mi~upstream~of~inlet~to~Swiftcurrent~Lake~at~Many~Glacier, and~12~mi~southwest~of~Babb.$

DRAINAGE AREA.--14.5 mi².

PERIOD OF RECORD.--May 1, 2003 to October 31, 2003.

GAGE.--Water-stage recorder. Elevation of gage is 4,920 ft (NGVD 29).

REMARKS.--Seasonal records good. No regulation or diversion upstream from station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

					D/1	ill i will i	· VILLOLO	•				
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5					e90 e90 e95 e100 e90	331 319 245 197 175	128 125 112 92 86	38 37 36 36 33	12 12 12 11	8.1 7.5 7.2 7.1 6.9		
6 7 8 9 10					e85 e80 e75 e70 e65	174 167 196 243 231	77 71 71 67 67	31 28 27 26 26	10 12 13 15	6.9 6.9 6.6 7.0 6.7		
11 12 13 14 15					e60 e60 e70 e90 e150	289 285 261 237 202	68 72 78 73 65	25 24 22 20 20	14 14 13 12	6.6 8.3 8.7 7.8 7.2		
16 17 18 19 20					e200 e160 e130 e100 e80	183 179 203 222 220	62 64 67 61 60	20 21 21 22 21	12 12 11 9.4 9.8	9.9 11 7.7 7.7 13		
21 22 23 24 25					e75 e75 e100 e200 e300	188 149 130 117 105	61 59 58 58 55	20 18 16 14 15	9.4 9.8 8.7 9.1	52 46 39 32 29		
26 27 28 29 30 31					e700 e450 395 476 422 287	110 129 133 128 125	52 47 45 42 40 39	15 13 13 15 15	8.2 7.9 8.3 8.0 8.3	24 20 28 32 27 23		
TOTAL MEAN MAX MIN AC-FT					5420 175 700 60 10750	5873 196 331 105 11650	2122 68.5 128 39 4210	701 22.6 38 13	327.9 10.9 15 7.9 650	510.8 16.5 52 6.6 1010		
STATIST	CICS OF MO	NTHLY MEA	N DATA FO	2003	SEASON							
MEAN MAX (WY) MIN (WY)					175 175 2003 175 2003	196 196 2003 196 2003	68.5 68.5 2003 68.5 2003	22.6 22.6 2003 22.6 2003	10.9 10.9 2003 10.9 2003	16.5 16.5 2004 16.5 2004		
SUMMARY	STATISTI	CS			FOR 200	3 SEASON						
LOWEST MAXIMUM	DAILY ME DAILY MEA PEAK FLO PEAK STA	N W			700 6.6 a900 a3.76	May 26 Oct 8 May 26 May 26						

a--About, from highwater mark.

e--Estimated.

05014500 SWIFTCURRENT CREEK AT MANY GLACIER, MT

LOCATION.--Lat 48°47'57", long 113°39'21" (NAD 27), in SE¹/₄ sec.11, T.35 N., R.16 W., Glacier County, Hydrologic Unit 10010002, Glacier National Park, on right bank 100 ft upstream from outlet of Swiftcurrent Lake at Many Glacier, and 11 mi southwest of Babb. DRAINAGE AREA.--30.9 mi².

PERIOD OF RECORD.--June 1912 to current year (records incomplete most years prior to 1959). Published as "at McDermott Lake" 1912-14. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1508: 1918(M), 1943. WDR MT-75-1: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 4,876.78 ft (NGVD 29). Prior to May 23, 1916, nonrecording gage on left bank of lake opposite present gage and at present elevation, and May 23, 1916, to June 15, 1918, nonrecording gage at present site and elevation.

REMARKS.--Records good. No regulation or diversion upstream from station. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

					DAIL	I MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	41 43 41 41 43	25 25 23 22 22	34 34 33 30 29	28 24 28 32 32	58 57 51 46 43	24 21 22 20 21	212 186 143 119 102	132 133 151 155 146	653 701 617 515 439	308 294 262 223 207	109 105 101 98 96	37 36 35 34 34
6 7 8 9 10	47 51 57 64 61	21 21 23 25 26	28 26 26 25 23	28 26 25 23 21	40 35 35 31 30	22 23 24 26 28	90 79 71 71 85	136 124 116 107 99	417 397 420 525 506	197 182 180 171 170	92 87 84 83 82	35 37 40 45 44
11 12 13 14 15	64 64 57 53 52	27 27 29 30 28	24 21 22 31 44	20 21 22 21 21	28 27 26 26 25	30 32 34 50 59	106 139 154 158 154	94 96 112 154 269	567 576 540 516 461	171 177 190 185 173	78 77 72 67 64	42 44 44 38 35
16 17 18 19 20	51 47 42 39 38	27 24 23 22 28	50 49 44 35 33	19 19 18 17	24 26 26 23 24	64 65 71 71 62	145 135 127 122 122	349 295 236 190 160	421 409 436 494 502	167 166 167 163 154	63 64 65 68 69	35 35 31 28 27
21 22 23 24 25	37 36 34 33 32	36 42 47 47 41	33 31 30 26 24	17 17 19 18 19	24 24 23 21 21	56 60 73 73 66	133 163 216 272 336	149 150 205 422 723	456 369 313 278 252	151 148 144 145 142	66 62 57 51 50	27 27 24 25 23
26 27 28 29 30 31	31 31 28 27 25 24	42 41 38 36 35	26 30 30 33 29 30	28 43 48 42 39 43	22 24 23 	60 57 52 48 46 105	353 299 230 185 152	1120 933 786 879 926 651	253 288 311 309 304	137 126 119 116 113 111	48 47 47 46 43 39	21 23 25 25 24
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1334 43.0 64 24 2650 1.39 1.61	903 30.1 47 21 1790 0.97 1.09	963 31.1 50 21 1910 1.01 1.16	795 25.6 48 17 1580 0.83 0.96	863 30.8 58 21 1710 1.00 1.04	1465 47.3 105 20 2910 1.53 1.76	4859 162 353 71 9640 5.24 5.85	10198 329 1120 94 20230 10.6 12.28	13245 442 701 252 26270 14.3 15.95	5359 173 308 111 10630 5.59 6.45	2180 70.3 109 39 4320 2.28 2.62	980 32.7 45 21 1940 1.06 1.18
STATIST	ICS OF MC	ONTHLY MEA	N DATA FO	OR WATER Y	YEARS 1912	- 2003,	BY WATER	YEAR (WY)	*			
MEAN MAX (WY) MIN (WY)	83.9 243 1948 19.5 1988	71.2 237 2000 13.0 1988	36.9 99.8 1981 13.6 1979	32.7 177 1918 10.1 1979	26.8 68.4 1995 6.93 1985	30.3 96.2 1986 9.71 1975	105 340 1934 16.9 1975	376 656 1928 205 1955	489 822 1975 193 1926	260 519 1916 114 1944	117 207 1916 57.4 1988	85.7 236 1968 32.5 2001
SUMMARY	STATISTI	ICS	FOR 2	2002 CALEN	IDAR YEAR	F	OR 2003 WA	TER YEAR		WATER YEARS	1912 -	2003**
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL ANNUAL 10 PERC 50 PERC		EAN EAN AN (MINIMUM DW AGE AC-FT) EFSM) ENCHES) EDS		57137 157 1200 15 15 113300 5.07 68.79 494 52 22			43144 118 1120 17 18 1180 4.90 85580 3.83 51.94 308 47 23	-		141 184 86.4 4130 a0.00 4.6 b6700 c10.00 101900 4.55 61.87 389 64	Nov 14 Nov 13 Jun 8	1976

^{*--}Only for complete months of operation (records incomplete most years prior to 1959).

^{**--}For complete water years only.
a--Result of pumping operations, Nov. 14-16, 1976.
b--From rating curve extended above 1,100 ft³/s, on basis of flow-over-dam computation.

c--From floodmarks.

05015500 LAKE SHERBURNE AT SHERBURNE, MT

(International gaging station)

LOCATION.--Lat 48°49'42", long 113°31'16" (NAD 27), in SE¹/₄SE¹/₄SE¹/₄sec.35, T.36 N., R.15 W., Glacier County, Hydrologic Unit 10010002, Blackfeet Indian Reservation, in gatehouse at dam on Swiftcurrent Creek, 4.5 mi southwest of Babb.

DRAINAGE AREA.--64.1 mi².

PERIOD OF RECORD.--May 1915 to September 1923 (fragmentary), May 1924 to September 1925, November 1925 to June 1926 September 1926 to March 1936 (no winter records some years), May 1936 to September 1952 (monthend contents and daily elevations). October 1952 to current year (monthend contents only). Monthend contents for some periods, published in WSP 1308. Published as Sherburne Lake Reservoir at Sherburne 1915, 1917-28, 1931-52, and as Sherburne Lake Reservoir near Babb 1929-30.

REVISED RECORDS.--W 1983: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 4,709.45 ft (NGVD 29). Prior to May 7, 1931, nonrecording gage at present site, and May 8, 1931, to Sept. 30, 1974, water-stage recorder at present site, all at elevation 9.45 ft lower.

REMARKS.--Reservoir is formed on a natural lake by earthfill dam completed in 1921. Prior to 1919, flashboards on a temporary dam provided limited storage. Storage behind main dam began in 1919. The following capacity figures are from capacity table effective Jan. 1, 1983; see previous reports for superseded figures. Usable capacity, 64,790 acre-ft between gage height 29.3 ft, 9.3 ft, above lowest outlet gage sill, and 88.00 ft, spillway crest. Streambed above gates prevents withdrawal of storage to sill elevation. Dead storage, 3,060 acre-ft below gage height, 29.30 ft. Figures given herein represent usable contents. Water is used for irrigation on Milk River project of Bureau of Reclamation. Bureau of Reclamation satellite telemeter at station.

COOPERATION .-- This is one of a number of stations which are maintained jointly by the United States and Canada.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 65,480 acre-ft, June 30, 1986, gage height, 88.40 ft; no usable contents at times.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 56,800 acre-ft, June 30, gage height, 83.11 ft; minimum, 895 acre-ft, Oct. 15, gage height, 30.88 ft.

MONTHEND ELEVATION AND CONTENTS AT 2400 HOURS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Elevation (feet)	Contents (acre-feet)	Change in Contents (acre-feet)
Sept. 30	41.07	8,120	
Oct. 31	34.51	3,220	-4,900
Nov. 30	38.16	5,850	+2,630
Dec. 31	41.38	8,370	+2,520
CALEND	AR YEAR 2002		-3,550
Jan. 31	44.14	10,680	+2,310
Feb. 28	46.48	12,740	+2,060
Mar. 31	51.66	17,590	+4,850
Apr. 30	50.20	16,180	-1,410
May 31	63.45	30,210	+14,030
June 30	83.05	56,720	+26,510
July 31	69.52	37,460	-19,260
Aug. 31	43.83	10,410	-27,050
Sept. 30	36.72	4,780	-5,630
WATER Y	YEAR 2003		-3,340

05016000 SWIFTCURRENT CREEK AT SHERBURNE, MT

LOCATION.--Lat 48°49'49", long 113°30'59" (NAD 27), in NW¹/₄SW¹/₄SW¹/₄ sec.36, T.36 N., R.15 W., Glacier County, Hydrologic Unit 10010002, Blackfeet Indian Reservation, on left bank 1,200 ft downstream from outlet of Lake Sherburne Dam at Sherburne and 4.2 mi southwest of Babb. DRAINAGE AREA.--64.6 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1912 to November 1915 (no winter records), March 1916 to October 1923, May 1924 to September 1981 (no winter records), March 1984 to current year (seasonal records only). Monthly discharge only for some periods, published in WSP 1308, 1728. Published as "at Sherburne Lake" 1912-14.

REVISED RECORDS.--WSP 1388: Drainage area. WSP 1508: 1935.

GAGE.--Water-stage recorder. Elevation of gage is 4,730.26 ft (NGVD 29). Prior to Aug. 10, 1920, nonrecording gages at two sites within 1,000 ft of present site at different elevations. Aug. 10, 1920, to May 17, 1921, nonrecording gage at present site and May 18, 1921, to Sept. 30, 1975, waterstage recorder at present site, all at elevation 9.45 ft lower.

REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. Flow regulated by Lake Sherburne (see preceding page). U.S. Geological Survey satellite telemeter at station.

AVERAGE DISCHARGE.--7 years (1916-23), 199 ft³/s, 144,200 acre-ft/yr, unadjusted.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

					2							
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			e2.0 e2.0 e2.0 e2.0 e1.7	e3.0 15 15 43 66	184 166 167 167 191	44 44 45 45 46	407 405 406 405 405	594 589 584 580 601	367 360 352 344 321	e0.30 e0.30 e0.30 e0.30 e0.30		
6 7 8 9 10			e1.7 e1.3 e1.3 e1.3 e1.5	104 131 178 213 212	223 240 253 252 251	46 46 46 47 47	406 405 460 494 549	610 605 599 592 585	303 296 291 284 278	e0.30 e0.30 e0.30 e0.25 e0.25		
11 12 13 14 15			e1.5 e1.7 e5.0 e4.0 e3.5	270 305 303 359 416	249 207 181 181 182	48 48 48 48	634 669 665 662 603	625 640 631 625 616	258 206 154 153 123	e0.25 e0.25 e0.25 e0.25 e0.25		
16 17 18 19 20			e3.0 e3.0 e3.0 e3.0	429 425 422 419 417	226 253 255 294 319	49 49 49 49 50	563 570 519 517 512	605 594 584 576 549	104 101 e0.50 e0.50 e0.50	e0.25 e0.25 e0.25 e0.25 e0.25		
21 22 23 24 25			e3.5 e3.0 e3.0 e3.0 e3.0	414 411 410 409 409	316 335 384 379 323	50 50 50 75 186	535 574 611 627 625	527 518 509 500 413	e0.50 e0.50 e0.40 e0.40 e0.40	e0.20 e0.20 e0.20 e0.20 e0.20		
26 27 28 29 30 31			e3.0 e3.0 e3.0 e3.0 e3.0	411 377 302 240 215	295 199 80 41 42 43	217 304 357 357 386	621 617 613 608 603 599	344 380 396 390 383 376	e0.40 e0.40 e0.40 e0.40 e0.40	e0.20 e0.20 703 801 590 330		
TOTAL MEAN MAX MIN AC-FT				8343.0 278 429 3.0 16550	6878 222 384 41 13640		16889	16720 539 640 344 33160	4300.70 143 367 0.40 8530	2430.80 78.4 801 0.20 4820		
STATIS	TICS OF MONT	THLY MEA	AN DATA	FOR SEASON	S 1924 - 2							
MEAN MAX (WY) MIN (WY)			78.1 407 1981 0.000 1954	220 644 1963 0.54 1967		373 973 1975 17.9 1963	435 970 1982 134 1956	526 756 1937 76.1 1988	362 792 1975 0.16 1992	98.2 477 1951 0.011 1975	a169 495 2000 4.91 2002	b86.1 172 2000 .048 1966
SUMMAR	Y STATISTICS	3		FOR	2003 SEASO	ON			SEASONS 1	924 - 2003*		
LOWEST MAXIMU	T DAILY MEAN DAILY MEAN M PEAK FLOW M PEAK STAGH	N E		801 0 1630 7	Oct .20 Sep Jul .48 Jul	29 21 17 17			2340 0.00 2510 8.63	Jun 12 1964 Oct 3 1935 Jun 7 1995 Jun 7 1995		

^{*--}During periods of seasonal operation (May 1924 to September 1981, March 1984 to current year).

a-Based upon 4 years of record (water years 1966, 1998, 2000, and 2002). b-Based upon 2 years of record (water years 1966 and 2000). e-Estimated.

05016000 SWIFTCURRENT CREEK AT SHERBURNE, MT--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--1990-92, 1996 to current year.

REMARKS.--Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office.

WATER QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)
OCT 2002								
03	1105	437	131	7.5	6.5	86	15	18
APR 2003 08	1315	214	138	9.5	1.5	67	77	44
MAY	1315	214	138	9.5	1.5	67	7.7	44
22	1105	316	137	8.0	8.0	93	9	7.7
JUN								
17	1320	49	96	25.0	13.0	99	4	.53
JUL								
01	1300	410	138	30.0	13.5	75	7	7.7
29	1520	607	111	25.0	18.5	59	4	6.6
SEP								
17	1330	104	88	8.5	8.0	82	4	1.1

05017500 ST. MARY RIVER NEAR BABB, MT

LOCATION.--Lat 48°50'00", long 113°25'08" (NAD 27), in NW¹/4NW¹/4SE¹/4 sec.34, T.36 N., R.14 W., Glacier County, Hydrologic Unit 10010002, Blackfeet Indian Reservation, on right bank 0.7 mi upstream from outlet of Lower St. Mary Lake and 2.0 mi southeast of Babb. DRAINAGE AREA.--276 mi².

PERIOD OF RECORD.--July 1901 to October 1902, May 1910 to September 1925, October 1950 to current year. Monthly discharge only for some periods, published in WSP 1308. Published as "at Main" in 1901-02, and as "below Swiftcurrent Creek, at Babb" 1910-15. Records published as "near Babb" for April 1902 to September 1915, May 1929 to September 1950 at sites about 1.5 mi downstream not equivalent because flow of Swiftcurrent Creek not included 1902-15 and because diversion by St. Mary Canal not included 1929-50.

REVISED RECORDS.--WSP 1308: 1913-14, 1920, 1922-24. WSP 1508: 1902.

GAGE.--Water-stage recorder. Elevation of gage is 4,468.13 ft (NGVD 29). Prior to Oct. 1, 1915, water-stage recorder or nonrecording gages at several sites about 3.8 mi downstream at different elevations. Oct. 1, 1915, to Sept. 30, 1925, water-stage recorder or nonrecording gages at several sites within 1.5 mi downstream at different elevations.

REMARKS.--Records good. Entire flow of Swiftcurrent Creek below Lake Sherburne is diverted into Lower St. Mary Lake upstream from station. Flow of Swiftcurrent Creek regulated by Lake Sherburne (station number 05015500) since 1919. October 1950 to September 1976, monthly discharge and runoff figures adjusted for change in contents in Lake Sherburne. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY ОСТ NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 77 73 77 171 843 62 ___ TOTAL 77.6 MEAN 76.0 98.3 MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA WATER YEARS 1951 2003, BY WATER YEAR (WY) FOR MEAN MAX (WY) 37.2 MTN 67.4 45.0 33.5 33.8 38.6 85.0 (WY) FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1951 - 2003* SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN Jun 30 May Jun LOWEST DAILY MEAN Jan Dec Jan Dec 21 ANNUAL SEVEN-DAY MINIMUM Jan Dec 30 MAXIMUM PEAK FLOW a16500 May Jun 4.98 MAXIMUM PEAK STAGE May b12.96 INSTANTANEOUS LOW FLOW Jan ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS

50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

^{*--}During periods of operation 1951 to current.

a--From rating curve extended above $6,000 \text{ ft}^3/\text{s}$ on basis of slope-area measurement of peak flow.

b--From highwater mark in well.

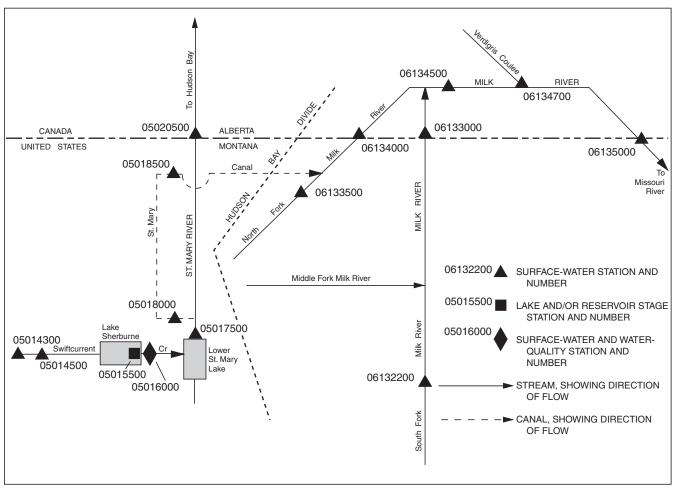


Figure 9. Schematic diagram showing diversion from St. Mary River in Part 5 to Milk River in Part 6.

05018000 ST. MARY CANAL AT INTAKE, NEAR BABB, MT

LOCATION.--Lat 48°51'10", long 113°24'57" (NAD 27), in SE¹/₄NW¹/₄NE¹/₄ sec.27, T.36 N., R.14 W., Glacier County, Hydrologic Unit 10010002, Blackfeet Indian Reservation, on right bank of canal 500 ft upstream from St. Mary intake structure, and 1.0 mi east of Babb.

PERIOD OF RECORD.--July 1918 to November 1951, May 1997 to current season (seasonal records only).

GAGE.--Water-stage recorder. Elevation of gage is 4,470 ft (NGVD 29). Prior to April 17, 1919, staff gage at site 300 ft upstream at different elevation.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Canal diverts water from left bank of St. Mary River near Babb and discharges into North Fork Milk River. This water flows in the natural channel of Milk River through Canada and then back into Montana where it is used for irrigation in Milk River Valley downstream from Havre, Montana. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 871 ft³/s, May 26, 27, 1936; no flow at times most seasons.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1			e1.0	6.2	623	714	708	687	430	11		
2			e1.5	6.2	618	711	711	686	406	11		
2			e1.2	5.7	616	709	711	686	372	10		
3			e1.2	5.6	614	706	710	685	371	9.6		
1 2 3 4 5												
5			e1.0	5.4	613	700	708	685	342	9.2		
6 7			e1.0	5.3	570	694	706	685	306	8.9		
7			e1.0	152	493	688	704	684	305	5.7		
8			e1.0	431	354	680	702	683	305	e1.5		
9			e1.0	489	272	648	702	682	305	e1.4		
10			e1.0	495	270	648	701	682	304	e1.2		
10			C1.0	400	270	040	701	002	304	C1.2		
11			e1.0	467	267	650	703	677	291	e1.1		
12			e1.2	445	315	679	706	679	219	e1.1		
13			e2.0	456	354	701	705	679	138	e1.0		
14			e5.0	457	386	700	699	679	138	e1.1		
15			e4.0	456	419	699	699	679	138	e1.1		
					117			075	150	C1.1		
16			3.1	455	420	696	698	672	138	e1.0		
17			3.3	456	422	697	700	677	137	e1.3		
18			2.5	456	427	711	698	676	74	e1.1		
19			2 5	457	427	714	695	670	17	e1.0		
20			2.5	458	427	727	694	643	16	e1.0		
				450					10	C1.0		
21			8.0 12	490	427	728	693	605	16	e1.0		
22			12	511	456	725	693	592	15	e1.0		
23			10	512	571	721	692	584	15	e1.0		
24			9.6	512	599	713	694	583	14	e1.0		
25			7.0	514	607	708	694	550	13	e1.0		
									13	C1.0		
26			6.0	520	623	704	694	467	13	e1.1		
27			7.7	540	657	701	693	440	12	e1.0		
28			7.1	597	700	702	692	438	12	e1.0		
29			6.9	630	710	705	690	436	11	e1.3		
30			7.3	627	712	705	689	434	11	e1.0		
31			7.8		717		688	431		e1.0		
31			7.0		/1/		000	431		e1.0		
TOTAL			127.2	11617.4	15686	20984	21672	19136	4884	91.7		
MEAN			4.10	387	506	699		617	163	2.96		
MAX			12	630	717	728	711	687	430	11		
MIN			1.0	5.3	267	648	688	431	11	1.0		
			252	23040	31110	41620	42990	37960	9690			
AC-FT			252	23040	31110	41020	42990	3/900	9090	182		

e--Estimated.

05018500 ST. MARY CANAL AT ST. MARY CROSSING, NEAR BABB, MT

(International gaging station)

LOCATION.--Lat 48°56′50″, long 113°22′28″ (NAD 27), in NE¹/₄SW¹/₄sec.19, T.37 N., R.13 W., Glacier County, Hydrologic Unit 10010002, Blackfeet Indian Reservation, on left bank 50 ft upstream from inlet of St. Mary siphon, 6.6 mi northeast of Babb, and 9 mi downstream from intake.

PERIOD OF RECORD.--July 1918 to current season (seasonal records only). Monthly discharge only for some periods, published in WSP 1308, 1728.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 4,450 ft (NGVD 29). Prior to June 14, 1951, water-stage recorder at several sites 0.8 mi downstream at different elevations.

REMARKS.--Records excellent. Canal diverts water from left bank of St. Mary River near Babb and discharges into North Fork Milk River. This water flows in the natural channel of Milk River through Canada and then back into Montana where it is used for irrigation in Milk River Valley downstream from Havre, Mt. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

COOPERATION .-- This is one of a number of stations which are maintained jointly by the United States and Canada.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 767 ft³/s, June 19, 28, 1936; no flow at times each season.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	569 569 565 562 562	643 639 636 632 629	636 636 639 639 636	618 614 614 614	403 392 345 343 326	0.00 0.00 0.00 0.00 0.00		
6 7 8 9 10			0.00 0.00 0.00 0.00	0.00 60 357 441 445	537 470 357 247 244	625 622 618 593 586	632 632 632 629 629	611 611 607 607 607	278 277 277 275 275	0.00 0.00 0.00 0.00		
11 12 13 14 15			0.00 0.00 0.00 0.00	431 399 413 413	242 268 321 339 385	586 600 629 629 625	629 629 629 625 625	607 604 604 604	271 226 138 135 134	0.00 0.00 0.00 0.00 0.00		
16 17 18 19 20			0.00 0.00 0.00 0.00	413 413 413 413	385 385 392 396 392	625 622 636 639 646	625 625 625 622 622	600 600 604 597 583	134 133 105 18 3.4	0.00 0.00 0.00 0.00 0.00		
21 22 23 24			0.00 0.00 0.00 0.00	434 466 466 470	392 406 509 547	650 650 646 643	618 622 622 618	544 537 526 526	2.0 1.7 1.1 0.92	0.00 0.00 0.00 0.00		
25 26 27 28 29			0.00 0.00 0.00 0.00	470 473 484 530 569	554 565 593 629 639	636 632 632 632	618 618 618 618	512 445 413 410 410	0.71 0.28 0.14 0.04 0.00	0.00 0.00 0.00 0.00		
30 31 TOTAL MEAN MAX MIN			0.00 0.00 0.00 0.000 0.00	572 10375.00 346 572 0.00	639 643 14303 461 643 242	636 18849 628 650 586	614 618 19398 626 639 614	410 406 17260 557 618 406	0.00 4495.29 150 403 0.00	0.00 0.00 0.00 0.00 0.00 0.00		
AC-FT			0.00	20580	28370	37390	38480	34240	8920	0.00		

05020500 ST. MARY RIVER AT INTERNATIONAL BOUNDARY

(International gaging station)

LOCATION.--Lat 49°00'43", long 113°17'57" (NAD 27), in NE¹/₄ sec.5, T.1, R.25 W., fourth meridian, in Alberta, Hydrologic Unit 10010002, on left bank 1.0 mi north of international boundary, 3.6 mi downstream from Boundary Creek, 6.5 mi southwest of Kimball, Alberta, and 13 mi northeast of Babb, MT.

DRAINAGE AREA.--465 mi².

PERIOD OF RECORD.--September 1902 to current year. Monthly discharge only for some periods, published in WSP 1308. Published as "near Cardston, Alberta" and "at Cook's Ranch, Alberta" 1902-12 and as "near Kimball, Alberta" 1913-55.

REVISED RECORDS.--WSP 1308: 1902, 1908-12. WSP 1508: 1902, 1908-9. W 1983: Drainage area.

GAGE.--Water-stage recorder. elevation of gage is 4,087.40 ft (NGVD 29) based upon levels from elevation established at previous site 1.1 mi upstream by Prairie Farm Rehabilitation Administration. Prior to Jan. 1, 1913, nonrecording gages at two sites within 0.3 mi of previous site at different elevations. Jan. 1, 1913, to Oct. 25, 1955, water-stage recorder at several sites about 7 mi downstream from present site at various elevations. Oct. 26, 1955, to Mar. 23, 1965, water-stage recorder at site 200 ft upstream from previous site at elevation 2 ft higher. Mar. 24, 1965, to Sept. 8, 1975, water-stage recorder at site 100 ft upstream from previous site at same elevation. Water-stage recorder at site 1.1 miles upstream June 22, 1975 to Oct. 31, 1999.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Since 1917, St. Mary Canal has diverted water from the river near Babb, MT, to North Fork Milk River. Some regulation by Lake Sherburne on Swiftcurrent Creek. Bureau of Reclamation satellite telemeter at station

COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

					DAIL	1 IVILIA	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	235 235 270	e160 e150 e150	e110 e110 e100	e86 e82 e80	e95 e100 e105	e90 e86 e90	373 370 423	749 647 556	2740 2640 2500	972 1020 1020	447 425 418	188 184 225
4 5	338 393	e140 e150	e100 e110	e80 e80	e110 e115	e90 e90	472 513	507 465	2250 2040	972 901	407 387	214 217
6 7	384 411	e160 e150	e110 e110	e78 e74	e120 e120	e110 e120	559 513	490 571	1850 1670	855 801	378 364	249 235
8 9 10	469 472 478	e140 e140 160	e100 e100 e95	e70 e72 e74	e125 e125 e125	e130 e140 e150	226 195 218	702 830 836	1540 1690 1770	760 744 727	347 337 329	233 234 225
11 12	453 451	155 153	e95 e95	e78 e78	e125 e125	e200 e600	248 332	812 718	1810 1760	741 786	316 321	217 250
13 14	434 414	153 151	e100 e95	e80 e80	e120 e120	e900 e800	399 464	603 527	1670 1600	802 820	323 311	303 284
15	387	148	e90	e82	e120	712	525	489	1540	813	297	265
16 17	344 313	143 e140	e85 e80	e82 e82	e115 e110	534 396	606 639	567 650	1490 1440	754 705	291 281	238 215
18	293	e140	e75	e80	e110	344	644	775	1390	649	269	212
19 20	278 263	e130 e130	e75 e75	e80 e78	e105 e110	306 284	648 626	831 856	1420 1500	606 575	257 254	247 238
21	248	e130	e70	e76	e110	269	600	856	1550	551	278	222
22 23	e230 e220	e120 e120	e70 e70	e76 e76	e110 e105	262 288	570 603	822 694	1470 1320	552 560	264 261	210 197
24	211	e110	e70	e76	e100	262	655	785	1120	575	239	184
25	210	e110	e65	e74	e95	262	764	1120	953	570	234	176
26 27	204 197	e100 e100	e65 e70	e80 e84	e96 e94	243 247	928 1060	1790 2220	853 791	576 557	245 236	170 159
28	e190	e100	e70	e85	e90	245	1030	2440	843	531	218	154
29 30	e175 e170	e110 e110	e80 e80	e85 e85		239 253	936 837	2560 2820	902 942	510 487	213 204	145 147
31	e160		e80	e90		374		2840		463	199	
TOTAL MEAN	9530 307	4053 135	2700 87.1	2463 79.5	3100 111	9116 294	16976 566	32128 1036	47054 1568	21955 708	9350 302	6437 215
MAX	478	160	110	90	125	900	1060	2840	2740	1020	447	303
MIN AC-FT	160 18900	100 8040	65 5360	70 4890	90 6150	86 18080	195 33670	465 63730	791 93330	463 43550	199 18550	145 12770
							, BY WATER					
MEAN	451	339	202	154	151	190	472	1673	2598	1326	597	488
MAX (WY)	1588 1952	1423 2000	844 1996	729 1918	411 1934	516 1916	1330 1934	3565 1928	7499 1908	3463 1916	1460 1909	1511 1927
MIN	88.4	80.3	64.3	55.5	41.6	54.7	136	678	694	496	246	153
(WY)	2002 Y STATIST	1988	2001	1944	1936 NDAR YEAR	2001	1975 FOR 2003 W	1941	1941	1988 WATER YEA	1988	1988
ANNUAL		ICS	FOR	351442	NDAR ILAR		164862	VAIER IEAR	·	WAILK ILA	KS 1902 -	2003
ANNUAL HIGHES				963			452			719 1353 316		1908 1941
HIGHES	r daily Mi	EAN		6970	Jun 30		2840	May 3	31	28000	Jun 5	1908
	DAILY MEA	AN Y MINIMUM		65 69	Dec 25 Dec 21		65 69	Dec 2 Dec 2	15 21	28000 16 27 c40000 d13.4	Nov 29 Nov 26	
	M PEAK FLO						a2890 b9.9	May 3	31	c40000	Jun 5 6 Jun 21	
ANNUAL	RUNOFF (AC-FT)		697100			327000	o Mar 1		320000	o oun 21	19/3
	CENT EXCE			3410 253			972 247			1820 360		
	CENT EXCE			99			81			110		

05020500 ST. MARY RIVER AT INTERNATIONAL BOUNDARY--Continued

SUMMARY STATISTICS	WATER YEARS 1902 - 1916*	WATER YEARS 1917 - 2003**
ANNUAL MEAN	1002	673
HIGHEST ANNUAL MEAN	1353	1285 1927
LOWEST ANNUAL MEAN	646	316 1941
HIGHEST DAILY MEAN	28000 Jun 5 1908	17000 Jun 9 1964
LOWEST DAILY MEAN	70 Feb 5 1914	16 Nov 29 1936
ANNUAL SEVEN-DAY MINIMUM	75 Feb 1 1914	27 Nov 26 1936
MAXIMUM PEAK FLOW	c40000 Jun 5 1908	23300 Jun 21 1975
MAXIMUM PEAK STAGE	f12.75 Jun 5 1908	d13.46 Jun 21 1975
ANNUAL RUNOFF (AC-FT)	726000	491600
10 PERCENT EXCEEDS	2470	1700
50 PERCENT EXCEEDS	538	338
90 PERCENT EXCEEDS	150	106

^{*--}Before St. Mary Canal diversions.

**--Post operation of St. Mary Canal.
a--Gage height, 6.35 ft.
b--Backwater from ice jam.
c--Gage height, 12.75 ft, from rating curve extended above 6,000 ft³/s.d--From floodmarks
e--Estimated.
f--From floodmarks at site and datum then in use.

RED ROCK RIVER BASIN

06006000 RED ROCK CREEK ABOVE LAKES, NEAR LAKEVIEW, MT

 $LOCATION.--Lat\ 44^{\circ}36'56", long\ 111^{\circ}37'42"\ (NAD\ 27), in\ NE^{1}/_{4}SE^{1}/_{4}NW^{1}/_{4}\ sec.\ 17, T.14\ S., R.1\ E., Beaverhead\ County,\ Hydrologic\ Unit\ 10020001, on\ right\ bank\ 0.2\ mi\ downstream\ from\ Red\ Rock\ Lakes\ National\ Wildlife\ Refuge\ boundary,\ 9.1\ mi\ east\ of\ Lakeview,\ and\ at\ river\ mile\ 2,602.2.$ DRAINAGE AREA.--39.2 mi².

PERIOD OF RECORD.--July 1997 to current year (seasonal records only).

GAGE.--Water-stage recorder. Elevation of gage is 6,670 ft (NGVD 29).

REMARKS.--Seasonal records good. Diversion for use by Wildlife Refuge about 1.5 mi upstream from station. Several observations of water temperature and specific conductance were made during the year. U.S. Geological Survey satellite telemeter at station.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

								-				
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5				20 21 15 13	18 17 21 25 22	112 103 91	34 33 30 30 30	25 25 24 25 25	18 18 18 18	17 17 17 17 17		
6 7 8 9 10				14 14 14 17 22	22 20 18 18 18	73 71 73	29 29 29 28 27	24 23 23 23 22	19 18 19 18	17 17 17 17 19		
11 12 13 14 15				26 25 22 22 24	18 20 21 20 20	64 56 55	27 26 26 26 25	22 21 21 21 21	18 18 18 18	17 18 18 17 17		
16 17 18 19 20				18 17 18 17	23 24 26 23 22	47 46 47	24	22	19 19 19 19	17 17 17 17 17		
21 22 23 24 25				16 16 23 18 20	22 23 28 42 70	45 44 45	24 23	20 19	18 18 18 18	17 17 17 16 16		
26 27 28 29 30 31				20 18 19 21 21	97 108 117 135 129 129	39 38 36 35	31 28	19 19	18 17 17 17 17	16 16 16 17 12 e12		
TOTAL MEAN MAX MIN AC-FT				561 18.7 26 13 1110	1316 42.5 135 17 2610	60.7 122 35	835 26.9 34 23 1660	664 21.4 25 19 1320	544 18.1 19 17 1080	516 16.6 19 12 1020		
STATISTICS	S OF MONT	HLY MEAN	DATA FOR									
MEAN MAX (WY) MIN (WY)				26.9 35.6 2000 18.7 2003	57.4 90.3 1998 37.8 2002	192 1999 30.5	58.2 110 1999 24.7 2001	36.4 56.7 1999 19.3 2001	29.6 43.0 1997 17.4 2001	26.0 37.6 1998 16.3 2002		
SUMMARY S	TATISTICS			I	FOR 2003	SEASON		SI	EASONS 199	7 - 2003		
HIGHEST DA LOWEST DA MAXIMUM PI MAXIMUM PI INSTANTANI	ILY MEAN EAK FLOW EAK STAGE				135 12 149 4.19 a9.2	May 31 Oct 30 May 31 May 31 Oct 30		25 b29	70 Jun 12 Oct 93 Jun 5.34 Jun 28.9 Oct	22 1999 30 2003 10 1997 22 1999 25 2001		

a--Gage height, 2.43 ft, result of freezeup. b--Gage height, 3.93 ft, from crest-stage gage at miscellaneous site downstream. c--Gage height, 2.48 ft, result of freezeup.

e--Estimated.

RED ROCK RIVER BASIN

06012500 RED ROCK RIVER BELOW LIMA RESERVOIR, NEAR MONIDA, MT

LOCATION.--Lat 44°39'22", long 112°22'14" (NAD 27), in NE¹/₄SE¹/₄SE¹/₄ sec. 31, T.13 S., R.6 W., Beaverhead County, Hydrologic Unit 10020001, on right bank just downstream from Lima Reservoir, 7 mi northwest of Monida, and at river mile 2,542.1.

DRAINAGE AREA.--570 mi².

PERIOD OF RECORD.--January 1911 to December 1918, April 1919, May 1925 to October 1933, April 1934 to September 1935, May 1936 to October 1938, May 1939 to September 1969, seasonal records only June 1974 to September 1982 and April 1985 to current year. Monthly discharge only for some periods, published in WSP 1309. Prior to October 1950, published as "below Red Rock Reservoir".

REVISED RECORDS.--WSP 1309: 1935. WSP 1389: 1912, 1934. WSP 1559: Drainage area.

GAGE.--Water-stage recorder and sharp-crested weir. Elevation of gage is 6,530 ft (NGVD 29), estimated from spillway elevation based on Montana Department of Natural Resources and Conservation elevation. Prior to Oct. 1, 1978, at elevation 1.00 ft higher. See WSP 1709 for history of nonrecording gage changes prior to May 8, 1939.

REMARKS.--Seasonal records good. Flow regulated by Lima Reservoir (station number 06012000). No storage during 1934. Diversions for irrigation of about 10,000 acres upstream from reservoir. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of May 1984 reached a discharge of 1,500 ft³/s, gage height, 5.15 ft, from floodmarks.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5				0.00 0.00 0.00 0.00	27 28 28 28 28	614 612 610 609 608	123 77 24 25 27	22 21 21 21 21	5.0 4.9 4.1 3.0 2.5	3.6 3.6 4.2 4.5 4.6		
6 7 8 9 10				0.00 0.00 0.00 0.00	27 27 27 27 27	607 601 596 594 590	28 28 30 30 30	20 19 18 19	2.1 1.6 1.9 2.6 3.1	4.8 4.9 4.9 4.9 5.0		
11 12 13 14 15				0.00 0.00 0.00 0.00	27 27 27 27 27	586 583 576 571 567	30 30 29 29 29	11 7.0 6.5 7.1 7.8	3.5 3.4 3.6 3.5 3.1	5.1 5.5 5.5 5.6 5.2		
16 17 18 19 20						551 541 540 532 522						
21 22 23 24 25				0.00 0.00 0.00 0.00 e15	130 130 192 250 332	514 504 493 484 473	28 26 24 23 23	7.9 7.9 7.4 7.1 7.5	2.3 2.5 2.5 2.7 2.8	5.6 5.7 5.8 5.8 5.9		
26 27 28 29 30 31				27 27 27 27 27 27	372 373 371 455 503 583	460 444 426 294 127 	23 22 22 23 23 22	7.3 7.1 6.6 6.3 6.3 5.7	3.0 3.6 3.6 3.7	5.9 6.0 6.6 6.4 6.3 6.4		
TOTAL MEAN MAX MIN AC-FT				150.00 5.00 27 0.00 298	4267 138 583 27 8460	15829 528 614 127 31400	971 31.3 123 22 1930	356.6 11.5 22 5.7 707	89.2 2.97 5.0 1.6 177	168.0 5.42 6.6 3.6 333		
	CICS OF MO	NTHLY MEA	N DATA FO	R WATER Y	EARS 191	1 - 1969 AM	ND SEASO	NS 1974 -	2003*			
MEAN MAX (WY) MIN (WY)	21.5 57.9 1928 0.00 1932	19.9 55.3 1928 0.00 1932	18.8 48.0 1918 0.00 1932	91.7 571 1913 0.00 1980	337 948 1917 26.2 1934	460 754 1917 4.62 1934	288 652 1982 0.63 1934	192 513 1982 0.00 1934	133 384 1995 0.00 1937	79.7 430 1917 0.00 1932	54.0 353 1913 0.00 1932	28.0 97.6 1926 0.00 1932
	STATISTI	CS	FOR 2	003 SEASO	N	WATER Y	EARS 191	1 - 1969*		SEASONS	3 1974 - 20	
30 I DICO	MEAN ANNUAL ME ANNUAL ME DAILY ME DAILY MEA SEVEN-DAY I PEAK FLO I PEAK STA RUNOFF (A ENT EXCEE ENT EXCEE	20	614 .0 641 3.5	Jun 1 0 Apr 1 May 31 7 May 31		143 271 59.5 a2500 0.00 a2500 6.40 103300 449 56 8.0	May 15 Oct 1 Oct 1 May 15 May 15	1913 1935 1933 1931 1931 1933 1933		946 .00 b946 4.00	May 28 197 Oct 9 197 May 28 197 Jun 26 198	5 8 5 1

^{*--}During periods of operation (January 1911 to December 1918, April 1919, May 1925 to October 1933, April 1934 to September 1935, May 1936 to October 1938, May 1939 to September 1969, June 1974 to September 1982, April 1985 to current year; seasonal records beginning water year 1974). a--Observed, estimated by dam tender; released to prevent dam failure. b--Gage height, 3.38 ft, datum then in use.

e--Estimated.

06015300 CLARK CANYON RESERVOIR NEAR GRANT, MT

LOCATION.--Lat 45°00'06", long 112°51'27" (NAD 27), in SE¹/₄SW¹/₄ sec 32, T.9 S., R.10 W., Beaverhead County, Hydrologic Unit 10020001, in shaft house near left end of dam on Beaverhead River, 1.5 mi upstream from Clark Canyon Creek, 10 mi east of Grant, and at river mile 2,483.9.

DRAINAGE AREA.--2,321 mi².

PERIOD OF RECORD.--May 1964 to current year (monthend contents only). Records of daily elevations are in files of Helena district.

GAGE.--Water-stage recorder in shaft house. Elevation of gage is 5,455 ft (NGVD 29) (levels by Bureau of Reclamation).

REMARKS.--Reservoir is formed by zoned earthfill dam with concrete control works and spillway completed in October 1964. Storage began Aug. 28, 1964 (uncontrolled storage began June 10, 1964). Capacity table effective Oct. 1, 2001. Elevations are referenced to the National Geodetic Vertical Datum of 1929. Usable capacity, 253,400 acre-ft between elevation 5,470.60 ft, invert of outlet works, and 5,560.40 ft, top of flood control. Dead storage, 1,060 acre-ft, below elevation 5,470.60 ft. Normal operating level, 174,400 acre-ft at elevation 5,546.10 ft. Minimum operating level, 1,060 acre-ft at elevation 5,470.60 ft. Figures given herein represent usable contents. Total contents published in previous water-supply papers and annual reports for May 1964 to September 1975. Water is used for irrigation, flood control, and recreation.

COOPERATION .-- Elevations and capacity table furnished by Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 283,000 acre-ft, June 25, 1984, elevation, 5,564.70 ft; minimum since normal operating level was reached, 9,660 acre-ft, Aug. 18, 19, 2003, elevation, 5,490.01 ft

EXTREMES FOR CURRENT YEAR.--Maximum contents, 71,940 acre-ft, May 15, elevation, 5,522.15 ft; minimum, 9,660 acre-ft, Aug. 18, 19, elevation, 5,490.01 ft.

MONTHEND ELEVATION AND CONTENTS AT 2400 HOURS, SEPTEMBER 2002 TO SEPTEMBER 2003

Date	Elevation (feet)	Contents (acre-feet)	Change in Contents (acre-feet)
Sept. 30	5,595.69	15,840	
Oct. 31	5,501.38	23,910	+8,070
Nov. 30	5,506.90	33,670	+9,760
Dec. 31	5,510.90	41,990	+8,320
CALENI	DAR YEAR 2002		-17,570
Jan. 31	5,514.14	49,550	+7,560
Feb. 28	5,516.78	56,290	+6,740
Mar. 31	5,520.05	65,510	+9,220
Apr. 30	5,521.63	70,320	+4,810
May 31	5,519.47	63,810	-6,510
June 30	5,509.77	39,540	-24,270
July 31	5,494.64	14,560	-24,980
Aug. 31	5,490.48	10,100	-4,460
Sept. 30	5,494.82	14,780	+4,680
WATER	YEAR 2003		-1,060

06016000 BEAVERHEAD RIVER AT BARRETTS, MT

LOCATION.--Lat 45°06′59", long 112°44′59" (NAD 27), in SE¹/₄SW¹/₄SE¹/₄ sec.19, T.8 S., R.9 W., Beaverhead County, Hydrologic Unit 10020002, on left bank 1.4 mi upstream from Barretts, 2.2 mi downstream from Grasshopper Creek, 8.9 mi southwest of Dillon, and at river mile 2,469.2.

DRAINAGE AREA.--2,737 mi².

PERIOD OF RECORD.--August 1907 to September 1986, October 1986 to current year (seasonal records only). Monthly discharge only for some periods, published in WSP 1309. Prior to October 1963, published as "at Barratts".

REVISED RECORDS.--WSP 1279: 1908(M), 1910-12(M), 1929(M), 1935-36. WSP 1559: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 5,268.17 ft (NGVD 29). Prior to Oct. 19, 1934, nonrecording gages at same site and elevation.

REMARKS.—Seasonal records good. Some regulation by Lima Reservoir (station number 06012000) and nearly complete regulation by Clark Canyon Reservoir (station number 06015300) since August 1964. Diversions for irrigation of about 90,000 acres above station. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

\ DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			91 89 90 90 91	126 131 120 109 105	155 155 153 173 170	804	399 432 470 511 517	411 407 413 421 382	132 122 91 80 78	88 81 78 78 79		
6 7 8 9 10			92 92 94 95 101	107 105 102 106 120	148 135 129 125 122	772 794 786 801 847	516 521 543 569 605	357 362 375 369 366	78 78 79 79 79	80 80 82 83 87		
11 12 13 14 15			194	128 130 137 147 142	114 114 122 121 140	860 858 845 820 809	651 705 727 746 759	355 333 318 303 262	78 77 77 78 77	85 88 88 89 90		
16 17 18 19 20			222 183 146 119 111	129 121 124 121 115	175 218 220 241 283	796 769 748 737 738	774 773 768 745 667	211 191 184 169 155	77 79 81 81 81	93 95 95 95 92		
21 22 23 24 25			111 110		330 376 428 475 514		590 584 580 583 577		81 80 80 81 83	94 92 94 95 94		
26 27 28 29 30 31			104 95 98 97 101			387 372 353 356 373		136 134 133 132 132 132				
TOTAL MEAN MAX MIN AC-FT			3804 123 271 89		9479 306 806 114	20510 684 860 353 40680			2507 83.6 132 77	2786 89.9 110 78		
STATIST						- 1986 AN						
MEAN MAX (WY) MIN (WY)	293.2 547 1984 120 1932	289.7 513 1984 132 1975	325 934 1910 111 2002	441 1347 1913 123 1934	613 1913 1917 131 1934	804 2608 1908 146 1934	567 2147 1984 95.5 1934	461 1929 1984 96.1 1934	345 1645 1984 76.2 2002	352 1093 1985 76.8 2003	408.7 889 1913 138 1975	345.8 645 1984 133 1975
SUMMARY						SEASONS				WATER YEA		
10 PERCI	MEAN ANNUAL ME ANNUAL ME DAILY ME BALLY MEA SEVEN-DAY PEAK STA ANEOUS LO RUNOFF (A ENT EXCEE ENT EXCEE	DS DS	860 77 871 2.21 a73	Jun 11 Sep 12 May 30 May 30 Sep 04		1640 64 1650 3.25	Jul 26 Sep 11 Jul 25 Jul 25	5 1995 1 2002 5 1995 5 1995		441 1101 168 3640 64 64 3720 6.10 b61 319200 836 347 182	Jun : Sep : Jun : Jun : Sep :	1984 1934 19 1908 11 2002 2002 20 1908 20 1908 15 2002

06016000 BEAVERHEAD RIVER AT BARRETTS, MT--Continued

SUMMARY STATISTICS	WATER YEARS	1908-1986**	WATER YEARS 1908-1964***	WATER YEARS	1965-1986****
ANNUAL MEAN	441		401	543	
HIGHEST ANNUAL MEAN	1101	1984	738 1913	1101	1984
LOWEST ANNUAL MEAN	168	1934	168 1934	293	1967
HIGHEST DAILY MEAN	3640	Jun 19 1908	3640 Jun 23 1908	2930	Jun 23 1984
LOWEST DAILY MEAN	80	Jan 22 1962	80 Jan 22 1962	110	Jan 29 1975
ANNUAL SEVEN-DAY MINIMUM	81	Sep 11 1934	81 Sep 11 1934	119	Jan 28 1975
MAXIMUM PEAK FLOW	3720	Jun 2 1908	3720 Jun 20 1908	3000	Jun 22 1984
MAXIMUM PEAK STAGE	6.10	Jun 2 1908	6.10 Jun 20 1908	5.04	Jun 22 1984
INSTANTANEOUS LOW FLOW	b69	Jan 30 1939	b69 Jan 30 1939		
ANNUAL RUNOFF (AC-FT)	319200		290500	3933700	
10 PERCENT EXCEEDS	830		676	1000	
50 PERCENT EXCEEDS	344		330	454	
90 PERCENT EXCEEDS	177		179	190	

^{*--}Seasonal records after 1986 water year.

**--Annual record.

***--Prior to Clark Canyon Dam construction.

****--After Clark Canyon Dam construction.

a--Gage height, 0.41 ft.

b--Gage height, 0.33 ft.

06017000 BEAVERHEAD RIVER AT DILLON, MT

LOCATION.--Lat 45°13'05", long 112°39'18" (NAD 27), in NW¹/₄NE¹/₄NW¹/₄ sec.24, T.7 S., R.9 W., Beaverhead County, Hydrologic Unit 10020002, on right bank 0.2 mi downstream from West Side Canal and county road bridge, at Dillon, and at river mile 2,456.1. DRAINAGE AREA.--2.895 mi².

PERIOD OF RECORD.--August to September 1907 (gage heights only), October 1950 to September 1952, September 1963 to September 1971, April 2002 to current year (seasonal records only).

GAGE.--Water-stage recorder. Elevation of gage is 5,100 ft (NGVD 29). Prior to Sept. 30, 1952, nonrecording gages at same site at different elevation. REMARKS.--Seasonal records good. Some regulation by Lima Reservoir (station number 06012000) and nearly complete regulation by Clark Canyon Reservoir (station number 06015300) since August 1964. Diversions for irrigation of about 125,500 acres, of which about 23,000 acres lies downstream from station. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5				140 149 144 135 129	107 126 120 125 126	235 231 184 195 181	114 119 114 165 183	164 164 168 197 182	85 98 109 100 95	91 84 89 95 84		
6 7 8 9 10				126 126 119 84 99	105 96 91 88 85	195 221 203 189 219	182 178 174 154 178	152 134 139 129 114	93 94 94 95 94	77 81 82 91 99		
11 12 13 14 15				116 118 118 131 131	82 83 95 90 82	222 240 248 226 223	184 217 220 216 212	127 126 130 120 139	94 88 88 93 89	97 96 98 100 104		
16 17 18 19 20				124 108 85 76 69	78 89 88 89 105	227 243 227 221 234	213 217 222 243 271	133 126 130 120 110	89 88 93 87 86	107 109 111 108 108		
21 22 23 24 25				68 68 74 74 77	96 103 128 211 153	277 240 200 172 130	288 251 234 237 251	99 98 94 93 95	88 82 76 74 75	106 109 107 114 113		
26 27 28 29 30 31				90 83 71 78 79	180 169 173 200 226 234	115 108 88 84 87	239 208 176 173 170 164	93 88 88 86 88 85	82 82 83 82 87	112 114 114 116 125 124		
TOTAL MEAN MAX MIN AC-FT				3089 103 149 68 6130	3823 123 234 78 7580	5865 196 277 84 11630	6167 199 288 114 12230	3811 123 197 85 7560	2663 88.8 109 74 5280	3165 102 125 77 6280		
STATIST	rics of Moi	NTHLY MEAN	I DATA	FOR WATER	YEARS 195	1 - 1971 2	AND SEASO	NS 2002 -	2003*			
MEAN MAX (WY) MIN (WY)	372 462 1971 221 1967	385 539 1971 218 1967	388 606 1969 204 1967	1078	295 742 1969 110 2002	372 1157 1964 126 2002	245 493 1971 67.1 1951	232 475 1965 123 2003	315 796 1965 88.8 2003	297 680 1966 102 2004	457 700 1966 230 1965	429 613 1966 226 1967
SUMMARY	Y STATISTI	CS		FOR 2003 S	EASON	SEASONS	3 2002 -	2003	WATER Y	EARS 1951	L - 1971*	
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MINSTANT ANNUAL 10 PERC 50 PERC	MEAN I ANNUAL ME ANNUAL ME ANNUAL ME DAILY ME DE	AN AN N MINIMUM S E W FLOW C-FT) OS		288 Ju 68 Ap 317 Ju 4.56 Ju	r 21	288 52 317 4.56			2.0	Jun Jun Jun Jun Jun Jun Jun Jun Jun	1971 1967 21 1964 19 1952 27 1951 21 1964 21 1964 19 1952	

^{*--}During periods of operation (October 1950 to September 1952, September 1963 to September 1971, April 2002 to current year (seasonal records only).
a--Observed.

06018500 BEAVERHEAD RIVER NEAR TWIN BRIDGES, MT

LOCATION.--Lat 45°23'01", long 112°27'07" (NAD 27), in SW¹/4NW¹/4SE¹/4 sec.22, T.5 S., R.7 W., Madison County, Hydrologic Unit 10020002, on left bank at downstream side of bridge on State Highway 41, 11.5 mi upstream from Ruby River, 12.7 mi southwest of Twin Bridges, 14.5 mi northeast of Dillon, and at river mile 2,430.4.

DRAINAGE AREA.--3,619 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--August 1935 to current year. Prior to October 1968, published as "at Blaine."

REVISED RECORDS.--WSP 1309: 1938(M), 1945(M). WSP 1559: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 4,809.15 ft (NGVD 29). Prior to Feb. 17, 1949, nonrecording gage at bridge 0.5 mi upstream at different elevation. Feb. 17, 1949, to June 28, 1951, nonrecording gage at present site and elevation.

REMARKS.--Water-discharge records good. Flow partly regulated by Lima Reservoir (station number 06012000) and Clark Canyon Reservoir (station number 06015300) since August 1964. Diversions upstream from station for irrigation of about 135,400 acres of which about 5,000 acres are irrigated by imported water from Birch and Willow Creeks and of which about 9,200 acres lies downstream from station including 600 acres in Ruby River drainage. Bureau of Reclamation satellite telemeter at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
164	219	238	204	231	214	227	185	112	87	87	87
169	220	238	203	247	202	246	228	129	101	81	80
175	227	242	213	243	213	246	226	102	82	93	89
171	237	244	211	228	202	226	222	78	90	111	83
170	235	244	212	211	208	217	241	76	105	119	81
171	227	243	206	211	216	212	215	63	92	115	100
183	231	228	204	201	221	211	197	78	91	98	93
186	237	210	201	222	217	199	183	79	81	94	102
185	242	210	184	209	221	184	159	64	62	99	119
188	240	220	171	215	230	166	154	63	37	107	123
184	238	218	187	212	248	180	146	76	49	91	134
180	235	216	206	209	272	179	143	80	68	102	134
174	237	220	210	215	300	177	151	94	67	87	125
181	239	227	207	215	376	197	136	104	71	84	118
189	240	235	209	212	416	217	122	100	71	81	117
191	242	236	190	214	345	214	113	114	63	92	114
190	242	236	183	216	337	195	109	97	70	92	127
194	241	201	194	213	297	186	107	100	67	102	143
192	239	186	203	211	275	170	105	90	80	132	160
195	241	181	211	212	258	157	111	93	91	123	170
195	246	210	209	210	251	144	92	220	120	93	148
196	248	208	185	214	247	138	78	257	115	93	136
206	253	208	210	163	247	139	65	248	112	83	121
213	252	190	208	166	251	145	119	227	105	76	101
212	230	131	205	166	239	147	90	193	119	69	102
208 207 209 226 203 203	222 238 241 251 244	151 199 220 214 194 212	206 219 220 214 219 220	198 197 198 	236 226 219 215 213 221	181 171 151 145 167	94 87 82 84 80 116	164 161 143 124 99	149 153 119 114 104 91	70 62 59 60 81 87	101 104 113 124 135
5910	7134	6610		5859	7833	5534	4240	3628	2826	2823	3484
191	238	213		209	253	184	137	121	91.2	91.1	116
226	253	244		247	416	246	241	257	153	132	170
164	219	131		163	202	138	65	63	37	59	80
11720	14150	13110		11620	15540	10980	8410	7200	5610	5600	6910
TICS OF M	ONTHLY ME	AN DATA	FOR WATER	YEARS 1935	- 2003	, BY WATE	R YEAR (WY)				
445	549	484	409	423	473	476	313	385	281	247	382
1328	1065	852	725	707	799	1251	1117	1615	1586	1581	1691
1985	1985	1984	1976	1984	1972	1969	1984	1984	1984	1984	1984
32.4	238	208	173	199	207	95.5	40.8	24.2	28.0	25.8	28.1
1938	2003	2002	1937	2002	2002	1961	1937	1940	1937	1937	1937
Y STATIST	ICS	FOR	2002 CAL	ENDAR YEAR	I	FOR 2003	WATER YEAR		WATER YEARS	3 1935 -	2003
MEAN T ANNUAL M ANNUAL M T DAILY ME SEVEN-DA M PEAK FL M PEAK ST TANEOUS L CENT EXCE CENT EXCE	EAN EAN AN Y MINIMUM OW AGE OW FLOW AC-FT) EDS EDS			Nov 23 Jun 20 Jun 16		186	Mar 15 Jul 10 Jul 9 Mar 15 95 Mar 15 Jul 10		386		1940 1954 1944 1984
	164 169 175 171 170 171 183 186 185 188 184 180 174 181 189 191 190 194 192 195 195 196 206 213 212 208 207 209 226 203 203 5910 191 226 164 11720 TICS OF Me 445 1328 1985 32.4 1938 Y STATIST TOTAL MEAN T DAILY ME. SEVEN-DA M PEAK STL TOTAL ANNUAL M T DAILY ME. SEVEN-DA M PEAK STL TANEOUS L' RUNOFF (CENT EXCE: CENT EXCE: CENT EXCE: CENT EXCE: CECETT EXCE:	164 219 169 220 175 227 171 237 170 235 171 227 183 231 186 237 185 242 188 240 184 238 180 235 174 237 181 239 189 240 191 242 190 242 194 241 192 239 195 241 195 246 196 248 206 253 213 252 212 230 208 222 207 238 209 241 226 251 203 244 203 5910 7134 191 238 226 253 164 219 11720 14150 TICS OF MONTHLY ME. 445 549 1328 1065 1985 1985 1985 1985 32.4 238 1938 2003 Y STATISTICS TOTAL MEAN T ANNUAL MEAN T DAILY M	164 219 238 169 220 238 175 227 242 171 237 244 170 235 244 171 227 243 183 231 228 186 237 210 185 242 210 188 240 220 184 238 218 180 235 216 174 237 220 181 239 227 189 240 235 191 242 236 190 242 236 194 241 201 192 239 186 194 241 201 192 239 186 194 241 201 195 241 181 195 246 210 196 248 208 206 253 208 213 252 190 212 230 131 208 222 151 207 238 199 209 241 220 226 251 214 203 244 194 203 212 5910 7134 6610 191 238 213 226 253 244 203 244 194 203 212 5910 7134 6610 191 238 213 226 253 244 104 203 244 194 203 212 5910 7134 6610 191 238 213 226 253 244 104 203 244 194 203 212 5910 7134 6610 191 238 213 226 253 244 164 219 131 11720 14150 13110 TICS OF MONTHLY MEAN DATA 445 549 484 1328 1065 852 1985 1985 1984 32.4 238 208 1938 2003 2002 Y STATISTICS FOR TOTAL MEAN T DAILY MEAN DAILY MEAN DAILY MEAN T DA	164 219 238 204 169 220 238 203 175 227 242 213 171 237 244 211 170 235 244 212 171 227 243 206 183 231 228 204 186 237 210 201 185 242 210 184 188 240 220 171 184 238 218 187 180 235 216 206 174 237 220 210 181 239 227 207 189 240 235 209 191 242 236 190 190 242 236 183 194 241 201 194 192 239 186 203 195 241 181 211 195 246 210 209 196 248 208 185 206 253 208 210 213 252 190 208 212 230 131 205 208 222 151 206 207 238 199 209 241 220 220 226 251 214 214 203 244 194 219 203 212 220 5910 7134 6610 6324 191 238 213 204 226 253 244 220 226 251 214 214 203 244 194 219 203 212 220 5910 7134 6610 6324 191 238 213 204 226 253 244 220 226 251 214 214 203 244 194 219 203 212 220 5910 7134 6610 6324 191 238 213 204 226 253 244 220 226 251 214 214 203 244 194 219 203 212 220 5910 7134 6610 6324 191 238 213 204 226 253 244 220 226 251 214 214 203 244 194 219 203 212 220 5910 7134 6610 6324 191 238 213 204 226 253 244 220 226 251 214 214 203 244 194 219 203 212 220 5910 7134 6610 6324 191 238 213 204 226 253 244 220 226 251 214 214 203 244 194 219 203 212 220 5910 7134 6610 6324 191 238 203 2002 1937 TICS OF MONTHLY MEAN DATA FOR WATER 445 549 484 409 1328 1065 852 725 1985 1985 1984 1976 32.4 238 208 173 1938 2003 2002 1937 Y STATISTICS FOR 2002 CALI TOTAL 60546 MEAN 7 1066 TANNUAL MEAN 7 1070 ANNUAL	164 219 238 204 231 169 220 238 203 247 175 227 242 213 243 170 235 244 211 228 170 235 244 212 211 171 227 243 206 211 183 231 228 204 201 186 237 210 201 222 185 242 210 184 209 188 240 220 171 215 184 238 218 187 212 180 235 216 206 209 174 237 220 210 215 181 239 227 207 215 181 239 227 207 215 181 239 227 207 215 189 240 235 209 212 191 242 236 183 216 194 241 201 194 213 192 239 186 203 211 195 241 181 211 212 195 246 210 209 210 196 248 208 185 214 206 253 208 210 163 213 252 190 208 166 212 230 131 205 166 208 222 151 206 198 207 238 199 219 197 209 241 220 220 198 217 209 241 220 220 198 226 253 208 210 163 213 252 190 208 166 212 230 131 205 166 208 222 151 206 198 207 238 199 219 197 209 241 220 220 198 207 238 199 219 197 209 241 220 220 198 207 238 199 219 197 209 241 220 220 198 216 251 214 214 203 212 220 5910 7134 6610 6324 5859 191 238 213 204 209 226 253 244 194 219 203 244 194 219 203 244 194 219 203 244 194 219 212 220 5910 7134 6610 6324 5859 1911 238 213 204 209 247 164 219 131 171 163 11720 14150 13110 12540 11620 TICS OF MONTHLY MEAN DATA FOR WATER YEARS 1935 445 549 484 409 423 1328 1065 852 725 707 1985 1985 1984 1976 1984 32.4 238 208 173 199 1938 2003 2002 1937 2002 Y STATISTICS FOR 2002 CALENDAR YEAR TOTAL 60546 MEAN 7ANNUAL MEAN ANNUAL MEAN ANU	164	164 219 238 204 231 214 227 169 220 238 203 247 202 246 175 227 242 213 243 213 245 171 237 244 211 228 202 226 170 235 244 212 211 208 202 226 170 235 244 212 211 208 217 171 227 243 206 211 216 212 183 231 228 204 201 221 211 186 237 210 201 222 217 199 185 242 210 184 209 221 184 188 240 220 171 215 230 166 184 238 218 187 212 248 180 180 235 216 206 209 272 179 174 237 220 210 215 300 177 181 239 227 207 215 300 177 181 239 227 207 215 376 197 189 240 235 209 212 416 217 190 242 236 190 214 345 214 190 242 236 183 216 337 195 194 241 201 194 213 297 186 192 239 186 203 211 275 170 195 241 181 211 212 258 157 195 246 210 209 210 251 144 206 253 208 210 163 247 138 206 253 208 210 163 247 138 207 238 199 219 197 226 171 208 222 151 206 198 236 181 207 238 199 219 197 226 171 208 222 151 206 198 236 181 207 238 199 219 197 226 171 208 222 151 206 198 236 181 207 238 199 219 197 226 171 208 222 151 206 198 236 181 207 238 199 219 197 226 171 208 222 151 206 198 236 181 207 238 199 219 197 226 171 208 222 151 206 198 236 181 207 238 199 219 197 226 171 208 222 151 206 198 236 181 207 238 199 219 197 226 171 208 222 151 206 198 236 181 207 238 199 219 197 226 171 208 224 253 244 220 247 416 246 246 251 214 214 215 145 203 212 220 221 5910 7134 6610 6324 5859 7833 5534 4	164	164 219 238 204 231 214 227 185 112 169 220 238 203 247 202 246 228 129 175 227 242 213 243 213 2246 226 129 1710 237 244 211 228 202 226 222 78 1710 235 244 212 211 208 217 241 76 1711 237 244 211 228 202 226 222 78 1710 235 244 212 211 208 217 241 76 1711 237 243 206 211 216 212 215 63 183 231 228 204 201 221 216 212 215 63 186 237 210 201 222 217 199 183 79 185 242 210 184 209 221 184 159 64 188 240 220 171 215 230 166 154 63 184 238 218 187 212 248 180 146 76 180 235 216 206 209 272 179 143 80 174 237 220 210 215 300 177 151 94 181 239 227 207 215 376 197 136 194 189 240 235 209 212 416 217 122 100 191 242 236 190 214 345 214 113 114 194 241 239 247 207 215 376 197 136 104 199 240 235 209 212 416 217 122 100 191 242 236 183 216 216 337 195 109 97 191 242 236 190 214 345 214 113 144 194 241 251 183 211 212 258 157 111 93 195 241 181 211 212 225 170 105 90 195 241 181 211 212 225 170 105 90 195 241 181 211 212 225 170 105 90 195 241 181 211 212 225 170 105 90 195 246 210 209 210 251 144 92 220 196 248 208 185 214 247 138 78 257 206 253 208 210 163 247 138 78 257 213 252 190 208 166 251 144 92 220 196 248 208 185 214 247 138 78 257 212 230 131 205 166 239 147 190 195 27 228 222 151 206 198 236 181 94 167 190 27 228 222 151 206 198 236 181 94 167 190 27 228 222 151 206 198 236 181 94 164 27 220 220 220 220 220 220 220 220 220 220	164 219 238 204 231 214 227 185 112 87 169 220 238 203 247 202 246 228 129 101 175 227 242 213 243 213 243 226 226 102 80 171 235 244 211 228 203 226 222 77 99 170 235 244 211 212 211 208 227 241 76 108 171 237 242 213 243 206 211 216 212 215 63 92 171 227 243 206 211 216 212 215 63 92 183 231 228 204 201 221 211 197 78 91 186 237 210 201 222 217 199 183 79 81 185 242 210 184 209 221 184 159 64 62 188 240 220 171 215 230 166 154 63 37 180 235 216 206 209 272 199 143 80 68 174 238 218 187 212 248 180 146 76 49 180 235 216 206 209 272 179 143 80 68 174 237 220 210 215 376 197 136 104 71 189 240 235 209 212 216 197 136 104 71 189 240 235 209 212 216 107 107 100 67 181 239 227 207 215 376 197 136 104 71 190 242 236 183 216 217 122 100 71 191 242 236 183 216 217 122 100 71 191 242 236 183 216 217 129 109 97 70 194 241 201 194 213 297 186 107 100 67 194 241 201 194 213 297 186 107 100 67 195 249 186 203 211 275 170 105 90 80 195 241 181 211 212 258 157 111 93 91 156 246 210 209 210 215 376 197 116 107 100 67 192 239 186 203 211 275 170 105 90 80 195 241 181 211 212 258 157 111 93 91 156 246 210 209 210 251 144 92 220 120 159 246 210 209 210 251 144 92 220 120 159 246 210 209 209 210 251 144 92 220 120 239 186 203 211 275 170 105 90 80 195 241 181 211 212 258 157 111 93 91 156 246 210 209 210 251 144 92 220 210 159 246 210 209 210 251 144 92 220 200 120 239 186 203 211 275 170 105 90 80 195 241 181 211 212 258 157 111 93 91 156 246 210 209 210 163 247 138 98 257 126 206 253 208 210 166 239 147 90 193 169 207 238 199 208 166 239 147 90 193 199 208 222 151 206 198 236 181 947 190 193 109 208 222 151 206 198 236 181 94 173 195 199 190 190 190 190 190 190 190 190 190	164 219 238 204 231 214 227 185 112 87 87 169 220 238 203 247 203 246 228 119 102 81 117 277 244 213 248 202 246 228 119 282 81 117 277 244 212 211 208 202 236 222 102 283 200 211 170 235 244 212 211 208 217 241 76 105 119 171 227 243 206 211 216 212 215 63 92 115 183 231 228 204 201 227 211 193 78 91 98 186 247 210 204 229 227 119 119 37 78 91 98 188 242 210 244 232 227 119 184 159 64 62 29 188 240 220 171 215 230 166 154 63 37 107 181 184 238 218 187 212 248 180 146 76 49 91 180 235 216 200 209 272 179 143 80 68 102 180 249 240 225 209 212 416 217 122 100 71 81 189 240 225 209 212 416 217 122 100 71 81 191 242 236 180 241 345 241 131 14 63 92 199 241 241 261 183 213 227 184 137 14 63 92 199 241 261 183 216 237 155 109 97 70 92 230 166 237 155 109 97 70 92 230 156 241 241 242 236 183 216 237 155 109 97 70 92 230 199 241 242 236 183 216 237 155 109 97 70 92 230 195 241 181 24

06018500 BEAVERHEAD RIVER NEAR TWIN BRIDGES, MT--Continued

SUMMARY STATISTICS	FOR WATER	YEARS 1935-1964*	WATER YEAR	RS 1965-2003**
ANNUAL MEAN	391		416	
HIGHEST ANNUAL MEAN	642	1948	1097	1984
LOWEST ANNUAL MEAN	170	1937	165	2002
HIGHEST DAILY MEAN	b3130	Jun 12 1944	2180	Jun 25 1984
LOWEST DAILY MEAN	7.0	May 25 1940	28	Jun 24 1990
ANNUAL SEVEN-DAY MINIMUM	8.7	May 13 1974	31	Jun 23 1990
MAXIMUM PEAK FLOW	b3130	Jun 12 1944	2200	Jun 25 1984
MAXIMUM PEAK STAGE	6.76	Jun 12 1944	7.88	Jun 25 1984
INSTANTANEOUS LOW FLOW	c7.0	May 25 1940	d28	Jun 24 1990
ANNUAL RUNOFF (AC-FT)	283100		301500	
10 PERCENT EXCEEDS	648		780	
50 PERCENT EXCEEDS	410		362	
90 PERCENT EXCEEDS	60		124	

^{*--}Prior to construction of Clark Canyon Dam.

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1950-51, 1962-81, 1986, May 1999 to current year. PERIOD OF DAILY RECORD .--

WATER TEMPERATURE: July 1962 to September 1979, October 1999 to current year.

SUSPENDED-SEDIMENT DISCHARGE: July 1962 to September 1974.

INSTRUMENTATION: Temperature probe installed Aug. 18, 1999.

REMARKS.--Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office.

EXTREMES FOR PERIOD OF DAILY RECORD .--

WATER TEMPERATURE: Maximum, 27.0°C, July 20, 2003; minimum, 0.0°C on many days during winter months.

SEDIMENT CONCENTRATION: Maximum daily mean, 670 mg/L, June 8, 1964; minimum daily mean, 5 mg/L, Sep. 22, 23, 1964, May 17, 18, 1973.

SEDIMENT LOAD: Maximum daily, 1,200 tons, June 8, 1964; minimum daily 1.6 tons, July 28, 1968. EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURE: Maximum, 27.0°C, July 20; minimum, 0.0°C on many days October through March.

WATER-OUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	unfltrd field, std units	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)		Temper-	Ammonia + org-N, water, unfltrd mg/L as N (00625)	fltrd, mg/L as N	Nitrite water, fltrd, mg/L as N (00613)
APR 2003 24	2015	145	8.2	743	13.0	14.0	. 49	.712	.013
MAY 20	0930	104	8.4	712	5.0	9.0	.28	.233	.007
JUN 05	0915	82	7.8	701	18.0	15.0	.40	.040	E.002
JUL 29	1045	114	8.4	746	23.0	20.0	.45	.025	.003
		20 JN 05	Ortho phosphate water fltrd mg/L as P (00671 E.006 <.007 <.007	, Phos- , phorus, , water unfltro mg/L) (00665) .041 .011	sieve diamet percen	pended sedi- ment r concen- t tration m mg/L	pended sedi- ment load,		

^{**--}After construction of Clark Canyon Dam.

a--Gage height, 3.11 ft. b--Observed gage height, 6.76 ft, site and datum then in use. c--Observed, site and datum then in use.

d--Gage height, 3.01 ft.

06018500 BEAVERHEAD RIVER NEAR TWIN BRIDGES, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	Time	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	ide, water,	ide, water,	Silica, water, fltrd, mg/L (00955)
MAY 2003											
20 JUL	0930	320	75.7	32.0	6.76	. 8	32.5	218	25.7	.5	18.5
29	1045	370	76.4	43.5	7.56	.7	32.2	222	23.2	.6	28.8
Date	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d (70302)	Arsenic water unfltrd ug/L (01002)	Cadmium water, unfltrd ug/L (01027)	Chrom- ium, water, unfltrd recover -able, ug/L (01034)	Copper, water, unfltrd recover -able, ug/L (01042)	Lead, water, unfltrd recover -able, ug/L (01051)	Nickel, water, unfltrd recover -able, ug/L (01067)	Zinc, water, unfltrd recover -able, ug/L (01092)
MAY 2003 20	131	454	.62	128	5	<.2	<.8	2.4	.07	.99	E1
JUL 29	140	486	.66	150	6	E.02	<.8	2.4	.12	1.92	E2

E--Estimated.

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	VEMBER		DE	CEMBER			JANUARY	
1 2 3 4 5	9.5 9.5 9.0 11.0 10.5	6.0 4.0 6.5 7.5 8.5	7.5 7.0 7.5 9.5 9.0	0.5 0.5 0.5 1.0	0.0 0.0 0.0 0.5 0.5	0.0 0.0 0.5 0.5	3.0 4.5 3.5 3.5	0.5 2.0 3.0 2.5 1.0	1.5 3.0 3.5 3.0 2.0	1.0 1.0 1.0 1.0 3.0	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 2.0
6 7 8 9 10	13.0 11.5 11.5 12.0 11.0	8.5 8.0 7.0 7.5 7.5	10.5 10.0 9.0 10.0 9.5	3.5 4.0 5.0 4.0 4.5	0.5 2.0 2.5 3.0 2.5	2.0 3.0 3.5 3.5	3.0 1.5 0.5 0.5	1.0 0.5 0.5 0.5	2.0 1.0 0.5 0.5	2.0 1.5 1.0 0.5	0.5 0.0 0.0 0.0	1.0 0.5 0.5 0.5
11 12 13 14 15	9.5 9.0 9.0 9.5 9.5	7.0 4.5 4.0 5.0	8.0 6.5 6.5 7.5	4.5 3.5 5.5 4.0 3.5	2.0 2.0 3.0 2.5 1.5	3.0 3.0 4.0 3.5 2.5	1.5 2.0 2.5 4.0 4.0	0.5 0.5 1.0 2.5 2.0	1.0 1.5 1.5 3.0 3.5	0.5 0.5 1.0 2.0 2.5	0.0 0.5 0.5 0.5	0.5 0.5 0.5 1.0
16 17 18 19 20	9.5 9.5 9.5 9.0 10.0	5.5 5.0 5.5 4.5 6.0	7.5 7.5 7.5 7.0 8.0	4.0 4.5 3.0 4.0 6.5	2.0 2.0 1.5 1.5 3.5	3.0 3.0 2.5 2.5 5.0	2.5 3.0 1.0 0.5	1.5 1.0 0.5 0.5	2.0 2.0 0.5 0.5	0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.0 0.5	0.5 0.5 0.5 0.5
21 22 23 24 25	10.5 9.0 5.0 6.5	6.5 3.5 2.0 2.0	8.5 6.0 3.5 4.5	6.5 6.5 5.5 1.5 0.5	3.5 4.5 1.5 0.0 0.0	5.0 5.5 3.5 1.0	0.5 0.5 1.0 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5	1.5 0.5 1.0 1.0	0.0 0.0 0.5 0.5	1.0 0.5 0.5 0.5 2.0
26 27 28 29 30 31	6.0 5.5 6.0 4.5 0.0	2.0 1.5 4.0 0.0 0.0	4.0 4.0 5.0 2.0 0.0	0.5 1.5 3.0 3.5 3.0	0.0 0.0 0.5 1.5	0.0 1.0 2.0 2.5 2.0	0.5 1.0 1.0 1.0 1.0	0.0 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5	4.5 4.5 4.0 2.5 4.5 5.0	2.5 3.5 2.0 1.0 1.5 3.0	3.5 4.0 3.0 2.0 3.0 4.0
MONTH	13.0	0.0	6.5	6.5	0.0	2.5	4.5	0.0	1.5	5.0	0.0	1.0

06018500 BEAVERHEAD RIVER NEAR TWIN BRIDGES, MT--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	1	FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	5.0 3.5 3.0 3.0	3.5 2.5 1.0 0.5 0.0	4.5 3.0 1.5 1.5	1.5 1.0 0.5 1.5	0.0 0.0 0.0 0.0	0.5 0.5 0.5 0.5	9.5 8.0 9.0 9.5 9.0	7.0 6.0 4.0 3.0 3.5	8.5 7.0 6.0 6.0 6.5	13.0 13.0 11.0 12.5 12.5	9.0 8.0 8.5 7.0 7.5	11.0 10.5 9.5 9.5 10.0
6 7 8 9	0.5 0.5 1.5 1.5	0.0 0.0 0.0 0.0 0.5	0.5 0.5 0.5 0.5	1.5 1.5 1.5 5.5 7.0	0.0 0.0 0.0 1.0 3.5	0.5 0.5 0.5 3.0 5.5	10.0 10.5 13.0 13.0 14.5	4.5 4.0 5.0 7.0 8.0	7.0 7.0 9.0 10.0 11.0	13.0 15.5 14.5 11.5 14.5	8.0 8.0 9.5 7.0 6.5	10.5 11.5 11.5 9.0 10.0
11 12 13 14 15	3.5 3.5 2.0 4.0 6.0	0.0 0.0 0.5 1.5 2.5	2.0 1.5 1.0 2.5 4.0	8.0 7.5 9.5 8.5 6.5	4.0 4.5 4.5 6.0 4.0	6.0 6.0 7.0 7.5 5.5	14.0 14.5 12.5 11.5 10.0	8.0 8.5 9.0 8.5 8.0	11.0 11.5 11.0 10.0 9.0	14.5 13.5 17.0 18.5 18.5	8.5 9.0 9.0 10.5 13.0	11.5 11.5 13.0 14.5 15.5
16 17 18 19 20	4.0 4.5 4.0 3.5 3.0	1.5 1.0 1.0 0.0	3.0 2.5 2.5 2.0 2.0	8.0 6.5 6.0 8.5 9.5	5.5 4.0 3.0 2.5 3.5	6.5 5.0 4.5 5.5 6.5	12.0 10.0 10.5 14.5 15.5	5.0 6.5 7.0 6.5 8.0	8.5 8.5 8.5 10.0 11.5	16.0 16.5 13.0 14.5 15.5	11.0 9.0 8.5 6.0 8.5	14.0 12.5 10.0 10.0 12.0
21 22 23 24 25	4.0 5.0 1.5 0.5	1.0 1.5 0.0 0.0	2.5 3.5 0.0 0.0	8.5 9.0 10.0 8.0 6.0	5.0 5.0 6.0 3.5 3.5	6.5 7.0 8.0 6.0 5.0	14.5 15.5 13.5 14.5 13.0	8.5 10.0 10.5 9.5 8.5	12.0 13.0 11.5 12.0 10.5	16.0 18.5 21.5 22.5 20.0	11.5 10.5 13.5 14.5 15.5	13.5 14.5 17.0 18.5 18.0
26 27 28 29 30 31	0.5 1.0 1.5 	0.0 0.0 0.0 	0.0 0.5 0.5 	5.5 5.5 9.0 10.5 10.0	4.0 2.5 2.0 4.0 6.0 7.0	4.5 4.0 5.5 7.5 8.0 9.0	8.5 13.0 11.5 8.0 15.5	6.5 4.0 7.5 6.0 6.0	7.5 8.0 9.0 7.0 10.0	21.0 22.5 24.0 23.5 21.5 21.5	14.5 14.5 16.0 17.5 17.0 14.5	18.0 18.5 20.0 21.0 19.0 18.0
MONTENT	6.0	0.0	1.5	10.5	0.0	4.5	15.5	3.0	9.5	24.0	6.0	13.5
MONTH	0.0	0.0	1.5	10.5	0.0	4.5	13.3	5.0	5.5	24.0	0.0	13.3
MONTH	0.0	0.0	1.5	10.5	0.0	4.5	13.3	3.0	J.3	24.0	0.0	13.3
		JUNE			JULY		2	AUGUST		Š	SEPTEMBE	R
1 2 3 4 5	20.5 19.5 20.0 19.5 20.0		17.5 17.0 16.0 17.0 16.5	24.5 23.5 23.5 23.0 23.5		21.5 20.5 20.0 20.0 20.0			21.5 22.0 21.0 20.5 20.0			
1 2 3 4	20.5 19.5 20.0 19.5	JUNE 15.0 14.0 12.5 14.0	17.5 17.0 16.0 17.0	24.5 23.5 23.5 23.0	JULY 18.0 17.5 16.0 16.5	21.5 20.5 20.0 20.0	25.0 24.5 23.0 24.0	AUGUST 17.5 18.5 20.0 17.5	21.5 22.0 21.0 20.5	21.0 20.5 20.5 19.5	SEPTEMBE 14.5 14.5 14.0 14.0	R 18.0 17.5 17.5 17.0
1 2 3 4 5 6 7 8 9	20.5 19.5 20.0 19.5 20.0 17.0 19.0 20.5 22.0	JUNE 15.0 14.0 12.5 14.0 12.5 14.0 12.5	17.5 17.0 16.0 17.0 16.5 14.5 14.0 17.0 18.0	24.5 23.5 23.5 23.0 23.5 24.0 24.5 23.0 23.5	JULY 18.0 17.5 16.0 16.5 16.5 16.5 16.0	21.5 20.5 20.0 20.0 20.0 20.0 20.5 20.5 20	25.0 24.5 23.0 24.0 23.0 22.5 23.5 21.0 23.0	17.5 18.5 20.0 17.5 17.5 16.5 16.5 16.5	21.5 22.0 21.0 20.5 20.0 19.5 20.0 19.5	21.0 20.5 20.5 19.5 18.5 17.5 20.0 18.5	SEPTEMBE 14.5 14.5 14.0 14.0 15.5 15.5 13.5 13.5 10.5	18.0 17.5 17.5 17.0 17.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	20.5 19.5 20.0 19.5 20.0 17.0 19.0 20.5 22.0 22.0 22.0 22.5 21.0 21.0	JUNE 15.0 14.0 12.5 14.0 12.5 14.0 12.5 14.0 14.5 13.0 14.0 14.5 14.5 16.0 14.5	17.5 17.0 16.0 17.0 16.5 14.5 14.0 17.0 18.0 18.0 18.5 19.0 18.5 17.5	24.5 23.5 23.5 23.0 23.5 24.0 24.5 23.0 23.5 25.5	JULY 18.0 17.5 16.0 16.5 16.5 16.0 17.5 16.0 17.0 18.0 19.0 19.0 17.0	21.5 20.5 20.0 20.0 20.0 20.5 20.5 20.5 20	25.0 24.5 23.0 24.0 23.0 22.5 23.5 21.0 23.0 24.0 22.0 21.5 23.5 23.5	AUGUST 17.5 18.5 20.0 17.5 17.5 16.5 16.5 16.5 16.0 17.0 17.5 17.5 17.5 17.5	21.5 22.0 21.0 20.5 20.0 19.5 20.0 19.5 20.5	21.0 20.5 20.5 19.5 18.5 17.5 20.0 18.5 15.5 14.5	SEPTEMBE 14.5 14.0 14.0 15.5 15.5 13.5 13.5 10.5 12.0 11.0 9.0 9.5	R 18.0 17.5 17.5 17.0 17.5 16.5 17.0 16.0 13.5 13.5 13.0
1 2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19	20.5 19.5 20.0 19.5 20.0 17.0 19.0 20.5 22.0 22.0 22.0 21.0 21.0 21.0 22.0 23.5 23.5 23.0 21.5	JUNE 15.0 14.0 12.5 14.0 12.5 12.0 9.5 13.0 15.0 14.5 14.5 14.5 14.5 16.0 14.5 17.0	17.5 17.0 16.0 17.0 16.5 14.5 14.0 17.0 18.0 18.0 18.5 19.0 18.5 17.5 18.0	24.5 23.5 23.5 23.0 23.5 24.0 24.5 23.0 23.5 25.5 26.0 26.5 24.5 25.5 25.0 23.5	JULY 18.0 17.5 16.0 16.5 16.5 16.0 17.5 16.0 17.0 18.0 19.0 17.0 18.5 18.5 19.5 19.5 20.0	21.5 20.5 20.0 20.0 20.0 20.5 20.5 20.5 21.0 22.0 21.5 22.0 21.5 22.0 21.5 22.3	25.0 24.5 23.0 24.0 23.0 22.5 23.5 21.0 23.0 24.0 22.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.0	AUGUST 17.5 18.5 20.0 17.5 17.5 16.5 16.5 16.0 17.0 17.5 17.5 18.0 18.0 15.0 14.5 16.0	21.5 22.0 21.0 20.5 20.0 19.5 20.0 19.5 20.5 20.5 20.5 20.5 20.5 20.5	21.0 20.5 20.5 19.5 18.5 17.5 20.0 18.5 15.5 14.5 15.5 14.5 15.5 14.0 14.0 12.0 13.0	SEPTEMBE 14.5 14.0 14.0 15.5 15.5 13.5 13.5 10.5 12.0 11.0 9.0 9.5 10.5 11.0 8.5 7.5 8.0	R 18.0 17.5 17.5 17.5 17.0 17.5 16.5 13.0 12.5 13.0 12.5 13.0 12.5 13.0 12.5
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	20.5 19.5 20.0 19.5 20.0 17.0 19.0 20.5 22.0 22.0 22.0 21.0 21.0 21.0 21.5 21.0 21.5 21.5 21.5 21.5	JUNE 15.0 14.0 12.5 14.0 12.5 12.0 9.5 13.0 15.0 14.0 14.5 14.5 16.0 14.5 17.0 17.0 17.0 17.0 15.5	17.5 17.0 16.0 17.0 16.5 14.5 14.0 17.0 18.0 18.0 18.5 19.0 18.5 17.5 18.0 18.5 17.5 18.0 18.5 17.5 18.0	24.5 23.5 23.5 23.0 23.5 24.0 24.5 23.0 23.5 25.5 26.0 26.5 25.5 25.0 27.0 26.0 27.0 26.5 26.0 27.0 26.5 26.0 27.0 26.5 26.0 27.0 26.0 27.0 26.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27	JULY 18.0 17.5 16.0 16.5 16.5 16.5 17.5 16.0 17.0 18.0 19.0 19.0 17.0 18.5 18.5 19.5 19.5 19.5 19.5 19.6	21.5 20.5 20.0 20.0 20.0 20.5 20.5 20.5 21.0 21.0 22.0 21.5 22.0 21.5 22.0 23.0 23.0 23.5	25.0 24.5 23.0 24.0 23.0 22.5 23.5 21.0 22.0 24.0 22.5 23.5	AUGUST 17.5 18.5 20.0 17.5 17.5 16.5 16.5 16.5 16.0 17.0 17.5 18.0 18.0 15.0 14.5 16.0 17.5 16.5 16.0 17.5	21.5 22.0 21.0 20.5 20.0 19.5 20.0 19.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20	21.0 20.5 20.5 19.5 18.5 17.5 20.0 18.5 15.5 14.5 15.5 14.5 15.5 12.0 14.0 12.0 12.0 13.0 15.0 15.5	SEPTEMBE 14.5 14.0 14.0 15.5 15.5 13.5 10.5 10.0 11.0 9.0 9.5 10.5 11.0 8.5 7.5 8.0 9.0 9.0 9.5 10.0 10.0	R 18.0 17.5 17.5 17.0 17.5 16.5 17.0 16.0 13.5 13.5 13.0 12.5 12.5 13.0 10.5 12.0 10.5 12.0 10.5 12.0 10.5 12.0

RUBY RIVER BASIN

06019500 RUBY RIVER ABOVE RESERVOIR, NEAR ALDER, MT

LOCATION.--Lat 45°11'33", long 112°08'30" (NAD 27), in NW¹/₄SE¹/₄SW¹/₄ sec.30, T.7 S., R.4 W., Madison County, Hydrologic Unit 10020003, on right bank at county road bridge, 0.7 mi downstream from Mormon Creek, 4.2 mi upstream from Ruby Dam, 9.3 mi south of Alder, and at river mile 52.1.

DRAINAGE AREA.--534 mi².

PERIOD OF RECORD.--May 1938 to current year. Monthly discharge only for May 1938, published in WSP 1309.

REVISED RECORDS.--WSP 1309: 1938(M). WSP 1559: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 5,400 ft (NGVD 29). Prior to Oct. 1, 1938, nonrecording gage at bridge 2.0 mi upstram at different elevation. Oct. 1, 1938, to Aug. 5, 1955, water-stage recorder at site 2.2 mi upstream at different elevation. Aug. 6, 1955 to Sept. 30, 1997, waterstage recorder 2.3 mi upstream at different elevation.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Diversion for irrigation of about 3,000 acres upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

the year	•											
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	110 109 107 108	e80 e85 e88 91	96 98 97 98	e90 e92 e95 e95	99 97 90 e85	e85 e88 e92 e90	113 121 115 104	167 175 166 187	901 689 525 445	148 148 146 141	79 78 85 114	94 92 90 91
5	108	92	96	e92	e85	e90	104	199	399	138	110	90
6 7 8 9 10	106 103 102 100 98	93 96 97 97 97	95 89 89 90 88	e90 e90 e88 e85 e80	e87 e90 93 95 94	e95 94 96 96 100	109 101 101 102 114	196 181 175 179 177	369 334 309 314 323	142 141 135 132 132	99 93 91 95 95	91 96 96 99
11 12 13 14	97 98 96 98	96 96 97 96	88 89 91 93	e85 89 84 86	94 92 95 99	123 155 187 173	128 140 154 167	173 180 193 203	293 264 249 249	122 127 125 119	95 87 85 85	102 102 100 101
15 16	98 97	96 95	95	89 89	98 97	134	178 154	239	240	115 113	91 102	100
17 18 19 20	97 96 95 94	96 95 96 97	e85 e80 e82 e85	e85 e80 86 89	95 96 95 95	115 114 106 103	141 149 144 143	295 302 264 232	219 218 216 207	111 104 100 99	101 96 93 93	106 114 109 103
21 22 23 24	95 97 95 92	97 99 104 97	e88 e90 e85 e80	90 89 91 90	98 98 97 e90	107 105 107 101	141 148 167 185	220 225 281 406	262 230 208 193	93 90 89 92	92 93 90 86	92 92 93 95
25 26	91 90	88 91	e75 e80	91 92	e70 e80	102 106	196 219	592 803	192 182	98 111	87 89	95 96
27 28 29 30 31	89 96 96 84 e82	95 99 99 97 	e90 e95 e92 e90 e92	95 94 90 93 94	e85 e85 	100 100 98 102 105	186 182 166 161	920 905 1010 1080 1110	176 171 165 159	110 103 101 96 82	96 102 102 103 98	96 98 95 88
TOTAL MEAN MAX	3024 97.5 110	2842 94.7 104	2774 89.5 98	2768 89.3 95	2574 91.9 99	3402 110 187	4333 144 219	11719 378 1110	8932 298 901	3603 116 148	2905 93.7 114	2915 97.2 114
MIN AC-FT	82 6000	80 5640	75 5500	80 5490	70 5110	85 6750	101 8590	166 23240	159 17720	82 7150	78 5760	88 5780
							, BY WATER Y			104	101	115
MEAN MAX (WY) MIN (WY)	122 185 1984 83.4 1940	122 177 1984 87.8 1940	111 170 1948 80.3 1940	103 158 1948 69.8 1943	102 135 1971 79.2 1942	110 181 1960 84.3 1945	165 288 1962 94.6 1945	418 1010 1984 187 2002	471 1117 1984 136 1987	194 482 1975 74.8 1961	121 235 1975 59.3 1940	115 171 1984 73.3 1988
SUMMARY	STATIST	ICS	FOR	2002 CALE	NDAR YEAR	I	FOR 2003 WAS	TER YEAR		WATER YEARS	1938 -	2003
LOWEST	MEAN 'ANNUAL I ANNUAL M	EAN		44605 122	_		51791 142			180 336 119		1984 1961
LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT	I PEAK FLO I PEAK ST CANEOUS LO	AN Y MINIMUM OW AGE OW FLOW		784 70 74	Jun 2 Aug 2 Aug 15		1110 70 83 1260 5.55	May 31 Feb 25 Dec 20 May 31 May 31		2940 35 38 3810 a6.24 b34	May 16 Jan 23 Aug 14 May 16 May 16 Aug 14	1962 1992 1984 1984
10 PERC	RUNOFF (EDS EDS		88470 201 96			102700 219 98			130300 352 119		

90 PERCENT EXCEEDS

a--Site and datum then in use. b--Gage height, 1.99 ft, site and datum then in use.

e--Estimated.

RUBY RIVER BASIN

06020600 RUBY RIVER BELOW RESERVOIR, NEAR ALDER, MT

LOCATION.--Lat 45°14'32", long 112°06'36" (NAD 27), in SE¹/₄SE¹/₄NE¹/₄ sec.8, T.7 S., R.4 W., Madison County, Hydrologic Unit 10020003, on right bank 0.2 mi downstream from Ruby Dam, 5.7 mi south of Alder, and at river mile 47.8.

DRAINAGE AREA.--596 mi².

PERIOD OF RECORD.--December 1962 to current year.

REVISED RECORDS .-- 1985 (M).

GAGE.--Water-stage recorder. Elevation of gage is 5,286.63 ft (NGVD 29) (levels by U.S. Army Corps of Engineers).

REMARKS.--Records good except those for December to February, which are fair. Flow regulated by Ruby River Reservoir (station number 06020500). Diversions for irrigation of about 3,500 acres upstream from station. U. S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES												
					DAIL	Y MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	65 56 56 55 47	34 31 28 28 28	29 29 26 23 23	e23 e23 e23 e23 e23	22 22 22 22 22	23 24 24 24 24	28 28 28 28 28	140 156 162 169 182	978 805 634 503 396	266 287 321 333 333	356 353 351 348 334	300 297 294 290 286
6 7 8 9 10	45 45 45 42 37	28 28 28 28 28	23 23 24 24 24	e23 e23 e23 e23 e23	22 22 22 22 22	24 25 25 25 25	29 29 29 29 29	189 184 174 170 171	376 347 316 468 443	333 332 366 364 362	324 323 320 320 318	281 275 271 266 247
11 12 13 14 15	37 37 37 38 38	28 28 28 29 29	24 23 23 23 23	e23 e23 e23 e23 e23	22 22 22 22 22	25 27 26 26 26	29 29 29 29 30	171 174 178 187 204	437 442 438 437 436	361 359 358 358 358	314 301 299 272 256	134 127 128 128 129
16 17 18 19 20	38 38 38 37 37	29 29 29 29 29	e23 e23 e23 e23 e23	e23 e23 e23 e23 23	23 23 23 23 23	26 26 26 27 27	30 30 30 30 29	237 271 286 287 261	435 434 432 432 431	356 355 354 352 351	262 286 284 281 304	117 107 103 93 94
21 22 23 24 25	37 34 34 34 34	29 29 29 29 29	e23 e23 e23 e23 e23	23 22 22 22 22	23 23 23 23 23	27 27 27 27 27	29 37 42 41 42	239 230 484 508 528	410 395 344 339 337	350 385 382 381 378	325 326 323 321 319	95 95 96 96 87
26 27 28 29 30 31	34 34 34 34 34	29 29 29 29 29	e23 e23 e23 e23 e23 e23	22 22 22 22 22 22 22	23 23 23 	27 27 27 27 28 28	43 44 52 88 119	634 788 778 831 952 1030	322 307 307 284 241	375 373 370 368 361 358	316 313 309 307 304 302	69 63 63 63
TOTAL MEAN MAX MIN AC-FT	1245 40.2 65 34 2470	866 28.9 34 28 1720	732 23.6 29 23 1450	703 22.7 23 22 1390	629 22.5 23 22 1250	804 25.9 28 23 1590	1117 37.2 119 28 2220 BY WATER	10955 353 1030 140 21730	12906 430 978 241 25600	10940 353 385 266 21700	9671 312 356 256 19180	4757 159 300 63 9440
MEAN MAX (WY) MIN (WY)	121 244 1965 38.0 1986	73.1 222 1985 28.9 2003	54.7 142 1984 23.6 2003	50.6 139 1984 20.9 1989	45.6 92.4 1971 21.4 1991	56.8 174 1998 19.3 1991	90.2 192 1965 30.5 1991	419 1035 1984 189 1963	590 1209 1984 281 1987	352 559 1975 197 1992	354 473 1970 222 1985	249 399 1975 59.4 1994
SUMMARY	SUMMARY STATISTICS FOR 2002 CALENDAR YEA						OR 2003 WA	TER YEAR		WATER YEAR	RS 1963 -	2003
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS				46199 127 455 23 23 91640 323 34 28	May 22 Dec 4 Dec 12		55325 152 1030 22 22 1100 5.46 109700 369 37 23	May 31 Jan 22 Jan 22 May 31 May 31		206 352 128 2500 15 16 3010 a8.52 b1.4 149600 450 110	May 17 Feb 17 Jan 3 May 16 2 May 16 Dec 5	1995 1989 1984 1984

a--From floodmark.

b--Dam closure; result of discharge measurement.

e--Estimated.

06024450 BIG HOLE RIVER BELOW BIG LAKE CREEK, AT WISDOM, MT

 $LOCATION.--Lat\ 45^{\circ}37'07'', long\ 113^{\circ}27'25''\ (NAD\ 27), in\ SW^{1}/_{4}SW^{1}/_{4}NE^{1}/_{4}\ sec.\ 33, T.2\ S., R.15\ W., Beaverhead\ County,\ Hydrologic\ Unit\ 10020004, on\ downstream\ side\ of\ State\ Highway\ 43\ bridge,\ 0.3\ mi\ west\ of\ Wisdom,\ 0.6\ mi\ downstream\ from\ Big\ Lake\ Creek,\ and\ at\ river\ mile\ 116.0.$

DRAINAGE AREA.--575 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1988 to current year (seasonal records only).

REVISED RECORDS .-- WDR-MT-95-1: 1991 (M).

GAGE.--Water-stage recorder. Elevation of gage is 6,040 ft (NGVD 29).

REMARKS.--Seasonal water-discharge records good. Diversions for irrigation of about 66,900 acres upstream from station. U.S. Geological Survey satellite telemeter at station.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES												
DAY J	AN F	EB.	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5				470 461 324 235 201	439 453 446 525 454	1680 1470 1190 900 653	22 16 14 14 13	19 19 19 21 22	11 10 9.6 9.4 9.4	18 18 19 19		
6 7 8 9 10				189 154 161 245 437	351 301 272 252 235	501 437 397 418 441	13 20 25 28 28	22 21 18 16 14	9.5 10 11 11 12	20 20 21 21 21		
11 12 13 14 15				598 725 850 717 676	221 262 281 253 242	443 425 369 333 299	40 39 37 38 30	12 11 11 9.9 9.7	13 13 14 13 13	22 25 26 27 27		
16 17 18 19 20				455 425 412 345 369	253 257 252 264 212	274 230 187 206 348	26 27 30 32 30	9.4 11 12 12 11	14 14 14 16 17	28 28 28 27 26		
21 22 23 24 25				412 440 491 554 606	183 160 139 157 269	487 441 417 280 183	30 28 24 23 26	10 12 14 16 14	19 19 18 18	26 26 26 25 24		
26 27 28 29 30 31				632 454 387 349 426	458 613 723 835 1010 1450	121 93 65 47 36	32 39 33 28 24 22	13 13 13 13 12 11	18 17 17 17 18	25 27 28 e25 e20 e15		
TOTAL MEAN MAX MIN AC-FT				13200 440 850 154 26180	12222 394 1450 139 24240	13371 446 1680 36 26520	831 26.8 40 13 1650	441.0 14.2 22 9.4 875	422.9 14.1 19 9.4 839	727 23.5 28 15 1440		
STATISTICS	OF MONTHI	Y MEAN I	ATA FOR	SEASONS	3 1988 -	2003						
MEAN MAX (WY) MIN (WY)				404 614 1996 259 2001	491 1476 1997 71.2 1992	574 1797 1997 68.9 1994	216 739 1995 21.4 1988	63.0 215 1997 1.11 1988	37.7 95.4 1997 2.42 1988	65.5 139 1998 23.5 2004		
SUMMARY STA	TISTICS			FOR 20	03 SEASC	ON		SE	ASONS 198	8 - 2003		
HIGHEST DAIL LOWEST DAIL MAXIMUM PEA MAXIMUM PEA INSTANTANEO	Y MEAN K FLOW K STAGE	.WO:		1680 9.4 1780 5.3 a8.5	Au Ju 30 Ju	n 01 ng 16 n 01 n 01 ng 19		3830 b0. 4200 6. b0.	00 Aug Jun 37 Jun	7 1991 28 1988 6 1995 6 1995 28 1988		

a--Gage height, 2.03 ft. b--No flow many days in August and September 1988. e--Estimated.

06024450 BIG HOLE RIVER BELOW BIG LAKE CREEK, AT WISDOM, MT--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1988 to current year.

PERIOD OF DAILY RECORD .--

WATER TEMPERATURE: May 1988 to current year (seasonal records only).

INSTRUMENTATION.--Temperature recorder since Apr. 27, 1988.

REMARKS.--Daily water temperatures record good except when flows were very low and the higher recorded temperatures were not representative of those of a well-mixed cross section; maximum daily values for Aug. 14-16 and Sept 2-6 were deleted due to the unreliable data. Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office.

EXTREMES FOR PERIOD OF DAILY RECORD.--

WATER TEMPERATURE (seasonal records): Maximum, 26.5°C, July 12, 2002, minimum, 0.0°C many days during winter period.

EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURE: During period of seasonal operation, maximum, 25.5°C, July 12, 18-21; minimum, 0.0°C, several days in April and October

WATER TEMPERATURE, DEGREES CELSIUS, APRIL 2003 TO OCTOBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		APRIL			MAY			JUNE			JULY	
1 2 3 4 5	4.0 2.5 3.5 4.5 5.5	0.5 0.5 0.0 0.0	2.0 1.0 1.5 2.0 2.5	7.5 9.5 7.0 8.0 9.0	5.5 4.0 5.5 4.5 3.5	6.5 6.5 6.0 6.0	19.0 17.0 17.0 17.5	12.0 12.5 10.0 10.5 11.0	15.5 14.5 13.5 14.0 14.0	23.0 23.0 22.5 22.5 22.5	14.5 13.5 13.0 13.5 13.0	19.0 18.0 17.5 18.0 17.5
6 7 8 9 10	5.5 7.5 10.0 10.5 8.5	0.5 0.0 1.5 3.0	3.0 3.5 5.5 6.5 5.5	9.5 12.0 11.5 8.0 10.0	4.0 4.0 5.0 4.5 4.0	6.5 8.0 8.0 6.0 6.5	17.5 18.0 18.0 20.0 20.0	12.0 11.0 12.0 12.5 14.5	14.5 14.5 15.0 16.0 17.0	23.5 24.5 21.0 23.5 24.5	13.5 14.0 15.0 13.5 14.0	18.0 19.0 18.0 18.5 19.5
11 12 13 14 15	7.5 7.5 6.0 6.0 4.5	1.5 1.5 2.5 2.0 2.5	5.0 5.0 4.5 4.0 3.5	9.5 8.0 14.0 15.0 14.5	5.0 5.0 5.0 7.0 8.5	7.5 6.5 8.5 11.0 11.5	18.0 19.5 17.5 18.0 18.0	13.0 12.5 14.5 12.5 13.0	15.5 16.0 16.0 15.5 16.0	25.0 25.5 23.0 24.0 24.5	16.0 16.0 16.0 14.5 15.5	20.5 21.0 20.0 19.0 19.5
16 17 18 19 20	6.0 8.0 6.0 10.0 11.5	1.0 3.0 3.5 1.5 4.0	3.5 5.0 4.5 5.5 7.5	14.0 13.0 9.0 12.5 13.5	7.0 6.5 5.0 3.0 5.5	10.5 9.5 6.5 7.5 9.5	21.0 22.0 22.5 20.0 17.0	14.0 15.0 15.5 15.5	17.5 18.5 18.5 17.5 15.0	23.5 24.0 25.5 25.5 25.5	15.0 16.0 15.5 16.5 17.0	19.5 20.0 20.5 20.5 21.0
21 22 23 24 25	10.5 11.0 8.5 11.0 8.5	5.0 5.5 6.5 5.0 4.5	7.5 8.0 7.5 8.0 6.5	11.5 16.0 19.5 21.0 18.5	8.5 7.5 10.0 11.5 13.0	10.0 11.5 14.5 16.0 15.5	15.0 13.0 15.0 14.0 16.5	11.5 9.5 8.5 10.0 10.0	13.5 11.5 12.0 12.0 13.0	25.5 24.5 23.0 22.5 24.0	16.0 16.0 16.0 16.5 17.5	20.5 20.0 19.5 19.5 20.0
26 27 28 29 30 31	6.0 9.5 8.0 6.0 9.5	2.5 1.0 3.5 3.5 2.5	4.0 5.0 5.5 5.0 5.5	16.0 19.0 20.5 21.0 18.5 18.0	11.5 11.0 13.0 14.5 15.0 12.0	14.0 15.0 16.5 18.0 16.5	19.5 21.5 22.0 23.0 24.5	10.5 12.5 13.5 14.0 14.5	15.0 17.0 17.5 18.5 19.0	22.5 24.5 24.0 24.0 24.0 24.5	17.0 15.0 15.5 15.0 14.5	19.5 19.5 19.5 19.5 19.0 19.5
MONTH	11.5	0.0	5.0	21.0	3.0	10.0	24.5	8.5	15.5	25.5	13.0	19.5

06024450 BIG HOLE RIVER BELOW BIG LAKE CREEK, AT WISDOM, MT--Continued WATER TEMPERATURE, DEGREES CELSIUS, APRIL 2003 TO OCTOBER 2003--Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		AUGUS	AUGUST		SEPTEMBE	ER		OCTOBER	
1 2 3 4 5	24.5 23.0 22.0 24.0 22.0	15.5 17.0 16.5	19.5 19.0 19.5 19.5 18.0	20.5	12.0 12.0 12.0 12.0 14.0	16.5 16.5 16.5 16.0 16.5	15.5 14.5 14.5 14.5 14.5	8.0 6.5 6.5	11.5 11.0 10.0 10.5 10.5
6 7 8 9 10	22.5 22.5 22.0 23.5 24.5		18.0 18.0 18.0 18.5 19.5	19.5 17.0 16.0 14.0	12.5 12.0 12.5 9.5 11.0	15.5 15.5 14.5 13.0 12.5	14.5 11.5 13.0 12.5 9.0	8.5 8.0 8.5 7.5 5.5	11.0 10.0 10.5 10.0 7.0
11 12 13 14 15	22.5 21.5 22.5 	14.0 15.0 14.0 14.5 16.0	18.5 18.0 18.5 19.0 19.5	15.0 13.5 16.0 16.0 12.5	10.5 9.5 8.0 7.0 9.0	12.5 11.5 11.5 11.5 11.5	6.5 8.0 7.5 7.0 6.0	2.0 4.5 4.5 3.0 3.0	4.5 6.0 5.5 4.5 5.0
16 17 18 19 20	20.0 22.5 23.5 24.0		19.0 17.0 17.5 18.5 19.5	12.5 12.0 12.0 14.0 15.5	9.0 7.0 4.5 6.0 7.5	10.5 9.0 8.0 9.5 11.0	6.5 11.5 11.5 11.5 11.5	4.5	4.5 7.5 8.0 8.5 8.5
21 22 23 24 25	20.5 20.5 21.0 22.0 23.0	14.0 16.0 14.0 13.0 13.5	17.5 18.0 17.5 17.5	14.5 15.5 15.0 16.0 16.0	7.0 7.0 7.5 7.5 8.0	11.0 11.0 11.0 11.5	13.0 10.0 8.5 6.0	6.5 5.5 5.0 1.5 0.0	9.5 7.5 6.0 4.0 3.0
26 27 28 29 30 31	20.5 20.5 21.5 21.0 21.5 21.5	13.5 15.0 13.0 12.0 12.0	17.0 17.5 17.0 16.5 16.5	16.5 16.5 16.5 15.5 15.0	8.5 8.0 8.0 8.0 6.5	12.0 12.0 12.0 11.5	7.5 7.5 9.0 8.0 0.5 0.5	1.0 4.0 6.0 0.5 0.0	4.0 6.0 7.0 5.0 0.0
MONTH		12.0	18.0		4.5	12.5	15.5	0.0	7.0

06024540 BIG HOLE RIVER BELOW MUDD CREEK, NEAR WISDOM, MT

 $LOCATION.--Lat~45^{\circ}48'27'', long~113^{\circ}18'45''~(NAD~27), in~SE^{1}/_{4}SW^{1}/_{4}NW^{1}/_{4}~sec.~26, T.1N., R.~14~W., Beaverhead~County, Hydrologic~Unit~10020004, on right bank at bridge on Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom, 17.3 mi west of Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom, 17.3 mi west of Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom, 17.3 mi west of Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom, 17.3 mi west of Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom, 17.3 mi west of Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom, 17.3 mi west of Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom, 17.3 mi west of Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom, 17.3 mi west of Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom, 17.3 mi west of Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom, 17.3 mi west of Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom, 17.3 mi west of Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom~All Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom~All Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom~All Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom~All Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom~All Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom~All Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom~All Montana Highway~43, 0.5 mi downstream from Mudd~Creek, 15.0 mi northeast of Wisdom~All Montana Highway~43, 0.5 mi downstream from Mudd~Creek$ Wise River, and at river mile 91.6.

DRAINAGE AREA.--1,267 mi².

PERIOD OF RECORD.--October 1997 to current year (seasonal records only).

GAGE.--Water-stage recorder. Elevation of gage is 5,880 ft (NGVD 29).

REMARKS.--Seasonal records good except those from July to September, which are fair, and those for estimated daily discharges, which are poor. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductances were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5				1470 1260 886 685 600	1170 1200 1180 1310 1310	4810 4650 3980 3240 2610	285 241 215 200 187	88 84 85 88	54 52 51 51 50	107 109 106 105 104		
6 7 8 9 10				541 473 469 624 947	1080 934 857 809 778	2150 1820 1630 1570 1620	176 165 163 166 168	110 97 93 85 79	51 53 59 60 65	105 104 104 103 101		
11 12 13 14 15				1220 1500 1720 1610 1480	739 793 891 897 937	1620 1480 1310 1240 1140	164 166 158 156 154	73 69 68 66 64	66 70 71 74 76	101 106 106 108 111		
16 17 18 19 20				1110 933 921 859 849	1060 1240 1270 1250 1080	1050 954 831 762 1000	149 139 127 124 122	65 64 64 66	77 79 81 91 102	117 117 115 113 109		
21 22 23 24 25				908 1010 1190 1400 1520	979 963 966 1160 1640	1330 1280 1210 1020 827	117 111 102 100 105	61 59 92 77 70	107 101 101 99 100	106 105 105 102 99		
26 27 28 29 30 31				1660 1410 1160 1050 1100	2360 2910 3170 3450 3850 4410	646 527 444 374 324	117 132 133 118 104 96	65 64 64 61 58 55	99 97 100 99 102	98 102 107 e100 e80 e60		
TOTAL MEAN MAX MIN AC-FT				32565 1086 1720 469 64590	46643 1505 4410 739 92520	47449 1582 4810 324 94120	4660 150 285 96 9240	2285 73.7 110 55 4530	2338 77.9 107 50 4640	3215 104 117 60 6380		
STATIS	TICS OF MO	NTHLY MEA	N DATA F	OR SEASON	S 1997 -							
MEAN MAX (WY) MIN (WY)				843 1086 2003 521 2001	1299 2306 1998 709 2001	1466 2272 1999 506 2000	352 961 1998 113 2000	124 244 1998 48.5 2000	104 151 1998 75.6 2000	159 258 1998 104 2004		
	Y STATISTI	CS		FOR 2	003 SEASO	N		SEASO	NS 1997	- 2003		
HIGHES LOWEST MAXIMU MAXIMU INSTAN	T DAILY ME DAILY MEA M PEAK FLO M PEAK STA TANEOUS LO	AN N W GE W FLOW		4810 50 4900 5. a43	Jun Jun 97 Jun Sep	1 1 1 5		4810 38 4900 5.9 b36	Jun Aug 2 Jun 7 Jun Aug 2	1 2003 8 2000 1 2003 1 2003 7 2000		

a--Gage height, 2.22 ft. b--Gage height, 2.31 ft.

06025500 BIG HOLE RIVER NEAR MELROSE, MT

 $LOCATION.--Lat\ 45^{\circ}31'36'', long\ 112^{\circ}42'03''\ (NAD\ 27), in\ SE^{1}/_{4}SE^{1}/_{4}SW^{1}/_{4}\ sec. 34,\ T.3\ S.,\ R.9\ W.,\ Madison\ County,\ Hydrologic\ Unit\ 10020004,\ on\ Madison\ County,\ Madiso$ left bank 50 ft downstream from bridge, on frontage road east of Interstate 15, 0.1 mi downstream from Rock Creek, 7 mi south of Melrose, and at river mile 31.1.

DRAINAGE AREA.--2,476 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1923 to current year. Monthly discharge only for some periods, published in WSP 1309.

GAGE.--Water-stage recorder. Elevation of gage is 5,032.87 ft (NGVD 29). Prior to June 14, 1927, water-stage recorder, and July 17, 1927, to Sept. 30, 1931, nonrecording gage, at site 1.7 mi upstream at different elevation.

REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. Diversions for irrigation of about 136,000 acres upstream from station. Bureau of Reclamation satellite telemeter at station.

upstrea	m irom sta	ttion. Burea	au of Recia	amation sat	ellite telemet	er at stati	on.						
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	327 332 334 343 340	e220 e260 e250 e270 e290	394 401 388 393 391	e310 e320 e330 e310 e330	463 477 475 491 452	e290 e300 e310 e300 e300	1490 1860 1460 1020 838	1810 1910 1820 1950 2050	9110 8430 7040 5740 4740	882 803 736 682 651	250 235 233 256 252	187 181 180 179 178	
6 7 8 9	345 346 342 335 335	e310 e330 358 367 386	378 332 265 245 250	e310 e290 e270 e260 e250	e400 e360 e360 e350 e350	e310 e310 e310 312 315	772 698 639 693 1060	1840 1570 1420 1340 1260	4090 3550 3230 3220 3400	606 579 549 545 513	249 259 261 243 234	177 178 181 181 184	
11 12 13 14 15	333 330 326 317 320	393 389 396 400 408	264 302 323 350 356	e250 e260 e270 e270 e260	e340 e340 e330 e330 e320	334 383 443 591 514	1460 1880 2270 2410 2160	1200 1200 1350 1440 1550	3490 3230 2930 2870 2710	470 443 424 408 370	230 225 212 203 189	184 188 191 194 195	
16 17 18 19 20	327 330 329 330 324	399 403 386 401 397	348 367 306 273 e240	e250 e250 e260 e270 e280	e310 e320 e320 e320 e320	693 949 1090 995 892	1850 1470 1400 1310 1280	1770 1940 2040 1970 1820	2560 2420 2320 2180 2300	362 359 336 325 314	185 189 192 188 184	197 200 212 218 223	
21 22 23 24 25	330 327 328 329 319	435 457 479 438 338	e240 e260 e280 e270 e260	e270 e260 e270 e280 e290	e320 e320 e280 e220 e240	833 779 813 818 841	1410 1580 1920 2240 2460	1630 1560 1660 2150 2940	2660 2540 2320 2100 1860	303 300 299 281 294	184 184 203 232 222	229 234 237 239 239	
26 27 28 29 30 31	304 298 325 347 217 194	292 358 402 422 409	e270 e300 e330 e320 e290 e320	e310 e330 e350 e340 e350 e370	e260 e280 e290 	800 657 572 528 574 709	2480 2280 1930 1710 1670	4040 5100 5750 6630 8020 8990	1580 1340 1170 1070 975	333 322 320 304 289 272	205 205 209 207 197 190	236 233 225 226 223	
TOTAL MEAN MAX MIN AC-FT	9963 321 347 194 19760	11043 368 479 220 21900	9706 313 401 240 19250	9020 291 370 250 17890	9638 344 491 220 19120	17865 576 1090 290 35440	47700 1590 2480 639 94610	81720 2636 8990 1200 162100	97175 3239 9110 975 192700	13674 441 882 272 27120	6707 216 261 184 13300	6129 204 239 177 12160	
STATIST	rics of M	ONTHLY ME	AN DATA I	FOR WATER	YEARS 1924	- 2003	, BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	492 1109 1947 184 1936	491 1037 1928 255 1938	391 763 1976 223 1933	347 716 1928 143 1937	361 800 1971 143 1937	475 958 1986 247 1937	1490 3515 1943 490 1975	3267 8294 1976 1108 1977	3936 8380 1965 814 1992	1297 4120 1975 254 1931	463 1457 1975 87.6 1988	371 870 1965 114 1988	
SUMMARY	Z STATIST	ICS	FOR	2002 CALI	ENDAR YEAR	1	FOR 2003 W	ATER YEAR		WATER YEAR	RS 1924 -	2003	
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL 10 PERC	MEAN C ANNUAL ANNUAL ANNUAL M DAILY ME SEVEN-DA M PEAK FL M PEAK ST CANEOUS L RUNOFF (CENT EXCE	EAN EAN AN Y MINIMUM OW AGE OW FLOW AC-FT) EDS		263838 723 5240 194 214 523300 1910	Jun 3 Oct 31 Aug 16		320340 878 9110 177 179 9520 6.7 a154 635400 2170	Jun 1 Sep 6 Sep 2 May 31 4 May 31 Oct 31		1116 2024 486 13800 b49 55 c23000 d14.00 b49 808400 2990	Jun 4 Aug 17 Aug 30 Jun 14 Jun 14 Aug 17	1931 1988 1927 1927	
10 PERC	CENT EXCE	EDS EDS											

215

255

90 PERCENT EXCEEDS

a--Gage height,0.97 ft, result of freezeup. b--Observed, gage height, 0.70 ft, site and datum then in use. c--When Wise River Reservoir dam failed; maximum discharge unaffected by dam failure, 14,300 ft³/s, June 10 1972.

 $d--From\ floodmark$, site and datum then in use.

e--Estimated.

BIG HOLE RIVER BASIN

06025500 BIG HOLE RIVER NEAR MELROSE, MT--Continued WATER-QUALITY RECORDS

PERIOD OF DAILY RECORD .--

WATER TEMPERATURE: August 1956 to September 1957, August 1960 to September 1964, June 1977 to current year. SUSPENDED-SEDIMENT DISCHARGE: August 1956 to September 1957, August 1960 to September 1964.

INSTRUMENTATION.--Temperature recorder since June 1977.

REMARKS--Daily water temperature record good for the season. Unpublished records of instantaneous specific conductance and water temperature are available in files of the District office.

EXTREMES FOR PERIOD OF DAILY RECORD .--

WATER TEMPERATURE: Maximum, 24.0°C, June 25, 1988, July 12, and 19-22, 2003; minimum, 0.0°C on many days during winter most years. SEDIMENT CONCENTRATION (water years 1956-57, 1960-64): Maximum daily mean, 200 mg/L, June 29, 1961; minimum daily mean, 1 mg/L, on many days in 1960-64.

SEDIMENT LOAD (water years 1956-57, 1960-64): Maximum daily, 4,300 tons, June 9, 1964; minimum daily, less than 0.5 ton on several days in 1961.

EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURE: Maximum, 24.0°C, July 12, 19-22; minimum, 0.0°C many days October through March.

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	
	OCTOBER			NO	VEMBER		DE	CEMBER			JANUARY		
1 2 3 4 5	8.0 8.5 7.5 10.0 9.5	6.0 4.5 6.0 6.5 7.0	7.0 6.5 6.5 8.0 8.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.0 1.5 1.5 2.0 2.0	0.0 0.0 1.0 1.0	0.5 1.0 1.0 1.5	0.0 0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	
6 7 8 9 10	11.0 11.0 11.0 11.0 9.5	7.5 7.5 7.5 7.0 6.5	9.0 9.0 9.5 9.0 8.0	0.0 0.5 2.0 2.5 2.5	0.0 0.0 0.0 0.5 1.0	0.0 0.0 1.0 1.5	1.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.5 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	
11 12 13 14 15	8.0 7.5 7.5 8.0 8.0	6.0 3.5 3.5 4.0 4.5	7.0 5.5 5.5 6.0	2.5 2.0 3.0 2.5 2.5	1.0 0.5 1.5 1.0 0.5	2.0 1.5 2.5 1.5	0.0 0.0 0.0 1.0	0.0 0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.5 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	
16 17 18 19 20	8.0 8.0 8.0 7.5	4.5 4.0 4.5 4.0	6.5 6.0 6.0 5.5 6.0	2.0 2.5 2.0 2.5 5.0	0.0 1.0 1.0 1.0 2.0	1.0 1.5 1.5 1.5 3.5	0.5 1.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.5 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	
21 22 23 24 25	8.0 7.0 4.5 5.0 4.0	5.0 4.5 3.0 2.0 1.0	6.5 5.5 4.0 3.5 3.0	4.5 4.0 3.5 1.0	2.5 2.0 1.0 0.0	3.5 3.0 2.5 0.5	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	
26 27 28 29 30 31	4.0 3.5 4.0 3.5 0.0	0.5 0.5 2.5 0.0 0.0	2.5 2.0 3.5 1.0 0.0	0.0 0.0 0.5 1.5 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.5 0.5	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	1.0 1.5 0.5 2.0 3.0	0.0 0.5 0.0 0.0 0.5	0.5 1.0 0.5 0.0 1.0	
MONTH	11.0	0.0	5.5	5.0	0.0	1.0	2.0	0.0	0.0	3.0	0.0	0.0	

BIG HOLE RIVER BASIN

06025500 BIG HOLE RIVER NEAR MELROSE, MT--Continued

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

DAY	MAX	MIN FEBRUARY	MEAN	MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
1 2 3 4 5	2.5 2.0 0.5 0.5	1.0 0.0 0.0 0.0 0.0	2.0 1.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	6.0 2.5 3.5 4.5 5.0	2.5 1.0 0.5 1.0	4.0 2.0 2.0 2.5 3.0	8.5 8.5 8.0 8.0	7.0 6.0 7.0 6.5 6.5	8.0 7.5 7.0 7.0
6 7 8 9 10	0.0 0.0 0.0 0.0 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.5	0.5 0.5 1.5 3.5 5.0	0.0 0.0 0.0 0.5 2.5	0.0 0.0 0.5 2.0 3.5	6.0 7.5 10.0 12.0 10.5	2.0 2.5 3.5 5.5 6.5	4.0 5.0 6.5 8.5	8.0 10.5 10.0 8.5 9.0	6.5 6.0 7.0 7.0 5.5	7.0 8.0 8.5 7.5 7.0
11 12 13 14 15	1.0 1.0 0.0 2.5 3.0	0.0 0.0 0.0 0.0	0.5 0.5 0.0 1.0 2.0	6.5 5.5 8.0 6.0 5.5	3.0 3.5 3.0 3.5 2.5	4.5 4.5 5.5 4.5 4.0	9.0 9.5 8.5 7.5 6.0	6.5 6.5 7.0 5.5 4.5	7.5 8.0 7.5 6.5 5.5	10.0 10.0 12.0 14.0 14.5	6.0 6.5 7.0 9.0 11.0	8.0 8.0 9.5 11.0 12.0
16 17 18 19 20	2.0 2.5 2.5 2.0 1.5	0.5 0.0 0.0 0.0	1.5 1.0 1.0 1.0	4.5 3.0 3.5 4.5 5.0	3.0 0.5 1.0 0.5 1.0	4.0 1.5 2.0 2.5 3.0	6.5 7.0 8.5 9.5 11.0	3.5 4.5 5.0 5.0	5.0 5.5 6.5 7.0 8.0	13.5 12.0 9.5 9.5 11.0	10.0 9.0 7.5 6.0 6.5	11.5 10.0 8.5 7.5 8.5
21 22 23 24 25	3.0 3.0 1.0 0.0	0.5 1.0 0.0 0.0	1.5 2.0 0.0 0.0	4.0 5.0 5.5 4.0 3.5	2.0 2.0 3.0 1.0 0.5	3.0 3.5 4.0 2.5 2.0	11.0 11.5 10.0 10.0 8.5	7.0 8.5 7.5 7.5	9.0 9.5 9.0 8.5 8.0	11.0 13.0 16.0 16.0 14.5	9.5 9.0 11.0 13.0	10.0 11.0 13.5 14.5 14.0
26 27 28 29 30 31	0.0 0.0 0.0 	0.0 0.0 0.0	0.0 0.0 0.0 	3.5 2.0 5.5 7.5 9.0 8.5	1.0 0.0 0.0 1.5 3.5 5.0	2.0 1.0 2.5 4.5 6.0 6.5	7.0 7.5 7.0 6.5 9.0	5.0 3.5 5.0 5.0 4.5	6.0 5.0 6.0 6.0 6.5	13.5 14.0 15.0 15.5 15.0	11.5 11.5 12.0 13.5 13.0 12.0	12.5 12.5 13.5 14.5 14.0 12.0
MONTH	3.0	0.0	0.5	9.0	0.0	2.5	12.0	0.5	6.0	16.0	5.5	10.0
		JUNE			JULY			AUGUST			SEPTEMBE	ER
1 2 3 4 5	12.5 13.5 13.0 14.0 13.5	JUNE 11.5 12.0 11.0 11.5 11.0	12.0 12.5 12.0 12.5 12.5	21.0 20.5 20.0 20.5 20.5	JULY 16.0 15.5 14.5 14.5 14.5	18.0 18.0 17.0 17.5 17.5	23.0 22.5 21.5 22.5 20.5	AUGUST 17.0 17.5 18.0 17.0 16.5	20.0 20.5 19.5 19.5 18.5	19.5 19.0 19.0 18.5 18.0	SEPTEMBE 14.0 14.0 14.0 14.0 14.0	17.0 16.5 16.5 16.5 16.0
1 2 3 4	13.5 13.0 14.0	11.5 12.0 11.0 11.5	12.5 12.0 12.5	20.5 20.0 20.5	16.0 15.5 14.5 14.5	18.0 17.0 17.5	23.0 22.5 21.5 22.5	17.0 17.5 18.0 17.0	20.5 19.5 19.5	19.0 19.0 18.5	14.0 14.0 14.0 14.0	17.0 16.5 16.5 16.5
1 2 3 4 5 6 7 8 9	13.5 13.0 14.0 13.5 13.0 13.5 14.5 15.0	11.5 12.0 11.0 11.5 11.0 11.0 11.0	12.5 12.0 12.5 12.5 12.0 12.0 13.0 14.0	20.5 20.0 20.5 20.5 21.0 21.0 19.5 21.0	16.0 15.5 14.5 14.5 14.5 14.5 14.5 14.5	18.0 17.0 17.5 17.5 17.5 17.5 18.0 17.5 17.5	23.0 22.5 21.5 22.5 20.5 22.0 21.0 20.5 22.0	17.0 17.5 18.0 17.0 16.5 15.5 15.5 16.0	20.5 19.5 19.5 18.5 18.5 18.5 18.5 18.0 18.5	19.0 19.0 18.5 18.0 17.0 18.5 17.0 15.0	14.0 14.0 14.0 14.0 14.5 15.0 13.5 13.5	17.0 16.5 16.5 16.5 16.0 16.0 15.0
1 2 3 4 5 5 6 6 7 8 9 10 11 12 13 14	13.5 13.0 14.0 13.5 13.0 13.5 14.5 15.0 15.0 15.0 15.0 14.5	11.5 12.0 11.0 11.5 11.0 11.0 11.5 13.0 13.0 12.5 12.0 12.5	12.5 12.0 12.5 12.5 12.0 12.0 14.0 14.0 14.0 13.5 13.5 13.5	20.5 20.0 20.5 20.5 21.0 21.0 21.0 22.0 23.0 24.0 22.5 23.0	16.0 15.5 14.5 14.5 14.5 14.5 14.5 15.5 14.5 17.0 16.0 17.0 16.5	18.0 17.0 17.5 17.5 17.5 18.0 17.5 18.5 19.5 20.0 20.0	23.0 22.5 21.5 22.5 20.5 22.0 21.0 20.5 22.0 22.5 20.5 20.5 20.5	17.0 17.5 18.0 17.0 16.5 15.5 15.5 16.0 16.0	20.5 19.5 19.5 18.5 18.5 18.5 18.0 18.5 19.5	19.0 19.0 18.5 18.0 17.0 15.0 14.0 14.5 14.5 14.5	14.0 14.0 14.0 14.0 14.5 15.0 13.5 13.5 11.0 11.5	17.0 16.5 16.5 16.5 16.0 16.0 15.0 13.0 12.5
1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	13.5 13.0 14.0 13.5 13.5 14.5 15.0 15.0 15.0 15.0 14.5 15.5	11.5 12.0 11.0 11.5 11.0 11.5 13.0 13.0 12.5 13.0 12.5 13.0 12.5 13.0	12.5 12.0 12.5 12.5 12.0 13.0 14.0 14.0 13.5 14.0 15.0 15.0 16.0 16.0	20.5 20.0 20.5 20.5 21.0 21.0 21.0 22.0 23.0 22.5 23.0 22.5 22.0 22.5 22.0 22.5	16.0 15.5 14.5 14.5 14.5 14.5 15.5 14.5 15.0 16.0 17.0 16.5 16.5	18.0 17.0 17.5 17.5 17.5 18.0 17.5 18.5 19.5 20.0 20.0 19.5 19.5 19.5 20.0 20.0	23.0 22.5 21.5 22.5 20.5 22.0 21.0 20.5 22.0 22.5 20.5 21.5 22.0 21.5 22.0 21.5	17.0 17.5 18.0 17.0 16.5 15.5 15.5 16.0 16.0 16.5 16.0 17.5 17.5 14.5 14.5	20.5 19.5 19.5 18.5 18.5 18.5 18.5 19.5 18.5 19.5 19.5 19.0 17.0 17.0 17.5 18.5	19.0 19.0 19.0 18.5 18.0 17.0 15.0 15.0 14.0 14.5 14.5 13.5 11.5 11.5	14.0 14.0 14.0 14.0 14.5 15.0 13.5 11.0 11.5 11.0 9.5 9.5 10.5	17.0 16.5 16.5 16.5 16.0 16.0 15.0 13.0 12.5 12.5 12.5 12.0 12.0 10.0 9.5
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	13.5 13.0 14.0 13.5 14.5 15.0 15.0 15.0 15.0 16.0 17.0 18.0 17.0 18.0 18.0 18.0 19.0	11.5 12.0 11.0 11.5 11.0 11.5 13.0 13.0 12.5 13.0 12.5 13.0 12.5 13.0 12.5 13.0 12.5 13.0	12.5 12.0 12.5 12.5 12.0 13.0 14.0 14.0 13.5 14.0 15.0 15.0 16.0 14.5 13.0 11.5 11.5	20.5 20.0 20.5 20.5 21.0 21.0 21.0 22.0 22.0 23.0 22.5 23.0 22.5 22.0 22.5 24.0 24.0 24.0 24.0 24.0	16.0 15.5 14.5 14.5 14.5 14.5 15.5 14.5 15.5 16.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	18.0 17.0 17.5 17.5 17.5 18.0 17.5 18.5 19.5 20.0 20.0 19.5 19.5 20.0 20.5 21.0 20.5 21.0	23.0 22.5 21.5 22.5 20.5 22.0 21.0 20.5 22.0 21.5 22.0 21.5 21.5 22.0 21.5 22.0 21.5 22.0 21.5	17.0 17.5 18.0 17.0 16.5 15.5 15.5 16.0 16.0 17.5 16.0 17.5 14.5 15.5 14.5 17.0 16.0	20.5 19.5 19.5 18.5 18.5 18.0 18.5 19.5 18.0 19.5 19.0 17.5 18.5 19.5 17.5 18.0 18.5	19.0 19.0 19.0 18.5 18.0 17.0 18.5 17.0 15.0 14.0 14.5 14.5 14.5 13.5 11.5 11.0 12.0 14.0	14.0 14.0 14.0 14.0 14.5 15.0 13.5 11.0 11.5 11.0 9.5 9.5 10.5 10.5 9.0 8.0 8.0 8.5 9.5 9.5 9.5	17.0 16.5 16.5 16.5 16.0 16.0 15.0 13.0 12.5 12.5 12.5 12.0 12.5 12.0 11.0 11.5 11.5 11.5

BIG HOLE RIVER BASIN

06026210 BIG HOLE RIVER NEAR GLEN, MT

LOCATION.--Lat 45°26′26", long 112°33′20" (NAD 27), in NW¹/₄SW¹/₄SE¹/₄ sec. 35, T.4 S, R.8 W, Madison County, Hydrologic Unit 10020004, on left bank 50 ft downstream from private suspension bridge, 0.1 mi downstream from Sandy Hollow, 7.0 mi southeast of Glen, and at river mile 17.2.

DRAINAGE AREA.--2,655 mi².

PERIOD OF RECORD.--October 1997 to current year (seasonal records only).

GAGE.--Water-stage recorder. Elevation of gage is 4,850 ft (NGVD 29).

REMARKS.—Seasonal records good. Figures of discharge for seasons 1998-99 are the sum of river flow, Fred Bryan Ditch on left bank, and Upper and Lower Raffety Ditches on right bank. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1				1320	1780	10000	1020	292	230	244		
2				1840	1880	9400	944	271	225	250		
3				1520	1820	7890	879	258	218	246		
4				1100	1900	6360	827	299	221	250		
5				907	2020	5180	787	296	216	270		
6				832	1850	4390	733	293	215	287		
7				760	1590	3770	705	289	223	285		
8				694	1440	3340	672	324	226	278		
9 10				710 997	1360 1290	3280 3460	656 619	303 276	227 225	279 287		
10					1290	3400	019	2/6	225	287		
11				1400	1230	3570	582	271	216	294		
12				1780	1220	3350	542	277	191	299		
13				2140	1330	3010	516	260	202	307		
14				2360	1410	2910	498	243	209	313		
15				2140	1480	2780	462	222	213	323		
16				1860	1670	2620	439	209	217	339		
17				1500	1850	2510	436	218	218	353		
18 19				1410	1970	2410	417 406	225	241 249	359 357		
20				1320	1940 1810	2280 2360	394	217 200	249	354		
20				1200	1010	2300	394	200	231	354		
21				1370	1620	2800	363	201	256	350		
23				1810	1600	2460	320	223	270	341		
24				2170	2000	2230	299	252	274	346		
25				2380	2760	2000	323	265	276	341		
26				2440	3980	1730	425	240	273	336		
27				2290	5230	1500	386	239	268	348		
28				1940	6130	1330	368	250	259	353		
29				1720	7020	1230	337	250	249	376		
30				1660	8430	1140	320	243	229	426		
31					9680		307	236		332		
TOTAL				47170	82840		16288	7853	7046	9867		
MEAN				1572	2672	3465	525	253	235	318		
MAX MIN				2440	9680 1220	10000 1140	1020	324	276 191	426		
AC-FT				93560	164300	206200	299 32310	253 324 200 15580	13980	244 19570		
							32310	13300	13700	19370		
STATIS	STICS OF MO	NTHLY MEA	N DATA 1	FOR SEASOI	NS 1997 -							
MEAN				1276	2284	2967	905 2138	318	283	454		
MAX				1572	3829	4432	2138	565	393	708		
(WY)				2003	1998	1999	1998	1998	1998	1998		
MIN				874	1360	1310	1998 399 2000	1998 149 2000	207	318		
(WY)				2001	2002	2000	2000	2000	2001	2004		
SUMMAR	RY STATISTI	CS		FOR 2	2003 SEAS			5	SEASONS 1	1997 - 2003		
HIGHES	ST DAILY ME T DAILY MEA JM PEAK FLO JM PEAK STA TTANEOUS LO	AN		10000	Jun	1		10	0000	Jun 1 2003 Aug 29 2000 May 31 2003 May 31 2003 Aug 28 2000		
LOWEST	DAILY MEA	ΔN		191	Sep	12			122	Aug 29 2000		
JMIXAM	JM PEAK FLO	W		10500	May	31		10	0500	May 31 2003		
MAXIMU	JM PEAK STA	GE		7	.05 May	31			7.05	May 31 2003		
INSTAN	TANEOUS LO	W FLOW		a188	Sep	12			119	Aug 28 2000		

a--Gage height, 1.96 ft.

06026500 JEFFERSON RIVER NEAR TWIN BRIDGES, MT

LOCATION.--Lat 45°36'45", long 112°19'47" (NAD 27), in SE¹/₄SE¹/₄SW¹/₄ sec. 34, T.2 S., R.6 W., Madison County, Hydrologic Unit 10020005, on left bank 0.4 mi upstream from Hells Canyon Creek, 4.8 mi north of Twin Bridges, and at river mile 2,399.7. DRAINAGE AREA.--7,632 mi².

PERIOD OF RECORD.--August 1940 to September 1943, October 1957 to September 1972, May 1994 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 4,560 ft (NGVD 29). August 1940 to September 1943, nonrecording gage at site 500 ft downstream at different elevation. October 1957 to June 3, 1972, water-stage recorder at site 250 ft downstream and June 4 to September 30, 1972, nonrecording gage 6.5 mi downstream at different elevations.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Some regulation by Clark Canyon, Lima and Ruby River Reservoirs. Diversion for irrigation of about 310,000 acres upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of specific conductance and water temperature were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

					Ditti	71 11112711	· VALUED					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	675 676 692 710 703	610 708 742 746 741	846 854 846 835 834	732 721 744 728 748	844 890 861 877 832	e700 e750 e750 e700 e700	1400 2310 2190 1700 1390	2290 2500 2500 2550 2830	10500 10200 8830 7140 5730	1110 998 893 817 788	321 321 315 369 375	343 319 289 291 289
6 7 8 9 10	690 689 699 708 709	745 776 796 801 798	822 782 728 713 702	718 708 699 671 610	804 749 807 763 798	e750 e800 e700 e750 770	1170 1050 1010	2340 2130 1970	4760 4040 3460 3370 3510	754 718 696 680 647	374 363 364 387 387	302 310 310 336 351
11 12 13 14 15	715 706 706 718 717	812 813 817 815 826	730 714 736 773 793	584 638 711 735 717	753 748 738 787 765	782 820 874 1060 1150	1690 2080 2510 2930 2780	1770 1720 1780 1870 1900	3670 3540 3180 3060 3000	600 572 559 530 506	372 381 370 337 319	367 367 368 374 378
16 17 18 19 20	731 732 729 730 731	821 817 810 820 838	787 795 721 646 624	654 643 635 675 711	756 755 750 733 740	1150 1430 1560 1580 1440			2840 2710 2590 2480 2520	462 445 439 430 418	308 314 333 347 373	385 389 418 444 461
21 22 23 24 25	739 742 742 751 748	849 883 925 914 812	706 700 714 696 571	e680 e650 e600 e650 e700	745 753 e600 e500 e450	1310 1250 1230 1240 1260	1720 1860 2120 2590 2850	2030 1800 1700 1990 2780	3430 3450 3230 2900 2570	418 391 369 360 389	350 353 335 321 330	472 459 465 467 450
26 27 28 29 30 31	739 712 725 775 658 550	735 813 840 876 861	553 668 777 758 714 715	739 788 796 757 772 798	e500 e600 e650 	1220 1120 991 933 907 956	3070 2950 2540 2240 2170	3950 5350 6490 7300 8500 9760	2220 1870 1640 1470 1300	482 502 458 413 370 344	323 326 327 322 341 350	457 463 456 468 476
TOTAL MEAN MAX MIN AC-FT	22047 711 775 550 43730	24160 805 925 610 47920	22853 737 854 553 45330	21712 700 798 584 43070	20548 734 890 450 40760	31633 1020 1580 700 62740	60700 2023 3070 1010 120400	95760 3089 9760 1700 189900	115210 3840 10500 1300 228500	17558 566 1110 344 34830	10708 345 387 308 21240	11724 391 476 289 23250
STATIST	ICS OF M	ONTHLY ME	AN DATA	FOR WATER	YEARS 1940	- 2003	, BY WATER	YEAR (WY	?)*			
MEAN MAX (WY) MIN (WY)	1324 2052 1966 711 2003	1464 2025 1966 805 2003	1242 1864 1996 708 2002	1058 1424 1996 641 1995	1130 1690 1971 627 2002	1297 2092 1972 622 2002	2333 4634 1943 927 1961	3783 7025 1997 1503 2002	5657 9816 1997 1296 1994	1995 4477 1995 527 1966	831 1700 1995 208 1961	989 2114 1965 288 1994
SUMMARY	STATIST	ICS	FOR	2002 CALE	ENDAR YEAR	1	FOR 2003 W	ATER YEAR	2	WATER YEARS	3 1940 -	2003*
ANNUAL I HIGHEST LOWEST LOWEST ANNUAL MAXIMUM AXIMUM INSTANTI ANNUAL 10 PERC 50 PERC	MEAN ANNUAL M DAILY M DAILY ME SEVEN-DA PEAK FL PEAK ST ANEOUS L RUNOFF (L ENT EXCE	EAN EAN AN Y MINIMUM OW AGE OW FLOW AC-FT) EDS EDS		749300 2030 735 498	Jun 3 Aug 20 Aug 17		289 301 10800	Sep 3 Sep 2 Jun 1 1 Jun 1 Sep 4	3 2 <u>-</u> 1	1954 2824 955 14900 165 176 b16500 12.60 c82 1416000 4250 1310 706	Jun 9 Aug 19 Aug 16 Jun 10 Jun 8 Aug 17	1961 1961 1964 1995
	1 2 3 3 4 4 5 5 6 7 7 8 9 9 10 10 11 12 13 14 15 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 10 TOTAL MEAN MAX MIN MAX (WY) MIN (WY) MIN (WY) SUMMARY ANNUAL HIGHEST LOWEST ANNUAL HIGHEST LOWEST ANNUAL HARMING MAXIMUM MINSTANT LOWEST ANNUAL HARMING MAXIMUM MINSTANT LOWEST ANNUAL TANNUAL TANNUAL TANNUAL TANNUAL TO PERC 50 PERC TO PERC TO TO THE TANNUAL TO T	1 675 2 676 3 692 4 710 5 703 6 690 7 689 8 699 9 708 10 709 11 715 12 706 13 706 14 718 15 717 16 731 17 732 18 729 19 730 20 731 21 739 22 742 24 751 25 748 26 739 27 742 24 751 25 748 26 739 27 742 28 725 29 775 30 658 31 550 FOTAL 22047 MEAN 711 MAX 775 MIN 550 AC-FT 43730 STATISTICS OF M MEAN 1324 MAX 775 MIN 550 AC-FT 43730 STATISTICS OF M MEAN 1324 MAX 775 MIN 711 MAX 775 MIN 550 AC-FT 43730 STATISTICS OF M MEAN 1324 MAX 775 MIN 711 MAX 775 MIN 711 MAX 775 MIN 711 MAX 775 MIN 711 MAX 775 MIN 750 MIN 711 MAY 775 MIN 711 MAY 711 MAY 775 MIN 711 MAY 71	1 675 610 2 676 708 3 692 742 4 710 746 5 703 741 6 690 745 7 689 776 8 699 796 9 708 801 10 709 798 11 715 812 12 706 813 13 706 817 14 718 815 15 717 826 16 731 815 15 717 826 16 731 821 17 732 817 18 729 810 19 730 820 20 731 838 21 739 840 20 731 838 21 739 840 20 731 838 21 739 840 20 731 838 21 739 840 20 731 838 21 739 840 20 731 838 21 739 840 20 731 838 21 739 840 22 742 883 23 742 925 24 751 914 25 748 812 26 739 755 840 29 775 876 30 658 861 31 550 TOTAL 22047 24160 MEAN 711 805 MEAN 711 805 MEAN 711 805 MEAN 711 805 MEAN 1324 1464 MEAN 1324 1460 MEAN 1324 1460 MEAN 711 805 MEAN 711 805 MEAN 1324 1460 MEAN 1324 1460 MEAN 1324 1460 MEAN 711 805 MEAN 711 805 MEAN 1324 1460 M	1 675 610 846 2 676 708 854 3 692 742 846 4 710 746 835 5 703 741 834 6 690 745 822 7 689 776 782 8 699 796 728 9 708 801 713 10 709 798 702 11 715 812 730 12 706 813 714 13 706 817 736 14 718 815 773 15 717 826 793 16 731 821 787 17 732 817 795 18 729 810 721 19 730 820 646 20 731 838 624 21 739 849 706 22 742 883 700 23 742 925 714 24 751 914 696 25 748 812 571 26 739 735 553 27 712 813 668 28 725 840 777 29 775 876 758 30 658 861 714 31 550 715 FOTAL 22047 24160 22853 MEAN 711 805 737 MAX 775 925 854 MIN 550 610 553 AC-FT 43730 47920 45330 STATISTICS OF MONTHLY MEAN DATA MEAN 1324 1464 1242 MAX 2052 2025 1864 MIN 711 805 737 MAX 775 925 854 MIN 550 610 553 AC-FT 43730 47920 45330 SUMMARY STATISTICS FOR ANNUAL TOTAL ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK FLOW MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RENOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	1 675 610 846 732 2 676 708 854 721 3 692 742 846 744 4 710 746 835 728 5 703 741 834 748 6 690 745 822 718 7 689 776 782 708 8 699 796 728 699 9 708 801 713 671 10 709 798 702 610 11 715 812 730 584 12 706 813 714 638 13 706 817 736 711 14 718 815 773 735 15 717 826 793 717 16 731 821 787 654 17 732 817 795 643 18 729 810 721 635 19 730 820 646 675 20 731 838 624 711 21 739 849 706 6680 22 742 883 700 6650 23 742 925 714 6600 24 751 914 696 6650 23 742 925 714 6600 24 751 914 696 6650 25 748 812 571 6700 26 739 735 553 739 27 712 813 668 788 28 725 840 777 796 29 775 876 758 757 30 658 861 714 772 31 550 715 798 FOTAL 22047 24160 22853 21712 MEAN 711 805 737 700 MAX 775 925 854 798 MIN 550 610 553 584 MIN 550 610 553 584 MIN 711 805 737 700 MAX 775 925 854 798 MIN 550 610 553 584 MIN 711 805 737 700 MAX 775 925 854 798 MIN 550 610 553 584 MIN 711 805 737 700 MAX 775 925 854 798 MIN 550 610 553 584 MIN 711 805 737 700 MAX 775 925 854 798 MIN 550 610 553 584 MIN 711 805 737 700 MIN 750 925 854 798 MIN 750 925 854 798 MIN 750 925 854 798 MIN 750 925 864 1424 MIN 711 805 737 708 MIN 750 925 864 1424 MIN 711 805 737 700 MAX 775 925 854 798 MIN 550 610 553 584 MIN 711 805 737 700 MAX 775 925 854 798 MIN 550 610 553 584 MIN 711 805 737 700 MIN 750 925 864 1424 MIN 711 805 737 708 MIN 550 610 553 584 MIN 711 805 737 708 MIN 550 610 553 584 MIN 711 805 737 708 MIN 750 925 854 798 MIN 550 610 553 584 MIN 711 805 737 708 MIN 750 925 854 798 MIN 550 610 553 584 MIN 711 805 737 700 MAX 775 925 854 798 MIN 550 610 553 584 MIN 711 805 737 700 MIN 750 925 854 798 MIN 550 610 553 584 MIN 711 805 737 700 MIN 750 925 854 798 MIN 550 610 553 584 MIN 711 805 737 700 MIN 750 925 854 798 MIN	1 675 610 846 732 844 813 668 749 801 711 738 745 812 730 584 753 812 730 584 753 812 730 584 753 812 730 584 753 812 730 584 753 812 730 584 753 813 706 813 714 638 748 815 777 755 812 731 821 732 817 765 812 732 817 765 812 730 681 733 741 834 748 832 817 763 812 730 584 753 812 730 6817 736 711 738 715 717 826 793 717 765 812 730 735 787 717 765 812 730 820 646 675 733 813 714 638 748 815 773 735 787 818 729 810 721 635 750 819 730 820 646 675 733 820 646 675 733 820 646 675 733 820 646 675 733 820 646 675 733 820 646 675 733 820 646 675 733 820 646 675 733 820 646 675 733 820 646 675 733 820 640 675 733 820 640 675 733 820 640 675 733 820 640 675 733 820 640 675 733 820 640 675 733 820 640 675 733 820 640 777 796 6650 753 823 742 925 748 812 571 6700 6450 6600 6600 6600 6600 6600 6600 66	DAY OCT NOV DEC JAN FEB MAR 1 675 610 846 732 844 e700 2 676 708 854 721 890 e750 3 692 742 846 744 861 e750 4 710 746 835 728 877 e700 5 703 741 834 748 832 e700 6 690 745 822 718 804 e750 8 699 776 782 708 749 880 8 699 776 782 708 749 880 9 708 801 713 671 763 e750 10 709 798 702 610 798 770 11 715 812 730 584 753 782 12 706 813 714 638 748 820 13 706 817 736 711 738 874 14 718 815 773 735 787 1060 15 771 826 793 717 765 1150 16 731 821 787 654 756 1150 16 731 821 787 654 756 1150 17 732 817 795 643 755 1430 19 730 820 646 675 733 1580 19 730 820 646 675 733 1580 22 742 883 700 e650 753 1250 23 742 925 714 e600 e600 1240 24 751 914 696 e650 e500 1240 25 748 812 571 e700 e450 1260 26 739 735 553 739 e500 1220 27 712 813 668 788 e600 1240 28 725 840 777 796 e650 991 30 658 861 714 772 907 30 658 861 714 772 907 30 658 861 714 772 907 30 658 861 714 772 907 30 658 861 714 772 907 31 836 624 711 740 1440 21 739 849 706 e650 e500 1240 22 742 883 700 e650 753 1250 24 751 914 e600 e600 1230 24 751 914 e966 e650 e500 1240 25 748 812 571 e700 e450 1260 26 739 735 553 739 e500 1220 27 712 813 668 788 e600 1120 28 725 840 777 796 e650 991 30 658 861 714 772 907 30 658 861 714 772 907 30 658 861 714 772 907 31 836 624 711 740 1440 32 775 925 840 777 796 e650 991 30 658 861 714 772 907 31 805 737 700 734 1020 31 550 715 798 956 31 550 715 798 956 31 550 715 798 956 31 550 715 798 957 31 855 570 864 1424 1690 292 32 741 805 737 700 734 1020 34 741 805 737 700 734 1020 34 742 925 744 678 890 1580 31 550 715 798 7 933 30 658 861 714 772 907 31 805 737 700 734 1020 31 550 715 798 957 31 850 747 796 6650 670 734 1020 31 550 715 798 957 31 850 747 74920 45330 43070 40760 62740 31 850 747 749300 740760 62740 31 805 747 749300 740760 62740 31 805 708 641 627 622 31 742 925 744 841 174 772 907 31 815 747 749300 749300 749300 749300 749300 749300 749300 749300 749300 749300 749300 749300 749300 749300 749300 749300 749300 749300 7493	DAY OCT NOV DEC JAN FEB MAR APR 1 675 610 846 732 844 e700 1400 2 676 708 854 721 890 e750 2310 3 692 742 846 744 861 e750 2190 4 710 746 835 728 877 e700 1700 5 703 741 834 748 832 e700 1390 6 690 745 822 718 804 e750 1270 7 689 776 782 708 749 e800 1170 8 699 796 728 699 807 e700 1050 9 708 801 713 661 763 e750 1010 10 709 798 702 610 798 770 1180 11 715 812 730 584 753 782 1690 12 706 813 714 638 748 820 2080 13 706 817 736 711 738 874 2510 14 718 815 773 735 787 1060 2930 15 717 826 793 717 765 1150 2780 16 731 821 787 654 756 1150 2780 16 731 821 787 654 756 1150 2780 16 731 821 787 654 756 1150 2780 17 732 817 795 643 755 1430 2060 18 729 810 721 635 750 1560 1880 19 730 820 646 675 733 1580 1810 20 731 838 624 711 740 1440 1700 21 739 849 706 e680 745 1310 1720 22 742 883 700 e650 753 1250 1880 19 730 820 646 675 733 1580 1810 22 742 883 700 e650 753 1250 1880 22 742 883 700 e650 753 1250 1820 24 751 914 6660 e650 1230 2120 25 748 812 571 e700 e450 1220 3070 27 712 813 668 788 e600 1120 2950 28 725 840 777 796 e550 e500 1240 2550 26 739 735 553 739 e500 1220 3070 27 712 813 668 788 e600 120 2850 28 725 840 777 796 e550 e500 1240 2550 28 725 840 777 796 e550 e500 1240 2550 28 725 840 777 796 e550 e500 1240 2550 28 725 840 777 796 e550 e500 1240 2550 28 725 840 777 796 e550 e500 1240 2023 30 658 861 714 772 933 2240 31 550 715 798 956 DOTAL 2047 24160 22853 21712 20548 3163 60700 29 775 876 758 777 700 734 1020 2023 30 658 861 714 772 933 2240 31 550 715 798 956 DOTAL 2047 24160 22853 21712 20548 3163 60700 30 658 861 714 777 796 e500 991 2500 292 4634 30 658 861 714 777 796 e500 991 2500 292 4634 30 658 861 714 777 796 e500 991 2500 292 4634 30 658 861 714 772 933 2240 30 658 861 714 777 796 e500 991 290 24634 30 658 861 714 777 796 e500 991 290 292 4634 30 658 861 714 777 796 e500 991 290 292 4634 30 658 861 714 777 796 e500 991 290 292 4634 30 658 861 714 777 796 e500 991 290 290 290 290 290 290 290 290 290 290	DAY OCT NOV DEC JAN FEB MAR APR MAY 1 675 610 846 732 844 e700 1400 2290 2 676 708 854 721 890 e750 2310 2500 3 692 742 846 744 861 e750 2190 2500 4 710 746 835 728 877 e700 1700 2550 5 703 741 834 748 832 e700 1390 2300 6 6 690 745 822 718 804 e750 1270 2680 6 690 745 822 718 804 e750 1270 2680 8 669 776 762 708 699 841 e800 1170 2340 8 669 776 762 699 749 e800 1170 2340 9 708 801 776 702 610 798 770 1180 1860 11 715 812 730 584 753 782 1690 1770 12 706 813 714 638 748 820 2090 1730 13 706 817 736 711 738 874 2510 1780 14 718 815 773 735 787 1060 2930 1870 15 717 826 793 717 765 1150 2780 1900 16 731 821 787 654 756 1150 2780 1900 16 731 821 787 654 756 1150 2240 1900 17 732 817 795 643 756 1150 2240 2240 19 733 889 624 771 740 1440 1700 2220 21 733 889 700 e650 733 1250 1880 2420 22 742 883 700 e650 733 1250 1880 2420 21 731 838 624 771 740 1440 1700 2220 22 742 883 700 e650 733 1250 1880 2420 22 742 883 700 e650 733 1250 1880 2420 24 751 914 696 e660 230 1240 2590 1990 24 751 813 668 788 e600 1220 3070 3950 25 774 812 577 796 850 1200 1200 3089 27 712 813 668 686 745 1310 1720 2300 28 775 876 777 976 850 1990 29 778 870 779 779 779 779 779 779 779 779 779 7	OCT NOV DEC JAN FEB MAR APR MAY JUN	1 675 610 846 732 844 e700 1400 2290 10500 1110 2 G766 708 854 7214 890 e750 2110 2500 10200 998	OCT NOV DEC JAN FEB MAR AFR MAY JUN JUL AUG 1 675 510 846 732 844 770 1400 2220 10500 1110 321 2 675 703 844 774 861 675 211 890 6750 1210 2250 10500 1020 999 321 3 692 742 846 744 861 6750 2190 2590 8830 893 315 4 710 746 835 778 877 6700 1700 2550 7140 817 369 5 703 741 834 748 832 270 1390 2830 5730 788 375 6 6 690 745 822 718 804 6750 1210 2240 4040 718 363 8 699 776 722 708 749 6800 1170 2340 4040 718 363 8 699 796 728 6699 807 6700 1050 2130 3460 666 364 9 708 801 713 671 763 6750 1010 1970 3370 680 387 10 709 798 702 610 798 770 1100 1850 3130 3460 667 387 11 715 812 730 584 753 782 1690 1770 3500 3370 680 387 11 715 812 730 584 753 782 1690 1770 3500 572 381 13 706 813 714 638 748 820 2080 1720 3540 572 381 13 706 817 736 711 738 874 2510 1780 3180 559 370 14 78 815 773 735 787 1060 2230 1870 360 590 370 15 717 826 793 717 765 1150 2780 1900 3000 506 319 16 731 821 787 654 755 1150 2780 1900 3000 506 319 16 731 821 787 654 755 1150 2780 1900 3000 506 319 16 731 821 787 654 755 1150 2880 2400 2710 445 314 18 729 810 721 6680 783 1150 1200 2300 2240 402 308 17 732 817 795 643 755 1430 2060 2240 2710 445 314 18 729 810 721 6680 783 1550 1800 2420 2590 418 371 22 742 883 700 8650 753 1550 1880 2420 2590 418 373 19 730 820 646 675 733 1550 1800 2420 2590 418 373 19 730 820 646 675 733 1550 1800 2420 2590 418 373 22 742 883 700 8650 753 1250 1860 1800 3450 391 353 23 742 883 714 8600 680 748 8600 120 3070 3950 2220 488 373 24 742 883 700 8650 753 1250 1860 1800 3450 391 353 25 748 812 668 788 6600 120 2300 8780 2480 4482 323 26 739 735 553 739 8600 120 3070 3950 2220 482 323 26 739 735 553 739 8600 120 3070 3950 220 1994 1966 1961 28 800 11 800 11 11 605 11 600 11 10 10 10 10 10 10 10 10 10 10 10 1

^{*--}During periods of operation (August 1940 to September 1943, October 1957 to September 1972, May 1994 to current year).

a--Gage height, 3.08 ft. b--Gage height, 9.04 ft, site and datum than in use. c--Gage height, 1.61 ft, site and datum than in use.

e--Estimated.

06031450 BOULDER RIVER ABOVE KLEINSMITH GULCH, NEAR BASIN, MT

 $LOCATION.--Lat\ 46°16'11",\ long\ 112°16'43"\ (NAD\ 27),\ in\ SW^1/_4NE^1/_4SW^1/_4\ sec.\ 18,\ T.6\ N.,\ R.5\ W.,\ Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ 0.5\ mi\ upstream\ from\ Kleinsmith\ Gulch\ and\ 0.9\ mi\ southwest\ of\ Basin.$

DRAINAGE AREA.--218 mi².

PERIOD OF RECORD.--October 1996 to current year.

GAGE.--None. Elevation at site is 5,380 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)
FEB 2003 20 MAY	1240	15	7.8	144	-2.0	0.0	55	16.2	3.40	1.48	.5
12	0830	243	8.1	103	7.0	4.5	44	13.5	2.61		
JUN 03	0840	390	7.8	53	12.0	7.5	21	6.31	1.23		
AUG 20	0930	7.4	7.7	162	19.0	15.5	58	17.8	3.23		
Date	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d (70302)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)
FEB 2003 20 MAY	8.53	59	3.33	.12	20.4	15.2	104	.14	4.10	1.7	E2
12 JUN										3.2	4
03 AUG										3.5	5
20										3.8	4
Date	Cadmium water, fltrd, ug/L (01025)	Cadmium water, unfltrd ug/L (01027)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	Lead, water, fltrd, ug/L (01049)	Lead, water, unfltrd recover -able, ug/L (01051)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)
FEB 2003 20	<.04	E.02	2.3	3.4	.11	.19	6	7	76	4	.16
MAY 12	< .04	.05	3.5	5.8	.12	1.19	7	12	28	53	35
JUN 03	<.04	E.03	3.8	5.7	E.06	1.11	4	8	40	38	40
AUG 20	<.04	< .04	2.5	2.6	E.05	.20	2	3	67	3	.06

 $\mathtt{E--Estimated}.$

462517112173001 08N06W25AABB01

 $LOCATION.--Lat\ 46^{\circ}25'16.6", long\ 112^{\circ}17'29.8"\ (NAD\ 83), in\ NW^{1}/_{4}NE^{1}/_{4}NE^{1}/_{4}sec.\ 25, T.8\ N., R.6\ W., Jefferson\ County,\ Hydrologic\ Unit\ 10030101.\ HYDROGEOLOGIC\ UNIT.--Tertiary\ volcanics.$

WELL CHARACTERISTICS.--Drilled in May 1999, casing diameter 4 in., depth 108 ft.

DATUM.--Measuring point, top of PVC casing, 1.20 ft above land surface datum. Elevation of land-surface datum is 7,565.63 ft (NGVD 29). PERIOD OF RECORD.--October 2001 to current year.

REMARKS.--All water levels are reported as distance, in feet below land-surface datum. Well was pumped extensively on June 30 and Aug. 8 in an attempt to remove sediment and standing water from the well casing.

MEASURED WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 2002 THROUGH SEPTEMBER 2003

DA	ГΕ	WATER <u>LEVEL</u>
Jun	30	59.60
Jul	2	60.18
Aug	8	65.54
Aug	28	68.20

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date JUL 2003 02 AUG 28	Time 1300 1300	Flow rate, instantaneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)	Sam- pling depth, feet (00003)	Tur- bidity, water, unfltrd field, NTU (61028)	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf us/cm 25 degC (00095)	Temper- ature, water, deg C (00010)	Hard-ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)
Date	Magnes- ium, water, fltrd, mg/L (00925)	sium, water,	Sodium adsorp- tion ratio (00931)	Sodium, water, fltrd, mg/L (00930)	field, mg/L as CaCO3	Chlor- ide, water, fltrd, mg/L (00940)	ide, water,	Silica, water, fltrd, mg/L	Sulfate water, fltrd, mg/L (00945)	Alum- inum, water, fltrd, ug/L (01106)	Anti- mony, water, fltrd, ug/L (01095)
JUL 2003 02 AUG 28	.113	4.79 3.84	1	3.32 2.58	.0	.60	<.2 <.2	51.7 17.7	56.5 52.4	4580 3940	<.30 <.30
Date	Arsenic water, fltrd, ug/L (01000)	water,	Cadmium water, fltrd, ug/L (01025)	Chrom- ium, water, fltrd, ug/L (01030)	Cobalt water, fltrd, ug/L (01035)	Copper, water, fltrd, ug/L (01040)	water,	fltrd, ug/L	Mangan- ese, water, fltrd, ug/L (01056)	Nickel, water, fltrd, ug/L (01065)	Selen- ium, water, fltrd, ug/L (01145)
JUL 2003 02 AUG 28	.3 E.2	.66	.57	<.8	.876 .897	.3	266 210	9.71 5.61	9.4	1.34	1.8
			Date JUL 2	e :	ilver, water, v fltrd, : ug/L	ium, water, fltrd, ug/L	water, fltrd, ug/L	Zinc, water, fltrd, ug/L 01090)			
			02 AUG	2003	<.2	.56	<.1	204 174			

462507112170601 08N05W30BBCD01

LOCATION.--Lat 46°25′06.8", long 112°17′05.6" (NAD 83), in SW¹/₄NW¹/₄NW¹/₄ sec. 30, T.8 N., R.5 W., Lewis and Clark County, Hydrologic Unit 10020006

HYDROGEOLOGIC UNIT.--Boulder batholith quartz monzonite.

WELL CHARACTERISTICS.--Drilled in June 2000, casing diameter 4 in., depth 84.5 ft.

DATUM.--Measuring point, top of PVC casing, 2.60 ft above land surface datum. Elevation of land-surface datum is 7,689.44 ft (NGVD 29).

PERIOD OF RECORD.--June 2000 to current year.

REMARKS.--All water levels are reported as distance, in feet below land-surface datum. Well was pumped extensively on Aug. 8 in an attempt to remove sediment and standing water from the well casing.

MEASURED WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 2002 THROUGH SEPTEMBER 2003

DA	TE	WATER <u>LEVEL</u>
Jul	2	30.61
Aug	8	33.70
Aug	29	35.29

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Flow rate, instan- taneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)	Sam-	NTU	solved oxygen, mg/L	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)		Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)
JUL 2003	1500	.50	72	8.0	8.3	. 4	6.5	110	11.0	43	10.6
AUG			· -								
29	1000	.30	62	80	8.7	. 2	6.3	112	7.5	38	9.40
Date	Magnes- ium, water, fltrd, mg/L (00925)	sium, water, fltrd, mg/L	Sodium adsorp- tion ratio	fltrd, mg/L	lab, mg/L as CaCO3	wat flt inc tit field, mg/L as CaCO3	wat flt incrm. titr., field, mg/L	ate, wat flt incrm. titr., field, mg/L	Chlor- ide, water, fltrd, mg/L	ide, water, fltrd, mg/L	Silica, water, fltrd, mg/L
JUL 2003	2 02	1.65	. 3	4.26	43	48	59	. 0	. 39	. 3	0.7. 6
02 AUG	3.93										27.6
29	3.58	1.54	.3	4.08	44	45	55	.0	.41	.3	26.0
Date	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Alum- inum, water, fltrd, ug/L (01106)	Anti- mony, water, fltrd, ug/L (01095)	Arsenic water, fltrd, ug/L (01000)	Beryll- ium, water, fltrd, ug/L (01010)	Cadmium water, fltrd, ug/L (01025)	Chrom- ium, water, fltrd, ug/L (01030)	Cobalt water, fltrd, ug/L (01035)	Copper, water, fltrd, ug/L (01040)
JUL 2003 02 AUG	8.8	92	.12	E1	<.30	E.1	.16	<.04	<.8	4.78	<.2
29	8.7	85	.12	<1	<.30	E.1	.19	< .04	<.8	5.27	<.2
	Date	Iron, water, fltrd, ug/L (01046)	fltrd, ug/L	fltrd, ug/L	Nickel, water, fltrd, ug/L	fltrd, ug/L	Silver,	water, fltrd, ug/L	ium, water, fltrd, ug/L	Zinc, water, fltrd, ug/L	
	JUL 2003	4710	.11	328	2.71	<.5	<.2	<.04	E.1	2	
	AUG						<.2	<.04		2	
	29	3970	<.08	360	2.50	<.5	<.2	<.04	E.1	2	

462503112172302 08N06W25ADAC02

 $LOCATION.--Lat\ 46^{\circ}25'02.7", long\ 112^{\circ}17'22.8"\ (NAD\ 83), in\ NE^{1}/_{4}SE^{1}/_{4}NE^{1}/_{4}\ , sec.\ 25, T.8\ N., R.6\ W., Jefferson\ County,\ Hydrologic\ Unit\ 10020006.\ HYDROGEOLOGIC\ UNIT.--Tertiary\ volcanics.$

WELL CHARACTERISTICS.--Drilled in June 2000, casing diameter 2 in., depth 98.5 ft.

DATUM.--Measuring point, top of PVC casing, 1.60 ft above land surface datum. Elevation of land-surface datum is 7,521.47 ft (NGVD 29). PERIOD OF RECORD.--June 2000 to current year.

REMARKS.--All water levels are reported as distance, in feet below land-surface datum. Well was pumped extensively on Aug. 8 in an attempt to remove sediment and standing water from well casing.

MEASURED WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 2002 THROUGH SEPTEMBER 2003

DA	TE	WATER <u>LEVEL</u>
Jun	30	17.46
Aug	8	19.93
Aug	28	26.42

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date JUN 2003 30 AUG 28	Time 1300 1500	Flow rate, instantaneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)	Sam- pling depth, feet (00003)	Tur- bidity, water, unfltrd field, NTU (61028)	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)		Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915) 1.53 .79
Date	Magnes- ium, water, fltrd, mg/L (00925)	sium, water, fltrd, mg/L		Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat fly fxd end lab, mg/L as CaCO3 (29801)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)	Carbon- ate, wat flt incrm. titr., field, mg/L (00452)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)
JUN 2003 30 AUG 28	.163	3.85 4.28	.8	3.79 7.81	<2 3	<1 2	2	.0	3.62 4.07	<.2	30.6 34.5
Date	Sulfate water, fltrd, mg/L (00945)	consti- tuents mg/L	Residue water, fltrd, tons/ acre-ft (70303)	Alum- inum, water, fltrd, ug/L (01106)	Anti- mony, water, fltrd, ug/L (01095)	Arsenic water, fltrd, ug/L (01000)	Beryll- ium, water, fltrd, ug/L (01010)	Cadmium water, fltrd, ug/L (01025)	Chrom- ium, water, fltrd, ug/L (01030)	Cobalt water, fltrd, ug/L (01035)	Copper, water, fltrd, ug/L (01040)
JUN 2003 30 AUG 28	14.9 14.9	60 68	.08	317 81	<.30	<.3 <.3	.27	.11	E.5 E.5	.616	2.7
	Date	Iron, water fltrd ug/L (01046	, fltrd, ug/L	fltrd ug/L	Nickel, , water, , fltrd, ug/L	water, fltrd, ug/L	Silver water fltrd ug/L	, water , fltrd ug/L	ium, , water, , fltrd, ug/L	Zinc, water, fltrd, ug/L	
	JUN 2003 30 AUG 28	24 31	59.1 28.7	15.5 8.6	3.31	E.3	<.2	.52	<.1 <.1	97 66	

462503112172301 08N06W25ADAC01

 $LOCATION.--Lat\ 46^{\circ}25'02.7'', long\ 112^{\circ}17'22.8''\ (NAD\ 83), in\ NE^{1}/_{4}SE^{1}/_{4}NE^{1}/_{4}\ sec.\ 25, T.8\ N.,\ R.6\ W.,\ Jefferson\ County,\ Hydrologic\ Unit\ 10020006.$ HYDROGEOLOGIC UNIT.--Boulder batholith quartz monzonite.
WELL CHARACTERISTICS.--Drilled in May 1999, casing diameter 4 in., depth 170 ft.

DATUM.--Measuring point, top of PVC casing, 0.0 ft above land surface datum. Elevation of land-surface datum is 7,521.1 ft (NGVD 29). PERIOD OF RECORD.--October 2001 to current year.

REMARKS.--All water levels are reported as distance, in feet below land-surface datum. Well was pumped extensively on June 30 and Aug. 8 in an attempt to remove sediment and standing water from the well casing.

MEASURED WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 2002 THROUGH SEPTEMBER 2003

DA	TE	WATER <u>LEVEL</u>
Jun	30	32.85
Aug	8	35.63
Aua	28	35.70

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Flow rate, instantaneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)	Sam- pling depth, feet (00003)	Tur- bidity, water, unfltrd field, NTU (61028)	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)
JUN 2003 30	1200	1.0	160	E165	76	. 2	6.6	123	9.5	39	10.9
AUG 28	1600	.30	95	165	32	.3	6.5	129	8.5	38	
28	1600	.30	95	165	32	. 3	6.5	129	8.5	38	10.6
Date	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp-	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	inc tit field,		ate, wat flt incrm.	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)
JUN 2003 30	2.78	6.35	. 3	4.36	18	20	24	. 0	.50	. 2	38.7
AUG 28	2.77	6.18	. 4	5.70	21	21	26	. 0	.52	. 2	36.1
Date	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Alum- inum, water, fltrd, ug/L (01106)	Anti- mony, water, fltrd, ug/L (01095)	Arsenic water, fltrd, ug/L (01000)	Beryll- ium, water, fltrd, ug/L (01010)	Cadmium water, fltrd, ug/L (01025)	Chrom- ium, water, fltrd, ug/L (01030)	Cobalt water, fltrd, ug/L (01035)	Copper, water, fltrd, ug/L (01040)
JUN 2003 30 AUG	32.4	110	.15	<2	<.30	1.5	.09	E.03	<.8	.985	.3
28	34.1	111	.15	<2	<.30	1.5	.15	.06	<.8	1.15	. 4
	Date	Iron, water, fltrd, ug/L (01046)	Lead, water, fltrd, ug/L (01049)	Mangan- ese, water, fltrd, ug/L (01056)	Nickel, water, fltrd, ug/L (01065)	Selen- ium, water, fltrd, ug/L (01145)	Silver, water, fltrd, ug/L (01075)	Thall- ium, water, fltrd, ug/L (01057)	Vanad- ium, water, fltrd, ug/L (01085)	Zinc,	
	JUN 2003 30	2030	.17	111	1.36	<.5	<.2	.07	<.1	9	
	AUG 28	2030	<.08	123	1.74	<.5	<.2	.07	<.1	9	
	۷0	2030	\.UU	143	1./1	\	\.4	.07	`.⊥	J	

462500112170701 08N05W30BCBD01

 $LOCATION.--Lat\ 46^{\circ}24'59.6",\ long\ 112^{\circ}17'06.6\ (NAD\ 83)",\ in\ NW^{1}/_{4}SW^{1}/_{4}NW^{1}/_{4}\ sec.\ 30,\ T.8\ N.,\ R.5\ W.,\ Jefferson\ County,\ Hydrologic\ Unit\ 10020006$

HYDROGEOLOGIC UNIT.--Boulder batholith quartz monzonite.

WELL CHARACTERISTICS.--Drilled in June 1999, casing diameter 4 in., depth 110 ft.

DATUM.--Measuring point, top of PVC casing, 0.8 ft above land surface datum. Elevation of land-surface datum is 7,577.99 ft (NGVD 29). PERIOD OF RECORD.--October 2001 to current year.

REMARKS.--All water levels are reported as distance, in feet below land-surface datum. Well was pumped extensively on Aug. 8 in an attempt to remove sediment and standing water from the well casing.

MEASURED WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 2002 THROUGH SEPTEMBER 2003

DA	TE	WATER <u>LEVEL</u>
Jul	3	26.35
Aug	8	28.49
Aug	28	29.93

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Flow rate, instan- taneous gal/min (00059)	Pump or flow period prior to sam- pling, minutes (72004)		Tur- bidity, water, unfltrd field, NTU (61028)	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)
JUL 2003	1200	1.5	100	95.0	18	3.6	6.2	68	6.0	21	3.83
AUG											
28	1900	1.6	70	105	44	1.2	6.1	67	5.5	17	2.99
Date	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	incrm. titr., field, mg/L	Carbon- ate, wat flt incrm. titr., field, mg/L (00452)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)
JUL 2003	2.87	1.11	. 6	5.87	26	24	29	. 0	.43	.3	32.7
AUG											
28	2.40	1.13	.6	5.42	24	20	25	.0	.41	.3	31.4
Date	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Alum- inum, water, fltrd, ug/L (01106)	Anti- mony, water, fltrd, ug/L (01095)	Arsenic water, fltrd, ug/L (01000)	Beryll- ium, water, fltrd, ug/L (01010)	Cadmium water, fltrd, ug/L (01025)	Chrom- ium, water, fltrd, ug/L (01030)	Cobalt water, fltrd, ug/L (01035)	Copper, water, fltrd, ug/L (01040)
JUL 2003 03 AUG	7.7	69	.09	2	<.30	E.2	<.06	<.04	<.8	1.09	. 4
28	7.7	64	.09	2	<.30	.3	<.06	< .04	<.8	.767	.3
	Date JUL 2003 03 AUG 28	Iron, water, fltrd, ug/L (01046)	Lead, water, fltrd, ug/L (01049) <.08	Mangan- ese, water, fltrd, ug/L (01056)	Nickel, water, fltrd, ug/L (01065) 1.14	Selen- ium, water, fltrd, ug/L (01145)	Silver, water, fltrd, ug/L (01075)	Thall- ium, water, fltrd, ug/L (01057) <.04 <.04	Vanad- ium, water, fltrd, ug/L (01085) E.1	Zinc, water, fltrd, ug/L (01090)	

462347112180401 BASIN CREEK BELOW BUCKEYE MINE NEAR LOGGING ROAD, NEAR BASIN, MT

 $LOCATION. --Lat\ 46^{\circ}23'47'', long\ 112^{\circ}18'04''\ (NAD\ 27), in\ SW^{1}/_{4}SE^{1}/_{4}NW^{1}/_{4}\ sec.\ 36, T.8\ N., R.6\ W., Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ at\ old\ logging\ road\ crossing,\ 0.5\ mi\ downstream\ from\ the\ Buckeye\ Mine,\ and\ 8.7\ mi\ north\ of\ Basin.$

DRAINAGE AREA.--2.54 mi².

PERIOD OF RECORD.--January 2000 to current year.

GAGE.--None. Elevation at site is 6,940 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instar taneou dis- charge cfs (0006	us unflt - fiel e, std unit	r, wate rd unflt d, lab std s unit	rd tand , wat u uS/d s 25 de	ic- ee, Tempe inf atur im air egC deg	e, atur , wate C deg	e, unflt r, mg/L C CaCC	s, er, Calci erd wate as fltr 03 mg/	r, water d, fltro L mg/l	sium , wate: d, fltr L mg/	, Sodium r, adsorp- d, tion L ratio
MAR 2003 24	1230	. 48	3	7.5	83	1.5	0.0	43	12.3	3.02	1.5	7 .2
MAY 14	1030	1.9	7.5		72	7.5	0.5	35	10.4	2.14		
JUN 03	1050	11	7.3		37	9.0	5.0	17	4.9	9 1.10		
AUG 21	1255	. 3!	5 7.4		86	14.5	13.0	41	12.3	2.40		
Date		Sodium, water, fltrd, mg/L 00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d (70302)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)
MAR 200 24 MAY		2.43	43	.45	.08	14.5	8.7	69	.09	.09	19.1	24
14 JUN											44.3	67
03 AUG											13.4	20
21											34.7	37
Date		Cadmium water, fltrd, ug/L 01025)	Cadmium water, unfltrd ug/L (01027)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	Lead, water, fltrd, ug/L (01049)	Lead, water, unfltrd recover -able, ug/L (01051)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)
MAR 200 24 MAY		. 23	.24	2.7	3.0	.50	1.02	50	52	64	2	<.01
14		.91	.97	10.2	12.0	1.24	5.18	187	192	67	2	.01
JUN 03		.29	.32	4.5	5.2	1.00	4.32	49	54	70	6	.18
AUG 21		.15	.14	2.1	2.2	1.27	1.45	23	22	83	1	<.01

462501112173501 UNNAMED TRIBUTARY TO GRUB CREEK, SS NO. 4, NEAR RIMINI, MT

 $LOCATION.--Lat\ 46^{\circ}25'00.8", long\ 112^{\circ}17'35.2"\ (NAD\ 83), in\ SE^{1}/_{4}SW^{1}/_{4}NE^{1}/_{4}\ sec.\ 25, T.8\ N., R.6\ W., Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ 0.25\ mi\ upstream\ from\ Grub\ Creek\ and\ 5.9\ mi\ south\ of\ Rimini.$

DRAINAGE AREA.--Indeterminate.

PERIOD OF RECORD.--October 2001 to current year.

GAGE.--None. Elevation at site is 7,420 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)
JUL 2003	1200	.03		5.9	97	8.5	30	8.79	2.00	4.14	.1
SEP											
05	1215	.001	8.7	4.7	79	11.0	19	5.32	1.27	4.50	.1
Date	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d (70302)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)
JUL 2003	1.86	3	1.20	<.2	12.0	33.0	65	.09	.01	<.04	E.05
SEP 05	1.45	<2	1.43	<.2	20.1	30.4	E65	E.09	E.00	< .04	E.06
Date	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Alum- inum, water, fltrd, ug/L (01106)	Alum- inum, water, unfltrd recover -able, ug/L (01105)	Anti- mony, water, fltrd, ug/L (01095)	Anti- mony, water, unfltrd ug/L (01097)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)	Beryll- ium, water, fltrd, ug/L (01010)	Beryll- ium, water, unfltrd recover -able, ug/L (01012)	Cadmium water, fltrd, ug/L (01025)
Date JUL 2003	water, fltrd, mg/L as N	phos- phate, water, fltrd, mg/L as P	inum, water, fltrd, ug/L	inum, water, unfltrd recover -able, ug/L	mony, water, fltrd, ug/L	mony, water, unfltrd ug/L	water, fltrd, ug/L	water unfltrd ug/L	ium, water, fltrd, ug/L	ium, water, unfltrd recover -able, ug/L	water, fltrd, ug/L
JUL 2003 10 SEP	water, fltrd, mg/L as N (00613)	phos- phate, water, fltrd, mg/L as P (00671)	inum, water, fltrd, ug/L (01106)	inum, water, unfltrd recover -able, ug/L (01105)	mony, water, fltrd, ug/L (01095)	mony, water, unfltrd ug/L (01097)	water, fltrd, ug/L (01000)	water unfltrd ug/L (01002)	ium, water, fltrd, ug/L (01010)	ium, water, unfltrd recover -able, ug/L (01012)	water, fltrd, ug/L (01025)
JUL 2003 10	water, fltrd, mg/L as N (00613)	phos- phate, water, fltrd, mg/L as P (00671)	inum, water, fltrd, ug/L (01106)	inum, water, unfltrd recover -able, ug/L (01105)	mony, water, fltrd, ug/L (01095)	mony, water, unfltrd ug/L (01097)	water, fltrd, ug/L (01000)	water unfltrd ug/L (01002)	ium, water, fltrd, ug/L (01010)	ium, water, unfltrd recover -able, ug/L (01012)	water, fltrd, ug/L (01025)
JUL 2003 10 SEP 05	water, fltrd, mg/L as N (00613) <.008 <.008 Cadmium water, unfltrd ug/L (01027)	phos-phate, water, fltrd, mg/L as P (00671) <.02 <.18 Chromium, water, fltrd, ug/L (01030)	inum, water, fltrd, ug/L (01106) 25 187 Chromium, water, unfltrd recover -able, ug/L (01034)	inum, water, unfltrd recover -able, ug/L (01105) 119 258 Cobalt water, fltrd, ug/L	mony, water, fltrd, ug/L (01095) <.30 <.30 Cobalt water, unfltrd recover -able, ug/L (01037)	mony, water, unfltrd ug/L (01097) <.6 <.6 Copper, water, fltrd, ug/L (01040)	water, fltrd, ug/L (01000) .6 .4 Copper, water, unfltrd recover -able, ug/L (01042)	water unfilrd ug/L (01002) <2 E1 Iron, water, fltrd, ug/L (01046)	ium, water, fltrd, ug/L (01010) .17 .41 Iron, water, unfltrd recover -able, ug/L (01045)	ium, water, unfltrd recover -able, ug/L (01012) .24 .39	water, fltrd, ug/L (01025) .23 .18 Lead, water, unfltrd recover -able, ug/L (01051)
JUL 2003 10 SEP 05	water, fltrd, mg/L as N (00613) <.008 <.008	phos- phate, water, fltrd, mg/L as P (00671) <.02 <.18	inum, water, fltrd, ug/L (01106) 25 187 Chrom- ium, water, unfltrd recover -able, ug/L	inum, water, unfltrd recover -able, ug/L (01105) 119 258 Cobalt water, fltrd, ug/L (01035)	mony, water, fltrd, ug/L (01095) <.30 <.30 Cobalt water, unfltrd recover -able, ug/L	mony, water, unfltrd ug/L (01097) <.6 <.6 Copper, water, fltrd, ug/L	water, fltrd, ug/L (01000) .6 .4 Copper, water, unfltrd recover -able, ug/L	water unfilrd ug/L (01002) <2 El Iron, water, fltrd, ug/L	ium, water, fltrd, ug/L (01010) .17 .41 Iron, water, unfltrd recover -able, ug/L	ium, water, unfltrd recover -able, ug/L (01012) .24 .39	water, fltrd, ug/L (01025) .23 .18 Lead, water, unfltrd recover -able, ug/L

462501112173501 UNNAMED TRIBUTARY TO GRUB CREEK, SS NO. 4, NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	ese, water, fltrd, ug/L	unfltrd recover -able, ug/L	Nickel, water, fltrd, ug/L (01065)	unfltrd recover -able, ug/L	Selen- ium, water, fltrd, ug/L	ium, water, unfltrd ug/L	Silver, water, fltrd, ug/L	unfltrd recover -able, ug/L
JUL 2003 10 SEP 05	114 136		1.06					
	Date	ium, water, fltrd, ug/L	Thall- ium, water, unfltrd ug/L (01059)	ium, water, fltrd, ug/L	ium, water, unfltrd ug/L	Zinc, water, fltrd, ug/L	-able, ug/L	
	JUL 2003 10 SEP 05	.12	<.4		<1 <1	65 66	64 66	

 $\mathtt{E--Estimated}.$

462458112173201 UNNAMED TRIBUTARY TO GRUB CREEK, SS NO. 5, NEAR RIMINI, MT

 $LOCATION.--Lat\ 46^{\circ}24'57.6", long\ 112^{\circ}17'32.5"\ (NAD\ 27),\ SW^{1}/_{4}SE^{1}/_{4}sec.\ 25, T.8N., R.6W., Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ 0.2$ mi upstream from Grub\ Creek and 5.9 mi south of Rimini.

DRAINAGE AREA.--Indeterminate.

PERIOD OF RECORD.--July 2003 to September 2003.

GAGE.--None. Elevation at sampling site is 7,370 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd field, std units (00400)	Specif. conductance, wat unf uS/cm 25 degC (00095)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)
JUL 2003 10 SEP	1115	.03		5.7	104	8.5	32	8.94	2.32	3.87	. 2
05	1200	.004	8.6	4.7	80	10.5	20	5.64	1.36	4.26	. 2
Date	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	water, fltrd, tons/d	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)
JUL 2003	2.18	2	1.06	<.2	11.8	37.0	69	.09	.01	<.04	<.06
SEP 05	1.64	<2	1.48	<.2	20.5	30.4	E67	E.09	E.00	<.04	E.04
Date	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Alum- inum, water, fltrd, ug/L (01106)	Alum- inum, water, unfltrd recover -able, ug/L (01105)	Anti- mony, water, fltrd, ug/L (01095)	Anti- mony, water, unfltrd ug/L (01097)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)	Beryll- ium, water, fltrd, ug/L (01010)	Beryll- ium, water, unfltrd recover -able, ug/L (01012)	Cadmium water, fltrd, ug/L (01025)
JUL 2003 10	<.008	<.02	36	88	<.30	<.6	.5	<2	. 29	.32	.30
SEP 05	<.008	<.18	144	167	<.30	<.6	. 4	E1	.64	.62	.23
Date	Cadmiur water unfltro ug/L (01027	, water, d fltrd, ug/L	unfltrd recover -able, ug/L	Cobalt water, fltrd, ug/L	recover -able, ug/L	Copper, water, fltrd, ug/L	, recover , -able, ug/L	d Iron, water fltrd ug/L	, -able, ug/L	Lead, water, fltrd, ug/L	-able, ug/L
JUL 2003 10	.28	<.8	<.8	1.18	1.14	. 8	1.5	152	320	E.07	. 42
SEP 05	.23	<.8	<.8	1.75	1.69	1.5	1.5	260	550	.16	. 67

462458112173201 UNNAMED TRIBUTARY TO GRUB CREEK, SS NO. 5, NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	ese, water, fltrd, ug/L	recover -able, ug/L	Nickel, water, fltrd, ug/L	Nickel, water, unfltrd recover -able, ug/L (01067)	ium, water, fltrd, ug/L	ium, water, unfltrd ug/L	Silver, water, fltrd, ug/L	recover -able, ug/L
JUL 2003 10 SEP 05	123 187	120 180		1.40	<.5 <.5			
	Date	fltrd, ug/L	ium, water, unfltrd ug/L		unfltrd ug/L	fltrd, ug/L	-able, ug/L	
	JUL 2003 10 SEP 05	.09	<.4	<.1	<1 <1	72 72	71 72	

 $\mathtt{E--Estimated}.$

462442112174602 UNNAMED TRIBUTARY TO GRUB CREEK AT MOUTH, SS NO. 6, NEAR RIMINI, MT

 $LOCATION.--Lat\ 46^{\circ}24^{\prime}42.3^{"},\ long\ 112^{\circ}17^{\prime}45.5^{"}\ (NAD\ 27),\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 25,\ T.8N.,\ R.6W.,\ Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ 30\ ft\ upstream\ from\ Grub\ Creek\ and\ 5.9\ mi\ south\ of\ Rimini.$

DRAINAGE AREA.--Indeterminate.

PERIOD OF RECORD.-July 2003 to September 2003.

GAGE.--None. Elevation at sampling site is 7,320 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)
JUL 2003 10 SEP	1030	.06		6.4	97	8.0	35	9.79	2.50	3.01	. 2
05	1045	.01	8.9	5.5	109	9.5	34	9.59	2.54	3.83	.2
Date	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d (70302)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)
JUL 2003 10	2.24	11	1.09	<.2	11.4	28.4	65	.09	.01	< .04	<.06
SEP 05	2.80	15	2.21	<.2	14.3	27.1	72	.10	.00	< . 04	E.03
								. = -			
Date	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Alum- inum, water, fltrd, ug/L (01106)	Alum- inum, water, unfltrd recover -able, ug/L (01105)	Anti- mony, water, fltrd, ug/L (01095)	Anti- mony, water, unfltrd ug/L (01097)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)	Beryll- ium, water, fltrd, ug/L (01010)	Beryll- ium, water, unfltrd recover -able, ug/L (01012)	Cadmium water, fltrd, ug/L (01025)
JUL 2003	water, fltrd, mg/L as N (00613)	phos- phate, water, fltrd, mg/L as P (00671)	inum, water, fltrd, ug/L (01106)	inum, water, unfltrd recover -able, ug/L (01105)	mony, water, fltrd, ug/L (01095)	mony, water, unfltrd ug/L (01097)	water, fltrd, ug/L (01000)	water unfltrd ug/L (01002)	ium, water, fltrd, ug/L (01010)	ium, water, unfltrd recover -able, ug/L (01012)	water, fltrd, ug/L (01025)
JUL 2003 10 SEP	water, fltrd, mg/L as N (00613)	phos- phate, water, fltrd, mg/L as P (00671)	inum, water, fltrd, ug/L (01106)	inum, water, unfltrd recover -able, ug/L (01105)	mony, water, fltrd, ug/L (01095)	mony, water, unfltrd ug/L (01097)	water, fltrd, ug/L (01000)	water unfltrd ug/L (01002)	ium, water, fltrd, ug/L (01010)	ium, water, unfltrd recover -able, ug/L (01012)	water, fltrd, ug/L (01025)
JUL 2003	water, fltrd, mg/L as N (00613)	phos- phate, water, fltrd, mg/L as P (00671) <.02 <.18 Chrom- ium, water, fltrd, ug/L	inum, water, fltrd, ug/L (01106) 20 11 Chromium, water, unfltrd	inum, water, unfltrd recover -able, ug/L (01105) 60 73 Cobalt water, fltrd, ug/L	mony, water, fltrd, ug/L (01095) <.30 E.16 Cobalt water, unfltrd	mony, water, unfltrd ug/L (01097) <.6 <.6	water, fltrd, ug/L (01000) .6 .6 .6 Copper, water, unfltrd	water unfiltrd ug/L (01002) <2 E1	ium, water, fltrd, ug/L (01010) .12 .16 Iron, water, unfltrd recover -able, ug/L	ium, water, unfltrd recover -able, ug/L (01012) .12 .21	water, fltrd, ug/L (01025) .14 .11 Lead, water, unfltrd recover -able, ug/L
JUL 2003 10 SEP 05	water, fltrd, mg/L as N (00613) <.008 <.008 Cadmium water, unfltrd ug/L (01027)	phos- phate, water, fltrd, mg/L as P (00671) <.02 <.18 Chrom- ium, water, fltrd, ug/L (01030)	inum, water, fltrd, ug/L (01106) 20 11 Chromium, water, unfltrd recover -able, ug/L (01034)	inum, water, unfiltrd recover -able, ug/L (01105) 60 73 Cobalt water, fltrd, ug/L (01035)	mony, water, fltrd, ug/L (01095) <.30 E.16 Cobalt water, unfltrd recover -able, ug/L (01037)	mony, water, unfltrd ug/L (01097) <.6 <.6 Copper, water, fltrd, ug/L (01040)	water, fltrd, ug/L (01000) .6 .6 .6 Copper, water, unfltrd recover -able, ug/L (01042)	water unfltrd ug/L (01002) <2 E1 Iron, water, fltrd, ug/L (01046)	ium, water, fltrd, ug/L (01010) .12 .16 Iron, water, unfltrd recover -able, ug/L (01045)	ium, water, unfltrd recover -able, ug/L (01012) .12 .21 Lead, water, fltrd, ug/L (01049)	water, fltrd, ug/L (01025) .14 .11 Lead, water, unfltrd recover -able, ug/L (01051)
JUL 2003 10 SEP 05	water, fltrd, mg/L as N (00613) <.008 <.008	phos- phate, water, fltrd, mg/L as P (00671) <.02 <.18 Chrom- ium, water, fltrd, ug/L	inum, water, fltrd, ug/L (01106) 20 11 Chromium, water, unfltrd recover -able, ug/L	inum, water, unfltrd recover -able, ug/L (01105) 60 73 Cobalt water, fltrd, ug/L	mony, water, fltrd, ug/L (01095) <.30 E.16 Cobalt water, unfltrd recover -able, ug/L	mony, water, unfltrd ug/L (01097) <.6 <.6 Copper, water, fltrd, ug/L	water, fltrd, ug/L (01000) .6 .6 .6 Copper, water, unfltrd recover -able, ug/L	water unfiltrd ug/L (01002) <2 E1 Iron, water, fltrd, ug/L	ium, water, fltrd, ug/L (01010) .12 .16 Iron, water, unfltrd recover -able, ug/L	ium, water, unfltrd recover -able, ug/L (01012) .12 .21 Lead, water, fltrd, ug/L	water, fltrd, ug/L (01025) .14 .11 Lead, water, unfltrd recover -able, ug/L

E--Estimated.

462442112174602 UNNAMED TRIBUTARY TO GRUB CREEK AT MOUTH, SS NO. 6, NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	ese, water, fltrd, ug/L		Nickel, water, fltrd, ug/L	recover -able, ug/L	Selendium, water fltrdug/L	ium, , water, , unfltro ug/L		recover -able, ug/L
JUL 2003								
10 SEP	43.0	45	.92	.89	<.5	<.5	<.2	<.16
05	113	123	.74	.96	<.5	<.5	<.2	<.16
Da	ate	water, fltrd, ug/L	ium, water, unfltrd ug/L	water, fltrd, ug/L	water, unfltrd ug/L	Zinc, water, fltrd, ug/L (01090)	ug/L	
	2003 L0	E.02	<.4	<.1	<1	46	48	
)5	.05	< . 4	E.1	<1	35	39	

 $\mathtt{E--Estimated}.$

462442112174601 GRUB CREEK ABOVE MOUTH OF UNNAMED TRIBUTARY, GC03, NEAR RIMINI, MT

 $LOCATION.--Lat~46^{\circ}24^{\prime}42.1^{"},~long~112^{\circ}17^{\prime}45.7^{"}~(NAD~27),~NE^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}~sec.~25,~T.8N.,~R.6W.,~Jefferson~County,~Hydrologic~Unit~10020006,~1.1~mi~upstream~from~Basin~Creek~and~5.9~mi~south~of~Rimini.$

DRAINAGE AREA.--Indeterminate.

PERIOD OF RECORD.--July 2003.

GAGE.--None. Elevation at sampling site is 7,290 ft (NGVD 29).

REMARKS.--Stream was dry on site visits in August and September.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)	Sodium, water, fltrd, mg/L (00930)
JUL 2003 10	1000	.01	5.8	32	9.0	13	3.69	.829	.59	. 2	1.39
Date	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water,	water, fltrd, mg/L	tuents mg/L	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d		water fltrd, mg/L as N	Nitrite water, fltrd, mg/L as N (00613)
JUL 2003 10	11	.49	<.2	8.65	3.0	26	.04	.00	<.04	<.06	<.008
Date	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Alum- inum, water, fltrd, ug/L (01106)	Alum- inum, water, unfltrd recover -able, ug/L (01105)	Anti- mony, water, fltrd, ug/L (01095)	Anti- mony, water, unfltrd ug/L (01097)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)	Beryll- ium, water, fltrd, ug/L (01010)	Beryll- ium, water, unfltrd recover -able, ug/L (01012)	Cadmium water, fltrd, ug/L (01025)	Cadmium water, unfltrd ug/L (01027)
JUL 2003 10	<.02	94	135	<.30	<.6	1.5	<2	.13	.17	.36	.39
Date	Chrom- ium, water, fltrd, ug/L (01030)	Chrom- ium, water, unfltrd recover -able, ug/L (01034)	Cobalt water, fltrd, ug/L (01035)	Cobalt water, unfltrd recover -able, ug/L (01037)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	Iron, water, fltrd, ug/L (01046)	Iron, water, unfltrd recover -able, ug/L (01045)	Lead, water, fltrd, ug/L (01049)	Lead, water, unfltrd recover -able, ug/L (01051)	Mangan- ese, water, fltrd, ug/L (01056)
JUL 2003 10	<.8	<.8	.158	.174	19.1	21.0	175	230	.30	.40	23.4
		Date	Mangan ese, water unfltr recove -able ug/L (01055	, d Nickel r water , fltrd ug/L	, recover , -able ug/L	, Selend ium, r water, fltrd ug/L	ium, , water , unfltro ug/L	Silver, , water d fltrd ug/L	, recove: , -able ug/L	, d r	
	,	JUL 2003 10	24	.85	.81	<.5	<.5	<.2	E.15		
		Date JUL : 10	e (2003	ium, water, fltrd, u ug/L	ium, water, nfltrd ug/L	ium, water, w fltrd, um ug/L	water, wa	Zinc, un water, re fltrd, -	-able, ug/L		

462155112181501 JACK CREEK ABOVE BULLION MINE TRIBUTARY, NEAR BASIN, MT

 $LOCATION.--Lat\ 46^{\circ}21'55",\ long\ 112^{\circ}18'15"\ (NAD\ 27),\ in\ NW^{1}/_{4}SW^{1}/_{4}SW^{1}/_{4}\ sec.\ 12,\ T.7\ N.,\ R.6\ W.,\ Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ 0.2\ mi\ upstream\ of\ Bullion\ Mine\ tributary,\ 2.4\ mi\ upstream\ of\ Basin\ Creek,\ and\ 7.1\ mi\ north\ of\ Basin.$

DRAINAGE AREA.--2.55 mi².

PERIOD OF RECORD.--March 2003 to August 2003.

GAGE.--None. Elevation at site is 6,580 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)
MAR 2003 24	1415	.39	7.8	96	1.5	0.0	44	12.8	2.91	1.04	. 2
MAY 13	1150	2.0	7.6	83	4.0	0.5	45	13.5	2.75		
JUN 03	1300	11	7.4	41	12.5	4.5	20	5.84	1.20		
AUG 21	1145	.25	7.2	128	15.0	10.5	48	14.5	2.80		
Date	Sodium water fltrd mg/L (00930	, lab, , mg/L a CaCO3	t Chlor- d ide, water, s fltrd,	ide, water, fltrd, mg/L	Silica, water, fltrd, mg/L (00955)	water, fltrd, mg/L	tuents mg/L	Residue water, fltrd,	Residue water, fltrd, tons/d	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)
MAR 2003 24 MAY	2.67	43	.34	.08	14.0	10.9	71	.10	.07	4.7	4
13										3.6	4
03 AUG										4.7	8
21										6.3	6
Date	Cadmium water, fltrd, ug/L (01025)	Cadmium water, unfltrd ug/L (01027)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	Lead, water, fltrd, ug/L (01049)	Lead, water, unfltrd recover -able, ug/L (01051)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)
MAR 2003 24	.26	.24	3.0	3.2	<.08	E.04	54	40	75	1	<.01
MAY 13	.10	.10	3.2	3.5	E.05	.28	19	19	71	1	.01
JUN 03	.07	.10	4.8	6.4	.12	2.05	14	21	46	11	.32
AUG 21	.07	.08	1.9	1.8	<.08	.07	11	9	80	1	<.01

462120112173701 BULLION MINE ADIT NEAR BASIN, MT

LOCATION.--Lat 46°21′20″, long 112°17′37″ (NAD 27), in NW¹/₄SW¹/₄SE¹/₄ sec. 13, T.7 N., R.6 W., Jefferson County, Hydrologic Unit 10020006, at PVC pipe draining the Bullion mine adit about 400 ft upstream from the Bullion mine tributary, 2 mi upstream from Jack Creek, and 6.3 mi northwest of Basin.

PERIOD OF RECORD.--October 1999 to current year.

GAGE.--None. Elevation at site is 7,360 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)
JUN 2003 26 AUG	1020	.01	2.5	3010	14.0	5.5	350	80.1	35.7	2.22	.1
21	1045	.02	3.6	3050	16.0	5.0	320	78.5	31.1	2.59	.1
Date	Sodium, water, fltrd, mg/L (00930)	water,	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Alum- inum, water, fltrd, ug/L (01106)	Anti- mony, water, fltrd, ug/L (01095)	Arsenic water, fltrd, ug/L (01000)	Cadmium water, fltrd, ug/L (01025)	Chrom- ium, water, fltrd, ug/L (01030)	Copper, water, fltrd, ug/L (01040)
JUN 2003 26 AUG	3.87	8.50	.3	37.5	1610	19800	60.7	9240	718	10.4	16100
21	4.79	2.11	. 4	38.0	1160	18000	24.1	1870	464	3.7	11700
		Date JUN 2003	Iron, water, fltrd, ug/L (01046)	, fltrd ug/L	, fltrd, ug/L	Mercury water, fltrd, ug/L	, water , fltrd ug/I	, water d, fltrd L ug/I	, water l, fltrd ug/L	., l,	
		26 AUG	285000	676	24800	E.02	119	1.4	84100		
		21	232000	410	23400	<.02	89.7	7 .5	49200)	

 $\mathtt{E--Estimated}.$

462153112181701 BULLION MINE TRIBUTARY AT MOUTH, NEAR BASIN, MT

 $LOCATION.--Lat\ 46^{\circ}21'53",\ long\ 112^{\circ}18'17"\ (NAD\ 27),\ in\ SE^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}\ sec.\ 13,\ T.7\ N.,\ R.5\ W.,\ Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ at\ confluence\ with\ Jack\ Creek,\ 2.2\ mi\ upstream\ from\ Basin\ Creek,\ and\ 6.7\ mi\ northwest\ of\ Basin.$

DRAINAGE AREA.--1.19 mi².

PERIOD OF RECORD.--October 1996 to current year.

GAGE.--None. Elevation at site is 6,595 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)			Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	sium, water, fltrd, mg/L	Sodium adsorp- tion ratio (00931)
MAR 2003											
24 MAY	1340	.15	7.6	136	1.6	0.0	75	21.6	5.20	1.07	. 2
13 JUN	1225	.60	7.7	123	4.0	0.5	55	16.2	3.44		
03 AUG	1230	5.7	7.3	54	12.5	4.0	21	6.06	1.33		
21	1130	.23	4.3	626	15.0	11.0	140	37.8	10.3		
Date	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d (70302)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)
MAR 2003 24 MAY	3.18	8	.81	.11	16.5	78.8	135	.18	.05	.7	4
13 JUN										1.4	9
03										8.0	55
AUG 21										5.0	15
Date	Cadmium water, fltrd, ug/L (01025)	Cadmium water, unfltrd ug/L (01027)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	Lead, water, fltrd, ug/L (01049)	Lead, water, unfltrd recover -able, ug/L (01051)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)
MAR 2003											
24 MAY	22.0	22.2	93.8	150	.10	2.87	2640	2690	81	5	<.01
13 JUN	10.9	11.1	41.1	117	.14	3.53	1210	1250	75	3	<.01
03 AUG	3.15	3.47	52.0	71.1	1.58	19.4	347	391	36	25	.38
21	77.1	76.7	1100	1070	12.9	15.2	8110	7810	93	4	<.01

 ${\tt E--Estimated.}$

462047112201901 JACK CREEK AT MOUTH, NEAR BASIN, MT

 $LOCATION. --Lat\ 46^{\circ}20'47'', long\ 112^{\circ}20'19''\ (NAD\ 27), in\ NW^{1}/_{4}SE^{1}/_{4}SE^{1}/_{4}SE^{2}/_{4}SE^{2}, L7\ N., R.6\ W., Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ at\ Basin\ Creek\ road\ crossing,\ 7\ mi\ northwest\ of\ Basin.$

DRAINAGE AREA.--8.55 mi².

PERIOD OF RECORD.--January 2000 to current year.

GAGE.--None. Elevation at site is 6,260 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)
APR 2003	1100	1.4	7	4.0		0 5	2.4	10.0	0.16	1 15	0
23 MAY	1100	14	7.5	48	5.5	0.5	34	10.0	2.16	1.15	. 2
13 JUN	1335	11	7.7	66	7.5	4.5	26	7.49	1.87		
04 AUG	0840	22	7.7	42	10.0	4.0	18	5.39	1.21		
20	1050	1.3	7.9	114	22.5	13.0	44	13.1	2.79		
Date	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d (70302)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)
APR 2003 23 MAY 13	2.36	21	.76	<.2	13.5	14.0	57	.08	2.10	6.8	65 8
JUN 04											21
AUG										5.8	
20										5.4	8
Date	Cadmium water, fltrd, ug/L (01025)	Cadmium water, unfltrd ug/L (01027)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	Lead, water, fltrd, ug/L (01049)	Lead, water, unfltrd recover -able, ug/L (01051)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)
APR 2003 23	1.83	3.61	35.6	133	1.12	26.4	237	409	74	46	1.7
MAY 13	1.20	1.36	17.5	22.1	. 25	1.77	160	173	83	1	.03
JUN 04	.80	1.01	18.2	26.7	.45	7.17	100	123	49	15	.89
AUG 20	3.17	3.30	12.3	22.9	.12	.62	372	391	42	2	.01

06031600 BASIN CREEK AT BASIN, MT

 $LOCATION.--Lat~46^{\circ}16'16", long~112^{\circ}15'42"~(NAD~27), in~NE^{1}/_{4}NW^{1}/_{4}SW^{1}/_{4}~sec.~17,~T.6~N.,~R.5~W.,~Jefferson~County,~Hydrologic~Unit~10020006, at~county~bridge~on~old~interstate~15~in~Basin.$

DRAINAGE AREA.--41.1 mi².

PERIOD OF RECORD.--October 1996 to current year.

GAGE.--None. Elevation at site is 5,340 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)
FEB 2003 20	1000	4.2	7.8	102	-2.0	.0	39	11.1	2.82	1.25	. 2
MAY 13	0900	62	8.0	49	6.0	2.0	21	6.10	1.46		
JUN 04	1000	106	7.5	39	10.5	6.0	15	4.32	.961		
AUG 20	1140	2.7	7.2	108	23.0	17.0	43	12.9	2.65		
Date	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d (70302)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)
FEB 2003 20 MAY	3.60	30	1.18	.11	17.3	19.4	75	.10	.87	3.1	4
13 JUN										5.1	7
04 AUG										5.2	10
20										7.4	8
Date	Cadmium water, fltrd, ug/L, (01025)	Cadmium water, unfltrd ug/L (01027)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	Lead, water, fltrd, ug/L (01049)	Lead, water, unfltrd recover -able, ug/L (01051)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)
FEB 2003 20	.30	.33	2.1	2.9	.11	. 29	67	74	67	1	.01
MAY 13 JUN	.30	.37	6.5	8.0	.33	1.42	57	69	84	3	.50
04 AUG	.28	.36	7.9	10.9	.37	3.74	41	54	60	10	2.9
20	.24	.24	3.1	3.3	E.07	.24	32	32	62	1	.01

461905112144201 CATARACT CREEK ABOVE UNCLE SAM GULCH, NEAR BASIN, MT

 $LOCATION.--Lat\ 46^{\circ}19'05", long\ 112^{\circ}14'42"\ (NAD\ 27), in\ SE^{1}/_{4}SE^{1}/_{4}NE^{1}/_{4}\ sec.\ 32, T.7\ N., R.5\ W., Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ 100ft\ upstream\ from\ Uncle\ Sam\ Gulch\ and\ 3.4\ mi\ northeast\ of\ Basin.$

DRAINAGE AREA.--22.2 mi².

PERIOD OF RECORD.--October 1996 to March 2003 (discontinued).

GAGE.--None. Elevation at site is 6,320 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)		water,	Potas- sium, water, fltrd, mg/L (00935)	
MAR 2003 25	0850	3.2	7.8	103	-0.5	0.0	52	15.7	3.05	1.14	. 2
Date	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d (70302)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)
MAR 2003 25	3.11	49	. 69	.09	14.7	12.8	81	.11	.70	2.2	E2
Date	Cadmium water, fltrd, ug/L (01025)	Cadmium water, unfltrd ug/L (01027)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	Lead, water, fltrd, ug/L (01049)	Lead, water, unfltrd recover -able, ug/L (01051)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)
MAR 2003 25	.30	.32	8.1	7.4	. 41	.50	61	64	95	5	.04

462053112153601 CRYSTAL MINE ADIT NEAR BASIN, MT

 $LOCATION.--Lat~46^{\circ}20'53", long~112^{\circ}15'36"~(NAD~27), in~NE^{1}/_{4}SW^{1}/_{4}NW^{1}/_{4}~sec.~20, T.7~N., R.5~W., Jefferson~County,~Hydrologic~Unit~10020006, adit~discharge~from~Cyrstal~Mine,~about~3~mi~upstream~from~the~mouth~of~Uncle~Sam~Gulch,~and~5.25~mi~north~of~Basin.$

DRAINAGE AREA.--None.

PERIOD OF RECORD.--June 2003 to August 2003.

GAGE.--None. Elevation at site is 7,600 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)
JUN 2003 26 AUG	0845	.08	3.9	810	19.5	5.0	210	57.6	17.0	1.45	.1
21	1010	.11	3.8	1270	15.0	6.0	220	57.8	17.3	1.47	.1
Date	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	ide, water,	ide, water,	Silica, water, fltrd, mg/L (00955)	water,	water,	fltrd, ug/L		Cadmium water, fltrd, ug/L (01025)	Chrom- ium, water, fltrd, ug/L (01030)
JUN 2003 26	3.47	<1	1.41	<.2	20.6	477	2890	2.01	143	581	<.8
AUG 21	3.34	<1	1.16	<.2	22.8	528	5810	2.09	85.2	700	<.8
	Dat	e f	ater, w ltrd, f ug/L	ater, w ltrd, f ug/L	ead, ater, w ltrd, f ug/L	ater, w ltrd, f ug/L	ater, w ltrd, f ug/L	ater, w ltrd, f ug/L	ater, wa ltrd, fl ug/L i	inc, ater, Ltrd, ug/L 1090)	

				Mangan-				
Date	Copper, water, fltrd, ug/L (01040)	Iron, water, fltrd, ug/L (01046)	Lead, water, fltrd, ug/L (01049)	ese, water, fltrd, ug/L (01056)	Mercury water, fltrd, ug/L (71890)	Nickel, water, fltrd, ug/L (01065)	Silver, water, fltrd, ug/L (01075)	Zinc, water, fltrd, ug/L (01090)
JUN 2003 26 AUG	5080	39500	30.9	12200	<.02	38.4	<.3	45700
21	7400	55100	40.2	13600	<.02	39.5	<.2	55900

461904112144401 UNCLE SAM GULCH AT MOUTH, NEAR BASIN, MT

 $LOCATION.\text{--Lat }46^\circ19'04'', long\ 112^\circ14'44''\ (NAD\ 27), in\ SE^1/_4SE^1/_4NE^1/_4\ sec.\ 32,\ T.7\ N.,\ R.5\ W.,\ Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ at\ confluence\ with\ Cataract\ Creek,\ 3.4\ mi\ northeast\ of\ Basin.$

DRAINAGE AREA.--3.06 mi².

PERIOD OF RECORD.--October 1996 to current year.

GAGE.--None. Elevation at site is 6,315 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)
MAR 2003 25	0930	.54	7.5	112	-1.0	0.5	50	14.6	3.19	.79	. 2
MAY 13 JUN	1035	3.4	8.0	74	10.5	2.5	35	10.7	2.02		
04 AUG	1140	8.4	7.4	46	11.0	6.0	18	5.36	1.08		
21	0910	.37	8.0	269	16.5	9.0	73	21.9	4.31		
Date	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d (70302)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)
MAR 2003 25	3.13	28	.41	.08	16.0	35.6	92	.13	.13	2.9	3
MAY 13										4.5	15
JUN 04 AUG										6.2	59
21										4.9	5
Date	Cadmium water, fltrd, ug/L (01025)	Cadmium water, unfltrd ug/L (01027)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	water,	Lead, water, unfltrd recover -able, ug/L (01051)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	diametr	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)
MAR 2003 25	24.2	23.0	74.8	87.9	. 27	.82	2040	2170	75	1	<.01
MAY 13	11.0	11.2	90.2	125	.83	8.19	1010	1020	80	5	.05
JUN 04 AUG	4.85	6.28	77.8	173	1.31	40.0	453	560	45	28	.64
21	19.7	19.6	32.5	38.3	.18	.59	1730	1650	75	1	<.01

06031960 CATARACT CREEK AT BASIN, MT

 $LOCATION.--Lat\ 46^{\circ}16'17",\ long\ 112^{\circ}14'28"\ (NAD\ 27),\ in\ NE^{1}/_{4}NW^{1}/_{4}SW^{1}/_{4}\ sec.\ 16,\ T.6\ N.,\ R.5\ W.,\ Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ at\ county\ bridge,\ 0.1\ mi\ upstream\ from\ the\ Boulder\ River,\ and\ 1\ mi\ east\ of\ Basin.$

DRAINAGE AREA.--29.3 mi².

PERIOD OF RECORD.--October 1996 to current year.

GAGE.--None. Elevation at site is 5,270 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)
FEB 2003 20	1115	2.3	7.5	130	-2.0	.0	58	17.6	3.53	1.07	. 2
13	1145	46	7.7	71	21.0	5.5	33	10.2	1.81		
JUN 04	1300	68	7.3	50	14.0	6.0	20	6.19	1.20		
AUG 20	1230	2.0	8.2	155	24.0	16.5	68	21.1	3.79		
Date	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	consti- tuents mg/L	Residue water,	Residue water, fltrd,	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)
FEB 2003 20 MAY	3.55	49	.58	.09	15.2	20.0	91	.12	.57	3.1	3
13 JUN										2.3	4
04 AUG										3.4	11
20										5.5	5
Date	Cadmium water, fltrd, ug/L (01025)	Cadmium water, unfltrd ug/L (01027)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	Lead, water, fltrd, ug/L (01049)	Lead, water, unfltrd recover -able, ug/L (01051)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)
FEB 2003 20	3.01	3.07	9.5	10.2	.37	.39	284	307	83	1	.01
MAY 13	1.19	1.34	16.5	22.0	.29	1.65	139	148	69	3	.37
JUN 04	.84	1.05	19.9	26.9	.55	6.21	98	118	52	7	1.3
AUG 20	1.91	1.89	7.1	8.6	E.04	.14	130	129	57	1	.01

06032400 BOULDER RIVER BELOW LITTLE GALENA GULCH, NEAR BASIN, MT

 $LOCATION. --Lat\ 46^{\circ}14'58", long\ 112^{\circ}10'27\ (NAD\ 27), in\ NE^{1}/_{4}NE^{1}/_{4}NW^{1}/_{4}\ sec.\ 25, T.6\ N., R.5\ W., Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ at\ county\ bridge,\ 0.2\ mi\ downstream\ from\ Little\ Galena\ Gulch,\ and\ 2.5\ mi\ northeast\ of\ Basin.$

DRAINAGE AREA.--318 mi².

PERIOD OF RECORD.--October 1996 to current year.

GAGE.--None. Elevation at site is 5,020 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)
FEB 2003											
21 MAY	0915	18	8.1	147	4.0	. 0	59	17.1	3.89	1.55	. 4
13 JUN	1315	332	7.7	98	21.5	8.5	39	11.7	2.32		
05 AUG	1000	497	7.8	59	15.0	6.5	22	6.45	1.32		
20	1330	12	7.7	171	25.0	21.0	63	18.9	3.79		
Date	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d (70302)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)
FEB 2003 21	7.04	55	3.09	.13	18.8	20.3	105	.14	5.05	3.4	4
MAY	7.04										
13 JUN										3.8	5
05 AUG										4.0	7
20										9.7	9
Date	Cadmium water, fltrd, ug/L (01025)	Cadmium water, unfltrd ug/L (01027)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	Lead, water, fltrd, ug/L (01049)	Lead, water, unfltrd recover -able, ug/L (01051)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)
FEB 2003		7.6	0.0	10.6	1.0		11.5	105	5.4		1.0
21 MAY	.68	.76	8.2	10.6	.16	.55	117	135	74	2	.10
13 JUN	.23	.32	7.6	9.7	.24	1.14	38	50	55	12	11
05 AUG	.20	.43	9.0	17.9	.38	4.23	34	52	53	20	27
20	.30	.38	8.9	10.1	.10	.34	31	37	82	2	.06

06033000 BOULDER RIVER NEAR BOULDER, MT

 $LOCATION.--Lat\ 46^{\circ}12'40'', long\ 112^{\circ}05'27''\ (NAD\ 27), in\ SE^{1}/_{4}NE^{1}/_{4}SW^{1}/_{4}\ sec.\ 3,\ T.5\ N.,\ R.4\ W.,\ Jefferson\ County,\ Hydrologic\ Unit\ 10020006,\ on\ N. And\ M.$ left bank 40 ft downstream from county bridge, 1.1 mile downstream from Muskrat Creek, 2.0 mi southeast of Boulder, and at river mile 44.1. DRAINAGE AREA.--381 mi².

PERIOD OF RECORD.--May 1929 to December 1932, March 1934 to September 1972, October 1984 to current year. Monthly discharge only for some periods, published in WSP 1309.

REVISED RECORDS.--WSP 1279: 1931.

GAGE.--Water-stage recorder. Elevation of gage is 4,810 ft (NGVD 29). Prior to Aug. 29, 1946, nonrecording gage at present site and elevation. REMARKS.--Records good except those for estimated daily discharges, which are fair. Diversions for irrigation of about 3,500 acres upstream from station. Several observations of water temperature and specific conductance were made during the year. U.S. Geological Survey satellite telemeter

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 22, 1981, reached a discharge of 7,000 ft³/s, gage height, 12.3 ft, from floodmarks.

		DISCHARO	GE, CUBIO	C FEET PE			R YEAR OO VALUES	CTOBER 20	002 TO S	EPTEMBER	2003	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	20 20 19 20 20	17 18 17 18 19	27 29 29 28 28	18 19 21 21 22	37 30 28 27 27	23 23 23 23 23	103 122 91 63 62	247 270 274 334 353	932 750 584 487 416	59 55 50 48 43	11 10 12 15 15	9.2 9.1 9.0 9.1 8.9
6 7 8 9 10	21 21 21 23 22	20 22 22 23 25	27 23 21 21 22	22 21 21 20 19	26 25 25 26 26	23 23 24 24 24	56 45 51 63 111	346 307 288 260 242	384 348 316 318 320	41 38 36 36 31	14 14 12 11	9.1 9.4 9.8 9.9
11 12 13 14 15	21 21 21 21 22	26 26 27 27 27	23 22 23 25 26	16 16 16 16 17	26 25 25 25 25	30 48 83 106 70	164 200 259 263 226	227 247 317 339 401	334 285 253 276 228	27 24 19 19	9.2 9.1 9.2 9.5 9.2	10 11 11 12 11
16 17 18 19 20	22 22 22 22 22	26 27 27 28 31	26 26 21 19 16	17 17 17 17 18	25 25 25 25 25	63 50 72 78 77	174 156 145 130 135	488 455 408 363 339	209 198 188 168 192	18 18 17 17	9.3 9.7 9.7 9.1 8.5	12 12 12 12 12
21 22 23 24 25	22 22 21 16 15	31 32 32 22 18	16 17 18 18	18 20 19 18 18	25 25 e23 e20 e21	75 72 76 54 63	166 219 329 435 473	342 371 512 708 936	194 175 170 166 152	16 16 13 13	8.2 8.2 9.2 11	12 12 12 12 12
26 27 28 29 30 31	15 17 23 18 14 16	25 29 31 31 29	16 16 16 17 17	19 20 21 22 23 25	e22 e23 e23 	60 46 41 43 51 64	410 324 278 245 236	1040 1050 1020 1060 1030 1040	129 114 104 91 79	16 16 14 12 11	9.8 9.9 9.7 9.7 10 9.9	12 12 12 12 12
TOTAL MEAN MAX MIN AC-FT STATIST	622 20.1 23 14 1230	753 25.1 32 17 1490 ONTHLY MEA	667 21.5 29 16 1320 N DATA FO	594 19.2 25 16 1180 OR WATER 3	710 25.4 37 20 1410 YEARS 1929	1555 50.2 106 23 3080	5734 191 473 45 11370 BY WATER	15614 504 1060 227 30970 YEAR (WY)	8560 285 932 79 16980	783 25.3 59 11 1550	323.1 10.4 15 8.2 641	328.5 10.9 12 8.9 652
MEAN MAX (WY) MIN (WY)	36.6 113 1966 5.85 1936	34.9 71.2 1966 9.09 1936	28.5 53.0 1996 7.45 1936	26.3 42.1 1969 10.1 1937	30.6 68.5 1971 7.71 1937	48.1 121 1986 20.7 1937	167 511 1930 46.0 1967	461 961 1948 126 1992	405 1027 1965 70.4 2000	94.5 374 1938 10.9 1931	31.1 194 1993 7.11 1931	28.5 156 1993 5.69 1935
ANNUAL ANNUAL HIGHEST LOWEST HIGHEST ANNUAL MAXIMUM INSTANI ANNUAL 10 PERC 50 PERC		MEAN EAN EAN EAN MINIMUM MIGGE DW FLOW CC-FT) EDS	FOR 2	27182 74.5 666 10 14 53920 235 23 17	Jun 2 Jun 2 Jan 2 Feb 24	F	OR 2003 WA 36243.6 99.3 1060 8.2 8.9 1150 7.76 47.9 71890 317 23 11	May 29 Aug 21 Aug 17 May 27		MATER YEAR 117 211 48.2 2400 0.0 1.0 3490 10.9 0.0 84400 337 36 16	May 22 0 Jul 15 Jan 21 Jun 9 0 Jun 9	1965 2000 1948 1931 1930 1964 1964

 $[\]star$ --During periods of operation (May 1929 to December 1932, March 1934 to September 1972, October 1984 to present). a--Gage height, 4.74 ft.

e--Estimated.

06036650 JEFFERSON RIVER NEAR THREE FORKS, MT

 $LOCATION.--Lat\ 45^{\circ}53'52", long\ 111^{\circ}35'45"\ (NAD\ 27), in\ SW^{1}/_{4}SW^{1}/_{4}NW^{1}/_{4}\ sec. 27, T.2\ N., R.1\ E., Broadwater\ County,\ Hydrologic\ Unit\ 10020005, on\ left\ bank\ 50\ ft\ downstream\ from\ bridge\ on\ U.S.\ Highway\ 10,\ 2.5\ mi\ northwest\ of\ Three\ Forks,\ and\ at\ river\ mile\ 2,329.3.$ DRAINAGE AREA.--9,532 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1978 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 4,076.76 ft (NGVD 29).

REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. Some regulation by Ruby River Reservoir (station number 06020500) and Clark Canyon Reservoir (station number 06015300). Diversions for irrigation of about 390,000 acres upstream from station. U.S. Army Corps of Engineers satellite telemeter at station.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES Y OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	756 773 802 829 863	705 793 1010 1130 1150	1100 1100 1100 1070 1070	972 939 957 976 988	1040 1060 1060 1060 1030	e750 e800 e850 e800 e800	1210 1790 2470 2180 1780	2600 2750 2870 2870 3070	10300 11300 11000 9560 7940	1390 1210 1090 1030 1020	173 158 152 161 159	196 205 203 189 173	
6 7 8 9 10	857 846 835 835 845	1130 1140 1160 1180 1120	1070 1060 1000 959 927	954 949 923 863 681	e950 e850 e900 e900	e850 e900 e800 e850 e900	1570 1460 1340 1250 1230	3190 2970 2690 2460 2290	6570 5650 4910 4350 4320	979 878 776 652 584	177 172 172 171 167	167 178 190 211 216	
11 12 13 14 15	856 863 869 872 878	1110 1120 1120 1130 1120	968 1020 980 997 1020	637 e800 e900 e950 e1000	e950 e900 e900 e900	e950 e1050 1140 1200 1380	1470 1910 2260 2660 2940	2170 2090 2100 2140 2120	4480 4490 4170 3830 3760	543 470 422 396 354	177 195 187 180 168	230 240 273 277 299	
16 17 18 19 20	881 896 902 905 908	1120 1110 1090 1100 1110	1020 1030 986 958 807	e950 e750 e650 e700 e750	923 918 908 901 890	1370 1390 1570 1670 1660	2810 2550 2240 2110 1990	2180 2400 2580 2660 2590	3630 3420 3260 3170 3030	333 304 283 269 253	156 165 170 177 175	309 328 351 372 414	
21 22 23 24 25	913 910 919 950 965	1120 1150 1200 1210 1080	840 946 978 911 701	e800 e700 e600 e650 e750	915 935 e750 e550 e500	1570 1490 1440 1440 1430	1900 1980 2220 2580 2970	2420 2180 2010 2000 2490	3570 4210 4170 3850 3450	240 226 218 199 195	175 178 173 176 176	433 462 451 444 453	
26 27 28 29 30 31	962 947 934 957 1000 712	1020 995 1110 1180 1120	568 653 e900 e950 e950	e900 e1000 e1000 e950 e950 e1000	e550 e650 e700 	1450 1440 1310 1200 1140 1130	3340 3350 3160 2840 2670	3380 4670 6040 6970 7850 8870	3040 2600 2160 1840 1600	207 250 313 286 240 195	174 168 173 179 177	426 442 443 428 438	
MEAN MAX MIN AC-FT 5	27240 879 1000 712 54030	32833 1094 1210 705 65120	29587 954 1100 568 58690	26589 858 1000 600 52740	24497 875 1060 500 48590 YEARS 1978	36720 1185 1670 750 72830	66230 2208 3350 1210 131400	99670 3215 8870 2000 197700	143630 4788 11300 1600 284900	15805 510 1390 195 31350	5338 172 195 152 10590	9441 315 462 167 18730	
MEAN MAX (WY) MIN	1582 3163 1985 803 1989	1631 2805 1984 1039 1989	1342 1993 1999 805 1993	1222 1929 1983 727 1993	1298 1964 1984 805 2002	1538 2295 1996 824 2002	2384 4444 1996 1371 1992	3766 7679 1997 990 1992	5097 11420 1997 988 1992	2030 5505 1995 352 1988	890 3030 1984 59.1 1988	1127 3303 1984 262 1994	
SUMMARY S	STATIST	ICS	FOR	2002 CALE	NDAR YEAR		FOR 2003	WATER YEAR	3	WATER YEAR	RS 1978 -	2003	
ANNUAL TO ANNUAL ME HIGHEST A HIGHEST I LOWEST DA ANNUAL SE MAXIMUM E MAXIMUM E INSTANTAN ANNUAL RU 10 PERCEN 50 PERCEN	EAN ANNUAL M NNUAL M DAILY M EVEN-DA PEAK FL PEAK ST NEOUS L UNOFF (NT EXCE	EAN EAN AN Y MINIMUM OW AGE OW FLOW AC-FT) EDS EDS		415193 1138 6180 204 222 823500 2020 910 481	Jun 4 Aug 21 Aug 19		517580 1418 11300 152 164 11500 7. a145 1027000 3030 954 195	Jun 2 Aug 3 Aug Jun 2 72 Jun 2 Aug 3	3 2 2 2	1991 3650 996 16800 44 48 b17000 c9.8 d43 1443000 3830 1460 607	Jun 9 Aug 19 Aug 19 Jun 9 8 Jan 3 Aug 19	1988 1988 1995 1997	

a--Gage height, 1.75 ft. b--Gage height, 9.00 ft. c--Backwater from ice.

d--Gage height, 1.31 ft. e--Estimated.

06036650 JEFFERSON RIVER NEAR THREE FORKS, MT--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1980-81, 1986, 1987, May 1999 to current year. PERIOD OF DAILY RECORD.--

WATER TEMPERATURE: June 1980 to September 1981, October 1999 to current year.

INSTRUMENTATION.--Temperature recorder since October 1999.

REMARKS--Daily water temperature records good. Unpublished records of instantaneous specific conductance and temperature data are available in files of the District office.

EXTREMES FOR PERIOD OF DAILY RECORD.--

WATER TEMPERATURE: Maximum, 28.0°C, July 19-21, 2003; minimum, 0.0°C, on many days during winter period.

EXTREMES FOR CURRENT YEAR.--

WATER TEMPERATURE: Maximum, 28.0°C, July 19-21; minimum, 0.0°C, many days October through March.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Ammonia Nitrite

			T	pH,	Specif.			Ammonia +	Nitrite +	371 1	
	Date	Time	Instan- taneous dis- charge, cfs (00061)	field, std units	wat unf uS/cm 25 degC	Temper- ature, air, deg C (00020)	ature, water, deg C	org-N, water, unfltrd mg/L as N (00625)	nitrate water fltrd, mg/L as N (00631)	water, fltrd, mg/L as N (00613)	
	APR 2003	1620	2810	8.2	228	12.0	10.0	.77	150	.004	
	16 MAY	1630							.158		
	JUN	1230	2620	8.4	218	14.0	12.0	. 44	<.022	<.002	
	03 JUL	1000	11200	8.0	170	24.0	14.0	.85	.023	.003	
	29	1300	290	8.6	419	28.0	24.0	. 29	<.022	<.002	
			Date	Orthorphose phate water fltromy/I as I (0067)	Phose, Phose, phorus d, water unfltre mg/I	s, sieve c, diamet cd percer c <.063m	pende, sedi- sedi- ment concer nt tratio	ed Sus- pende sedi- ment n load, tons/	ed - : /d		
			APR 2003 16	.023	3 .177	64	99	751			
			MAY 20	.009		78	26	184			
			JUN 03	.040		51	179	5410			
			JUL 29	<.00	7 .014	84	3	2.3	3		
Date	Time	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	fltrd, mg/L	Sodium adsorp- tion ratio (00931)	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)
MAY 20	1230	89	23.7	7.17	2.33	. 4	9.19	78	4.18	. 2	16.0
JUL 29	1300	180	41.3	17.9	4.65	.7	20.7	145	9.84	. 4	14.1
Date		mg/L	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d	water unfltrd ug/L	Cadmium water, unfltrd ug/L (01027)		Copper, water, unfltrd recover -able, ug/L (01042)	recover -able, ug/L	recover -able, ug/L	unfltrd recover -able, ug/L
MAY 20	24.9	134	.18	950	3	<.2	E.6	5.9	1.51	.85	11
JUL 29	58.6	254	.35	199	4	<.04	<.8	1.5	.08	1.09	<2

06036650 JEFFERSON RIVER NEAR THREE FORKS, MT--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		N	OVEMBER		D	ECEMBER			JANUARY	
1 2 3 4 5	10.5 10.5 9.0 10.5 9.5	8.0 7.0 7.5 7.5 8.5	9.0 8.5 8.0 9.0 9.0	0.0 0.5 0.0 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.0 2.5 2.5 1.5	0.0 0.5 1.0 1.0	1.0	0.0 0.0 0.5 0.5	0.0	0.0 0.0 0.0 0.0
6 7 8 9 10	11.0 12.5 12.0 12.0	8.0 9.0 9.0 9.0 8.5	9.5 10.5 10.5 10.5	1.0 1.0 3.0 2.5 2.5	0.0 0.0 0.5 1.5	0.5 0.5 1.5 2.0 2.0	1.5 0.5 0.0 0.0	0.0 0.0 0.0 0.0	1.0 0.5 0.0 0.0	0.5 0.5 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
11 12 13 14 15	10.0 8.5 8.5 9.0 9.0	8.0 5.5 5.0 6.0 5.5	9.0 7.0 7.0 7.5 7.5	3.5 3.0 3.5 3.0 3.5	2.0 2.0 2.0 2.5 2.0	2.5 2.5 3.0 3.0	0.5 0.5 1.0 2.5 2.5	0.0 0.0 0.0 1.0 2.0	0.0 0.0 0.5 2.0 2.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
16 17 18 19 20	8.5 9.0 9.0 8.5 9.0	6.0 6.0 6.0 5.0	7.5 7.5 7.5 7.0 7.5	3.0 5.0	2.5 2.0 2.0 2.0 2.5	2.5 2.5 2.5 2.5 4.0	2.0 2.0 1.0 0.0	1.5 1.0 0.0 0.0		0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0
21 22 23 24 25	10.0 8.5 6.0 4.5 5.0	7.0 6.0 4.0 2.0	8.5 7.0 4.5 3.5 3.5	5.5 5.5 5.0 2.5 0.0	4.0 3.5 2.5 0.0	4.5 4.5 4.0 1.5 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
26 27 28 29 30 31	5.0 4.5 5.0 4.0 1.0	2.0 2.0 3.5 1.0 0.0	3.5 3.5 4.5 2.0 0.0	0.0 0.5 0.0 1.5 1.5		0.0 0.0 0.0 0.5 1.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 1.0 2.5	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.5
MONTH	12.5	0.0	7.0	5.5	0.0	1.5	2.5	0.0	0.5	2.5	0.0	0.0
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	3.5 3.5 2.0 1.5 0.5	2.0 2.0 1.0 0.5 0.0	3.0 3.0 1.5 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	8.5 8.0 6.5 6.0 8.0	7.5 6.0 5.0 4.0 4.5	8.0 7.5 5.5 5.0 6.0	12.0 12.0 11.0 11.5 11.0	9.5 9.5 10.0 9.0 9.5	10.5 10.5 10.5 10.0
6 7 8 9 10	0.0 0.0 0.0 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	7.5 9.0 10.5 12.5 13.5	5.5 5.5 6.0 8.0 9.0	7.0 7.0 8.0 10.0 11.5	10.5 12.5 11.5 11.0	8.5 9.0 9.5 9.0 8.5	9.5 10.5 10.5 10.0
11 12 13 14 15	1.0 1.5 1.0 2.0 3.0	0.0 0.0 0.0 0.0 1.0	0.5 0.5 0.5 1.0 2.0	0.5 2.0 6.5 8.5 8.0	0.0 0.0 1.0 6.0 6.5	0.0 1.0 4.0 7.0 7.0	13.5 14.0 13.5 11.5	10.5 11.0 11.5 10.0 8.5	12.0 12.5 12.0 10.5 9.5	12.0 12.5 14.0 16.0 17.5	9.0 10.5 10.0 12.0 14.0	12.0
16 17 18 19 20	2.5 3.0 2.5 3.0 2.5	1.0 1.0 0.5 0.5	2.0 2.0 1.5 2.0	7.0 7.0 6.0 6.5 7.5	6.0 5.0 4.5 3.5 4.5	6.5 6.0 5.5 5.0 6.0	10.0 9.0 9.0 11.5 12.5	7.0 8.0 8.5 8.0 9.0	8.5 8.5 8.5 9.5 11.0	16.5 15.0 12.5 12.0 13.0	14.0 12.5 10.0 8.5 9.5	15.0 13.5 12.0 10.0 11.5
21 22 23 24 25	3.5 3.0 0.0 0.0	1.0 0.0 0.0 0.0 0.0	2.0 1.5 0.0 0.0	7.0 8.5 9.0 7.5 6.0	6.0 6.5 5.5 5.0	6.5 7.0 7.5 6.5 5.5	14.0 15.0 13.5 12.5 11.5	10.0 11.5 12.0 11.5 10.0	12.0 13.0 13.0 12.0 11.0	14.0 16.0 18.5 20.5 20.0	11.5 12.0 14.5 16.5 17.5	12.5 14.0 16.0 18.5 18.5
26 27 28 29 30 31	0.0 0.0 0.0 	0.0 0.0 0.0	0.0 0.0 0.0 	6.0 4.5 6.5 8.5 10.0 10.0	4.5 3.5 2.5 4.5 6.5 8.0	5.0 4.0 4.5 6.0 8.0 8.5	10.0 10.0 9.0 8.0 10.5	8.0 7.0 7.5 7.5 7.5	9.0 8.5 8.5 7.5 9.0	18.5 18.5 18.5 19.5 18.5 17.0	16.5 16.0 16.0 17.0 17.0	17.5 17.0 17.5 18.5 18.0 16.5
MONTH	3.5	0.0	1.0	10.0	0.0	4.0	15.0	4.0	9.5	20.5	8.5	13.5

06036650 JEFFERSON RIVER NEAR THREE FORKS, MT--Continued

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY		1	AUGUST			SEPTEMBE	R
1 2 3 4 5	16.5 16.0 16.0 15.5 16.0	15.5 14.5 13.5 14.5 14.0	16.0 15.0 14.5 15.0 15.0	23.5 23.0 22.5 23.5 23.0	20.0 19.5 18.5 19.5 19.0	21.5 21.0 20.5 21.0 21.0	27.0 27.0 25.5 25.5 25.0	21.0 21.5 22.0 21.5 20.0	23.5 24.5 23.5 23.0 22.5	22.0 22.0 22.0 21.5 20.5	17.0 17.0 17.0 17.5 17.5	19.5 19.5 19.5 19.5
6 7 8 9 10	15.5 15.5 17.5 18.0 18.5	14.0 13.0 14.0 15.5 16.5	14.5 14.0 15.5 17.0 17.5	23.0 24.0 22.5 23.0 24.5	18.5 19.0 19.5 18.0 19.5	20.5 21.5 20.5 20.5 22.0	25.5 26.0 24.0 25.5 25.5	19.5 19.5 20.5 19.0 20.0	22.0 22.5 22.5 22.0 23.0	19.5 22.0 19.5 17.5 16.5	18.0 17.0 15.5 13.5 14.5	18.5 19.5 17.5 15.5
11 12 13 14 15	19.0 19.0 18.5 19.0 20.0	16.5 15.5 16.5 16.5	17.5 17.5 17.5 17.5 18.0	25.5 26.0 25.5 25.5 26.0	20.5 21.5 22.0 20.5 21.5	23.0 24.0 23.5 23.0 23.5	24.0 25.0 25.0 26.0 26.5	20.5 19.5 20.0 20.0 21.5	22.0 22.0 22.0 22.5 24.0	16.0 14.0 15.0 16.0 14.0	13.5 12.0 11.5 11.5	14.5 13.0 13.0 13.5 13.0
16 17 18 19 20	20.5 21.0 21.0 20.5 19.5	17.0 18.0 19.0 19.0 17.5	19.0 19.5 20.0 19.5 18.5	25.5 26.0 27.5 28.0 28.0	21.5 21.5 21.5 22.5 22.5	23.5 23.5 24.5 25.0 25.5	25.5 23.0 23.5 24.5 25.5	21.0 19.5 18.0 19.0 20.0	23.0 21.5 20.5 21.5 22.5	14.0 12.5 13.0 13.5 14.5	12.0 10.5 9.5 10.0 11.5	12.5 11.5 11.0 11.5 13.0
21 22 23 24 25	17.5 16.5 16.0 14.5 16.0	16.0 14.0 12.5 13.0 12.0	17.0 15.0 14.0 14.0 14.0	28.0 27.5 27.0 26.5 25.5	22.0 22.5 22.5 22.5 22.0	25.0 25.0 24.5 24.0 23.5	24.0 23.5 24.0 24.5 24.5	19.5 20.0 19.0 18.5 19.0	22.0 21.5 21.5 21.5 21.5	14.5 15.0 15.5 15.5	11.5 11.5 12.5 12.0 12.5	13.0 13.5 14.0 13.5 14.0
26 27 28 29 30 31	17.5 19.5 22.0 23.0 23.5	14.5 15.5 18.0 19.0 20.0	16.0 17.5 20.0 21.0 21.5	27.0 27.0 27.0 26.0 26.5 26.5	22.0 22.5 23.0 22.0 21.5 21.5	24.0 24.5 25.0 24.0 24.0 23.5	23.5 22.5 22.0 21.0 21.5 22.0	19.5 19.5 17.5 16.0 16.5 16.5	21.5 20.5 19.5 18.5 19.0 19.0	16.5 16.5 16.0 15.5 14.5	13.5 13.0 13.0 13.0 11.5	15.0 14.5 14.5 14.0 13.0
MONTH	23.5	12.0	17.0	28.0	18.0	23.0	27.0	16.0	22.0	22.0	9.5	15.0

MADISON RIVER BASIN

06036905 FIREHOLE RIVER NEAR WEST YELLOWSTONE, MT

LOCATION.--Lat 44°37'13", long 110°51'44" (NAD 27), Yellowstone National Park, Hydrologic Unit 10020007, on right bank 1.6 mi south of Madison Junction, 12 mi east of West Yellowstone, and at river mile 1.8.

DRAINAGE AREA.--282 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1983 to March 1996, October 2002 to September 2003.

GAGE.--Water-stage recorder. Elevation of gage is 7,050 ft (NGVD 29).

REMARKS.--Water-discharge records good. No regulation or diversions upstream from station. U. S. Geological Survey satellite telemeter at station.

		DISCHAR	GE, CUBI	C FEET PE	ER SECONI DAI	D, WATEI LY MEAN	R YEAR OO VALUES	CTOBER 2	002 TO S	EPTEMBER	2003	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	240	237	250	250	316	248	289	325	589	258	234	228
2	242	238	253	249	283	246	294	307	528	254	230	227
3	246	235	253	253	261	251	279	325	479	249	228	234
4	245	243	252	254	260	250	272	374	448	247	247	229
5	276	240	251	256	253	247	263	341	422	246	240	230
6	251	241	251	249	244	246	261	342	411	245	234	245
7	243	244	250	248	243	254	254	321	393	244	229	239
8	240	251	244	248	255	257	254	305	387	240	226	242
9	237	249	244	247	250	258	267	297	402	238	228	238
10	235	253	246	244	248	259	291	288	396	236	228	250
11	248	249	248	250	252	261	310	288	390	235	225	243
12	239	248	249	248	250	264	333	304	382	235	225	242
13	239	251	251	250	250	280	337	361	368	232	225	239
14	241	250	253	255	254	293	336	347	369	229	224	237
15	239	247	255	258	251	281	360	386	353	232	225	237
16	239	246	253	250	257	282	309	425	347	230	225	238
17	237	250	259	250	253	264	300	464	329	231	225	238
18	237	246	250	248	253	254	303	473	323	234	229	236
19	235	246	250	250	249	254	293	396	318	238	227	237
20	236	250	252	251	250	253	286	382	306	242	224	236
21	236	258	254	253	254	253	297	402	303	240	223	235
22	237	258	255	252	257	257	315	466	301	240	225	233
23	241	277	248	257	253	294	335	518	309	240	229	233
24	254	258	244	252	240	262	325	585	292	241	225	233
25	242	247	243	251	247	255	328	620	286	245	224	232
26 27 28 29 30 31	239 239 243 237 238 238	248 250 252 254 251	252 254 260 257 254 256	253 273 265 257 260 273	251 251 247 	269 265 257 253 264 280	374 339 338 344 328	589 608 596 619 644 594	278 271 268 265 262	245 246 240 240 234 233	224 225 228 228 239 232	232 232 233 233 233
TOTAL	7489	7467	7791	7854	7132	8111	9214	13292	10775	7439	7080	7074
MEAN	242	249	251	253	255	262	307	429	359	240	228	236
MAX	276	277	260	273	316	294	374	644	589	258	247	250
MIN	235	235	243	244	240	246	254	288	262	229	223	227
AC-FT	14850	14810	15450	15580	14150	16090	18280	26360	21370	14760	14040	14030
STATIS'	TICS OF M	ONTHLY ME	AN DATA F	OR WATER	YEARS 198	4 - 2003,	BY WATER	YEAR (WY	*) *			
MEAN	280	275	268	263	262	271	332	488	429	295	271	272
MAX	356	348	316	298	304	336	398	613	756	415	371	368
(WY)	1984	1984	1984	1985	1986	1986	1986	1986	1986	1986	1986	1986
MIN	225	227	220	223	226	239	276	367	273	221	212	217
(WY)	1989	1993	1993	1993	1993	1992	1993	1987	1992	1988	1994	1988
SUMMAR	Y STATIST	CICS			FOR 2	003 WATER	R YEAR			WATER YEAR	RS 1984 -	2003*
LOWEST HIGHES' LOWEST ANNUAL MAXIMUI MAXIMUI INSTAN' ANNUAL 10 PER 50 PER	MEAN T ANNUAL ANNUAL M T DAILY M DAILY ME	HEAN HEAN HAN HAN HAN HAN HAN HAN HAN HAN HAN H	ſ		6 2 2 7 a2 1998 3 2	76 44 M 23 A 25 54 M 4.28 M 17 A	May 30 Aug 21 Aug 11 May 25 May 25 Aug 25			308 399 264 1240 201 205 b2050 c6.10 d190 223300 422 277 232	May 31 Dec 4 Aug 18 May 18 Dec 4	1992 1994 1996 1996

^{*--}During periods of operation (October 1983 to March 1996, October 2002 to September 2003).
a--Gage height, 2.91 ft.
b--From rating curve extended above 1,540 ft3/s.
c--From floodmark.
d--Gage height, 3.03 ft.

MADISON RIVER BASIN

06036905 FIREHOLE RIVER NEAR WEST YELLOWSTONE, MT--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1983 to 1993, October 2002 to September 2003.

PERIOD OF DAILY RECORD .--

SEPCIFIC CONDUCTANCE: August 1983 to September 1986, October 1987 to September 1988. WATER TEMPERATURE: October 1983 to September 1993, October 2002 to September 2003.

INSTRUMENTATION.--Temperature recorder installed Sept. 18, 2002.

REMARKS.--Daily water temperature records good. Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum 633 microsiemens per centimeter (μs/cm) at 25.0°C, Apr. 1, 1988; minimum 140 μs/cm at 25.0°C, June 5, 1986.

WATER TEMPERATURE: Maximum, 30.0°C, June 24, 1988; minimum, 0.5°C Dec. 21, 1990.

EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURE: Maximum, 29.0°C, July 18 and 21; minimum, 3.0°C, Feb. 24.

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		N	OVEMBER		D	ECEMBER			JANUARY	
1 2 3 4 5	13.5 17.0 15.0 16.0 15.0	11.0 10.0 13.0 14.0 13.5	12.5 13.0 14.5 15.0 14.0	11.0 9.5 10.5 11.0 11.5	6.5 6.5 6.5 7.5 7.0	8.5 8.0 8.5 9.0 9.5	12.5 13.0 12.5 13.0 12.5	10.0 11.5 11.5 12.0 11.0	11.0 12.0 12.0 12.5 11.5	11.0 10.5 11.5 12.5 12.5	9.0 9.0 9.5 9.5	10.0 10.0 10.5 11.0 11.5
6 7 8 9 10	17.0 18.0 18.5 17.5 15.5	13.5 13.5 13.5 13.0 12.5	15.0 15.5 16.0 15.5 14.0	13.0 12.5 10.5 11.5 12.5	8.5 9.0 9.5 9.5 10.5	10.5 10.5 10.0 10.5 11.0	13.0 12.0 10.0 10.0 10.5	11.0 10.0 8.0 7.5 7.0	12.0 11.0 9.0 8.5 9.0	10.5 10.0 9.5 9.0 10.0	8.0 7.5 7.0 6.5 5.5	9.5 9.0 8.5 8.0 7.5
11 12 13 14 15	14.5 15.0 16.0 16.5 16.5	12.0 9.5 10.5 10.5	13.0 12.5 13.0 13.5 14.0	11.5 11.5 13.0 12.0 11.5	10.0 10.0 11.5 10.0 9.5	10.5 10.5 12.0 11.0 10.5	10.0 11.0 11.5 12.5 12.0	8.5 9.0 10.5 11.0 8.0	9.0 10.0 11.0 12.0 10.0	12.0 11.5 11.5 13.5 11.5	9.5 10.0 9.5 11.5 8.5	10.5 11.0 10.5 12.5 10.0
16 17 18 19 20	17.0 17.0 17.0 16.5 16.5	12.0 11.5 11.5 11.5 12.0	14.5 14.5 14.5 14.0 14.5	11.5 11.0 10.0 11.5 14.0	8.5 9.5 8.5 8.5 11.5	10.0 10.0 9.5 10.0 13.0	10.5 11.5 9.5 8.5 9.5	8.0 9.5 7.5 6.0 7.0	9.5 10.5 8.0 7.5 8.0	10.5 10.0 9.5 11.5 10.5	7.5 8.0 6.0 9.0 9.0	9.0 9.0 8.0 10.5 10.0
21 22 23 24 25	16.5 15.5 15.0 14.0 14.5	13.0 11.0 11.0 11.5	15.0 13.0 12.5 12.5 12.5	16.0 15.0 14.0 10.5 9.5	13.5 12.0 8.5 8.0 6.0	14.5 13.5 11.5 9.0 7.5	10.0 11.0 9.5 7.0 7.5	8.0 9.5 7.0 5.0 4.0	9.0 10.0 7.5 6.0 5.5	11.0 10.5 11.0 12.0 12.5	9.0 8.5 9.5 8.5 10.5	10.0 9.5 10.5 10.0 11.0
26 27 28 29 30 31	14.5 14.0 12.5 11.0 9.5 10.5	10.0 10.0 10.5 8.0 7.0 7.5	12.5 12.0 11.5 10.0 8.0 9.0	9.0 11.5 13.5 13.0 12.5	6.0 8.5 11.0 11.5 11.0	8.0 10.0 12.5 12.5 12.0	8.5 9.0 10.5 10.5 9.0 11.5	6.5 7.5 8.5 8.0 7.5 8.5	7.5 8.5 9.5 9.0 8.0 10.0	11.5 11.5 11.5 12.0 11.0	10.0 10.0 8.5 10.5 9.0 10.5	11.0 10.5 10.5 11.0 10.0
MONTH	18.5	7.0	13.5	16.0	6.0	10.5	13.0	4.0	9.5	13.5	5.5	10.0

MADISON RIVER BASIN

06036905 FIREHOLE RIVER NEAR WEST YELLOWSTONE, MT--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1 2 3 4 5	11.0 9.5 9.5 10.5 9.5	9.5 8.0 6.5 7.5 6.5	10.5 8.5 8.0 9.0 8.0	12.0 9.5 11.5 12.5 9.5	9.0 6.0 8.0 9.0 6.5	10.5 8.0 10.0 10.5 7.5	16.5	11.5 12.0 9.5 9.0 9.5	12.5 14.0 11.0 11.5 13.0	16.0 17.5 16.0 16.5 17.0	MAY 13.0 13.0 14.0 13.0 12.0	14.5 15.0 15.5 14.5 14.0
6 7 8 9 10	8.5 9.5 10.0 10.0 10.5	4.5 4.5 7.5 7.5 6.5	6.5 7.0 9.0 8.5 8.5	9.0 8.0 10.0 10.5 13.5	5.5 6.0 6.0 9.0 9.0	7.0 7.0 8.0 9.5 11.0	14.5 18.0 19.5 19.5 20.5	11.0 11.0 11.0 12.5 12.5	12.5 14.0 15.0 16.0 16.5	17.0 19.5 18.0 15.0 16.5	11.5 12.0 14.5 12.5 12.0	14.0 15.5 16.0 13.5 14.0
11 12 13 14 15	12.0 12.5 12.5 14.5 14.0	8.0 7.0 8.5 12.5 12.5	10.0 10.0 10.5 13.0 13.0	14.0 14.5 16.5 14.5 15.5	10.0 9.5 11.0 11.5 10.5	11.5 11.5 13.5 13.0 13.0	20.5 19.0 18.0 17.0 16.0	12.5 12.0 12.5 12.5 12.5	16.5 15.5 15.5 15.0 14.5	17.0 17.0 19.5 21.5 19.5	13.5 14.5 12.5 13.5 14.5	15.0 15.5 15.5 17.5 17.5
16 17 18 19 20	12.5 9.5 13.0 12.0 12.0	8.5 7.0 8.0 8.5 7.5	11.0 8.0 10.0 10.0	15.5 12.5 10.0 16.0 16.0	12.5 10.0 9.0 9.5 10.0	13.5 11.5 9.5 12.5 13.0	16.5 15.5 16.0 17.5 20.5	11.0 12.5 13.0 11.5 12.5	13.5 14.0 14.5 14.5 16.5	17.5 17.0 14.0 17.0 18.5	12.0 10.0 9.5 9.0 11.0	15.0 13.5 11.5 13.0 15.0
21 22 23 24 25	10.0 11.0 10.5 8.5 10.0	8.5 9.0 5.5 3.0 4.0	9.5 10.0 8.5 5.5 7.0	14.5 14.5 13.5 14.5 12.5	12.0 11.0 9.5 8.5 10.0	13.0 13.0 11.0 11.5 11.0	20.0 18.5 16.0 17.5 19.0	13.0 14.0 14.0 14.0	16.5 16.5 15.0 15.5 16.0	17.0 18.5 19.5 20.0 19.0	12.5 12.0 11.5 10.5 11.5	15.5 16.0 16.0 16.0 15.5
26 27 28 29 30 31	11.5 13.0 12.5 	5.5 8.5 8.0 	9.0 10.5 10.0 	13.0 12.5 16.5 16.0 17.0 15.0	10.0 8.5 8.5 9.0 11.0	11.0 10.5 12.0 12.5 14.0 13.5	16.5 17.5 16.0 17.0 17.0	10.5 8.5 11.5 12.5 13.0	13.0 12.5 13.5 14.5 15.0	18.0 20.0 20.0 19.5 17.5 18.0	12.5 12.5 13.5 14.5 13.0 14.0	15.5 16.5 17.5 17.5 15.5 16.0
MONTH	14.5	3.0	9.0	17.0	5.5	11.0	20.5	8.5	14.5	21.5	9.0	15.5
		JUNE			JULY			AUGUST			SEPTEMBE	lR
1 2 3 4 5	18.0 17.5 18.0 17.0 19.0		16.0 15.5 15.5 15.5 16.0	26.0 25.0 25.0 25.5 25.5			27.5 28.0 26.0 24.0 27.0		23.5 24.0 24.0 22.0 23.0	25.0 24.0 25.0 24.5 22.0	SEPTEMBE 18.0 18.0 18.5 18.5	21.5 21.5 21.5 21.5 21.5 20.0
2 3 4	17.5 18.0 17.0	JUNE 14.0 13.5 12.5 13.5	16.0 15.5 15.5 15.5	25.0 25.0 25.5	JULY 19.5 19.0 18.0 18.0	22.5 22.0 21.0 21.5 22.0	27.5 28.0 26.0 24.0	AUGUST 19.5 20.5 22.0 21.0	23.5 24.0 24.0 22.0	25.0 24.0 25.0 24.5	18.0 18.0 18.5 18.5	21.5 21.5 21.5 21.5
2 3 4 5 6 7 8 9 10 11 12 13	17.5 18.0 17.0 19.0 18.5 20.5 21.0 20.5 21.0	JUNE 14.0 13.5 12.5 13.5 13.0 14.0 14.5 16.5 16.0	16.0 15.5 15.5 16.0 16.0 17.0 18.0 19.0 18.5 17.5 18.5 19.0	25.0 25.0 25.5 25.5 26.5 27.0 23.0 26.5 28.0 28.0	JULY 19.5 19.0 18.0 18.5 18.5 19.0 19.5 17.5 19.0 20.5 21.0 20.5	22.5 22.0 21.0 21.5 22.0 22.5 23.0 21.5 21.5 21.5 23.5	27.5 28.0 26.0 24.0 27.0 26.5 26.5 24.0 24.0 25.5 27.0 26.0 26.0	AUGUST 19.5 20.5 22.0 21.0 19.5 20.5 19.5 19.0 19.0 20.0 20.5 20.0	23.5 24.0 24.0 22.0 23.0 23.5 23.0 22.0 21.5	25.0 24.0 25.0 24.5 22.0 24.5 21.5 18.5 17.5 17.5	18.0 18.0 18.5 18.5 18.5 19.5 19.0 16.5 14.0	21.5 21.5 21.5 21.5 20.0 20.5 21.5 19.5 17.0 16.5 16.0
2 3 4 5 6 7 8 9 10 11 12 13 14	17.5 18.0 17.0 19.0 18.5 20.5 21.0 20.5 21.0 20.5 21.0 22.5	JUNE 14.0 13.5 12.5 13.5 13.0 14.0 13.0 14.5 16.5 16.0 15.5 15.0 16.0	16.0 15.5 15.5 15.5 16.0 16.0 17.0 18.0 19.0 18.5 17.5 18.5	25.0 25.0 25.5 25.5 26.5 27.0 23.0 26.5 28.0 28.0 26.0 27.0	JULY 19.5 19.0 18.0 18.5 18.5 19.0 19.5 17.5 19.0 20.5 21.0 20.5 18.5	22.5 22.0 21.0 21.5 22.0 22.5 23.0 21.5 21.5 21.5 23.5	27.5 28.0 26.0 24.0 27.0 26.5 24.0 24.0 25.5 27.0 26.0 26.5 28.5	AUGUST 19.5 20.5 22.0 21.0 19.5 20.5 19.5 19.0 19.0 19.5 20.0 20.5 20.0	23.5 24.0 24.0 22.0 23.0 23.5 23.5 22.0 21.5 22.5 23.5 23.0 24.0	25.0 24.0 25.0 24.5 22.0 22.0 24.5 21.5 18.5 17.5 17.5 17.0 19.0 20.0	18.0 18.0 18.5 18.5 18.5 19.5 19.0 16.5 14.0 16.0 15.5 15.0 13.5	21.5 21.5 21.5 21.5 20.0 20.5 21.5 19.5 17.0 16.5 16.0 16.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	17.5 18.0 17.0 19.0 18.5 20.5 21.0 20.5 21.0 22.5 21.0 22.5 23.5 24.0 25.0 27.0 24.0	JUNE 14.0 13.5 12.5 13.5 13.0 14.0 13.0 14.5 16.5 16.0 17.0 18.0 19.0 18.0 19.5	16.0 15.5 15.5 16.0 16.0 17.0 18.0 19.0 18.5 17.5 18.5 19.0 20.0	25.0 25.5 25.5 25.5 27.0 23.0 26.5 28.0 28.0 26.0 27.0 27.5 28.0	JULY 19.5 19.0 18.0 18.5 18.5 19.0 19.5 17.5 19.0 20.5 21.0 20.5 21.0 20.5 21.0 21.5	22.5 22.0 21.0 21.5 22.0 22.5 23.0 21.5 21.5 23.5 24.5 24.5 24.5 24.0 24.5 24.0	27.5 28.0 26.0 24.0 27.0 26.5 24.0 24.0 25.5 27.0 26.5 28.5 26.0 22.5 26.0	AUGUST 19.5 20.5 22.0 21.0 21.0 19.5 20.5 19.5 19.0 20.5 20.5 20.5 20.5 21.5	23.5 24.0 24.0 22.0 23.0 23.5 23.5 22.5 23.5 22.5 23.0 24.0 24.0 20.0 20.0 20.5 22.5	25.0 24.0 25.0 24.5 22.0 22.0 24.5 21.5 18.5 17.5 17.9 19.0 20.0 19.0	18.0 18.0 18.5 18.5 18.5 19.5 19.0 16.5 14.0 16.0 15.5 15.0 13.5 14.5 13.0 12.5 11.5 12.5	21.5 21.5 21.5 21.5 20.0 20.5 21.5 19.5 16.5 17.0 16.5 16.0 16.0 16.5 16.5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	17.5 18.0 17.0 19.0 18.5 20.5 21.0 20.5 21.0 22.5 23.5 24.0 25.0 27.0 24.0 22.5 27.0 24.0 22.5	JUNE 14.0 13.5 12.5 13.5 13.0 14.0 13.0 14.5 16.5 16.0 17.0 18.0 19.0 18.0 19.0 18.5 19.5 19.0 16.5 19.5 19.0	16.0 15.5 15.5 16.0 16.0 17.0 18.0 19.0 19.0 19.0 20.0 21.0 22.0 22.5 22.0 20.5	25.0 25.5 25.5 26.5 27.0 23.0 26.5 28.0 26.0 27.0 27.5 28.0 26.0 27.5 28.0 27.5 28.0 29.0 29.0 26.5 28.5	JULY 19.5 19.0 18.0 18.5 18.5 19.0 19.5 17.5 19.0 20.5 21.0 20.5 21.0 21.5 21.0 22.0 21.5 21.0	22.5 22.0 21.0 21.5 22.0 22.5 23.0 21.5 21.5 23.5 24.5 24.5 24.5 24.0 22.5 24.0 25.5 24.0 25.0 25.0	27.5 28.0 26.0 24.0 27.0 26.5 24.0 24.0 25.5 27.0 26.5 28.5 26.5 28.5 26.5 26.5 28.5 26.5 26.5 28.5 26.5 28.5 26.5 28.5	AUGUST 19.5 20.5 22.0 21.0 19.5 20.5 19.5 19.0 19.5 20.0 20.5 20.0 20.5 21.5 20.0 20.5 19.0 20.5 19.0 20.5 19.0 20.0	23.5 24.0 24.0 22.0 23.0 23.5 22.5 23.5 23.0 24.0 24.0 24.0 20.5 22.5 23.0 24.0 24.0 20.0 20.5 22.5 23.0	25.0 24.0 25.0 24.5 22.0 24.5 21.5 18.5 17.5 17.5 17.5 17.0 19.0 20.0 19.0 17.5 20.0	18.0 18.0 18.5 18.5 18.5 19.5 19.0 16.5 14.0 15.5 13.0 13.5 14.5 13.5 13.5 13.5 13.5 14.0 14.0	21.5 21.5 21.5 21.5 20.0 20.5 21.5 21.5 16.5 17.0 16.5 16.0 16.0 16.5 16.5 16.5 16.5 16.5 17.0

06037100 GIBBON RIVER AT MADISON JUNCTION, YELLOWSTONE NATIONAL PARK

LOCATION .-- Lat 44°38'26", long 110°51'38" (NAD 27), Yellowstone National Park, Hydrologic Unit 10020007, on left bank 40 ft downstream from highway bridge, 0.4 mi south of Madison Junction, 14 mi east of West Yellowstone, and at river mile 0.2.

DRAINAGE AREA.--126 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 2001 to September 2001, October 2002 to September 2003.

GAGE.--Water-stage recorder. Elevation of gage is 6,800 ft (NGVD 29).

REMARKS.--Water-discharge records good. No regulation or diversions upstream from station. U. S. Geological Survey satellite telemeter at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	103 101 102 102 116	89 89 86 89 88	92 94 94 94 93	94 93 95 95 97	115 109 97 98 93	88 85 89 89	101 109 105 101 95	201 187 202 227 229	494 387 326 288 264	141 137 134 133 130	101 99 99 109 106	91 90 89 89 90	
6 7 8 9 10	107 101 98 96 95	88 91 94 95 94	95 93 87 87 88	90 90 e88 e86 e85	92 e90 92 94 95	91 92 92 89 92	97 92 91 96 110	217 197 194 183 173	250 238 224 217 210	128 126 124 122 118	102 98 96 99 100	97 96 101 98 100	
11 12 13 14 15	102 98 96 98 97	92 92 94 93 92	92 93 94 94 95	91 94 94 97 98	93 91 92 97 95	93 93 98 107 104	127 148 167 179 196	170 182 211 234 294	201 193 189 192 185	117 115 112 109 108	98 97 96 94 95	99 97 95 94 93	
16 17 18 19 20	98 97 96 93 93	93 93 89 93 91	95 97 90 89 92	90 92 91 93 95	96 95 93 90	105 99 95 93 92	178 161 155 142 137	360 428 441 330 292	184 179 182 191 182	107 105 104 104 105	98 96 98 95 94	94 94 92 92 92	
21 22 23 24 25	93 93 93 96 93	94 95 103 96 89	95 94 90 87 e85	96 96 98 94 94	97 97 92 e82 e85	92 92 101 92 92	155 179 226 204 209	295 319 390 453 503	180 183 197 177 177	103 102 101 102 106	93 94 94 92 91	91 90 90 89 89	
26 27 28 29 30 31	91 91 93 91 88 89	93 94 96 97 95	90 94 96 98 95	95 101 101 95 100 101	87 87 87 	97 96 90 89 91 95	240 202 192 188 185	504 506 496 469 441 432	168 162 156 152 147	111 112 106 102 100	91 93 93 96 94	88 88 88 87	
TOTAL MEAN MAX MIN AC-FT	3000 96.8 116 88 5950	2777 92.6 103 86 5510	2868 92.5 98 85 5690	2919 94.2 101 85 5790	2621 93.6 115 82 5200	2901 93.6 107 85 5750	4567 152 240 91 9060	9760 315 506 170 19360	6475 216 494 147 12840	3524 114 141 100 6990	2992 96.5 109 91 5930	2771 92.4 101 87 5500	
		ONTHLY MEA											
MEAN MAX (WY) MIN (WY)	96.8 96.8 2003 96.8 2003	92.6 92.6 2003 92.6 2003	92.5 92.5 2003 92.5 2003	94.2 94.2 2003 94.2 2003	93.6 93.6 2003 93.6 2003	93.6 93.6 2003 93.6 2003	141 152 2003 130 2001	280 315 2003 246 2001	176 216 2003 137 2001	111 114 2003 109 2001	92.1 96.5 2003 87.7 2001	87.5 92.4 2003 82.6 2001	
SUMMARY	STATIST	ICS			FOR 2	003 WATER	YEAR			WATER YEAR	S 2001 -	2003*	
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL 10 PERC 50 PERC	MEAN 'ANNUAL MEANNUAL MEA 'DAILY MEA	EAN EAN AN Y MINIMUM DW AGE DW FLOW AC-FT) EDS			a5] c 935 2	29 06 Ma 32 Fe 36 Fe 55 Ma 55.58 Fe 31 De	ay 27 eb 24 24 ay 25 eb 25 ec 24			129 129 129 584 79 81 674 5.93 93630 203 96 89	May 16 Sep 4 Sep 21 May 16	2001 2001 2001	

^{*--}During periods of operation (April 2001 to September 2001, October 2002 to September 2003).
a--Gage height, 5.35 ft.
b--Backwater from ice.
c--Gage height, 3.89 ft, but may have been lower during period of ice effect.
e--Estimated.

PERIOD OF RECORD.--October 2002 to September 2003.

PERIOD OF DAILY RECORD .--

WATER TEMPERATURE: October 2002 to September 2003.

INSTRUMENTATION.--Temperature recorder installed Sept. 19, 2002.

REMARKS.--Daily water temperature records good. Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office.

EXTREMES FOR PERIOD OF DAILY RECORD .--

WATER TEMPERATURE: Maximum, 25.5°C, July 21, 2003; minimum, 0.0°C, several days during winter months.

EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURE: Maximum, 25.5°C, July 21; minimum, 0.0°C, several days November through February.

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NC	VEMBER		DE	CEMBER			JANUARY	
1 2 3 4 5	9.0 12.0 10.0 11.0 10.5	7.0 5.5 7.0 9.0 9.5	8.0 8.5 9.0 10.0 10.0	4.0 5.5 4.5 5.5 6.0	0.5 1.0 0.0 1.5 1.0	2.5 3.0 2.5 3.5 3.5	6.5 7.5 7.5 8.5 8.0	4.5 6.0 6.5 7.0 6.5	5.5 7.0 7.0 7.5 7.0	5.5 5.5 6.5 7.0 7.5	3.0 4.5 5.0 4.5 5.0	4.5 5.0 6.0 6.0 6.5
6 7 8 9 10	13.0 14.0 14.0 13.5 12.0	9.0 8.0 8.5 8.5	10.5 11.0 11.0 11.0	7.0 7.0 6.5 7.0 7.5	3.0 3.0 4.5 5.5 5.5	5.0 5.0 5.5 6.0	8.0 7.0 4.5 4.0 4.5	6.0 4.5 2.0 1.0	7.0 6.0 3.5 3.0	5.0 4.5 3.5 3.0 3.0	2.5 2.0 0.5 0.5	4.0 3.0 2.0 1.5 1.0
11 12 13 14 15	10.5 10.5 10.5 11.0 11.5	8.0 5.0 5.0 5.5 6.0	9.0 7.5 8.0 8.0 9.0	6.5 6.5 8.0 7.0	5.0 5.5 6.0 5.0 4.5	6.0 6.0 7.0 6.0 5.5	5.0 6.0 6.5 8.0	3.5 4.0 6.0 6.5 6.0	4.5 5.0 6.5 7.0	6.0 6.5 7.0 8.0 7.0	3.0 5.5 5.5 6.5 3.5	4.5 6.0 6.5 7.0 5.5
16 17 18 19 20	12.0 12.0 12.0 11.5 12.0	7.0 6.5 6.5 6.0 7.0	9.0 9.0 9.0 8.5 9.5	6.5 6.0 5.5 7.0 8.5	3.5 3.5 3.0 4.5 7.0	5.0 5.0 4.0 5.5 7.5	6.0 6.5 4.5 3.5 4.0	4.5 4.5 2.0 1.5 1.5	5.5 6.0 3.0 2.5 2.5	5.5 5.0 4.0 7.0 6.0	3.0 2.5 0.5 4.0 3.5	4.0 4.0 2.5 5.0
21 22 23 24 25	12.0 10.5 9.5 10.0 9.5	8.5 7.0 6.0 6.5 5.0	10.0 9.0 7.5 8.5 7.0	10.5 10.0 9.0 5.0 3.0	8.5 7.0 4.5 2.0 0.0	9.0 8.5 7.0 3.5 1.5	4.5 5.5 4.0 1.0	2.5 4.0 1.0 0.0 0.0	4.0 4.5 2.0 0.5	6.5 6.5 7.0 6.5 7.5	5.0 5.0 4.5 3.0 5.5	6.0 6.0 6.0 5.0 6.5
26 27 28 29 30 31	9.0 9.0 8.5 7.0 4.0 4.5	4.0 4.5 6.5 3.5 2.0	6.5 6.5 7.0 5.5 3.0 2.5	3.0 6.0 8.0 8.5 8.0	0.0 2.5 5.5 7.0 6.0	2.0 4.0 7.0 7.5 7.0	3.5 4.5 6.5 6.0 4.5 6.0	0.5 3.5 4.5 4.5 3.5 4.5	2.0 4.0 5.5 5.5 4.0 5.0	7.5 7.5 7.0 7.0 7.0 7.5	6.5 5.5 4.5 5.5 5.5	7.0 7.0 5.5 6.5 6.0 7.0
MONTH	14.0	1.0	8.5	10.5	0.0	5.0	8.5	0.0	4.5	8.0	0.0	5.0

06037100 GIBBON RIVER AT MADISON JUNCTION, YELLOWSTONE NATIONAL PARK--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	8.0 6.5 4.5 5.0 4.0	6.5 3.5 1.5 2.5 1.0	7.5 5.5 3.0 3.5 2.5	8.0 5.0 6.5 7.0 4.5	3.5 0.5 4.0 3.5 2.0	5.0 3.0 5.0 5.0 3.0	10.5 12.5 8.5 10.0 11.5	8.0 7.0 5.0 4.5 3.5	9.5 9.5 6.5 7.0 7.5	10.5 12.5 12.5 11.5 12.0	7.0 7.5 9.0 8.0 7.0	8.5 10.0 10.5 10.0 9.5
6 7 8 9 10	2.0 2.5 4.5 4.5 5.0	0.0 0.0 2.0 2.5 2.5	1.0 1.0 3.0 3.5 4.0	4.0 4.0 6.0 7.5 9.5	2.5 2.5 2.5 5.0 5.5	3.5 3.0 4.5 6.0 7.5	10.5 13.5 14.5 15.5 16.0	6.5 6.0 6.0 7.0 8.5	8.0 9.0 10.0 11.0 12.0	11.5 14.5 14.0 11.0 12.5	6.5 8.0 9.5 7.5 8.0	9.0 11.0 11.5 9.5 10.0
11 12 13 14 15	6.5 6.0 6.5 9.0 9.0	3.0 1.0 2.0 6.5 7.0	4.5 3.5 4.5 7.5 8.0	9.5 10.0 13.0 10.5 11.5	7.0 6.5 7.0 7.5 6.5	7.5 8.0 9.5 9.0 9.0	16.0 15.5 14.5 12.0 10.5	9.0 8.5 8.5 8.5 8.0	12.5 12.0 11.0 10.0 9.5	12.0 11.5 14.0 16.0 13.0	8.5 9.5 8.5 8.5 9.0	10.0 10.5 11.0 12.0 11.0
16 17 18 19 20	7.5 7.0 7.0 6.5 6.5	4.5 3.5 3.0 2.5 2.0	6.5 5.0 5.0 4.5 4.0	12.0 9.5 8.0 12.0 11.0	8.0 6.0 6.0 5.0	9.5 8.0 7.0 8.0	12.0 10.5 11.0 13.5 15.5	6.5 7.0 8.0 7.0 7.5	9.0 8.5 9.0 10.0 11.0	12.5 11.5 10.0 11.5 13.0	7.5 6.0 6.5 4.0 7.0	10.0 9.0 7.5 7.5
21 22 23 24 25	5.5 6.5 4.5 0.5 2.0	4.5 4.5 0.5 0.0	5.0 5.0 3.5 0.0	10.0 10.0 9.0 9.0 8.5	7.0 7.5 6.0 4.0 5.5	8.5 9.0 7.5 6.5 6.5	15.5 13.0 10.5 11.5 13.0	8.0 9.0 8.0 8.5 8.0	11.5 11.0 9.5 9.5 10.0	12.0 15.0 15.0 16.5 15.5	9.5 9.5 10.0 11.0	11.0 12.5 13.0 14.0 13.5
26 27 28 29 30 31	5.5 7.5 7.0 	0.0 2.5 2.0 	2.5 5.0 4.5 	8.5 8.5 8.5 12.0 11.5 12.5	4.5 4.5 4.0 4.0 6.5 7.5	6.5 6.5 7.5 8.0 9.5 9.5	10.0 12.0 10.5 12.5 12.5	6.0 4.5 7.0 7.5 8.0	7.5 8.0 8.5 9.5 10.0	14.5 16.5 17.0 16.5 15.5	11.0 10.5 12.0 13.5 12.5 13.0	13.0 13.5 15.0 15.5 14.5
MONTH	9.0	0.0	4.0	13.0	0.5	7.0	16.0	3.5	9.5	17.0	4.0	11.0
		JUNE			JULY			AUGUST			SEPTEMBE	R
1 2 3 4 5	16.0 15.5 16.0 16.5 17.0	JUNE 12.0 11.5 11.0 11.5 10.5	14.0 13.5 13.5 13.5 13.5	22.5 21.5 21.5 21.0 22.0	JULY 14.5 14.0 13.0 13.5 14.0	18.0 17.5 17.0 17.0	23.5 24.5 22.5 21.0 23.0	AUGUST 15.0 15.5 18.0 17.0 15.5	19.0 19.5 20.0 18.5 19.0	21.0 20.5 21.5 21.0 18.0	SEPTEMBE 13.0 13.5 13.5 13.5 13.5	17.0 17.0 17.5 17.5 15.5
2 3 4	15.5 16.0 16.5	12.0 11.5 11.0 11.5	13.5 13.5 13.5	21.5 21.5 21.0	14.5 14.0 13.0 13.5	17.5 17.0 17.0	23.5 24.5 22.5 21.0	15.0 15.5 18.0 17.0	19.5 20.0 18.5	21.0 20.5 21.5 21.0	13.0 13.5 13.5 13.5	17.0 17.0 17.5 17.5
2 3 4 5 6 7 8 9	15.5 16.0 16.5 17.0 15.0 17.5 18.5 18.5	12.0 11.5 11.0 11.5 10.5 11.0 10.0 11.5 13.5	13.5 13.5 13.5 13.5 13.0 13.5 15.0 16.0	21.5 21.5 21.0 22.0 22.5 23.0 20.5 22.5	14.5 14.0 13.0 13.5 14.0 14.5 14.5 13.5	17.5 17.0 17.0 17.5 18.0 18.5 17.5 18.0	23.5 24.5 22.5 21.0 23.0 23.5 23.0 20.5 20.5	15.0 15.5 18.0 17.0 15.5 15.5 15.0 14.0	19.5 20.0 18.5 19.0 19.5 19.0 17.5 17.5	21.0 20.5 21.5 21.0 18.0 18.5 21.0 17.5 15.5	13.0 13.5 13.5 13.5 13.5 14.5 14.5 12.5 9.5	17.0 17.0 17.5 17.5 15.5 16.0 17.0 15.0 12.5
2 3 4 5 6 7 8 9 10 11 12 13 14	15.5 16.0 16.5 17.0 15.0 17.5 18.5 18.5 18.5 20.0 19.5	12.0 11.5 11.0 11.5 10.5 11.0 10.0 11.5 13.5 13.0 12.5 11.5	13.5 13.5 13.5 13.5 13.0 13.5 15.0 16.0 16.0	21.5 21.5 21.0 22.0 22.5 23.0 20.5 22.5 24.0 24.5 23.0 24.5 23.0	14.5 14.0 13.0 13.5 14.0 14.5 14.5 14.5 14.5 14.0	17.5 17.0 17.0 17.5 18.0 18.5 17.5 18.0 19.0	23.5 24.5 22.5 21.0 23.0 23.5 23.5 20.5 21.0 23.0 22.5 23.5	15.0 15.5 18.0 17.0 15.5 15.5 15.0 14.0 14.5 14.5	19.5 20.0 18.5 19.0 19.5 19.0 17.5 17.5 18.0 19.5 19.0 19.5	21.0 20.5 21.5 21.0 18.0 18.5 21.0 17.5 15.5 14.0	13.0 13.5 13.5 13.5 13.5 14.5 14.5 12.5 9.5 12.0 11.5 8.5 8.5	17.0 17.0 17.5 17.5 15.5 16.0 17.0 15.0 12.5 13.0 12.5 12.5 12.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	15.5 16.0 16.5 17.0 15.0 17.5 18.5 18.5 18.5 20.0 18.5 19.5 20.5	12.0 11.5 11.0 11.5 10.5 11.0 10.0 11.5 13.5 13.5 12.5 12.0 12.0 13.5	13.5 13.5 13.5 13.5 13.5 15.0 16.0 16.0 15.5 15.5 15.5 16.5 17.5 18.0 18.0 17.5	21.5 21.5 21.0 22.0 22.5 23.0 20.5 22.5 24.0 24.5 23.0 23.5 23.5 23.0 24.0 24.5	14.5 14.0 13.0 13.5 14.0 14.5 14.5 14.5 14.5 15.5 14.0 15.5 14.0 15.5 14.0	17.5 17.0 17.0 17.5 18.0 18.5 17.5 18.0 19.0 19.5 20.0 19.0 19.0 20.0 21.0 20.0	23.5 24.5 22.5 21.0 23.0 23.5 23.0 20.5 20.5 21.0 23.0 22.0 22.5 23.5 22.0	15.0 15.5 18.0 17.0 15.5 15.5 15.0 14.0 14.5 14.5 16.0 16.0 15.5 16.5 15.5 16.5	19.5 20.0 18.5 19.0 19.5 19.0 17.5 18.0 19.5 19.0 19.5 19.5 19.5	21.0 20.5 21.5 21.0 18.0 18.5 21.0 17.5 15.5 14.0 13.5 16.0 15.5 15.0	13.0 13.5 13.5 13.5 14.5 14.5 12.5 9.5 12.0 11.5 8.5 9.5 10.0 8.5 7.0 7.5	17.0 17.0 17.5 17.5 15.5 16.0 17.0 15.0 12.5 13.0 12.5 12.0 12.0 12.0 12.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	15.5 16.0 16.5 17.0 15.0 17.5 18.5 18.5 18.5 20.0 18.5 20.5 21.0 21.0 21.0 20.5 19.0	12.0 11.5 11.0 11.5 10.5 11.0 11.5 13.5 13.5 12.5 13.0 12.5 11.5 12.0 12.0 14.5 15.0 14.5 15.0 14.5 15.0 14.5	13.5 13.5 13.5 13.5 13.0 13.5 15.0 16.0 15.5 15.5 15.5 16.5 17.5 18.0 17.5 16.5	21.5 21.0 22.0 22.5 23.0 20.5 22.5 24.0 24.5 23.0 23.5 23.0 25.0 25.0 25.0 25.0 25.0	14.5 14.0 13.0 13.5 14.0 14.5 14.5 14.5 14.5 15.5 16.0 15.5 14.0 15.5 14.0 15.5 17.5 16.5 17.5 16.5 17.5	17.5 17.0 17.0 17.5 18.0 18.5 17.5 18.0 19.0 19.0 19.0 20.0 20.0 20.0 20.0 20.5 20.5 21.0	23.5 24.5 22.5 21.0 23.0 23.5 20.5 20.5 21.0 23.0 22.0 22.5 23.5 22.0 23.0 22.5 23.5 22.0 23.5 22.5 23.5 22.5 23.5 22.5 23.0	15.0 15.5 18.0 17.0 15.5 15.5 15.0 14.0 14.5 14.5 16.0 15.5 16.5 15.5 16.5 15.5 12.0 14.0 15.0	19.5 20.0 18.5 19.0 19.5 19.0 17.5 17.5 18.0 19.5 19.0 19.5 19.5 19.5 18.0 18.5 18.5 18.5 18.5	21.0 20.5 21.5 21.0 18.0 18.5 21.0 17.5 15.5 14.0 13.5 16.0 15.5 15.0	13.0 13.5 13.5 13.5 13.5 14.5 14.5 12.5 9.5 12.0 11.5 8.5 9.5 10.0 8.5 7.5 8.5 8.5 9.5 9.5	17.0 17.0 17.5 17.5 15.5 16.0 17.0 12.5 13.0 12.5 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0

06037500 MADISON RIVER NEAR WEST YELLOWSTONE, MT

LOCATION.--Lat 44°39'25", long 111°04'03" (NAD 27), in NE¹/₄NW¹/₄SW¹/₄ sec.36, T.13 S., R.5 E., Gallatin County, Hydrologic Unit 10020007, Yellowstone National Park, on left bank 0.7 mi downstream from Montana-Wyoming stateline, 1.5 mi east of West Yellowstone, 16.4 mi downstream from Gibbon River, and at river mile 132.7.

DRAINAGE AREA.--420 mi².

PERIOD OF RECORD.--June 1913 to December 1917, July 1918 to October 1921, June 1922 to September 1973, August 1983 to September 1986, October 1988 to current year. Monthly discharge only for some periods, published in WSP 1309.

GAGE.--Water-stage recorder. Elevation of gage is 6,650 ft (NGVD 29). Prior to Oct. 20, 1918, nonrecording gage, and Oct. 20, 1918 to June 29, 1930, nonrecording gage or water-stage recorder at sites 2.5 mi upstream at different elevations. Supplementary nonrecording gage at site 0.3 mi downstream at different elevation used at time during 1927-30.

REMARKS.--Records good. No regulation or diversions upstream from station. U. S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 770 e365 e365 23 377 e370 e345 e370 e350 e370 e375 437 2.7 ---TOTAL MEAN MAX MTN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1913 2003. BY WATER YEAR (WY) MEAN MAX (WY) MTN (WY) FOR 2003 WATER YEAR SUMMARY STATISTICS FOR 2002 CALENDAR YEAR WATER YEARS 1913 - 2003* ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN May 27 May 21 Mav 18 HIGHEST DAILY MEAN LOWEST DAILY MEAN Feb 26 Jan Aug 25 ANNUAL SEVEN-DAY MINIMUM Aug Aug

a325

2.65

May

May

2.4

b2820

d100

c10.00

May 18

Feb

Jan

MAXIMUM PEAK FLOW

MAXIMUM PEAK STAGE

50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

INSTANTANEOUS LOW FLOW

ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS

^{*--}During periods of operation (June 1913 to December 1917, July 1918 to October 1921, June 1922 to September 1973, August 1983 to September 1986, October 1988 to current year). a--Gage height, 1.59 ft.

b--Gage height, 3.78 ft

c--About, backwater from ice.
d--Result of freezeup.

e--Estimated.

06038500 MADISON RIVER BELOW HEBGEN LAKE, NEAR GRAYLING, MT

LOCATION.--Lat 44°52'00", long 111°20'15" (NAD 27), NE¹/₄NE¹/₄sec.22, T.11 S., R.3 E., Gallatin County, Hydrologic Unit 10020007, Gallatin National Forest, on right bank 1,500 ft downstream from Hebgen Dam, 8 mi northwest of Grayling, 17 mi upstream from West Fork, and at river mile 108.8.

DRAINAGE AREA.--905 mi².

PERIOD OF RECORD.--June 1909 to current year. Prior to October 1938 adjusted runoff only, published in WSP 1309. Prior to October 1949, published as "below Hebgen Reservoir".

REVISED RECORDS.--WSP 1509: 1948. WSP 1559: Drainage area. WSP 1629: 1943. WSP 1709: 1959. WSP 1729: 1943.

GAGE.--Water-stage recorder. Elevation of gage is 6,448.47 ft (after 1959 earthquake) (NGVD 29). Prior to July 13, 1943, nonrecording gage in stilling well.

REMARKS.--Records excellent. Flow completely regulated by Hebgen Lake (station number 06038000). Diversions for irrigation of about 1,100 acres upstream from station. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

AVERAGE DISCHARGE.--94 years, 1,020 ft³/s, 15.31 in/yr, 739,000 acre-ft/yr, adjusted for storage.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 10,200 ft³/s, Aug. 17, 1959, caused by wave over Hebgen Dam during earthquake, gage height, 5.3 ft, from floodmark, from rating curve extended above 3,500 ft³/s on basis of slope-area measurement of peak flow; maximum observed unaffected by wave over dam, 5,090 ft³/s, June 3, 1943, gage height, 3.69 ft; minimum daily, 5.0 ft³/s, May 9-12, 1960.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,890 ft³/s, July 21, gage height, 2.41 ft; minimum daily, 608 ft³/s, Apr. 26.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC FEB MAY JUN AUG SEP JAN MAR APR JUL 841 803 1140 807 2.0 2.2 TOTAL 1780 MEAN MAX MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1939 2003, BY WATER YEAR (WY) (UNADJUSTED) MEAN MAX 217 (WY) 45.5 96.0 MIN ADJUSTED FOR CHANGE IN CONTENTS IN HEBGEN MEAN CFSM 0.78 0.80 0.80 0.77 0.75 0.82 1.05 1.86 1.56 0.76 0.70 0.80 ΤN 0.90 n 89 0.93 0 89 0 78 0 94 1 17 2 14 1 74 0 88 0 71 0 79 AC-FT† OBSERVED CALENDAR YEAR TOTAL MEAN MAX MIN AC-FT WATER YEAR TOTAL MAX MIN AC-FT ADJUSTED AC-FT CALENDAR YEAR 2002 TOTAL MEAN CESM 0 95 IN 12.89 WATER YEAR TOTAL MEAN CFSM 0.95 IN 12.85 AC-FT

t -- Adjusted for change in contents in Hebgen Lake.

06038800 MADISON RIVER AT KIRBY RANCH, NEAR CAMERON, MT

LOCATION.--Lat 44°53'22", long 111°34'46" (NAD 27), in NE¹/₄NE¹/₄SE¹/₄ sec.10, T.11 S., R.1 E., Madison County, Hydrologic Unit 10020007, 75 ft upstream from county bridge, 0.2 mi upstream from West Fork Madison River, and 22 mi south of Cameron, and at river mile 89.8. DRAINAGE AREA.--1,065 mi².

PERIOD OF RECORD.--September 1959 to September 1963, May 1978 to September 1994 (seasonal records only), October 1995 to current year. GAGE.--Water-stage recorder. Elevation of gage is 5,860 ft (NGVD 29). Aug. 31, 1959 to Oct. 2, 1959, nonrecording gage 75 ft downstream at elevation 0.96 ft lower. Oct. 3, 1959 to September 1963, water-stage recorder at present site and elevation. May 1978 to September 1994, nonrecording gage 75 ft downstream at present elevation.

REMARKS.--Records good. Flow regulated by Hebgen Lake (station 06038000). Diversions for irrigation of about 1,500 acres upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

					2.112							
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	933 923 927 932 930	895 899 899 899	897 897 896 894 897	893 890 892 892 896	913 904 898 900 899	900 905 904 906 907	879 893 888 878 875	734 725 731 734 736	1950 1770 1630 1670 1580	1140 1120 1110 1090 1080	1170 1130 1260 1290 1280	861 859 870 921 938
6 7 8 9 10	926 927 926 925 921	900 899 900 900	896 893 885 888 885	890 887 886 886 893	902 e900 906 911 912	908 907 911 905 904	887 876 875 872 881	737 734 734 785 844	1460 1430 1420 1450 1550	1070 1070 1060 1010 984	1260 1250 1230 1220 1200	951 956 958 948 946
11 12 13 14 15	915 915 917 918 916	900 900 900 900	891 894 895 898 899	891 892 896 898 897	911 907 913 917 911	893 894 895 901 900	891 897 910 917 924	863 878 884 901 946	1690 1680 1640 1660 1620	974 971 990 1070 1100	1180 1170 1150 1140 1120	942 939 942 939 937
16 17 18 19 20	919 920 917 915 917	900 898 899 899	898 899 894 891 893	892 894 892 895 895	911 912 905 903 903	898 891 892 891 896	907 901 891 875 873	994 1010 1020 986 952	1560 1540 1390 1360 1340	1200 1390 1570 1640 1740	1100 1090 1060 979 942	938 936 933 932 928
21 22 23 24 25	920 915 912 914 916	900 899 e900 898 887	896 898 895 893 e890	899 900 901 899 900	908 915 e890 e880 e890	883 884 893 880 881	880 891 904 901 836	955 986 1090 1260 1460	1290 1230 1180 1140 1110	1770 1870 1860 1840 1850	925 909 899 895 891	928 927 925 926 923
26 27 28 29 30 31	915 911 915 903 899 895	891 895 899 897 897	894 890 894 891 889 893	900 910 904 900 908 909	e890 899 902 	883 871 864 865 872 879	780 738 728 733 729	1670 1730 1790 1940 2090 2070	1100 1090 1110 1120 1130	1870 1840 1800 1660 1580 1380	886 876 879 868 863 865	924 927 926 922 924
TOTAL MEAN MAX MIN AC-FT	28454 918 933 895 56440	26950 898 900 887 53460	27703 894 899 885 54950	27777 896 910 886 55100	25312 904 917 880 50210	27663 892 911 864 54870	25910 864 924 728 51390	33969 1096 2090 725 67380	42890 1430 1950 1090 85070	42699 1377 1870 971 84690	32977 1064 1290 863 65410	27826 928 958 859 55190
STATIST	TICS OF M	ONTHLY ME	AN DATA	FOR WATER	YEARS 1959	- 2003	, BY WATE	ER YEAR (WY) *			
MEAN MAX (WY) MIN (WY)	1561 2570 1962 918 2003	1560 2780 1960 736 1961	1217 3005 1960 739 1961	1043 1449 1999 737 1961	1025 1521 1999 626 1963	1028 1611 1999 525 1963	1001 1527 1995 370 1961	1374 2865 1997 445 1961	1864 3862 1997 619 1960	1328 2125 1982 716 1979	1131 1672 1997 734 1960	1166 1567 1996 732 1960
SUMMAR	Y STATIST	ICS	FOR	2002 CALI	ENDAR YEAR		FOR 2003	WATER YEAR		WATER YEAR	S 1959 -	- 2003*
LOWEST HIGHEST LOWEST ANNUAL MAXIMUI MAXIMUI INSTANT ANNUAL 10 PERC 50 PERC	MEAN I ANNUAL M I DAILY M DAILY ME SEVEN-DA M PEAK FI TANEOUS I	EAN EAN AN Y MINIMUM OW AGE OW FLOW AC-FT) EDS EDS		363666 996 2020 806 812 721300 1330 914 826	Jun 2 Apr 2 Mar 28		370130 1014 2090 725 731 2170 2 a712 734200 1420 905 879	May 30 May 2 Apr 28 May 30 .71 May 30 Apr 28		1295 1896 733 5030 139 152 b5030 3.97 c139 938300 2090 1170 734	May 3: Sep : Sep : May 3: Jun : Sep :	1 1959 1 1959 D 1993 7 1996

^{*--}During periods of operation {September 1959 to September 1963, May 1978 to September 1994 (seasonal records only), October 1994 to current year}. a--Gage height, 1.62 ft.

b--Observed, gage height, 3.15 ft, previous site at present datum. c--Observed, present site and datum.

e--Estimated.

06040800 MADISON RIVER ABOVE POWERPLANT, NEAR MCALLISTER, MT

 $LOCATION.--Lat\ 45^{\circ}29'12'', long\ 111^{\circ}37'59''\ (NAD\ 27), in\ NW^{1}/_{4}NE^{1}/_{4}SW^{1}/_{4}\ sec.17, T.4\ S., R.1\ E., Madison\ County,\ Hydrologic\ Unit\ 10020007,\ on\ NW^{1}/_{4}NE^{1}/_{4}SW^{1}/_{4}$ right bank 160 ft upstream from Madison powerplant, 1.4 mi downstream from Ennis Lake, 5.6 mi northeast of McAllister, and at river mile 38.9. DRAINAGE AREA.--2,186 mi².

PERIOD OF RECORD.--April 2002 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 4,690 ft (NGVD 29).

REMARKS.--Records good. Flow regulated by Hebgen Lake (station number 06038000) and Ennis Lake (station number 06040500). Diversions for irrigation of about 23,000 acres upstream from station. Flow through Madison Powerplant bypasses the station. U. S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

teleffie		DISCHAR			R SECONI	O, WATER				EPTEMBER	2003	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	289 291 292 294 295	306 303 302 305 308	85 84 95 81 100	84 84 84 84	89 88 81 90 100	100 637 130 129 129	179 233 234 233 231	220 221 222 224 228	3530 3210 2340 1950 1410	165 117 119 123 119	643 442 350 322 319	93 92 105 113 103
6 7 8 9 10	296 296 296 298 300	242 340 397 395 394	116 88 87 87	83 83 82 79 80	99 98 99 100 102	104 90 e90 96 101	230 229 228 224 219	230 226 221 217 217	748 592 712 719 870	117 112 103 105 108	144 147 148 153 339	95 95 95 94 95
11 12 13 14 15	294 294 293 245 176	392 392 388 387 385	86 87 87 87 89	79 79 80 88 87	104 105 108 115 125	104 106 117 123 121	219 220 222 226 227	220 765 1170 1170 1190	1060 1200 1090 753 569	257 438 495 469 577	293 125 123 120 125	98 98 99 101 101
16 17 18 19 20	180 185 188 190 193	385 381 379 226 107	91 90 e90 e85 81	86 85 84 83 84	126 122 115 111 106	117 103 97 98 98	229 228 231 231 231	1200 1220 e1250 1280 1280	651 755 754 748 684	606 569 598 559 497	126 118 108 118 117	102 102 104 107
21 22 23 24 25	196 196 245 331 330	105 102 99 98 95	79 80 81 e80 e78	86 85 85 87 89	104 104 102 97 95	99 100 99 98 97	229 228 231 232 232	1010 309 312 358 857	577 572 559 473 349	750 751 767 689 624	113 115 111 109 108	106 106 105 105 105
26 27 28 29 30 31	329 327 324 320 328 344	92 91 89 88 87	e75 73 75 82 86 84	93 150 278 324 320 250	95 96 98 	96 97 97 97 98 99	232 230 226 221 219	2000 2380 2380 2570 3260 3540	274 214 223 233 233 	496 412 562 427 344 354	108 108 106 104 98 95	104 103 104 104 100
TOTAL MEAN MAX MIN AC-FT	8455 273 344 176 16770	7660 255 397 87 15190	2656 85.7 116 73 5270	3508 113 324 79 6960	2874 103 126 81 5700	3767 122 637 90 7470	6784 226 234 179 13460	31947 1031 3540 217 63370	28052 935 3530 214 55640	12429 401 767 103 24650	5555 179 643 95 11020	3041 101 113 92 6030
		ONTHLY MEA										
MEAN MAX (WY) MIN (WY)	273 273 2003 273 2003	255 255 2003 255 2003	85.7 85.7 2003 85.7 2003	113 113 2003 113 2003	103 103 2003 103 2003	122 122 2003 122 2003	289 351 2002 226 2003	686 1031 2003 342 2002	1005 1076 2002 935 2003	480 560 2002 401 2003	191 203 2002 179 2003	174 247 2002 101 2003
SUMMAR	Y STATIST	ICS			FOR 20	003 WATER	YEAR			WATER YEAR	RS 2002 -	2003
LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU ANNUAL 10 PER 50 PER		EAN EAN AN Y MINIMUM OW AGE AC-FT) EDS EDS			354 359 2315 69	40 M 73 D 77 D 50 M 9.05 M	lay 31 lec 27 lec 22 lay 31 lay 31			320 320 320 3540 73 77 3940 9.42 231700 698 129 86		2002 2002 2002

e--Estimated.

50 PERCENT EXCEEDS 90 PERCENT EXCEEDS

06041000 MADISON RIVER BELOW ENNIS LAKE, NEAR MCALLISTER, MT

LOCATION.--Lat 45°29'25", long 111°38'00" (NAD 27), in SW¹/₄SE¹/₄NW¹/₄ sec.17, T.4 S., R.1 E., Madison County, Hydrologic Unit 10020007, on right bank 500 ft downstream from Madison powerplant, 1.5 mi downstream from Ennis Lake, 5.7 mi northeast of McAllister, and at river mile 38.8. DRAINAGE AREA.--2.186 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1901 to December 1905, October 1906 to current year. Prior to October 1938 adjusted monthly runoff only, published in WSP 1309. Published as "below Madison Reservoir" 1938-49. Records published as "near Red Bluff" 1890-94 and as "near Norris" 1910 are not equivalent and are published as "near Norris" in WSP 1309.

REVISED RECORDS .-- WSP 1559: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 4,689.03 ft (levels by U.S. Army Corps of Engineers) (NGVD 29). Prior to May 7, 1941, nonrecording gage in wooden stilling well at present site at different elevation. May 7, 1941, to Jan. 13, 1945, nonrecording gages in concrete stilling well at present site and elevation.

REMARKS.—Water-discharge records excellent. Flow regulated by Hebgen Lake (station number 06038000) and Ennis Lake (station number 06040500). Diversions for irrigation of about 23,000 acres upstream from station. U. S. Geological Survey satellite telemeter at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1250	1280	1400	1340	1440	1230	1210	1130	4550	1410	1870	1140
2	1250	1280	1400	1330	1440	1190	1220	1130	4290	1370	1610	1150
3	1250	1280	1390	1340	1370	1260	1300	1130	3430	1380	1510	1150
4	1250	1290	1400	1340	1270	1260	1290	1130	2990	1380	1480	1160
5	1250	1290	1410	1340	1170	1250	1290	1220	2490	1380	1480	1150
6	1250	1230	1340	1330	1150	1180	1290	1300	2080	1380	1300	1150
7	1260	1320	1270	1330	1160	1120	1290	1300	1940	1240	1280	1150
8	1270	1370	1270	1330	1140	1130	1290	1300	2040	1130	1300	1150
9	1260	1370	1270	1240	1140	1190	1260	1190	2050	1130	1320	1140
10	1260	1370	1280	1190	1140	1220	1200	1130	2170	1140	1500	1150
11	1270	1370	1280	1160	1140	1230	1190	1130	2330	1320	1360	1150
12	1270	1370	1280	1150	1150	1240	1190	1180	2470	1480	1290	1150
13	1270	1370	1260	1150	1150	1390	1190	1170	2360	1530	1290	1150
14	1230	1370	1260	1270	1260	1500	1270	1180	2060	1500	1240	1150
15	1170	1360	1290	1250	1430	1490	1310	1190	1910	1610	1250	1150
16	1170	1360	1330	1210	1480	1490	1300	1210	1980	1640	1310	1150
17	1170	1360	1350	1210	1470	1310	1300	1230	2070	1590	1280	1160
18	1180	1360	1340	1210	1410	1220	1310	1250	2080	1630	1230	1150
19	1180	1410	1340	1210	1350	1200	1310	1280	2080	1580	1340	1190
20	1190	1430	1260	1210	1290	1210	1310	1290	2020	1520	1280	1220
21	1190	1420	1210	1210	1230	1210	1310	1370	1850	1790	1210	1220
22	1200	1420	1210	1210	1220	1210	1310	1380	1920	1820	1170	1220
23	1230	1420	1210	1210	1220	1210	1310	1370	1900	1970	1160	1220
24	1310	1420	1210	1210	1190	1210	1310	1410	1820	1890	1160	1220
25	1310	1410	1210	1210	1140	1200	1310	1880	1720	1800	1160	1220
26 27 28 29 30 31	1310 1310 1300 1300 1290 1280	1410 1410 1400 1400 1400	1200 1160 1140 1250 1330 1330	1220 1270 1380 1420 1410 1440	1120 1120 1190 	1200 1200 1210 1190 1190 1200	1310 1310 1310 1220 1140	3030 3440 3420 3630 4330 4560	1670 1580 1510 1480 1470	1640 1550 1860 1640 1550 1660	1160 1160 1160 1160 1150 1140	1220 1220 1220 1230 1220
TOTAL	38680	40950	39880	39330	34980	38540	38160	53890	66310	47510	40310	35320
MEAN	1248	1365	1286	1269	1249	1243	1272	1738	2210	1533	1300	1177
MAX	1310	1430	1410	1440	1480	1500	1310	4560	4550	1970	1870	1230
MIN	1170	1230	1140	1150	1120	1120	1140	1130	1470	1130	1140	1140
AC-FT	76720	81220	79100	78010	69380	76440	75690	106900	131500	94240	79950	70060
STATIS'	TICS OF M	ONTHLY ME.	AN DATA 1	FOR WATER	YEARS 1939	- 2003	, BY WATER	R YEAR (WY)			
MEAN	1928	1997	1519	1392	1395	1446	1556	2016	2988	1859	1527	1618
MAX	2963	3318	3243	2061	2336	2087	3008	4189	6135	3454	2339	2298
(WY)	1960	1960	1960	1999	1943	1939	1948	1969	1997	1965	1971	1972
MIN	810	961	974	767	781	891	717	859	1122	972	1044	934
(WY)	1942	1941	1940	1940	1940	1941	1941	1961	1992	1961	1961	1941
SUMMAR	Y STATIST	ICS	FOR	2002 CALE	ENDAR YEAR		FOR 2003 V	VATER YEAR		WATER YEAR	RS 1939 -	2003
LOWEST HIGHES' LOWEST ANNUAL MAXIMUI	MEAN T ANNUAL ANNUAL M T DAILY ME DAILY ME SEVEN-DA M PEAK FL	EAN EAN AN Y MINIMUM OW AGE AC-FT) EDS EDS			Jun 3 Aug 15 Aug 21		513860 1408 4560 1120 1150 4670 5.6 1019000 1810 1280 1150	May 31 Feb 26 Feb 6 May 31 52 May 31		1770 2530 1047 9210 210 390 9550 8.0 1282000 2700 1560 1090	Jun 11 Aug 25 Aug 23 Jun 12 1 Jun 12	1959 1959 1970

06041000 MADISON RIVER BELOW ENNIS LAKE, NEAR MCALLISTER, MT--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1972-73, 1977 to current year.

PERIOD OF DAILY RECORD .--

WATER TEMPERATURE: June 1977 to current year.

INSTRUMENTATION.--Temperature recorder since June 21, 1977.

REMARKS.--Daily water temperature records good. Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office.

EXTREMES FOR PERIOD OF DAILY RECORD .--

WATER TEMPERATURE: Maximum, 24.5°C, July 22 and 23, 2003; minimum, 0.0°C several to many day during winter months most years.

EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURE: Maximum, 24.5°C, July 22 and 23; minimum, 0.0°C, Oct. 30.

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	VEMBER		DE	ECEMBER			JANUARY	
1 2 3 4 5	11.0 10.0 9.5 9.0 9.0	10.0 9.5 9.0 8.5 8.5	10.5 9.5 9.5 8.5 8.5	1.0 1.0 1.5 1.5	0.5 0.5 1.0 1.0	0.5 1.0 1.0 1.5	2.5 2.5 2.5 2.5 2.5	2.0 2.5 2.5 2.5 2.5	2.5 2.5 2.5 2.5 2.5	1.5 1.5 1.5 1.5	1.0 1.5 1.5 1.5	1.5 1.5 1.5 1.5
6 7 8 9 10	9.0 9.5 9.5 9.5 10.0	8.5 9.0 9.5 9.5 9.5	9.0 9.0 9.5 9.5	2.0 2.5 2.5 2.5 2.5	1.5 2.0 2.5 2.0	2.0 2.0 2.5 2.5 2.5	3.0 3.0 3.0 3.5 3.0	2.5 2.5 2.5 3.0 3.0	2.5 3.0 3.0 3.0 3.0	1.5 2.0 2.0 2.0 2.0	1.5 1.5 1.5 1.5	1.5 2.0 2.0 1.5 2.0
11 12 13 14 15	9.5 9.0 8.0 8.0 8.5	9.0 8.0 8.0 7.5 8.0	9.5 8.5 8.0 8.0	2.5 2.5 2.5 2.0 2.0	2.0 2.0 2.0 2.0 2.0	2.5 2.5 2.0 2.0 2.0	3.0 3.0 3.0 3.0 2.5	3.0 3.0 3.0 2.5 1.0	3.0 3.0 3.0 2.5 1.5	2.0 2.5 2.5 2.5 2.5	2.0 2.0 2.5 2.5 2.0	2.0 2.0 2.5 2.5 2.5
16 17 18 19 20	8.0 8.0 8.0 8.0	7.5 7.5 7.5 7.5 8.0	8.0 7.5 8.0 8.0	2.0 1.5 1.0 1.0	1.5 1.0 1.0 0.5 0.5	1.5 1.0 1.0 1.0	1.0 1.0 0.5 1.0	1.0 0.5 0.5 0.5	1.0 0.5 0.5 1.0	2.0 2.0 2.0 2.0 2.0	2.0 1.5 1.5 1.5 2.0	2.0 2.0 2.0 2.0 2.0
21 22 23 24 25	8.0 7.5 6.5 5.5 4.5	7.5 6.5 5.5 4.0 4.0	7.5 7.0 6.0 5.0 4.0	1.5 1.5 1.5 2.0 1.5	0.5 1.0 1.0 1.5	1.0 1.5 1.5 1.5	1.0 1.0 1.0 1.0	0.5 1.0 1.0 0.5	1.0 1.0 1.0 0.5	2.0 2.0 2.0 2.0 2.0	1.5 1.5 2.0 2.0 2.0	2.0 1.5 2.0 2.0
26 27 28 29 30 31	4.5 4.5 5.0 4.5 2.5 0.5	4.0 4.0 4.0 2.5 0.0	4.5 4.0 4.5 3.5 1.0	1.0 1.5 2.0 2.0 2.0	1.0 1.0 1.5 1.5	1.0 1.5 1.5 2.0 2.0	0.5 1.0 1.0 1.0 1.0	0.5 0.5 1.0 1.0	0.5 1.0 1.0 1.0 1.0	2.0 2.0 1.5 1.5 2.0 2.5	2.0 1.5 1.5 1.5 2.0	2.0 2.0 1.5 1.5 2.0
MONTH	11.0	0.0	7.0	2.5	0.5	1.5	3.5	0.5	1.5	2.5	1.0	2.0

06041000 MADISON RIVER BELOW ENNIS LAKE, NEAR MCALLISTER, MT--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

DAY	MAX	MIN FEBRUARY	MEAN	MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
1 2 3 4 5	2.5 2.5 2.5 2.5 2.5	2.0 2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.5 2.5	2.5 2.0 2.0 1.5	2.0 0.5 1.5 1.5	2.5 2.0 2.0 1.5 1.5	6.5 6.0 5.5 5.5	6.0 5.5 5.0 4.5 5.0	6.0 6.0 5.5 5.0	9.0 9.0 9.5 9.5	8.0 9.0 9.0 9.0 9.0	8.5 9.0 9.5 9.5
6 7 8 9 10	2.5 2.5 2.5 2.5 2.0	2.0 2.0 2.5 2.0 2.0	2.0 2.0 2.5 2.0 2.0	1.5 1.5 1.0 1.5	1.5 1.0 0.5 0.5	1.5 1.5 1.0 1.0	6.0 6.5 6.5 7.0 8.5	5.0 5.5 6.0 6.5 7.0	5.5 6.0 6.0 6.5 7.5	10.0 10.0 10.0 9.5 9.0	9.5 9.5 9.5 9.0 8.5	10.0 10.0 10.0 9.5 9.0
11 12 13 14 15	2.0 1.5 1.5 1.0 1.5	1.5 1.5 1.0 1.0	1.5 1.5 1.0 1.0	1.5 2.0 2.5 3.0 3.5	1.5 1.5 1.5 2.5 3.0	1.5 1.5 2.0 2.5 3.0	9.0 10.0 10.0 10.0 9.5	8.5 9.0 9.5 9.5 9.0	8.5 9.5 10.0 9.5 9.5	9.0 9.5 10.0 12.0 13.5	8.5 9.0 9.0 10.0 12.0	8.5 9.0 9.5 11.0 13.0
16 17 18 19 20	1.5 2.0 2.0 2.5 2.5	1.0 1.5 1.5 2.0 2.0	1.5 1.5 2.0 2.0 2.5	4.0 4.0 4.0 3.0 3.5	3.5 3.5 2.5 2.5 2.5	4.0 3.5 3.0 2.5 3.0	9.0 9.0 9.0 9.0 9.5	8.5 9.0 9.0 8.5 8.5	9.0 9.0 9.0 8.5 9.0	13.0 12.5 11.5 11.0 12.0	12.0 11.5 11.0 10.5 10.0	12.5 12.0 11.0 10.5 11.0
21 22 23 24 25	3.0 3.5 2.5 3.0 3.0	2.5 2.5 2.0 2.5 2.5	3.0 3.0 2.5 2.5 2.5	3.5 5.0 5.5 5.5	2.5 2.5 4.5 5.0 4.5	3.0 3.5 5.0 5.0	10.5 11.0 11.0 11.5 12.0	9.5 9.5 10.5 11.0 11.5	10.0 10.5 10.5 11.0 11.5	12.0 12.5 13.5 16.0 16.5	11.0 11.5 12.5 12.5 14.5	12.0 11.5 13.0 14.0 15.5
26 27 28 29 30 31	3.0 3.0 2.5 	2.5 2.5 2.0 	2.5 2.5 2.5 	4.5 4.5 4.0 5.0 5.5 6.0	4.5 4.0 3.5 4.0 5.0	4.5 4.0 4.5 5.0 6.0	11.5 10.0 10.5 10.0 9.0	10.0 9.5 10.0 9.0 8.5	10.5 10.0 10.0 9.5 9.0	16.5 18.5 18.5 19.5 19.0 17.5	16.0 16.0 17.0 16.5 17.0 16.0	16.5 17.0 17.5 17.5 17.5
MONTH	3.5	1.0	2.0	6.0	0.5	3.0	12.0	4.5	8.5	19.5	8.0	12.0
		JUNE			JULY			AUGUST			SEPTEMBE	ER
1 2 3 4 5	16.5 16.5 15.0 14.5 14.5	JUNE 15.5 13.5 13.5 13.5 13.5	16.0 15.0 14.0 13.5 14.0	20.0 20.0 20.5 20.5 21.0	JULY 19.0 18.5 20.0 20.0 20.0	19.5 19.5 20.0 20.5 20.5	23.0 23.5 23.0 22.5 22.5	AUGUST 22.0 22.5 22.5 22.0 22.0	22.5 23.0 22.5 22.5 22.5	18.5 18.5 18.5 18.5	SEPTEMBE 17.5 17.5 17.5 18.0 18.0	18.0 18.0 18.0 18.0 18.0
2 3 4	16.5 15.0 14.5	15.5 13.5 13.5 13.5	15.0 14.0 13.5	20.0 20.5 20.5	19.0 18.5 20.0 20.0	19.5 20.0 20.5	23.0 23.5 23.0 22.5	22.0 22.5 22.5 22.0	23.0 22.5 22.5	18.5 18.5 18.5 18.5	17.5 17.5 17.5 18.0	18.0 18.0 18.0 18.0
2 3 4 5 6 7 8 9	16.5 15.0 14.5 14.5 14.5 15.0 16.5 16.5	15.5 13.5 13.5 13.5 13.5 14.0 14.0 14.0	15.0 14.0 13.5 14.0 14.5 15.0 16.0	20.0 20.5 20.5 21.0 21.0 20.5 20.5 21.0	19.0 18.5 20.0 20.0 20.0 20.0	19.5 20.0 20.5 20.5 20.5 20.5 20.0 20.5 20.5	23.0 23.5 23.0 22.5 22.5 22.5 22.5 22.5 22.5	22.0 22.5 22.5 22.0 22.0 22.0 22.0 22.0	23.0 22.5 22.5 22.5 22.0 22.0 22.0 22.0	18.5 18.5 18.5 19.0 19.0 18.5 18.5 17.5 16.5	17.5 17.5 17.5 18.0 18.0 18.5 18.0 17.5 16.5	18.0 18.0 18.0 18.0 18.5 18.5 18.5 18.0
2 3 4 5 6 7 8 9 10 11 12 13 14	16.5 15.0 14.5 14.5 15.0 16.5 17.5 18.0 18.0 18.0	15.5 13.5 13.5 13.5 13.5 14.0 14.0 15.0 15.5	15.0 14.0 13.5 14.0 14.5 14.5 16.0 16.0 17.0 17.5 17.0 17.5	20.0 20.5 20.5 21.0 21.0 20.5 20.5 21.5 21.5 22.5 23.0 22.5	19.0 18.5 20.0 20.0 20.0 20.0 20.0 20.0 20.5 20.5 21.0 22.0 22.0	19.5 20.0 20.5 20.5 20.5 20.0 20.5 21.0 21.0 22.0 22.5 22.5	23.0 23.5 23.0 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22	22.0 22.5 22.5 22.0 22.0 22.0 22.0 22.0	23.0 22.5 22.5 22.5 22.0 22.0 22.0 21.5 21.0 21.5	18.5 18.5 18.5 19.0 19.0 18.5 17.5 16.5 16.0 15.5 14.5	17.5 17.5 18.0 18.0 18.5 18.0 17.5 16.5 16.5 14.5 14.5	18.0 18.0 18.0 18.5 18.5 18.5 18.5 18.5 18.5 17.0 16.5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	16.5 15.0 14.5 14.5 16.5 16.5 17.5 18.0 18.0 18.0 18.0 20.0	15.5 13.5 13.5 13.5 13.5 14.0 14.0 15.0 15.5 16.5 17.0 17.0 17.0 17.0 17.0 19.0	15.0 14.0 13.5 14.0 14.5 15.0 16.0 17.0 17.5 17.5 17.5 17.5 17.5 18.0	20.0 20.5 20.5 21.0 21.0 20.5 21.5 21.5 21.5 22.5 23.0 22.5 23.0 23.0 23.0 23.0	19.0 18.5 20.0 20.0 20.0 20.0 20.0 20.5 20.5 21.0 22.0 22.0 22.0 22.5 22.5 22.5	19.5 20.0 20.5 20.5 20.5 20.0 20.5 21.0 21.0 22.5 22.5 22.5 23.0 23.0 23.0 23.0	23.0 23.5 23.0 22.5 22.5 22.5 22.5 22.5 22.5 22.5 21.5 21	22.0 22.5 22.5 22.0 22.0 22.0 22.0 22.0	23.0 22.5 22.5 22.5 22.0 22.0 22.0 21.5 21.0 21.5 21.0 21.0 21.0 21.0	18.5 18.5 18.5 19.0 19.0 18.5 17.5 16.5 15.0 14.5 14.0 13.5 13.0 12.0 11.5	17.5 17.5 18.0 18.0 18.5 18.0 17.5 16.5 14.5 14.5 14.5 14.5 14.0 13.5	18.0 18.0 18.0 18.5 18.5 18.5 18.5 16.5 15.5 15.0 14.0 14.0 13.5 12.5 11.5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	16.5 15.0 14.5 14.5 14.5 16.5 17.5 18.0 18.0 18.0 18.0 20.0 20.0 19.5 18.5 18.0	15.5 13.5 13.5 13.5 13.5 14.0 14.0 15.0 15.5 16.5 17.0 17.0 17.0 17.0 17.0 17.0 19.0 18.5	15.0 14.0 13.5 14.0 14.5 15.0 16.0 17.0 17.5 17.5 17.5 17.5 17.5 19.0 18.0 17.5 19.0	20.0 20.5 20.5 21.0 21.5 22.5 21.5 22.5 23.0 22.5 23.0 23.5 23.0 24.0 24.5 24.0	19.0 18.5 20.0 20.0 20.0 20.0 20.0 20.0 20.5 20.5 21.0 22.0 22.0 22.0 22.5 22.5 22.5 22.5 23.0 23.5	19.5 20.0 20.5 20.5 20.5 20.5 21.0 21.0 22.5 22.5 23.0 23.0 23.0 23.0 23.5 23.5 24.0	23.0 23.5 23.0 22.5 22.5 22.5 22.5 22.5 22.5 21.5 21.5	22.0 22.5 22.5 22.0 22.0 22.0 22.0 22.0	23.0 22.5 22.5 22.5 22.0 22.0 22.0 21.5 21.0 21.5 21.0 21.0 21.0 21.0 21.0 21.0 21.0	18.5 18.5 18.5 19.0 19.0 19.0 18.5 17.5 16.5 16.5 14.5 14.0 13.5 13.0 12.0 11.5 11.5 12.0 12.5 12.5	17.5 17.5 18.0 18.0 18.5 16.5 16.5 14.5 14.5 14.0 13.5 13.0 12.0 11.0 11.0 11.0 12.0	18.0 18.0 18.0 18.5 18.5 18.5 18.5 16.5 15.5 15.5 14.0 14.0 13.5 11.5 11.5 11.5 11.5 11.5

06043500 GALLATIN RIVER NEAR GALLATIN GATEWAY, MT

LOCATION.--Lat 45°29'51", long 111°16'11" (NAD 27), in SE¹/₄SE¹/₄SE¹/₄sec.7, T.4 S., R.4 E., Gallatin County, Hydrologic Unit 10020008, on left bank 0.3 mi downstream from Spanish Creek, 7.3 mi south of Gallatin Gateway and at river mile 47.7.

DRAINAGE AREA.--825 mi².

PERIOD OF RECORD.--August 1889 to September 1894, June 1930 to September 1969, annual maximum, water years 1970-71, October 1971 to September 1981, October 1984 to current year. Monthly discharge only for some periods, published in WSP 1309. Published as West Gallatin River near Bozeman 1889-94.

REVISED RECORDS.--WSP 1389: 1892(M), 1893-94. WSP 1559: Drainage area. WDR MT-85-1 (M), WDR MT-02-1: 1970-71 (M).

GAGE.--Water-stage recorder. Elevation of gage is 5,167.67 ft (NGVD 29). Prior to Oct. 20, 1932, nonrecording gages at several different sites and elevations within 0.8 mi of present site.

REMARKS.--Records good. Diversions for irrigation of about 1,400 acres upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	369	230	282	245	287	246	316	575	5390	1210	493	358
2	362	257	298	242	287	233	320	562	4380	1150	478	351
3	361	264	300	247	272	225	307	563	3650	1080	476	348
4	364	264	295	250	255	240	270	590	3260	1020	523	345
5	361	277	289	253	259	237	269	636	2760	975	486	343
6	354	307	283	251	233	237	278	625	2610	938	468	355
7	348	301	266	233	213	241	264	601	2280	906	450	378
8	348	319	257	211	254	244	268	591	2300	879	438	364
9	345	324	249	217	249	247	285	580	2740	839	440	366
10	339	317	266	197	247	256	329	570	2960	795	454	361
11	340	312	269	196	243	264	373	553	2890	766	430	371
12	330	300	270	207	230	271	432	569	2740	744	419	362
13	328	314	268	233	233	280	509	672	2610	723	411	374
14	339	310	287	243	244	337	557	748	2630	698	403	362
15	333	306	290	254	257	328	566	958	2450	681	401	350
16	340	292	277	244	258	320	487	1200	2290	664	443	363
17	336	300	281	219	259	293	446	1220	2320	638	422	397
18	328	294	259	231	253	278	447	1240	2270	621	420	371
19	321	295	229	224	248	267	413	1060	2230	602	404	360
20	332	309	233	243	240	262	397	944	2160	590	397	354
21	331	303	241	252	248	272	431	914	2100	573	388	349
22	334	300	241	257	262	273	503	1020	1790	556	388	343
23	323	309	245	261	245	307	597	1460	1570	541	381	334
24	319	284	196	263	214	274	638	2090	1420	550	373	332
25	304	243	153	255	202	272	696	2930	1300	560	374	328
26	299	244	165	264	233	280	745	3930	1220	742	366	325
27	296	294	214	280	243	269	629	4120	1200	656	370	321
28	341	302	243	274	244	265	589	4460	1240	579	380	322
29 30	321 264	303 297	252	267 265		259 268	563 563	4460 5420 5860	1240 1220	540 520	372 370	320 317
31	239	297	248 242	268		289	503	5640	1220	520 502	362	317
31	239		242	200		209		3040				
TOTAL	10249	8771	7888	7546	6912	8334	13487	52901	71220	22838	12980	10524
MEAN	331	292	254	243	247		450	1706	2374	737	419	351
MAX	369	324	300	280	287	337	745	5860	5390	1210	523	397
MIN	239 20330	230	153	196	202	225	264	553	1200	502	362 25750	317 20870
AC-FT	20330	17400	15650	14970	13710	16530	26750	104900	141300	45300	25/50	20870
STATIS'	TICS OF M	ONTHLY ME	AN DATA F	FOR WATER	YEARS 1889	- 2003	, BY WATE	R YEAR (W	Y)*			
MEAN	454	382	321	307	304	311	501	1802	2937	1287	609	490
MAX	743	589	549	468	430	465	899		5110	3669	1162	788
(WY)	1893	1960	1893	1893	1893	1960	1990	1976	1997	1975	1993	1968
MIN	238	247	214	200	220	206	263	873	643	345	269	233
(WY)	1932	1937	1935	1931	1935	1935	1937	1953	1934	1934	1934	1931
SUMMAR	Y STATIST	ICS	FOR	2002 CALE	NDAR YEAR		FOR 2003	WATER YEAR	?	WATER YEA	RS 1889 -	2003*
ANNUAL	TOTAL			227495			233650					
ANNUAL	MEAN			623			640			811		
	T ANNUAL I									1184		1976
	ANNUAL M									408		1934
	T DAILY M			4960	Jun 2		5860	May 30)	8970	Jun 17	1974
	DAILY ME			153 208	Dec 25		153	Dec 25		153	Dec 25	2002
	SEVEN-DA M PEAK FLO			208	Dec 21		208 6710	Dec 2.	L	182 h0160	Jan 18	1931
	M PEAK FLO M PEAK ST						6/10	71 May 30)	408 8970 153 182 b9160 7.3 c117 587700 2040	8 Jun 17	1974
TATOMANI	TANDOTTO T	OUT THE OUT					a147	Dec 25	-	c117	Jan 19	1935
ANNUAL	RUNOFF (AC-FT)		451200			463400			587700		
IO PER	CENI EACE.	ED3		1/40						2010		
	CENT EXCE			332			334			429		
90 PER	CENT EXCE	EDS		226			243			268		

^{*--}During periods of operation (August 1889 to September 1894, June 1930 to September 1969, October 1971 to September 1981, October 1984 to current year).
a--Gage height, 0.91 ft, result of freezeup.
b--Gage height, 6.71 ft.
c--Gage height, 0.68 ft, result of freezeup.

06048700 EAST GALLATIN RIVER BELOW BRIDGER CREEK, NEAR BOZEMAN, MT

 $LOCATION.--Lat\ 45^{\circ}43'30'', long\ 111^{\circ}04'08''\ (NAD\ 27), in\ NE^{1}/_{4}SW^{1}/_{4}NE^{1}/_{4}\ sec. 26, T.1\ S.,\ R.5\ E.,\ Gallatin\ County,\ Hydrologic\ Unit\ 10020008,\ on\ NE^{1}/_{4}SW^{1}/_{4}NE^{1}/_{4}$ left bank 600 ft downstream from Bozeman Wastewater Treatment Plant, 0.2 mi downstream from bridge on Montana Secondary Highway 411, 3.2 mi downstream from Bridger Creek, 2.0 mi northwest of Bozeman, and at river mile 33.0.

DRAINAGE AREA.--226 mi².

PERIOD OF RECORD.--October 2001 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 4,610 ft (NGVD 29).

REMARKS.--Records good except those for estimated daily discharges, which are fair. Some regulation or diurnal effect from wastewater treatment plant upstream. Numerous diversions for irrigation upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and conductance were made during the year.

]	DISCHARG	E, CUBIC	FEET PE			YEAR OO VALUES	CTOBER 200)2 TO S	EPTEMBER 20	003	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	45 43 43 45 43	e25 e28 32 35 37	35 36 35 34 34	29 29 29 29 32	104 67 49 44 39	30 30 31 30 31	142 164 139 105 96	264 258 250 257 318	380 314 273 241 211	80 76 77 71 68	25 22 23 31 28	19 17 17 16 15
6 7 8 9 10	43 40 39 39 38	39 39 40 40 39	32 29 29 30 30	30 28 27 26 21	31 35 40 40 39	31 31 27 31 36	94 84 86 98 138	316 322 311 287 274	229 215 193 186 199	65 60 57 58 53	26 24 21 21 24	17 20 20 22 21
11 12 13 14 15	39 40 43 41 38	38 37 38 38 38	32 32 32 33 33	24 28 30 30 31	36 35 36 36 35	44 60 107 184 167	159 181 228 268 319	249 244 350 353 366	185 165 155 149 137	48 46 45 42 41	23 24 23 20 18	21 20 23 22 21
16 17 18 19 20	39 39 39 39	37 37 36 35 36	32 32 28 27 24	26 24 28 30 30	34 36 34 33 32	139 103 86 72 71	265 225 248 222 201	395 377 367 340 298	131 118 111 105 105	41 38 37 35 34	e17 e19 e22 e21 e20	19 25 27 24 23
21 22 23 24 25	41 39 38 35 37	38 37 37 30 27	30 31 29 23 21	e28 e22 30 32 33	34 35 e22 e18 e20	74 76 108 84 74	203 234 350 423 428	273 285 314 357 397	156 137 130 123 127	33 31 28 29 36	20 21 21 20 20	22 20 20 19
26 27 28 29 30 31	39 38 41 39 e26 e23	34 36 37 37 36	25 29 32 32 30 30	36 78 67 47 45 51	e25 e28 30 	69 70 67 65 77 120	431 360 299 267 263	446 428 392 368 346 353	112 100 94 90 84	48 44 37 30 27 27	18 19 21 20 22 20	17 17 18 18 19
TOTAL MEAN MAX MIN AC-FT	1210 39.0 45 23 2400	1073 35.8 40 25 2130	941 30.4 36 21 1870	1030 33.2 78 21 2040	1047 37.4 104 18 2080	2225 71.8 184 27 4410	6720 224 431 84 13330	10155 328 446 244 20140	4955 165 380 84 9830	1442 46.5 80 27 2860	674 21.7 31 17 1340	598 19.9 27 15 1190
MEAN MAX (WY) MIN (WY)	39.8 40.6 2002 39.0 2003	38.5 41.2 2002 35.8 2003	31.7 33.0 2002 30.4 2003	34.6 36.0 2002 33.2 2003	35.5 37.4 2003 33.7 2002	54.4 71.8 2003 37.0 2002	162 224 2003 100 2002	YEAR (WY) 270 328 2003 212 2002	215 265 2002 165 2003	58.6 70.6 2002 46.5 2003	29.6 37.5 2002 21.7 2003	28.2 36.5 2002 19.9 2003
SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS			FOR 2	28409 77.8 447 21 26 56350 200 38 30	Jun 3 Dec 25 Dec 20	F	OR 2003 W 32070 87.9 446 15 17 467 3.5 88.0 63610 267 37 21	May 26 Sep 5 Aug 31 May 26 7 May 26		WATER YEARS 83.3 87.9 78.6 447 15 17 500 3.64 8.0 60310 250 39 25	Jun : Sep ! Aug 3: May 2: May 2: Jan 10	2003 2002 3 2002 5 2003 L 2003 2 2002 2 2002

a--Gage height, 1.45 ft, result of freezeup.

06052500 GALLATIN RIVER AT LOGAN, MT

LOCATION.--Lat 45°53'07", long 111°26'15" (NAD 27), in SE¹/₄NW¹/₄NE¹/₄ sec.35, T.2 N., R.2 E., Gallatin County, Hydrologic Unit 10020008, on right bank at former county road bridge site, 0.2 mi upstream from present county bridge, 0.5 mi west of Logan, and at river mile 6.3.

DRAINAGE AREA.--1,795 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1893 to December 1905, August 1928 to current year. Monthly discharge only for some periods, published in WSP 1309.

REVISED RECORDS.--WSP 1389: 1898-99, 1903, 1905, 1929(M), 1935-36(M), 1938-39(M), 1941(M). WSP 1559: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 4,086.42 ft (NGVD 29). Prior to Aug. 10, 1928, nonrecording gages at several sites within 0.5 mi of present site at various elevations. Aug. 10, 1928, to Oct. 7, 1941, nonrecording gage at present site and elevation.

REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. Some regulation by Middle Creek Reservoir (station number 06049500). Diversions for irrigation of about 110,000 acres upstream from station. U.S. Army Corps of Engineers satellite telemeter at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	450	e480	636	563	744	e560	715	1040	5320	637	215	269
2	436	e450	631	560	734	e570	802	1020	4780	549	210	254
3	446	e520	655	560	663	576	810	954	3830	458	221	250
4	460	e520	647	560	620	564	749	958	3350	390	271	241
5	456	601	643	573	603	e560	690	1060	2860	355	283	243
6	452	625	631	572	e580	559	674	1090	2590	340	284	245
7	447	635	611	554	e550	547	659	1040	2370	337	276	262
8	435	643	e580	e530	e570	543	627	1000	2190	314	262	274
9	435	667	e570	e500	587	e540	612	965	2270	296	264	284
10	430	668	e580	e470	588	549	644	946	2620	270	252	278
11	424	666	592	e480	573	654	704	901	2640	247	256	291
12	435	656	597	e520	e550	893	757	888	2500	236	256	306
13	456	659	598	555	562	1090	851	980	2350	236	250	317
14	460	671	603	583	589	1390	968	1050	2290	241	239	328
15	456	671	626	589	576	1190	1080	1090	2180	232	231	327
16	455	660	625	e580	568	925	1120	1280	2000	232	233	322
17	459	653	618	e560	578	835	964	1480	1880	230	262	352
18	454	645	605	e560	568	752	1120	1490	1760	216	267	379
19	445	636	e560	e580	561	704	1100	1460	1680	202	268	373
20	445	639	e560	e600	554	674	959	1270	1640	196	253	353
20	437	039	e560	6600	554	6/4	959	1270	1640	190	253	353
21	447	645	e570	570	562	664	910	1140	1810	193	244	342
22	447	644	578	e530	592	664	909	1090	1710	192	252	337
23	469	661	581	e500	e500	708	1080	1250	1540	190	244	325
24	485	636	e550	e530	e430	709	1330	1780	1320	192	245	316
25	497	e580	e500	563	e400	660	1290	2520	1230	224	251	317
26	508	e550	e450	592	e450	657	1350	3560	1070	265	237	308
27	517	601	e520	764	e500	679	1290	4170	928	373	253	304
28	536	644	576	740	e540	671	1150	4310	801	340	273	308
29	609	650	591	660		655	1070	4710	754	281	270	306
30	582	647	574	627		640	1060	5350	720	258	275	317
31	e520		563	667		671	1000	5480	720	231	278	
TOTAL	14545	18663	18221	17792	15892	22053	28044	57322	64983	8953	7875	9128
MEAN	469	622	588	574	568	711	935	1849	2166	289	254	304
MAX	609	671	655	764	744	1390	1350	5480	5320	637	284	379
MIN	424	450	450	470	400	540	612	888	720	190	210	241
AC-FT	28850	37020	36140	35290	31520	43740	55630	113700	128900	17760	15620	18110
STATIS	TICS OF M	ONTHLY ME	AN DATA	FOR WATER	YEARS 1894	4 - 2003,	BY WATER	YEAR (W	Y)*			
MEAN	767	815	743	687	701	789	1042	2127	2974	1007	487	641
MAX	1265	1186	1049	971	1249	1290	1993	4686	5957	3899	1658	1269
(WY)	1983	1976	1976	1976	1963	1960	1952	1901	1997	1975	1993	1968
MIN	333	328	450	400	385	478	429	176	280	162	167	238
(WY)	1935	1935	1894	1894	1936	1904	1934	1934	1934	1934	1934	1934

06052500 GALLATIN RIVER AT LOGAN, MT--Continued

SUMMARY STATISTICS	FOR 2002 CALEND	AR YEAR	FOR 2003 WAT	ER YEAR	WATER YEARS	1894 - 2003	3 *
ANNUAL TOTAL	275912		283471				
ANNUAL MEAN	756		777		1065		
HIGHEST ANNUAL MEAN					1673	1997	7
LOWEST ANNUAL MEAN					454	1934	1
HIGHEST DAILY MEAN	5200	Jun 3	5480	May 31	b9840	Jun 21 1899	9
LOWEST DAILY MEAN	256	Aug 20	190	Jul 23	c130	Jul 19 1939	9
ANNUAL SEVEN-DAY MINIMUM	264	Aug 16	197	Jul 18	147	Jul 16 1934	1
MAXIMUM PEAK FLOW			5830	May 30	b9840	Jun 21 1899	9
MAXIMUM PEAK STAGE			8.24	May 30	d11.88	Feb 5 1963	3
INSTANTANEOUS LOW FLOW			a182	Jul 22	c130	Jul 19 1939	9
ANNUAL RUNOFF (AC-FT)	547300		562300		771500		
10 PERCENT EXCEEDS	1680		1340		2120		
50 PERCENT EXCEEDS	552		576		756		
90 PERCENT EXCEEDS	304		254		420		

^{*--}During periods of operation (October 1893 to December 1905, August 1928 to current year).
a--Gage height, 3.31 ft.
b--Observed, gage height, 6.25 ft, site and datum then in use.
c--Observed, gage height, 2.04 ft.
d--From floodmark, backwater from ice.

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1949, 1951, 1957, 1965, 1979-86, 1999 to present. PERIOD OF DAILY RECORD .--

WATER TEMPERATURE: August 1979 to September 1985, October 1999 to present (seasonal records).

INSTRUMENTATION.--Temperature probe installed Sept. 14, 1999.

REMARKS--Daily water temperature record good except for the period for July 6-21, which are poor due to low-flow conditions. Unpublished records of instantaneous specific conductance and temperature data are available in files of the District office.

EXTREMES FOR PERIOD OF DAILY RECORD .--

WATER TEMPERATURE: Maximum, 28.5°C, July 19-21, 2003; minimum, 0.0°C, on many days during winter periods. EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURE: During period of seasonal operation, maximum, 28.5°C, July 19-21; minimum 3.5°C, Apri 4.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	field, std units	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	air, deg C	Temper- ature, water, deg C	+ org-N, water, unfltrd mg/L	fltrd, mg/L as N	water, fltrd, mg/L as N
APR 2003 16	1345	1100	8.3	327	10.0	8.0	.71	.405	.006
MAY 20	1500	1260	8.6	300	16.0	11.0	.35	.266	.005
JUN 04	1215	3430	8.2	187	17.0	11.5	.40	.152	E.002
JUL 29	1445	287	8.9	341	30.0	25.0	.23	<.022	E.002
		Date	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Phos- phorus, water, unfltro	sieve diametr d percent	pended sedi- ment r concen- t tration m mg/L	pended sedi- ment load, tons/d	1	
		16 MAY	.024	.179	86	106	315		
		20 JUN	.016	.080	79	49	167		
		04 JUL	.019	.185	65	159	1470		
		29	<.007	.016	82	5	3.9		

e--Estimated.

06052500 GALLATIN RIVER AT LOGAN, MT--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	Time	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)
MAY 2003 20	1500	150	40.5	11.2	1.98	.3	7.07	135	3.52	. 2	15.4
JUL	1500	130	40.5	11.2	1.90	. 3	7.07	133	3.34	. 4	13.4
29	1445	170	42.6	14.9	3.23	. 3	9.15	150	4.78	. 2	20.9
Date	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d (70302)	Arsenic water unfltrd ug/L (01002)	Cadmium water, unfltrd ug/L (01027)	Chrom- ium, water, unfltrd recover -able, ug/L (01034)	recover	Lead, water, unfltrd recover -able, ug/L (01051)	Nickel, water, unfltrd recover -able, ug/L (01067)	Zinc, water, unfltrd recover -able, ug/L (01092)
MAY 2003 20 JUL	22.0	184	. 25	626	E2	E.1	1.2	2.3	.74	1.55	6
29	28.0	216	.29	167	E1	< .04	<.8	1.0	.07	1.12	E1

E--Estimated.

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR APRIL 2003 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		APRIL			MAY			JUNE			JULY	
1 2 3 4 5	8.5 9.0 7.5 8.5 9.0	7.0 6.0 4.5 3.5 4.0	8.0 7.5 6.0 6.0	11.5 12.0 10.5 13.5 10.5	8.5 8.0 8.0 9.0 8.5	9.5 10.0 9.5 11.0 9.5	14.0 12.0 13.5 13.0 13.5	10.0 9.5 8.0 10.0 8.5	11.5 10.5 10.5 11.5	22.0 21.5 22.5 23.5 23.5	16.5 17.0 15.5 16.5	19.5 19.0 19.0 20.0 19.5
6 7 8 9 10	9.0 10.0 11.5 12.5 14.0	5.5 4.5 5.5 7.0 8.5	7.0 7.5 8.5 10.0 11.0	11.5 13.0 11.0 10.5 11.5	7.0 8.5 9.0 7.5 7.5	9.5 10.5 10.0 9.0 9.5	12.5 14.5 16.5 16.5	9.0 8.0 10.0 12.0 12.5	10.5 11.5 13.0 14.0 14.5	24.5 25.0 22.0 24.0 26.0	15.5 16.5 17.5 14.5 15.0	19.5 20.5 19.5 19.5 21.0
11 12 13 14 15	13.0 13.5 12.5 12.0 10.5	9.0 8.5 9.5 9.5 7.0	11.0 11.5 11.0 11.0 8.5	12.0 11.0 14.5 16.0 16.0	7.5 9.5 9.5 10.5 12.0	10.0 10.5 12.0 13.5 14.5	16.5 17.0 15.5 16.5 17.5	12.0 11.0 12.0 11.0	14.0 14.0 14.0 13.5 14.5	27.0 27.5 26.5 26.0 26.5	17.0 17.5 18.0 15.5 16.0	22.0 22.5 22.0 21.0 21.5
16 17 18 19 20	10.0 10.0 9.5 11.5 13.5	5.0 7.0 7.0 6.5 8.0	7.5 9.0 8.0 9.0 10.5	15.0 13.5 11.0 10.5 12.5	10.5 9.0 7.5 5.5 7.0	13.0 11.5 9.0 8.0 10.0	18.5 19.5 19.0 17.5 16.5	12.0 13.5 14.0 14.0	15.0 16.5 16.5 16.0 14.5	27.0 27.0 27.5 28.5 28.5	17.5 18.0 18.0 19.0 20.0	22.0 22.5 23.0 23.5 24.0
21 22 23 24 25	14.0 14.0 13.0 13.0 12.5	9.0 10.0 10.0 9.5 9.5	11.5 12.5 11.0 11.0	13.5 16.5 18.0 18.5 17.0	10.5 11.0 13.0 13.0 13.0	12.0 13.5 15.5 16.0 15.0	17.0 14.5 15.0 13.5 15.0	12.5 11.5 10.0 11.0 10.5	14.0 12.5 12.5 12.0 13.0	28.5 27.0 26.5 26.0 23.5	19.0 19.0 19.0 19.5 20.0	23.5 23.0 23.0 22.5 21.5
26 27 28 29 30 31	10.5 11.0 10.0 9.0 11.0	8.0 5.5 8.0 7.0 7.5	9.0 8.5 9.0 8.0 9.0	15.0 15.5 15.5 15.5 13.5	11.0 10.0 11.0 11.5 11.0	13.0 12.5 13.0 13.5 12.0 11.5	17.0 20.0 21.5 22.5 22.0	12.0 13.5 16.0 16.5 17.0	14.5 16.5 19.0 19.5 19.5	25.5 25.5 25.5 25.0 25.5 25.5	19.5 19.5 19.0 18.5 18.0	22.5 22.5 22.5 22.0 22.0 22.0
MONTH	14.0	3.5	9.0	18.5	5.5	11.5	22.5	8.0	14.0	28.5	14.5	21.5

06052500 GALLATIN RIVER AT LOGAN, MT--Continued

WATER TEMPERATURE, DEGREES CELSIUS, APRIL 2003 TO SEPTEMBER 2003--Continued

		AUGUST			SEPTEMB	ER
1 2 3 4 5	23.5 24.0		22.0	20.5 20.5 20.0	14.5 14.5 14.0	17.5 17.5 17.0
6 7 8 9 10	22.5 24.0	17.5 17.0	20.0 20.5 20.0 20.0 20.5	17.5	12.0	15.0
11 12 13 14 15	25.0	18.0	20.0 20.0 21.0 21.5 22.0	15.0 13.0 15.5 16.0 14.0	10.0	13.0
16 17 18 19 20	23.0	16.0	21.0 19.0 18.5 19.5 20.5	13.5 12.0 13.0 13.0	11.0 8.5 8.0 8.5 10.0	11.0
21 22 23 24 25	22.5 22.0 23.0 23.5 23.5	16.5	20.0 19.5 19.5 19.5 20.0	14.5 15.0 15.0 16.0	10.0	13.0
26 27 28 29 30 31	20.0	16.0 17.5 15.0 14.0 13.5 13.5	17.0	16.5 16.0 15.5 15.5	9.5	12.0
MONTH	26.0	13.5	20.0	21.0	8.0	14.0

SEP

MISSOURI RIVER MAIN STEM

06054500 MISSOURI RIVER AT TOSTON, MT

LOCATION.--Lat 46°08'46", long 111°25'11" (NAD 27), in NW¹/₄SE¹/₄NW¹/₄ sec.36, T.5 N., R.2 E., Broadwater County, Hydrologic Unit 10030101, on left bank 2.2 mi southeast of Toston, 4.8 mi upstream from Crow Creek, 7.8 mi downstream from Sixteenmile Creek, and at river mile 2,296.1. DRAINAGE AREA.--14,669 mi²

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1890 to February 1891, April 1910 to December 1916, April 1941 to current year. Monthly discharge only for some periods, published in WSP 1309.

GAGE.--Water-stage recorder. Elevation of gage is 3,905.68 ft (NGVD 29). Prior to Dec. 20, 1916, nonrecording gages at site 2.5 mi downstream at different elevations.

REMARKS.--Water-discharge records good. Some regulation by six reservoirs on tributaries and Clark Canyon Reservoir (station 06015300). Diversions for irrigation of about 555,400 acres of which 12,000 acres lies downstream from station. U.S. Army Corps of Engineers satellite telemeter at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES NOV DEC TAN FEB MAR APR MAY TITE. AHG

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2280	2240	3320	3000	3500	2870	3330	5000	19100	3390	1530	1250
2	2280	2250	3240	2970	3510	2810	3790	5040	19700	2950	1560	1260
3	2290	2430	3240	3040	3380	2900	4710	5100	18100	2650	1420	1250
4	2370	3010	3200	3060	3190	2890	4600	5120	15600	2460	1440	1250
5	2410	3130	3190	3160	3020	2710	4110	5100 5120 5420	13200	2650 2460 2390	1430	1300
6	2420	3240	3210	3040	2560	2880	3840	5760	10900	2290	1440	1280
7	2410	3260	3030	2880	2490	2800	3640		9190	2170	1260	1240
8	2410	2400	2760	2810	2860	2490	3490	5150	8270	1870	1250	1260
9		3370	2750	2660	2820	2500	3360	4840	7770	1680	1230	1330
10	2390 2380	3370 3300	2760 2750 2630	2100	3020	2820	3320	4450	8040	1510	1250	1320
11	2390	3290	3000	1970	3000	3460	3490	4250 4130 4260 4340 4390	8500	1460	1430	1360
12	2410	3240	2990	2240	2830	4540	3980	4130	8550	1530	1360	1380
13	2470	3270	3030	2750	2770	4730	4460	4260	8210	1590	1300	1400
14	2570	3260	2960	2910	2830	5380	5090	4340	7600	1610	1290	1530
15	2570	3250	3000	3100	2980	4730	5770	4390	7000	1540	1230	1470
16	2530	3200	3050	2770	3080	4310	5760	4520 4900 5160 5340 5120	6700 6460 6260 6060	1570	1240	1550
17	2550	3210	3070	2300	3110	4050	5320	4900	6460	1540	1320	1500
18	2560	3180	2960	2260	3080	3810	5140	5160	6260	1470	1370	1640
19	2570	3180	2690	2470	2970	3810	4990	5340	6060	1450	1230	1670
20	2560	3250	2400	2810	2920	3800	4720	5120	5920	1390	1390	1740
21	2570	3280	2530	2850	2830	3660	4520	4830 4630 4440 4720 5790	6230	1340 1540 1550 1660 1640	1290	1770
22	2590	3290	2680	1960	2860	3560	4510	4630	6830	1540	1250	1810
23	2620	3390	2650	1880	2250	3560	5000 5990	4440	6780	1550	1230	1820
24	2720	3350	2540	2280	1770	3550	5990	4720	6330	1660	1180	1800
25	2800	3290 3390 3350 2980	e2400	2770	1620	3500	6290				1220	1810
26	2830	2860 3140 3270 3320 3330	e2400	3260	1920	3500	6610	8410	5350 4790 4260 3850 3580	1630	1230	1780
27	2840	3140	2230	3860	2420	3480	6540	11400	4790	1650	1230	1760
28	2850	3270	2880	3730	2580	3390	6120	12800	4260	1640	1230	1810
29	2880	3320	2880 3060 3030	3460		3240	5640	14100	3850	1890	1250	1760
30	2880	3330	3030	3350		3130	5220	16000	3580	1530	1240	2020
31	2400		3000	3330		3130		18000		1450	1240	
TOTAL	78800	94170	89120	87030	78170	107990	143350	202990	254960	56030	40560	46120
MEAN	2542	3139	2875 3320 2230	2807 3860 1880	2792 3510 1620	3484	4778 6610	6548	8499 19700	1807 3390 1340	1308	1537
MAX	2880	3400	3320	3860	3510	5380	6610	18000	19700	3390	1560	2020
MIN	2280	3400 2240	2230	1880		2490	3320	1130	3580	1340	1180	1240
AC-F1	156300	186800	176800	172600	155100	214200	284300	402600	505700	111100	80450	91480
STATIS	TICS OF	MONTHLY ME	AN DATA	FOR WATER	YEARS 189	0 - 2003	B, BY WATI	ER YEAR (WY) *			
MEAN	4391	4694	3747	3371	3695	4114	5595	8784	12390	5167	2726	3386
MAX	6778 1977 2507	7028	5968 1960 2569 1891	4893	5217	6900 1916 2835	10090		24520	14240	5729	5813
(WY)	1977	1984	1960	1984	1915	1916	1969 2388	1976	1997	1975	1975	1984
	2507	2815	2569	2165	2268	2835	2388	3127	3175	1243	896	1448
(WY)	2002	4694 7028 1984 2815 1891	1891	1891	1989	1955	1961	1961	1987	1988	1988	1994
SUMMAR	Y STATIS	TICS	FOR	2002 CAL	ENDAR YEAR		FOR 2003	WATER YEAR		WATER YEARS	1890 -	2003*
ANNUAL	TOTAL			1172870			1279330					
ANNUAL				3213			3505			5192		
HIGHES'	T ANNUAL	MEAN								7742		1997
LOWEST	ANNUAL	MEAN								2927		1961
HIGHES'	T DAILY	MEAN		15400	Jun 3		19700	Jun 2		33400	Jun 12	1997
LOWEST	DAILY M	EAN		1270	Aug 20		1180	Aug 24		700	Jan 12	1963
ANNUAL	SEVEN-D	MEAN MEAN EAN AY MINIMUM		T300	Aug 18		1220	Aug 22		5192 7742 2927 33400 700 811 34000 12.22 b450 3761000 9340 4100 2360	Jul 31	1961
MAXIMUI	M PEAK F M PEAK S	LOW					20200	Jun 2		34000	Jun 12	1007
		LOW FLOW					2010	. os oun 2		14.22 h450	.Tu1 21	1000
TIND LAIN.	BIINOEE	(AC-FT)		2326000			2538000	Aug 5		3761000	Jul 31	. 100
10 PER	CENT EXC	(AC-FT) EEDS		5140			5810			9340		
50 PER	CENT EXC	EEDS		2740			2950			4100		
	CENT EXC			1660			1390			2360		

^{*--}During periods of operation (1911-16, 1942 to current year). a--Gage height, 2.41 ft, result of regulation. b--Gage height, 1.68 ft, result of regulation.

DAY

e--Estimated.

06054500 MISSOURI RIVER AT TOSTON, MT--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1949-53, 1965, 1972 to current year. Sampling location moved in October 1978, from old bridge on U. S. Highway 287 at Toston, to cableway 2.4 miles upstream.

PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: April 1973 to September 1981.

WATER TEMPERATURE: May 1949 to June 1953, April 1973 to current year.

SUSPENDED-SEDIMENT DISCHARGE: March 1949 to June 1953.

INSTRUMENTATION.--Temperature recorder since July 6, 1977.

REMARKS.--Daily water temperature record good. Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily, 524 microsiemens per centimeter (µS/cm) at 25°C, Mar. 4, 1978; minimum daily, 159 µS/cm at 25°C, May 28, 1979.

WATER TEMPERATURE: Maximum, 29.0°C, July 31, 1988, July 20, 1989; minimum, 0.0°C on many days during winter.

SEDIMENT CONCENTRATION: Maximum daily mean, 670 mg/L, Mar. 22, 25, 1951; minimum daily mean, 5 mg/L, Jul. 12, 1951.

SEDIMENT LOAD: Maximum daily, 16,100 tons, May 5, 1952; minimum daily, 51 tons Feb. 1, 1951.

EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURE: Maximum, 27.5°C, July 20; minimum, 0.0°C, many days October through March.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

	Date	Time	Instan- taneous dis- charge, cfs (00061)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	+	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	
	APR 2003 17 MAY	1015	5230	8.2	292	10.0	9.5	.60	.172	.004	
	21 JUN	1600	4860	8.5	280	13.5	13.0	.33	.052	E.002	
	04 JUL	1500	14700	8.2	193	17.0	14.5	.87	.072	.005	
	24	1000	1540	8.6	316	27.0	24.5	. 25	E.015	E.002	
			Date	Orthorphos- phate water fltromg/I as I	Phose, Phose, phorus , phorus , water , unflt	s, sieve c, diame cd percer c <.063	pende, sedi- e ment tr concer nt tratio	ed Sus- pende sedi- ment n ment on load, tons/	d d		
			APR 2003 17 MAY	.023	.107	96	38	537			
			21 JUN	.012	.052	96	18	236			
			04	.031	.195	69	146	5790			
			24	.013	.043	95	13	54			
Date	Time	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	water, fltrd, mg/L	water, fltrd, mg/L	sium, water fltrd mg/L	Sodium , adsorp , tion ratio	- water fltrd mg/L	, lab, , mg/L as CaCO3	Chloride, water fltrd mg/L	ide, , water, , fltrd, mg/L	Silica, water, fltrd, mg/L (00955)
MAY 2003	1600	110	29.3	8.46	2.93	.7	16.6	106	8.49	٥	21 0
JUL 24	1000	100	29.3	8.46	3.69	1	26.3	114	14.4	.9 1.8	21.0 25.9
24	1000	100	20.0	0.39	3.09	Τ	∠0.3	114	14.4	1.0	23.9

E--Estimated.

06054500 MISSOURI RIVER AT TOSTON, MT--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d (70302)	Arsenic water unfltrd ug/L (01002)	Cadmium water, unfltrd ug/L (01027)	Chrom- ium, water, unfltrd recover -able, ug/L (01034)	Copper, water, unfltrd recover -able, ug/L (01042)	Lead, water, unfltrd recover -able, ug/L (01051)	Nickel, water, unfltrd recover -able, ug/L (01067)	Zinc, water, unfltrd recover -able, ug/L (01092)
MAY 2003 21 JUL	24.2	176	.24	2310	25	<.2	E.6	5.1	1.04	.93	6
24	21.7	197	.27	820	31	< .04	<.8	3.4	1.38	1.20	3

E--Estimated.

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	VEMBER		DE	CEMBER			JANUARY	
1 2 3 4 5	11.5 9.0 9.0 9.0 10.0	9.0 8.5 8.5 8.0 9.0	10.5 8.5 9.0 8.5 9.5	1.0 1.0 1.0 1.0	0.0 0.0 0.0 0.0	0.5 0.5 0.5 0.5	1.0 1.5 2.5 2.0	0.5 0.5 1.5 1.5	0.5 1.0 2.0 1.5	0.5 1.0 0.5 0.5	0.0 0.5 0.5 0.0	0.5 0.5 0.5 0.5
6 7 8 9 10	9.5 10.5 11.0 11.0	8.5 9.0 10.0 10.0	9.0 9.5 10.5 10.5	1.0 1.0 1.0 1.5 2.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 1.0 2.5	1.5 1.0 0.5 0.5	1.0 0.5 0.0 0.0	1.5 1.0 0.5 0.5	1.0 1.0 1.0 0.5	0.0 0.0 0.0 0.0	0.5 0.5 0.5 0.5
11 12 13 14 15	10.0 8.5 7.5 8.5 8.0	8.5 7.0 6.5 7.0 7.5	9.5 8.0 7.0 7.5 8.0	3.0 3.5 3.0 4.0 3.5	2.5 3.0 2.5 3.0 2.5	2.5 3.0 3.0 3.5 3.0	0.5 0.5 0.5 2.5 3.5	0.5 0.5 0.5 0.5 2.5	0.5 0.5 0.5 1.5 3.0	0.5 1.0 1.0 0.5	0.0 0.5 0.5 0.0	0.5 0.5 0.5 0.5
16 17 18 19 20	8.0 8.0 8.0 8.0	7.5 7.5 7.0 7.0	7.5 7.5 7.5 7.5 7.5	3.5 3.0 3.0 3.0 4.0	3.0 2.5 2.5 2.5 3.0	3.0 3.0 3.0 2.5 3.5	3.5 2.0 2.0 0.5	2.0 2.0 0.5 0.0	3.0 2.0 1.0 0.5	0.5 0.5 1.0 1.0	0.0 0.0 0.0 0.5	0.5 0.5 0.5 0.5
21 22 23 24 25	9.0 8.5 6.5 5.0 4.0	8.0 6.5 5.0 3.5 3.0	8.5 8.0 5.5 4.0 3.5	4.5 4.5 4.0 3.5 1.0	4.0 3.5 3.5 1.0 0.0	4.5 4.0 4.0 2.0 0.5	0.5 0.5 0.5 0.5	0.5 0.0 0.0 0.0	0.5 0.5 0.5 0.5	0.5 0.5 1.0 1.0	0.0 0.0 0.0 0.0	0.0 0.5 0.5 0.5
26 27 28 29 30 31	4.0 4.5 4.5 1.5	3.0 3.0 3.5 1.5 0.0	3.5 3.5 4.0 3.5 0.5	0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.0	0.5 0.5 0.5 0.5	0.5 1.0 0.5 0.5 0.5	0.0 0.5 0.5 0.5 0.0	0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 1.0	0.5 0.5 0.0 0.0 0.5	0.5 0.5 0.5 0.5 0.5
MONTH	11.5	0.0	7.0	4.5	0.0	2.0	3.5	0.0	1.0	1.0	0.0	0.5

06054500 MISSOURI RIVER AT TOSTON, MT--Continued

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

	FEBRUARY MARCH						MAY					
1 2 3 4 5	3.0 3.0 3.0 1.5	1.0 2.5 1.5 1.5	1.5 3.0 2.5 1.5	1.0 1.0 0.5 1.0	0.0 0.0 0.0 0.0	0.5 0.5 0.5 0.5	9.5 8.0 7.5 6.5 7.0	8.0 7.0 6.0 5.5 6.0	9.0 7.5 6.5 6.0	11.0 11.5 11.5 11.5 11.5	10.0 10.5 10.5 10.0 10.5	10.5 11.0 11.0 10.5 10.5
6 7 8 9 10	1.0 0.5 1.0 1.0	0.0 0.0 0.0 0.0	0.5 0.5 0.5 0.5	1.0 1.0 1.0 1.0	0.0 0.0 0.0 0.0	0.5 0.5 0.5 0.5	7.5 8.0 9.0 10.5 12.0	6.5 6.5 7.5 9.0 10.0	7.0 7.0 8.5 9.5	10.5 12.0 12.0 10.5 10.5	9.5 10.0 10.5 9.5 9.0	10.0 10.5 11.0 10.0 9.5
11 12 13 14 15	1.0 1.0 1.0 1.0 2.0	0.0 0.0 0.5 0.5	0.5 0.5 0.5 0.5	1.0 1.0 1.0 5.5 6.0	0.5 0.5 0.5 1.0 5.5	0.5 0.5 0.5 4.5 6.0	13.0 13.0 13.0 12.5 11.5	11.5 12.0 12.5 11.5 9.0	12.0 12.5 12.5 12.0 10.5	11.5 12.0 13.0 15.0 16.0	10.0 11.5 11.5 13.0 15.0	10.5 11.5 12.0 13.5 15.5
16 17 18 19 20	2.0 2.5 3.0 2.5 2.5	1.5 1.0 2.0 1.5 2.0	1.5 2.0 2.5 2.0 2.5	6.5 6.0 6.0 6.0	5.5 5.0 5.5 5.0	6.0 5.5 5.5 5.5 6.0	9.5 10.0 10.0 10.5 12.0	8.0 9.5 9.0 8.5 10.5	8.5 9.5 9.5 9.5	16.0 14.5 13.5 11.0 12.0	14.0 13.0 10.5 9.5 10.5	14.5 13.5 12.0 10.0 11.0
21 22 23 24 25	3.0 3.0 1.5 1.0	2.0 1.5 0.0 0.0	2.5 2.5 0.5 0.5	7.0 7.5 8.0 8.0 6.0	6.5 7.0 7.5 6.0 5.5	7.0 7.0 7.5 7.0 6.0	12.5 13.5 13.5 12.5 13.0	11.5 12.5 12.0 11.5 11.5	12.0 13.0 13.0 12.0	13.5 15.0 17.5 19.0 19.5	12.0 13.5 15.0 17.0 18.0	13.0 14.0 16.0 18.0 19.0
26 27 28 29 30 31	1.5 1.0 1.0 	0.0 0.0 0.0 	0.5 0.5 0.5 	6.0 5.5 5.0 6.5 8.5 9.5	5.0 5.0 4.5 5.0 6.5 8.5	5.5 5.5 5.0 6.0 7.5 9.0	11.5 10.0 10.0 9.0 10.0	9.5 8.5 9.0 8.0 8.5	10.5 9.0 9.5 8.5 9.0	18.0 18.0 19.0 19.0 19.0	17.0 15.5 16.5 17.5 16.5	17.5 16.5 17.5 18.5 17.5 16.0
MONTH	3.0	0.0	1.0	9.5	0.0	4.0	13.5	5.5	10.0	19.5	9.0	13.5
		TTTNTT			TITE SE			ATTOTTOM			CHDMHMDI	7D
1	17.0	JUNE 15.0	16.0	22.5	JULY 21.5	22.0	25.5	AUGUST 22.5	23.5	21.5	SEPTEMBE	19.0
1 2 3 4 5	17.0 17.0 15.5 15.5		16.0 15.0 14.5 15.0	22.5 22.5 21.0 22.0 22.5		22.0 21.5 20.5 21.0 21.5			23.5 24.0 24.0 23.5 23.0			
2 3 4	17.0 15.5 15.5	15.0 14.5 13.5 14.5	15.0 14.5 15.0	22.5 21.0 22.0	21.5 21.0 20.0 20.0	21.5 20.5 21.0	25.5 26.0 26.0 24.5	22.5 23.0 23.0 22.0	24.0 24.0 23.5	21.5 21.0 21.0 21.5	17.5 17.5 17.5 18.0	19.0 19.0 19.0
2 3 4 5 6 7 8 9	17.0 15.5 15.5 16.0 15.5 15.5 17.0 17.5	15.0 14.5 13.5 14.5 13.5 14.0 13.0 15.0 16.5	15.0 14.5 15.0 14.5 14.5 14.0 15.5 17.0	22.5 21.0 22.0 22.5 21.0 22.5 22.5 22.5 22.0	21.5 21.0 20.0 20.0 20.5 20.5 20.5 20.5 20.5	21.5 20.5 21.0 21.5 20.5 21.5 22.0 21.0	25.5 26.0 26.0 24.5 24.5 24.5 24.0 24.5 24.0	22.5 23.0 23.0 22.0 22.0 21.0 21.0 21.5 21.0	24.0 24.0 23.5 23.0 22.5 22.5 22.5 22.5	21.5 21.0 21.0 21.5 21.0 20.5 19.5	17.5 17.5 17.5 18.0 18.0 18.0 17.5 16.0	19.0 19.0 19.0 19.5 19.0 19.0 19.0 18.5 17.5
2 3 4 5 6 7 8 9 10 11 12 13 14	17.0 15.5 15.5 16.0 15.5 17.0 17.5 18.0 18.5 18.5 18.5	15.0 14.5 13.5 14.5 13.5 14.0 13.0 15.0 16.5 17.0 16.5 17.0	15.0 14.5 15.0 14.5 14.5 14.0 15.5 17.0 17.5 17.5 17.5 17.5	22.5 21.0 22.5 21.0 22.5 22.5 22.5 22.5 22.5 22.5 22.6 23.5	21.5 21.0 20.0 20.0 20.5 20.5 20.5 20.5 20.0 20.0	21.5 20.5 21.0 21.5 20.5 21.5 22.0 21.0 21.5 23.0 24.0 24.0 23.0	25.5 26.0 26.0 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5	22.5 23.0 23.0 22.0 22.0 21.0 21.5 21.0 21.5 21.0 20.5 21.5	24.0 24.0 23.5 23.0 22.5 22.5 22.5 22.5 22.5 22.5 22.0 23.0	21.5 21.0 21.0 21.5 21.0 20.5 20.5 19.5 19.0 17.5	17.5 17.5 17.5 18.0 18.0 18.0 17.5 16.0 15.0 14.5 13.5 13.5	19.0 19.0 19.5 19.0 19.0 19.0 19.0 18.5 17.5 16.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	17.0 15.5 16.0 15.5 17.0 17.5 18.0 18.5 18.0 19.0 19.5 20.5 21.0	15.0 14.5 13.5 14.5 13.5 14.0 13.0 15.0 16.5 17.0 16.5 17.0 17.5 17.0 17.5 17.0 17.5	15.0 14.5 15.0 14.5 14.5 14.0 15.5 17.0 17.5 17.5 18.0 17.5 18.0 20.0 20.0 20.5 20.0	22.5 21.0 22.5 21.0 22.5 22.5 22.5 22.5 22.0 23.5 24.5 25.5 26.0 24.0 24.5	21.5 21.0 20.0 20.0 20.5 20.5 20.5 20.0 20.0 21.5 22.5 22.5 22.0 22.0 21.5 23.0 23.5 23.5 23.5	21.5 20.5 21.0 21.5 20.5 21.5 22.0 21.5 23.0 24.0 23.0 23.0 23.0 23.0 24.0 24.0 24.0 23.5	25.5 26.0 24.5 24.5 24.5 24.0 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5	22.5 23.0 23.0 22.0 21.0 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0	24.0 24.0 23.5 23.0 22.5 22.5 22.5 22.5 22.5 22.5 22.0 23.0 23.0 23.0 23.0 22.5 21.0 21.0	21.5 21.0 21.0 21.5 21.0 20.5 20.5 19.5 19.0 17.5 16.0 14.5 15.0 15.0 14.5 13.0 12.0	17.5 17.5 17.5 18.0 18.0 18.0 17.5 16.0 15.0 14.5 13.5 13.5 13.0 12.5 13.0	19.0 19.0 19.5 19.0 19.0 19.0 19.0 19.0 14.0 15.0 14.0 13.5 14.0 13.5 12.0 11.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	17.0 15.5 16.0 15.5 17.0 17.5 18.0 18.5 18.5 18.0 19.0 19.5 20.5 21.0 19.5 18.5 17.0 19.5	15.0 14.5 13.5 14.5 13.5 14.0 13.0 15.0 16.5 17.0 17.5 17.0 17.5 17.0 17.5 19.5 19.5 18.0 19.5 18.0	15.0 14.5 15.0 14.5 14.5 14.0 15.5 17.0 17.5 17.5 18.0 17.5 18.0 20.0 20.5 20.0 18.5 17.5 17.5	22.5 21.0 22.5 21.0 22.5 22.5 22.5 22.5 22.0 23.5 24.5 25.5 26.0 24.0 25.5 26.0 26.5 27.5	21.5 21.0 20.0 20.0 20.5 20.5 20.5 20.5 20.0 21.5 22.5 23.0 22.0 21.5 23.5 23.5 24.0 24.0 24.0 24.0 23.5	21.5 20.5 21.0 21.5 22.0 21.5 22.0 21.0 21.5 23.0 24.0 23.0 23.0 23.5 24.0 24.5 25.0 25.5	25.5 26.0 26.0 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5	22.5 23.0 23.0 22.0 21.0 21.0 21.5 21.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	24.0 24.0 23.5 23.0 22.5 22.5 22.5 22.5 22.5 22.0 23.0 23.0 23.0 23.0 21.0 21.5 21.0 21.5	21.5 21.0 21.0 21.5 21.0 20.5 20.5 19.5 19.0 17.5 16.0 15.0 15.0 15.0 12.5 13.0 12.5 13.0 14.5 14.5 14.5 14.5	17.5 17.5 17.5 18.0 18.0 18.0 17.5 16.0 15.0 14.5 13.5 13.0 12.5 13.0 12.5 13.0 12.5 13.0	19.0 19.0 19.0 19.5 19.0 19.0 19.0 19.0 14.0 14.0 13.5 14.0 11.5 12.5 13.6 12.5

06058500 CANYON FERRY LAKE NEAR HELENA, MT

LOCATION.--Lat 46°38'57", long 111°43'39" (NAD 27), in SE¹/₄SE¹/₄ sec.4, T.10 N., R.1 W., Lewis and Clark County, Hydrologic Unit 10030101, in block 17 of Canyon Ferry Dam, 15 mi east of Helena, and at river mile 2,252.8.

DRAINAGE AREA.--15,904 mi².

PERIOD OF RECORD.--April 1953 to current year (monthend contents only). Prior to October 1981, published as Canyon Ferry Reservoir near Helena. Records of monthend contents in Lake Sewell, submerged by present reservoir Apr. 8, 1953, available January 1936 to March 1953. Scattered daily elevations and contents for April to July 1953, published in WSP 1320-B. Daily elevations and contents for May to June 1964, published in WSP 1840-B. Daily elevations and contents on file in Helena district office.

REVISED RECORDS.--WSP 1559: Drainage area.

GAGE.--Water-stage recorder in powerhouse control room. Elevation of gage is 3,650.0 ft (NGVD 29).

REMARKS.--Reservoir is formed by concrete dam; construction began in 1949, completed in 1953. Storage began in March 1953. All elevations are referenced to the National Geodetic Vertical Datum of 1929. Usable capacity, 1,993,000 acre-ft between elevation 3,770.00 ft, invert of outlet works, and 3,800.00 ft, controlled spillway elevation. Dead storage, 1,060 acre-ft, below elevation 3,650.00 ft. Minimum operating level, 396,000 acre-ft, at elevation 3,728.00 ft, for on-site power generation. Figures given herein represent usable contents. Water is used for power production, flood control, irrigation, recreation, and supplemental water supply for city of Helena.

COOPERATION .-- Elevations and capacity table furnished by Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 2,043,000 acre-ft, July 15-29, 31, 1955, July 2, 5, 6, 8, 1956, July 16, 17, 1962, June 23, 1964, elevation, 3,800.0 ft; minimum since first filling, 1,017,000 acre-ft, Apr. 11, 1967, elevation, 3,764.70 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 1,913,000 acre-ft, June 25, elevation, 3,797.66 ft; minimum, 1,546,000 acre-ft, Sept. 30, elevation, 3,786.31 ft.

MONTHEND ELEVATION AND CONTENTS AT 2400 HOURS, SEPTEMBER 2002 TO SEPTEMBER 2003

Date	Elevation (feet)	Contents (acre-feet)	Change in Contents (acre-feet)
Sept. 30	3,790.25	1,687,000	
Oct. 31	3,790.21	1,669,000	-18,000
Nov. 30	3,790.06	1,664,000	-5,000
Dec. 31	3,789.20	1,637,000	-27,000
CALEND	OAR YEAR 2002		+245,000
Jan. 31	3,788.15	1,604,000	-33,000
Feb. 28	3,787.23	1,575,000	-29,000
Mar. 31	3,787.70	1,590,000	+15,000
Apr. 30	3,790.18	1,668,000	+78,000
May 31	3,793.07	1,762,000	+94,000
June 30	3,797.30	1,901,000	+139,000
July 31	3,792.71	1,750,000	-151,000
Aug. 31	3,788.89	1,627,000	-123,000
Sept. 30	3,786.31	1,546,000	-81,000
WATER	YEAR 2003		-141,000

PRICKLY PEAR CREEK BASIN

06061500 PRICKLY PEAR CREEK NEAR CLANCY, MT

 $LOCATION.--Lat\ 46^{\circ}31'09", long\ 111^{\circ}56'45"\ (NAD\ 27), in\ NE^{1}/_{4}SE^{1}/_{4}SW^{1}/_{4}\ sec.\ 23,\ T.9\ N.,\ R.3\ W.,\ Jefferson\ County,\ Hydrologic\ Unit\ 10030101,\ on\ right\ bank\ 3.5\ mi\ downstream\ from\ Lump\ Gulch\ Creek,\ 4\ mi\ northeast\ of\ Clancy,\ 7\ mi\ southeast\ of\ Helena,\ and\ at\ river\ mile\ 24.4.$

DRAINAGE AREA.--192 mi².

PERIOD OF RECORD.--May 1999 to current year.

REMARKS.--Data for Nov. 14, 2002 collected as part of a research project.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	ature, water, deg C	+ org-N, water,	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	
NOV 2002	1200	17	7.9	303	5.0	4.5				
APR 2003	1330	43	8.2	232	7.0	6.5	.20	.125	<.002	
MAY 20	0900	64	8.0	200	11.0	4.0	.21	.128	E.002	
JUN 02	1330	98	7.9	140	13.0	10.5	.34	.089	<.002	
JUL 22	1500	12	8.5	332	29.5	24.5	.20	.201	.004	
		Date NOV 2002 14 APR 2003 17 MAY 20 JUN 02 JUL 22		, Phos- , phorus, , water, unfltrc mg/L) (00665) 024 .025 .045	sieve diamet percen <.063m	pende sedi- ment r concen t tratio m mg/L	d Sus- pende sedi- ment n load, tons/	d d)		
Time	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L	ium, s water, s fltrd, s mg/L	water, ad fltrd, mg/L r	tion catio	odium, f water, fltrd, m mg/L	xd end lab, g/L as CaCO3	Chlor- ide, water, fltrd, mg/L 00940)	water, fltrd, mg/L	Silica, water, fltrd, mg/L (00955)

E--Estimated.

1200

0900

1500

78

120

23.1

34.8

5.03

7.88

1.98

3.20

. 4

.8

8.78

21.3

53

87

3.02

6.15

. 2

.6

18.1

20.4

Date

NOV 2002

MAY 2003

JUL 22...

PRICKLY PEAR CREEK BASIN

06061500 PRICKLY PEAR CREEK NEAR CLANCY, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	water, fltrd, mg/L	sum of consti- tuents mg/L	acre-ft	water, fltrd, tons/d	water fltrd ug/L	water unfltrd ug/L	Cadmium water, unfltrd ug/L (01027)	unfltrd recover -able, ug/L	recover -able, ug/L
NOV 2002 14 MAY 2003					4				
20	38.1	131	.18	22.6		5	.3	<.8	4.8
JUL 22	65.5	213	.29	6.89		9	.13	<.8	3.8
		Date	Lead, water, unfltrd recover -able, ug/L (01051)	ese, water fltrd, ug/L	-able,	water fltrd, ug/L	recover -able,		
		V 2002 14 Y 2003		34		69			
	J	20 UL	5.86		.58		112		
		22	2.54		.97		37		

462522112172402 08N06W24DDCD02

 $LOCATION.--Lat\ 46^{\circ}25'21.8'',\ long\ 112^{\circ}17'23.5'',\ (NAD\ 83)\ in\ SW^{1}/_{4}SE^{1}/_{4}\ sec.\ 24,\ T.8\ N.,\ R.6\ W.,\ Lewis\ and\ Clark\ County,\ Hydrologic\ Unit$ 10030101.

HYDROGEOLOGIC UNIT.--Tertiary volcanics.

WELL CHARACTERISTICS.--Drilled in June 2000, casing diameter 2 in., depth 84 ft.

DATUM.--Measuring point, top of PVC casing, 3.10 ft above land surface datum. Elevation of land-surface datum is 7,579.6 ft (NGVD 29).

PERIOD OF RECORD.--October 2001 to current year.

REMARKS.--All water levels are reported as distance, in feet below land-surface datum.

MEASURED WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 2002 THROUGH SEPTEMBER 2003

	DA	TE	WATER <u>LEVEL</u>
J	ul	2	32.29
Α	ug	8	50.58
Α	ug	29	58.34

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	ra ins tan gal	or flow per te, protection to see the control of th	sam- pli ing, dep	th, fie	ty, er, Di trd sol ld, oxyg U mg	ved fie en, sto /L uni	er, conditrd tandid, wat discussion discussi	uc- ce, Temp unf atu cm wat egC deg	re, unfl er, mg/L C CaC	s, er, trd as 03
JUL 200 02 AUG		1	.0	50 8	0 6	0 9.	4 4.:	2 5	1 6.	0 10	
29	1200		.40	9 8	0 22	0 7.	3 3.	7 11	8 7.	0 4	
Date	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)		Sodium, water, fltrd, mg/L (00930)	field,	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Alum- inum, water, fltrd, ug/L (01106)
JUL 2003 02 AUG	2.93	.723	2.14	.1	.97	.0	1.11	<.2	7.46	15.9	254
29	1.46	.285	1.57	.1	.47	.0	.67	<.2	7.46	22.3	724
Date	Anti- mony, water, fltrd, ug/L (01095)	Arsenic water, fltrd, ug/L (01000)	Beryll- ium, water, fltrd, ug/L (01010)	Cadmium water, fltrd, ug/L (01025)	Chrom- ium, water, fltrd, ug/L (01030)	Cobalt water, fltrd, ug/L (01035)	Copper, water, fltrd, ug/L (01040)	Iron, water, fltrd, ug/L (01046)	Lead, water, fltrd, ug/L (01049)	Mangan- ese, water, fltrd, ug/L (01056)	Nickel, water, fltrd, ug/L (01065)
JUL 2003 02 AUG	<.30	E.2	<.06	.06	E.5	.277	1.6	54	3.62	5.2	1.46
29	<.30	<.3	.06	. 25	2.5	2.14	11.6	276	8.90	7.1	5.92
			Date	Selen- ium, water, fltrd, ug/L (01145)	Silver, water, fltrd, ug/L	Thall- ium, water, fltrd, ug/L (01057)	ium,	Zinc, water, fltrd, ug/L (01090)			
			JUL 2003 02 AUG	<.5	<.2	.20	<.1	16			
			29	<.5	<.2	.22	<.1	42			

462522112172401 08N06W24DDCD01

LOCATION.--Lat 46°25'21.8", long 112°17'23.5" (NAD 83), in SW¹/₄SE¹/₄sec. 24, T.8 N., R.6 W., Lewis and Clark County, Hydrologic Unit 10030101.

HYDROGEOLOGIC UNIT.--Boulder batholith quartz monzonite.
WELL CHARACTERISTICS.--Drilled in June 1999, casing diameter 4 in., depth 227 ft.

Pump

DATUM.--Measuring point, top of PVC casing, 1.70 ft above land surface datum. Elevation of land-surface datum is 7,579.8 ft (NGVD 29).

PERIOD OF RECORD.-- October 2001 to current year.

REMARKS. - All water levels are reported as distance, in feet below land-surface datum. Well was pumped extensively one day prior to each sampling date in an attempt to remove sediment and standing water from the well casing.

MEASURED WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 2002 THROUGH SEPTEMBER 2003

DA	TE	WATER <u>LEVEL</u>
Jul	2	120.65
Aug	8	119.05
Aua	28	121.96

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Flow rate, instan- taneous gal/min (00059)	or flow period prior to sam- pling, minutes (72004)	Sam-	Tur- bidity, water, unfltrd field, NTU (61028)	Dis- solved oxygen, mg/L (00300)	unfltrd	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)
JUL 2003 03 AUG	1000	. 25	150	195	>1000	. 4	6.5	310	9.5	23	7.28
29	1100	.20	15	190		6.6	6.7	285	8.0	4	1.25
Date	Magnes- ium, water, fltrd, mg/L (00925)	sium,	Sodium adsorp- tion ratio (00931)	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)		Carbon- ate, wat flt incrm. titr., field, mg/L (00452)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)
JUL 2003	1.18	6.08	5	58.9	68	67	81	. 0	2.93	. 3	26.3
AUG 29	.141	3.08	13	56.7	69	60	74	. 0	1.97	. 3	28.6
Date	Sulfate water, fltrd, mg/L (00945)	tuents mg/L	Residue water, fltrd, tons/ acre-ft (70303)	Alum- inum, water, fltrd, ug/L (01106)	Anti- mony, water, fltrd, ug/L (01095)	Arsenic water, fltrd, ug/L (01000)	Beryll- ium, water, fltrd, ug/L (01010)	Cadmium water, fltrd, ug/L (01025)	Chrom- ium, water, fltrd, ug/L (01030)	Cobalt water, fltrd, ug/L (01035)	Copper, water, fltrd, ug/L (01040)
JUL 2003 03	72.3	216	. 29	2	<.30	1.4	<.06	.05	<.8	3.41	.6
AUG 29	62.4	191	.26	3	E.15	.8	<.06	E.02	9.4	.451	.5
	Date	Iron, water fltro ug/I (01046	r, water d, fltrd L ug/L	, water , fltrd ug/L	Nickel , water l, fltrd ug/L	water , fltro ug/I	Silver , water d, fltrd ug/I	, water l, fltrd	ium, , water, , fltrd, ug/L	Zinc, water, fltrd, ug/L	•
	JUL 2003	317	E.07	238	2.18	<.5	<.2	. 28	.3	28	
	AUG 29	45	E.05	41.7	.49	<.5	<.2	.12	. 2	3	

462720112165101 TENMILE CREEK ABOVE MONITOR CREEK, NEAR RIMINI, MT

 $LOCATION.--Lat\ 46^{\circ}27'19.0",\ long\ 112^{\circ}16'52.3"\ (NAD\ 27),\ SW^{1}/_{4}NE^{1}/_{4}SW^{1}/_{4}\ sec.\ 7,\ T.8N.,\ R.5W.,\ Lewis\ and\ Clark\ County,\ Hydrologic\ Unit\ 10020006,\ 30\ ft\ above\ confluence\ with\ Monitor\ Creek\ and\ 2.9\ mi\ south\ of\ Rimini.$

DRAINAGE AREA.--Indeterminate.

PERIOD OF RECORD.--July 2003 to September 2003.

GAGE.--None. Elevation at sampling site is 6,230 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	solved oxygen, mg/L	water, unfltrd field, std units	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)
JUL 2003 10	0930	.82		6.8	32	15.0	10.5	10	3.03	.629	.89
SEP 04	1030	.02	9.1	7.5	44		10.0	14	4.10	.852	1.15
Date	Sodium adsorp- tion ratio (00931)	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)		Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d	Ammonia water, fltrd, mg/L as N (00608)
JUL 2003 10	. 3	2.48	12	<.20	<.2	15.2	3.0	E33	E.04	E.00	< .04
SEP 04	. 4	3.78	17	.26	<.2	12.1	5.5	38	.05	.00	< .04
Date	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Alum- inum, water, fltrd, ug/L (01106)	Alum- inum, water, unfltrd recover -able, ug/L (01105)	Anti- mony, water, fltrd, ug/L (01095)	Anti- mony, water, unfltrd ug/L (01097)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)	Beryll- ium, water, fltrd, ug/L (01010)	Beryll- ium, water, unfltrd recover -able, ug/L (01012)
JUL 2003 10	<.06	<.008	<.02	70	104	<.30	<.6	1.9	3	.15	.15
SEP 04	<.06	<.008	<.18	16	19	<.30	<.6	1.5	2	E.05	E.06
Date	Cadmium water, fltrd, ug/L (01025)	unfltrd ug/L	Chrom- ium, water, fltrd, ug/L (01030)	Chrom- ium, water, unfltrd recover -able, ug/L (01034)	Cobalt water, fltrd, ug/L (01035)	-able, ug/L	Copper, water, fltrd, ug/L (01040)		Iron, water, fltrd, ug/L (01046)	Iron, water, unfltrd recover -able, ug/L (01045)	Lead, water, fltrd, ug/L (01049)
JUL 2003	E.03	.04	<.8	<.8	.039	.047	1.5	1.8	132	150	.23
SEP 04	E.03	E.03	<.8	<.8	.228	.179	. 9	. 9	126	140	E.06
01	Date JUL 2003 10	Lead wate: unflt: recovabl; ug/ (0105:	, r, Mangan rd ese, er water e, fltrd L ug/L	Mangan ese, - water unfltr , recove , -able ug/L	- d Nickel r water , fltrd ug/L	Nickel water , unfltr , recove l, -able ug/I	., Seler d ium, er water e, fltro	n- Seler ium a, water d, unflt ug/l	n- , Silver c, water cd fltro	Silver water , unfltr , recove d, -able ug/L	, , d r
	SEP 04	.08	28.6	30	.21	.26	<.5	E.3	<.2	<.16	

462720112165101 TENMILE CREEK ABOVE MONITOR CREEK, NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 200--Continued

Date	Thall- ium, water, fltrd, ug/L (01057)	Thall- ium, water, unfltrd ug/L (01059)	Vanad- ium, water, fltrd, ug/L (01085)	Vanad- ium, water, unfltrd ug/L (01087)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	
JUL 2003 10 SEP	<.04	<.4	. 2	<1	6	7	
04	< .04	< . 4	. 2	<1	3	3	

462542112173101 MONITOR CREEK SS 12, NEAR RIMINI, MT

 $LOCATION.--Lat\ 46^{\circ}25'41.6",\ long\ 112^{\circ}17'30.6"\ (NAD\ 27),\ NW^{1}/_{4}NE^{1}/_{4}SE^{1}/_{4}\ sec.\ 24,\ T.8N.,\ R.6W.,\ Lewis\ and\ Clark\ County,\ Hydrologic\ Unit\ 10020006,\ 1.95\ mi\ upstream\ of\ confluence\ with\ Tenmile\ Creek,\ 5.4\ mi\ south\ of\ Rimini.$

DRAINAGE AREA.--Indeterminate.

PERIOD OF RECORD.--July 2003 to September 2003.

GAGE.--None. Elevation at sampling site is 7,230 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	solved oxygen, mg/L	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)
JUL 2003 10	1420	.15		3.7	253	31.0	15.0	43	12.4	3.01	5.81
SEP 05	1000	.07	9.2	3.5	227		9.0	38	10.8	2.69	6.90
Date	Sodium adsorp- tion ratio (00931)	fltrd, mg/L	water,	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Alum- inum, water, fltrd, ug/L (01106)
JUL 2003 10	.1	1.51	.55	<.2	22.5	102	< .04	.35	<.008	<.02	4620
SEP 05	.1	1.96	.57	. 2	30.7	97.2	<.04	.16	<.008	<.18	4350
Date	Alum- inum, water, unfltrd recover -able, ug/L (01105)	Anti- mony, water, fltrd, ug/L (01095)	Anti- mony, water, unfltrd ug/L (01097)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)	Beryll- ium, water, fltrd, ug/L (01010)	Beryll- ium, water, unfltrd recover -able, ug/L (01012)	Cadmium water, fltrd, ug/L (01025)	Cadmium water, unfltrd ug/L (01027)	Chrom- ium, water, fltrd, ug/L (01030)	Chrom- ium, water, unfltrd recover -able, ug/L (01034)
JUL 2003 10	4440	<.30	<.6	. 5	<2	3.83	3.06	8.96	8.59	<.8	<.8
SEP 05	4340	<.30	<.6	. 5	<2	2.69	2.65	6.76	6.77	<.8	<.8
Date	Cobalt water, fltrd, ug/L (01035)	Cobalt water, unfltrd recover -able, ug/L (01037)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	Iron, water, fltrd, ug/L (01046)	Iron, water, unfltrd recover -able, ug/L (01045)	Lead, water, fltrd, ug/L (01049)	Lead, water, unfltrd recover -able, ug/L (01051)	Mangan- ese, water, fltrd, ug/L (01056)	Mangan- ese, water, unfltrd recover -able, ug/L (01055)	Nickel, water, fltrd, ug/L (01065)
JUL 2003 10	15.8	14.9	28.8	29.6	312	350	35.4	34.0	597	556	13.8
SEP 05	14.7	13.8	24.8	24.6	628	650	29.9	29.6	545	513	11.6
Date	Nickel, water, unfltro recover -able, ug/L (01067)	Selen- ium, water, fltrd, ug/L	ium, water, unfltrd ug/L	Silver water	, recover , -able, ug/L	l ium, water, fltrd, ug/L	ium, water, unfltro ug/L	ium, water d fltrd ug/L	ium, , water, , unfltrd ug/L	Zinc, water, l fltrd, ug/L	-able, ug/L
JUL 2003 10	13.2	2.1	1.9	<.2	<.16	.57	.5	<.1	<1	597	574
SEP 05	11.1	1.4	1.4	<.2	<.16	.43	E.4	<.1	<1	481	498

462721112164801 MONITOR CREEK AT MOUTH, NEAR RIMINI, MT

 $LOCATION. --Lat\ 46^{\circ}27'21'', long\ 112^{\circ}16'48''\ (NAD\ 27),\ SW^{1}/_{4}NE^{1}/_{4}SW^{1}/_{4}\sec.\ 7,\ T.8N.,\ R.5W.,\ Lewis\ and\ Clark\ County,\ Hydrologic\ Unit\ 10020006,\ 20\ ft\ upstream\ from\ mouth\ and\ 4.0\ mi\ southwest\ of\ Rimini.$

DRAINAGE AREA.--Indeterminate.

PERIOD OF RECORD.--July and October 1997, July 2003 to September 2003.

GAGE.--None. Elevation at sampling site is 6,220 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	Dis- solved oxygen, mg/L (00300)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)
JUL 2003 10	1015	.63		6.5	74	9.0	23	6.47	1.66	2.02	. 2
SEP 04	1100	.11	9.2	6.8	105	9.5	36	10.2	2.49	2.78	. 2
04	1100	.11	9.2	0.0	103	9.3	30	10.2	2.49	2.70	. 2
Date	Sodium, water, fltrd, mg/L (00930)	lab, mg/L as CaCO3	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	consti- tuents mg/L	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d (70302)		Nitrite + nitrate water fltrd, mg/L as N (00631)
JUL 2003 10	2.23	6	.22	. 2	19.3	23.2	59	.08	.10	<.04	<.06
SEP 04	2.23	7	.35	. 2		37.5					
04	2.94	/	.35	. 2	21.2	3/.5	82	.11	.02	<.04	<.06
Date	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Alum- inum, water, fltrd, ug/L (01106)	Anti- mony, water, fltrd, ug/L (01095)	Anti- mony, water, unfltrd ug/L (01097)	Arsenic water, fltrd, ug/L (01000)	water unfltrd ug/L	Beryll- ium, water, fltrd, ug/L (01010)	Beryll- ium, water, unfltrd recover -able, ug/L (01012)	Cadmium water, fltrd, ug/L (01025)	Cadmium water, unfltrd ug/L (01027)
JUL 2003	<.008	<.02	113	<.30	< . 6	. 6	<2	.37	.35	.92	.90
SEP											
04	<.008	<.18	28	<.30	<.6	.5	<2	.14	.15	.55	.56
Date	Chrom- ium, water, fltrd, ug/L (01030)	Chrom- ium, water, unfltrd recover -able, ug/L (01034)	Cobalt water, fltrd, ug/L (01035)	Cobalt water, unfltrd recover -able, ug/L (01037)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	Iron, water, fltrd, ug/L (01046)	Iron, water, unfltrd recover -able, ug/L (01045)	Lead, water, fltrd, ug/L (01049)	Lead, water, unfltrd recover -able, ug/L (01051)	Mangan- ese, water, fltrd, ug/L (01056)
JUL 2003	<.8	<.8	.526	.542	2.4	3.0	32	50	.45	.86	30.7
SEP 04	<.8	<.8	.169	.157	1.5	1.5	18	20	E.06	.18	14.9
	J	Date UL 2003 10 EP	recove -able ug/L (01055	d Nickel r water , fltrd ug/L) (01065	, recove , -able ug/L) (01067	, Selendium, rwater, fltrdug/L) (01145	ium, , water , unfltr ug/L) (01147	Silver, water d fltrd ug/L) (01075	, recove , -able ug/L) (01077	d er	
		04	15	1.38	1.46	<.5	<.5	<.2	<.16		

462721112164801 MONITOR CREEK AT MOUTH, NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	Thall- ium, water, fltrd, ug/L (01057)	Thall- ium, water, unfltrd ug/L (01059)	Vanad- ium, water, fltrd, ug/L (01085)		Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)
JUL 2003 10 SEP	.04	<.4	E.1	<1	91	90
04	E.02	< . 4	<.1	<1	72	70

462544112162001 RUBY CREEK RC2A, ABOVE SCOTT RESERVOIR, NEAR RIMINI, MT

 $LOCATION.--Lat\ 46^{\circ}25'44.1'',\ long\ 112^{\circ}16'19.7''\ (NAD\ 27),\ NE^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 19,\ T.8N.,\ R.5W.,\ Lewis\ and\ Clark\ County,\ Hydrologic\ Unit\ 10020006,\ 200\ ft\ above\ confluence\ with\ unnamed\ tributary,\ 0.3\ mi\ upstream\ from\ Scott\ Reservoir,\ and\ 0.45\ mi\ south\ of\ Rimini.$

DRAINAGE AREA.--Indeterminate.

PERIOD OF RECORD.--July 2003.

GAGE.--None. Elevation at sampling site is 7,380 ft (NGVD 29).

REMARKS.--Stream was dry on site visits in August and September.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	dis- charge, cfs	std units	wat unf uS/cm	ature, water, deg C	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	water, fltrd, mg/L	water, fltrd, mg/L	fltrd, mg/L	Sodium adsorp- tion ratio (00931) (water, fltrd, mg/L
JUL 2003 10	1320	.03	6.1	17	11.0	6	1.96	.317	.52	. 2	.92
Date	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L	ide, water, fltrd, mg/L	Silica, water,		water, fltrd, mg/L as N	water fltrd, mg/L as N	Nitrite water, fltrd, mg/L as N	water,	Alum- inum,	Alum- inum, water, unfltrd recover -able, ug/L (01105)
JUL 2003 10	7	<.20	<.2	7.14	1.3	<.04	<.06	<.008	<.02	103	137
Date	Anti- mony, water fltrd ug/L (01095	mony, , water , unfltr ug/L	Arseni , water d fltrd ug/L		water fltrd ug/L	unfltro , recover , -able ug/L	, d Cadmiu r water , fltrd ug/L		water d fltrd ug/L	unfltro , recover , -able,	d Cobali water fltrd ug/L
JUL 2003 10	<.30	<.6	1.2	<2	.09	.10	<.04	E.03	<.8	<.8	.037
Date	Cobalt water, unfltrd recover -able, ug/L (01037)	Copper, water, fltrd, ug/L		Iron, water,	recover -able, ug/L	Lead, water, fltrd, ug/L	unfltrd recover -able, ug/L	water, fltrd, ug/L	recover -able, ug/L	Nickel, water, fltrd, ug/L	recover -able, ug/L
JUL 2003 10	.049	1.7	1.7	57	70	.21	.23	3.2	4	. 24	. 25
Date	w	ium, ater, w ltrd, un ug/L	ater, w fltrd f ug/L	wa lver, unf ater, rec ltrd, -a	ltrd over w ble, f g/L	ium, : ater, wa ltrd, un: ug/L :	ium, ater, w fltrd f ug/L	ium, i ater, wa ltrd, unf ug/L i	ater, wa Eltrd fl ug/L u	wainc, unf ater, red ltrd, -a ug/L u	dinc, ater, ltrd cover able, ag/L .092)
JUL 200 10		<.5	.5	<.2 <.	16 <	.04	< . 4	.1 <	<1	5	4

462657112143501 BANNER CREEK AT BRIDGE, 0.5 MILE ABOVE CITY DIVERSION, NEAR RIMINI, MT

 $LOCATION.--Lat\ 46^{\circ}23'57", long\ 112^{\circ}15'25"\ (NAD\ 27), in\ NW^{1}/_{4}\ NW^{1}/_{4}\ SW^{1}/_{4}\ sec.\ 16,\ T.\ 8\ N.,\ R.\ 5\ W.,\ Lewis\ and\ Clark\ County,\ Hydrologic\ Unit\ 10030101,\ at\ bridge\ near\ the\ downstream\ edge\ of\ meadow,\ about\ 0.5\ mi\ upstream\ from\ city\ diversion,\ and\ 2.5\ mi\ south\ of\ Rimini.$

DRAINAGE AREA.--2.6 mi².

PERIOD OF RECORD .-- April 2000 to current year.

GAGE--None. Elevation at site is 6,700 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)
MAR 2003 24	1045	.20	7.5	68	1.5	0.0	33	9.95	1.93		
JUL 22	0930	.16	7.3	73	16.0	10.0	29	9.03	1.67	.83	.1
AUG											
21 SEP	1340	.11	7.3	80	15.5	19.0	38	12.0	1.88		
25	1050	.15	7.7	87	17.0	6.0	36	10.8	2.08		
Date	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)		Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d (70302)	Alum- inum, water, fltrd, ug/L (01106)	Alum- inum, water, unfltrd recover -able, ug/L (01105)
MAR 2003 24 JUL 22	1.82	 26	.33	 <.2	 12.4	 8.6	 50	 .07	.02	 4	 43
AUG 21											
SEP 25											
Date	Anti- mony, water, fltrd, ug/L (01095)	Anti- mony, water, unfltrd ug/L (01097)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)	Cadmium water, fltrd, ug/L (01025)	Cadmium water, unfltrd ug/L (01027)	Chrom- ium, water, fltrd, ug/L (01030)	Chrom- ium, water, unfltrd recover -able, ug/L (01034)		Copper, water, unfltrd recover -able, ug/L (01042)	Iron, water, fltrd, ug/L (01046)
MAR 2003 24			.8	E2	.12	.13			1.2	1.6	
JUL 22	<.30	< . 6	1.1	<2	.10	.11	<.8	<.8	3.5	3.2	286
AUG	<.30	<.0									
21 SEP			1.2	E1	.05	.07			1.4	1.6	
25			. 4	<2	.09	.08			1.5	1.2	

462657112143501 BANNER CREEK AT BRIDGE, 0.5 MILE ABOVE CITY DIVERSION, NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	Iron, water, unfltrd recover -able, ug/L (01045)	Lead, water, fltrd, ug/L (01049)	recover -able, ug/L	ese, water, fltrd, ug/L	unfltrd recover -able, ug/L	water, fltrd, ug/L	-able, ug/L	water, fltrd, ug/L	recover -able, ug/L
MAR 2003 24 JUL		.10	.52						
22	550	.15	.36	143	136	<.02	<.02	.65	.54
AUG 21 SEP		.13	.30						
25		E.08	.10						
	Date	water,	Silver, water, unfltrd recover -able, ug/L (01077)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	ment, sieve diametr percent	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)	
	MAR 2003 24 JUL			37	26	75	3	<.01	
	22 AUG	<.2	<.16	17	20	75	4	<.01	
	21 SEP			8	8	90	1	<.01	
	25			21	20	67	1	<.01	

 $\mathtt{E--Estimated}.$

462838112143901 POISON CREEK AT MOUTH, NEAR RIMINI, MT

LOCATION.--Lat 46°28'38", long 112°14'39" (NAD 27), in SW¹/₄ NW¹/₄ sec. 4, T. 8 N., R. 5 W., Lewis and Clark County, Hydrologic Unit 10030101, at culvert crossing on Rimini Road about 1 mi south of Rimini.

DRAINAGE AREA.--0.32 mi².

PERIOD OF RECORD.--May 1999 to current year. GAGE--None. Elevation at site is 5,500 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Instan- water, cor taneous unfltrd ta dis- field, wat Time charge, std us cfs units 25		conduc- l tance, wat uni uS/cm 25 deg(Specif. conductance, Temper- wat unf ature, uS/cm air, 25 degC deg C (00095) (00020)		Hard- ness, water, unfltrd mg/L as CaCO3 (00900)		water, fltrd, mg/L	sium, water, fltrd, mg/L	Sodium adsorp- tion ratio		
JUN 2003 18	0800	.17	6.5	98	14.0	10.0	31	9.53	1.70	1.32	.1	
JUL 22	0945	.05	5.9	107	18.0	12.0	34	10.5	1.99			
AUG 26	0840	.03	6.8	111			41	13.1	2.08			
SEP					12.0	12.0						
25	1130	.01	6.2	126	18.0	7.5	43	13.0	2.50			
Date	Sodium, water, fltrd, mg/L (00930)	water, lab, fltrd, mg/L as mg/L CaCO3		Fluoride, water fltrd mg/L (00950)	Silica, , water, , fltrd, mg/L	water, fltrd, mg/L	tuents mg/L	Residue water, fltrd,	Residue water, fltrd, tons/d	water, fltrd, ug/L	-able, ug/L	
JUN 2003 18 JUL	1.90	4	.46	. 2	24.2	32.5	76	.10	.03	61	189	
22												
AUG 26												
SEP 25												
Dat		Anti- mony, water, fltrd, ug/L (01095)	Anti- mony, water, unfltrd ug/L (01097)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)	Cadmium water, fltrd, ug/L (01025)	Cadmium water, unfltrd ug/L (01027)		recover -able, ug/L	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	
	2003	1.81	1.9	17.6	40	8.57	8.69	<.8	<.8	27.7	33.1	
JUL 22	2	16.3		28	8.87	8.59	8.59		27.1	29.7		
AUG 26	5	19		19.3	24	8.95	8.39			34.2	32.6	
SEP	5			14.4	16	9.02	8.95			32.2	30.0	
25)			14.4	16	9.02	8.95 Mangan-			32.2	30.0	
г	Date	Iron, water, fltrd, ug/L (01046)	Iron, water, unfltrd recover -able, ug/L (01045)	Lead, water, fltrd, ug/L (01049)	Lead, water, unfltrd recover -able, ug/L (01051)	Mangan- ese, water, fltrd, ug/L (01056)	ese, water, unfltrd	Mercury water, fltrd, ug/L (71890)	Mercury water, unfltrd recover -able, ug/L (71900)	Nickel, water, fltrd, ug/L (01065)	Nickel, water, unfltrd recover -able, ug/L (01067)	
	JN 2003	177	110	1 52	0 50	411	402	- 02	- 02	2 07	2 00	
JU		17	110	1.53	8.59			<.02	<.02	2.97	2.88	
AU				1.89	7.06							
SE				3.04	7.17							
	25		2.		2.92							

462838112143901 POISON CREEK AT MOUTH, NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	Silver, water, fltrd, ug/L (01075)	Silver, water, unfltrd recover -able, ug/L (01077)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)
JUN 2003 18 JUL	<.3	.33	1080	1150	73	3	<.01
22			1140	1160	67	1	<.01
AUG 26 SEP			1300	1240	62	2	<.01
25			1430	1370	38	2	<.01

462853112144101 TENMILE CREEK ABOVE CITY DIVERSION, NEAR RIMINI, MT

 $LOCATION.--Lat\ 46^{\circ}28'53", long\ 112^{\circ}14'10"\ (NAD\ 27), in\ NW^{1}/_{4}\ NW^{1}/_{4}\ sec.\ 4\ , T.\ 8\ N., R.\ 5\ W., Lewis\ and\ Clark\ County,\ Hydrologic\ Unit\ 10030101,\ about\ 0.25\ mile\ upstream\ from\ city\ diversion,\ about\ 100\ feet\ west\ of\ Rimini\ road,\ and\ 0.125\ mi\ south\ of\ Rimini.$ DRAINAGE AREA.--15.2 mi².

PERIOD OF RECORD.--May 1999 to current year. GAGE--None. Elevation at site is 5,350 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Dat	te	Tim	e d	dis- charge, cfs	pH, water, unfltrd field, std units (00400)	Specif conduc- tance wat un uS/cm 25 deg (00095	Ten fat at Cde	ure, air, eg C	Tempe atur wate deg (0001	r- e, u r, π	Hard- ness, water, unfltrd mg/L as CaCO3 00900)	Calcium water, fltrd, mg/L (00915)	wa fl m	nes- um, ter, trd, g/L 925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)	
17	2003	114	5	22	7.4	44	20	0.0	11.0		15	4.53		960	.96	. 2	
JUL 22.	2	100	0	9.0	7.0	41	18	3.0	10.5		14	4.20		921			
	5	093	0	1.4	7.3	75	12	2.5	11.5		33	10.3	1.	75			
SEP 29	9	085	0	1.1	7.6	82	5	5.0	5.0		32	9.34	2.	07			
Dat	te	wa fl m	ium, ter, trd, g/L 930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor ide, water fltrd mg/L (00940	id , wate , flt: mg	e, S er, rd, /L	Gilica, water, fltrd, mg/L 00955)	wa fl m	fate ter, trd, g/L 945)	Residue water fltrd sum oconsti- tuents mg/L (70301	, Resid f wate f fltr tons acre-	r, R d, / ft	esidue water, fltrd, tons/d 70302)	Alum- inum, water fltrd ug/L (01106	, recove , -able ug/l	r, rd er e, L
	2003	1.	66	11	.35	<	2	13.9	7	.1	37	.05		2.14	85	171	
JUL 22	2					_	_										
AUG 26	5					_	_										
SEP 29	9					_	_										
		Date		Anti- mony, water, fltrd, ug/L (01095)	Anti- mony, water unfltr ug/L (01097	d flt: ug	er, rd, ι /L	Arsenic water unfltrd ug/L 01002)	wa fl u	mium ter, trd, g/L 025)	Cadmium water unfltro ug/L (01027	, wate d fltr ug/	, C r, d, L	opper, water, fltrd, ug/L 01040)	Copper water unfltr recove -able ug/L (01042	d r	
		JUN 2003 17 JUL 22 AUG 26		E.17	<.6	2.	8	4		54	.57	<.8		4.1	4.6		
						4.	5	7		64	.71			4.8	5.1		
						6.	3	8	1.	67	1.64			3.1	3.4		
		SEP 29				6.	0	10	1.	95	2.00			2.7	2.7		
	Dat		Iror wate fltr ug/ (0104	er, reco rd, -ab 'L ug	er, trd Le ver wa le, fl /L u	ad, unter, retrd, ref	Lead, water, nfltro ecover -able, ug/L	d es wate flt: ug	an- e, er, rd,	Manga ese wate unflt recov -abl ug/	er, erd Merc er wat e, fli	w cury un ter, re trd, - g/L	rcury ater, fltrd cover able, ug/L 1900)	Nicke wate flt: ug,	wa el, unf er, rec rd, -a /L u	kel, ter, ltrd over ble, g/L 067)	
		2003	80) 19	0	76	1.89	20.	5	25	<	.02 E	.01	. 66	б	64	
JUL 22 AUG 26 SEP						99	3.04										
						77	1.77	_									
		9				33	1.12	_	_						_		

462853112144101 TENMILE CREEK ABOVE CITY DIVERSION, NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	Silver, water, fltrd, ug/L (01075)	Silver, water, unfltrd recover -able, ug/L (01077)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)	
JUN 2003 17 JUL	<.3	<.16	102	105	84	3	.18	
22 AUG 26 SEP			116 444	146 370	87 94	4 2	.10	
29			472	471	75	2	.01	

462758112123001 BEAVER CREEK TRIBUTARY NO. 2 NEAR RIMINI, MT

LOCATION.--Lat $46^{\circ}27'58''$, long $112^{\circ}12'30''$ (NAD 27), in $SW^{1}/_{4}$ $SE^{1}/_{4}$ sec. 3, T. 8 N., R. 5 W., Lewis and Clark County, Hydrologic Unit 10030101, about 40 ft upstream from inlet structure to Banner Creek flume, about 100 ft. upstream from Banner Creek flume, and about 2.5 mi southwest of Rimini.

DRAINAGE AREA.--0.67 mi².

PERIOD OF RECORD.--April 2000 to current year. GAGE--None. Elevation at site is 6,330 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	ature, water, deg C	unfltrd mg/L as CaCO3	Calcium water, fltrd, mg/L (00915)		Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)
JUN 2003											
18 JUL	1000	.82	7.3	64	22.0	7.0	18	5.63	.953	1.34	. 2
22 AUG	1300	.20	7.6	60	27.0	10.5	19	6.04	1.03		
25 SEP	1330	.12	7.3	62	28.0	12.0	20	6.32	1.04		
25	1330	.14	7.2	64	24.5	6.5	21	6.61	1.12		
Date	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d (70302)	water, fltrd,	Alum- inum, water, unfltrd recover -able, ug/L (01105)
JUN 2003 18	2.17	12	. 27	<.2	16.5	13.0	48	.06	.11	10	42
JUL 22											
AUG 25											
SEP 25											
Date	Anti- mony, water, fltrd, ug/L (01095)	Anti- mony, water, unfltrd ug/L (01097)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)	Cadmium water, fltrd, ug/L (01025)	Cadmium water, unfltrd ug/L (01027)	Chrom- ium, water, fltrd, ug/L (01030)	Chrom- ium, water, unfltrd recover -able, ug/L (01034)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	Iron, water, fltrd, ug/L (01046)
JUN 2003 18	<.30	<.6	5.1	9	3.46	3.56	<.8	<.8	11.2	12.5	11
JUL 22			7.3	8	2.22	2.11			6.9	7.2	
AUG 25			7.8	9	2.23	2.20			7.7	9.0	
SEP											
25			6.5	8	2.01	1.96			6.4	5.9	
	Date	Iron, water, unfltrd recover -able, ug/L (01045)	Lead, water, fltrd, ug/L (01049)	Lead, water, unfltrd recover -able, ug/L (01051)	fltrd, ug/L	recover -able, ug/L	Mercury water, fltrd, ug/L (71890)	recover -able, ug/L	water, fltrd, ug/L	recover -able, ug/L	
Ċ	JUN 2003	70	.32	2 27	6 7	٥	<.02	- 02	E C	ΕO	
Ċ	18	70		2.27	6.7	8		<.02	.56	.50	
1	22 AUG		.18	.65							
5	25 SEP		.21	1.40							
	25		.20	.18							

462758112123001 BEAVER CREEK TRIBUTARY NO. 2 NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	Silver, water, fltrd, ug/L (01075)	Silver, water, unfltrd recover -able, ug/L (01077)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)	
JUN 2003 18 JUL	<.3	<.16	570	574	75	1	<.01	
22			288	324	67	2	<.01	
AUG 25 SEP			349	324	50	2	<.01	
25			337	322	83	1	<.01	

462922112145401 TENMILE CREEK BELOW SPRING CREEK, AT RIMINI, MT

LOCATION.--Lat $46^{\circ}29'22''$, long $112^{\circ}14'54''$ (NAD 27), in NW $^{1}/_{4}$ SW $^{1}/_{4}$ sec. 33, T. 8 N., R. 5 W., Lewis and Clark County, Hydrologic Unit 10030101, at bridge crossing on road to private residence in Rimini.

DRAINAGE AREA.--22.8 mi².

PERIOD OF RECORD.--May 1997 to current year. GAGE--None. Elevation at site is 5,220 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)
JUN 2003	1000	0.0		45	01 0	11.0	1.0	4 85	1 06	0.5	
17 JUL	1230	28	7.5	47	21.0	11.0	16	4.75	1.06	.95	. 2
22 AUG	1130	.10	7.0	116	22.0	18.5	39	10.6	2.98		
26 SEP	1015	.08	6.6	225	20.0	14.0	84	22.8	6.54		
29	0940	.11	6.5	458	6.5	4.5	110	29.8	9.57		
Date	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d (70302)	Alum- inum, water, fltrd, ug/L (01106)	Alum- inum, water, unfltrd recover -able, ug/L (01105)
JUN 2003 17	1.75	12	.38	<.2	15.2	8.6	40	.05	2.99	79	188
JUL 22											
AUG 26											
SEP 29											
Date	Anti- mony, water, fltrd, ug/L (01095)	Anti- mony, water, unfltrd ug/L (01097)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)	Cadmium water, fltrd, ug/L (01025)	Cadmium water, unfltrd ug/L (01027)	Chrom- ium, water, fltrd, ug/L (01030)	Chrom- ium, water, unfltrd recover -able, ug/L (01034)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	Iron, water, fltrd, ug/L (01046)
JUN 2003 17	E.20	<.6	5.0	8	.85	.90	<.8	<.8	5.8	6.7	107
JUL 22	1.20		11.3	13	5.09	4.99			7.4	8.7	
AUG											
26 SEP			44.8	77	20.1	18.8			12.5	16.0	
29			233	425	23.2	22.9			8.8	14.5	
	Date	Iron, water, unfltrd recover -able, ug/L (01045)	water fltrd ug/L	, -able, ug/L	d ese, water, fltrd, ug/L	unfltrd recover -able, ug/L	Mercury water, fltrd, ug/L	recover -able ug/L	d Nickel, water, fltrd, ug/L	recover -able ug/L	, 1 2
	JUN 2003 17	260	.97	3.20	31.3	40	<.02	E.01	. 69	.73	
	JUL 22		.94	3.41							
	AUG 26		4.81	12.0							
	SEP 29		.20	7.32							

E--Estimated.

462922112145401 TENMILE CREEK BELOW SPRING CREEK, AT RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	Silver, water, fltrd, ug/L (01075)	Silver, water, unfltrd recover -able, ug/L (01077)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)	
JUN 2003 17 JUL	<.3	<.16	132	142	46	8	.60	
22 AUG			597	689	12	33	.01	
26 SEP			2810	2700	97	4	<.01	
29			3800	3810	98	13	<.01	

E--Estimated.

462932112145801 MOORES SPRING CREEK AT MOUTH, NEAR RIMINI, MT

 $LOCATION.--Lat\ 46^{\circ}29'32'', long\ 112^{\circ}14'58''\ (NAD\ 27), in\ NW^{1}/_{4}\ NW^{1}/_{4}\ SW^{1}/_{4}\ sec.\ 33\ , T.\ 8\ N., R.\ 5\ W., Lewis\ and\ Clark\ County,\ Hydrologic\ Unit\ 10030101,\ at\ culvert\ crossing\ on\ Rimini.$

DRAINAGE AREA.--0.6 mi².

PERIOD OF RECORD .-- May 2000 to current year.

GAGE--None. Elevation at site is 5,180 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)		Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)
JUN 2003											
18 JUL	0845	.09	7.9	210	14.0	11.0	89	24.4	6.86	2.06	. 2
22 AUG	1200	.01	8.1	257	24.0	14.5	110	30.8	8.81		
26 SEP	1045	.01	7.6	297	23.0	13.0	130	34.5	11.2		
25	1200	.01	8.1	276	24.0	9.5	130	35.3	10.8		
Date	Sodium, water, fltrd, mg/L (00930)	lab, mg/L as CaCO3	Chloride, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d (70302)	Alum- inum, water, fltrd, ug/L (01106)	Alum- inum, water, unfltrd recover -able, ug/L (01105)
JUN 2003 18	5.01	49	.93	<.2	24.4	47.4	141	.19	.03	50	109
JUL											
22 AUG											
26 SEP											
25											
Date	Anti- mony, water, fltrd, ug/L (01095)	Anti- mony, water, unfltrd ug/L (01097)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)	water,	Cadmium water, unfltrd ug/L (01027)	Chrom- ium, water, fltrd, ug/L (01030)	Chromium, water, unfltrd recover -able, ug/L (01034)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	Iron, water, fltrd, ug/L (01046)
JUN 2003	mony, water, fltrd, ug/L (01095)	mony, water, unfltrd ug/L (01097)	water, fltrd, ug/L (01000)	water unfltrd ug/L (01002)	water, fltrd, ug/L (01025)	water, unfltrd ug/L (01027)	ium, water, fltrd, ug/L (01030)	ium, water, unfltrd recover -able, ug/L (01034)	water, fltrd, ug/L (01040)	water, unfltrd recover -able, ug/L (01042)	water, fltrd, ug/L (01046)
JUN 2003 18 JUL	mony, water, fltrd, ug/L (01095)	mony, water, unfltrd ug/L (01097)	water, fltrd, ug/L (01000)	water unfltrd ug/L (01002)	water, fltrd, ug/L (01025)	water, unfltrd ug/L (01027)	ium, water, fltrd, ug/L (01030)	ium, water, unfltrd recover -able, ug/L (01034)	water, fltrd, ug/L (01040)	water, unfltrd recover -able, ug/L (01042)	water, fltrd, ug/L (01046)
JUN 2003 18 JUL 22 AUG	mony, water, fltrd, ug/L (01095)	mony, water, unfltrd ug/L (01097)	water, fltrd, ug/L (01000) 60.7 85.7	water unfltrd ug/L (01002) 63 90	water, fltrd, ug/L (01025) 5.15 4.00	water, unfltrd ug/L (01027) 5.45 3.81	ium, water, fltrd, ug/L (01030)	ium, water, unfltrd recover -able, ug/L (01034)	water, fltrd, ug/L (01040) 8.3 6.3	water, unfltrd recover -able, ug/L (01042) 9.3 6.1	water, fltrd, ug/L (01046)
JUN 2003 18 JUL 22 AUG 26 SEP	mony, water, fltrd, ug/L (01095)	mony, water, unfltrd ug/L (01097)	water, fltrd, ug/L (01000) 60.7 85.7 84.5	water unfltrd ug/L (01002) 63 90 79	water, fltrd, ug/L (01025) 5.15 4.00 4.75	water, unfltrd ug/L (01027) 5.45 3.81 4.74	ium, water, fltrd, ug/L (01030)	ium, water, unfltrd recover -able, ug/L (01034) E.5	water, fltrd, ug/L (01040) 8.3 6.3 5.5	water, unfltrd recover -able, ug/L (01042) 9.3 6.1 5.7	water, fltrd, ug/L (01046)
JUN 2003 18 JUL 22 AUG 26	mony, water, fltrd, ug/L (01095)	mony, water, unfltrd ug/L (01097)	water, fltrd, ug/L (01000) 60.7 85.7	water unfltrd ug/L (01002) 63 90	water, fltrd, ug/L (01025) 5.15 4.00	water, unfltrd ug/L (01027) 5.45 3.81	ium, water, fltrd, ug/L (01030)	ium, water, unfltrd recover -able, ug/L (01034)	water, fltrd, ug/L (01040) 8.3 6.3	water, unfltrd recover -able, ug/L (01042) 9.3 6.1	water, fltrd, ug/L (01046)
JUN 2003 18 JUL 22 AUG 26 SEP	mony, water, fltrd, ug/L (01095)	mony, water, unfltrd ug/L (01097)	water, fltrd, ug/L (01000) 60.7 85.7 84.5 81.4	water unfiltrd ug/L (01002) 63 90 79 82 Lead, water, unfiltrd recover, -able, ug/L	water, fltrd, ug/L (01025) 5.15 4.00 4.75 4.47 Mangandese, water, fltrd, ug/L	water, unfiltrd ug/L (01027) 5.45 3.81 4.74 4.45 Manganese, water, unfiltrd recover, able,	ium, water, fltrd, ug/L (01030) <.8 d Mercury water, fltrd, ug/L (01030)	ium, water, unfltrd recover -able, ug/L (01034) E.5 Mercury water, unfltrd recover, -able, ug/L	water, fltrd, ug/L (01040) 8.3 6.3 5.5 5.4 Nickel, r water, fltrd, ug/L	water, unfltrd recover -able, ug/L (01042) 9.3 6.1 5.7 5.1 Nickel water unfltrd recover	water, fllrd, ug/L (01046) 21 dr,
JUN 2003 18 JUL 22 AUG 26 SEP	mony, water, fltrd, ug/L (01095) .91	mony, water, unfltrd ug/L (01097) 1.0 Iron, water, unfltrd recover -able, ug/L	water, fltrd, ug/L (01000) 60.7 85.7 84.5 81.4	water unfiltrd ug/L (01002) 63 90 79 82 Lead, water, unfiltrd recover, -able, ug/L	water, fltrd, ug/L (01025) 5.15 4.00 4.75 4.47 Mangandese, water, fltrd, ug/L	water, unfiltrd ug/L (01027) 5.45 3.81 4.74 4.45 Manganese, water, unfiltrd recover, -able, ug/L	ium, water, fltrd, ug/L (01030) <.8 d Mercury water, fltrd, ug/L (01030)	ium, water, unfltrd recover -able, ug/L (01034) E.5 Mercury water, unfltrd recover, -able, ug/L	water, fltrd, ug/L (01040) 8.3 6.3 5.5 5.4 Nickel, r water, fltrd, ug/L	water, unfltrd recover -able, ug/L (01042) 9.3 6.1 5.7 5.1 Nickel water unfltr, recove: -able	water, flrd, ug/L (01046) 21 ,, dd r
JUN 2003 18 JUL 22 AUG 26 SEP	mony, water, fltrd, ug/L (01095) .91	mony, water, unfltrd ug/L (01097) 1.0 Iron, water unfltrd recover able ug/L (01045)	water, fltrd, ug/L (01000) 60.7 85.7 84.5 81.4 d. Lead, water fltrd ug/L (01049	water unfltrd ug/L (01002) 63 90 79 82 Lead, water, unfltrc recover, -able, ug/L) (01051)	water, fltrd, ug/L (01025) 5.15 4.00 4.75 4.47 Manganese, water, fltrd, ug/L (01056)	water, unfltrd ug/L (01027) 5.45 3.81 4.74 4.45 Mangan- ese, unfltrd recover, able, ug/L (01055)	ium, water, fltrd, ug/L (01030) <.8 d Mercury water, fltrd, ug/L (71890)	ium, water, unfltrd recover -able, ug/L (01034) E.5 Mercury water, unfltrd recover -able, ug/L (71900)	water, fltrd, ug/L (01040) 8.3 6.3 5.5 5.4 Nickel, r water, fltrd, ug/L (01065)	water, unfltrd recover -able, ug/L (01042) 9.3 6.1 5.7 5.1 Nickel water unfltr recover -able ug/L (01067)	water, flrd, ug/L (01046) 21 ,, dd r
JUN 2003 18 JUL 22 AUG 26 SEP	mony, water, fltrd, ug/L (01095) .91	mony, water, unfltrd ug/L (01097) 1.0 Iron, water unfltrr recover -able ug/L (01045)	water, fltrd, ug/L (01000) 60.7 85.7 84.5 81.4 Lead, water fltrd ug/L (01049	water unfltrd ug/L (01002) 63 90 79 82 Lead, water unfltrd recover , -able, ug/L) (01051)	water, fltrd, ug/L (01025) 5.15 4.00 4.75 4.47 Manganese, water fltrd, ug/L (01056) 200	water, unfltrd ug/L (01027) 5.45 3.81 4.74 4.45 Mangan- ese, water, unfltrd recover, -able, ug/L (01055)	ium, water, fltrd, ug/L (01030) <.8 d Mercury water, fltrd, ug/L (71890) <.02	ium, water, unfltrd recover -able, ug/L (01034) E.5 Mercury water, unfltrc recover -able, ug/L (71900) <.02	water, fltrd, ug/L (01040) 8.3 6.3 5.5 5.4 Nickel, water, fltrd, ug/L (01065) 2.66	water, unfltrd recover -able, ug/L (01042) 9.3 6.1 5.7 5.1 Nickel water unfltro recover -able ug/L (01067	water, flrd, ug/L (01046) 21 ,, dd r
JUN 2003 18 JUL 22 AUG 26 SEP	mony, water, fltrd, ug/L (01095) .91	mony, water, unfltrd ug/L (01097) 1.0 Iron, water, unfltrd ug/L (01045)	water, fltrd, ug/L (01000) 60.7 85.7 84.5 81.4 A Lead, water fltrd ug/L (01049 .22 E.04	water unfltrd ug/L (01002) 63 90 79 82 Lead, water, unfltr recover, -able, ug/L) (01051)	water, fltrd, ug/L (01025) 5.15 4.00 4.75 4.47 Manganese, water, fltrd, ug/L (01056) 200	water, unfltrd ug/L (01027) 5.45 3.81 4.74 4.45 Mangan- ese, water, unfltrd recover, -able, ug/L (01055)	ium, water, fltrd, ug/L (01030) <.8 Mercury water, fltrd, ug/L (71890) <.02	ium, water, unfltrd recover -able, ug/L (01034) E.5 Mercury water, unfltrd recover -able, ug/L (71900) <.02	water, fltrd, ug/L (01040) 8.3 6.3 5.5 5.4 Nickel, water, fltrd, ug/L (01065) 2.66	water, unfltrd recover -able, ug/L (01042) 9.3 6.1 5.7 5.1 Nickel water unfltr, recover -able ug/L (01067	water, flrd, ug/L (01046) 21 ,, dd r

E--Estimated.

462932112145801 MOORES SPRING CREEK AT MOUTH, NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	Silver, water, fltrd, ug/L (01075)	Silver, water, unfltrd recover -able, ug/L (01077)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)
JUN 2003 18 JUL 22	<.3	<.16	676 455	706 502	83 67	3	<.01
AUG 26 SEP			674	649	67	1	<.01
25			721	696	75	1	<.01

462917112165601 MINNEHAHA CREEK BELOW ARMSTRONG MINE, NEAR RIMINI, MT

 $LOCATION.--Lat\ 46^{\circ}29'17'', long\ 112^{\circ}16'56''\ (NAD\ 27), in\ SW^{1}/_{4}\ SW^{1}/_{4}\ NW^{1}/_{4}\ sec.\ 31, T.\ 9\ N., R.\ 5\ W., Lewis\ and\ Clark\ County,\ Hydrologic\ Unit\ 10030101,\ 0.6\ mi\ downstream\ from\ the\ Armstrong\ mine\ road\ and\ 1.4\ mi\ southwest\ of\ Rimini.$

DRAINAGE AREA.--1.75 mi².

PERIOD OF RECORD.--April 1998 to current year. GAGE--None. Elevation at site is 5,650 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	unfltr field std units	d tan l, wat uS/ 25 d	luc- lce, Tem unf at cm a legC de	per- ure, ir, g C 020)	Temper ature water deg (ne; r- wa: e, unf: r, mg/l	rd- ss, ter, ltrd L as CO3	Calcium water fltrd mg/L (00915	, wate , flt: mg,	m, sin er, wa rd, fl /L m	tas- um, ter, trd, g/L	Sodiu adsorp tion ratio
JUN 2003 17	0950	2.7	7.2	58	2.0	.0	7.5	1	7	4.68	1.2	5 1.:	16	. 3
JUL 23	0930	.51	7.4	60			10.0	1'		4.60	1.2			
AUG 25	1040	.35	7.2	58		. 5	12.0	1'		4.82	1.2			
SEP 29	1130	.31	7.2	65		.0	5.0	2		5.61	1.5			
27	1130	.51	7.2	03	,	. 0	3.0	2	,	3.01	1.5	1		
Date	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor d ide, water fltro mg/I	id , wat l, flt , mg	er, wa rd, fl /L m	ica, ter, trd, g/L 955)	Sulfat water fltro mg/I (00945	wai fli te sum r, cons l, tu	idue ter, trd, of sti- ents g/L 301)	Residu water fltrd tons/ acre-f: (70303	, Resid , wate flt: t tons	due in er, wa rd, fl s/d u	um- um, cer, crd, g/L 106)	Aluminum, water unfltr recoverable ug/I (01105
JUN 2003 17 JUL	2.64	11	.54	<.	2 25	. 4	12.9	!	56	.08	. 40	0 :	31	163
23 AUG				-	-							-		
25 SEP				-	-									
29				-	-							-		
Date JUN 20 17	03	mony, water, fltrd, u ug/L	Anti- mony, water, mfltrd ug/L 01097)	Arsenic water, fltrd, ug/L (01000)	unfltr ug/L	wa d fl u) (01	dmium ater, ltrd, ug/L 1025)	Cadmium water unfltrug/L (01027	n : , wa d f: , (0:	ater, : ltrd, ug/L	Chrom- ium, water, unfltrd recover -able, ug/L (01034)	Copper water fltrd ug/L (01040	wa , uni , red , -a , (01	oper, ater, fltrd cover able, ug/L 1042)
JUL 23				4.9	5	3.	. 05	2.99				9.2	9	9.7
AUG 25				5.3	6	3.	.18	3.17				7.8	8	3.1
SEP 29				4.6	5	3.	. 26	3.34				6.2		7.0
Date	wa fl u	wa on, unf ter, rec trd, -a g/L u	cover wable, f ng/L	ater, ltrd, ug/L	Lead, water, unfltrd recover -able, ug/L (01051)	Manga ese wate fltr ug/ (0105	an- we are recorded to the contract of the con	angan- ese, water, nfltrd ecover -able, ug/L 01055)	Mercu wate flt: ug, (7189	ury uner, rend,	ercury water, nfltrd ecover -able, ug/L 71900)	Nickel, water, fltrd, ug/L (01065)	unfl reco -ak ug	ter, ltrd
JUN 20 17		27	80	.92	2.30	32.9	9	36	<.(02	<.02	1.54	1.5	50
JUL 23				.14	.59		-			-				
AUG 25				.17	.37		_		_	_			-	
SEP 29				.14	.35		-			-				

462917112165601 MINNEHAHA CREEK BELOW ARMSTRONG MINE, NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	Silver, water, fltrd, ug/L (01075)	Silver, water, unfltrd recover -able, ug/L (01077)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)	
JUN 2003 17 JUL	<.3	<.16	588	592	75	2	.01	
23 AUG			378	451	75	1	<.01	
25			511	489	71	1	<.01	
SEP 29			550	548	50	14	.01	

462918112170801 BEATTRICE MINE TRIBUTARY AT MOUTH, NEAR RIMINI, MT

LOCATION.--Lat 46°29'18", long 112°17'08" (NAD 27), in SW¹/₄ SW¹/₄ sec. 31, T. 9 N., R. 5 W., Lewis and Clark County, Hydrologic Unit 10030101, 400 ft upstream from old logging road crossing, about 1,000 ft upstream from confluence with Minnehaha Creek, and 1.5 mi southwest of Rimini.

DRAINAGE AREA.--0.24 mi².

PERIOD OF RECORD.--May 2000 to current year.

GAGE--None. Elevation at site is 5,660 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)
JUN 2003		27	7	0.0	20.0	0.0	0.1	6 57	1 16	1 50	2
17 JUL	1020	. 27	7.5	80	20.0	9.0	21	6.57	1.16	1.50	. 3
23 AUG	0900	.03	7.6	113	28.0	12.0	36	11.0	2.08		
25 SEP	1000	.02	7.2	109	17.0	12.0	40	12.8	2.04		
29	1100	.02	7.1	102	7.0	6.0	33	9.97	1.86		
Date	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chloride, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d (70302)	Alum- inum, water, fltrd, ug/L (01106)	Alum- inum, water, unfltrd recover -able, ug/L (01105)
JUN 2003 17	3.25	13	.40	<.2	34.0	15.3	70	.10	.05	27	61
JUL 23											
AUG 25											
SEP 29											
Date	Anti- mony, water, fltrd, ug/L (01095)	Anti- mony, water, unfltrd ug/L (01097)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)	Cadmium water, fltrd, ug/L (01025)	Cadmium water, unfltrd ug/L (01027)	Chrom- ium, water, fltrd, ug/L (01030)	Chrom- ium, water, unfltrd recover -able, ug/L (01034)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	Iron, water, fltrd, ug/L (01046)
JUN 2003	mony, water, fltrd, ug/L (01095)	mony, water, unfltrd ug/L (01097)	water, fltrd, ug/L (01000)	water unfltrd ug/L (01002)	water, fltrd, ug/L (01025)	water, unfltrd ug/L (01027)	ium, water, fltrd, ug/L (01030)	ium, water, unfltrd recover -able, ug/L (01034)	water, fltrd, ug/L (01040)	water, unfltrd recover -able, ug/L (01042)	water, fltrd, ug/L (01046)
JUN 2003 17 JUL	mony, water, fltrd, ug/L	mony, water, unfltrd ug/L	water, fltrd, ug/L	water unfltrd ug/L	water, fltrd, ug/L (01025)	water, unfltrd ug/L	ium, water, fltrd, ug/L	ium, water, unfltrd recover -able, ug/L	water, fltrd, ug/L	water, unfltrd recover -able, ug/L	water, fltrd, ug/L
JUN 2003 17	mony, water, fltrd, ug/L (01095)	mony, water, unfltrd ug/L (01097)	water, fltrd, ug/L (01000)	water unfltrd ug/L (01002)	water, fltrd, ug/L (01025)	water, unfltrd ug/L (01027)	ium, water, fltrd, ug/L (01030)	ium, water, unfltrd recover -able, ug/L (01034)	water, fltrd, ug/L (01040)	water, unfltrd recover -able, ug/L (01042)	water, fltrd, ug/L (01046)
JUN 2003 17 JUL 23	mony, water, fltrd, ug/L (01095)	mony, water, unfltrd ug/L (01097)	water, fltrd, ug/L (01000)	water unfltrd ug/L (01002)	water, fltrd, ug/L (01025)	water, unfltrd ug/L (01027)	ium, water, fltrd, ug/L (01030)	ium, water, unfltrd recover -able, ug/L (01034)	water, fltrd, ug/L (01040)	water, unfltrd recover -able, ug/L (01042)	water, fltrd, ug/L (01046)
JUN 2003 17 JUL 23 AUG 25	mony, water, fltrd, ug/L (01095)	mony, water, unfltrd ug/L (01097)	water, fltrd, ug/L (01000) .8 .6	water unfltrd ug/L (01002) <2 <2	water, fltrd, ug/L (01025) .04	water, unfltrd ug/L (01027) .04	ium, water, fltrd, ug/L (01030)	ium, water, unfltrd recover -able, ug/L (01034)	water, fltrd, ug/L (01040) 11.3 7.4	water, unfltrd recover -able, ug/L (01042) 11.9 7.5	water, fltrd, ug/L (01046)
JUN 2003 17 JUL 23 AUG 25 SEP	mony, water, fltrd, ug/L (01095)	mony, water, unfltrd ug/L (01097)	water, fltrd, ug/L (01000) .8 .6	water unfltrd ug/L (01002) <2 <2 <2 <2 Lead, water, unfltrd recover -able, ug/L	water, fltrd, ug/L (01025) .04 .07	water, unfltrd ug/L (01027) .04 .06	ium, water, fltrd, ug/L (01030)	ium, water, unfltrd recover -able, ug/L (01034) <.8 Mercury water,	water, fltrd, ug/L (01040) 11.3 7.4 7.9	water, unfiltrd recover -able, ug/L (01042) 11.9 7.5 7.9	water, fltrd, ug/L (01046) 20
JUN 2003 17 JUL 23 AUG 25 SEP	mony, water, fltrd, ug/L (01095) <.30 Date JUN 2003	mony, water, unfiltrd ug/L (01097) <.6 Iron, water, unfiltrd recover able, ug/L (01045)	water, fltrd, ug/L (01000) .8 .6 .8 .6	water unfltrd ug/L (01002) <2 <2 <2 <2 Lead, water, unfltrd recover -able, ug/L (01051)	water, fltrd, ug/L (01025) .04 .07 .06 Mangan- ese, water, fltrd, ug/L (01056)	water, unfltrd ug/L (01027) .04 .06 .08 .05 Mangan- ese, water, unfltrd recover -able, ug/L (01055)	ium, water, fltrd, ug/L (01030) <.8 Mercury water, fltrd, ug/L (71890)	ium, water, unfltrd recover -able, ug/L (01034) <.8 Mercury water, unfltrd recover -able, ug/L (71900)	water, fltrd, ug/L (01040) 11.3 7.4 7.9 6.8 Nickel, water, fltrd, ug/L (01065)	water, unfiltrd recover -able, ug/L (01042) 11.9 7.5 7.9 6.9 Nickel, water, unfiltrd recover -able, ug/L (01067)	water, fltrd, ug/L (01046) 20
JUN 2003 17 JUL 23 AUG 25 SEP	mony, water, fltrd, ug/L (01095) <.30 Date JUN 2003 17 JUL	mony, water, unfiltrd ug/L (01097) <.6 Iron, water, unfiltrd recover -able, ug/L (01045)	water, fltrd, ug/L (01000) .8 .6 .8 .6	water unfltrd ug/L (01002) <2 <2 <2 <2 <2 Lead, water, unfltrd recover -able, ug/L (01051) .27	water, fltrd, ug/L (01025) .04 .07 .06 Mangan- ese, water, fltrd, ug/L (01056)	water, unfiltrd ug/L (01027) .04 .06 .08 .05 Mangan- ese, water, unfiltrd recover -able, ug/L (01055)	ium, water, fltrd, ug/L (01030) <.8 Mercury water, fltrd, ug/L (71890) <.02	ium, water, unfltrd recover -able, ug/L (01034) <.8 Mercury water, unfltrd recover -able, ug/L (71900) <.02	water, fltrd, ug/L (01040) 11.3 7.4 7.9 6.8 Nickel, water, fltrd, ug/L (01065)	water, unfiltrd recover -able, ug/L (01042) 11.9 7.5 7.9 6.9 Nickel, water, unfiltrd recover -able, ug/L (01067)	water, fltrd, ug/L (01046) 20
JUN 2003 17 JUL 23 AUG 25 SEP	mony, water, fltrd, ug/L (01095) <.30 Date JUN 2003 17 JUL 23 AUG	mony, water, unfiltrd ug/L (01097) <.6	water, fltrd, ug/L (01000) .8 .6 .8 .6 Lead, water, fltrd, ug/L (01049) E.04 E.05	water unfltrd ug/L (01002) <2 <2 <2 <2 <2 Lead, water, unfltrd recover -able, ug/L (01051) .27 <.06	water, fltrd, ug/L (01025) .04 .07 .06 Mangan-ese, water, fltrd, ug/L (01056) .66	water, unfltrd ug/L (01027) .04 .06 .08 .05 Mangan- ese, water, unfltrd recover -able, ug/L (01055) 3	ium, water, fltrd, ug/L (01030) <.8 Mercury water, fltrd, ug/L (71890) <.02	ium, water, unfltrd recover -able, ug/L (01034) <.8 Mercury water, unfltrd recover -able, ug/L (71900) <.02	water, fltrd, ug/L (01040) 11.3 7.4 7.9 6.8 Nickel, water, fltrd, ug/L (01065) .34	water, unfiltrd recover -able, ug/L (01042) 11.9 7.5 7.9 6.9 Nickel, water, unfiltrd recover -able, ug/L (01067)	water, fltrd, ug/L (01046) 20
JUN 2003 17 JUL 23 AUG 25 SEP	mony, water, fltrd, ug/L (01095) <.30 Date JUN 2003 17 JUL 23	mony, water, unfiltrd ug/L (01097) <.6 Iron, water, unfiltrd recover -able, ug/L (01045)	water, fltrd, ug/L (01000) .8 .6 .8 .6	water unfitrd ug/L (01002) <2 <2 <2 <2 <2 Lead, water, unfitrd recover -able, ug/L (01051) .27	water, fltrd, ug/L (01025) .04 .07 .06 Mangan- ese, water, fltrd, ug/L (01056)	water, unfiltrd ug/L (01027) .04 .06 .08 .05 Mangan- ese, water, unfiltrd recover -able, ug/L (01055)	ium, water, fltrd, ug/L (01030) <.8 Mercury water, fltrd, ug/L (71890) <.02	ium, water, unfltrd recover -able, ug/L (01034) <.8 Mercury water, unfltrd recover -able, ug/L (71900) <.02	water, fltrd, ug/L (01040) 11.3 7.4 7.9 6.8 Nickel, water, fltrd, ug/L (01065)	water, unfiltrd recover -able, ug/L (01042) 11.9 7.5 7.9 6.9 Nickel, water, unfiltrd recover -able, ug/L (01067)	water, fltrd, ug/L (01046) 20

E--Estimated.

462918112170801 BEATTRICE MINE TRIBUTARY AT MOUTH, NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	Silver, water, fltrd, ug/L (01075)	Silver, water, unfltrd recover -able, ug/L (01077)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)	
JUN 2003 17 JUL	<.3	<.16	6	6	75	1	<.01	
23			7	10	67	1	<.01	
AUG 25 SEP			8	6	75	1	<.01	
29			7	6	57	1	<.01	

463023112153701 MINNEHAHA CREEK ABOVE CITY DIVERSION, NEAR RIMINI, MT

 $LOCATION.--Lat\ 46^{\circ}30'23", long\ 112^{\circ}15'37"\ (NAD\ 27), in\ NW^{1}/_{4}\ NW^{1}/_{4}\ SE^{1}/_{4}\ sec.\ 29, T.\ 9\ N., R.\ 5\ W., Lewis\ and\ Clark\ County,\ Hydrologic\ Unit\ 10030101,\ about\ 75\ feet\ upstream\ from\ city\ diversion\ structure,\ about\ 200\ feet\ upstream\ from\ mouth\ and\ about\ 3\ mi\ north\ of\ Rimini.$

DRAINAGE AREA.--5.35 mi².

PERIOD OF RECORD .-- April 1998 to current year.

GAGE--None. Elevation at site is 5,040 ft (NGVD 29).

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	dis- charge, cfs	water, ounfltrd field, water w	vat unf uS/cm 25 degC	ature, air, deg C	water, m	unfltrd mg/L as CaCO3	Calcium water, fltrd, mg/L	Magnes- ium, water, fltrd, mg/L (00925)	fltrd, mg/L	Sodium adsorp- tion ratio (00931)
JUN 2003 17	0855	4.9	7.5	61	14.0	8.5	19	5.47	1.29	1.21	.3
JUL											
23 AUG	1030	.31	7.5	66	28.5	13.5	22	6.15	1.53		
25 SEP	1130	.57	7.4		17.0	15.0	23	6.57	1.59		
29	1230	.41	7.5	76	11.0	5.0	26	7.33	1.84		
Date	Sodium water fltrd mg/L (00930	, lab, , mg/L as CaCO3	Chloride, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd,	Residue water, fltrd, tons/d	Alum- inum, water, fltrd, ug/L (01106)	Alum- inum, water, unfltrd recover -able, ug/L (01105)
JUN 2003	3.14	16	.30	<.2	25.1	9.3	56	.08	.74	35	163
JUL	3.14		.30		25.1	9.3		.00	. /4		103
23 AUG											
25 SEP											
29											
Date	Anti- mony, water fltrd ug/L (01095)	, unfltrd ug/L	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)	Cadmium water, fltrd, ug/L (01025)	Cadmium water, unfltrd ug/L (01027)	Chrom- ium, water, fltrd, ug/L (01030)	Chrom- ium, water, unfltrd recover -able, ug/L (01034)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	
JUN 2003	mony, water, fltrd, ug/L (01095)	mony, , water, , unfltrd ug/L) (01097)	water, fltrd, ug/L (01000)	water unfltrd ug/L (01002)	water, fltrd, ug/L (01025)	water, unfltrd ug/L (01027)	ium, water, fltrd, ug/L (01030)	ium, water, unfltrd recover -able, ug/L (01034)	water, fltrd, ug/L (01040)	water, unfltrd recover -able, ug/L (01042)	water, fltrd, ug/L (01046)
JUN 2003 17 JUL	mony, water fltrd ug/L	mony, , water, , unfltrd ug/L) (01097)	water, fltrd, ug/L (01000)	water unfltrd ug/L (01002)	water, fltrd, ug/L (01025)	water, unfltrd ug/L (01027)	ium, water, fltrd, ug/L (01030)	ium, water, unfltrd recover -able, ug/L (01034)	water, fltrd, ug/L (01040)	water, unfltrd recover -able, ug/L (01042)	water, fltrd, ug/L (01046)
JUN 2003 17 JUL 23 AUG	mony, water, fltrd, ug/L (01095)	mony, , water, , unfltrd ug/L) (01097)	water, fltrd, ug/L (01000) 2.6 3.2	water unfltrd ug/L (01002)	water, fltrd, ug/L (01025) 1.55	water, unfltrd ug/L (01027) 1.60 1.51	ium, water, fltrd, ug/L (01030)	ium, water, unfltrd recover -able, ug/L (01034)	water, fltrd, ug/L (01040) 7.8 5.0	water, unfltrd recover -able, ug/L (01042) 9.0 6.3	water, fltrd, ug/L (01046)
JUN 2003 17 JUL 23 AUG 25 SEP	mony, water, fltrd, ug/L (01095)	mony, , water, , unfltrd ug/L) (01097)	water, fltrd, ug/L (01000) 2.6 3.2 3.1	water unfltrd ug/L (01002)	water, fltrd, ug/L (01025) 1.55 1.36 1.45	water, unfltrd ug/L (01027) 1.60 1.51 1.41	ium, water, fltrd, ug/L (01030)	ium, water, unfltrd recover -able, ug/L (01034)	water, fltrd, ug/L (01040) 7.8 5.0 4.7	water, unfitrd recover -able, ug/L (01042) 9.0 6.3 4.8	water, fltrd, ug/L (01046)
JUN 2003 17 JUL 23 AUG 25	mony, water, fltrd, ug/L (01095)	mony, , water, , unfltrd ug/L) (01097)	water, fltrd, ug/L (01000) 2.6 3.2	water unfltrd ug/L (01002)	water, fltrd, ug/L (01025) 1.55	water, unfltrd ug/L (01027) 1.60 1.51	ium, water, fltrd, ug/L (01030)	ium, water, unfltrd recover -able, ug/L (01034)	water, fltrd, ug/L (01040) 7.8 5.0	water, unfltrd recover -able, ug/L (01042) 9.0 6.3	water, fltrd, ug/L (01046)
JUN 2003 17 JUL 23 AUG 25 SEP	mony, water fltrd ug/L (01095) <.30	mony, water, unfltrd ug/L)(01097) <.6 Iron wate: unflt: recovable ug/I (0104)	water, fltrd, ug/L (01000) 2.6 3.2 3.1 2.4 , r, rd Lead er water e, fltrc, t ug/L ug/L	water unfltrd (01002) 3 3 3 2 Lead water unfltr tr, recove	water, fltrd, ug/L (01025) 1.55 1.36 1.45 1.47 , Mangar ese, er water e, fltrc L ug/L	water, unfiltrd ug/L (01027) 1.60 1.51 1.41 1.46 Mangar ese, unfiltr crecove tr, recove di, -able	ium, water, fltrd, ug/L (01030) <.8 n- r, rd Mercur er water e, fltre L ug/L	ium, water, unfltrd recover -able, ug/L (01034) <.8 Mercu wate ry unflt r, recov d, -abl L ug/L	water, fltrd, ug/L (01040) 7.8 5.0 4.7 3.3 ry rr, rd Nickel er water e, fltrc L ug/L	water, unfiltrd recover -able, ug/L (01042) 9.0 6.3 4.8 8.1 Nicke wate: unfiltr, recov. d, -abl.	water, fltrd, ug/L (01046) 31 l, r, rd er e, L
JUN 2003 17 JUL 23 AUG 25 SEP	mony, water fltrd ug/L (01095	mony, water, unfltrd ug/L)(01097) <.6 Iron wate: unflt: recovable ug/I (0104)	water, fltrd, ug/L (01000) 2.6 3.2 3.1 2.4 , r, rd Lead er water e, fltrd, ug/L (01049)	water unfiltrd (01002) 3 3 3 2 Lead water unfiltr r, recove d, -able L ug/I	water, fltrd, ug/L (01025) 1.55 1.36 1.45 1.47 , Mangar ese water es fltrd water te, fltrd ug/L (01056)	water, unfltrd ug/L (01027) 1.60 1.51 1.41 1.46 Mangar ese ese unfltr r, recove d, -able L ug/L	ium, water, fltrd, ug/L (01030) <.8 n- , r, rd Mercur er water e, fltrd, ug/E (7189)	ium, water, unfltrd recover -able, ug/L (01034) <.8 Mercu wate ry unflt r, recov d, -abl L ug/ 0) (7190	water, fltrd, ug/L (01040) 7.8 5.0 4.7 3.3 ry rr, rd Nickel er water e, fltrd, ug/L (01065)	water, unfiltrd recover -able, ug/L (01042) 9.0 6.3 4.8 8.1 Nicke wate: unfiltr, recov. d, -abl.	water, fltrd, ug/L (01046) 31 l, r, rd ee, L 7)
JUN 2003 17 JUL 23 AUG 25 SEP	mony, water fltrd ug/L (01095) < .30 Date	mony, water, unfltrd ug/L) (01097) <.6 Iron wate: unflt: recovabl: ug/I (0104:	water, fltrd, ug/L (01000) 2.6 3.2 3.1 2.4 , r, rd Lead er water e, fltrd Lug/L (01049) 5.5 (01049)	water unfltrd ug/L (01002) 3 3 3 2 Lead water unfltr recove l, -able ug/l (0105)	water, fltrd, ug/L (01025) 1.55 1.36 1.45 1.47 , Mangar ese, er water e, fltrc ug/I (01056) 4 2.9	water, unfltrd ug/L (01027) 1.60 1.51 1.41 1.46 Mangar ese, unfltr r, recove d, -able ug/I (01055)	ium, water, fltrd, ug/L (01030) <.8 n- , r, rd Mercur er water e, fltrd, ug/E (7189)	ium, water, unfltrd recover -able, ug/L (01034) <.8 Mercu wate ry unflt r, recov d, -abl L ug/ 0) (7190	water, fltrd, ug/L (01040) 7.8 5.0 4.7 3.3 ry rr, rd Nickel er water e, fltrd, ug/L (01065)	water, unfitrd recover -able, ug/L (01042) 9.0 6.3 4.8 8.1 Nicke wate unfit: r, recov. d, -abl. L ug/5) (0106	water, fltrd, ug/L (01046) 31 l, r, rd ee, L 7)
JUN 2003 17 JUL 23 AUG 25 SEP	mony, water fltrd ug/L (01095) <.30 Date JUN 2003 17 JUL	mony, water, unfiltrd ug/L) (01097) <.6 Iron wate: unfilt: recov: -able ug/I (0104:	water, fltrd, ug/L (01000) 2.6 3.2 3.1 2.4 , r, rd Lead er water e, fltrd Lug/L (01049) 5.5 (01049)	water unfltrd (01002) 3 3 3 2 Lead water unfltri r, recove 1, -able 2, ug/I (0105)	water, fltrd, ug/L (01025) 1.55 1.36 1.45 1.47 , Mangar ese water ese, fltrc ug/L ug/L (01056) 4 2.9	water, unfiltrd ug/L (01027) 1.60 1.51 1.41 1.46 Mangar ese, water unfiltr trecove try try (01055) 8	ium, water, fltrd, ug/L (01030) <.8 n- , rr, d Mercur er water e, fltrd L ug/: (7189) <.02	ium, water, unfltrd recover -able, ug/L (01034) <.8 Mercu wate unflt r, recov d, -abl L ug/ 0) (7190	water, fltrd, ug/L (01040) 7.8 5.0 4.7 3.3 ry rr, rd Nickel er water e, fltrc L ug/I 0) (01065	water, unfltrd recover -able, ug/L (01042) 9.0 6.3 4.8 8.1 Nicke wate: unflt: r, recov. d, -abl. L ug/: 5) (0106	water, fltrd, ug/L (01046) 31 l, r, rd ee, L 7)
JUN 2003 17 JUL 23 AUG 25 SEP	mony, water fltrd ug/L (01095 <.30 Date JUN 2000 17 JUL 23 AUG AUG	mony, water, unfiltrd ug/L (01097) <.6	water, fltrd, ug/L (01000) 2.6 3.2 3.1 2.4 , r, rd Lead er water e, fltrc L ug/J (01049) .21 E.07	water unfltrd ug/L (01002) 3 3 3 2 Lead water unfltr c, recove 1, -able Lead ug/J (0105) 1.04	water, fltrd, ug/L (01025) 1.55 1.36 1.45 1.47 , Mangar ese water water e, fltrd, ug/l (01056) 4 2.9 9 4	water, unfiltrd ug/L (01027) 1.60 1.51 1.41 1.46 Mangar ese ese unfiltr r, recove d, -able L ug/I (01055) 8	ium, water, fltrd, ug/L (01030) <.8 n- , r, rd Mercue er fltrd (7189) <.02	ium, water, unfltrd recover -able, ug/L (01034) <.8 Mercu wate ry unflt r, recov d, -abl L Ug/L 0) (7190	water, fltrd, ug/L (01040) 7.8 5.0 4.7 3.3 ry rr, rd Nickel er water e, fltrd L ug/I (01065) .79	water, unfiltrd recover -able, ug/L (01042) 9.0 6.3 4.8 8.1 Nicke wate: unfiltr, recov. -abli Lug/C (0106	water, fltrd, ug/L (01046) 31 1, r, rd er e, L

E--Estimated.

463023112153701 MINNEHAHA CREEK ABOVE CITY DIVERSION, NEAR RIMINI, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	Silver, water, fltrd, ug/L (01075)	Silver, water, unfltrd recover -able, ug/L (01077)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)
JUN 2003 17 JUL	<.3	<.16	249	262	73	3	.04
23			191	233	68	2	<.01
AUG 25			242	235	71	1	<.01
SEP 29			264	260	75	1	<.01

06062500 TENMILE CREEK NEAR RIMINI, MT

LOCATION.--Lat 46°31'27", long 112°15'22" (NAD 27), in NE¹/₄SW¹/₄NE¹/₄ sec. 20, T.9 N., R.5 W., Lewis and Clark County, Hydrologic Unit 10030101, Helena National Forest, on left bank at U.S. Forest Service Moose Creek campground, 500 ft upstream from Moose Creek, 2.5 mi north of Rimini, and at river mile 20.4.

DRAINAGE AREA.--30.9 mi².

PERIOD OF RECORD.--July 1914 to September 1994, May 1997 to current year. Monthly discharge only for some periods, published in WSP 1309. REVISED RECORDS.--WSP 1309: 19417, 1921, 1924-25. WSP 1509: 1915, 1916-17(M), 1920(M), 1927(m), 1928-1930, 1947(m), 1948, 1950(M). WSP 1559: Drainage area. WSP 1709: 1959. WDR-MT-97-1: Drainage area.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 4,850 ft (NGVD 29). Prior to Dec. 17, 1934, water-stage recorder at site 40 ft downstream at different elevation and different control.

REMARKS.--Records good except those below 1.0 ft³/s and those for estimated daily discharges, which are poor. Flow regulated by Chessman and Scott Reservoirs on tributaries upstream from station, combined capacity, 2,340 acre-feet. Small diversions upstream from station for water supply for city of Helena. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

		DISCHAR	GE, CUBI	C FEET PE			R YEAR OCT N VALUES	TOBER 2	002 TO S	EPTEMBER	2003	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0.42 0.39 0.39 0.39 0.37	0.37 0.39 0.38 0.36 0.38	e0.94 e0.90 0.67 0.57	0.36 0.37 0.37 0.36 0.41	3.8 2.2 1.4 1.1 0.84	e0.34 e0.35 e0.36 e0.37 e0.37	8.1 6.6 5.8 4.5 4.0	42 41 43 51 48	129 108 91 80 69	5.8 4.9 4.2 3.4 2.7	0.35 0.46 0.59 1.8 0.91	0.31 0.28 0.27 0.25 0.23
6 7 8 9	0.38 0.36 0.35 0.35 0.34	0.38 0.38 0.41 0.39 0.36	0.53 0.49 0.44 0.43 0.41	0.38 0.34 0.31 0.29 e0.27	0.67 0.64 0.59 0.55 0.54	e0.38 e0.40 e0.44 e0.45 e0.47	3.7 3.4 3.8 8.3	46 44 42 40 38	64 54 47 44 44	2.2 1.6 1.7 1.7	0.63 0.64 0.74 0.61 0.44	0.21 0.21 0.24 0.29 0.27
11 12 13 14 15	0.34 0.36 0.34 0.34	0.34 0.33 0.33 0.29 0.29	0.49 0.45 0.46 0.50 0.53	e0.25 0.20 0.43 0.47 0.40	0.56 0.53 0.52 0.50 0.49	0.48 0.61 1.0 2.1 2.9	20 28 36 38 34	37 40 44 50 65	40 34 37 37 29	1.2 7.0 7.6 0.95 1.0	0.40 0.39 0.38 0.34 0.39	0.29 0.76 0.96 0.46 0.38
16 17 18 19 20	0.34 0.33 0.34 0.34 0.33	0.30 0.32 0.31 0.35 0.44	0.48 0.43 0.35 e0.35 0.30	0.33 0.31 0.29 e0.27 e0.25	0.50 0.48 0.44 0.43 0.43	2.8 2.5 1.8 1.5	29 26 24 23 24	75 66 60 54 48	28 29 23 24 30	0.86 0.78 0.72 0.69 0.63	0.56 0.37 0.35 0.31 0.32	0.62 1.4 0.60 0.48 0.43
21 22 23 24 25	0.33 0.35 0.34 0.27 0.29	0.46 0.44 0.85 0.56 0.55	e0.32 e0.30 e0.30 0.28 e0.27	e0.24 e0.24 e0.24 0.26 0.31	0.43 e0.43 e0.43 e0.40 e0.37	1.4 1.9 3.9 2.7 2.0	28 35 53 71 74	47 57 85 114 150	26 22 19 20 17	0.57 0.47 0.47 0.72 1.1	0.29 0.31 1.0 0.51 0.37	0.43 0.42 0.39 0.37 0.35
26 27 28 29 30 31	0.30 0.31 0.38 0.29 e0.29 e0.32	0.80 0.83 0.79 0.89 0.91	0.22 0.25 0.33 0.35 0.36 0.38	0.35 0.95 0.80 0.56 0.54	e0.34 e0.30 e0.33	1.7 1.4 1.3 1.3 1.9	62 50 45 41 40	168 164 163 170 159 153	15 12 9.9 8.6 7.3	0.51 0.45 0.40 0.37 0.38 0.37	0.33 0.34 0.33 0.31 0.31	0.31 0.30 0.29 0.29 0.30
TOTAL MEAN MAX MIN AC-FT	10.61 0.34 0.42 0.27 21	14.18 0.47 0.91 0.29 28	13.65 0.44 0.94 0.22 27	12.25 0.40 1.1 0.20 24	20.24 0.72 3.8 0.30 40	45.92 1.48 5.3 0.34 91	844.2 28.1 74 3.4 1670	2404 77.5 170 37 4770	1197.8 39.9 129 7.3 2380	56.74 1.83 7.6 0.37 113	15.38 0.50 1.8 0.29 31	12.39 0.41 1.4 0.21 25
							, BY WATER Y	-				
MEAN MAX (WY) MIN (WY)	3.06 23.1 1966 0.19 1974	2.31 13.6 1986 0.22 1941	1.75 9.64 1918 0.17 1941	1.44 6.97 1918 0.14 1941	1.32 5.05 1921 0.063 2002	2.50 17.5 1986 0.068 2002	17.9 66.7 1926 1.50 1975	83.3 300 1917 6.14 2000	72.7 346 1975 3.01 2000	12.3 66.4 1969 0.34 1985	2.53 22.5 1993 0.13 2000	2.33 22.4 1993 0.23 1935
SUMMARY	Y STATIST	CICS	FOR	2002 CALE	NDAR YEAR		FOR 2003 WAT	TER YEAR		WATER YEAR	S 1915 -	2003*
LOWEST HIGHEST LOWEST ANNUAL MAXIMUN MAXIMUN	MEAN F ANNUAL ANNUAL M F DAILY M DAILY ME	EAN EAN AN Y MINIMUM OW 'AGE		3882.4 10.6 124 0.0 0.0	Jun 15		4647.36 12.7 170 0.20 0.24 193 3.13	May 29 Jan 12 Sep 2 May 26 May 26		16.9 53.1 1.74 1880 0.00 0.00 3290 6.20	May 22 Aug 31 Aug 31 May 22	1931 1931 1981

9220

0 51

0.30

12210

2.0

7700

0 43

0.06

ANNUAL RUNOFF (AC-FT)

10 PERCENT EXCEEDS 50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

^{*--}During period of operation (1915-1994, May 1997 to current year).

e--Estimated.

06062750 TENMILE CREEK AT TENMILE WATER TREATMENT PLANT, NEAR RIMINI, MT

 $LOCATION.--Lat\ 46^{\circ}34'22'', long\ 112^{\circ}12'52''\ (NAD\ 27), in\ NE^{1}/_{4}SW^{1}/_{4}SE^{1}/_{4}\ sec.\ 34,\ T.10N.,\ R.5W.,\ Lewis\ and\ Clark\ County,\ Hydrologic\ Unit\ 10030101,\ on\ left\ bank\ near\ Tenmile\ Water\ Treatment\ Plant,\ about\ 0.1\ mi\ south\ of\ U.S.\ Highway\ 12,\ and\ about\ 8\ mi\ north\ of\ Rimini.\ Formerly$ published as Tenmile Creek at Helena Water Treatment Plant, near Rimini.

DRAINAGE AREA.--51.1 mi².
PERIOD OF RECORD.--May 1999 to current year.

REMARKS.--No samples collected in August or September due to no flow. Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	ature, water, deg C	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)
JUN 2003 17	0730	25	7.7	68	15.0	9.5	24	7.14	1.60	1.14	. 2
JUL 23	1130	.18	7.6	125	34.0	20.0	61	18.0	3.88		
Date	Sodium, water, fltrd, mg/L (00930)	lab, mg/L as CaCO3	ide, water, fltrd, mg/L	ide, water, fltrd, mg/L	Silica, water, fltrd, mg/L	water, fltrd, mg/L		Residue water, fltrd, tons/ acre-ft	fltrd,	+ org-N, water, unfltrd mg/L as N	water fltrd, mg/L as N
JUN 2003 17	2.49	18	.91	<.2	17.0	10.6	52	.07	3.47	.17	E.013
JUL 23										E.10	<.022
Date	Nitrite water, fltrd, mg/L as N (00613)	water, fltrd, mg/L as P	Phos- phorus, water, unfltrd mg/L	water, fltrd, ug/L	Alum- inum, water, unfltrd recover -able, ug/L (01105)	water, fltrd, ug/L	unfltrd ug/L	water, fltrd, ug/L	Arsenic water unfltrd ug/L (01002)	water, fltrd, ug/L	water, unfltrd ug/L
JUN 2003 17	<.002	E.004	.020	48	230	E.27	E.4	11.1	16	.67	. 79
JUL 23	<.002	.007	.012					22.9	24	.68	. 69
Date	Chrom- ium, water, fltrd, ug/L (01030)	unfltrd recover -able, ug/L	Copper, water, fltrd, ug/L	recover -able, ug/L	water, fltrd, ug/L	Iron, water, unfltrd recover -able, ug/L (01045)	Lead, water, fltrd, ug/L	Lead, water, unfltrd recover -able, ug/L (01051)	ese, water, fltrd, ug/L	unfltrd recover -able, ug/L	fltrd, ug/L
JUN 2003 17	<.8	<.8	6.5	7.7	73	290	.52	3.99	10.3	21	<.02
JUL 23			2.7	3.1			E.05	.21			
Date JUN 2	u r (ecover -able, ug/L 71900) (ickel, ug/L 01065) (ickel, water, nfltrd S ecover -able, ug/L 01067) (ilver, u water, r fltrd, ug/L 01075) (ecover -able, ug/L 01077) (Zinc, www.water, refltrd, ug/L 01090) (SZinc, water, maltrd ecover d -able, p ug/L < 01092) (ment, sieve iametr cercent t: .063mm 70331) (3	ment oncen- ration mg/L 80154) (Sus- pended sedi- ment load, tons/d 80155)
JUL		E.01	.72	.84		<.16	137	156	94	12	.80
23.	• •						109	104	71	1	<.01

E--Estimated.

463438112091801 TENMILE CREEK BELOW COLORADO GULCH, NEAR HELENA, MT

 $LOCATION.--Lat~46^{\circ}34'38'', long~112^{\circ}09'18''~(NAD~27), in~NW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}~sec.~31,~T.10N.,~R4W.,~Lewis~and~Clark~County,~Hydrologic~Unit~10030101,~at~U.S.~Highway~12~bridge~over~Tenmile~Creek,~about~0.5~mi~below~the~mouth~of~Colorado~Gulch,~and~about~5.0~mi~west~of~Helena.$

DRAINAGE AREA.--77.8 mi².

PERIOD OF RECORD .-- April 2002 to current year.

GAGE.--None. Elevation of gage is 4,190 ft (NGVD 29).

WATER-QUALITY DATA, OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	pH, water, unfltrd field, std units (00400)	tance,	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	+ org-N, water,	Nitrite + nitrate water fltrd, mg/L as N (00631)
OCT 2002 09	0830	2.2	8.1	262	6.0	7.5	110	30.6	7.76	E.10	.232
MAR 2003 13	0830	24	8.2	162	14.5	3.0	52	14.8	3.66	.90	.169
MAY 27 JUL	1230	151	7.5	56	24.0	7.0	22	6.46	1.42	.43	.022
23	1300	2.4	7.9	130	34.0	16.5	94	26.8	6.72	.11	.289
Date	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Phos- phorus, water, unfltrd mg/L (00665)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)	Cadmium water, fltrd, ug/L (01025)	Cadmium water, unfltrd ug/L (01027)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	Lead, water, fltrd, ug/L (01049)	Lead, water, unfltrd recover -able, ug/L (01051)
OCT 2002 09 MAR 2003	.003	E.006	.013	11.0	10	.09	.10	1.9	1.4	E.06	.13
13 MAY	.005	.139	.22	6.6	7	.10	.10	2.6	3.9	.18	1.37
27 JUL	.003	<.007	.052	6.3	18	. 45	.82	5.8	9.8	.46	11.4
23	E.002	.012	.019	13.9	14	.18	.18	1.5	1.8	E.07	.14
			Date	Zinc, water, fltrd, ug/L (01090)	-able, ug/L	sieve diametr percent <.063mm	mg/L	pended sedi- ment load, tons/d			
		0	CT 2002 09	18	18						
			AR 2003 13	20	28	86	15	.99			
			27	92	143	63	31	13			
		J	UL 23	24	23	67	1	.01			

E--Estimated.

06063000 TENMILE CREEK NEAR HELENA, MT

 $LOCATION.\text{--Lat }46^{\circ}36'20'', long\ 112^{\circ}05'20''\ (NAD\ 27), in\ SW^{1}/_{4}NE^{1}/_{4}SE^{1}/_{4}\ sec.\ 22,\ T.10N.,\ R4W.,\ Lewis\ and\ Clark\ County,\ Hydrologic\ Unit\ 10030101,\ at\ Williams\ Street\ bridge\ over\ Tenmile,\ about\ 1.2\ mi\ southeast\ of\ Fort\ Harrison,\ and\ about\ 3.5\ mi\ west\ of\ Helena.$

DRAINAGE AREA.--96.5 mi².

PERIOD OF RECORD.--April 2002 to current year.

GAGE.-- Non-recording wire-weight gage on bridge. Elevation at gage is 3,960 ft (NGVD 29).

WATER-QUALITY DATA, OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Ammonia + org-N, water, unfltrd mg/L as N (00625)	Nitrite + nitrate water fltrd, mg/L as N (00631)
OCT 2002 09	1000	2.2	7.9		10.5	10.5	130	36.1	8.96	.11	.176
MAR 2003 13	1000	46	7.9	190	15.0	3.5	64	18.6	4.30	.80	. 258
MAY 27	1100	137	7.8	68	18.0	7.0	26	7.70	1.71	.32	.030
JUL 23	1330	.22	8.3	130	35.0	19.5	120	33.4	7.88	.14	.528
Date	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Phos- phorus, water, unfltrd mg/L (00665)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)	Cadmium water, fltrd, ug/L (01025)	Cadmium water, unfltrd ug/L (01027)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	Lead, water, fltrd, ug/L (01049)	Lead, water, unfltrd recover -able, ug/L (01051)
OCT 2002 09 MAR 2003	.003	<.007	.009	13.2	12	.12	.11	2.0	1.7	.37	.38
13 MAY	.004	.133	.21	7.7	9	.09	.10	2.6	4.3	.16	1.87
27 JUL	.003	E.004	.059	7.3	20	.36	.81	5.7	10.2	.56	12.0
23	.006	.015	.022	16.9	17	.14	.17	2.8	2.1	<.08	.26
			Date	Zinc, water, fltrd, ug/L (01090)	-able, ug/L	sieve diametr percent <.063mm	mg/L	Sus- pended sedi- ment load, tons/d (80155)			
			OCT 2002 09	13	16	78	11	.07			
			IAR 2003 13	14	26	75	22	2.7			
			1AY 27	82	141	72	33	12			
		J	UL 23	16	18	57	2	<.01			

 $\mathtt{E--Estimated}.$

463747112033801 SEVENMILE CREEK AT MOUTH, NEAR HELENA, MT

 $LOCATION.--Lat\ 46^{\circ}37'47'',\ long\ 112^{\circ}03'38''\ (NAD\ 27),\ in\ NW^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}sec.\ 13,\ T.10N.,\ R4W.,\ Lewis\ and\ Clark\ County,\ Hydrologic\ Unit\ 10030101,\ at\ railroad\ bridge\ over\ Sevenmile\ Creek,\ about\ 0.15\ mi\ upstream\ from\ Tenmile\ Creek,\ about\ 3.2\ mi\ northwest\ of\ Helena.$

DRAINAGE AREA.--57.2 mi².

PERIOD OF RECORD .-- April 2002 to current year.

GAGE.--None. Elevation at site is 3,850 ft (NGVD 29).

WATER-QUALITY DATA, OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Ammonia + org-N, water, unfltrd mg/L as N (00625)	Nitrite + nitrate water fltrd, mg/L as N (00631)
OCT 2002 09 MAR 2003	1145	.70	8.0		17.0	9.5	340	81.6	33.4	.25	E.014
13 MAY	1145	60	7.8	205	18.0	1.0	87	23.2	7.03	4.8	.363
27 JUL	0945	7.3	8.1	433	16.0	7.0	220	59.5	17.7	.31	.026
24	1100	2.7	8.4	500	31.0	19.0	240	62.6	20.1	.36	<.022
Date	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Phos- phorus, water, unfltrd mg/L (00665)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)	Cadmium water, fltrd, ug/L (01025)	Cadmium water, unfltrd ug/L (01027)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	Lead, water, fltrd, ug/L (01049)	Lead, water, unfltrd recover -able, ug/L (01051)
OCT 2002 09	.003	.021	.046	8.8	8	E.02	.05	1.2	3.1	.12	.97
MAR 2003 13	.012	.133	1.61	7.6	28	E.02	.90	2.4	83.0	.39	66.7
MAY 27	E.002	.018	.053	12.6	14	E.02	.05	1.7	3.7	E.06	1.31
JUL 24	<.002	.034	.068	18.1	19	E.03	.04	1.6	2.4	.12	1.51
			Date OCT 2002	Zinc, water, fltrd, ug/L (01090)	, -able, ug/L	diametr percent <.063mm	pended sedi- ment concen- tration mg/L	pended sedi- ment load, tons/	d d		
			MAR 2003		112	80	1790	291			
			MAY 27	4	8	91	22	.43			
			JUL								
			24	1	4	88	18	.13			

 ${\tt E--Estimated}.$

06064100 TENMILE CREEK AT GREEN MEADOW DRIVE, AT HELENA, MT

 $LOCATION.--Lat~46°37'54", long~112°02'46"~(NAD~27), in~SW^1/_4SE^1/_4SE^1/_4SE^1/_4sec.~12, T.10N., R4W., Lewis and Clark County, Hydrologic Unit~10030101, at Green Meadow Drive bridge over Tenmile Creek, about 1.1 mi north of Custer Avenue, and about 3 mi northwest of Helena.$

DRAINAGE AREA.--161 mi².

PERIOD OF RECORD.--May 1997 to September 1998, April 2002 to current year.

GAGE.--None. Elevation at site is 3,820 ft (NGVD 29).

WATER-QUALITY DATA, APRIL 2003 TO OCTOBER 2003

Date OCT 2002 09 MAR 2003 13 MAY 27 JUL	Time 1300 1300 0815	Instantaneous discharge, cfs (00061) 1.2 304	pH, water, unfltrd field, std units (00400) 8.3 8.1	wat unf us/cm 25 degC (00095) 189 90	ature, air, deg C (00020) 17.0 18.0 9.0	water, deg C (00010) 10.0 4.0 7.0	unfltrd mg/L as CaCO3 (00900) 200 71 36	Calcium water, fltrd, mg/L (00915) 53.9 19.8	Magnes- ium, water, fltrd, mg/L (00925) 16.1 5.29 2.48	Ammonia + org-N, water, unfltrd mg/L as N (00625) .18 4.6	hitrate water filtrd, mg/L as N (00631) <.022 .296 .030
24	1000	1.4	8.5	483	27.0	20.5	230	60.5	19.4	.31	<.022
Date	Nitrite water, fltrd, mg/L as N (00613)	water,	Phos- phorus,	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)	Cadmium water, fltrd, ug/L (01025)	Cadmium water, unfltrd ug/L (01027)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	Lead, water, fltrd, ug/L (01049)	Lead, water, unfltrd recover -able, ug/L (01051)
OCT 2002 09 MAR 2003 13 MAY 27 JUL	<.002 .009 .003	.009 .141 E.006	.021 1.49 .105	12.3 8.3 8.3	12 30 26	.05 E.02 .25	.06 1.46 .92	1.5 2.4 5.3	1.8 78.9 12.6	.13 .52 .54	.45 69.3 17.6
24	<.002	.018	.047	19.1	20	.04	.08	3.2	3.2	.11	1.12
			Date	Zinc, water fltrd ug/I (01090	r, recove l, -able ug/L	nd sieve d sieve dr diamet percer c. 063m	pende sedi- ment r concen t tratio m mg/L	d Sus- pende sedi- ment n load, tons/	ed - : /d		
			OCT 2002 09 MAR 2003 13	4	7 191	90 83	4 1270	1040)1		
			MAY 27	68	148	60	72	31			
			JUL 24	3	11	94	10	.0	14		
			41	3	11) <u>1</u>	10				

 $\mathtt{E--Estimated}.$

06065500 MISSOURI RIVER BELOW HAUSER DAM, NEAR HELENA, MT

LOCATION.--Lat 46°46′02", long 111°53′27" (NAD 27), in SE¹/₄NW¹/₄Sw¹/₄ sec. 29, T.12 N., R.2 W., Lewis and Clark County, Hydrologic Unit 10030101, 0.2 mi downstream from Hauser Dam, 1.3 mi upstream from Beaver Creek, 15 miles northeast of Helena, and at river mile 2,237.2.

DRAINAGE AREA.--16,876 mi².

PERIOD OF RECORD.--January 1923 to September 1942, October 1994 to current year. Monthly means for October, November, and December 1922 were from Congressional documents: 73rd Congress, 2nd session, H. Doc. 238, Missouri River. Published figures are in acre feet.

GAGE.--Water-stage recorder. Elevation of gage is 3,580 ft (NGVD 29).

REMARKS.—Records excellent. Flow regulated by eight small irrigation reservoirs and two power plants, Clark Canyon Reservoir (station number 06015300) and Canyon Ferry Lake (station number 06058500). Diversions for irrigation of about 594,400 acres. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were obtained during the year.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES AY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	3160 3140 3060 2950 2930	3050 3050 3050 3050 3040	3610 3560 3580 3560 3550	3640 3630 3630 3630 3630	3640 3650 3640 3650 3650	3640 3630 3660 3640 3630	3660 3690 3670 3670 3670	4060 4060 4070 4090 4060	7770 8320 9440 9910 8850	5560 5280 4940 4590 4370	3670 3670 3680 3680 3680	3060 3070 3030 3040 3080	
6 7 8 9 10	2900 2870 2860 2940 3060	3070 3370 3580 3640 3640	3550 3550 3550 3610 3640	3620 3620 3630 3580 3540	3640 3630 3640 3640 3620	3660 3670 3650 3640 3640	3670 3760 3810 3810 3800	4080 4140 4290 4540 4640	7380 5860 5900 5960 5790	4260 4200 4200 4190 4200	3680 3630 3410 3240 3210	3120 3190 3100 3160 3210	
11 12 13 14 15	3130 3120 3110 3110 3110	3550 3500 3510 3530 3610	3640 3640 3640 3640 3640	3540 3540 3540 3540 3600	3690 3690 3680 3710 3690	3630 3620 3720 4120 4400	3840 4050 4120 4090 4120	4620 4700 4790 5440 6030	5830 5810 5790 5760 5680	4190 4180 4220 4270 4270	3240 3070 2900 2900 2920	3210 3210 3130 3090 3110	
16 17 18 19 20	3110 3150 3200 3190 3160	3640 3650 3640 3640 3640	3570 3550 3550 3550 3550	3620 3650 3630 3620 3640	3690 3640 3440 3460 3550	4390 4160 3900 3700 3630	4050 4000 3950 3910 3900	6490 6210 5950 6010 6000	5680 5680 5670 5680 5690	4220 3830 3540 3590 3680	2980 3100 3150 3280 3360	3120 3110 3090 3090 3090	
21 22 23 24 25	3150 3150 3140 3130 3130	3640 3650 3670 3650 3610	3550 3550 3550 3540 3540	3680 3630 3620 3620 3620	3540 3600 3570 3540 3540		3910 3910 3910 3910 3910		5700 5780 5820 5840 5800	3670 3670 3610 3590 3570	3370 3370 3380 3390 3380	3100 3080 3100 3080 3110	
26 27 28 29 30 31	3140 3120 3100 3100 3080 3030	3540 3540 3540 3580 3640	3540 3540 3540 3540 3610 3630	3540 3540 3540 3540 3540 3610	3560 3610 3630 	3660 3670 3660 3660 3660 3670	3920 3920 3960 4000 4080	6180 6470 7020 7540 7750 7760	5800 5810 5820 5690 5620	3580 3570 3570 3590 3610 3690	3390 3370 3210 3070 3050 3050	3190 3200 3150 3100 3080	
TOTAL MEAN MAX MIN AC-FT	95530 3082 3200 2860 189500	104510 3484 3670 3040 207300	110860 3576 3640 3540 219900		101230	115860 3737 4400 3620 229800	116670 3889 4120 3660 231400	170660 5505 7760 4060 338500	190130 6338 9910 5620 377100	125500 4048 5560 3540 248900	102480 3306 3680 2900 203300	93500 3117 3210 3030 185500	
STATIS					YEARS 192	3 - 2003							
MEAN MAX (WY) MIN (WY)	3556 6489 1998 1944 1935	3646 6021 1998 1998 1935	3598 5622 1996 1935 1935	3562 6665 1997 1896 1937	3771 8101 1997 1666 1938	4411 8271 1997 2398 1938	5265 9227 1942 2585 1938	6973 16340 1928 2381 1934	8327 23540 1927 2546 1934	4332 12020 1998 1208 1934	3063 5797 1998 971 1934	3259 5684 1995 1495 1934	
SUMMAR	Y STATIS	TICS	FOR	2002 CAL	ENDAR YEAR		FOR 2003	WATER YEA	R	WATER YE	ARS 1923	- 2003*	
ANNUAL HIGHES LOWEST	T ANNUAL	MEAN		1124840 3082			1438480 3941	_		4479 7862 2381		1997 1934	
LOWEST ANNUAL MAXIMU MAXIMU	M PEAK F M PEAK S	EAN AY MINIMU! LOW	M	3670 2640 2680	Nov 23 Jun 24 Jun 22		9910 2860 2930 10100 6.	Jun Oct Oct Jun 77 Jun	4 8 3 4 4	33300 280 716 33300 a78. 280	Mar Aug Jun 1 80 Jun 1	5 1927 3 1938 3 1934 5 1927 5 1927 3 1938	
ANNUAL 10 PER 50 PER	RUNOFF CENT EXC CENT EXC CENT EXC	(AC-FT) EEDS EEDS		2231000 3550 3010 2840			2853000 5780 3630 3100			3245000 7610 3680 2050			

^{*--}During periods of operation (December 1922 to September 1942, October 1994 to present). a--Site and elevation then in use.

06066500 MISSOURI RIVER BELOW HOLTER DAM, NEAR WOLF CREEK, MT

LOCATION.--Lat 46°59'41", long 112°00'37" (NAD 27), in NE¹/₄SW¹/₄SE¹/₄ sec.5, T.14 N., R.3 W., Lewis and Clark County, Hydrologic Unit 10030102, on left bank 0.4 mi downstream from Holter Dam, 2.8 mi southeast of Wolf Creek, and at river mile 2,210.7. DRAINAGE AREA.--17.149 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1945 to current year.

90 PERCENT EXCEEDS

GAGE.--Water-stage recorder. Elevation of gage is 3,464.11 ft (NGVD 29).

REMARKS.--Water-discharge records good. Flow regulated by nine smaller irrigation reservoirs and powerplants, Clark Canyon Reservoir (station number 06015300), and Canyon Ferry Lake (station number 06058500). Diversions for irrigation of about 594,400 acres. Bureau of Reclamation satellite telemeter at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR MAY JUN JUL AUG SEP APR 3780 7240 ---TOTAL MEAN MAX MTN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1946 - 2003, BY WATER YEAR (WY) MEAN MAX (WY) MIN (WY) SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1946 - 2003 ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN 8 1948 HIGHEST DAILY MEAN Nov 10 Jun Jun May 27 LOWEST DAILY MEAN Jul Aug 15 ANNUAL SEVEN-DAY MINIMUM Jul 17 Oct May MAXIMIM PEAK FLOW Tun Jun 8 1948 MAXIMUM PEAK STAGE 5.14 11.70 Jun Jun INSTANTANEOUS LOW FLOW a250 Jul 26 1968 ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS

06066500 MISSOURI RIVER BELOW HOLTER DAM, NEAR WOLF CREEK, MT--Continued

SUMMARY STATISTICS	WATER YEARS	3 1946 - 195	52* WATER	YEARS 1953 - 2003**
ANNUAL MEAN	5882		5375	
HIGHEST ANNUAL MEAN	7787	19	948 8497	1984
LOWEST ANNUAL MEAN	4651	19	946 3008	2002
HIGHEST DAILY MEAN	34000	Jun 8 19	948 25600	Jun 20 1964
LOWEST DAILY MEAN	1560	Aug 31 19	946 747	May 27 1962
ANNUAL SEVEN-DAY MINIMUM	2310	Aug 2 19	949 1040	May 16 1957
MAXIMUM PEAK FLOW	34800	Jun 8 19	948 27100	Jun 19 1964
MAXIMUM PEAK STAGE	11.70	Jun 8 19	948 10.	04 Jun 19 1964
INSTANTANEOUS LOW FLOW	b742	Nov 25 19	949 a250	Jul 26 1968
ANNUAL RUNOFF (AC-FT)	4261000		3894000	
10 PERCENT EXCEEDS	10800		7890	
50 PERCENT EXCEEDS	4520		4790	
90 PERCENT EXCEEDS	3350		3030	

WATER-QUALITY RECORDS

PERIOD OF DAILY RECORD.--October 1999 to current year.

WATER TEMPERATURE: October 1999 to current year.

INSTRUMENTATION.--Temperature probe installed Sept. 30, 1999.

REMARKS--Daily water temperature record good except for Aug. 17-18 which are missing due to equipment problems. Unpublished records of instantaneous specific conductance and temperature data are available in files of the District office.

EXTREMES FOR PERIOD OF DAILY RECORD.--

WATER TEMPERATURE: Maximum, 21.0°C, July 25, 2002; minimum, 1.0°C, many days during winter period.

EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURE: Maximum, 20.0°C, Aug. 3, 4, 10, 25; minimum, 1.0°C, many days January through March.

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	VEMBER		DE	CEMBER			JANUARY	
1 2 3 4 5	13.5 13.5 13.5 13.5 13.0	13.5 13.5 13.0 13.0 12.5	13.5 13.5 13.5 13.0 13.0	8.0 8.0 7.5 7.0	7.5 7.5 7.0 7.0 7.0	8.0 7.5 7.5 7.0 7.0	4.0 4.0 4.0 4.0 3.5	4.0 4.0 3.5 3.5 3.5	4.0 4.0 4.0 4.0 3.5	1.5 1.5 2.0 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5
6 7 8 9 10	13.0 13.0 13.0 12.5 12.5	12.5 12.5 12.0 12.5 12.5	12.5 12.5 12.5 12.5 12.5	7.0 7.0 6.5 6.5	6.5 6.5 6.5 6.5	7.0 6.5 6.5 6.5	4.0 3.5 3.5 3.5 3.5	3.5 3.5 3.5 3.0 3.0	3.5 3.5 3.5 3.5 3.0	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5	1.5 1.5 1.5 1.5
11 12 13 14 15	12.5 12.0 12.0 11.5 11.5	11.5 11.5 11.5 11.5 11.5	12.0 12.0 11.5 11.5	6.5 6.5 6.0 6.0	6.0 6.0 6.0 5.5	6.0 6.0 6.0 5.5	3.5 3.0 3.0 3.5 3.0	3.0 3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0 3.0	1.5 1.5 1.5 1.5	1.0 1.0 1.0 1.0	1.0 1.0 1.5 1.5
16 17 18 19 20	11.5 11.5 11.5 11.0 11.0	11.0 11.0 11.0 11.0	11.5 11.5 11.0 11.0	6.0 5.5 5.5 5.5	5.5 5.5 5.0 5.0	5.5 5.5 5.5 5.0 5.0	3.0 3.0 3.0 2.5 2.5	3.0 3.0 2.5 2.5 2.5	3.0 3.0 2.5 2.5 2.5	1.5 1.0 1.0 1.0	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0
21 22 23 24 25	11.0 10.5 10.5 10.0 10.0	10.5 10.5 10.0 10.0	11.0 10.5 10.0 10.0	5.5 5.0 5.0 5.0 4.5	5.0 5.0 5.0 4.5 4.5	5.0 5.0 5.0 5.0 4.5	2.5 2.5 2.0 2.0	2.0 2.0 2.0 1.5	2.5 2.5 2.0 1.5	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0
26 27 28 29 30 31	10.0 9.5 9.5 9.0 9.0	9.5 9.5 9.0 9.0 8.5 8.0	9.5 9.5 9.5 9.0 8.5 8.5	4.5 4.0 4.0 4.0 4.0	4.0 4.0 4.0 4.0 4.0	4.5 4.0 4.0 4.0 4.0	1.5 1.5 2.0 2.0 2.0 2.0	1.5 1.5 1.5 1.5 1.5	1.5 1.5 2.0 2.0 1.5	1.5 1.0 1.5 1.0 1.5	1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.5
MONTH	13.5	8.0	11.5	8.0	4.0	5.5	4.0	1.5	2.5	2.0	1.0	1.0

^{*--}Before Canyon Ferry completion. **--After Canyon Ferry completion. a--Gage height, 0.18 ft. b--Probably less than; during power plant operation.

06066500 MISSOURI RIVER BELOW HOLTER DAM, NEAR WOLF CREEK, MT--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	1.5 1.5 1.0 1.5	1.0 1.0 1.0 1.0	1.5 1.0 1.0 1.0	1.5 1.5 1.5 1.5	1.0 1.0 1.0 1.0	1.0 1.5 1.0 1.5	3.0 3.0 3.5 3.5 3.5	3.0 3.0 3.0 3.0 3.0	3.0 3.0 3.0 3.0 3.5	9.0 9.5 9.0 8.0 8.5	7.5 9.0 8.0 7.5 7.5	8.5 9.0 8.5 8.0
6 7 8 9 10	1.5 1.0 1.5 1.5	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	1.5 1.5 1.5 1.5	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.5	4.0 4.0 4.5 5.0	3.5 3.5 3.5 4.5 4.5	3.5 3.5 4.0 4.5 4.5	8.5 9.0 8.5 8.0	7.5 8.0 7.5 7.5	8.5 8.5 8.0 7.5 8.0
11 12 13 14 15	1.5 1.5 1.5 1.5	1.0 1.0 1.0 1.0	1.5 1.0 1.5 1.5	1.5 1.5 2.0 2.0	1.0 1.5 1.5 1.5	1.5 1.5 1.5 1.5	6.0 5.5 5.5 6.5 6.5	5.0 5.0 5.0 5.0 5.5	5.5 5.5 5.0 5.5 6.0	8.0 8.0 9.5 9.5 9.5 10.5	8.0 9.0 8.5 8.5 9.0	8.5 9.5 9.0 9.5 9.5
	1.5 1.5 1.5 1.5		1.5 1.5 1.5 1.5	1.5 2.0 1.5 2.0 2.0	1.5 1.5 1.5 1.5	1.5 1.5 1.5 2.0	7.0 7.5 7.0 7.5 8.5	5.5 7.0 6.0 6.0 7.0	6.5 7.0 6.5 7.0 8.0	9.5	8.5 8.5 8.5 8.5	8.5 9.5 9.0 10.0 10.5
21 22 23 24 25	1.5 1.5 1.5 1.5	1.5 1.5 1.0 1.0	1.5 1.5 1.5 1.5	2.0 2.0 2.5 2.5 2.5	1.5 1.5 2.0 2.0	2.0 2.0 2.0 2.0 2.0	8.5 9.0 9.0 9.5 9.5	7.0 7.5 8.0 8.5 8.0	8.0 8.0 8.5 9.0 8.5	10.5	9.5 9.5 9.5 9.5 10.0	9.5 10.5 10.0 10.5 11.0
	1.5 1.5 1.5 	1.0 1.0 1.0 		2.5 2.5 2.5 3.0 3.0		2.0 2.0 2.5 2.5 2.5 3.0	10.0 9.5 8.5 7.5 8.0	7.5 7.0 7.0 7.5 7.5	9.0 8.5 7.5 7.5 7.5	12.0 12.5 12.5 12.0 12.0	10.0 10.0 10.0 11.0 10.5	11.0 11.5 11.5 11.5 11.0
MONTH	1.5	1.0	1.5	3.0	1.0	1.5	10.0	3.0	6.0	13.5	7.5	9.5
		JUNE			JULY			AUGUST			SEPTEMBE	R
1 2 3 4 5	13.0 13.0 13.0 12.5 12.5	JUNE 11.0 10.5 11.0 11.5 11.5	12.0 12.0 12.0 12.0 12.0	15.5 15.5 16.5 16.5 16.0	JULY 14.5 13.0 13.5 14.0 14.0	15.0 14.5 15.0 15.0		AUGUST 17.5 18.0 17.5 17.5 18.0	18.0 18.5 18.0 18.5 18.5		SEPTEMBE 17.5 17.5 17.5 17.5 17.5	R 18.0 17.5 18.0 18.0 18.0
2 3 4	13.0 13.0 12.5	11.0 10.5 11.0 11.5	12.0 12.0 12.0 12.0 12.0 12.0 12.5 13.0 12.0	15.5 15.5 16.5 16.5 16.0 16.5 16.0	14.5 13.0 13.5 14.0	15.0 14.5 15.0 15.0 15.5 15.0 15.5 15.0		17.5 18.0 17.5 17.5	18.0 18.5 18.0 18.5 18.5 18.5 18.5 18.5	18.5 18.0 18.5 19.0 18.5	17.5 17.5 17.5 17.5	18.0 17.5 18.0 18.0
2 3 4 5 6 7 8 9	13.0 13.0 12.5 12.5 12.5 13.5 14.5 13.0	11.0 10.5 11.0 11.5 11.5 11.5 11.5 11.5	12.0 12.5 13.0 12.0	16.5 16.0 16.0 16.5 16.0	14.5 13.0 13.5 14.0 14.0 14.5 15.0 14.5	15.0 15.5 15.0 15.5	19.0 19.0 20.0 20.0 19.0 19.5 19.0 18.0 19.5 20.0	17.5 18.0 17.5 17.5 18.0 17.0 17.5 17.5 17.5 17.6	18.5 18.5 17.5 18.0	18.5 18.0 18.5 19.0 18.5 18.5 19.0 18.0 17.5	17.5 17.5 17.5 17.5 17.5 17.5 17.0 17.0 17.0	18.0 17.5 18.0 18.0 18.0 18.5 17.5 18.0 17.5
2 3 4 5 6 7 8 9 10 11 12 13 14	13.0 13.0 12.5 12.5 12.5 13.5 14.5 13.0 14.0	11.0 10.5 11.0 11.5 11.5 11.5 11.5 11.5	12.0 12.5 13.0 12.0 13.0 13.0 13.5 14.0	16.5 16.0 16.0 16.5 16.0	14.5 13.0 13.5 14.0 14.0 14.5 15.0 14.5 15.0 15.5 14.5	15.0 15.5 15.0 15.5 15.5 16.5 16.0 16.0	19.0 19.0 20.0 20.0 19.0 19.5 19.0 18.0 19.5 20.0	17.5 18.0 17.5 17.5 18.0 17.0 17.5 17.5 17.0 18.0	18.5 18.5 17.5 18.0 18.5	18.5 18.0 18.5 19.0 18.5 19.0 18.5 19.0 18.0 17.5 17.5 17.5 17.5	17.5 17.5 17.5 17.5 17.5 17.5 18.0 18.0 17.5 17.0 17.0	18.0 17.5 18.0 18.0 18.0 18.0 18.5 17.5 17.5 17.5 17.0 17.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	13.0 13.0 12.5 12.5 12.5 13.5 14.5 13.0 14.0 14.0 14.5 14.5 14.5	11.0 10.5 11.0 11.5 11.5 11.5 11.5 11.5	12.0 12.5 13.0 12.0 13.0 13.5 14.0 14.0 13.5	16.5 16.0 16.5 16.0 16.5 18.0 17.0 16.5 17.0 17.5 17.0	14.5 13.0 13.5 14.0 14.0 14.5 15.0 14.5 15.0 14.5 15.5 15.0 16.0	15.0 15.5 15.0 15.5 15.5 15.5 16.5 16.0 17.0 17.0 17.0	19.0 19.0 20.0 20.0 19.0 19.5 19.0 18.5 18.5 18.5 18.5	17.5 18.0 17.5 17.5 18.0 17.0 17.5 17.5 17.0 18.0 17.5 17.5 17.5 17.5 17.5 17.5	18.5 18.5 17.5 18.0 18.5 18.0 18.0 18.0 18.0	18.5 18.0 18.5 19.0 18.5 19.0 18.0 17.5 17.5 17.5 17.0 17.0 17.0	17.5 17.5 17.5 17.5 17.5 17.5 18.0 17.5 17.0 17.0 17.0 16.5 16.5 16.5 16.5 15.5	18.0 17.5 18.0 18.0 18.0 18.0 18.5 17.5 17.5 17.0 17.0 17.0 16.5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	13.0 12.5 12.5 12.5 13.5 14.5 14.0 14.0 14.5 14.5 14.5 14.5 14.5 16.0 15.5 16.0 15.5	11.0 10.5 11.0 11.5 11.5 11.5 11.5 11.5	12.0 12.5 13.0 12.0 13.0 13.5 14.0 14.0 13.5 14.0 15.0 15.0 14.5 14.5 14.5 14.5	16.5 16.0 16.0 16.5 16.0 17.0 17.0 17.0 17.5 17.0 18.0 17.5 19.5 19.5	14.5 13.0 13.5 14.0 14.0 14.5 15.0 14.5 15.0 15.5 15.5 16.0 16.5 16.5 16.5 17.0	15.0 15.5 15.0 15.5 15.5 16.5 16.0 16.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	19.0 19.0 20.0 20.0 19.0 19.5 19.0 18.5 18.5 18.5 18.5 18.5 19.0 19.0	17.5 18.0 17.5 17.5 18.0 17.5 17.5 17.0 18.0 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	18.5 18.5 17.5 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	18.5 18.0 18.5 19.0 18.5 19.0 18.0 18.0 17.5 17.5 17.5 17.0 17.0 17.0 15.5 15.5 15.5	17.5 17.5 17.5 17.5 17.5 17.5 18.0 17.0 17.0 17.0 17.0 16.5 16.5 16.5 16.5 15.0 15.0 15.0 14.5 14.5 14.0	18.0 17.5 18.0 18.0 18.0 18.5 17.5 17.5 17.0 17.0 17.0 15.5 15.5 15.5 15.0 15.0 14.5

LITTLE PRICKLY PEAR CREEK BASIN

06071300 LITTLE PRICKLY PEAR CREEK AT WOLF CREEK, MT

LOCATION.--Lat 47°00'19", long 112°04'10" (NAD 27), in NE¹/₄NW¹/₄NE¹/₄ sec.2, T.14N., R.4W., Lewis and Clark County, Hydrologic Unit 10030102, on right bank 30 ft downstream from Interstate 15 access road bridge, 500 ft southwest of Wolf Creek Post Office, 0.5 mi downstream from Wolf Creek, and at river mile 3.2.

DRAINAGE AREA.--381 mi².

PERIOD OF RECORD.--May 1962 to September 1967, October 1991 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 3,547.38 ft (NGVD 29). May 10, 1962 to July 6, 1965, water-stage recorder on left bank at present elevation. July 7, 1965 to Apr. 11, 1966, non-recording gage on bridge 0.25 mi upstream at elevation 3.27 ft higher. Apr. 12, 1966 to Sept. 30, 1967, water-stage recorder on right bank 23 ft upstream at present elevation.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Diversions for irrigation of about 2,500 acres upstream from station. U.S.Geological Survey satellite telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of May 7, 1975, reached a stage of 7.45 ft, present elevation, from floodmarks, discharge, 4,500 ft^3/s .

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 24 e45 e40 e35 e30 e30 39 e35 e35 e25 25 e30 e25 e40 e20 e18 182 22 2.8 e30 e20 e25 2.0 e25 e20 e40 e32 e22 e30 e30 e20 27 e25 e30 2.5 e40 e35 27 2.8 e38 2.3 177 TOTAL MEAN 40.8 46.9 39.6 36.3 42.5 97.1 38.5 23.4 26.9 MAX 2.7 MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1962 2003, BY WATER YEAR (WY) 45.3 51.5 53.5 49.4 44.1 60.2 68.2 81.0 48.8 MEAN 98.5 74.9 95.4 MAX 69.1 (WY) 25.5 17.7 MTN 29.5 31.5 26.0 30.8 29.3 42.0 64.8 35.5 14.2 18.5 (WY) FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR SUMMARY STATISTICS WATER YEARS 1962 - 2003* ANNUAL TOTAL 67.9 88.5 ANNUAL MEAN 67.3 HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN 35 2 HIGHEST DAILY MEAN Jun 11 Mar 14 Jun LOWEST DAILY MEAN Jan Jan Aug 13 Jul 29 ANNUAL SEVEN-DAY MINIMUM Feb 24 Aug MAXIMUM PEAK FLOW Mar Jun 5.59 7.65 MAXIMUM PEAK STAGE Aug INSTANTANEOUS LOW FLOW a9.6 ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS

2.4

^{*--}During periods of operation (May 1962 to September 1967, October 1991 to current year).

a--Gage height, 2.54 ft.

e--Estimated.

06073500 DEARBORN RIVER NEAR CRAIG, MT

LOCATION .-- Lat 47°11'57", long 112°05'44" (NAD 27), in NW1/4 NW1/4 SE1/4 sec.27, T. 17 N., R. 4 W., Lewis and Clark County, Hydrologic Unit 10030102, on left bank at upstream side of bridge on U.S. Highway 287, 7.0 mi downstream from South Fork Dearborn River, 10.5 mi northwest of Craig, 13.5 mi north of Wolf Creek, and at river mile 19.0.

DRAINAGE AREA.--325 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1945 to September 1969, October 1993 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 3,800 ft (NGVD 29). Oct. 1, 1945 to Sept. 30, 1946, nonrecording gage; Oct. 1, 1946 to June 9, 1964, water-stage recorder on upstream side of bridge; June 10, 1964 to May 31, 1965, nonrecording gage; June 1, 1965 to Sept. 30 1969, waterstage recorder on downstream side of abandoned bridge 0.2 mi downstream, all at same previous elevation.

REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. U.S. Geological Survey satellite telemeter at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

	DISCHARO	E, CUDIC	, FEET FE			VALUES	TOBER 20	02 10 3	EFIEWIDEK 2	003	
DAY OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 54 2 54 3 52 4 52 5 50	e45 e50 e60 e65 e70	60 59 e55 e50 e45	e42 e45 e48 e50 e50	e50 e45 e40 e37 e35	e43 e45 e40 e45 e40	169 184 167 157	291 280 267 323 307	523 470 408 363 320	110 104 99 92 86	28 27 28 28 27	21 20 19 18 17
6 50 7 48 8 51 9 49 10 47	66 64 60 58 56	e50 e55 57 63 60	e48 e45 e40 e30 e15	e35 e35 e35 e37 e40	e30 e25 e20 e25 e40	145 137 132 134 153	297 288 279 285 291	314 288 272 310 301	84 80 79 73 68	28 32 29 28 26	17 17 18 21 20
11 47 12 49 13 48 14 46 15 45	55 53 53 52 51	57 59 57 56 56	e20 e30 e40 e35 e30	e40 e38 e35 e35 e37	e50 e200 905 e500 e300	189 255 306 358 358	295 323 363 390 462	286 266 247 237 224	66 62 58 56 56	24 26 28 25 23	20 22 23 22 21
16 46 17 46 18 44 19 44 20 44	51 49 49 49 48	56 55 e40 e32 e25	e25 e30 e33 e35 e30	e40 e43 e45 e40 e35	e220 e180 e150 130 122	327 305 293 274 261	551 509 444 396 355	209 196 189 189 200	55 52 50 48 44	23 24 24 22 21	29 35 30 33 39
21 43 22 47 23 45 24 44 25 46	48 50 59 54 50	e25 e26 e27 e28 e30	e25 e20 e22 e23 e20	e30 e23 e20 e25 e30	119 118 149 142 131	268 296 331 394 448	325 314 344 415 554	182 161 146 172 162	44 43 42 39 37	21 23 24 23 22	37 35 33 34 31
26 50 27 51 28 52 29 e50 30 e45 31 e40	58 61 60 60 60	e35 e40 e45 e42 e40 e40	e30 e45 e40 e37 e40 e45	e40 e35 e40 	126 121 113 108 106 120	425 373 335 318 312	722 697 634 663 675 587	146 147 139 130 118	38 37 32 30 30 29	21 24 25 24 24 23	30 31 32 32 33
TOTAL 1479 MEAN 47.7 MAX 54 MIN 40 AC-FT 2930	1664 55.5 70 45 3300	1425 46.0 63 25 2830	1068 34.5 50 15 2120	1020 36.4 50 20 2020	4463 144 905 20 8850	7955 265 448 132 15780	12926 417 722 267 25640	7315 244 523 118 14510	1823 58.8 110 29 3620	775 25.0 32 21 1540	790 26.3 39 17 1570
STATISTICS OF M	ONTHLY MEA	N DATA F	OR WATER	YEARS 1946	- 2003,	BY WATER	YEAR (WY)	*			
MEAN 73.6 MAX 187 (WY) 1966 MIN 17.0 (WY) 1957	74.4 165 1947 33.8 2002	66.0 155 1947 23.9 2002	55.9 104 1947 22.2 2002	60.5 184 1996 22.5 2002	86.0 187 1947 33.8 2002	237 519 1969 51.0 1961	684 1337 1995 135 2000	768 2104 1964 113 2000	208 583 1951 27.2 2000	67.4 163 1951 13.1 2000	56.9 230 1993 18.8 1956
SUMMARY STATIST	CICS	FOR :	2002 CALE	NDAR YEAR	F	OR 2003 W	ATER YEAR		WATER YEARS	1946 -	2003*
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL LOWEST ANNUAL M HIGHEST DAILY M LOWEST DAILY M ANNUAL SEVEN-DA MAXIMUM PEAK FI MAXIMUM PEAK SI INSTANTANEOUS I ANNUAL RUNOFF (10 PERCENT EXCE 90 PERCENT EXCE	EAN EAN AN OW AGE OW FLOW AC-FT) EDS		60433 166 1610 13 18 119900 543 55 21	Jun 16 Mar 8 Jan 25		42703 117 905 15 18 2090 6.2: 84700 319 50 24	Mar 13 Jan 10 Sep 2 Mar 13 Mar 13		203 363 58.3 12500 8.5 11 a15400 b13.50 c8.0 147000 548 74		1961 1961 1964 1964

^{*--}During periods of operation (October 1945 to September 1969, October 1993 to current year). a--From rating curve extended above $7,000~{\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow.

b--From floodmark.

c--Site and datum then in use.

e--Estimated.

06073500 DEARBORN RIVER NEAR CRAIG, MT--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--June 1999 to to current year.

PERIOD OF DAILY RECORD.--August to September 1991, November 1993 to current year.

INSTRUMENTATION.--Temperature recorder installed Nov. 3, 1993.

REMARKS.—Daily water temperature record good. Unpublished records of instantaneous water temperature and specific conductance for many days are available in files of the District office.

EXTREMES FOR PERIOD OF DAILY RECORD .--

WATER TEMPERATURE: Maximum, 28.5°C, Aug. 1, 2, 2000; minimum, 0.0°C on many days during winter.

EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURE: Maximum, 28.0°C, July 19 and Aug. 2; minimum, 0.0°C on many days October through April.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Ammonia Nitrite

	Date APR 2003 08 MAY 27 JUN 16	Time 1050 1530 1045	Instan- taneous dis- charge, cfs (00061) 134 679 218	pH, water, unfltrd field, std units (00400) 8.3 8.4	Specif. conductance, wat unf uS/cm 25 degC (00095) 316 234 283	Temper- ature, air, deg C (00020) 11.0 22.0 24.0	Temper- ature, water, deg C (00010) 5.0 12.0	+ org-N, water, unfltrd mg/L as N (00625) E.10 .22 .12	nitrate water fltrd, mg/L as N (00631) E.014	Nitrite water, fltrd, mg/L as N (00613) <.002 <.002	
	JUL 15	1015	57	8.5	318	30.0	17.0	E.05	<.022	<.002	
			Date	Ortho phos- phate water fltrd mg/L as P (00671	, Phos- , phorus , water unfltr mg/L	, sieve , diamet d percen <.063m	pende sedi- ment r concen t tratio	d Sus- pende sedi- ment n load, tons/	ed : :		
			APR 2003 08	<.007	E.004	69	2	.72	2		
			MAY 27	<.007			98	180			
			JUN 16	<.007	.004	80	5	2.9			
			JUL 15	<.007	E.002	51	13	2.0			
Date	Time		Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	tion ratio	Sodium, water, fltrd, mg/L	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)
MAY 2003 27	1530	130	35.8	9.13	.57	.0	1.14	118	.55	<.2	5.19
JUL 15	1015	170	45.4	13.7	.84	.1	2.55	162	.85	<.2	6.55
Date	water, fltrd, mg/L	mg/L	fltrd, tons/ acre-ft	Residue water, fltrd, tons/d (70302)	water unfltrd ug/L	water, unfltrd ug/L	recover -able, ug/L	recover -able, ug/L	recover -able, ug/L	unfltrd recover -able, ug/L	recover -able, ug/L
MAY 2003	E C	100	1.0	226	-0	2	E (2 0	2 20	1 76	7
27 JUL 15	5.6 11.9	129 179	.18	236 27.5	<2 <2	.3	E.6	3.8 2.6	3.30 E.05	1.76	/ E1
		= 1 2		3						.,,	==

 ${\tt E--Estimated}.$

06073500 DEARBORN RIVER NEAR CRAIG, MT--Continued

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			OVEMBER			ECEMBER			JANUARY	
1 2 3 4 5	10.0 11.5 8.5 10.5 12.0	7.5 4.0 7.0 6.5 7.0	8.5 7.5 7.5 8.0 8.5	0.0 0.5 0.5 1.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.5	4.0 3.5 2.0 0.5 0.5	1.0 1.0 0.0 0.0	2.0 0.5	0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.0	0.5 0.5 0.5 0.5
6 7 8 9 10	12.0 14.5 12.0 13.5 13.0	8.5 8.0 7.5	9.0 11.0 10.0 10.0 9.5	5.5 5.5 4.0 4.5 4.0	0.5 1.5 2.0 2.0	3.0 3.5 3.0 3.5 3.0	1.5 1.5 1.0 1.5 2.0	0.0 0.0 0.0 0.0	0.5 0.5 0.5 0.5	1.5 2.5 2.5 0.5 1.0	0.0 0.5 0.0 0.0	1.0 1.0 1.0 0.0
11 12 13 14 15	10.0 9.0 10.5 10.5	6.0 2.5 4.0 4.0 3.5	7.5 6.0 7.0 7.0	4.5 4.0 6.5 4.5 5.0	1.5 2.0 3.5 2.5 2.0	3.0 3.0 4.5 3.5 3.5	1.0 3.0 4.0 5.0 4.5	0.0 0.0 1.0 2.0 2.0	0.5 1.0 2.5 3.5 3.5	0.5 0.5 0.5 0.0	0.0 0.0 0.0 0.0	0.5 0.0 0.0 0.0
16 17 18 19 20	10.0 11.0 11.0 9.5 11.5	3.5 4.0 4.5 3.5 6.0	7.0 7.5 7.5 7.0 8.5	5.0 4.0 2.5 4.5 8.0	2.5 2.0 1.5 2.0 4.0	3.5 3.0 2.0 3.5 5.5	3.0 2.5 0.5 0.5	1.0 0.0 0.0 0.0	2.0 1.0 0.5 0.5	0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
21 22 23 24 25	10.5 6.0 5.0 7.0 6.5	4.5 3.0 2.5 1.5	7.5 4.0 3.5 4.0 3.5	7.5 6.0 4.5 1.5	4.0 4.5 1.0 0.0 0.0	5.5 5.5 3.0 0.5	0.0 0.5 0.5 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
26 27 28 29 30 31	3.5 5.0 3.5 1.0 0.5	0.5 1.5 0.0 0.0 0.0	2.0 3.5 3.0 0.5 0.5	1.0 3.0 5.5 5.0 3.5	0.0 0.5 0.5 2.0 0.5	0.5 1.5 3.0 4.0 2.0	0.5 0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.5 0.0 0.5 0.5 2.0 5.5	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.5 3.5
MONTH	14.5	0.0	6.0	8.0	0.0	2.5	5.0	0.0	1.0	5.5	0.0	0.5
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5		FEBRUARY 1.0 0.0 0.0 0.0 0.0		0.5 0.5 0.5 0.5 0.5		0.0 0.0 0.0 0.0 0.0	8.5 5.5 6.0 7.5 8.0		6.5 4.0 3.0 4.5 5.5	12.0 11.0 10.5 8.0 10.0		8.5 8.5 8.5 6.0 7.0
2 3 4	4.0 3.5 1.5 1.0 0.5		2.5 1.5 0.5 0.5		0.0 0.0 0.0 0.0			5.5 1.5 0.0 1.5 2.5		12.0 11.0 10.5 8.0 10.0 12.0 12.0 9.5 6.0		
2 3 4 5 6 7 8 9	4.0 3.5 1.5 1.0 0.5 0.5 0.5 1.0	1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.5 1.5 0.5 0.5 0.0 0.0 0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	8.5 5.5 6.0 7.5 8.0	5.5 1.5 0.0 1.5 2.5 3.0 1.5 3.5 5.5		12.0 12.0 9.5 6.0 10.0	5.5 6.0 6.5 5.0 4.0 4.5 5.5 4.5	8.0 8.5 6.5 5.0 6.5 8.5 9.5
2 3 4 5 6 7 8 9 10 11 12 13 14	4.0 3.5 1.5 1.0 0.5 0.5 0.5 1.0 0.5 1.0 0.5 2.0	1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.5 1.5 0.5 0.5 0.0 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.7 2.8	8.5 5.5 6.0 7.5 8.0 8.5 9.0 12.0 13.5 13.0	5.5 1.5 0.0 1.5 2.5 3.0 1.5 3.5 5.5 5.5	5.5 5.0 7.5 9.5 9.0 9.5 9.5 9.0	12.0 12.0 9.5 6.0 10.0 13.0 12.0 14.5 15.0	5.5 6.0 6.5 5.0 4.0 4.5 5.5 4.5 4.5 7.0 6.5 7.0	8.0 8.5 6.5 5.0 6.5 8.5 9.5 10.5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	4.0 3.5 1.5 1.0 0.5 0.5 0.5 1.0 0.5 1.0 2.0 2.0 1.0 4.0 4.5 4.5	1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.5 1.5 0.5 0.5 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0	0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.7 2.8 3.5 4.5 3.5	8.5 5.5 6.0 7.5 8.0 8.5 9.0 12.0 13.5 13.0 11.5 10.5 11.0 8.5	5.5 1.5 0.0 1.5 2.5 3.0 1.5 3.5 5.5 5.5 6.0 7.0 6.5 6.0 3.5 6.0	5.5 5.0 7.5 9.5 9.0 9.5 9.5 9.0 8.5 7.5 6.5 7.5	12.0 12.0 9.5 6.0 10.0 13.0 12.0 14.5 15.0 14.0 11.5 10.0 8.5	5.5 6.0 6.5 5.0 4.0 4.5 5.5 4.5 4.5 7.0 9.0 6.5 7.0 9.0	8.0 8.5 6.5 5.0 6.5 8.5 9.5 11.0 11.5 9.0 7.5 6.5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	4.0 3.5 1.5 1.0 0.5 0.5 0.5 1.0 0.5 1.0 2.0 1.0 4.0 4.5 1.5 2.5	1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.5 1.5 0.5 0.5 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0	0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.1 0.1 0.7 2.8 3.5 4.5 3.5 4.0 5.0 5.0 6.5 5.5 3.5	8.5 5.5 6.0 7.5 8.0 8.5 9.0 12.0 13.5 13.0 11.5 10.5 11.0 8.5 10.5 11.5 10.5 11.5 10.5 11.5 10.5 11.5 11.0 11.5	5.5 1.5 0.0 1.5 2.5 3.5 5.5 5.5 5.5 6.0 7.0 6.5 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 6.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	5.5 5.0 7.5 9.5 9.0 9.5 9.5 9.0 8.5 7.5 7.5 7.5 9.0 8.0 8.0 8.5	12.0 12.0 9.5 6.0 10.0 13.0 12.0 14.5 15.0 14.0 11.5 12.0 12.0 12.0 12.0	5.5 6.0 6.5 5.0 4.0 4.5 5.5 4.5 4.5 7.0 9.0 6.5 7.0 9.0 6.5 5.5 8.0 8.5 8.0 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.0 8.5 6.5 6.5 8.5 9.5 11.0 11.5 9.0 7.5 6.5 7.5 9.0 11.0 11.0 11.0 11.0

06073500 DEARBORN RIVER NEAR CRAIG, MT--Continued

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY		1	AUGUST			SEPTEMBE	R
1 2 3 4 5	15.5 14.0 15.0 13.0 14.0	9.5 9.0 8.0 8.5 8.0	12.0 11.5 11.5 11.0 11.5	24.0 23.0 22.0 22.5 22.5	15.5 15.0 13.0 13.0	19.5 18.5 17.0 17.5 18.0	26.5 28.0 24.0 21.5 24.5	16.0 16.0 18.5 16.0 14.5	21.0 21.5 20.5 19.0 19.0	22.5 22.5 22.0 20.5 21.0	12.5 13.0 12.5 13.0 13.5	17.5 17.5 17.0 17.0
6 7 8 9 10	12.5 16.5 16.0 14.0 16.5	10.0 7.5 10.5 11.5 10.0	11.0 12.0 13.5 12.5 13.0	22.0 24.0 21.0 24.0 25.5	13.0 13.5 15.5 14.0 14.5	17.5 18.5 18.0 19.0 20.0	24.0 26.0 26.0 27.0 26.0	16.0 15.5 16.0 16.0 16.5	19.0 19.5 20.5 21.0 21.5	22.0 22.5 18.0 18.5 18.5	13.5 15.0 14.0 10.5 10.0	17.5 18.0 16.0 14.0 14.0
11 12 13 14 15	15.5 18.5 16.5 20.0 20.5	10.5 10.0 11.0 11.0	13.5 14.5 14.0 15.0 16.5	26.0 26.5 23.5 24.0 26.5	15.5 16.0 17.0 14.5 14.5	20.5 21.0 20.5 19.0 20.0	23.5 22.0 27.0 26.5 25.5	16.0 16.0 15.5 16.0 16.0	20.0 19.0 20.5 21.0 20.5	17.5 17.0 18.5 15.5 13.0	11.0 11.5 11.0 9.5 11.0	13.5 13.5 14.0 12.5 12.0
16 17 18 19 20	21.5 22.5 22.5 20.5 16.5	13.0 14.0 14.5 14.5 13.5	17.0 18.0 18.5 17.5 15.0	27.0 27.0 27.5 28.0 26.5	16.5 17.0 16.5 16.5	21.5 22.0 22.0 22.0 21.5	22.5 24.5 24.5 24.0 24.0	16.5 14.5 16.0 15.5 16.0	19.5 19.0 20.0 19.5 19.5	11.5 10.5 14.0 16.5 17.0	8.5 7.0 5.5 8.5 9.5	10.5 8.5 9.5 12.0 13.0
21 22 23 24 25	17.0 15.5 18.5 14.5 18.0	10.5 10.0 9.5 11.5 9.0	14.0 13.0 13.5 13.0	27.5 27.5 26.5 22.0 23.5	16.5 16.5 16.5 17.0 16.0	21.5 22.0 21.5 18.5 19.0	21.5 22.5 23.0 23.0 24.0	14.0 14.5 15.0 13.5 14.5	18.0 18.0 18.5 18.0	13.5 15.5 14.5 16.5 18.5	9.5 8.0 10.0 9.0 10.5	11.0 11.5 12.0 12.5 14.0
26 27 28 29 30 31	19.5 22.0 21.0 23.0 24.0	12.0 13.5 14.0 13.5 15.5	15.5 17.5 17.5 18.5 19.5	26.5 27.0 27.5 27.0 27.5 26.5	16.5 17.5 16.5 16.5 16.0 16.5	20.5 21.5 21.5 21.5 21.5 21.0	22.5 21.5 22.0 21.5 22.5 22.5	13.5 16.0 12.5 12.5 11.5 12.0	18.0 18.0 16.5 16.5 16.5	18.5 17.5 17.0 15.5 15.5	11.0 9.5 9.0 10.5 7.0	14.5 13.0 12.5 12.0 11.0
MONTH	24.0	7.5	14.5	28.0	13.0	20.0	28.0	11.5	19.0	22.5	5.5	13.5

SMITH RIVER BASIN

06077200 SMITH RIVER BELOW EAGLE CREEK, NEAR FORT LOGAN, MT

 $LOCATION. --Lat\ 46^{\circ}49'41'', long\ 111^{\circ}11'29''\ (NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 2,\ T.12\ S.,\ R.4\ E.,\ Meagher\ County,\ Hydrologic\ Unit\ 10030103,\ on\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 2,\ T.12\ S.,\ R.4\ E.,\ Meagher\ County,\ Hydrologic\ Unit\ 10030103,\ on\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 2,\ T.12\ S.,\ R.4\ E.,\ Meagher\ County,\ Hydrologic\ Unit\ 10030103,\ on\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 2,\ T.12\ S.,\ R.4\ E.,\ Meagher\ County,\ Hydrologic\ Unit\ 10030103,\ on\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 2,\ T.12\ S.,\ R.4\ E.,\ Meagher\ County,\ Hydrologic\ Unit\ 10030103,\ on\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 2,\ T.12\ S.,\ R.4\ E.,\ Meagher\ County,\ Hydrologic\ Unit\ 10030103,\ on\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 2,\ T.12\ S.,\ R.4\ E.,\ Meagher\ County,\ Hydrologic\ Unit\ 10030103,\ on\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 2,\ T.12\ S.,\ R.4\ E.,\ Meagher\ County,\ Hydrologic\ Unit\ 10030103,\ on\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 2,\ T.12\ S.,\ R.4\ E.,\ Meagher\ County,\ Hydrologic\ Unit\ 10030103,\ on\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 2,\ T.12\ S.,\ R.4\ E.,\ Meagher\ County,\ Hydrologic\ Unit\ 10030103,\ on\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 2,\ T.12\ S.,\ R.4\ E.,\ Meagher\ County,\ Hydrologic\ Unit\ 10030103,\ on\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}NW^{1}$ right bank at downstream side of private bridge, 0.6 mi downstream from Eagle Creek, 11.3 mi north of Fort Logan, and at river mile 80.8. DRAINAGE AREA.--1,088 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1996 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 4,350 ft (NGVD 29).

REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. Flow slightly regulated by Smith River Reservoir (station number 06075000). Diversion for irrigation of about 19,300 acres upstream from station. U.S. Geological Survey satellite telemeter at station.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	92 90 93 95 97	e60 e70 e80 e90 e100	e100 e100 e100 e95 e90	e100 e100 e100 e100 e100	e100 e100 e95 e90 e85	e70 e70 e65 e65 e65	369 277 264 225 209	546 547 522 615 601	889 856 775 667 578	154 144 140 132 114	50 50 49 56 59	49 47 47 48 46	
6 7 8 9 10	97 94 92 90 89	e110 e120 e130 e130 e125	e90 e85 e80 e80 e85	e95 e90 e85 e80 e75	e80 e75 e80 e85 e90	e60 e60 e65 e70	192 174 170 220 369	569 537 504 470 450	557 549 483 447 435	102 100 102 106 104	60 59 56 56 56	48 50 54 60	
11 12 13 14 15	88 89 89 90	e120 e115 112 109 106	e90 e95 e100 e110 e110	e80 e85 e95 e90 e85	e85 e80 e75 e80 e80	e90 e200 e1000 e2000 1130	371 400 422 456 503	424 417 463 452 491	459 437 382 362 349	99 96 85 79 76	55 58 58 54 52	63 81 103 91 84	
16 17 18 19 20	90 91 93 92 94	e105 e100 104 113 115	e100 e95 e90 e85 e80	e80 e75 e80 e90 e95	e85 e85 e85 e85 e85	552 354 263 231 199	443 389 375 371 345	562 561 574 553 520	329 315 297 283 281	75 68 66 64 58	48 47 46 47 49	91 110 100 93 90	
21 22 23 24 25	93 94 85 85 76	116 114 120 e115 e100	e80 e80 e80 e80 e80	e85 e75 e80 e90 e90	e80 e70 e55 e60 e65	180 180 272 238 185	357 396 473 904 901	489 476 518 578 693	281 274 255 242 248	60 61 58 53 55	49 45 45 45 43	89 90 88 88 89	
26 27 28 29 30 31	84 92 103 89 71 e65	e110 e120 e110 e105 e100	e85 e90 e100 e110 e100 e100	e90 e100 e150 e130 e110 e110	e65 e65 e70 	157 148 139 133 145 267	853 746 650 582 561	815 879 894 904 908 938	240 207 189 179 168	59 61 62 57 53 50	43 45 51 50 50	87 86 90 87 88	
TOTAL MEAN MAX MIN AC-FT	2772 89.4 103 65 5500	3224 107 130 60 6390	2845 91.8 110 80 5640	2890 93.2 150 75 5730	2235 79.8 100 55 4430	8713 281 2000 60 17280	12967 432 904 170 25720	18470 596 938 417 36640 CR YEAR (WY)	12013 400 889 168 23830	2593 83.6 154 50 5140	1582 51.0 60 43 3140	2297 76.6 110 46 4560	
MEAN MAX (WY) MIN (WY)	126 213 1998 67.0 2002	127 185 1999 73.6 2002	112 167 1998 67.5 2002	126 249 1997 66.9 2002	111 145 1997 65.8 2002	170 281 2003 71.5 2002	246 432 2003 134 2002	464 1119 1997 249 2002	586 1893 1997 152 2001	256 607 1998 83.6 2003	116 276 1997 43.7 2000	105 219 1997 53.6 2001	
SUMMARY	STATIST	ICS	FOR 2	2002 CALEI	NDAR YEAR	1	FOR 2003	WATER YEAR		WATER YEARS	1997 -	2003	
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL 10 PERC 50 PERC	MEAN ANNUAL MANNUAL MANNUAL MAILY MAILY MAILY MAILY MAILY MAILY MEA	EAN EAN AN Y MINIMUM OW AGE DW FLOW AC-FT) EDS EDS		52898 145 1020 55 59 104900 362 95 65	Jun 23 Feb 25 Feb 25		72601 199 2000 43 45 a2000 b8. c40 144000 528 95 56	Mar 14 Aug 25 Aug 21 Mar 14 19 Mar 13 Aug 26		212 458 109 3510 31 32 d3900 9.30 28 153700 422 130 65	Jun 12 Aug 25 Aug 25 Jun 12 Jan 1 Aug 26	2000 2000 1997 1997	

a--Estimated daily discharge, occurred during period of ice affected stage-discharge relation. b--Backwater from ice. c--Gage height, 2.73 ft. d--Gage height, 7.00 ft. e--Estimated.

SMITH RIVER BASIN

06077200 SMITH RIVER BELOW EAGLE CREEK, NEAR FORT LOGAN, MT--Continued WATER-QUALITY RECORDS

PERIOD OF DAILY RECORD.--Water years 1997 to present. Data for water years 1997 to 2001 not published.

INSTRUMENTATION.--Water temperature recorder installed Nov. 4, 1997.

REMARKS.--Daily water temperature record good except for ice-affected days in March and April, which are fair. Several observations of water temperature and specific conductance were made during the water year.

EXTREMES FOR PERIOD OF DAILY RECORD.--

WATER TEMPERATURE: Maximum, 27.5°C, July 14, 2002; minimum 0.0°C, many days during winter months.

EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURE: Maximum, 26.5°C, July 17-19, 21-22, Aug. 2, 14; minimum 0.0°C, many days October through March.

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	OCTOBER			NO	NOVEMBER			CEMBER			JANUARY	
1 2 3 4 5	9.0 9.5 6.5 7.5 9.5	6.5 4.0 4.5 5.5 6.0	7.5 6.5 5.5 6.5 7.0	0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.0							
6 7 8 9 10	8.5 11.5 11.5 11.5 10.0	5.5 6.5 7.5 6.5 5.5	7.0 8.5 9.5 8.5 7.5	0.5 0.5 0.5 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.5 0.0 0.0 0.0
11 12 13 14 15	8.0 6.5 7.0 7.5 6.5	4.5 2.0 2.0 2.5 2.5	6.5 4.0 4.5 5.0 4.5	0.5 0.5 2.0 1.5 2.0	0.0 0.0 0.5 0.0	0.0 0.0 1.0 0.5 1.0	0.0 0.0 0.0 2.5 2.5	0.0 0.0 0.0 0.0 1.5	0.0 0.0 0.0 0.5 2.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
16 17 18 19 20	7.0 7.0 7.5 6.5 8.0	3.0 2.5 3.0 2.5 4.0	5.0 4.5 5.0 4.5 6.0	1.0 1.5 1.0 2.0 4.0	0.0 0.0 0.0 0.0 1.0	0.5 0.5 0.5 1.0 2.5	2.5 2.5 2.5 0.5 0.0	2.0 2.5 0.5 0.0	2.5 2.5 1.5 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.5
21 22 23 24 25	7.5 5.5 3.0 4.0 3.5	4.0 3.0 1.5 1.5	6.0 4.0 2.5 2.5	3.5 2.5 2.5 0.0 0.0	1.5 1.5 0.0 0.0	2.5 2.0 1.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.5 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.0 0.0 0.0 0.0 0.0
26 27 28 29 30 31	2.5 3.0 2.5 1.0 0.5	0.5 0.5 1.0 0.5 0.5	1.0 1.5 2.0 0.5 0.5	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	1.0 1.0 1.0 0.0 0.5	0.0 0.5 0.0 0.0 0.0	0.0 0.5 0.5 0.0 0.0
MONTH	11.5	0.0	4.5	4.0	0.0	0.5	2.5	0.0	0.5	1.5	0.0	0.0

SMITH RIVER BASIN

06077200 SMITH RIVER BELOW EAGLE CREEK, NEAR FORT LOGAN, MT--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	0.5 0.5 0.5 0.5	0.5 0.5 0.0 0.0	0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	5.5 6.0 5.0 6.0 8.0	3.5 2.5 2.0 2.0 3.0	4.5 4.5 3.0 4.0 5.0	8.5 9.5 8.0 8.0 7.0	4.5 6.0 5.0 6.0 4.5	6.5 7.5 7.0 7.0 6.0
6 7 8 9 10	0.5 0.0 0.0 0.5 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	7.5 8.0 10.0 11.5 12.0	3.0 2.5 3.5 4.0 5.0	5.0 5.0 6.0 7.5 8.0	8.0 9.5 8.0 9.0 7.5	3.5 5.0 5.0 5.0 5.5	5.5 7.0 6.5 7.0 6.5
11 12 13 14 15	0.5 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.5 0.0 0.0 0.5 2.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 1.0	11.5 9.5 8.5 7.5 6.0	5.5 4.0 4.5 5.0 4.0	8.0 7.0 6.5 6.0 5.0	10.5 10.0 11.0 13.5 12.5	4.5 8.0 7.0 7.0 9.0	7.5 9.0 9.0 10.0 11.0
16 17 18 19 20	1.0 2.5 1.5 0.5	0.0 0.5 0.5 0.5	0.0 1.0 1.0 0.5	2.5 3.0 2.5 6.5 5.5	1.0 0.0 0.5 1.0 2.0	1.5 1.5 1.5 3.0 4.0	7.0 7.0 7.5 10.5 10.5	2.5 3.5 5.0 4.5 5.0	5.0 5.5 6.0 7.0 8.0	11.0 10.5 9.0 10.0 10.5	8.0 6.5 6.0 4.0 5.5	9.5 8.5 6.5 7.0 8.0
21 22 23 24 25	0.5 0.5 0.0 0.0	0.5 0.0 0.0 0.0	0.5 0.5 0.0 0.0	5.5 6.0 6.0 4.5 4.0	3.5 3.5 3.5 2.0 3.0	4.5 5.0 4.5 3.5 3.5	11.0 10.5 9.5 9.0 8.5	5.5 6.0 7.0 5.0 6.0	8.0 8.5 8.5 7.0 7.5	11.5 13.5 14.5 16.0 16.0	8.5 9.0 10.0 10.0 11.5	10.0 11.0 12.5 13.0 14.0
26 27 28 29 30 31	0.0 0.0 0.0 	0.0 0.0 0.0 	0.0 0.0 0.0 	5.0 6.0 6.0 7.0 9.5 9.0	3.0 2.5 2.5 2.5 4.0 3.5	4.0 4.0 4.5 6.5 5.5	7.5 7.0 6.5 6.5 7.0	5.0 3.0 4.0 4.0 5.0	6.0 5.0 5.0 5.0 6.0	14.5 15.0 16.0 17.0 15.5 14.0	11.5 10.5 10.5 12.5 12.5 11.0	13.0 12.5 13.5 15.0 13.5 12.5
MONTH	2.5	0.0	0.0	9.5	0.0	2.0	12.0	2.0	6.0	17.0	3.5	9.5
		JUNE			JULY			AUGUST			SEPTEMBE	
1 2 3 4 5	14.5 13.5 13.0 12.0 13.5	JUNE 11.5 11.0 9.0 9.0 9.0	13.0 12.0 11.0 10.5 11.0	24.0 23.0 19.5 21.5 21.5	JULY 16.5 16.5 15.5 13.5 13.5	20.0 19.5 17.5 17.5	25.5 26.5 23.5 24.0 24.0	AUGUST 16.5 17.5 18.0 18.0 15.0	21.0 22.0 21.0 20.5 19.5	21.0 21.5 21.0 20.5 19.0	12.0 13.0 12.5 12.5 13.0	16.5 16.5 16.5 16.0 16.0
1 2 3 4	13.5 13.0 12.0	11.5 11.0 9.0 9.0	12.0 11.0 10.5	23.0 19.5 21.5	16.5 16.5 15.5 13.5	19.5 17.5 17.5	25.5 26.5 23.5 24.0	16.5 17.5 18.0 18.0	22.0 21.0 20.5	21.0 21.5 21.0 20.5	12.0 13.0 12.5 12.5	16.5 16.5 16.5 16.0
1 2 3 4 5 6 7 8	13.5 13.0 12.0 13.5 12.0 14.5 16.0 15.0	11.5 11.0 9.0 9.0 9.0 9.5 8.0 10.5 12.5 12.5	12.0 11.0 10.5 11.0 10.5 11.0 13.0 13.5 14.5	23.0 19.5 21.5 21.5 21.5 23.0 20.0 22.5	16.5 16.5 15.5 13.5 13.5 14.5 15.0 17.0 13.5	19.5 17.5 17.5 17.5 18.0 19.0 18.5 18.0	25.5 26.5 23.5 24.0 24.0 25.0 24.5 25.5 26.0	16.5 17.5 18.0 18.0 15.0	22.0 21.0 20.5 19.5 20.0 20.0 20.5 21.0	21.0 21.5 21.0 20.5 19.0 18.0 19.0 17.5 18.0 16.5	12.0 13.0 12.5 12.5 13.0 13.5 14.0 14.0	16.5 16.5 16.0 16.0 16.0 16.5 15.5 14.0 13.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14	13.5 13.0 12.0 13.5 12.0 14.5 16.0 15.0 17.0 15.5 17.5 17.5 17.5	11.5 11.0 9.0 9.0 9.0 9.5 8.0 10.5 12.5 12.5 12.5	12.0 11.0 10.5 11.0 10.5 11.0 13.5 14.5 14.0 14.0 15.0	23.0 19.5 21.5 21.5 21.5 23.0 20.0 22.5 24.0 25.0 26.0 25.0 24.0	16.5 16.5 13.5 13.5 13.5 14.5 17.0 13.5 15.5 16.5 17.5 18.0 15.5	19.5 17.5 17.5 17.5 18.0 19.0 18.5 18.0 19.5	25.5 26.5 23.5 24.0 24.0 25.0 24.5 25.5 26.0 24.0 22.0 24.5 26.5	16.5 17.5 18.0 18.0 15.0 16.5 16.5 16.5 16.5 16.5 17.0 15.5	22.0 21.0 20.5 19.5 20.0 20.0 20.5 21.0 21.0 20.5 19.0 19.5 21.0	21.0 21.5 21.0 20.5 19.0 18.0 19.0 17.5 18.0 16.5	12.0 13.0 12.5 12.5 13.0 13.5 14.0 11.0 10.5	16.5 16.5 16.5 16.0 16.0 16.0 16.5 15.5 14.0 13.0 12.5 12.0 11.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	13.5 13.0 12.0 13.5 12.0 14.5 16.0 15.0 17.5 17.5 17.5 18.5 20.5 20.0 22.0 20.0	11.5 11.0 9.0 9.0 9.0 9.5 8.0 10.5 12.5 12.5 12.5 12.5 12.5 13.5	12.0 11.0 10.5 11.0 10.5 11.0 13.0 13.5 14.5 14.0 15.0 16.0 17.0 18.0 18.5 18.0	23.0 19.5 21.5 21.5 21.5 23.0 20.0 22.5 24.0 25.0 24.0 25.0 24.0 26.5 26.5	16.5 16.5 13.5 13.5 13.5 14.5 15.0 17.0 13.5 15.5 16.5 17.5 18.0 17.5 18.0 17.5 18.0	19.5 17.5 17.5 17.5 18.0 19.0 18.5 18.0 19.5 20.5 21.5 21.5 22.0 22.5 22.5	25.5 26.5 23.5 24.0 24.0 24.0 25.0 24.5 25.5 26.0 24.5 26.5 25.5 26.5 25.5	16.5 17.5 18.0 18.0 15.0 16.5 16.5 16.5 16.5 17.0 17.0 17.0 18.0 16.5 15.5	22.0 21.0 20.5 19.5 20.0 20.0 20.5 21.0 21.0 20.5 19.5 21.0 21.0 21.0	21.0 21.5 21.0 20.5 19.0 18.0 19.0 17.5 18.0 16.5 14.5 13.5 14.0 13.5	12.0 13.0 12.5 12.5 13.0 13.5 14.0 11.0 10.5 10.5 11.0 9.5 7.5 10.5 8.5 6.5 5.5	16.5 16.5 16.0 16.0 16.0 16.5 15.5 14.0 13.0 12.5 12.0 11.5 11.0 11.5 8.0 8.5 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	13.5 13.0 12.0 13.5 12.0 14.5 16.0 17.0 17.5 17.5 17.5 17.0 20.5 20.0 22.0 22.0 22.0 17.0 15.5 16.0	11.5 11.0 9.0 9.0 9.0 9.5 8.0 10.5 12.5 12.5 12.5 12.5 13.5 14.0 15.5 15.5 16.0 14.0	12.0 11.0 10.5 11.0 10.5 11.0 13.0 13.5 14.5 14.0 15.0 16.0 17.0 18.5 18.0 16.0 14.0 12.5 14.0	23.0 19.5 21.5 21.5 21.5 23.0 20.0 22.5 24.0 25.0 24.0 25.0 26.5 26.5 26.5 26.5 26.5 26.5 26.5 26.5	16.5 16.5 13.5 13.5 13.5 14.5 17.0 13.5 15.5 16.5 17.5 16.0 17.5 18.0 17.5 18.0 17.5 18.5 17.5 17.5	19.5 17.5 17.5 17.5 18.0 19.0 18.5 18.0 19.5 20.5 21.5 21.0 19.5 22.5 22.5 22.5 22.5 21.5	25.5 26.5 23.5 24.0 24.0 25.0 24.5 25.5 26.0 24.0 22.0 24.5 25.5 25.5 26.5 25.5 25.5 26.5 23.0 24.0 24.0 24.0 24.0	16.5 17.5 18.0 18.0 15.0 16.5 16.5 16.5 16.5 17.0 17.0 17.0 18.0 15.5 17.0 17.0 15.5 17.0 17.0	22.0 21.0 20.5 19.5 20.0 20.0 20.5 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	21.0 21.5 21.0 20.5 19.0 18.0 19.0 17.5 18.0 16.5 14.5 14.0 13.5 12.5 9.5 12.0 11.0 13.5 14.0 13.5	12.0 13.0 12.5 12.5 13.0 13.5 14.0 11.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	16.5 16.5 16.0 16.0 16.0 16.5 15.5 14.0 13.0 12.5 12.0 11.5 11.0 8.5 8.5 8.5 10.0

06078200 MISSOURI RIVER NEAR ULM, MT

LOCATION (REVISED).--Lat 47°26′09", long 111°23′12" (NAD 27), in NE¹/₄NW¹/₄NW¹/₄NW¹/₄ sec.5, T.19 N., R.3 E., Cascade County, Hydrologic Unit 10030102, on left bank 5.6 mi east of Ulm, 9.1 mi downstream from Smith River, and at river mile 2,140.4.

DRAINAGE AREA.--20,941 mi².

PERIOD OF RECORD.--August 1957 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 3,313.27 ft (NGVD 29).

REMARKS.—Records good except those for estimated daily discharges, which are fair. Flow regulated by 10 smaller irrigation reservoirs and power plants, Clark Canyon Reservoir (station number 06015300), and Canyon Ferry Lake (station number 06058500). Diversions for irrigation of about 630,400 acres upstream from station. U.S. Army Corps of Engineers satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1953 reached a stage of about 17 ft; discharge, 35,000 ft³/s. Flood in June 1948 reached a stage of about 16 ft; discharge, 32,000 ft³/s, from information by local residents.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3160	3210	3670	e3900	e3800	e3900	4120	5290	9470	5770	3630	2980
2	3170	3200	3660	e3900	3940	e3900	4440	5430	9370	5740	3630	2960
3 4	3190 3200	3190 3180	3750 3780	e3900 e3850	3980 3990	e4000 e4000	4540 4450	5320 5340	9780 10600	5590 5240	3630 3640	2910 2890
5	3110	3170	3750	3850	3980	e3900	4340	5440	11100	4870	3630	2900
6 7	3100 3120	3140 3170	3790 3840	3820 3770	3980 e3950	e3900 e3900	4280 4260	5520 5510	10300 8820	4640 4510	3650 3670	2900 2920
8	3140	3370	3860	3770	e3900	e3900	4210	5500	7460	4320	3670	2970
9 10	3150 3120	3500 3820	3760 3700	3820 3580	e3900 3900	e3900 e3900	4190 4190	5590 5860	6670 6560	4220 4270	3610 3320	3010 3000
11	3100	3940	3610	e3700	3870	e3900	4400	6000	6780	4340	3240	3060
12 13	3130 3190	3870 3720	3630 3730	e3800 e3800	3850 3920	e3900 e4000	4590 4760	5990 6020	6810 6680	4370 4420	3250 3160	2970 3030
14	3160	3650	3850	e3800	3890	e4500	5050	6120	6480	4360	3050	3120
15	3160	3620	3920	e3800	3840	8880	5300	6450	6340	4210	2950	3100
16 17	3170 3180	3650 3750	3900 3800	e3800 e3800	3850 3920	6830 6010	5440 5240	7240 7660	6240 6170	4210 4250	2840 2830	3070 3110
18 19	3180 3200	3820 3900	3690 3660	e3800 e3800	3890 3870	5560 5070	5040 5000	7830 7450	6120 6100	4140 3860	2890 3000	3130 3120
20	3210	3810	3740	e3900	3720	4490	4940	7320	6130	3670	3120	3120
21	3230	3780	e3800	e3900	3720	4230	4850	7270	6150	3580	3260	3120
22 23	3220 3180	3770 3760	e3800 e3800	e3900 e3900	e3750 e3800	4050 4030	4790 4800	7140 6920	6100 6070	3570 3560	3290 3320	3140 3110
24	3170	3800	e3800	e4000	e3800	4150 4270	4940 5460	6880 7100	6100	3550	3280	3110 3070
25	3200	3810	e3800	e3900	e3800				6160	3530	3280	
26 27	3260 3300	3810 3820	e3800 e3750	e3800 e3700	e3800 e3800	4210 4200	5660 5600	7500 7890	6200 6200	3590 3590	3270 3280	3000 3030
28 29	3240 3260	3820 3770	e3700 e3700	e3700 e3700	e3800	4160 4130	5450 5340	8270 8910	6150 6040	3510 3510	3290 3250	3040 3080
30	3290	3730	e3700	e3700		4090	5210	9510	5930	3530	3100	3100
31	3240		e3800	e3700		4050		9770		3550	3000	
TOTAL MEAN	98730 3185	108550 3618	116540 3759	118060 3808	108210 3865	137910 4449	144880 4829	210040 6775	215080 7169	130070 4196	102030 3291	91070 3036
MAX	3300	3940	3920	4000	3990	8880	5660	9770	11100	5770	3670	3140
MIN AC-FT	3100 195800	3140 215300	3610 231200	3580 234200	3720 214600	3900 273500	4120 287400	5290 416600	5930 426600	3510 258000	2830 202400	2890 180600
STATIST	TICS OF N	MONTHLY ME	EAN DATA	FOR WATER	YEARS 195	7 - 2003	, BY WATE	R YEAR (W	Υ)			
MEAN	4931	5303	5529	5638	5756	5886	6532	8957	10870	7375	4853	4608
MAX	11230 1966	9497 1966	10690 1960	7213 1984	9501 1996	9652 1968	12070	19800 1976	24260 1981	19480 1975	8741 1993	9990
(WY) MIN	2977	3090	3095	3129	3096	3152	1976 3070	3501	2965	2868	2990	1984 2283
(WY)	2002	2002	2002	2002	2002	2002	1961	1961	1961	1985	2000	1959
SUMMAR	Y STATIST	rics	FOR	2002 CAL	ENDAR YEAR		FOR 2003	WATER YEA	R	WATER YEA	ARS 1957 -	2003
ANNUAL ANNUAL				1312610 3596			1581170 4332			6353		
HIGHEST	r annual			3390			4332			9653		1976
	ANNUAL N DAILY N			9790	Jun 12		11100	Jun	5	3479 28200	May 24	2002 1981
LOWEST	DAILY ME	MEAN EAN AY MINIMUN		2850	Sep 20		2830 2920	Aug 1	7	1700	Jun 17	1961
MAXIMU	M PEAK FI	LOW	1	2890	Sep 18		11100	Jun	5	3479 28200 1700 2150 a28500 15.2	Sep 4 May 24	1981
MAXIMUI ANNIJAT	M PEAK ST	TAGE (AC-FT)		2604000			7. 3136000	86 Jun	5	15.2 4603000	20 Jun 17	1997
TO PER	CEMI EVCE	מעשי		4330			6200			10000		
	CENT EXCE			3260 3090			3820 3120			5580 3390		

a--Gage height, 14.99 ft.

e--Estimated.

Figure 10. Schematic diagram showing diversions and storage in Sun River Basin.

SUN RIVER BASIN

06085800 SUN RIVER AT SIMMS, MT

LOCATION.--Lat 47°30'06", long 111°55'56" (NAD 27), in NW¹/₄NW¹/₄SE¹/₄ sec. 12, T. 20 N., R.3 W., Cascade County, Hydrologic Unit 10030104, on left bank 5 ft downstream from bridge on Montana Secondary Highway 565, 0.7 mi downstream from Simms Creek, 0.7 mi north of Simms, and at river mile 45.0.

DRAINAGE AREA.--1,320 mi².

PERIOD OF RECORD.--May to June 1953 (in WSP 1320-B), May to June 1964 (in WSP 1840-B), April 1966 to September 1979, April 1997 to current

REVISED RECORDS.--WDR MT-75-1: 1964 (M).

GAGE.--Water-stage recorder. Elevation of gage is 3,570 ft (NGVD 29). May 1941 to October 1965, nonrecording gage at different elevation. April 1966 to September 1979, water-stage recorder at site about 500 ft downstream at different elevation.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated by Gibson, Pishkun, Willow Creek, and Nilan Reservoirs. Diversions for irrigation of about 105,000 acres upstream from station. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC APR MAY JUN JUL AUG SEP JAN FEB MAR e160 e170 e150 e160 e130 e170 e150 239 e170 e160 e140 e180 e150 e170 e140 e130 e190 e140 e170 e150 e120 e200 e150 e170 e150 e130 e600 e160 e170 e150 e120 e300 e160 e160 e110 e150 167 313 e400 37 117 e160 e160 e140 e110 e500 e170 e150 e140 e120 e600 e170 e140 e140 e140 e150 e140 e160 e150 e160 e160 e170 e150 e150 e200 e170 e150 e140 e170 e150 e160 e160 171 e150 e160 e150 e150 e150 e150 e170 e140 2.0 e130 e160 e140 e140 e130 e130 e130 e130 e120 e170 e130 e140 e100 e150 e150 e130 e110 e160 e140 e130 e120 27 e160 e150 e140 e130 e180 e160 e160 e120 e190 e160 e130 e170 e160 e150 175 77 e160 e160 e170 e150 e150 e150 e170 TOTAL MEAN 44.3 56.6 88.8 MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1966 2003, BY WATER YEAR (WY) MEAN MAX (WY) 89.0 49.3 MTN 96.3 80.9 72.1 44.3 48.8 (WY) SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1966 2003* ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN Jun 20 HIGHEST DAILY MEAN Jun 11 May 30 LOWEST DAILY MEAN Jul 12 May Sep May ANNUAL SEVEN-DAY MINIMUM Jul 1 Sep May 27 MAXIMUM PEAK FLOW Jun b13.70 MAXIMUM PEAK STAGE May 27 Jul 12 5.88 INSTANTANEOUS LOW FLOW a24 ANNUAL RUNOFF (AC-FT)

10 PERCENT EXCEEDS

50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

^{*--}During periods of operation (April 1966 to September 1979, April 1997 to current year).

a--Gage height, 0.58 ft.

b--About, from floodmark.

e--Estimated.

SUN RIVER BASIN

06088300 MUDDY CREEK NEAR VAUGHN, MT

LOCATION.--Lat 47°37'30", long 111°38'05" (NAD 27), in NE¹/₄NE¹/₄NW¹/₄ sec. 32, T. 22 N., R.1 E., Cascade County, Hydrologic Unit 10030104, on left bank 200 ft downstream from bridge on county road 6.2 mi northwest of Vaughn and at mile 14.6 DRAINAGE AREA.--282 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1968 to September 1987, March 1996 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 3,441.79 ft (NGVD 29) (levels by U.S. Army Corps of Engineers).

REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. Natural flow increased by wastage from Greenfield Irrigation Project. Diversions for irrigation of about 400 acres upstream from station and pumped diversions from Muddy Creek upstream from station in SW¹/₄ sec. 2, T. 22 N., R.1 W, to supplement water supply for Benton Lake Wildlife Refuge. Bureau of Reclamation satellite telemeter at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAILY MEAN VALUES NOV FEB DAY OCT DEC JAN MAY JUL AUG SEP e48 e33 e25 e35 177 e52 e38 e30 e27 e55 e38 e40 e27 e22 e60 e35 e38 e24 e24 e65 e25 e40 e22 e20 e35 e42 e33 e24 e18 e45 e30 e22 e18 e48 e25 e22 e20 . 253 e22 e25 e22 e30 13 57 55 e32 27 127 188 217 e48 e23 e50 e25 e100 e30 e28 e23 e80 e23 e30 e60 e28 e25 e30 e28 e28 e28 e25 25 e28 e30 e23 e27 e25 e20 e27 e17 47 32 21 e27 e20 e15 e27 e22 e15 e40 e30 e22 e20 e22 e35 e37 e30 e20 2.8 e28 e22 e35 e27 e50 e30 ___ e45 e33 e35 TOTAL 53.2 22.6 MEAN 59.8 28.9 33.6 25.3 27 MAX MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1968 - 2003, BY WATER YEAR (WY)* MEAN 76.2 54.3 41.6 58.5 33.2 35.5 65.1 58.8 40.4 162 71.4 59.8 MAX (WY) MTN 40.8 34.9 21.7 19.3 17.5 23.4 21.3 56.3 42.1 (WY) FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR SUMMARY STATISTICS WATER YEARS 1968 - 2003* ANNUAL TOTAL ANNUAL MEAN 99.0 80.1

77.2

8.0

May 7 Dec 8

Dec

May

7 1975

8 1972

22 1981

May 22 1981

Jun 11

Jan 28

Mar

4.50

Jun 21

Feb 20

Jun 24

2.4

Feb

Jun

2.0

HIGHEST ANNUAL MEAN

LOWEST ANNUAL MEAN

HIGHEST DAILY MEAN

ANNUAL SEVEN-DAY MINIMUM

LOWEST DAILY MEAN

MAXIMUM PEAK FLOW

MAXIMUM PEAK STAGE

10 PERCENT EXCEEDS

90 PERCENT EXCEEDS

ANNUAL RUNOFF (AC-FT)

^{*--}During periods of operation (July 1968 to September 1987, March 1996 to current year). a--From floodmark.

a--From floodmar! e--Estimated.

SUN RIVER BASIN

06088300 MUDDY CREEK NEAR VAUGHN, MT--Continued

PERIOD OF RECORD.--Water years 1968 to September 1982, March 1996 to current year. PERIOD OF DAILY RECORD.--

SPECIFIC CONDUCTANCE: July 1968 to September 1982.

SUSPENDED-SEDIMENT DISCHARGE: July 1968 to September 1982.

REMARKS.--Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office. EXTREMES FOR PERIOD OF DAILY RECORD.--

SPECIFIC CONDUCTANCE: Maximum daily, 6,400 microsiemens per centimeter (μS/cm) Apr. 29, 1976; minimum daily, 365 μS/cm Feb. 20, 1969.

SEDIMENT CONCENTRATION: Maximum daily mean, 13,000 mg/L, Mar. 18, 1978; minimum daily mean observed, 11 mg/L, Oct. 19, 1968, Oct. 19, 1972, Oct. 30, 1973.

SEDIMENT LOAD: Maximum daily, 63,900 tons, May 22, 1981; minimum daily, 0.84 ton, Jan. 8, 1973.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper-	Ammonia + org-N, water, unfltrd mg/L as N (00625)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)
NOV 2002 14	1500	54	8.5	917	11.0	4.0	. 23	E.011	3.29	.015
JAN 2003 15	0930	34	8.2	962	0.0	0.0	.27	.022	4.01	.014
MAR 12	1150	26	8.0	960	11.0	0.0	.21	.028	.796	.004
APR 10	0820	21	8.6	1180	3.0	7.0	.49	.019	2.28	.020
MAY 28	1830	59	8.5	547	29.0	22.0	.93	.055	.583	.014
JUN 18	0800	219	8.5	507	21.0	16.0	1.0	.021	.973	.011
JUL 15	1540	241	8.8	587	35.0	21.0	.79	<.015	1.14	.011
AUG 20	0815	73	8.4	815	18.0	17.0	.39	<.015	1.48	.013
SEP 09	1100	38	8.4	895	14.0	13.0	.35	E.011	1.42	.008
		Date	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Phos- phorus, water, unfltrd mg/L (00665)	Selen- ium, water, unfltrd ug/L (01147)	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)	pended sedi- ment concen- tration mg/L	pended sedi- ment load, tons/d	1	
		NOV 2002 14 JAN 2003	<.007	.013	2.7	82	40	5.8		
		15 MAR	E.004	.017	2.9	85	16	1.5		
		12	<.007	.010	.8	74	15	1.1		
		APR 10	<.007	.029	3.4	83	30	1.7		
		MAY 28	.010	.168	1.6	96	154	25		
		JUN 18	.033	.340	1.1	75	319	189		
		JUL 15	.062	.183	1.5	70	107	70		
		AUG 20	<.007	.015	2.2	75	8	1.6		
		SEP 09	<.007	.012	2.0	58	15	1.5		

E--Estimated.

06088500 MUDDY CREEK AT VAUGHN, MT

LOCATION.--Lat $47^{\circ}33'40''$, long $111^{\circ}32'15''$ (NAD 27), in $SW^1/_4SE^1/_4NE^1/_4$ sec.24, T.21 N., R.1 E., Cascade County, Hydrologic Unit 10030104, on left bank at Vaughn, and at river mile 1.1.

DRAINAGE AREA.--314 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1925 to January 1926, April 1934 to September 1968, July 1971 to current year.

REVISED RECORDS.--WSP 856: 1937. WSP 1509: 1934-35, 1941(M). WSP 1559: 1956. WSP 1629: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 3,330 ft (NGVD 29). May 21, 1925 to Feb. 8, 1926, nonrecording gage at site 500 ft downstream at different elevation. Apr. 19, 1925 to Sept. 30, 1955, at previous site at elevation. May 18, 1955 to Apr. 25, 1960 and Sept. 24, 1962 to Sept. 30, 1968, auxiliary crest-stage gage. Oct. 1, 1955 to Sept. 30, 1968, nonrecording gage at bridge 670 ft upstream at previous elevation. July 1, 1971 to May 9, 1996, 700 ft upstream at previous elevation.

REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. Natural flow increased by wastage from Sun River Canal and by return flow from irrigation. Diversions for irrigation of about 700 acres upstream from station. Bureau of Reclamation satellite telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1908 reached a stage of about 24 ft, previous elevation (discharge not determined); flood in June 1932 reached a stage of about 19 ft, previous elevation (discharge not determined); from information by local residents.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e52 e40 e38 e28 115 e55 e42 e35 e32 e25 28 221 244 e45 e60 e45 e30 e70 e42 e40 e25 e30 77 74 e45 e40 e25 e25 e48 e38 e27 e20 2.7 e35 e52 e25 e20 e25 e25 e25 e30 e30 e25 e40 2.7 e37 e27 e80 e35 e30 e150 e120 e33 e35 e28 e52 e33 e30 e45 e32 e32 e35 e32 e30 e32 **e35** e28 e30 e30 e25 e30 e25 e20 e22 e30 e18 e30 e25 e17 e32 e22 e20 2.8 e35 e25 e23 e25 e55 e37 e30 e40 e35 e22 e32 e42 e25 e40 e30 e55 e38 e35 e50 e38 e40 ___ TOTAL 81.0 118 61.3 43.8 33.2 26.2 41.5 29.3 97.9 195 419 314 302 MEAN 97.0 138 MAX MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1925 2003, BY WATER YEAR (WY)* MEAN 99.7 60.0 44.2 34.4 37.2 54.7 41.6 68.5 1997 17.3 96.9 MAX 26.3 30.7 18.3 52.6 86.0 40.2 (WY) 16.8 10.0 22.4 52.1 44.0 MIN

06088500 MUDDY CREEK AT VAUGHN, MT--Continued

SUMMARY STATISTICS	FOR 2002 CALEN	NDAR YEAR	FOR 2003 WAT	TER YEAR	WATER YEARS	1925 - 2003*
ANNUAL TOTAL	47346		36969			
ANNUAL MEAN	130		101		125	
HIGHEST ANNUAL MEAN					185	1975
LOWEST ANNUAL MEAN					61.2	1936
HIGHEST DAILY MEAN	1150	Jun 11	419	Jun 21	3500	Jun 4 1953
LOWEST DAILY MEAN	17	Jan 28	17	Feb 23	4.8	Mar 29 1977
ANNUAL SEVEN-DAY MINIMUM	20	Mar 4	21	Feb 21	7.0	Jan 24 1936
MAXIMUM PEAK FLOW			438	Jun 21	a7600	Jun 4 1953
MAXIMUM PEAK STAGE			5.42	Jun 21	b17.70	Jun 4 1953
INSTANTANEOUS LOW FLOW					c2.0	Mar 16 1972
ANNUAL RUNOFF (AC-FT)	93910		73330		90260	
10 PERCENT EXCEEDS	309		258		293	
50 PERCENT EXCEEDS	62		62		70	
90 PERCENT EXCEEDS	24		27		26	

^{*--}During periods of operation (June 1925 to January 1926, April 1934 to September 1968, July 1971 to current year).
a--From rating curve entended above 3,000 ft³/s on basis of slope-area measurement of peak flow.
b--From floodmark, site and datum then in use.
c--Gage height, 1.20 ft, result of freezeup.

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1968, 1971-82, October 1991 to current year.

PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: October 1967 to September 1968, July 1972 to September 1982.

WATER TEMPERATURE: October 1967 to September 1968, July 1971 to September 1979.

SUSPENDED-SEDIMENT DISCHARGE: July 1971 to September 1982.

REMARKS.--Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office.

EXTREMES FOR PERIOD OF DAILY RECORD.--

SPECIFIC CONDUCTANCE: Maximum daily, 5,400 microsiemens per centimeter (µS/cm) at 25.0°C, Apr. 30, 1976; minimum daily, 470 µS/cm at 25.0°C, June 8, 1974.

WATER TEMPERATURE: Maximum daily, 25.5°C, June 18, 1974, June 28, 1979; minimum daily, 0.0°C, on many days during winters. SEDIMENT CONCENTRATION: Maximum daily, 21,100 mg/L, May 22, 1981; minimum daily, 10 mg/L, Feb. 10, 1973.

SEDIMENT LOAD: Maximum daily, 127,000 tons, May 22, 1981; minimum daily, 0.68 ton, Feb. 10, 1973.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs	pH, water, unfltrd field, std units	Specif. conduc- tance, wat unf uS/cm 25 degC	Temper- ature, air, deg C	Temper- ature, water, deg C	Ammonia + org-N, water, unfltrd mg/L as N	Ammonia water, fltrd, mg/L as N	Nitrite + nitrate water fltrd, mg/L as N	Nitrite- water, fltrd, mg/L as N
		(00061)	(00400)	(00095)	(00020)	(00010)	(00625)	(00608)	(00631)	(00613)
NOV 2002										
15 JAN 2003	1000	61	8.5	952	11.0	5.0	.23	.023	3.08	.013
15	1215	35	8.3	1010	10.0	0.0	.27	E.010	3.95	.014
MAR										
19	1450	47	8.4	1050	15.0	0.0	.72	.060	2.42	.015
APR 10	1000	24	8.7	1240	11.5	8.5	.44	.015	1.86	.020
MAY										
21 JUN	1600	134	8.5	608	16.0	15.0	.72	E.014	.537	.009
18	1000	238	8.5	584	26.0	19.0	.99	E.009	1.04	.012
JUL 15	1230	250	8.5	594	30.0	19.0	1.0	<.015	1.03	.007
AUG										
19	1645	134	8.4	734	30.0	23.0	.37	<.015	.856	.008
SEP 10	1430	88	8.6	798	21.0	16.0	.34	<.015	.779	.005

 $\mathtt{E--Estimated}.$

e--Estimated.

06088500 MUDDY CREEK AT VAUGHN, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Phos- phorus, water, unfltrd mg/L (00665)	ug/L	percent <.063mm	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)
NOV 2002						
15 JAN 2003	<.007	.015	2.4	61	61	10
15	<.007	.015	3.0	67	31	2.9
19	E.006	.119	3.5	92	118	15
APR 10	<.007	.027	3.6	93	44	2.9
MAY 21	<.007	.170	1.3	94	168	61
JUN 18	.043	.200	1.6	84	387	249
JUL 15	.038	.220	1.3	69	205	138
AUG 19	<.007	.030	1.7	83	43	16
SEP 10	<.007	.028	1.3	82	60	14

E--Estimated.

06089000 SUN RIVER NEAR VAUGHN, MT

LOCATION (REVISED).--Lat 47°31'33", long 111°30'43" (NAD 27), in SE¹/₄SW¹/₄sec.32, T.21 N., R.2 E., Cascade County, Hydrologic Unit 10030104, on right bank 2.3 mi downstream from Muddy Creek, 2.8 mi southeast of Vaughn, and at river mile 15.0.

DRAINAGE AREA.--1,849 mi², revised.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July to October 1897 (gage heights and discharge measurements only, published as "near Great Falls"), April 1934 to current year. Monthly discharge only for April 1934, published in WSP 1309.

REVISED RECORDS.--WSP 786: 1934. WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 3,340 ft (NGVD 29). July 11 to Oct. 30, 1897, nonrecording gage at site 0.6 mi downstream at different elevation. Apr. 19 to Aug. 3, 1934, non-recording gage at 1.4 mi downstream at different elevation. Aug. 4, 1934 to Oct. 15, 2002, water-stage recorder 1.4 mi downstream at different elevation.

REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. Flow regulated by Gibson, Pishkun, Willow Creek, and Nilan Reservoirs. Diversion for irrigation of about 110,000 acres upstream from station. U.S. Army Corps of Engineers satellite telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 1964 exceeded the stage of the June 1908 flood by about 3 ft and is the highest since 1908, from information by local residents.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	374	e300	300	e280	e250	e240	195	589	2480	320	461	210
2	381	e320	298	e280	e240	e250	217	379	1920	293	413	202
3	383	e340	294	e290	e240	e230	246	337	1790	306	403	212
4	379	e350	e300	e290	e240	e220	235	403	1900	332	476	205
5	392	e360	e280	e290	e230	e230	225	499	1190	397	434	188
6	371	372	e290	e300	e230	e210	220	503	531	387	449	182
7	370	376	e300	e300	e230	e200	214	422	686	466	503	173
8	345	352	e300	e290	e220	e200	212	477	949	477	512	173
9	327	336	e310	e270	e220	e210	207	394	1140	514	570	181
10	314	322	e310	e250	e220	e230	206	382	1190	486	515	192
11	296	313	e300	e230	e230	e240	215	375	1150	426	487	193
12	285	308	e300	e240	e230	e250	224	345	1130	406	376	189
13	290	306	e310	e250	e240	e300	236	399	1020	367	339	209
14	299	306	335	e240	e220	e400	262	417	967	395	318	219
15	314	305	317	e250	e230	e500	286	391	856	402	296	241
16	338	299	308	e250	e230	418	276	337	788	420	278	275
17	333	291	303	e250	e230	323	264	348	647	382	281	364
18	326	286	290	e260	e220	277	258	412	610	374	272	318
19	317	288	e280	e270	e210	256	259	438	573	376	235	300
20	314	291	e260	e250	e210	235	268	315	829	369	221	293
21	312	289	e250	e230	e200	226	278	262	1000	389	202	276
22	315	295	e250	e230	e190	218	279	212	755	381	203	274
23	318	288	e240	e240	e180	213	275	232	772	386	196	269
24	317	296	e240	e250	e180	212	260	205	670	412	202	259
25	318	262	e250	e220	e200	203	296	179	714	427	197	251
26 27 28 29 30 31	338 336 336 326 e300 e280	e270 339 336 315 302	e270 e280 e280 e270 e270 e270	e240 e250 e240 e240 e240 e250	e230 e220 e230 	192 197 203 196 192 193	322 586 993 1010 865	1190 3180 2860 2770 3220 3510	673 585 524 425 508	426 482 465 413 451 493	189 183 194 204 211 211	238 238 239 235 233
TOTAL	10244	9413	8855	7960	6200	7664	9889	25982	28972	12620	10031	7031
MEAN	330	314	286	257	221	247	330	838	966	407	324	234
MAX	392	376	335	300	250	500	1010	3510	2480	514	570	364
MIN	280	262	240	220	180	192	195	179	425	293	183	173
AC-FT	20320	18670	17560	15790	12300	15200	19610	51540	57470	25030	19900	13950
STATIS'	rics of	MONTHLY	MEAN DATA	FOR WATER	YEARS 193	4 - 2003,	BY WATER	R YEAR (WY)			
MEAN	381	339	301	256	265	325	499	1570	2538	782	562	441
MAX	779	908	896	656	601	868	3000	4333	8014	2508	1025	1040
(WY)	1952	1990	1996	1986	1986	1969	1934	1976	1964	1975	1975	1993
MIN	143	149	114	66.5	82.4	133	93.3	87.1	280	265	250	164
(WY)	1937	1937	1936	1937	1936	1941	1941	1941	1941	1939	1940	1936

06089000 SUN RIVER NEAR VAUGHN, MT--Continued

SUMMARY STATISTICS	FOR 2002 CALE	NDAR YEAR	FOR 2003 WAT	TER YEAR	WATER YEARS	1934 - 2003
ANNUAL TOTAL	207200		144861			
ANNUAL MEAN	568		397		683	
HIGHEST ANNUAL MEAN					1307	1943
LOWEST ANNUAL MEAN					210	1941
HIGHEST DAILY MEAN	5360	Jun 11	3510	May 31	37000	Jun 10 1964
LOWEST DAILY MEAN	69	May 5	173	Sep 7	23	May 26 1941
ANNUAL SEVEN-DAY MINIMUM	89	Apr 30	183	Sep 5	38	May 21 1941
MAXIMUM PEAK FLOW			3620	May 27	b53500	Jun 9 1964
MAXIMUM PEAK STAGE			4.21	May 27	c23.40	Jun 9 1964
INSTANTANEOUS LOW FLOW			a160	May 26	d20	Apr 24 1944
ANNUAL RUNOFF (AC-FT)	411000		287300		494600	
10 PERCENT EXCEEDS	829		578		1380	
50 PERCENT EXCEEDS	304		293		360	
90 PERCENT EXCEEDS	160		206		179	

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1969 to current year.

PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: October 1968 to September 2003 (discontinued).

WATER TEMPERATURE: October 1968 to September 1979, August 1999 to current year.

INSTRUMENTATION.--Temperature recorder installed Aug. 24, 1999. Specific conductance probe installed Sept. 18, 2001, discontinued September 30, 2003.

REMARKS.--Daily water temperature record good. Daily specific conductance record fair. Missing specific conductance data for March 27 to April 10, May 31 to June 17, and Sept. 12-14 are due to equipment problems. Unpublished records of instantaneous water temperature and specific conductance are available in files of District office.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily, 2,610 microsiemens per centimeter (μS/cm), Apr. 8, 1977; minimum daily, 214 μS/cm, June 8,

WATER TEMPERATURE: Maximum daily, 29.5°C, July 14, 18, 2002; minimum daily, 0.0°C on many days during winter.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum daily, 873 microsiemens per centimeter (µS/cm), Dec. 24; minimum daily, 287 µS/cm, May 19. WATER TEMPERATURE: Maximum daily, 25.0°C, July 17-19, 22; minimum daily, 0.0°C on many days October through March.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Mitmita

							Ammonia		Nitrite	
			pН,	Specif.			+		+	
		Instan-	water,	conduc-			org-N,	Ammonia	nitrate	Nitrite
		taneous	unfltrd	tance,	Temper-	Temper-	water.	water.	water	water,
		dis-	field,	wat unf	ature,	ature,	unfltrd	fltrd,	fltrd,	fltrd,
Date	Time	charge,	std	uS/cm	air,	water,	mq/L	mq/L	mq/L	mq/L
		cfs	units	25 degC	deg C	deg C	as N	as N	as N	as N
		(00061)	(00400)	(00095)	(00020)	(00010)		(00608)	(00631)	(00613)
		(/	(,	(,	(,	(,	(/	(,	(/	(/
NOV 2002										
15	1300	304	8.6	732	11.0	4.0	.12	E.014	1.12	.005
JAN 2003										
15	1440	E250	8.3	693	5.0	0.0	.15	E.010	1.05	.005
MAR										
12	1530	E250	7.9	672	10.5	0.0	.41	.020	3.80	.014
APR										
10	1240	204	8.5	690	16.0	12.5	.29	.024	.244	.003
MAY										
29	1330	2720	8.3	317	30.0	17.0	.39	E.010	.034	E.002
JUN										
17	1730	582	8.4	498	28.0	22.0	. 44	<.015	.303	.005
JUL										
17	0815	369	8.6	648	28.0	22.5	.55	.016	.661	.007
AUG										
19	1315	228	8.4	727	27.0	23.0	.42	.018	.440	.005
SEP										
10	1230	192	8.6	805	21.0	16.0	.43	.016	.342	.004

E--Estimated.

a--Gage height, 1.94 ft. b--42,200 $\rm ft^3/s$ in main channel, plus 11,300 $\rm ft^3/s$ in bypass channel. c--From floodmark.

d--Gage height, 0.52 ft, result of irrigation.

e--Estimated.

06089000 SUN RIVER NEAR VAUGHN, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

		Da	te	water, p fltrd, mg/L u as P	horus, water, nfltrd u mg/L	Selen- ium, water, nfltrd ug/L 01147)	percent <.063mm	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)		
			2002	<.007	.007	1.0	66	41	34		
		JAN	2003	<.007	.007	1.0	83	9	E6.1		
		MAR									
		APR		<.007	.022	3.0	65	8	E5.4		
		1 MAY		<.007	.027	.8	91	29	16		
			9	<.007	.158	E.4	61	282	2070		
		1	7	.007	.080	.7	99	54	85		
			7	.024	.093	1.4	96	51	51		
		AUG 1		<.007	.045	1.3	95	59	36		
		SEP 1		E.004	.034	1.0	82	49	25		
Date	Time	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)
APR 2003 10	1240	310	63.7	37.6	1.76	. 9	34.8	211	3.01	.40	2.70
JUN 17	1730	220	48.5	24.9	1.70	.6	19.7	180	2.70	.36	4.75
Date	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d	unfltrd ug/L	water, unfltro ug/L	d -able, ug/L	Copper, water, unfltrd recover -able, ug/L	water, unfltrd recover -able, ug/L		
APR 2003						-					
10 JUN	159	431	. 59	237	E2	<.2	<.8	3.0	. 37	3.22	3
17	77.3	289	.39	454	2	<.2	<.8	2.7	.95	3.08	6

E--Estimated.

06089000 SUN RIVER NEAR VAUGHN, MT--Continued

SPECIFIC CONDUCTANCE, $\mu\text{S/CM},$ WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	738 745 743	831 821 781	706 706 707	686 690 675	577 570 572	664 664 665		346 398 424		584 627 630	639 636 644	789 795 794
4 5	735 722	731 712	708 709	674 667	575 578	666 668		397 409		629 611	646 631	787 794
6 7 8	723 714 718	698 705 744	712 739 725	668 669 672	580 582 585	668 669 669		401 372 370		631 644 623	635 634 650	804 820 822
9 10	714 719	767 760	723 727	673 672	587 599	670 671		335 342		621 640	654 647	821 811
11 12 13	741 742 762	753 744 739	721 722 718	684 725 765	605 607 609	672 672 666	661 637 626	340 352 365		621 627 654	643 663 672	779
14 15	784 782	740 741	697 694	735 705	607 608	655 566	622 618	354 332		640 631	690 716	810
16 17 18 19 20	741 723 731 733 728	741 742 745 745 747	699 704 709 725 741	704 710 718 712 677	607 605 607 609 610	507 476 489 495 466	653 648 623 595 602	321 316 311 287 297	 515 524 549	640 645 646 638 651	726 735 734 724 731	784 772 777 782 786
21 22	726 725	752 751	765 789	657 657	615 623	442 366	573 543	337 352	602 576	648 652	749 773	769 756
23 24 25	727 734 745	749 751 731	830 873 846	659 663 665	635 643 649	384 452 436	532 531 486	364 364 374	588 590 550	658 652 646	796 806 810	742 731 727
26 27 28	758 771 766	709 707 706	830 831 794	668 671 638	652 656 662	433 	463 446 338	390 323 307	550 558 572	657 651 642	803 794 799	724 729 722
29 30 31	758 745 779	705 706 	694 681 684	622 623 621			309 316 	318 312 	586 595 	659 674 654	797 785 777	715 719
MEAN MAX MIN	741 784 714	742 831 698	739 873 681	678 765 621	608 662 570					640 674 584	714 810 631	

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	VEMBER		DE	CEMBER			JANUARY	
1 2 3 4 5	13.5 12.5 9.0 10.5 10.5	13.5 12.5 9.0 10.5 10.5	10.0 8.5 8.0 8.0 7.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.5 2.5 2.0 0.0	2.5 2.5 2.0 0.0	2.0 2.0 0.5 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
6 7 8 9 10	12.0 14.0 14.0 14.0	12.0 14.0 14.0 14.0 14.0	8.5 10.0 10.5 10.5 9.5	0.5 3.0 3.0 3.0 2.5	0.5 3.0 3.0 3.0 2.5	0.0 1.5 2.5 2.5 2.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
11 12 13 14 15	10.5 10.5 11.5 11.5	10.5 10.5 11.5 11.5	7.5 6.0 6.5 6.5	2.5 2.5 4.0 4.0	2.5 2.5 4.0 4.0 4.0	2.0 2.0 3.5 3.5	0.0 0.0 0.0 1.5 2.5	0.0 0.0 0.0 1.5 2.5	0.0 0.0 0.0 0.5 2.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
16 17 18 19 20	9.0 8.0 9.0 8.5 9.0	9.0 8.0 9.0 8.5 9.0	7.0 7.5 8.0 8.0	3.5 3.5 2.5 3.5 5.5	3.5 3.5 2.5 3.5 5.5	3.0 3.0 2.0 2.5 4.5	2.0 1.5 0.0 0.0	2.0 1.5 0.0 0.0	1.5 1.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
21 22 23 24 25	9.5 8.0 5.0 3.5 3.5	9.5 8.0 5.0 3.5 3.5	9.0 6.5 4.0 3.0	6.0 6.0 5.5 3.5	6.0 6.0 5.5 3.5 0.5	5.5 6.0 5.0 2.0 0.5	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
26 27 28 29 30 31	3.0 3.5 3.5 2.0 0.0	3.0 3.5 3.5 2.0 0.0	3.0 3.0 3.0 0.5 0.0	0.5 2.0 3.0 3.5 3.0	0.5 2.0 3.0 3.5 3.0	0.0 1.5 2.5 3.5 2.5	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
MONTH	14.0	0.0	6.5	6.0	0.0	2.0	2.5	0.0	0.5	0.0	0.0	0.0

06089000 SUN RIVER NEAR VAUGHN, MT--Continued

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

DAY	MAX	MIN FEBRUARY	MEAN	MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
1 2 3 4 5	0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	11.0 8.5 6.5 7.0 8.5	11.0 8.5 6.5 7.0 8.5	9.5 7.5 5.0 5.5 6.5	11.0 13.0 13.0 12.0 9.0	11.0 13.0 13.0 12.0 9.0	9.0 11.5 12.0 9.5 8.0
6 7 8 9 10	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0			0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	9.5 9.0 10.5 13.0 14.0	9.5 9.0 10.5 13.0 14.0	7.5 7.5 8.5 11.0 11.5	11.0 12.0 11.5 8.5 9.5	11.0 12.0 11.5 8.5 9.5	9.5 11.0 10.0 8.0 8.5
11 12 13 14 15	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 2.0	0.0 0.0 0.0 0.0 2.0	0.0 0.0 0.0 0.0 0.5	15.5 15.5 15.5 14.5 12.5	15.5 15.5 15.5 14.5 12.5	13.0 13.0 13.5 13.0 12.0	12.0 14.5 14.5 16.0 16.5	12.0 14.5 14.5 16.0 16.5	10.0 13.0 13.5 14.5 15.5
16 17 18 19 20	0.0 0.0 0.5 0.5	0.0 0.0 0.5 0.5	0.0 0.0 0.0 0.0	4.0 5.5 5.5 6.5 7.0	4.0 5.5 5.5 6.5 7.0	3.5 4.5 4.5 4.5 5.5	12.0 12.5 11.0 13.5 14.5	12.0 12.5 11.0 13.5 14.5	11.0 11.0 11.0 11.5 13.0	15.5 13.5 11.0 11.0 14.0	15.5 13.5 11.0 11.0	13.5 11.5 9.0 9.0 12.0
21 22 23 24 25	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	6.5 8.5 9.0 6.0	6.5 8.5 9.0 6.0	5.5 6.5 7.0 5.0 4.5	15.5 16.5 18.5 17.5 16.5	15.5 16.5 18.5 17.5 16.5	14.0 15.0 16.5 16.0 15.5	16.0 16.5 17.0 20.0 22.5	16.0 16.5 17.0 20.0 22.5	14.0 15.0 16.0 17.5 20.0
26 27 28 29 30 31	0.0 0.0 0.0 	0.0 0.0 0.0 	0.0 0.0 0.0 	7.5 6.5 7.0 8.0 10.0 12.0	7.5 6.5 7.0 8.0 10.0	5.5 5.5 5.0 6.0 7.5	14.0 12.0 10.5 7.5 8.5	14.0 12.0 10.5 7.5 8.5	12.5 11.0 9.0 7.0 7.0	20.5 14.5 15.0 16.0 15.5 13.5	20.5 14.5 15.0 16.0 15.5 13.5	18.5 13.0 14.0 15.0 14.0 12.5
MONTH	0.5	0.0	0.0	12.0	0.0	3.0	18.5	6.5	11.0	22.5	8.5	12.5
		JUNE			JULY			AUGUST			SEPTEMBE	lR
1 2 3 4 5	13.5 13.5 14.0 13.5 13.0	JUNE 13.5 13.5 14.0 13.5 13.0	12.5 13.5 13.0 12.5 12.0	24.5 23.0 21.0 20.5 20.5	JULY 24.5 23.0 21.0 20.5 20.5	22.5 21.5 19.5 19.0 19.0		AUGUST 22.5 23.5 23.0 21.5 21.0	21.0 21.5 22.0 20.5 20.0	20.5	SEPTEMBE 20.5 20.0 20.5 21.0 21.0	18.5 18.5 19.0 19.0
1 2 3 4	13.5 14.0 13.5	13.5 13.5 14.0 13.5		24.5 23.0 21.0 20.5 20.5 21.5 20.5 21.0 22.5	24.5 23.0 21.0 20.5	22.5 21.5 19.5 19.0 19.0 19.0 19.5 19.0 20.5	22.5 23.5 23.0 21.5 21.0	22.5 23.5 23.0 21.5	21.5 22.0 20.5	20.5 20.0 20.5 21.0	20.5 20.0 20.5 21.0	18.5 18.5 19.0 19.0
1 2 3 4 5 6 7 8	13.5 14.0 13.5 13.0 14.0 15.0 16.0 15.5	13.5 13.5 14.0 13.5 13.0 14.0 15.0 16.0 15.5	13.0 13.5 15.0 15.0 15.0		24.5 23.0 21.0 20.5 20.5 21.0 21.5 20.5 21.0 22.5		22.5 23.5 23.0 21.5 21.0 21.5 21.5 22.5 23.0 23.5	22.5 23.5 23.0 21.5 21.0 21.5 21.5 22.5 23.0	21.5 22.0 20.5 20.0 20.0 20.0 21.0 21.5	20.5 20.0 20.5 21.0 21.0 20.5 20.5 19.5 17.0 16.5	20.5 20.0 20.5 21.0 21.0 20.5 20.5 19.5 17.0	18.5 18.5 19.0 19.0 19.5 19.5 19.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	13.5 14.0 13.5 13.0 14.0 15.0 16.0 15.5 16.0	13.5 13.5 14.0 13.5 13.0 14.0 15.0 16.0 15.5 16.0	13.0 13.5 15.0 15.0 15.0 15.5 16.5 17.0 17.0	21.0 21.5 20.5 21.0 22.5 23.0 24.0 24.0 21.5	24.5 23.0 21.0 20.5 20.5 21.5 20.5 21.5 22.5 23.0 24.0 24.0 21.5	19.0 19.5 19.0 19.0 20.5 21.5 22.5 22.0 20.0	22.5 23.5 23.0 21.5 21.0 21.5 22.5 23.0 23.5 23.0 21.5 23.0 24.0	22.5 23.5 23.0 21.5 21.0 21.5 22.5 23.0 23.5 23.0 21.5 23.0 24.0	21.5 22.0 20.5 20.0 20.0 21.0 21.5 22.5 22.5	20.5 20.0 20.5 21.0 21.0 20.5 20.5 19.5 17.0 16.5 15.5 14.5	20.5 20.0 20.5 21.0 21.0 20.5 20.5 19.5 17.0 16.5 14.5 14.5	18.5 18.5 19.0 19.0 19.5 19.5 19.5 18.5 15.5 15.0 14.5 13.0 13.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	13.5 14.0 13.5 13.0 14.0 15.0 16.0 15.5 16.0 16.5 17.5 17.5 17.5 19.5	13.5 13.5 14.0 13.5 13.0 14.0 15.0 16.0 15.5 16.0 16.5 17.5 17.5 17.5 19.5	13.0 13.5 15.0 15.0 15.0 15.5 16.5 17.0 17.0 18.0 19.5 20.5 21.5	21.0 21.5 20.5 21.0 22.5 23.0 24.0 21.5 23.0 24.0 21.5 23.0	24.5 23.0 21.0 20.5 20.5 21.5 20.5 21.5 22.5 23.0 24.0 24.0 21.5 23.0 24.5 25.0 25.0	19.0 19.5 19.0 20.5 21.5 22.5 22.0 20.0 21.0 23.0 23.5 23.5	22.5 23.5 23.0 21.5 21.0 21.5 21.5 22.5 23.0 23.5 23.0 24.0 24.0 24.0 22.5 22.5 23.5	22.5 23.5 23.0 21.5 21.0 21.5 21.5 22.5 23.0 23.5 23.0 24.0 24.0 22.5 22.0 22.5 23.5	21.5 22.0 20.5 20.0 20.0 21.0 21.5 22.5 22.5 22.5 21.0 22.5 21.5 22.5	20.5 20.0 20.5 21.0 21.0 20.5 20.5 19.5 17.0 16.5 15.5 14.5 15.0 13.5	20.5 20.0 20.5 21.0 21.0 20.5 20.5 19.5 17.0 16.5 14.5 14.5 14.5 15.0 13.5	18.5 19.0 19.0 19.5 19.5 19.5 19.5 18.5 15.5 13.0 13.0 13.0 13.0 11.0 9.0 9.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	13.5 14.0 13.5 13.0 14.0 15.0 16.0 16.5 17.5 17.5 17.5 19.5 20.0 22.0 22.5 23.0 20.5	13.5 13.5 14.0 13.5 13.0 14.0 15.0 16.0 15.5 16.0 16.5 17.5 17.5 17.5 17.5 19.5 20.0 22.0 22.5 23.0 20.5	13.0 13.5 15.0 15.0 15.0 15.0 17.0 17.0 18.0 19.5 20.5 21.5 21.5 19.5	21.0 21.5 20.5 21.0 22.5 23.0 24.0 21.5 23.0 24.5 25.0 25.0 25.0 24.5 25.0 25.0 24.5	24.5 23.0 21.0 20.5 20.5 21.5 20.5 21.0 22.5 23.0 24.0 24.0 21.5 23.0 24.5 25.0 24.5 25.0 24.5 25.0 24.5	19.0 19.5 19.0 19.0 20.5 21.5 22.5 22.0 20.0 21.0 22.0 23.0 23.5 23.0 22.5 23.0 22.5	22.5 23.5 23.0 21.5 21.0 21.5 22.5 23.0 23.5 23.0 24.0 24.0 22.5 23.0 24.0 22.5 23.0 24.0 22.5 23.0 24.0 22.5 23.0	22.5 23.5 23.0 21.5 21.0 21.5 22.5 23.0 23.5 23.0 24.0 24.0 22.5 22.5 23.0 24.0 22.5 23.0 24.0 22.5 23.0 24.0	21.5 22.0 20.5 20.0 20.0 21.0 21.5 22.5 22.5 22.5 21.0 22.5 21.0 22.0 22.0 22.0 22.0	20.5 20.0 20.5 21.0 20.5 21.0 20.5 19.5 17.0 16.5 15.5 14.5 15.0 13.5 12.5 9.5 11.5 13.5	20.5 20.0 20.5 21.0 21.0 20.5 19.5 17.0 16.5 15.5 14.5 14.5 15.0 13.5 12.5 9.5 11.5 13.5	18.5 19.0 19.0 19.5 19.5 19.5 18.5 15.5 15.0 14.5 13.0 13.0 13.0 12.0 12.0 12.0 12.0 12.0 11.5

06090300 MISSOURI RIVER NEAR GREAT FALLS, MT

LOCATION.--Lat 47°35'04", long 111°03'35" (NAD 27), in SW¹/₄SE¹/₄SW¹/₄ sec.11, T.21 N., R.5 E., Cascade County, Hydrologic Unit 10030102, on left bank 700 ft downstream from Morony Dam, 12.6 mi northeast of Great Falls, and at river mile 2,105.4.

DRAINAGE AREA.--23,292 mi².

PERIOD OF RECORD.--May to July 1953 (in WSP 1320-B), October 1956 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 2,807.21 ft (NGVD 29). Prior to July 27, 1977, nonrecording gage at same site at elevation 2.00 ft higher. July 27, 1977 to May 26, 1987, at site 600 ft upstream at elevation 2.00 ft higher. October 1971 to July 27, 1977, discharges were obtained from the Montana Power Company at Rainbow Dam 7.05 mi upstream. Prior to October 1971, Foxboro meters were used for determining discharge through powerplant. Water-stage recorder on Morony Reservoir was used for determining head on taintor gates with elevation of gage at sea level (level by Montana Power Company).

REMARKS.--Records good. Flow regulated by 18 smaller irrigation reservoirs and powerplants upstream, Clark Canyon Reservoir (station number 06015300), and Canyon Ferry Lake (station number 06058500). Diversion for irrigation of about 750,400 acres upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILLY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4210	4300	4940	4800	5490	5300	5200		12800	7380	4850	3730
2	4390 4510	4290 4360	4820 4890	5160 5270	4820 4990	4940 5210	5340 5760	6800 6830	11600 11400	7320 7020	4810 4910	4010 3650
4	4450	4440	4850	5390	4890	5090	5650	6790	12100	6510	5070	3720
5	4300	4430	4820	5250	4900	4720	5390	6800	12400	6620	4910	3630
6	4320	4430	4670	4900	4770	4770	5470	7030	11500	6110	4980	3650
7 8	4370 4310	4480 4350	5100 5110	4950 4840	4220 4910	4640 4250	5470 5320 5360 5300	6940	10200 9560	6070 5880	5020 5050	3580 3670
9	4280	4560	5030	4890	5180	3970	5300	6910 6940	8740	5560	5300	3770
10	4310	4770	4870	4560	5070	4230	5290	6970	8460	5710	4980	3690
11	4310	5090	4850	3390	4930	4480	5410 5700 5900 6300 6330	7130	8760	5810	4850	3840
12	4100	5250	4740	3400	4790	5200	5700	7230	8210	5870	4390	3880
13 14	4210 4370	5050 4880	4700 4860	4400 4680	4810 4880	5770 6870	5900	7530 7000	8260 8150	5940 6010	4420 3990	3940 4080
15	4370	4850	5110	4990	4810	11000	6330	7590	8200	5860	3990	3910
16 17	4300 4320	4800 4790	5150 4980	5110 4700	4790 4860	7760 6870	6530 6590		7920 7900	5650 5640	3750 4000	4140 4100
18	4340	4950	4860	4460	4940	6700		8880	7650	5650	4010	4120
19	4420	5030	4670	4700	4900	6620	6240 6220	8780	7680	5120	3880	3960
20	4480	5110	4350	5230	4780	5970	6220	8780 8470	7700	5020	3930	3820
21	4470	5010	3800	5080	4400	4760	6080	8310	7940	5190	4010	3830
22	4410	4960	3420	4270	4060	4720	6010 6020	8310 8170 7950	7930	4870	4080	4050
23	4380	4970	4170	2750	3250	5020			7730	4870	3950	4010
24 25	4320 4350	4930 5040	4360 4670	3170 4570	3120 3430	5070 5320	6150 6390	7930 7970	7860 7880	4860 4700	4140 4360	3930 4030
26 27	4340 4550	4850 5000	4170 3910	5010 5040	4440 4750	5480 5240 5290 5170 5160 5190	6930 7010 7170 7320	8550	7850 7860	4700 4890 5010 4730 4800	4130 4090	3850
28	4530	5150	4740	5270	5330	5240	7010	11200 11400	7780	4890 5010	4100	3760 4280
29	4440	5090	5360	5570		5170	7320	11800	7560	4730	4020	4270
30	4430	4930	5440	5690		5160	6990	12300	7340	4800	3900	3890
31	4280		5240	5570		5190		13300		4740	3880	
		144140	146650	147060	130510	170780	181880	256620	266920		135750	116790
MEAN	4358	4805	4731	4744	4661	5509	6063	8278	8897	5616	4379	3893
MAX MTN	4550 4100	5250 4290	5440 3420	5690 2750	5490 3120	11000 3970	7320 5200	13300 6790	12800 7340	7380 4700	5300 3750	4280 3580
	268000	285900	290900	291700	258900	338700	360800	509000	529400	345300	269300	231700
CHART	ITTOO OF I	MONTHLIT M	1731 DAMA	EOD WATER	VEADO 105	7 2002	DV WAR	ER YEAR (WY	,			
								·				
MEAN	5808	6160	6143	6297	6495	6805	7466	10940	13730	8626	5928	5552
MAX (WY)	11940 1966	10430 1966	11520	8232 1971	9252 1997	10820 1968	13200 1976	24780 1976	30160 1964	23560 1975	9946 1993	9992 1984
MIN	3829	3950	3773	3869	4030	4021	3526	4454	3758	3817	3719	3109
(WY)	1989	1993	1960 3773 2002	2002	2002	1961	1961	1961	1977	1977	1988	1959
SUMMAR	RY STATIS	TICS	FOR	2002 CAL	ENDAR YEAR		FOR 2003	WATER YEAR		WATER YEAR	RS 1957 -	- 2003
A NINITI A T	TOTAL			1776300			2006310					
ANNUAL				4867			5497			7496		
	T ANNUAL	MEAN								11490		1975
	ANNUAL I	MEAN								4349		2001
	T DAILY I	MEAN		15000 2500 3450	Jun 12		13300	May 31		63400	Jun 10	1964
	DAILY M	LAN AY MINIMUN	Л	2500 3450	Mar 21 Tan 15		2750 3670	Sen 3		2740	Apr It	5 1961 5 1959
	M PEAK F	LOW	•	3130	0 dii 13		13800	May 31		a72000	Jun 10	1964
MAXIMU	M PEAK S'	TAGE					5	.07 May 31		11490 4349 63400 1760 2740 a72000 b9.02 c1.0 5430000	May 2	1981
INSTAN	TANEOUS	LOW FLOW		250200			200000			c1.0	Apr 16	5 1962
ANNUAL	RUNOFF	(AC-FT)		3523000			3980000 7890			5430000 11900		
TO FEN	CENT EXC	ولاقت		6150 4460			4940			6400		
	CENT EXC			3920			3970			4250		

a--From hydrographic comparison with nearby stations.

b--Site and datum then in use.

c--About, powerplant shutdown.

06090650 LAKE CREEK NEAR POWER, MT

 $LOCATION.--Lat\ 47^{\circ}41^{\circ}5^{\circ},\ long\ 111^{\circ}23^{\circ}23^{\circ}\ (NAD\ 27),\ in\ SE^{1}/_{4}SE^{1}/_{4}sec.31,\ T.23\ N.,\ R.3\ E.,\ Chouteau\ County,\ Hydrologic\ Unit\ 10030102,\ on\ SE^{1}/_{4}SE$ left bank 1.9 mi downstream from county bridge, 1.5 mi upstream from Benton Lake, and 14 mi east of Power.

DRAINAGE AREA.--83.8 mi², of which 11.4 mi² is noncontributing.

PERIOD OF RECORD.--July 1990 to current year (seasonal records only).

GAGE.--Water-stage recorder. Parshall flume since Apr. 1, 1997. Prior to Apr. 1, 1997 water-stage recorder located at site 1.9 mi upstream. Elevation of gage is 3,620 ft (NGVD 29).

REMARKS.--Seasonal records fair. Seasonal flows from Muddy Creek diverted into Lake Creek, most years. U. S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5				0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	33 32 26 24 33	0.04 0.00 0.00 0.00 0.00	0.00 7.8 23 26 28	9.3 11 7.9 10	9.6 9.4 9.5 9.7 9.5		
6 7 8 9 10				0.00 0.00 0.00 0.00	0.06 0.01 0.00 0.00 0.00	32 31 31 30 26	0.00 0.00 0.00 0.00	30 31 32 32 32	11 9.6 10 10	9.7 10 11 11		
11 12 13 14 15				0.00 0.00 0.01 0.06 0.06	0.00 0.00 0.00 0.00 0.00	21 26 25 3.7 0.18	0.00 0.00 0.00 0.00	33 33 34 27 26	11 12 12 13 13	12 12 12 12 12		
16 17 18 19 20				0.06 0.06 0.04 0.01 0.00	0.00 0.00 0.00 0.00 0.00	0.02 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	26 26 26 26 26	15 15 13 13	13 13 13 14		
21 22 23 24 25				0.00 0.00 0.00 0.00	0.00 2.2 8.8 31	0.50 0.39 0.21 0.12 0.10	0.00 0.00 0.00 0.00	26 26 23 22 22	12 13 12 11	14 14 14 14		
26 27 28 29 30 31				0.00 0.00 0.00 0.00 0.00	13 12 19 29 19 32	0.08 0.09 0.11 0.11 0.07	0.00 0.00 0.00 0.00 0.00	18 9.6 13 10 9.4 8.9	10 10 9.3 9.1 9.4	14 14 2.8 0.24 0.03 0.05		
TOTAL MEAN MAX MIN AC-FT				0.30 0.010 0.06 0.00 0.6	197.11 6.36 32 0.00 391	375.68 12.5 33 0.00 745	0.04 0.001 0.04 0.00 0.08	712.70 23.0 34 0.00 1410	339.6 11.3 16 7.9 674	328.52 10.6 14 0.03 652		
STATIST	rics of Mo	ONTHLY M	EAN DATA	FOR SEAS	ONS 1990	- 2003						
MEAN MAX (WY) MIN (WY)			3.64 24.8 1993 0.055 2000	3.27 8.56 1993 0.010 2003	13.6 30.9 1992 0.49 1993	13.4 29.8 1991 1.05 1999	1.38 9.51 1993 0.000 1992	12.0 35.5 1990 0.35 2002	25.4 38.1 1990 11.3 2003	16.46 30.1 2000 0.03 2003		
SUMMAR	Y STATIST	ICS		FOF	2003 SE	ASON			SEASONS	1990 - 2003		
LOWEST MAXIMUN	T DAILY ME DAILY MEA M PEAK FLO M PEAK STA	AN WC		34 .0 35 1.8	Ai 00 ma Ai 35 Ai	ng 13 any days ng 13 ng 13			300 0.00 a300 b7.30	Mar 6 1993 Jul 1 1990 Mar 6 1993 Mar 6 1993		

a--Estimated daily discharge during period of ice effect. b--From floodmarks, site and datum then in use.

06090800 MISSOURI RIVER AT FORT BENTON, MT

LOCATION.--Lat 47°49'03", long 110°39'59" (NAD 27), in NW¹/₄SE¹/₄sec.23, T.24 N., R.8 E., Chouteau County, Hydrologic Unit 10030102, on left bank at downstream side of Old Fort Benton Bridge at Fort Benton, 3.8 mi upstream from Shonkin Creek, and at river mile 2,073.2. DRAINAGE AREA.--24,749 mi².

PERIOD OF RECORD.--October 1890 to current year. Records for June 1881 to September 1890, published in WSP 546 and 761, have been found to be unreliable and should not be used.

REVISED RECORDS.--WSP 746: 1932. WSP 1146: 1891-1907, 1908(M), 1909-18, 1937-38. WSP 1209: 1948(P). WSP 1309: 1929(M). WSP 1629: Drainage area. See also PERIOD OF RECORD.

GAGE.--Water-stage recorder. Elevation of gage is 2,614.05 ft (NGVD 1929). Prior to Oct. 11, 1920, nonrecording gages, and Oct. 11, 1920, to Apr. 25, 1924, water-stage recorder, all at present site at elevation 1.00 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Flow regulated by 18 smaller irrigation reservoirs and powerplants, Clark Canyon Reservoir (station number 06015300), and Canyon Ferry Lake (station number 06058500). Diversions for irrigation of about 751,000 acres upstream from station. Extreme diurnal fluctuation caused by powerplant at Morony Dam. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3800 3780 3980 3980 3820	3920 4010 4010 4120 4160	4980 4900 4920 4900 4900	4740 4920 5080 5290 5220	5530 5190 4720 4850 4840	e5300 5200 5220 5470 5050	5120 5150 5670 5710 5410	6820 6880 6750	13800 12300 12200 12300 13100	7300 7110 7250 6280 6600	4380 4450 4440 4490 4380	3630 3820 3560 3620 3460
6 7 8 9 10	3820 3860 3860 3780 3840	4180 4210 4180 4270 4460	4760 5000 5140 5110 4950	4850 4850 4730 4710 e4600	4750 4410 4490 5220 5010	4860 e4700 e4300 e4100 e4300	5330 5280 5190 5200 5090	7000 6930 6960 6980	12400 11000 10300 9600 9110	6220 5890 5850 5770 5480	4420 4360 4460 4420 4540	3530 3440 3490 3560 3500
11 12 13 14 15	3790 3740 3670 3870 3810	4730 5090 4970 4770 4740	4910 4840 4740 4820 5050	e3800 e3500 e4600 e4800 e5100	4910 4760 4720 4800 4800	e4500 e5400 e6000 e8000 e12000	5170 5520 5740 6170 6390	7450 7940 7170	9370 9030 8820 8770 8510	5740 5740 5960 5910 5860	4140 3990 3850 3720 3680	3580 3700 3660 3750 3660
16 17 18 19 20	3800 3800 3830 3870 3970	4750 4720 4830 4990 5060	5180 5060 4960 4750 e4400	e5200 e4800 e4600 e4640 e5040	4710 4770 4820 4840 4740	e9500 8200 7260 7090 6570	6530 6630 6610 6240 6190	8810 9430 9580	8230 8120 7810 8010 8030	5600 5610 5690 5240 5090	3490 3600 3640 3620 3610	3780 3910 3790 3720 3600
21 22 23 24 25	3970 3980 3880 3880 3930	5100 5010 5010 5000 5040	e3900 e3600 e4300 e4400 e4700	e4900 e4200 e2900 e3200 e4800	4480 e4200 e3300 e3200 e3800	5030 4710 4880 5080 5160	5980 5970 5900 6000 6310	8770 8450 8490	7830 8020 7650 7760 7730	5090 4790 4760 4710 4600	3670 3810 3780 3740 4010	3510 3680 3670 3600 3630
26 27 28 29 30 31	3850 4020 4090 4030 4020 3980	4980 4980 5180 5170 5020	e4200 3990 4460 5010 e5500 5280	e5000 e5100 5120 5470 5790 5720	e4500 e4800 e5600 	5430 5260 5230 5110 5080 5080	7210	9120 11300 12200 12400 12900 13900	7800 7710 7740 7500 7260	4430 4760 4730 4560 4400 4400	3940 3870 3880 3840 3800 3760	3610 3440 3630 4060 3590
TOTAL MEAN MAX MIN	120300 3881 4090 3670 238600	140660 4689 5180 3920 279000	147610 4762 5500 3600 292800	147270 4751 5790 2900 292100	130760 4670 5600 3200 259400		180910 6030 7590 5090 358800	267280 8622	277810 9260 13800 7260 551000	171420 5530 7300 4400 340000	123780 3993 4540 3490 245500	109180 3639 4060 3440 216600
STATIS	TICS OF I	MONTHLY ME	EAN DATA	FOR WATER	YEARS 189	1 - 2003	B, BY WAT	ER YEAR (WY)			
MEAN MAX (WY) MIN (WY)	5307 12610 1966 2441 1920	5485 10850 1966 2789 1920	5193 11640 1960 2446 1932	5062 8380 1997 2377 1932	5355 9327 1997 2492 1937	6258 11800 1910 2986 1938	8108 15540 1910 3574 1961	28600 1894 4144	18390 53620 1908 4055 1977	9130 26580 1907 2433 1919	5069 10550 1993 1576 1934	4850 10240 1984 1890 1934
SUMMAR	Y STATIS	TICS	FOR	2002 CAL	ENDAR YEAR		FOR 2003	WATER YEAR		WATER YEA	RS 1891	- 2003
ANNUAL HIGHES	T ANNUAL	MEAN		1766560 4840			1996050 5469			7649 11850 3619		1894 1937
MAXIMU MAXIMU	M PEAK FI M PEAK S'	TAGE			Jun 12 Mar 21 Jan 16		13900 2900 3510 a14200 b12	May 31 Jan 23 Sep 5 May 31		107000 627 1190 c140000 d18.5 f320	Jun Jul Jan 1 Jun 0 Jun	7 1908 5 1936 0 1932 6 1908 6 1908 5 1936
ANNUAL 10 PER 50 PER 90 PER aGag	RUNOFF CENT EXC CENT EXC CENT EXC e height kwater f	(AC-FT) EEDS EEDS EEDS , 4.72 ft.					3959000 8070 4900 3690			5542000 14400 5650 3510	041	2 1330

c--About, observed, from rating table extended above 63,000 ${\rm ft}^3/{\rm s.}$ d--Present datum.

e--Estimated.

f--Gage height, -0.05 ft.

06091700 TWO MEDICINE RIVER BELOW SOUTH FORK, NEAR BROWNING, MT

LOCATION.--Lat 48°25'36", long 112°59'20" (NAD 27), in SE¹/₄SE¹/₄SE¹/₄ sec. 23, T.31 N., R.11 W., Glacier County, Hydrologic Unit 10030201, Blackfeet Indian Reservation, on left bank 15 ft downstream from bridge on Blackfeet Secondary Highway No. 1, 9.7 mi south of Browning, and 12.3 mi northwest of Heart Butte.

DRAINAGE AREA.--250 mi².

PERIOD OF RECORD .-- May 1977 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 4,180 ft (NGVD 29). May 1977 to September 1997 at elevation 1.00 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated by Lower Two Medicine Lake (station number 06090900). Diversions for irrigation of about 64 acres upstream from station. Bureau of Reclamation satellite telemeter at station. Several observations of water discharge and specific conductance were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge, 100,000 ft³/s, June 8, 1964, as determined at Two Medicine River near Browning (station number 06092000) located about 10 mi downstream.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	71 68 68 68 71	e33 e35 e35 e35 e37	e40 e35 e30 e25 e28	e40 e43 e45 e45 e45	e45 e43 e40 e40 e37	e32 e35 e32 e30 e30	893 576 412 330 273	844 843 876 861 771	1630 1540 1300 1170 1080	330 322 292 291 256	209 206 206 203 203	94 91 87 75 72
6 7 8 9 10	78 81 84 78 75	e40 e42 e45 e48 50	e30 e30 e30 e32 e35	e48 e50 e45 e40 e35	e35 e37 e38 e40 e40	e27 e25 e25 e30 e35	235 212 229 349 468	691 645 596 515 507	940 895 886 942 850	238 246 240 235 237	201 197 191 187 180	61 58 59 60 53
11 12 13 14 15	76 75 74 75 73	52 49 56 53 48	e35 e35 e37 e40 e40	e37 e40 e38 e35 e35	e42 e43 e45 e40 e45	e40 e100 e500 e1200 487	570 645 828 796 789	505 521 556 641 794	791 840 846 808 772	276 269 259 256 253	177 176 170 154 140	43 50 49 38 36
16 17 18 19 20	72 71 71 69 69	45 47 42 46 50	e38 e35 e30 e27 e25	e35 e37 e40 e45 e40	e45 e45 e45 e45 e40	369 269 205 162 150	763 818 796 780 777	762 630 587 537 512	725 675 661 697 726	250 244 240 239 244	139 137 135 133	39 44 39 38 42
21 22 23 24 25	69 70 62 55 51	56 58 60 e30 e28	e25 e25 e25 e25 e27	e30 e25 e28 e30 e25	e30 e25 e20 e22 e25	149 165 283 195 153	818 901 1000 1070 1160	520 536 636 839 1110	677 610 506 448 401	242 239 232 227 229	129 126 123 122 120	42 37 35 35 33
26 27 28 29 30 31	51 51 49 38 e32 e30	e30 e35 e40 e45 e43	e30 e30 e32 e35 e35 e37	e30 e40 e45 e43 e42 e45	e30 e33 e35 	133 122 109 104 141 870	1010 877 775 777 812	1570 1280 1190 1230 1500 1760	379 317 220 307 336	228 223 219 217 214 212	118 113 114 111 98 95	32 31 33 31 32
TOTAL MEAN MAX MIN AC-FT	2025 65.3 84 30 4020 0	1313 43.8 60 28 2600	983 31.7 40 25 1950	1201 38.7 50 25 2380	1050 37.5 45 20 2080	6207 200 1200 25 12310	20739 691 1160 212 41140	25365 818 1760 505 50310 0	22975 766 1630 220 45570 3160	7699 248 330 212 15270 9580	4744 153 209 95 9410 7740	1469 49.0 94 31 2910 2210
STATIST	TICS OF MC	NTHLY MEA	N DATA F	OR WATER	YEARS 1977	- 2003	, BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	95.4 533 1986 25.0 1980	128 558 1996 18.8 1980	78.1 394 1996 19.7 1999	60.8 180 1981 17.9 1982	90.5 394 1996 26.4 1980	146 474 1986 40.5 1980	501 923 1990 140 2001	1171 2040 1991 439 1977	1056 2922 2002 282 1977	362 656 2002 173 1994	161 265 2002 41.2 1994	102 240 1985 24.4 1988
SUMMARY	STATISTI	CS	FOR	2002 CALE	NDAR YEAR	:	FOR 2003 W	NATER YEAR		WATER YEARS	1977 -	2003
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL 10 PERC 50 PERC		EAN EAN AN MINIMUM AGE AC-FT) EDS		187907 515 4430 20 26 372700 2140 90 35	Jun 16 Jan 28 Dec 19			May 31 Feb 23 Dec 19 May 31 52 May 31		335 542 199 8600 10 13 all700 b8.25 242700 969 120 32	Jun 7 Jan 29 Feb 3 May 19 Jun 7	1980 1982 1991

^{*--}Flows, in acre-ft, in Two Medicine Canal. a--Gage height, 7.78 ft, previous datum; from rating curve extended above 5,500 $\rm ft^3/s$.

b--Previous datum.

e--Estimated.

06093200 BADGER CREEK BELOW FOUR HORNS CANAL, NEAR BROWNING, MT

LOCATION.--Lat 48°22'12", long 112°48'07" (NAD 27), in NW¹/₄SW¹/₄SE¹/₄ sec.8, T.30 N., R.9 W., Glacier County, Hydrologic Unit 10030201, Blackfeet Indian Reservation, on left bank, 3.4 mi downstream from point of diversion to Four Horns Canal, 15.5 mi southeast of Browning, and at river mile 11.6.

DRAINAGE AREA.--152 mi².

- PERIOD OF RECORD.--October 1973 to current year. Records equivalent to those published as Badger Creek near Browning (station number 06092500) if diversion to Four Horns Canal is added to flow past station.
- GAGE.--Water-stage recorder. Elevation of gage is 4,140 ft (NGVD 29). May 1951 to September 1973, water-stage recorder at site 3.4 mi upstream (station number 06092500) at different elevation.
- REMARKS.--Records good except those for estimated daily discharges, which are poor. Four Horns Canal diverts water from right bank in NE¹/₄ sec.24, T.30 N., R.10 W., at diversion dam 3.4 mi upstream for irrigation of about 6,000 acres downstream from station. Recorded diversions by Four Horns Canal are listed in daily table below. Several observations of water temperature and specific conductance were made during the year. Bureau of Reclamation satellite telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge, 49,700 ft³/s, June 8, 1964, gage height, 10.37 ft, from rating curve extended above 2,000 ft³/s on basis of slope-area measurement of peak flow, as determined at Badger Creek near Browning site (station number 06092500) 3.4 mi upstream.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	71 69 68 67 68	e105 e110 e115 115 114	103 103 e103 e100 e100	e100 e100 e100 e100 e100	e89 e92 e94 e94 e95	e86 e84 e82 e82 e80	174 162 142 132 125	216 216 227 242 226	578 555 478 433 390	115 110 106 101 98	48 46 46 46 47	39 38 38 38 38	
6 7 8 9 10	71 71 72 69 67	114 115 114 114 112	e102 e100 e100 100 100	98 96 96 e94 e86	e95 e89 e91 e91 e92	e78 e79 e85 e94 e98	119 114 112 116 128	214 201 195 194 187	400 369 360 438 405	98 94 92 89 85	47 46 45 43 42	38 38 39 40 39	
11 12 13 14 15	69 69 67 67 90	111 111 113 112 110	99 100 100 101 102	e92 e98 e98 e95 e92	e87 e85 e82 e82 e81	e100 e100 e200 e150 e140	147 184 276 325 278	183 186 191 215 321	434 367 335 309 288	83 80 76 75 74	42 41 41 40 40	38 41 40 38 38	
16 17 18 19 20	125 124 124 124 123	107 106 105 106 106	102 101 e96 e96 e90	e90 e93 e91 e94 e96	e77 e74 e69 e66 e72	127 117 107 102 98	242 225 221 211 210	395 341 309 277 258	264 244 237 249 233	75 72 70 68 67	40 44 48 46 45	39 38 38 37 39	
21 22 23 24 25	124 125 122 118 119	108 109 112 107 110	e90 e90 e90 e94 e94	e92 e95 e93 e92 e90	e74 e78 e75 e80 e84	99 99 120 110 104	226 264 296 356 393	260 272 327 456 685	205 188 174 166 153	64 58 56 55	45 52 93 93 78	38 64 93 93 89	
26 27 28 29 30 31	120 119 121 e115 e110 e100	103 105 106 106 105	e94 e94 e100 e100 e100 e100	e88 e88 e92 e90 e92 e92	e86 e86 e86 	101 100 96 95 94 119	388 338 290 254 234	1260 893 833 952 909 674	143 137 133 127 120	55 54 51 50 50 48	41 40 40 40 39 39	88 89 89 89 89	
TOTAL MEAN MAX MIN AC-FT	2968 95.7 125 67 5890 1850	3286 110 115 103 6520	3044 98.2 103 90 6040	2913 94.0 100 86 5780	2346 83.8 95 66 4650	3226 104 200 78 6400 0	6682 223 393 112 13250 430	12315 397 1260 183 24430 2630	8912 297 578 120 17680 5270	2324 75.0 115 48 4610 4780	1483 47.8 93 39 2940 3930	1592 53.1 93 37 3160 2850	
STATIST	CICS OF M	ONTHLY MEA	AN DATA FO	OR WATER	YEARS 1974	- 2003,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	83.8 316 1986 9.13 1978	112 295 1990 40.9 2002	97.2 184 1976 42.9 1984	89.4 160 1976 57.0 2001	90.1 198 1996 52.5 2001	94.6 205 1986 44.6 1977	173 321 1990 62.3 1977	499 899 1976 140 1977	576 2240 1975 58.9 1977	167 568 1975 17.5 1977	75.4 184 1975 16.4 1984	68.4 199 1993 15.6 1988	

06093200 BADGER CREEK BELOW FOUR HORNS CANAL, NEAR BROWNING, MT--Continued

SUMMARY STATISTICS	FOR 2002 CALE	NDAR YEAR	FOR 2003 WAT	ER YEAR	WATER YEARS	1974 - 2003
ANNUAL TOTAL	88033		51091			
ANNUAL MEAN	241		140*		177**	
HIGHEST ANNUAL MEAN					350	1975
LOWEST ANNUAL MEAN					68.1	1977
HIGHEST DAILY MEAN	2420	Jun 18	1260	May 26	14000	Jun 19 1975
LOWEST DAILY MEAN	45	Jan 27	37	Sep 19	6.5	Sep 17 1984
ANNUAL SEVEN-DAY MINIMUM	51	Jan 23	38	Sep 1	7.7	Oct 25 1977
MAXIMUM PEAK FLOW			1630	May 26	a20700	Jun 19 1975
MAXIMUM PEAK STAGE			7.39	May 26	13.58	Jun 19 1975
ANNUAL RUNOFF (AC-FT)	174600		101300		128400	
10 PERCENT EXCEEDS	751		277		397	
50 PERCENT EXCEEDS	100		99		97	
90 PERCENT EXCEEDS	60		45		42	

⁺⁻⁻Diversion, in acre-feet, by Four Horns Canal.

*--170 ft³/s, adjusted flow Four Horns Canal.

**-217 ft³/s, adjusted flow Four Horns Canal.

a--From rating curve extended above 7,700 ft³/s, based on comparison with previous site 3.4 miles upstream. (station number 06092500).

e--Estimated.

06098500 CUT BANK CREEK NEAR BROWNING, MT

LOCATION--Lat 48°37'00", long 113°02'06" (NAD 27), in NE¹/₄NW¹/₄sec. 15, T.33 N., R.11 W., Glacier County, Hydrologic Unit 10030202, Blackfeet Indian Reservation, on right bank 20 ft downstream from bridge on Montana Secondary Highway 464, 4.0 mile north of Browning, and at river mile 73.3.

DRAINAGE AREA.--123 mi².

PERIOD OF RECORD.--April 1918 to October 1925 (seasonal records only), April 1991 to current year.

REVISED RECORDS.--WDR MT-93-1: 1992(M).

GAGE.--Water-stage recorder. Elevation of gage is 4,380 ft (NGVD 29). April 1918 to October 1925, water-stage recorder at site about 120 ft upstream at different elevation. April 1991 to September 1995 at elevation 1.00 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Diversions for irrigation of about 1,200 acres upstream from station. Several observations of water temperature and specific conductance were made during the year. Bureau of Reclamation satellite telemeter at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	49	e33	e43	37	e33	e29	292	187	545	170	42	20
2	48	39	e40	33	e30	e30	179	171	557	163	43	20
3 4	50 50	40 40	e35 e31	34 35	e26 e24	e24 e18	148 131	174 180	514 422	143 124	45 45	19 18
5	51	40	e30	36	e24	e18	121	175	364	112	39	18
6	55	42	e35	33	e22	e16	110	166	344	110	36	17
7	55	46	34	33	e23	e15	100	156	317	101	35	17
8 9	62 64	46 46	34 35	34 e33	e24 e27	e14 e14	93 101	148 146	298 379	96 89	32 32	19 22
10	71	43	36	e32	27	e24	134	142	421	83	29	22
11	67	41	36	e30	29	e26	145	135	403	79	26	21
12	68	43	35	e31	e28	e40	160	127	370	78	27	22
13 14	66 66	44 43	37 38	e32 e32	e30 29	e70 e120	197 208	125 135	340 326	82 83	26 25	26 23
15	65	41	40	e30	e29	e110	195	177	312	82	24	23
16	63	41	37	e28	e24	e90	180	273	291	81	25	27
17	60 58	40 34	36	e27	e20	e76	172 164	278 247	279	67	25 25	29
18 19	58 59	34 42	e24 e23	e26 e24	e18 e18	e73 73	156	247	286 343	60 64	25 23	27 25
20	56	41	e22	e24	e16	69	153	188	364	62	23	24
21	55	42	e22	e22	e16	70	157	174	311	60	25	24
22 23	57 55	44 46	e22 e23	e21 e21	e15 e14	70 95	174 218	172 192	254 215	58 55	23 24	23 23
23	45	46 37	e23 e24	e21 e21	e14 e15	95 79	267	314	192	52	23	23
25	47	37	e27	e27	e18	67	316	545	172	55	23	22
26	e47	43	e28	e31	e20	61	344	921	149	55	22	21
27 28	e47 e42	49 52	30 30	e30 e30	e24 e30	64 58	417 346	970 784	156 174	51 46	21 22	22 22
29	e35	50	32	e33		56 57	246	759	175	44	22	21
30	e31	44	37	32		65	212	874	172	42	22	22
31	e31		33	31		184		708		42	21	
TOTAL	1675	1269	989	923	653	1819	5836	9958	9445	2489	875	663
MEAN MAX	54.0 71	42.3 52	31.9 43	29.8 37	23.3 33	58.7 184	195 417	321 970	315 557	80.3 170	28.2 45	22.1 29
MIN	31	33	22	21	14	14	93	125	149	42	21	17
AC-FT	3320	2520	1960	1830	1300	3610	11580	19750	18730	4940	1740	1320
STATIST	TICS OF MO	ONTHLY MEA	N DATA FO	OR WATER	YEARS 1918	- 2003,	, BY WATER	YEAR (WY)	*			
MEAN	55.3	61.0	41.5	31.5	39.3	53.6	137	416	502	185	66.0	42.0
MAX	136	216	157	73.8	139	110	217	740	955	344	140	81.8
(WY) MIN	1996 15.2	1996 25.4	1996 17.3	1996 18.5	1996 15.4	1997 17.8	1996 57.1	1991 248	2002 184	2002 57.9	1923 15.6	1993 11.7
(WY)	2002	2001	2001	2001	2001	2001	2001	1992	1992	2001	2001	2001
SUMMAR	Y STATIST	ICS	FOR 2	2002 CALE	NDAR YEAR	E	FOR 2003 WAT	TER YEAR		WATER YEARS	1918 -	2003*
ANNUAL	TOTAL			66298			36594					
ANNUAL				182			100			130		
	I ANNUAL N ANNUAL ME									201 69.0		1996 2001
	T DAILY ME	EAN		1420	Jun 17		970	May 27		3400	Jun 7	1995
	DAILY MEA	AN		10	Jan 28		14	Feb 23		9.1	Sep 3	
	SEVEN-DAY M PEAK FLO			13	Mar 5		16 1090	Feb 18 May 26		9.8 a5480	Aug 30 Jun 7	2001 1995
MAXIMU	M PEAK STA	AGE						May 26		9.1 9.8 a5480 b5.59	Jun 7	1995
	FANEOUS LO RUNOFF (A			131500			72580			c4.9 94200	Nov 22	1994
	CENT EXCE			653			269			342		
50 PERG	CENT EXCE	EDS		50			43			51		
90 PER	CENT EXCE	£DS		17			2.2			21		

^{*--}During periods of operation (April 1918 to October 1925, seasonal records only; April 1991 to current year). a--From rating curve extended above $2,500~{\rm ft}^3/{\rm s}$.

b--Previous datum.

c--Gage height, 0.60 ft, result of freezeup. e--Estimated.

06099000 CUT BANK CREEK AT CUT BANK, MT

LOCATION.--Lat 48°38'00", long 112°20'46" (NAD 27), in SW¹/₄SE¹/₄NE¹/₄ sec.11, T.33 N., R.6 W., Glacier County, Hydrologic Unit 10030202, Blackfeet Indian Reservation, on right bank, 0.1 mi downstream from bridge on U.S. Highway 2, 0.7 mi west of Cut Bank, 0.8 mi downstream from Old Maids Coulee, and at river mile 17.7.

DRAINAGE AREA.--1,041 mi².

PERIOD OF RECORD.--August 1905 to October 1919, May to July 1920, May 1922 to October 1924, May 1951 to September 1973, October 1981 to current year. Monthly discharge only for some periods, published in WSP 1309.

REVISED RECORDS.--WSP 1309; 1907-8, 1910-11, 1924-25. WSP 1509: 1911, 1916(M). WSP 1559: 1905(M), 1908(M). WSP 1709: 1959. WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 3,561.42 ft (NGVD 29). Prior to May 12, 1922, nonrecording gage at several sites 0.5 mi upstream at various elevations. May 12, 1922 to Nov. 1, 1924, nonrecording gage at present site and different elevation.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Few minor diversions for irrigation and municipal water supply for city of Cut Bank upstream from station. Natural flow of stream may be affected by return flow from Two Medicine Canal which irrigates lands upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 20, 1975 reached a discharge of 5,200 ft³/s, gage height, 8.2 ft, from floodmarks.

DAILY MEAN VALUES DAY FEB MAY JUL AUG SEP OCT NOV DEC JAN APR JUN e50 e45 e50 e60 e35 12 e45 e60 e60 e45 e70 e50 e40 e45 e40 e80 e40 e45 e35 e30 e40 e40 e45 e30 e50 e40 e40 e30 9.9 73 17 e45 e40 e40 e25 8.7 e45 e20 8.7 e40 e45 e45 e30 e45 e20 e75 e45 e25 e50 e30 e50 e25 e55 e40 e80 e50 e55 e25 e55 e50 51 15 e25 e100 e50 e60 e85 e25 e45 e85 e60 e30 e50 e1000 e30 e45 e30 e50 37 e35 e30 e50 e30 e25 e30 e40 e20 e25 74 e20 e20 e20 2.8 e70 e22 e15 e20 e22 e20 e65 e20 e70 e25 e20 e50 e30 e30 e35 e80 e35 e40 e40 e70 e35 e40 e55 e70 e35 e35 ---e45 e60 e30 e40 e40 TOTAL 511.3 74.3 40.3 31.8 72.7 42.0 15.1 17.0 15 8.7 MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1905 2003, BY WATER YEAR (WY) 74.9 298 MEAN 84.2 76.5 47.0 34.7 57.2 89.1 MAX (WY) MTN 11.2 19.1 15.0 1.61 11.1 6.90 79.4 17.0 5.56 5.92 (WY)

06099000 CUT BANK CREEK AT CUT BANK, MT--Continued

SUMMARY STATISTICS	FOR 2002 CALEND	DAR YEAR	FOR 2003 WAT	ER YEAR	WATER YEARS	1905 - 2003*
ANNUAL TOTAL	98223		44801.3			
ANNUAL MEAN	269		123		183	
HIGHEST ANNUAL MEAN					317	1972
LOWEST ANNUAL MEAN					73.9	1988
HIGHEST DAILY MEAN	7750	Jun 11	1000	Mar 15	11200	Jun 9 1964
LOWEST DAILY MEAN	10	Jan 29	8.7	Sep 7	1.0	Jan 22 1982
ANNUAL SEVEN-DAY MINIMUM	13	Jan 27	11	Sep 3	1.1	Jan 20 1982
MAXIMUM PEAK FLOW			a1250	Mar 14	c16600	Jun 9 1964
MAXIMUM PEAK STAGE			b7.11	Mar 14	13.93	Jun 9 1964
INSTANTANEOUS LOW FLOW					d0.92	Sep 10 1988
ANNUAL RUNOFF (AC-FT)	194800		88860		132400	
10 PERCENT EXCEEDS	787		323		485	
50 PERCENT EXCEEDS	78		55		80	
90 PERCENT EXCEEDS	20		16		24	

^{*--}During periods of operation (August 1905 to October 1919, May to July 1920, May 1922 to October 1924, May 1951 to September 1973, October 1981 to current year).

to September 1973, October 1981 to current year).
a--About.
b--Backwater from ice.
c--From rating curve extended above 12,000 ft³/s on basis of slope-area measurement of peak flow.
d--Gage height, 0.59 ft.
e--Estimated.

06099500 MARIAS RIVER NEAR SHELBY, MT

LOCATION.--Lat 48°25'38", long 111°53'20" (NAD 27), in SE¹/₄NW¹/₄SE¹/₄ sec.20, T.31 N., R.2 W., Toole County, Hydrologic Unit 10030203, on left bank 20 ft downstream from bridge on old U.S. Highway 91, 5.1 mi south of Shelby, 24 mi downstream from Cut Bank Creek, and at river mile 140.6

DRAINAGE AREA.--3,242 mi², of which 518 mi² is probably noncontributing.

PERIOD OF RECORD.--April 1902 to December 1904, May 1905 to December 1906, May 1907 to January 1908, April 1911 to current year. Monthly discharge only for some periods, published in WSP 1309.

REVISED RECORDS.--WSP 1309: 1903-4, 1918, 1921, 1933, 1935, 1947. WSP 1509: 1902, 1912(M), 1916, 1943(M). WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 3,087.72 ft (NGVD 29). Prior to Dec. 23, 1947, nonrecording gage or water-stage recorder at several sites within 1,000 ft of present site at approximately the same elevation. Dec. 23, 1947, to Apr. 6, 1976, water-stage recorder at site 150 ft downstream at same elevation.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Some regulation by Lower Two Medicine Lake (station number 06090900), Four Horns Reservoir (station number 06093000) Swift Reservoir (station number 06094000), and Lake Frances (station number 06095500), having a combined capacity of 172,630 acre-ft. Diversions for irrigation of about 50,000 acres upstream from station and about 15,000 acres downstream from station. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	282 281	e300 e330	350 348	e270 e260	e400 e390	e260 e270	957 1490	1610 1510	2900 2520	507 475	109 99	87 78
3	278	388	e320	e270	e380	e270	1260	1450	2340	449	94	74
4	279	412	e250	e290	e370	e260	981	1570	2130	437	91	70
5	284	433	e180	e290	e360	e260	861	1640	1940	407	96	73
6	297	451	e200	e300	e350	e250	782	1550	1770	384	105	70
7	299	439	e220	e300	e340	e230	723	1390	1640	362	117	71
8 9	304 306	433 418	e250 e270	e290 e250	e330 e320	e220 e220	668 637	1270 1200	1530 1530	342 323	118 125	70 72
10	305	377	e270	e200	e310	e240	653	1150	1870	307	128	75
11	311	429	e300	e170	e300	e250	808	1140	2060	289	125	77
12	322	399	e300	e180	e300	e300	947	1100	1760	267	124	80
13	327	382	e310	e170	e300	e1000	1160	1070	1600	262	135	81
14	326	364	e320	e170	e290	e2000	1660	1050	1510	248	135	81
15	326	371	e340	e180	e280	3090	1800	1090	1380	233	124	89
16	322	365	e350	e200	e280	2580	1650	1290	1310	221	117	94
17	348	353	e330	e200	e290	1830	1490	1400	1240	211	118	103
18	354	334	e280	e210	e290	1270	1480	1370	1210	197	121	122
19	348	334	e200	e230	e290	1020	1430	1300	1330	187	127	130
20	348	326	e170	e250	e280	821	1360	1190	1540	184	126	128
21	343	328	e150	e220	e250	736	1330	1100	1490	177	125	128
22	344	335	e150	e180	e220	689	1360	1040	1270	166	115	130
23	351	348	e160	e150	e200	666	1480	1030	1140	147	99	124
24	345	364	e180	e170	e200	715	1640	1130	1040	143	88	124
25	334	289	e200	e180	e210	692	1880	1430	949	136	106	148
26	343	279	e220	e150	e230	619	2090	2220	832	143	118	133
27	339	405	e250	e200	e240	544	2000	3110	735	147	114	125
28	337	383	e270	e250	e250	517	1820	2950	672	143	93	126
29	e310	360	e280	e230		482	1760	2710	553	135	87	127
30	e280	361	e260	e220		463	1650	2770	537	137	87	131
31	e250		e250	e250		467		3000		118	91	
TOTAL	9823	11090	7948	6880	8250	23231	39807	48830	44328	7884	3457	3021
MEAN	317	370	256	222	295	749	1327	1575	1478	254	112	101
MAX	354	451	350	300	400	3090	2090	3110	2900	507	135	148
MIN	250	279	150	150	200	220	637	1030	537	118	87	70
AC-FT	19480	22000	15760	13650	16360	46080	78960	96850	87920	15640	6860	5990
STATIS	rics of	MONTHLY M	EAN DATA	FOR WATER	YEARS 190	2 - 2003,	BY WATER	R YEAR (WY	*) *			
MEAN	404	394	304	254	318	580	1137	2705	3074	1050	386	355
MAX	1448	1485	1135	700	1173	2300	3149	5300	10190	3982	1100	1853
(WY)	1952	1990	1996	1918	1986	1947	1934	1927	1948	1902	1927	1911
MIN	73.8	116	103	41.9	58.7	139	280	711	409	147	67.1	66.4
(WY)	2002	2002	1937	1937	1936	2002	1931	1977	1977	1940	1988	1988

06099500 MARIAS RIVER NEAR SHELBY, MT--Continued

SUMMARY STATISTICS	FOR 2002 CALE	IDAR YEAR	FOR 2003 WAT	ER YEAR	WATER YEARS	1902 - 2003*
ANNUAL TOTAL	408971		214549			
ANNUAL MEAN	1120		588		903	
HIGHEST ANNUAL MEAN					1929	1927
LOWEST ANNUAL MEAN					302	1977
HIGHEST DAILY MEAN	19300	Jun 11	3110	May 27	109000	Jun 9 1964
LOWEST DAILY MEAN	80	Mar 9	70	Sep 4	10	Aug 20 1919
ANNUAL SEVEN-DAY MINIMUM	100	Mar 17	71	Sep 3	21	Jan 25 1937
MAXIMUM PEAK FLOW			4180	Mar 15	b241000	Jun 9 1964
MAXIMUM PEAK STAGE			6.85	Mar 15	c23.64	Jun 9 1964
INSTANTANEOUS LOW FLOW			a66	Sep 06	d10	Aug 20 1919
ANNUAL RUNOFF (AC-FT)	811200		425600		653900	
10 PERCENT EXCEEDS	3840		1530		2320	
50 PERCENT EXCEEDS	340		310		400	
90 PERCENT EXCEEDS	140		118		157	

^{*--}During periods of operation (1903-04, 1906, 1912 to current year).
a--Gage height, 2.61 ft.
b--Largely due to the failure of Swift Dam, from slope-area measurement of peak flow. Maximum unaffected by dam failure, 75,000 ft³/s, June 20, 1975, gage height, 18.21 ft.
c--From floodmark.
d--Observed, site and datum in use.
e--Estimated.

06101500 MARIAS RIVER NEAR CHESTER, MT

LOCATION.--Lat 48°18'23", long 111°04'47" (NAD 27), in SW¹/₄SW¹/₄sec.34, T.30 N., R.5 E., Liberty County, Hydrologic Unit 10030203, on left bank 2.0 mi downstream from Tiber Dam, 4.4 mi upstream from Pondera Coulee, 15 mi southwest of Chester, and at river mile 78.3.

DRAINAGE AREA.--4,927 mi², of which 518 mi² is probably noncontributing.

PERIOD OF RECORD.--April to September 1921, October 1945 to September 1947, October 1955 to current year. Monthly discharge only for some periods, published in WSP 1309.

REVISED RECORDS .-- WSP 1629: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 2,814.03 ft (NGVD) (Bureau of Reclamation bench mark). Prior to Oct. 1, 1921, nonrecording gage at bridge 2.5 mi downstream at different elevation. Oct. 4, 1945, to Sept. 30, 1946, nonrecording gage at site 3 mi downstream at different elevation. REMARKS.--Records good. Flow completely regulated by Lake Elwell since Oct. 28, 1955 (see preceding page). Bureau of Reclamation satellite

telemeter at station. Several observations of water temperature and specific conductance were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD .-- Flood of June 1948 reached a stage of 16 ft, present elevation.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

					DAIL	I WILAI	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1010	508	503	507	503	497	481	487	625	638	498	497
2	1010	508	503	506	503	495	482	487	626	637	498	502
3	925	509	503	504	503	487	483	486	627	638	500	514
4	874	432	503	504	503	487	484	486	627	638	499	511
5	873	457	503	503	501	487	483	489	628	639	495	507
6	873	505	503	503	503	487	481	487	629	640	492	508
7	873	506	503	503	502	487	479	489	631	642	497	508
8 9	874 873	508 507	503 503	502 504	503 502	487 487	476 476	488 487	630 631	643 641	500 490	507 504
10	871	508	508	504	502	487	477	489	634	642	492	500
11	872	507	508	504	503	487	476	492	632	643	491	504
12	874	507	508	503	500	487	475	497	634	642	489	508
13	872	507	508	503	497	487	477	565	635	637	489	506
14	872	507	509	503	497	487	479	614	635	635	487	508
15	872	508	508	502	497	492	479	614	641	637	493	508
16	884	506	509	508	496	492	479	613	643	636	494	510
17	895	504	508	507	496	492	478	614	643	589	497	508
18	896	503	508	506	495	492	481	616	648	550	497	508
19 20	895 896	503 505	508 508	505 506	495 494	492 489	480 481	618 618	647 649	550 551	494 493	508 508
20	896	505	508	506	494	489	481	018	649	221	493	508
21	896	508	508	507	497	487	482	618	643	551	496	508
22	902	505	508	508	497	487	481	618	644	553	496	508
23 24	894 834	505 507	508 508	508 508	497 497	487 487	481 482	618 619	643 643	551 553	495 497	505 507
25	809	507	508	508	497	487	487	619	643	551	496	507
26 27	811 812	503 503	508 508	508 508	497 497	487 487	486 487	618 611	643 643	551 547	499 497	503 503
28	722	503	508	508	497	487	487	617	643	546	487	503
29	577	503	508	508		485	488	620	646	525	498	503
30	509	503	508	506		481	487	618	639	498	498	503
31	508		508	505		481		619		492	498	
TOTAL	26158	15048	15705	15669	13971	15128	14435	17531	19125	18386	15342	15180
MEAN	844	502	507	505	499	488	481	566	638	593	495	506
MAX	1010	509	509	508	503	497	488	620	649	643	500	514
MIN	508	432	503	502	494	481	475	486	625	492	487	497
AC-FT	51880	29850	31150	31080	27710	30010	28630	34770	37930	36470	30430	30110
STATIS'	TICS OF M	ONTHLY ME	AN DATA	FOR WATER	YEARS 1921	- 2003,	BY WATER	YEAR (WY)	*			
MEAN	734	589	443	404	440	602	810	1221	1701	1233	924	850
MAX	2758	1733	1050	1079	1068	2400	2343	3541	6254	5325	2909	3063
(WY)	1966	1986	1990	1990	1990	1947	1996	1947	1964	1975	1964	1965
MIN	208	0.40	15.7	35.0	35.0	47.7	46.1	51.0	58.9	57.5	82.5	173
(WY)	1983	1956	1956	1956	1956	1956	1956	1956	1956	1956	1956	1921
SUMMAR	Y STATIST	ICS	FOF	2002 CAL	ENDAR YEAR	F	OR 2003 W	ATER YEAR		WATER YEAR	S 1921 -	2003*
ANNUAL	TOTAL			352892			201678					
ANNUAL				967			553			829		
	T ANNUAL									1488		1959
	ANNUAL M			5280	T 22		1010	0 1		97.5 10100	Jun 12	1956
	T DAILY M DAILY ME.			225	Jun 22 Apr 1		432	Oct 1 Nov 4		0.20		
	SEVEN-DA			227	Mar 26		477	Apr 7		0.20	Oct 29	
	M PEAK FL				20		1010	Oct 1		a10400	Jun 16	
MAXIMU	M PEAK ST.	AGE					4.17			10.63	Jun 16	1964
	TANEOUS L									b0.20	Nov 10	1955
	RUNOFF (.			700000			400000			600400		
	CENT EXCE			1960 508			643 505			1660 563		
	CENT EXCE			231			487			220		
20 I IIIC				231			10.					

^{*--}During period of operation (April to September 1921, October 1945 to September 1947, October 1955 to current year).
a--Since dam completion. Maximum discharge not determined; occurred about March 20, 1947.
b--Probably less than; during Tiber Dam shutdown.

06102050 MARIAS RIVER NEAR LOMA, MT

 $LOCATION.--Lat\ 47^{\circ}55'59", long\ 111^{\circ}31'02"\ (NAD\ 27)\ , in\ SW^{1}/_{4}NE^{1}/_{4}SE^{1}/_{4}\ sec.12,\ T.25\ N.,\ R.9\ E.,\ Choteau\ County,\ Hydrologic\ Unit\ 10030203,\ on\ left\ bank\ 600\ ft\ upstream\ from\ Teton\ River,\ 800\ ft\ upstream\ from\ highway\ bridge,\ 0.2\ mi\ southwest\ of\ Loma,\ and\ at\ river\ mile\ 2.5.$

DRAINAGE AREA.--7,137 mi², of which 518 mi² is probably noncontributing.

PERIOD OF RECORD.--October 1959 to September 1972, June 2001 to current year (seasonal records only).

GAGE.--Water-stage recorder. Elevation of gage is 2,570 ft (NGVD 29). Prior to June 2001, water-stage recorder at site 4.5 mi upstream at different elevation.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow completely regulated by Lake Elwell. Numerous diversions for irrigation upstream from station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

					Ditti	LI WILL	11 TILCES					
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1				e490	490	610	595 592 582 586 594	455	488	477		
2				e492	490	602	592	442	484	480		
3				e495	484	599	582	453	479	481 473		
4 5				e495	490	601	586	458	479	473 467		
5										407		
6				e495	575	613	595 593 597 606 575	466	490	474		
7				e495	520	606	593	464	491	477		
8				e492	520	609	597	464	493	461		
9 10				e490	528 510	609 621	606 575	476	492	461 455		
10												
11				e490	503	626	585 579 569 561 566	469	483	461 469 469 470		
12				e490	504	611	579	476	488	469		
13 14				e490	499	588	569 E61	493	497	469		
15				e510	588	601	566	496	500	475		
16				532	607	605	562 570 564 499 503	470	504	487		
17				492	599	610	570	486	502	478		
18 19				521 597	601	502 588	564 499	482 476	484 470	4/4		
20				507	615	809	503	470	472	478 474 472 476		
							510 507 479 468 487					
21				489	614	661	510	469	464	473 369 353 445		
22 23				488	607	649	507	480	470	369		
23 24				494	610	655	479	484	452	353 445		
25				491	596	641	487	480	457	454		
							497 502 507 514 512 458					
26 27				484	600	647	497	478	445	461		
28				475	600	609	502	479	467	405 e470		
29				489	589	589	514	475	454	e470		
30				489	587	592	512	482	466	e475		
31					589		458	484		e475		
TOTAL				14984	17408	18643	16914	14696	14348	14347		
MEAN				499	562	621	16914 546 606 458	474	478	14347 463 487		
MAX				597	631	809	606	498	504	487 353		
MIN				475	484	588	458	442	445	353		
AC-FT				29720	34530	36980	33550	29150	28460	28460		
							, AND 2001-					
MEAN	298	434	568	852	1273	2151	1345 2990 2002 250 1962	1154	1072	1345	1154	1072
MAX	517	910	1290	2184	2175	6018	2990	3040	3258	2990	3040	3258
(WY)	1968	1968	1967	1972	1972	1964	2002	1965	1965	2002	1965	1965
MIN	105	110	117	180	441	621	250	137	296	250	137	296
(WY)	1964	1964	1964	1961	2002	2003	1902	1901	2001	1962	1901	2001
							WATER YEARS					
ANNUAL	MEAN						977 1330 522 10300 45 49 10800 a8.72 707900 1940 800					
HIGHEST	ANNUAL M	EAN					1330		1967			
LOWEST	ANNUAL ME	AN		0.00	T 00		522	T 16	1963	5050	T (22 2000
LOWEST	DAILY MEA	AN N		809 353	Jun 20 Oct 23		10300 45	Dec 11	1964	5250 220	Jun .	1 2002
ANNUAL	SEVEN-DAY	MINIMUM		555	300 25		49	Dec 5	1962	220	15-	_ 2002
MAXIMUM	PEAK FLO	W		972	Jun 20		10800	Jun 16	1964	5250	Jun 2	23 2002
MAXIMUM	PEAK STA	GE		1.92	Jun 20		a8.72	Jun 16	1964	b5.2	29 Jun 2	24 2002
ANNUAL	KUNUFF (A	DG C-ET)					10/900					
50 PERC	ENT EXCEE	DS					800					
	ENT EXCEE						180					

a--Site and datum then in use.

b--From high-water mark.

e--Estimated.

06102500 TETON RIVER BELOW SOUTH FORK, NEAR CHOTEAU, MT

LOCATION.--Lat 47°52′59", long 112°36′40" (NAD 27), in NE¹/₄NE¹/₄ sec.34, T.25 N., R.8 W., Teton County, Hydrologic Unit 10030205, on right bank at county road bridge, 1.1 mi downstream from South Fork, 7.6 mi southwest of Bynum Reservoir, 20 mi northwest of Choteau, and at river mile 194.7.

WATER-DISCHARGE RECORDS

DRAINAGE AREA.--105 mi².

PERIOD OF RECORD.--June 1947 to October 1954 (published as "near Farmington"), June 1998 to current year, seasonal records only.

GAGE.--Water-stage recorder. Elevation of gage is 4,770 ft (NGVD 29). June 1947 to October 1954, water-stage recorder 300 ft downstream at different

REMARKS.--Seasonal water-discharge records good. Negligible diversion for irrigation upstream from station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 8, 1964 reached a discharge of 54,600 ft³/s, from slope-area measurement of peak flow.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

					DAII	LIMEAN	VALUES					
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5				70 64 59 56 55	140 138 143 145 138	389 362 317 292 263	129 125 121 116 113	72 72 71 70 70	58 58 58 57 57	57 57 57 56 56		
6 7 8 9 10				53 52 51 55 59	133 e127 e125 e120 114	268 243 245 279 271	112 108 108 103 100	71 69 69 70 67	56 56 58 58 58	56 55 55 56 56		
11 12 13 14 15				62 69 80 92 91	110 110 107 115 142	284 264 252 247 236	98 95 94 93 92	67 66 65 64 64	57 67 61 59 59	56 56 55 56 57		
16 17 18 19 20				85 84 83 79 80	171 163 156 145 141	224 220 224 232 261	90 87 85 83 83	64 64 62 61 61	67 65 61 59 62	57 55 56 55 55		
21 22 23 24 25				83 92 109 142 179	141 142 164 215 348	223 199 185 174 160	82 81 79 78 78	61 61 60 60	61 59 59 59 56	54 55 55 55 55		
26 27 28 29 30 31				186 176 168 155 147	506 467 467 527 535 432	149 147 143 137 132	78 76 74 73 73 73	60 59 60 60 59	57 58 58 57 57	53 52 56 69 e61 e55		
TOTAL MEAN MAX MIN AC-FT				2816 93.9 186 51 5590	6627 214 535 107 13140	7022 234 389 132 13930	2880 92.9 129 73 5710	1999 64.5 72 59 3970	1772 59.1 67 56 3510	1739 56.1 69 52 3450		
STATIST	ICS OF MO	NTHLY MEA	N DATA F	OR WATER	YEARS 1947	7 - 1954	AND SEASO	NS 1998 -	2003*			
MEAN MAX (WY) MIN (WY)	47.9 59.0 1952 24.9 1950	46.3 59.0 1952 25.1 1949	45.1 48.9 1952 36.5 1950	80.3 142 1952 45.0 2001	324 516 1951 195 2001	513 1178 1953 230 2000	239 468 1951 92.9 1949	114 182 1951 61.8 1949	86.4 134 1951 57.3 1949	77.5 133 1952 54.6 1950	68.6 89.8 1952 44.0 1950	56.9 68.2 1951 40.7 1950
SUMMARY	STATISTI	CS		FOR 200	3 SEASON	V	NATER YEAR	S 1947 - 3	1954*	SEASONS	S 1998 -:	2003*
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL 10 PERC 50 PERC	MEAN ANNUAL ME DAILY ME DAILY MEA SEVEN-DAY PEAK FLO ANEOUS LO RUNOFF (A ENT EXCEE ENT EXCEE	AN AN N MINIMUM W GE W FLOW C-FT) DS DS		535 51 608 5.21 a48	May 30 Apr 8 May 30 May 30 Apr 9	k	166 225 92.9 2380 20 222 2780 c7.34 d12 .9900 418 80 43		1949 1949 1948 1950	1160 36 1280 5.78 f35	Jun 17	2001 2002 2002

^{*--}During periods of operation (June 1947 to October 1955, June 1998 to current year; seasonal records beginning 1998).
a--Gage height, 3.62 ft.
b--From rating curve extended above 1,100 ft³/s, gage height, 5.32 ft. previous site and datum.
c--Backwater from ice, previous site and datum.
d--Gage height, 2.82 ft, previous site and datum.
e--Estimated.
f Green beight 3.71 ft.

f--Gage height, 3.71 ft.

PERIOD OF RECORD.--May 1998 to current year.

REMARKS.--Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge,	water, unfltrd field,		Temper- ature, air,	Temper- ature, water,	Ammonia + org-N, water, unfltrd mg/L	water,	Nitrite + nitrate water fltrd, mg/L	water,
Date	111116	cfs (00061)		25 degC	deg C (00020)	deg C	as N (00625)	as N (00608)	as N	as N (00613)
NOV 2002 04	1510	68	8.3	390	7.0	4.0	<.10	<.015	.043	<.002
JAN 2003 14	1500	49	8.4	388	.5	2.5	<.10	<.015	.050	<.002
MAR 11	1000	48	7.8	382	-9.0	.0	<.10	<.015	.061	<.002
APR 08	1745	50	8.2	387	15.5	11.5	E.06	E.009	.054	<.002
MAY 21	0930	144	8.3	339	10.0	8.0	<.10	<.015	.036	<.002
JUN 16	1520	212	8.5	312	23.0	15.0	E.07	<.015	E.020	<.002
JUL 15	2000	89	8.5	367	28.0	15.0	<.10	<.015	E.019	<.002
AUG 20	1745	59	8.4	383	24.0	16.0	<.10	<.015	<.022	<.002
SEP 09	1745	58	8.6	385	12.0	13.0	<.10	<.015	E.012	<.002
		Date		Phos- phorus, water, unfltro	ium, water, l unfltro	diame l perce <.063	- pend , sedi e men tr conce nt trati	ed Sus - pend t sedi n- men on load L tons	ed - t /d	
		NOV 2002 04	<.007	<.004	E.5	83	13	2.4		
		JAN 2003 14	<.007	E.003	.8	70	2	. 26		
		MAR 11	<.007	E.002	E.5	47	12	1.6		
		APR 08	<.007	E.002	.8	61	5	.68		
		MAY 21	<.007	<.004	.7	63	3	1.2		
		JUN 16	<.007	E.003	E.4	80	3	1.7		
		JUL 15	- 007	E 003		70	0	2.2		

E.002 .7

.6

.6

< .004

< .004

79

60

58

9

10

7

2.2

1.6

1.1

E--Estimated.

15... AUG

20... SEP 09... <.007

<.007

<.007

06108000 TETON RIVER NEAR DUTTON, MT

 $LOCATION.--Lat\ 47^{\circ}55'49", long\ 111^{\circ}33'07"\ (NAD\ 27), in\ SE^{1}/_{4}SW^{1}/_{4}SW^{1}/_{4}SEC.12, T.25\ N., R.1\ E., Teton\ County,\ Hydrologic\ Unit\ 10030205,\ on\ SE^{1}/_{4}SW^{1}/_{4$ right bank 150 ft upstream from Kerr Bridge, 0.9 mi downstream from Hunt Coulee, 9.5 mi northeast of Dutton, and at river mile 100.9. DRAINAGE AREA.--1,307 mi². Area at site used prior to July 17, 1965, 1,308 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--August 1954 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 3,235 ft (NGVD 29). Prior to July 17, 1965, water-stage recorder at site 1,800 ft downstream at elevation 1.97 ft lower.

REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. Water is diverted on left bank in sec.34, T.25 N., R.7 W., for storage in Bynum Reservoir (usable capacity, 75,000 acre-ft). Diversions for irrigation of about 44,000 acres upstream from station. U.S. Geological Survey satellite telemeter at station.

U.S. Ge	ological Su	ırvey satelli	te telemete	er at station	•							
]	DISCHARC	E, CUBIO	C FEET PE			R YEAR OCT N VALUES	TOBER 200	02 TO S	EPTEMBER	2 2003	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	38 36 36 37 39	e30 e35 e38 e40 e42	e45 e40 e30 e25 e27	e35 e40 e40 e40 e40	e40 e40 e35 e35 e32	e35 e35 e30 e35 e35	99 107 117 123 124	98 107 104 103 103	62 59 55 49 45	52 41 30 19 16	0.00 0.00 0.00 0.00 0.00	3.8 4.6 4.8 4.7 4.8
6 7 8 9 10	37 38 38 38 34	e45 e47 e45 e45 e45	e30 e35 e35 e40 e45	e40 e40 e35 e25 e25	e35 e35 e38 e40 e40	e25 e15 e15 e20 e35	126 125 114 106 96	134 147 129 115 105	47 43 53 58 61	12 11 12 12 11	0.00 0.00 0.00 0.00 0.00	4.9 4.5 5.0 6.0 6.4
11 12 13 14 15	35 37 36 38 42	e48 e50 e50 47 46	e40 e40 e45 e50 e45	e30 e35 e33 e30 e30	e40 e40 e40 e35 e40	e40 e50 e70 e100 e300	91 87 87 96 119	101 101 101 83 72	74 70 75 86 71	9.9 6.5 6.8 6.3	0.00 0.00 0.00 0.00 0.00	7.4 9.2 9.9 11 14
16 17 18 19 20	43 47 43 38 37	44 44 42 41 39	e45 e40 e32 e27 e25	e30 e30 e33 e35 e30	e45 e45 e45 e40 e35	504 400 275 212 179	163 149 131 118 111	69 63 67 67	58 48 42 41 48	5.2 3.9 3.4 3.2 2.7	1.5 2.8 1.8 1.2	22 39 41 33 26
21 22 23 24 25	38 39 38 39 42	38 38 38 e37 e37	e25 e25 e25 e27 e30	e25 e20 e22 e25 e20	e30 e20 e15 e15 e20	161 147 132 120 116	102 92 84 80 78	64 61 60 57 53	169 228 171 116 104	2.3 1.8 1.3 0.53 0.13	1.3 1.2 1.8 1.7	21 17 15 14 13
26 27 28 29 30 31	44 44 e40 e30 e20 e25	e40 e45 e45 e40	e35 e35 e35 e30 e30 e35	e25 e35 e35 e35 e40 e45	e30 e25 e30 	110 107 107 104 103 98	79 85 94 95 93	48 45 50 57 53 57	96 86 81 74 64	0.00 0.00 0.00 0.00 0.00	1.7 1.9 2.3 2.2 2.4 2.9	12 11 11 10 10
TOTAL MEAN MAX MIN AC-FT	1166 37.6 47 20 2310	1261 42.0 50 30 2500	1073 34.6 50 25 2130	1003 32.4 45 20 1990	960 34.3 45 15 1900	3715 120 504 15 7370	3171 106 163 78 6290	2538 81.9 147 45 5030	2334 77.8 228 41 4630	276.26 8.91 52 0.00 548	29.70 0.96 2.9 0.00 59	396.0 13.2 41 3.8 785
MEAN MAX (WY) MIN (WY)	69.8 223 1966 15.4 2002	70.6 176 1976 18.5 2002	64.1 209 1960 14.8 2001	55.2 167 1976 13.2 1985	85.5 388 1986 15.2 1985	183 819 1969 28.8 2002	158 495 1965 46.6 2000	YEAR (WY) 245 957 1976 20.1 2000	385 2727 1964 16.9 1988	157 551 1958 1.30 1985	72.7 263 1972 0.000 1988	64.9 211 1993 7.39 2001
SUMMARY	STATISTI	cs	FOR	2002 CALE	NDAR YEAR	I	FOR 2003 WA	TER YEAR		WATER YEA	RS 1954 -	2003
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL 10 PERC 50 PERC	MEAN 'ANNUAL MEANUAL MEANUAL MEAULY M	EAN EAN AN MINIMUM AGE DW FLOW AC-FT) EDS		20999 57.5 1900 10 11 41650 66 35 15	Jun 12 Jan 26 Jan 24		0.00 0.00 a607 b5.96	Mar 16 Jul 26 Jul 26 Mar 16 Mar 15 Jul 26		0.0 c71300 d20.4	0 Jul 21 0 Jul 21	1984 1984 1964 1964

a--Gage height, 3.83 ft. b--Backwater from ice.

c--From slope-area measurement of peak flow. d--From floodmark.

e--Estimated.

f--No flow at times on many years.

06108000 TETON RIVER NEAR DUTTON, MT--Continued $\label{eq:water-quality} WATER-QUALITY RECORDS$

PERIOD OF RECORD.--May 1998 to current year.

REMARKS.--Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

			nII	Specif.			Ammonia +		Nitrite +	
Date	Time	taneous dis- charge, cfs	water, unfltrd field,	conduc- tance, wat unf uS/cm 25 degC		ature, water, deg C	org-N, water, unfltrd mg/L as N	water,	nitrate water fltrd, mg/L as N	water,
NOV 2002 06	1240	45	8.3	822	14.0	0.0	.21	.053	.684	.006
JAN 2003 14	1015	29	8.4	1010	-5.0	0.0	.18	E.014	1.07	.007
MAR 11 19 APR	1540 1030	38 204	7.4	849 700	-4.0 14.0	0.0 1.5	.20	E.012	.856	.004
08	1445	114	8.5	1010	26.5	10.0	.65	.015	.072	E.002
MAY 20	1410	64	8.6	807	17.0	14.0	.34	E.011	<.022	<.002
JUN 16	1815	55	8.6	1020	27.0	26.0	.76	E.009	.056	.009
JUL 16	0930	5.8	8.5	1110	26.0	21.0	.45	E.008	<.022	<.002
AUG 20	1345	1.3	8.5	1310	25.0	23.5	.55	<.015	<.022	<.002
SEP 09	1400	5.8	8.5	925	17.0	17.0	.32	<.015	<.022	<.002
		Date	fltrd, mg/L as P	Phos- phorus, water, unfltrd	water, unfltrd ug/L	ment, sieve diamet percer <.063r	pend, sedi e men cr conce nt trati	ed Sus - pend t sedi n- men on load L tons	led - it !,	
		NOV 2002 06	<.007	.009	.8	77	52	6.3		
		JAN 2003 14	<.007	.011	1.0	30	80	6.3		
		MAR 11 19 APR	<.007	.010	.7	80 98	42 560			
		08 MAY	<.007	.053	1.1	96	69	21		
		20 JUN	<.007	.026	1.0	96	42	7.3		
		16 JUL	<.007	.055	1.0	96	76	11		
		16 AUG	<.007	.039	.8	99	58	.9	1	
		20 SEP	<.007	.041	1.0	99	24	.0	8	
		09	<.007	.027	.8	99	26	. 4	1	

 $\mathtt{E--Estimated}$.

06108800 TETON RIVER AT LOMA, MT

LOCATION.--Lat 47°55'57", long 110°30'49" (NAD 27), in NW¹/₄SW¹/₄SE¹/₄ sec.12, T.25 N., R.9 E., Choteau County, Hydrologic Unit 10030205, on left bank 25 ft downstream from county bridge, 0.5 mi southwest of Loma, and at river mile 0.3. DRAINAGE AREA.--2.010 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1998 to current year. Prior to October 1, 1999, seasonal records only. GAGE.--Water-stage recorder. Elevation of gage is 2,560 ft (NGVD 29).

REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. U. S. Geological Survey satellite telemeter at station. Numerous diversions upstream from station for irrigation.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES JUL DAY OCT NOV DEC FEB MAY JUN AUG SEP JAN MAR APR 55 e25 e38 e31 99 92 38 26 0.00 0 00 55 26 102 31 0.00 e31 e25 e32 e30 89 0.00 26 e36 e46 e26 e28 e28 107 37 18 0.00 0.00 e39 e21 e25 e27 26 27 4 e27 107 92 39 13 0.00 0.00 112 9.2 5 93 39 e26 e29 e24 0.00 0.00 e41 e26 e33 e26 6.5 6 7 27 e45 e32 e25 116 91 38 0 00 0 00 27 e47 e36 e37 e28 e24 119 89 31 0.00 0.00 30 e38 e23 99 31 1.5 e43 29 57 e40 **630** e22 124 102 32 3 4 0.00 0.00 35 10 28 51 118 0.06 e47 e32 e28 e21 97 0.00 0.00 31 41 61 0 00 0 00 11 e52 e27 e28 e21 113 89 0 00 34 38 e55 109 67 12 e24 e26 e20 87 0.00 0.00 0.00 e25 13 31 46 e56 e21 e24 108 83 64 0.00 0.00 0.00 e58 14 29 61 e19 e26 e34 108 77 64 0 00 0 00 0.00 30 62 0.00 0.00 15 62 e54 e18 e24 e56 108 75 0.00 16 29 53 e47 e17 e27 e100 107 72 61 0 00 0 00 0 00 32 49 e19 e29 119 59 0.00 0.00 17 e36 e430 64 0.00 18 34 45 e30 e27 e30 357 147 63 49 0.00 0.00 0.00 19 36 43 e26 e33 e32 290 132 62 37 0.00 0.00 0.00 20 e25 115 58 122 21 37 42 e21 e20 e28 215 110 55 50 0.00 0.00 0.00 e16 22 35 42 e20 e21 107 51 45 0.00 0.00 190 0.00 23 32 40 e23 e18 e18 171 102 51 92 0.00 0.00 0.00 24 33 0.00 e25 e25 e17 e17 153 98 49 124 0.00 0.00 25 36 e19 96 102 0.00 0.00 0.00 e20 e30 e18 26 36 e28 e33 e23 e21 127 92 50 82 0.00 0.00 0.00 27 36 42 e30 e27 e26 122 90 50 72 0.00 0.00 0.00 28 38 52 e27 e22 e29 115 88 38 65 0.00 0.00 0.00 57 0.00 29 e27 64 e25 108 29 0.00 e28 91 0.00 30 e20 59 e24 e37 103 92 24 47 0.00 0.00 0.00 ---31 e24 e24 e40 97 28 0.00 0.00 TOTAL 949 1321 1120 808 747 3376 3258 2134 1726 119.26 0 00 0.00 0.000 MEAN 30.6 44.0 36.1 26.1 26.7 109 109 68.8 57.5 3.85 0.000 38 0.00 MAX 39 64 58 40 430 147 102 124 38 0.00 MIN 20 20 2.0 16 17 20 88 24 31 0.00 0.00 0.00 6700 2220 4230 3420 AC-FT 1880 2620 1600 1480 6460 237 0.00 0.00 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1998 - 2003, BY WATER YEAR (WY) MEAN 72.7 126 38.2 13.7 MAX 30.6 44.0 39.5 35.0 31.6 109 109 74.8 1999 304 151 62.6 24.8 (WY) 1998 2000 2003 2003 2002 1998 2003 2003 1999 0.000 0.000 0.000 0.000 (WY) 2000 2002 2002 2002 2002 2001 2002 2000 2000 2001 2000 2000 SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1998 ANNUAL TOTAL 18257.65 15558.26 ANNUAL MEAN 50.0 42.6 32.3 HIGHEST ANNUAL MEAN 2003 42.6 LOWEST ANNUAL MEAN 16.6 2001 1740 1740 2002 430 0.00 0.00 0.00 LOWEST DAILY MEAN Jan 1 Jul 11 Jul 30 1999 ANNUAL SEVEN-DAY MINIMUM 0.00 Jul 11 0.00 Jul 30 1999 0.07 Jan MAXIMUM PEAK FLOW a500 c2000

b6.98

0.00

30860

102

Mar 16

b6.98

0.00

23400

73 19 Mar 16 2003

36210

67 27

MAXIMUM PEAK STAGE

10 PERCENT EXCEEDS 50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

ANNUAL RUNOFF (AC-FT)

a--About, backwater from ice.

b--Backwater from ice, from floodmarks.

c--Gage height, 5.87 ft.

e--Estimated.

06108800 TETON RIVER AT LOMA, MT--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water year 1965, May 1998 to current year.

PERIOD OF DAILY RECORD .--

WATER TEMPERATURE: October 1999 to current year.

INSTRUMENTATION.--Temperature recorder installed Oct. 20, 1999.

REMARKS.--No samples collected during July through September due to no flow. Daily temperature record good for period of flow. Missing maximum daily water temperature for Mar. 31 due to equipment problems. No daily water temperature data from July 10 through September 30 due to no flow. Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office.

EXTREMES FOR PERIOD OF DAILY RECORD .--

WATER TEMPERATURE (October 1999 to current year): Maximum, 35.5°C, July 13, 2002; minimum, 0.0°C on many days during winter months.

EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURE: Maximum, 30.5°C, July 1; minimum, 0.0°C, many days October through March.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Tim	dis-	s unfltro field, , std units	tance, wat unf uS/cm 25 deg(Tempe: ature air deg (e, at , wa C de	mper- cure, iter, eg C	Ammonia + org-N, water, unfltro mg/L as N (00625)	Ammon wate fltr mg/ as	r, wate d, fltr L mg/ N as	te Nitri er wate ed, flt: L mg, N as	er, cd, /L N
NOV 2002 06 JAN 2003	161	5 45	8.4	915	13.0		.0	.34	E.00	8 .21	.7 .00	04
13	143	0 21	7.9	1100	-2.0		.0	.22	E.00	9 .90	.00	08
MAR 12	084	0 E20	7.9	992	-5.5		.0	.15	.01	5 .59	6 E.00	02
APR 09	090	5 129	8.5	961	22.0	10	.5	.54	<.01	5 <.02	.00)2
MAY 22	110	0 52	8.6	1020	17.0	17	.0	. 29	<.01	5 <.02	22 <.00)2
JUN 17	144	0 59	8.6	1100	29.0	28	3.0	.63	<.01	5 <.02	22 <.00	02
		Date	Orthophos-phatewater fltrd mg/I as F (00671	Phose, Phorus t, phorus l, water unfltr mg/I	s, ium c, wate cd unfli L ug	en- m m, s er, di trd pe /L <.	rcent 063mm	pende sedi- ment concer tratio	ed Su pen sed n- me on loa ton	ded i- nt d, s/d		
		NOV 2002 06 JAN 2003	<.007	.098	1.	1	97	177	22			
		13 MAR	<.007	.019	1.	1	90	51	2.	9		
		12 APR	<.007	.010	. '	7	78	46	E2.	5		
		09	<.007	.081	1.:	2	96	101	35			
		22 JUN	<.007	.015	1.	1	96	26	3.	7		
		17	<.007	.095	. !	9	99	130	21			
Date	Time		Calcium water, fltrd, mg/L	<pre>lagnes- ium, water, fltrd, mg/L 00925)</pre>	Potas- sium, water, fltrd, mg/L (00935)		o- w ı f	dium, frater, ltrd, n	Alka- inity, vat flt Exd end lab, ng/L as CaCO3 29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)
APR 2003						_	_					
09 JUN	0905	410	68.2	57.7	2.90	1		7.3	249	8.75	.44	1.42
17	1440	420	60.5	65.6	3.64	2	9	1.1	225	11.3	. 4	1.37

E--Estimated.

06108800 TETON RIVER AT LOMA, MT--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d (70302)	Arsenic water unfltrd ug/L (01002)	Cadmium water, unfltrd ug/L (01027)	Chrom- ium, water, unfltrd recover -able, ug/L (01034)	Copper, water, unfltrd recover -able, ug/L (01042)	Lead, water, unfltrd recover -able, ug/L (01051)	Nickel, water, unfltrd recover -able, ug/L (01067)	Zinc, water, unfltrd recover -able, ug/L (01092)
APR 2003 09 JUN	259	615	.84	214	E2	<.2	. 9	6.2	1.24	5.50	10
17	342	711	.97	113	2	<.2	E.7	4.9	1.58	5.53	10

E--Estimated.

WATER TEMPERATURE, DEGREES CELSIUS, OCTOBER 2002 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NC	VEMBER		DE	CEMBER			JANUARY	
1 2 3 4 5	15.0 14.0 10.0 9.5 8.5	7.5 5.5 8.0 7.5 6.0	10.5 9.5 9.0 8.5 7.0	0.0 0.0 0.5 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	3.5 2.5 1.5 0.0	0.0 1.5 0.0 0.0	1.5 2.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
6 7 8 9 10	13.0 14.0 16.0 15.5 14.5	5.0 10.0 8.5 8.5 8.0	8.5 11.0 11.5 12.0 10.5	0.5 2.0 2.5 2.0	0.0 0.0 0.0 0.5 0.0	0.0 1.0 1.0 1.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
11 12 13 14 15	10.0 10.5 11.5 11.5	6.0 3.5 3.5 4.5 4.0	8.5 6.5 7.0 7.5 7.5	3.0 4.5 5.5 5.0 6.5	0.0 0.0 3.0 3.0 3.5	1.0 2.5 4.5 4.0 4.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
16 17 18 19 20	11.5 12.5 12.0 11.5 12.0	6.5 5.0 6.5 4.5 6.5	8.5 8.5 9.0 8.0 9.0	4.0 5.5 4.5 6.0 7.5	2.5 2.0 1.5 2.0 4.0	3.0 3.0 2.5 4.0 5.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
21 22 23 24 25	11.0 7.0 4.0 4.0 5.5	6.5 2.0 0.0 0.0	8.5 5.0 1.5 1.5	6.0 5.5 4.5 0.5	2.0 3.5 0.0 0.0	4.5 5.0 2.5 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
26 27 28 29 30 31	5.0 5.5 3.5 0.5 0.0	0.0 1.5 0.5 0.0 0.0	2.5 3.5 2.5 0.0 0.0	0.0 2.0 5.5 4.5 3.5	0.0 0.0 0.5 1.5 0.5	0.0 1.0 3.0 3.0 1.5	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
MONTH	16.0	0.0	6.5	7.5	0.0	2.0	3.5	0.0	0.0	0.0	0.0	0.0

06108800 TETON RIVER AT LOMA, MT--Continued

WATER TEMPERATURE, DEGREES CELSIUS, OCTOBER 2002 TO SEPTEMBER 200E--Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1	0.0	FEBRUARY 0.0	0.0	0.0	MARCH 0.0	0.0	11.0	APRIL 9.0	10.0	16.5	MAY 8.0	12.0
2 3 4 5	0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0	9.0 9.5 10.5 11.5	2.5 1.0 3.5 4.5	6.0 4.5 6.5 7.5	17.5 17.5 14.0 10.5	10.5 10.0 8.0 4.5	14.0 13.5 11.0 7.5
6 7 8 9 10	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	11.0 11.5 14.5 16.0 16.5	6.5 4.0 5.5 9.0 8.0	8.5 8.0 10.0 12.5 12.0	13.0 14.0 11.5 10.0 11.5	6.5 8.0 8.5 8.0 7.5	9.5 11.0 9.5 9.0 9.0
11 12 13 14 15	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	19.0 19.5 18.0 17.0 13.5	10.5 12.0 12.5 12.0 9.5	14.5 15.5 15.0 14.0 11.5	18.5 19.0 19.0 22.5 22.0	7.5 12.0 12.5 12.0 15.0	12.5 15.5 16.0 17.5 18.5
16 17 18 19 20	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 1.5 3.5 6.0 7.5	0.0 0.0 1.0 1.0 2.0	0.0 0.5 2.0 3.5 5.0	15.5 15.0 12.5 16.5 18.5	7.5 8.5 9.5 8.5 10.5	11.0 12.0 10.5 12.0 14.5	17.5 17.0 13.5 18.0 20.5	12.5 9.0 7.0 6.0 9.5	15.0 13.0 9.5 11.5 15.0
21 22 23 24 25	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	7.5 9.0 9.0 5.5 6.0	3.5 4.0 5.0 3.0 1.5	5.5 6.5 7.0 4.5 4.0	19.5 20.5 21.0 22.0 18.5	11.5 11.5 14.0 14.5 14.0	15.0 16.0 17.5 17.5 16.0	21.0 22.5 22.5 27.0 29.0	14.0 14.5 16.0 15.0 17.0	17.0 18.5 18.5 20.5 22.5
26 27 28 29 30 31	0.0 0.0 0.0 	0.0 0.0 0.0 	0.0 0.0 0.0 	8.5 8.5 9.5 9.5 13.0	3.0 4.5 2.5 3.0 5.5 9.0	6.0 6.5 6.0 6.5 9.0	17.5 17.5 13.5 11.5 11.0	12.0 10.0 9.5 9.0 9.0	14.0 13.5 11.0 10.5 10.0	24.0 26.0 27.5 28.0 24.5 23.5	19.0 16.5 16.5 19.5 16.5	21.5 21.0 21.5 23.5 20.5 19.5
MONTH	0.0	0.0	0.0		0.0	2.5	22.0	1.0	12.0	29.0	4.5	15.5
		JUNE			JULY			AUGUST			SEPTEMBE	R
1 2 3 4 5	23.0 19.0 22.5 17.0 19.5	JUNE 17.0 15.5 14.5 13.5 12.5	19.5 17.5 18.0 14.0 16.0	30.5 27.5 25.0 27.0 26.5	19.5 19.5	24.5 23.0 20.5 21.0 21.0			 	 	SEPTEMBE 	R
2 3 4	19.0 22.5 17.0	17.0 15.5 14.5 13.5	17.5 18.0 14.0	27.5 25.0 27.0 26.5	19.5 19.5 16.5 15.0 16.5	24.5 23.0 20.5 21.0	 	AUGUST	 	 	 	
2 3 4 5 6 7 8 9	19.0 22.5 17.0 19.5 19.0 25.5 24.5 21.0	17.0 15.5 14.5 13.5 12.5 14.0 13.5 15.5 16.5	17.5 18.0 14.0 16.0 16.0 19.0 20.0 18.5	27.5 25.0 27.0 26.5 28.0 29.5 22.5 28.0	19.5 19.5 16.5 15.0 16.5 14.5 16.5 16.5	24.5 23.0 20.5 21.0 21.0 20.5 22.5 19.5 21.5	 	AUGUST	 			
2 3 4 5 6 7 8 9 10 11 12 13 14	19.0 22.5 17.0 19.5 19.0 25.5 24.5 21.0 25.5 21.0 26.0 27.5 26.5	17.0 15.5 14.5 13.5 12.5 14.0 13.5 15.5 16.5 15.5	17.5 18.0 14.0 16.0 19.0 20.0 18.5 19.5 18.5 21.0 22.0 22.0	27.5 25.0 27.0 26.5 28.0 29.5 22.5 28.0 	19.5 19.5 16.5 15.0 16.5 14.5 16.5 15.0	24.5 23.0 20.5 21.0 21.0 20.5 22.5 19.5 21.5		AUGUST				
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	19.0 22.5 17.0 19.5 19.0 25.5 24.5 21.0 25.5 21.0 26.0 27.5 26.5 29.0 30.0 30.0 30.0 29.5	17.0 15.5 14.5 13.5 12.5 14.0 13.5 15.5 16.5 16.0 16.0 18.0 19.0 19.0	17.5 18.0 14.0 16.0 19.0 20.0 18.5 19.5 18.5 21.0 22.0 24.0 25.5 24.0 24.0	27.5 25.0 27.0 26.5 28.0 29.5 22.5 28.0 	19.5 19.5 16.5 15.0 16.5 14.5 16.5 15.0	24.5 23.0 20.5 21.0 21.0 20.5 22.5 19.5 21.5		AUGUST				
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	19.0 22.5 17.0 19.5 19.0 25.5 24.5 21.0 26.0 27.5 26.5 29.0 30.0 30.0 30.0 30.0 30.0 29.5 21.5	17.0 15.5 14.5 13.5 12.5 14.0 13.5 15.5 16.5 16.0 18.0 19.0 19.0 20.0 16.5 15.5 15.5	17.5 18.0 14.0 16.0 19.0 20.0 18.5 19.5 18.5 21.0 22.0 24.0 25.0 24.0 25.5 24.0 19.0 18.0 16.5 16.5 17.5	27.5 25.0 27.0 26.5 28.0 29.5 22.5 28.0	19.5 19.5 16.5 15.0 16.5 14.5 16.5 15.0	24.5 23.0 20.5 21.0 21.0 20.5 22.5 19.5 21.5 		AUGUST				

06109500 MISSOURI RIVER AT VIRGELLE, MT

LOCATION.--Lat 48°00'18", long 110°15'25" (NAD 27), in SW¹/₄SW¹/₄SE¹/₄ sec.13, T.26 N., R.11 E., Chouteau County, Hydrologic Unit 10040101, on left bank 0.2 mi upstream from Virgelle ferry, 0.6 mi southwest of Virgelle, 1.8 mi downstream from Spring Coulee, and at river mile 2,034.2. DRAINAGE AREA.--34,379 mi².

PERIOD OF RECORD.--February 1935 to current year. Prior to October 1953, published as "at Loma."

REVISED RECORDS .-- WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 2,507.50 ft (NGVD 29). Prior to Sept. 30, 1953, water-stage recorder at Loma, 18 mi upstream, 2.543.40 ft.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated by 23 smaller irrigation reservoirs and powerplants, Clark Canyon Reservoir (station number 06015300), Canyon Ferry Lake (station number 06058500), and Lake Elwell (station number 06101300). Diversions for irrigation of about 850,400 acres upstream from station. U.S. Army Corps of Engineers satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1908 reached a stage about 2 ft higher than that of June 5, 1953, from information by local residents.

iocai ie	esidents.											
		DISCHAF	RGE, CUB	IC FEET P	ER SECON DAI		R YEAR C N VALUES		2002 TO S	EPTEMBEI	R 2003	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4800 4590 4760 4840 4700	4550 4680 4690 4760 4830	5290 5280 5210 5170 5240	e5700 e5350 e5650 e5750 e5850	e6200 e6100 e5400 e5500 e5400	e5950 e5950 e5600 e5900 e5750	5630 5630 5930 6290 6210	7660 7500 7470 7490 7530	15100 13700 13200 12900 14000	7830 7760 7650 7080 6830	4860 4980 5040 5030 5140	4120 3990 4210 3900 3930
6 7 8 9 10	4600 4610 4650 4620 4600	4750 4790 4860 4780 4950	5170 5000 5430 5450 5360	e5550 e5250 e5250 e5150 e5300	e5400 e5250 e4800 e5650 e5900	e5400 e5300 e5100 e4750 e4550	5950 5930 5780 5770 5680	7570 7690 7640 7610 7830	13800 12500 11500 10800 9990	6710 6040 6210 5960 5500	5040 5090 5140 5120 5410	3860 3880 3840 3900 3960
11 12 13 14 15	4600 4630 4420 4530 4640	5140 5490 5600 5350 5220	5260 5200 5200 5180 5400	e4900 e3900 e4150 e5050 e5350	e5800 5670 5550 5520 5580	e4850 e5300 e6150 e7150 e13000	5630 5820 6140 6500 7060	7830 8070 8390 8260 8240	10100 10300 9650 9870 9440	5740 5700 5860 5830 5960	4930 4830 4470 4620 4280	3890 4100 4090 4100 4200
16 17 18 19 20	4590 4590 4620 4640 4720	5200 5140 5150 5270 5340	5580 5570 5340 5140 e4950	e5650 e5350 e5250 e5050 e5300	5480 5420 5430 5510 5550	e10500 9080 8330 8060 7730	7060 7300 7400 7250 6900	8860 9310 10200 10600 10200	9290 9020 8700 8400 9420	5730 5670 5720 5600 5210	4220 4100 4260 4230 4140	4120 4360 4230 4270 4110
21 22 23 24 25	4750 4740 4690 4670 4630	5420 5330 5290 5270 5260	e4700 e4200 e4100 e4750 e4950	e5600 e5300 e4350 e3250 e3950	5480 e4850 e4350 e3650 e3700	6610 5530 5420 5560 5630	6730 6610 6480 6530 6790	9960 9620 9380 9260 9240	8520 8800 8560 8540 8490	5040 5190 4970 4910 4900	4180 4300 4390 4210 4410	3990 4020 4140 4090 4040
26 27 28 29 30 31	4590 4580 4850 4840 4710 4610	5280 5280 5410 5510 5430	e5100 e4650 e4500 e5300 e5900 e5950	e5200 e5650 e5650 e5900 e6250 e6350	e4150 e5100 e5550 	5820 5920 5760 5740 5680 5660	7330 7790 7930 8200 8140	9550 10900 13300 13100 13500 14400	8620 8490 8420 8250 7960	4790 4950 5060 5160 4930 4900	4540 4360 4350 4300 4250 4170	4090 3940 3870 4370 4240
MEAN MAX MIN	144410 4658 4850 4420 286400	154020 5134 5600 4550 305500	159520 5146 5950 4100 316400	162200 5232 6350 3250 321700	147940 5284 6200 3650 293400	197730 6378 13000 4550 392200	198390 6613 8200 5630 393500	288160 9295 14400 7470 571600	306330 10210 15100 7960 607600	179390 5787 7830 4790 355800	142390 4593 5410 4100 282400	121850 4062 4370 3840 241700
STATIS'	TICS OF	MONTHLY ME	EAN DATA	FOR WATER	YEARS 193	5 - 2003	, BY WATE	R YEAR (W)	7)			
MEAN MAX (WY) MIN (WY)	6160 15340 1966 3533 1938	6329 12470 1966 3207 1938	6254 12220 1960 3221 1937	6253 8997 1976 2716 1936	6579 10240 1971 2600 1937	7343 14490 1978 3784 1938	8672 17720 1943 4062 1961	13340 28260 1976 4819 1992	17860 51960 1948 4646 1977	9749 29670 1975 3704 1940	6142 11950 1993 2821 1937	5825 11590 1965 2818 1937
SUMMAR	Y STATIS	TICS	FOR	2002 CAL	ENDAR YEAR		FOR 2003	WATER YEAF	2	WATER YEA	ARS 1935	- 2003
LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU ANNUAL 10 PER 50 PER	MEAN T ANNUAL ANNUAL I T DAILY I DAILY M	MEAN MEAN EAN AY MINIMUN LOW TAGE (AC-FT) EEDS EEDS		2047170 5609 18600 2670 3490 4061000 8800 4750 4030	Jun 13 Mar 22 Mar 17		2202330 6034 15100 3250 3890 a15200 b11. 4368000 8920 5350 4200	Jun 1 Jan 24 Sep 5 May 31 63 Mar 15	<u> </u>	8403 13660 4152 119000 638 2020 c122000 d23.4 6087000 14600 6750 4230	Jul Feb Jun	1975 1937 5 1953 5 1936 2 1937 5 1953 5 1953

a--Gage height, 6.29 ft.

b--Backwater from ice.

c--From rating curve for former site at Loma, extended above $66,000~{\rm ft}^3/{\rm s.}$ d--From floodmark.

e--Estimated.

06114700 JUDITH RIVER NEAR MOUTH, NEAR WINIFRED, MT

 $LOCATION.--Lat\ 47^{\circ}40'06", long\ 109^{\circ}39'09"\ (NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}NE^{1}/_{4}\ sec. 22,\ T.22\ N.,\ R.16\ E.,\ Fergus\ County,\ Hydrologic\ Unit\ 10040103,\ LOCATION.--Lat\ 47^{\circ}40'06", long\ 109^{\circ}39'09"\ (NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}NE^{1}/_{4}\ sec. 22,\ T.22\ N.,\ R.16\ E.,\ Fergus\ County,\ Hydrologic\ Unit\ 10040103,\ LOCATION.--Lat\ 47^{\circ}40'06", long\ 109^{\circ}39'09"\ (NAD\ 27), in\ SW^{1}/_{4}NW^{1}/_{4}NE^{1}/_{4}\ sec. 22,\ T.22\ N.,\ R.16\ E.,\ Fergus\ County,\ Hydrologic\ Unit\ 10040103,\ Hydrologic\ Unit\ 10040103,\$ on right bank 0.2 mi downstream from private road bridge, 5.3 mi south of Judith Landing, 15 mi northwest of Winifred, and at river mile 7.7. DRAINAGE AREA.--2,731 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 2000 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 2,490 ft (NGVD 29).

REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. Numerous diversions for irrigation upstream from station. U. S. Geological Survey satellite telemeter at station.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES													
					DAIL	Y MEAN	VALUES							
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1	214	e200	258	e250	e280	e250	324	412	868	263	108	136		
2	214	e210	259	e250	e280	e240	358	402	808	223	119	126		
3	214	e220	262	e250	e270	e240	369	387	736	202	133	128		
4	224	e230	e250	e250	e260	e230	348	423	687	199	137	131		
5	229	e230	e220	e250	e260	e230	330	627	666	194	131	130		
6	240	241	e230	e260	e250	e220	326	717	673	169	139	138		
7	241	247	e230	e260	e250	e220	311	627	706	156	167	147		
8	236	251	e240	e260	e260	e210	301	601	682	150	150	141		
9	238	255	e240	e260	e260	e200	294	572	622	139	148	175		
10	235	253	e250	e250	e260	e200	287	548	597	139	147	178		
11	236	251	e250	e230	e270	e220	288	571	634	127	137	178		
12	237	249	e260	e230		e250	289	573	587	111	140	198		
13	e235	249	e260	e240		e2000	289	545	553	98	157	233		
14	e235	250	265	e240		6860	309	524	506	71	157	211		
15	e235	252	269	e250		4870	395	509	496	62	148	206		
16	e235	256	271	e260	e270	2670	519	495	492	63	145	212		
17	235	255	267		e280	1760	475	466	454	68	168	235		
18	235	250	270		e280	1070	427	557	420	77	172	221		
19	236	249	e260		e280	703	485	684	400	69	172	214		
20	235	250	e230		e280	523	507	637	381	62	171	213		
21	236	250	e220	e250	e270	418	466	621	377	62	167	212		
22	237	251	e210	e250	e240	354	419	606	361	61	159	226		
23	237	249	e200	e240	e200	336	380	585	369	62	150	226		
24	237	253	e200	e230	e170	417	357	557	358	58	147	224		
25	236	259	e200	e220	e150	430	371	576	339	75	145	224		
26 27 28 29 30 31	236 238 241 249 e240 e220	262 263 262 259 257	e210 e220 e230 e250 e260 e260	e230 e240 e260 e250 e250 e260	e180 e230 e250 	338 305 262 278 289 292	465 437 432 422 426	664 763 806 831 823 850	344 336 308 286 272	81 83 84 85 91 96	132 122 111 111 119 127	219 220 220 220 219		
TOTAL	7246	7413	7501	7700	7050	26885	11406	18559	15318	3480	4436	5761		
MEAN	234	247	242	248	252	867	380	599	511	112	143	192		
MAX	249	263	271	260	280	6860	519	850	868	263	172	235		
MIN	214	200	200	220	150	200	287	387	272	58	108	126		
AC-FT	14370	14700	14880	15270	13980	53330	22620	36810	30380	6900	8800	11430		
STATIS	TICS OF M	ONTHLY ME	AN DATA F	OR WATER	YEARS 2001	- 2003	BY WATER	YEAR (WY)						
MEAN	248	258	230	260	258	493	323	332	386	177	180	201		
MAX	272	268	242	278	287	867	380	599	511	226	236	217		
(WY)	2001	2001	2003	2002	2002	2003	2003	2003	2003	2001	2002	2002		
MIN	234	247	223	248	234	293	293	157	318	112	143	192		
(WY)	2003	2003	2001	2003	2001	2002	2001	2001	2001	2003	2003	2003		
SUMMAR	Y STATIST	CICS	FOR	2002 CALE	NDAR YEAR	I	FOR 2003 WA	TER YEAR		WATER YEARS	2001 -	2003		
LOWEST HIGHES' LOWEST ANNUAL MAXIMUI INSTAN' ANNUAL 10 PER 50 PER	MEAN I ANNUAL ANNUAL M I DAILY M DAILY ME	EAN EAN Y MINIMUM OW AGE OW FLOW AC-FT) EDS		93816 257 517 83 92 186100 312 253 204	Jul 8 Aug 1 Jul 29		122755 336 6860 58 64 47600 b11.00 c54 243500 572 250 137	Mar 14 Jul 24 Jul 19 Mar 14 Mar 13 Jul 24		279 336 243 6860 58 64 a7600 b11.00 c54 201900 365 250 150	Mar 14	2003 2003		

a--Gage height, 9.06 ft. b--From floodmarks, backwater from ice. c--Gage height, 2.26 ft.

e--Estimated.

06114700 JUDITH RIVER NEAR MOUTH, NEAR WINIFRED, MT--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD .-- May 2001 to current year.

PERIOD OF DAILY RECORD .--

WATER TEMPERATURE (seasonal records): April 2002 to current year.

INSTRUMENTATION.--Temperature recorder installed Sept. 9, 2000.

REMARKS.--Seasonal daily water temperature record good.Unpublished records of instantaneous water temperature and specific conductance are available in files of the District Office.

EXTREMES FOR PERIOD OF DAILY RECORD.--

WATER TEMPERATURE (seasonal records): Maximum, 32.0°C, July 13, 2002; minimum, 0.0°C Apr. 1-3, 2002.

EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURE: During period of seasonal operation, maximum 30.5°C, July 17, minimum, 2.5°C, Apr. 3.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Ammonia Nitrite

	Date APR 2003 09 MAY 22 JUN	Time 1350 1630	Instantaneous discharge, cfs (00061)	unfltrd field, std units	tance,	ature, air, deg C	water, deg C	+ org-N, water, unfltrd	water fltrd, mg/L as N	Nitrite water, fltrd, mg/L as N (00613)	
	17	0930	469	8.4	685	27.0	21.0	.54	.089	.003	
	JUL 16	1500	62	8.4	899	36.0	26.0	.14	<.022	<.002	
			Date	Ortho phos- phate water fltrd mg/L as P (00671	, Phos- , phorus , water unfltr mg/I	s, sieve r, diamet rd percen L <.063m	- pende , sedi- e ment tr concer nt tratio	ed Sus- pende sedi- ment n- nload, tons/	d d		
			APR 2003	<.007	.022	84	38	31			
			MAY 22	<.007		86	227	378			
			JUN 17	<.007		89	241	305			
			JUL 16	<.007		88	18	3.0	ı		
Date	Time	unfltrd mg/L as CaCO3	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925) (fltrd, mg/L	adsorp- tion ratio	Sodium, water, fltrd, mg/L (00930)	lab, mg/L as CaCO3	Chlor- ide, water, fltrd, mg/L 00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)
MAY 2003 22	1630	430	101	43.4	2.86	. 9	41.4	185	5.56	. 6	4.76
JUL 16	1500	410	93.0	42.1	3.06	.9	40.8	145	4.73	.9	6.10
Date	water, fltrd, mg/L	mg/L	Residue water, fltrd, tons/ acre-ft	Residue water, fltrd,	water unfltrd ug/L	water, unfltrd ug/L	recover -able, ug/L	recover -able, ug/L	recover -able, ug/L	unfltrd recover -able, ug/L	unfltrd recover -able, ug/L
MAY 2003	005		0.0	1010	2	0	1 0		2 00	T 00	0.0
JUL	295	605	. 82	1010	3	<.2	1.8	7.5	3.08	7.90	20
16	318	595	.81	99.6	<2	<.04	<.8	2.3	<.06	3.53	E2

E--Estimated.

06114700 JUDITH RIVER NEAR MOUTH, NEAR WINIFRED, MT--Continued WATER TEMPERATURE, DEGREES CELSIUS, APRIL 2003 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		APRIL			MAY			JUNE			JULY	
1 2 3 4 5	9.5 8.0 7.5 7.5 8.5	8.0 4.0 2.5 4.0 4.0	9.0 6.5 5.0 6.0	13.5 15.5 14.5 13.5 8.0	8.0 10.0 10.5 8.0 5.5	11.0 12.5 13.0 10.5 7.0	20.0 17.5 18.5 16.5 16.5	17.0 15.5 14.5 13.5 13.0	18.0 16.5 16.5 15.0 14.5	27.0 26.5 22.5 23.5 24.0	20.5 20.5 19.0 17.0 17.5	24.0 23.0 21.0 20.0 20.5
6 7 8 9 10	9.5 10.5 12.5 15.0 15.0	6.0 4.5 6.5 9.0 9.0	7.5 7.5 9.5 12.0 12.0	13.0 11.5 10.5	9.0	9.0 10.5 10.0 9.5 10.0	15.5 17.0 19.0 18.0 20.0	14.0 12.0 14.0 16.0 15.5	14.5 14.5 16.5 17.0 17.5	24.0 25.0 21.5 24.5 26.0	17.0 18.0 18.0 17.0 18.0	20.5 21.5 19.5 20.5 22.0
11 12 13 14 15	16.5 17.5 16.0 15.0		13.5 14.5 14.5 13.5 11.0	15.0 17.0 17.5 19.0	11.5	11.5 14.5 15.0 15.5 17.0	19.5 21.5 23.5 23.5 24.5	16.5 16.0 17.5 18.5 19.5	17.5 18.5 20.5 21.0 22.0	27.0 28.5 28.0 26.0 27.0	19.5 20.0 22.0 18.5 18.0	23.0 24.5 24.5 22.5 22.5
16 17 18 19 20	12.0 13.5 12.0 13.0 15.5	8.0 8.5 9.0 7.5 9.0	10.0 11.0 10.5 10.0 12.0	16.5	11.5 8.0 7.0	15.5 14.0 11.0 10.0 12.0	26.0 26.0 27.0 27.0 24.5	20.0 21.0 20.5 21.0 20.5	23.0 23.5 23.5 23.5 22.0	28.0 30.5 29.5 28.5 29.0	20.5 21.0 22.0 21.5 20.5	23.5 25.5 26.0 25.0 24.5
21 22 23 24 25	16.5 17.5 19.0 18.5 16.5	11.0 11.5 13.0 14.5 13.5	13.5 14.5 16.0 16.5 15.0	17.0 18.5 19.0 22.0 22.5	13.5 15.5 15.0	14.5 16.0 17.0 18.0 20.0	22.0 20.5 20.0 19.5 20.0	18.0 15.5 14.0 15.0 14.5	20.0 18.0 17.0 17.0	28.5 29.5 29.5 26.5 24.0	21.0 20.5 21.5 22.5 20.0	24.5 25.0 25.5 24.5 22.0
26 27 28 29 30 31	15.0 15.0 13.0 11.5 12.0	12.5 10.5 9.5 10.0 9.0	13.5 12.5 11.5 10.5	22.0 22.5 23.0 21.5 19.0	18.0	20.5 20.0 20.0 21.0 20.0 18.0	22.0 23.0 25.0 26.0 27.5	16.0 18.0 18.5 18.5 20.5	19.0 20.5 21.5 22.5 24.0	25.0 27.5 28.0 27.5 28.0 26.5	20.0 20.0 20.5 20.5 20.5 21.0	22.0 23.5 24.0 24.0 24.0 23.5
MONTH	19.0	2.5			5.5	14.5	27.5	12.0	19.0	30.5	17.0	23.0
		AUGUST			SEPTEMBE	R						
1 2 3 4 5	26.5 28.0 25.5 25.5 26.5	20.0 20.0 22.5 21.0 19.5	23.5 24.0 24.0 23.0 23.0	21.5 22.0 22.5 22.5 21.5	16.0 16.0 16.0 16.5	19.0 19.0 19.0 19.5 19.5						
6 7 8 9 10	26.5 26.5 26.5 27.5 28.5	21.0 20.0 19.0 20.5 21.5		20.5 24.0 21.5 18.5 18.5	17.5 18.0 18.0 15.0	19.0 21.0 19.5 17.0 16.0						
11 12 13 14 15	27.0 25.0 27.0 28.0 26.5	21.5 21.0 20.5 21.5 20.5	24.5 22.5 24.0 24.5 23.5	17.0 16.0 15.5 16.5 16.0	13.5 12.0 10.5	15.5 14.5 13.5 13.5 14.5						
16 17 18 19 20	27.0 23.5 25.5 25.5 25.5	21.0 21.0 19.0 19.5 20.0	23.5 22.0 22.0 22.5 22.5	15.0 11.0 13.0 14.5 15.0	11.0 9.0 7.5 9.5 11.5	12.5 10.0 10.5 12.0 13.5						
21 22 23 24 25	24.5 25.0 24.5 25.0 25.0	18.5 20.0 20.5 19.0	21.5 22.5 22.5 22.0 22.0	13.5 15.0 14.0 15.5 16.5	11.5 9.0 11.5 11.0	12.0 12.0 13.0 13.0 13.5						
26 27 28 29 30 31	23.5 21.5 20.5 21.5 22.0 22.5	17.5 18.5 16.0 14.5 14.5	21.0 19.5 18.0 18.0 18.5 19.5	16.5 16.0 16.5 16.0 14.5	13.5 11.0 12.5 12.0 9.5	14.5 13.5 14.5 14.0 12.0						

MONTH 28.5 14.5 22.5 24.0 7.5 15.0

06115200 MISSOURI RIVER NEAR LANDUSKY, MT

LOCATION.--Lat 47°37'51", long 108°41'13" (NAD 27), in NW¹/₄NE¹/₄ sec.31, T.22 N., R.24 E., Fergus County, Hydrologic Unit 10040104, Fort Peck Game Range, on right bank 380 ft upstream from bridge on U.S. Highway 191, 0.9 mi upstream from Armells Creek, 20 mi south of Landusky, and at river mile 1.921.61.

DRAINAGE AREA.--40,987 mi². Area at site used prior to Dec. 13, 1968, 40,763 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--February 1934 to current year. Prior to October 1968, published as "at powerplant ferry, near Zortman." REVISED RECORDS.--WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 2,239.96 ft (NGVD 29) (State Highway bench mark). Prior to Feb. 7, 1935, nonrecording gage, and Feb. 7, 1935, to Dec. 12, 1968, water-stage recorder, at site 16.5 mi upstream at elevation 33.06 ft higher.

REMARKS.—Water-discharge records good except those for estimated daily discharges, which are fair. Flow regulated by 24 smaller irrigation reservoirs and powerplants, Clark Canyon Reservoir (station number 06015300), Canyon Ferry Lake (station number 06058500), and Lake Elwell (station number 06101300). Diversions for irrigation of about 870,400 acres upstream from station. U. S. Army Corps of Engineers satellite telemeter at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

				DAI	LINEA	N VALUES	•				
OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5460 5290 5100 5110 5340	5290 5210 e5200 e5200 e5000	5580 5430 5400 5460 5660	e6400 e6100 e5800 e6000 e6200	e6800 e6700 e6600 e5900 e5900	e5900 e6400 e6400 e6000 e6300	e6100 e6000 e6000 e6300 e6700	8310 7960 7730 7710 8400	15100 15700 14700 13900 13600	8130 7940 7740 7510 7310	4230 4220 4250 4410 4450	3910 3860 3770 3820 3790
5270 5080 5080 5120 5120	e5000 e5000 4990 5110 5060	e5600 e5600 e5400 e5800 e5900	e6300 e6000 e5700 e5600	e5800 e5800 e5700 e5200 e6000	e6200 e5800 e5700 e5500 e5200	e6700 e6400 e6400 5880 5870	8660 8300 8300 8150 8160	14600 14500 13500 12500 11800	6540 6690 6160 5820 5740	4590 4640 4860 4540 4720	3720 3670 3700 3650 3690
5010 5090 5040 4960 4880	5070 5190 5450 5760 5570	e5800 e5700 e5600 e5600	e5700 e5300 e4300 e4500 e5400	e6300 e6200 e6100 e6000 e5900	e4900 e5200 e5700 e8600 e14400	5810 5770 5840 6370 7220	8260 8370 8580 8730 8970	11000 11000 11100 10700 10500	5480 5120 5420 5330 5500	4720 4920 4380 4300 4100	3750 3810 3890 4030 3980
5090 5040 5040 5040 5090	5330 5240 5220 5130 5210	e5800 e6000 e6000 e5800 e5600	e5700 e6000 e5800 e5700 e5500	e6000 e5900 e5800 e5800 e5900	e18000 e13600 e11000 e9600 e8600	8750 7760 7690 7760 7820	8490 9130 9520 10300 10900	10200 10000 9540 9310 8980	5520 5460 5280 5290 5340	4000 3930 3780 3810 3880	4030 4170 4180 4290 4160
5140 5220 5180 5180 5110	5380 5450 5460 5340 5330	e5400 e5100 e4600 e4400 e5100	e5700 e6000 e5700 e4800 e3700	e6000 e5900 e5300 e4700 e4000	e8300 e7200 e6000 e5800 e6000	7380 7190 6980 6970 6900	10500 10300 10100 9930 9750	9740 9000 9000 8950 8730	4780 4650 4620 4440 4220	3830 3750 e3700 e3800 3910	4140 4050 3980 4110 4160
5120 5120 5010 5190 5250 5070	5510 5690 5510 5430 5580	e5300 e5500 e5100 e4900 e5600 e6300	e4200 e5500 e6000 e6100 e6300 e6700	e4000 e4500 e5400 	e6000 e6200 e6400 e6200 e6200 e6100	7170 7410 7950 8100 8280	9890 10200 11200 13700 13600 14100	8750 8800 8740 8600 8470	4130 4210 4150 4500 4530 4440	3890 4070 4030 3940 3920 3920	4140 4190 4130 3990 4110
158840 5124 5460 4880 315100	158910 5297 5760 4990 315200	170630 5504 6300 4400 338400	174300 5623 6700 3700 345700	160100 5718 6800 4000 317600	229400 7400 18000 4900 455000	207470 6916 8750 5770 411500	296200 9555 14100 7710 587500	331010 11030 15700 8470 656600	171990 5548 8130 4130 341100	129490 4177 4920 3700 256800	118870 3962 4290 3650 235800
TICS OF I	MONTHLY ME	EAN DATA	FOR WATER	YEARS 193	4 - 2003	, BY WATER	R YEAR (WY	()			
6525 16480 1966 3270 1935	6732 13920 1966 3581 1938	6613 13180 1960 3121 1937	6605 10840 1979 2805 1937	7120 11380 1965 2511 1936	8528 19700 1978 4313 2002	9533 19240 1952 4338 1961	14220 30510 1975 4860 1992	19390 55270 1948 4939 1977	10700 33590 1975 3956 1940	6565 12620 1975 2075 1934	6186 12310 1965 2501 1934
Y STATIS	rics	FOR	2002 CAL	ENDAR YEAR		FOR 2003 V	VATER YEAR	!	WATER YEA	ARS 1934 -	- 2003
TOTAL MEAN TANNUAL TANNUAL TO DAILY M SEVEN-D. M PEAK S' TANEOUS RUNOFF CENT EXC.	MEAN MEAN MEAN EAN AY MINIMUN LOW FAGE LOW FLOW (AC-FT) EEDS EEDS	4	2180840 5975 18700 3200 3740 4326000 9670 5090	Jun 16 Mar 1		2307210 6321 18000 3650 3710 unknown a22.5 4576000 9560 5600	Mar 16 Sep 9 Sep 5 Mar 16		9085 15280 4438 136000 1220 1620 b137000 a34.1 1120 6581000 7300	Jun (Dec 1 Dec ! Jun : Jun :	1975 1937 6 1953 3 1936 9 1936 3 1953
	5460 5290 5100 5110 5340 5270 5080 5080 5120 5010 5040 4960 4880 5090 5040 5040 5040 5040 5040 5180 5110 5120 5110 5120 5110 5120 5110 5120 5110 5120 5180 5110 5120 5110 5120 5180 5110 5120 5180 5110 5120 5180 5110 5120 5180 5110 5120 5120 5180 5110 5120 5180 5110 5120 5120 5180 5110 5120 5120 5120 5120 5120 5120 512	5460 5290 5290 5210 5100 e5200 5110 e5200 5110 e5200 5340 e5000 5340 e5000 5340 e5000 5080 e5000 5080 e5000 5080 4990 5120 5110 5120 5060 5010 5070 5090 5190 5040 5450 4960 5760 4880 5570 5090 5330 5040 5240 5040 5130 5090 5210 5140 5380 5220 5450 5180 5460 5180 5340 5110 5330 5120 5690 5110 5120 5690 5010 5510 501	\$ 5460 \$ 5290 \$ 5580 \$ 5290 \$ 5210 \$ 5430 \$ 5100 \$ e5200 \$ 5400 \$ 5110 \$ e5200 \$ 5460 \$ 5340 \$ e5000 \$ 5660 \$ 5340 \$ e5000 \$ e5600 \$ 5080 \$ e5000 \$ e5600 \$ 5080 \$ 4990 \$ e5400 \$ 5120 \$ 5100 \$ e5700 \$ 65000	\$460 \$290 \$580 \$6400 \$5290 \$5210 \$5430 \$6100 \$5100 \$65200 \$5400 \$6800 \$5110 \$65200 \$5460 \$6000 \$5340 \$65000 \$5660 \$6200 \$5340 \$65000 \$6660 \$6200 \$5340 \$65000 \$6660 \$6200 \$5340 \$65000 \$65600 \$63000 \$5080 \$4990 \$65400 \$65700 \$5120 \$5110 \$6520 \$6500 \$6500 \$65000 \$5080 \$4990 \$65000 \$65	OCT NOV DEC JAN FEB 5460 5290 5580 e6400 e6800 5290 5210 5430 e6100 e6700 5110 e5200 5400 e5800 e6600 5110 e5200 5400 e5800 e6600 5340 e5000 5660 e6200 e5900 5270 e5000 e5600 e6000 e5800 5080 4990 e5400 e5700 e5000 5120 5110 e5800 e5600 e6000 e5200 5120 5110 e5800 e5600 e6000 e5200 5120 5100 e5900 e5600 e6000 e5900 5120 5100 e5900 e5600 e6000 e5900 5010 5070 e5800 e5700 e6300 e6000 5010 5070 e5800 e5700 e5300 e6200 5040 5450 e5600 e4500 e6000 5040 5450 e5600 e4500 e6000 5040 5240 e6000 e5800 e5900 5040 5240 e6000 e5800 e5900 5040 5220 e6000 e5800 e5900 5040 5230 e5600 e5500 e5900 5140 5330 e5800 e5700 e6000 5020 5450 e5100 e6000 e5900 5120 5510 e5100 e6000 e5900 5180 5460 e4600 e5700 e5300 5110 5330 e5100 e3700 e4000 5120 5510 e5100 e6000 e5900 5120 5510 e5100 e6000 e5400 5124 5297 5504 5623 5718 5460 5760 6300 6700 6800 31510 315200 338400 345700 317600 STICS OF MONTHLY MEAN DATA FOR WATER YEARS 193 66525 6732 6613 6605 7120 16680 1966 1966 1960 1979 1965 3270 3581 3121 2805 2511 1935 1938 1937 1937 1936 EY STATISTICS FOR 2002 CALENDAR YEAR 3 TOTAL 2180840 3 MEAN 5975 3 TANNUAL MEAN 3 T	OCT NOV DEC JAN FEB MAR 5460 5290 5580 e6400 e6800 e5900 5120 5210 5430 e6100 e6700 e6400 5110 e5200 5400 e5800 e6600 e6400 5110 e5200 5460 e6200 e5900 e6300 5340 e5000 5660 e6200 e5900 e6300 5340 e5000 5660 e6000 e5900 e6300 5270 e5000 e5600 e6000 e5800 e5800 e5800 5080 e5000 e5600 e6000 e5800 e5800 e5800 5100 e5900 e5600 e6000 e5800 e5800 5100 e5900 e5600 e6000 e5900 e5500 5100 5070 e5800 e5600 e6000 e5200 e5500 5110 5070 e5800 e5700 e6300 e6200 e5200 5010 5070 e5800 e5700 e6300 e6200 e5200 5040 5450 e5600 e44500 e6000 e8600 4880 5570 e5600 e4500 e6000 e8600 5040 5240 e6000 e5800 e5900 e14400 5040 5240 e6000 e5800 e5900 e14400 5040 5220 e6000 e5800 e5900 e13600 5040 5220 e6000 e5800 e5900 e8600 5040 5220 e6000 e5800 e5900 e8600 5040 5220 e6000 e5500 e5900 e8600 5040 5230 e5600 e5500 e5900 e8600 5040 5240 e6000 e5500 e5900 e8600 5040 5240 e6000 e5500 e5900 e8600 5040 5220 e6000 e5500 e5900 e8600 5040 5220 e6000 e5500 e5900 e8600 5040 5380 e5400 e5700 e6000 e8300 5040 5380 e5400 e5700 e6000 e8300 5040 5380 e5400 e5700 e6000 e8300 5040 5380 e5600 e5500 e5900 e8600 5140 5380 e5400 e5700 e6000 e5900 e7200 5180 5340 e4400 e4800 e4700 e5800 5110 5330 e5000 e5000 e5900 e7200 5180 5340 e4400 e4800 e4700 e5800 5120 5510 e5500 e5500 e5500 e5500 e6200 5120 5510 e5000 e6000 e5400 e6000 5120 5580 e5600 e6300 e6200 5120 5430 e4400 a4800 a4700 a5800 5120 5580 e5600 e6300 e6200 5120 5580 e5600 e6300 e6200 5120 5580 e5600 e6300 e6200 5120 5400 e6000 e5900 e7200 5120 5580 e5600 e6000 e5900 e7900 e7000 5120 5000 e7000 e7000 5120 E600 e7000 e7000 e7000 5120 E600 e7000 e7000 e7000 e7000 5120 E600 e7000 e7000 e7000 e7000	S460 S290 S580 e6400 e6800 e5900 e6100 S290 S210 S430 e6100 e6700 e6400 e6000 S110 e5200 S400 e6800 e5900 e6000 e6300 S340 e5000 S660 e6200 e5900 e6000 e6300 S340 e5000 S660 e6200 e5900 e6300 e6700 E6700	OCT NOV DEC JAN FEB MAR APR MAY 5460 5290 5210 5430 e6100 e6700 e6400 e6000 7960 5110 e5200 5400 e5800 e6600 e6400 e6000 7730 5110 e5200 5460 e6000 e5900 e6300 e7700 8400 5340 e5000 e5600 e6000 e6300 e6700 8400 5270 e5000 e5600 e6000 e5800 e6400 8300 5080 e5000 e5600 e6000 e5800 e6400 8300 5120 5110 e5800 e5600 e6000 e5500 5880 8150 5120 5110 e5700 e5800 e5700 e6300 e4900 5810 8260 5010 5070 e5800 e5700 e6300 e4900 5810 8260 5010 5570 e5800	OCT NOV DEC JAN FEB MAR APR MAY JUN 5460 5290 5580 e6400 e6800 e5900 e6100 8310 15100 5290 5210 5430 e6100 e6700 e6400 e6000 7960 15700 5110 e5200 5400 e5800 e6600 e6400 e6000 7730 14700 5110 e5200 5400 e5800 e6600 e6400 e6700 e6700 8300 7110 13900 5340 e5500 5660 e6000 e5900 e6300 e6700 8400 13900 5320 e5000 e5600 e6000 e5900 e6300 e6700 8300 13900 5080 e5000 e5600 e6000 e5800 e6200 e6700 8600 14600 5080 e5000 e5600 e6000 e5800 e6200 e5700 8000 5120 5110 e5800 e6600 e5700 e5700 e6400 8300 13500 5120 5110 e5800 e6600 e5000 e5500 e6400 8300 13500 5120 5060 e5900 e6600 e5200 e5700 e5400 8300 13500 5120 5060 e5900 e6600 e5200 e5700 e7000 e7000 e7000 5120 5100 e5800 e6500 e6000 e5200 5880 8150 12500 5120 5060 e5900 e6600 e6200 e5200 5870 8160 11800 5090 5190 e5700 e5300 e6000 e5200 5770 8370 11000 5090 5190 e5700 e5300 e6000 e5200 5770 8370 11000 5040 5450 e5600 e4300 e6100 e5700 5840 8850 11100 4880 5570 e5600 e4300 e5900 e14400 7220 8970 10500 5040 5450 e5600 e5400 e5900 e14400 7220 8970 10500 5040 5240 e6000 e5000 e5900 e14600 8700 8730 10700 5040 5220 e6000 e5800 e5900 e13600 7760 9130 10000 5040 5220 e6000 e5800 e5900 e13600 7760 9130 10000 5040 5220 e6000 e5800 e5900 e13600 7760 9130 10000 5040 5220 e6000 e5800 e5900 e13600 7760 9130 10000 5040 5220 e6000 e5800 e5900 e13600 7760 9130 10000 5040 5220 e6000 e5000 e5900 e13600 7760 9130 10000 5040 5220 e6000 e5000 e5900 e13600 7760 9130 10000 5040 5220 e6000 e5000 e5000 e1400 e7000 7700 9700 5040 5220 e6000 e5000 e5000 e1400 e7000 7700 9700 5040 5200 e6000 e5000 e5900 e13600 7760 9130 10000 5040 5200 e6000 e5000 e5000 e1400 e7000 7700 9700 5040 5200 e6000 e5000 e5000 e7000 7700 9700 5040 5200 e6000 e5000 e5000 e7000 7700 9700 5040 5200 e6000 e5000 e7000 e7000 7700 9700 5040 5200 e6000 e5000 e7000 e7000 9700 5040 5200 e6000 e7000 e7000 e7000 9700 5040 5200 e7000 e7000 e7000 e7000 9700 5040 5200 e7000 e7000 e7000 e7000 e7000 9700 5040 5200 e7000	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 5460 5290 5580 e6400 e6800 e5900 e6100 8310 15100 8130 5230 5210 5430 e6100 e6700 e6400 e6000 7730 15700 7740 5110 e5200 5400 e5800 e6000 e5900 e6000 7730 14700 7740 5110 e5200 5400 e5800 e6900 e6000 7730 14700 7740 5110 e5200 5400 e5800 e6900 e6000 7730 14700 7740 5110 e5200 5400 e6000 e5900 e6000 e6700 8400 13600 7731 5270 e5000 e5600 e6000 e5900 e6000 e6700 8400 13600 7731 5270 e5000 e5600 e6000 e5800 e6200 e6700 8600 14600 6690 5080 e5000 e5600 e6000 e5800 e6200 e6700 8400 13600 7310 5270 e5000 e5600 e6000 e5800 e6200 e5800 e6000 8500 14500 5080 e5900 e5600 e5200 e5500 e5800 e6000 8500 8600 14500 5080 e5900 e5600 e5200 e5500 5800 8500 8500 8500 8500 8500 8	OCT NOV DEC JAN FEB MAR AFR MAY JUN JUL AUG S440 5290 5580 66400 66400 66500 76500 76700 15700 7740 4220 5100 62200 5400 66800 66700 66400 66000 7750 13700 7740 4220 5100 62200 5460 66600 66600 66600 7770 13700 7740 4220 5100 62200 5660 66200 66900 66700 8600 7710 13900 7710 4450 5340 65000 5660 66200 66900 66700 86600 7710 13900 7710 4450 5340 65000 65600 66200 66900 66700 86600 7710 13600 7310 4450 56800 66900

a--Backwater from ice.

b--Gage height, 22.20 ft, from graph based on gage reading; site and datum then in use.

e--Estimated

06115200 MISSOURI RIVER NEAR LANDUSKY, MT--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1972 to current year.

PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: March 1979 to September 1981.

WATER TEMPERATURE: March to September 1979.

SUSPENDED-SEDIMENT DISCHARGE: October 1971 to September 1991, October 1991 to current year (seasonal records only, March through November).

REMARKS.--Daily sediment records rated fair. Daily sediment data not available from Dec. 1 toMar. 25 due to ice cover. Unpublished records of instantaneous water temperature and conductance are available in files of District office. Prior to July 1972, sampling and record computations were under supervision of Corps of Engineers, U.S. Army.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE (water years 1979-81): Maximum daily, 1,240 microsiemens per centimeter (μS/cm), June 20, 1979; minimum daily, 410 μS/cm, July 3, 1980.

WATER TEMPERATURE (water year 1979): Maximum, 24.0°C, on several days during June to August 1979; minimum, 0.5°C, on several days during March 1979.

SEDIMENT CONCENTRATION: Maximum daily mean, 27,400 mg/L, June 22, 1976; minimum daily mean, 2 mg/L, Dec. 21, 1983.

SEDIMENT LOAD: Maximum daily, 1,680,000 tons, June 22, 1976; minimum daily, 33 tons, Dec. 21, 1983.

EXTREMES FOR CURRENT YEAR .--

SEDIMENT CONCENTRATION: During period of collection, maximum daily mean, 16,600 mg/L, Apr. 16; minimum daily mean, 86 mg/L, Aug. 6.

SEDIMENT LOAD: During period of seasonal collection, maximum daily, 392,000 tons, Apr. 16; minimum daily, 986 tons, Sept. 9.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instantaneous dis- charge cfs (00061	tance, wat unf , uS/cm 25 deg0	Temper- ature air, deg C	, ature water deg C	, diametr , percent <.063mr	pended sedi- ment concen- t tration mg/L	d Sus- pended sedi- ment load, tons/d	ment, dry svd sve dia percent <.063mm	
OCT 2002 02 APR 2003 15 JUN 10 JUL 21	1730	5460	479	11.5	11.5	30	258	3800	<1	1
	1300	6600	513	12.0	14.0	67	1410	25200	<1	<1
	1400	11700	372		15.0	44	584	18400	56	84
	1315	4700	389	32.5	26.0	17	285	3620	<1	9
	Date		Bed sedi- ment, dry svd sve dia percent <.25mm (80166)	sve dia percent	sve dia	sve dia	sve dia	Bed sedi- ment, dry svd sve dia percent <8 mm (80171)	Bed sedi- ment, dry svd sve dia percent <16 mm (80172)	
	OCT 2002 02 APR 2003 15 JUN 10 JUL 21		7	60	91	96	98	99	100	
			3	50	87	97	99	100	100	
			92	96	98	98	99	99	100	
			85	96	99	99	99	100	100	

06115200 MISSOURI RIVER NEAR LANDUSKY, MT--Continued SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	
	OCTOBER		NOVEMBER		DECEMBER		JANUA	JANUARY		FEBRUARY		MARCH	
1 2 3 4 5	255 262 255 237 225	3760 3740 3510 3270 3240	151 150 145 135 121	2160 2110 2040 1900 1630	 	 	 	 	 		 	 	
6 7 8 9 10	219 217 211 208 206	3120 2980 2890 2880 2850	109 108 114 120 125	1470 1460 1540 1660 1710	 	 	 	 	 		 	 	
11 12 13 14 15	205 203 200 198 193	2770 2790 2720 2650 2540	130 135 141 147 150	1780 1890 2070 2290 2260	 	 	 	 	 	 	 	 	
16 17 18 19 20	188 184 180 175 169	2580 2500 2450 2380 2320	154 157 162 168 174	2220 2220 2280 2330 2450	 	 	 	 	 	 	 	 	
21 22 23 24 25	162 158 162 178 183	2250 2230 2270 2490 2520	175 175 175 175 174	2540 2580 2580 2520 2500	 	 	 	 	 	 	 	 	
26 27 28 29 30 31	178 161 152 150 150	2460 2230 2060 2100 2130 2050	174 175 175 175 176	2590 2690 2600 2570 2650	 	 	 	 	 	 	802 764 672 586 646 652	13000 12800 11600 9810 10800 10700	
TOTAL		82730		65290									
	APRIL		YAM		JUNE		JULY		AUGUST		SEPTEMBER		
1 2 3 4 5	534 506 492 646 700	8790 8200 7970 11000 12700	910 646 600 572 2830	20400 13900 12500 11900 64200	1150 1180 915 770 680	46900 50000 36300 28900 25000	470 409 360 353 329	10300 8770 7520 7160 6490	116 101 90 87 88	1320 1150 1030 1040 1060	100 100 100 165 208	1060 1040 1020 1700 2130	
6 7 8 9 10	625 530 460 430 392	11300 9160 7950 6830 6210	3810 1540 690 680 570	89100 34500 15500 15000 12600	803 690 594 559 532	31700 27000 21700 18900 16900	265 266 237 268 307	4680 4800 3940 4210 4760	86 260 900 330 250	1070 3260 11800 4050 3190	102 100 100 100 100	1020 991 999 986 996	
11 12 13 14 15	380 415 419 519 4400	5960 6470 6610 8930 85800	538 524 558 699 700	12000 11800 12900 16500 17000	473 760 1900 820 819	14000 22600 56900 23700 23200	281 246 240 230 307	4160 3400 3510 3310 4560	275 344 180 155 155	3500 4570 2130 1800 1720	100 104 181 165 142	1010 1070 1900 1800 1530	
16 17 18 19 20	16600 3000 1080 1050 1280	392000 62900 22400 22000 27000	608 718 800 1120 1220	13900 17700 20600 31100 35900	450 495 459 433 409	12400 13400 11800 10900 9920	306 293 284 275 262	4560 4320 4050 3930 3780	161 144 120 108 107	1740 1530 1220 1110 1120	140 154 159 226 197	1520 1730 1790 2620 2210	
21 22 23 24 25	1100 870 830 710 580	21900 16900 15600 13400 10800	910 930 810 670 590	25800 25900 22100 18000 15500	1160 680 555 548 495	30500 16500 13500 13200 11700	235 172 128 124 112	3030 2160 1600 1490 1280	112 117 114 109 103	1160 1180 1140 1120 1090	165 120 114 114 115	1840 1310 1230 1270 1290	
26 27 28 29 30 31	620 760 760 672 920	12000 15200 16300 14700 20600	700 985 799 1580 1220 1050	18700 27100 24200 58400 44800 40000	415 400 400 456 525	9800 9500 9440 10600 12000	103 96 96 116 125 136	1150 1090 1080 1410 1530 1630	107 123 118 107 100 100	1120 1350 1280 1140 1060	115 115 115 115 115	1290 1300 1280 1240 1280	
TOTAL		887580		799500		638860		119660		62110		42452	

MISSOURI RIVER BASIN

06115270 ARMELLS CREEK NEAR LANDUSKY, MT

 $LOCATION.--Lat\ 47^{\circ}36'38'', long\ 108^{\circ}41'41''\ (NAD\ 27), in\ NE^{1}/_{4}NW^{1}/_{4}SW^{1}/_{4}sec.6,\ T.21\ N.,\ R.24\ E.,\ Fergus\ County,\ Hydrologic\ Unit\ 10040104,\ on\ NE^{1}/_{4}NW^{1}/_{4}SW^{$ right bank at downstream side of bridge on U.S. Highway 191, 1.5 mi south of Fred Robinson Bridge, 22 mi south of Landusky, and at river mile 1.1.

DRAINAGE AREA.--397 mi².

PERIOD OF RECORD.--February 2000 to current year.

REVISED RECORDS.--WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 2,280 ft (NGVD 29).

REMARKS.--Records good except those for estimated daily discharges, which are poor. U. S.Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	0.00 0.00 0.00 0.00	0.61 0.34 0.63 0.88	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
6 7 8 9 10	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00	e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 0.00 0.00 0.00 0.00	0.00	148 45 12 11	0.00 0.00 0.00 9.8 6.5	0.00 0.00 0.00 0.00 0.00	0.00 0.10 0.00 0.00	0.00 0.00 0.00 0.00 0.00
11 12 13 14 15	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	e0.10 e0.00	e0.00 e0.00 e0.00 e0.00		0.00 0.00 112 1380 519	0.00 0.00 0.00 0.00	13 18 9.0 5.0 3.1	4.5 4.6 3.0 4.2 3.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
16 17 18 19 20	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	e0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	e0.00 e0.00 e0.00 e0.00 e0.00	266 85 27 11 4.2	152 35 11 6.6 5.4	4.5 7.7 5.7 129 68	1.4 0.57 0.09 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
21 22 23 24 25		0.00 0.00 0.00 0.00 0.00	e0.00 e0.00 e0.00 e0.00 e0.00	0.00 0.00 0.00 0.00 0.00	e0.00 e0.00 e0.00 e0.00	1.6 0.34 0.04 0.00	3.7 1.7 0.76 0.29 0.13	26 12 6.8 4.3 2.8	0.00 0.00 0.89 0.45 0.10	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
26 27 28 29 30 31	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	e0.00 e0.00 e0.00 e0.00 e0.00	0.00 0.00 e0.30 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00	0.00 0.00 0.00 0.00 0.00	0.28 0.59 4.7 2.3 1.2	1.9 1.2 0.62 0.26 0.05	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
TOTAL MEAN MAX MIN AC-FT	0.00 0.000 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00	0.10 0.003 0.10 0.00 0.2	0.30 0.010 0.30 0.00 0.6	0.00 0.000 0.00 0.00 0.00	2406.18 77.6 1380 0.00 4770	225.65 7.52 152 0.00 448	624.39 20.1 148 0.00 1240		0.00 0.000 0.00 0.00 0.00		0.00 0.000 0.00 0.00 0.00
STATIST	rics of M	ONTHLY ME	AN DATA F	OR WATER				R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	0.000 0.000 2001 0.000 2001	0.000 0.000 2001 0.000 2001	0.001 0.003 2003 0.000 2001	0.003 0.010 2003 0.000 2001	0.59 2.28 2000 0.000 2001	20.7 77.6 2003 0.53 2001	2.43 7.52 2003 0.000 2001	5.14 20.1 2003 0.000 2001	4.10 8.45 2001 0.003 2000	8.97 32.1 2001 0.000 2003	0.77 2.17 2002 0.000 2000	0.000 0.000 2000 0.000 2000
SUMMARY	Y STATIST	CICS	FOR	2002 CALE			FOR 2003 V	WATER YEAR		WATER YEAR	RS 2000 -	2003
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS				384.8 1.0 86 0.0 0.0 763 0.2 0.0 0.0	Jun 1 0 Jan 0 Jan 9	1 1 1	3295.8 9.0 1380 0.0 0.0 a2910 12.8 6540 4.2 0.0	Mar 14 00 Oct 1 00 Oct 1 Mar 14 85 Mar 14		4.54 9.03 1.05 1380 0.00 0.00 a2910 12.85 3290 1.6 0.00	Mar 14 Mar 14 Feb 1 Mar 14 Mar 14	2000 2000 2003

a--On the basis of slope-area measurement of peak flow. e--Estimated.

MISSOURI RIVER BASIN

06115300 DUVAL CREEK NEAR LANDUSKY, MT

LOCATION.--Lat 47°45'17", long 108°42'23" (NAD 27), in SW¹/₄NW¹/₄ SE¹/₄ sec.13, T.23 N., R.23 E., Phillips County, Hydrologic Unit 10040104, at culvert on U.S. Highway 191 at milepost 98, 10.0 miles north of Fred Robinson Bridge, and 11 mi southwest of Landusky.

DRAINAGE AREA.--3.3 mi².

PERIOD OF RECORD.--February 2000 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 2,900 ft (NGVD 29), from topographic map. Prior to Jan. 19, 2000, peak flow gage only at present site and elevation.

REMARKS.--Records good except those days with flow, which are fair and those for estimated daily discharges, which are poor. Several observations of water temperature and specific conductance were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge, 660 ft³/s, June 29, 1991, gage height, 13.83 ft, present site and elevation. Site operated as crest-stage gage from May 1963 to January 2000.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

1 0.00 0.0						Din	LI WILI	· · · · · · · · · · · · · · · · · · ·					
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
The color The	2 3 4	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	e0.00 e0.00 e0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00 0.00
12	7 8 9	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	e0.00 e0.00 e0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
17	12 13 14	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	e5.5 e13 e20	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00 0.00
22 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.0	17 18 19	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.10 0.22 1.2	0.08 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00 0.00
27 0.00 0.00 0.00 0.00 0.00 e0.00 0	22 23 24	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.23 0.02 e0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00 0.00
MEAN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00<	27 28 29 30	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	e0.00 e0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
MEAN 0.000 0.000 0.000 0.000 0.064 0.45 0.000 0.001 0.16 0.14 0.000 MAX 0.000 0.000 0.000 0.19 1.78 0.000 0.001 0.17 0.63 0.56 0.000 (WY) 2001 2001 2001 2001 2003 2003 2000 2003 2002 2002 2002 2002 MIN 0.000	MEAN MAX MIN	0.000 0.00 0.00	0.000 0.00 0.00	0.000 0.00 0.00	0.000 0.00 0.00	0.19 2.5 0.00	1.78 20 0.00	0.000 0.00 0.00	0.001 0.02 0.00	0.000 0.00 0.00	0.000 0.00 0.00	0.000 0.00 0.00	0.00 0.000 0.00 0.00
MAX 0.000 0.000 0.000 0.19 1.78 0.000 0.011 0.17 0.63 0.56 0.000 (WY) 2001 2001 2001 2003 2003 2000 2003 2002 2002 2002 2002 MIN 0.000	STATIST	rics of M	ONTHLY ME	AN DATA H	FOR WATER	YEARS 200	0 - 2003	, BY WATER	YEAR (WY)				
ANNUAL TOTAL 42.58 60.39 ANNUAL MEAN 0.12 0.17 0.095 HIGHEST ANNUAL MEAN 0.17 2003 LOWEST ANNUAL MEAN 0.003 2001 HIGHEST DAILY MEAN 19 Jul 8 20 Mar 14 20 Mar 14 2003 LOWEST DAILY MEAN 0.00 Jan 1 0.00 Oct 1 0.00 Feb 1 2000 ANNUAL SEVEN-DAY MINIMUM 0.00 Jan 1 0.00 Oct 1 0.00 Feb 1 2000 MAXIMUM PEAK FLOW 118 Mar 14 238 Jul 8 2002 MAXIMUM PEAK STAGE 146.55 Jul 8 2002 ANNUAL RUNOFF (AC-FT) 84 120 69 10 PERCENT EXCEEDS 0.00 0.00	MAX (WY) MIN	0.000 2001 0.000	0.000 2001 0.000	0.000 2001 0.000	0.000 2001 0.000	0.19 2003 0.000	1.78 2003 0.000	0.000 2000 0.000	0.001 2003 0.000	0.17 2002 0.000	0.63 2002 0.000	0.56 2002 0.000	0.000 0.000 2000 0.000 2000
ANNUAL MEAN 0.12 0.17 0.095 HIGHEST ANNUAL MEAN 0.12 0.17 2003 LOWEST ANNUAL MEAN 19 Jul 8 20 Mar 14 20 Mar 14 2003 LOWEST DAILY MEAN 0.00 Jan 1 0.00 Oct 1 0.00 Feb 1 2000 ANNUAL SEVEN-DAY MINIMUM 0.00 Jan 1 0.00 Oct 1 0.00 Feb 1 2000 MAXIMUM PEAK FLOW 118 Mar 14 238 Jul 8 2002 MAXIMUM PEAK STAGE 14.65 Mar 14 6.55 Jul 8 2002 ANNUAL RUNOFF (AC-FT) 84 120 69 PERCENT EXCEEDS 0.00 0.00	SUMMARY	Y STATIST	CICS	FOR	2002 CALE	NDAR YEAR	. 1	FOR 2003 W	ATER YEAR		WATER YEAR	RS 2000 -	2003
50 PERCENT EXCEEDS 0.00 0.00 0.00 90 PERCENT EXCEEDS 0.00 0.00 0.00	ANNUAL HIGHEST LOWEST HIGHEST ANNUAL MAXIMUM MAXIMUM ANNUAL 10 PERC 50 PERC	MEAN I ANNUAL ANNUAL ANNUAL I DAILY ME SEVEN-DA M PEAK FL M PEAK ST RUNOFF (CENT EXCE	EAN EAN AN OW ACFT) ECS		0.1 19 0.0 0.0 84 0.0	Jul 8 0 Jan 1 0 Jan 1		20 0.00 0.00 118 a4.60 120 0.00	Mar 14 0 Oct 1 0 Oct 1 Mar 14 Mar 14 0 Mar 14		0.1 0.0 20 0.0 0.0 238 6.5 69 0.0	7 03 Mar 14 0 Feb 1 0 Feb 1 Jul 8 5 Jul 8	2001 2003 2000 2000 2002

a--During period of no gage-height record, from crest-stage gage.

e--Estimated

MISSOURI RIVER BASIN

06115350 ROCK CREEK NEAR LANDUSKY, MT

 $LOCATION.--Lat\ 47^{\circ}42'17'', long\ 108^{\circ}32'49''\ (NAD\ 27), in\ NW^{1}/_{4}NW^{1}/_{4}\ Sec.5, T.22\ N., R.25\ E., Phillips\ County,\ Hydrologic\ Unit\ 10040104, on\ left\ bank\ at\ Charles\ M.\ Russell\ National\ Wildlife\ Refuge\ boundary\ and\ 14\ mi\ southeast\ of\ Landusky.$

DRAINAGE AREA.--72.9 mi².

PERIOD OF RECORD.--November 1999 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 2,670 ft (NGVD 29), from topographic map.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

		DISCHAR	GE, CUBI	C FEET PER			R YEAR OON VALUES		002 TO SI	EPTEMBER	2003	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0.00 0.00 0.00 0.00 0.00	e2.5 e2.5 e2.5 e2.8 e3.0	e2.5 e2.0 e2.0 e2.5 e2.5	e2.0 e2.0 e2.0 e2.0 e2.0	e2.0 e2.0 e2.0 e2.0 e2.0	e2.5 e2.5 e2.5 e2.5 e2.5	3.6 3.8 4.8 5.2 4.5	2.5 2.7 2.5 3.3 9.8	0.38 0.19 0.23 0.06 0.07	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
6 7 8 9 10	0.00	e3.0 e3.0 e3.0 e3.0	e2.5 e2.5 e2.5 e2.5 e2.5	e2.0 e2.0 e2.0 e2.0 e1.7	e2.0 e2.0 e2.0 e2.0 e2.0	e2.5 e2.5 e2.5 e2.5 e3.0	3.5 2.9 2.7 3.0 2.4	13 9.1 7.1 5.4 4.8	0.43 0.53 0.31 1.1	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
11 12 13 14 15	0.00 0.06 0.47 0.47 0.44	e3.0 e3.0 e3.0 e3.0	e2.5 e3.0 e3.5 e3.5 e4.0	e1.5 e1.7 e2.0 e1.7 e1.5	e2.0 e2.0 e2.0 e2.0 e2.0	e3.0 e3.0 242 567 313	2.4 2.2 2.1 3.5 4.5	4.2 4.0 3.8 3.4 3.0	2.0 1.3 0.66 0.46 0.54	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
16 17 18 19 20	0.58 0.98 2.1 2.6 2.9	e3.0 e3.0 e3.0 e3.0	e4.0 e3.5 e3.0 e3.0 e2.5	e1.4 e1.6 e1.8 e2.0 e1.8	e2.0 e2.0 e2.0 e2.0 e2.0	139 34 21 17 15	4.2 3.9 3.3 2.9 2.8	3.0	0.23 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
21 22 23 24 25	3.1 3.2 3.4 3.0 3.1	e2.2 e2.0 e1.8 e1.7 e1.5	e2.5 e2.0 e1.5 e1.5	e1.7 e1.5 e1.5 e1.5 e1.5	e2.0 e2.0 e1.8 e1.5 e2.0	13 165 12 8.4 7.5	2.6 2.6 2.3 2.2 2.4	1.8 1.6 1.3 1.1	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
26 27 28 29 30 31	3.6 3.0 3.2 3.2 e2.5 e2.5	e2.0 e2.0 e2.5 e2.2 e2.0	e1.5 e1.5 e1.5 e2.0 e2.0	e1.5 e1.7 e1.8 e2.0 e2.0	e2.5 e2.5 e2.5 	5.2 3.1 3.0 3.3 3.7 3.8	3.7 2.4 2.1 2.3 2.5	0.95 0.82 0.61 0.40 0.20 0.47	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
TOTAL MEAN MAX MIN AC-FT	44.40 1.43 3.6 0.00 88	77.7 2.59 3.0 1.5 154		55.4 1.79 2.0 1.4 110					10.19 0.34 2.0 0.00 20	0.00 0.000 0.00 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00
STATIST	rics of M	ONTHLY ME	AN DATA F	OR WATER YE	EARS 200	00 - 2003	, BY WATER	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	0.52 1.43 2003 0.000 2002	2000 0.000		1.97 2000	1.48 2.19 2000 0.66 2002	15.3 51.9 2003 0.90 2002		3.27 2003	2002 0.34	5.27 13.6 2000 0.000 2003	0.25 0.79 2002 0.000 2003	0.000 0.000 2000 0.000 2000
SUMMAR	Y STATIST	ICS	FOR	2002 CALEND	OAR YEAR	8	FOR 2003 W	VATER YEAR		WATER YEA	RS 2000	- 2003
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL 10 PERO 50 PERO	MEAN F ANNUAL M ANNUAL M F DAILY M	EAN EAN AN Y MINIMUM OW AGE AC-FT) EDS		728.26 2.00 90 0.00 0.00	Jul 8 Jan 1 Jan 1		2122.5.8 5.8 567 0.0 0.0 853 6.0 4210 3.6 2.0	Mar 14 00 Oct 1 00 Oct 1 Mar 13 02 Mar 13		2.76 5.82 1.00 567 0.00 a1660 6.99 2000 3.3 0.47	Mar 14 Jun 19 Jun 19 Jul 8 Jul 8	2000 2000 2000

0.00

0.00

0.00

90 PERCENT EXCEEDS

a--On the basis of slope-area measurement of peak flow.

e--Estimated.

06119600 MUSSELSHELL RIVER NEAR MARTINSDALE, MT

LOCATION.--Lat 46°28'37", long 110°14'54" (NAD 27), in SW¹/₄SW¹/₄SE¹/₄ sec. 5, T.8N., R.12E., Wheatland County, Hydrologic Unit 10040201, on right bank at private road bridge, 1.7 mi downstream from confluence of North and South Forks, 3.2 mi northeast of Martinsdale, and at river mile 362.5.

DRAINAGE AREA.--538 mi².

PERIOD OF RECORD .-- April 2003 to October 2003 (seasonal records only).

GAGE.--Water-stage recorder. Elevation of gage is 4,660 ft (NGVD 29).

REMARKS.-Seasonal records good except those for estimated daily discharges, which are poor. Some regulation by Bair and Martinsdale Reservoirs. Diversions for irrigation of about 21,900 acres upstream from station of which about 21,400 acres are flood irrigated. U. S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5				e20 e25 e22 e20 e20	183 126 121 170 123	252 219 221 217 172	48 48 51 47 46	22 21 22 28 27	8.9 8.4 7.6 8.8 8.6	17 17 18 18		
6 7 8 9 10				e22 e20 e18 e17 e17	107 110 149 174 192	180 170 135 117 117	46 44 35 38 40	27 25 23 22 22	8.5 7.1 7.7 8.5 8.8	16 13 12 12 13		
11 12 13 14 15				e18 e17 e15 e30 e70	184 171 168 170 174	143 64 53 52 57	53 67 69 67 65	22 23 22 18 17	11 14 19 19	13 15 17 18 18		
16 17 18 19 20				e80 e75 e80 e75 e70	188 206 243 186 144	59 54 51 49 43	61 58 56 54 53	13 13 12 12 12	19 21 19 19	22 21 20 19 20		
21 22 23 24 25				e65 e60 e75 123 309	120 112 114 148 213	81 88 85 78 77	51 49 44 44 47	11 11 11 11 10	18 18 18 17	20 19 20 21 21		
26 27 28 29 30 31				447 403 337 307 241	294 396 387 324 299 304	63 53 46 41 39	43 48 37 28 25 23	9.6 9.7 10 9.6 9.8 9.6	15 15 16 16 16	22 22 24 29 32 29		
TOTAL MEAN MAX MIN AC-FT				3098 103 447 15 6140	6000 194 396 107 11900	3076 103 252 39 6100	1485 47.9 69 23 2950	515.3 16.6 28 9.6 1020	427.9 14.3 21 7.1 849	596 19.2 32 12 1180		

SUMMARY STATISTICS

FOR 2003 SEASON

HIGHEST DAILY MEAN LOWEST DAILY MEAN MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW 447 Apr 26 7.1 Sep 7 465 Apr 26 3.67 Apr 26 a6.4 Sep 3

a--Gage height, 1.49 ft.

e--Estimated.

06120500 MUSSELSHELL RIVER AT HARLOWTON, MT

LOCATION (REVISED).--Lat 46°25'48", long 109°50'24" (NAD 27), in SW¹/₄NW¹/₄ NW¹/₄ sec.27, T.8 N., R.15 E., Wheatland County, Hydrologic Unit 10040201, on right bank at downstream of bridge on U.S. Highway 191, 1.0 mi southwest of Harlowton, 9.6 mi upstream from American Fork, and at river mile 327.8.

DRAINAGE AREA.--1,125 mi².

PERIOD OF RECORD.--July 1907 to November 1929, March 1930 to December 1932, April to August 1933, February 1934 to current year. Monthly discharge only for some periods, published in WSP 1309.

REVISED RECORDS.--WSP 1309: 1912, 1915(M), 1918, 1925. WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 4,171.46 ft (NGVD 29) (levels by Morrison and Maierle, Inc.). Prior to Dec. 8, 1937, nonrecording gages at site 1.2 mi downstream at different elevations. Dec. 8, 1937 to Aug. 26, 1955, nonrecording gage at previous bridge 50 ft downstream at elevation 2.0 ft higher. Aug. 27, 1955 to Apr. 9, 2003, water-stage recorder 350 ft downstream at same elevation.

REMARKS.—Records good except those for Oct. 1 to Apr. 9 and those for June 12-16, which are poor. Some regulation by Bair and Martinsdale Reservoirs. Diversions for irrigation of about 21,900 acres upstream from station of which about 21,400 acres are flood irrigated. U. S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	29	e26	e37	e43	e50	e30	41	270	294	77	29	12
2	33	e28	e40	e45	e45	e30	48	193	254	77	26	9.4
3	35	e30	e35	e45	e40	e28	52	157	229	72	24	8.8
4	40	e29	e35	e45	e40	e25	48	156	217	81	23	8.3
5	40	e28	e40	e45	e40	e27	45	181	200	85	25	6.1
6	40	e32	e45	e45	e35	e27	43	133	197	87	22	3.2
7	37	35	e55	e45	e30	e23	42	123	209	90	22	2.3
8	36	33	e50	e45	e32	e20	43	131	168	83	22	1.9
9	34	33	e50	e40	e35	e25	41	156	143	68	24	2.1
10	35	32	e55	e35	e38	e30	37	179	148	68	26	4.1
11	42	35	e60	e40	e35	e40	36	190	243	84	23	5.5
12	43	37	e60	e45	e35	e60	38	184	e150	117	22	7.6
13	42	35	e65	e45	e35	e100	36	176	e120	124	31	13
14	42	35	e65	e40	e37	e130	35	178	e100	125	28	16
15	43	34	e60	e37	e40	e150	55	175	e100	124	26	16
16	47	36	e60	e35	e40	e120	87	183	e130	119	25	18
17	44	30	e55	e35	e40	84	93	195	115	112	26	21
18	43	29	e50	e38	e38	65	89	236	105	103	22	22
19	43	31	e50	e40	e38	54	92	252	89	100	21	21
20	43	38	e45	e40	e35	47	88	184	91	98	20	20
21	42	42	e45	e35	e35	42	81	137	91	94	18	20
22	44	46	e45	e30	e25	38	74	112	133	91	17	20
23	46	50	e40	e32	e18	38	72	100	153	86	15	19
24	47	50	e35	e35	e15	37	90	93	145	78	14	18
25	47	e25	e35	e40	e17	40	150	119	143	75	13	18
26 27 28 29 30 31	45 43 42 43 e30 e25	e27 e30 e33 e35 e35	e37 e40 e43 e45 e42 e45	e45 e45 e40 e40 e45 e50	e20 e25 e28 	38 39 41 40 40	354 400 364 340 313	200 344 374 360 308 321	131 112 96 89 84	86 96 91 74 54 36	12 11 11 11 12 12	16 15 15 16 19
TOTAL	1245	1019	1464	1265	941	1548	3327	6100	4479	2755	633	394.3
MEAN	40.2	34.0	47.2	40.8	33.6	49.9	111	197	149	88.9	20.4	13.1
MAX	47	50	65	50	50	150	400	374	294	125	31	22
MIN	25	25	35	30	15	20	35	93	84	36	11	1.9
AC-FT	2470	2020	2900	2510	1870	3070	6600	12100	8880	5460	1260	782
STATIS'	TICS OF M	ONTHLY ME	AN DATA F	FOR WATER	YEARS 1907	7 - 2003,	BY WATER	YEAR (WY) *			
MEAN	73.8	77.7	67.2	58.8	65.4	112	175	404	503	161	75.4	62.8
MAX	226	176	206	250	190	500	632	1957	2467	751	292	290
(WY)	1919	1942	1976	1918	1996	1918	1943	1917	1917	1975	1993	1993
MIN	0.000	0.000	0.000	0.000	10.0	20.4	22.1	11.8	27.9	0.84	0.000	0.000
(WY)	1932	1932	1932	1932	1936	1935	1931	1931	1930	1936	1931	1931

06120500 MUSSELSHELL RIVER AT HARLOWTON, MT--Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR YE	AR FOR 2003 WAT	ER YEAR	WATER YEARS	1907 - 2003*
ANNUAL TOTAL ANNUAL MEAN	18293 50.1	25170.3 69.0		155	
HIGHEST ANNUAL MEAN	50.1	09.0		483	1917
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN	384 Jun		Apr 27		1935 Jun 20 1975
LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	10 Jul 12 Aug		Sep 8 Sep 5		Aug 4 1910 Aug 4 1910
MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE		a411 b4.20	Apr 27 Mar 15		Jun 20 1975 Jun 20 1975
INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT)	36280	c1.4 49930	Sep 8		Aug 29 2001
10 PERCENT EXCEEDS	113	156		356	
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	35 15	42 19		75 25	

^{*--}During periods of operation (July 1907 to November 1929, March 1930 to December 1932, April to August 1933, February 1934 to current year).

a--Gage height, 4.06 ft.
b--Backwater from ice.
c--Gage height, 2.22 ft.
e--Estimated.

06123030 MUSSELSHELL RIVER ABOVE MUD CREEK, NEAR SHAWMUT, MT

LOCATION.--Lat 46°19'07", long 109°27'35" (NAD 27), in NE¹/₄SW¹/₄SW¹/₄SW²/₄ sec.34, T.7 N., R.18 E., Wheatland County, Hydrologic Unit 10040201, on left bank at private road bridge, 14.1 mi downstream from diversion to Deadmans Basin Reservoir, 3.5 mi southeast of Shawmut, 3.7 mi west of Barber, and at river mile 294.8.

DRAINAGE AREA.--1,513 mi².

PERIOD OF RECORD.--June 1998 to current season (seasonal records only).

REVISED RECORDS.--WDR MT-03-1: 2002-02 (M).

GAGE.--Water-stage recorder. Elevation of gage is 3,780 ft (NGVD 29).

REMARKS.—Seasonal records good. Diversions for irrigation of about 27,000 acres upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES DAY JAN FEB MAR MAY JUN JUL AUG SEP OCT NOV DEC APR 4.6 6.6 6.8 5.4 2.8 6.3 4.9 5.6 5.3 6 0 5.4 5.1 4.6 4.3 4 9 3 2 4.0 2.8 4.5 3.9 4.0 4 6 8.2 2.3 7.3 2.1 4.4 5.1 4.3 1.9 6.5 4.3 2.0 6.4 2.3 6.0 4.1 7.0 2.4 5.3 8.1 5.4 5.2 4.9 17 15 6.1 57 152 35 8.5 7.9 17 72 6.6 6.4 6.3 e15 328.6 TOTAL 1729.4 426.2 292.5 57 6 51.0 74 13.7 9.75 10.6 20 MEAN MAX 3.9 5.8 1.9 AC-FT STATISTICS OF MONTHLY MEAN DATA FOR SEASONS 1998 - 2003 MEAN 57.4 61.7 28.1 25.7 27.2 1998 1998 65.4 1999 MAX 57.6 97.8 70.8 (WY) 9.88 (WY) SUMMARY STATISTICS FOR 2003 SEASON SEASONS 1998 -HIGHEST DAILY MEAN Jun 22 1998 LOWEST DAILY MEAN 1.9 Sep 11 0.18 Sep 28 2001 Apr 27 MAXIMUM PEAK FLOW Jun 22 1998 MAXIMUM PEAK STAGE Apr 27 4.57 3.80 Jun 22 1998

e--Estimated.

06126050 MUSSELSHELL RIVER NEAR LAVINA, MT

LOCATION.--Lat 46°17'34", long 108°53'31" (NAD 27), in SW¹/₄SW¹/₄SE¹/₄ sec. 6, T.6 N., R.23 E., Golden Valley County, Hydrologic Unit 10040201, on left bank, at private bridge 2.2 mi east of Lavina, 4.4 mi downstream from Big Coulee Creek, and at river mile 245.7.

DRAINAGE AREA.--2,970 mi².

PERIOD OF RECORD .-- April 1992 to current year (seasonal record only).

GAGE.--Water-stage recorder. Elevation of gage is 3,400 ft (NGVD 29).

REMARKS.--Seasonal records good. Some regulation by Bair (station number 06116500), Martinsdale (station number 06119000), and Deadman's Basin (station number 06122500) Reservoirs. Diversions for irrigation of about 31,900 acres upstream from station, of which about 29,700 acres is flood irrigated. Several observations of water temperature and specific conductance were made during the year. U.S. Geological Survey satellite telemeter at station.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY JUN JUL JAN FEB MAR APR MAY AUG SEP OCT NOV DEC 8.8 8.8 6.3 7.1 9.3 9.6 7 5.7 5.9 12 287 245 12 5.9 5.2 6.6 6.6 4.9 5.6 5.6 5.4 12 5.4 7.0 7.5 8.8 8.6 8.1 9.4 8.4 11 8.3 8.0 22 3.6 2.7 3.4 6.0 12 13 17 e20 TOTAL 1321.6 358.0 MEAN 44.1 288 35.3 12.6 11.5 22 MAX 2.7 4.3 AC-FT STATISTICS OF MONTHLY MEAN DATA FOR SEASONS 1992 -MEAN 86.0

8.33

2.7

3.83

36.7

Apr 29

Jun 11

Jun 11

Apr

FOR 2003 SEASON

67.8

35.8

0.00

11.13

3.00

SEASONS 1992 - 2003

Jun 14 1997

Sep 26 2001

Jun 14 1997

Jun 14 1997

2.22

0.87

SUMMARY STATISTICS

HIGHEST DAILY MEAN

LOWEST DAILY MEAN

MAXIMUM PEAK FLOW

MAXIMUM PEAK STAGE

MAX

(WY)

MIN

e--Estimated.

06126500 MUSSELSHELL RIVER NEAR ROUNDUP, MT

LOCATION.--Lat 46°25'41", long 108°34'19" (NAD 27), in NW¹/₄SE¹/₄SE¹/₄sec. 22, T.8 N., R.25 E., Musselshell County, Hydrologic Unit 10040202, on left bank 20 ft downstream from Halfbreed Creek, 0.1 mi upstream from bridge on U.S. Highway 87, 2.0 mi southwest of Roundup, and at river mile 211.6.

DRAINAGE AREA.--4,023 mi².

PERIOD OF RECORD.--May 1946 to current year. Monthly discharge only from October 1947 to September 1949, published in WSP 1309. REVISED RECORDS.--WSP 1086: 1946. WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 3,188.15 ft (NGVD 29) (levels by U.S. Army Corps of Engineers). Prior to Sept. 26, 1949, nonrecording gage at present site and elevation.

REMARKS.--Records good except those for estimated daily discharge, which are poor. Some regulation by Bair (station number 06116500), Martinsdale (station number 06119000) and Deadman's Basin (station number 06122500) Reservoirs. Diversions for irrigation of about 39,100 acres upstream from station, of which about 35,900 acres are flood irrigated. Several observations of water temperature and specific conductance were made during the year. U.S. Army Corps of Engineers satellite telemeter at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

					Ditt	DI MILI	· · · · · · · · · · · · · · · · · · ·					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5										105 125 132 168 194		
6 7 8 9 10										198 191 187 241 243		
11 12 13 14 15	20 20 17 14 14	15 14 14 15 15	e9.0 e8.5 e9.0 e10	e4.0 e5.0 e6.0 e6.0 e6.0	e6.0 e5.0 e6.0 e7.0	e10 e10 e20 e50 e100	5.4 6.0 7.2 7.4 7.9	111 127 140 144 111	173 435 271 185 105	204 197 202 189 205	13 8.6 11 14 17	10 10 9.8 9.2 9.3
16 17 18 19 20	19 22 23 24 25	14 13 11 10 9.8	e9.0 e8.0 e7.0 e6.0 e5.0	e4.5 e4.0 e5.0 e6.0 e6.0	e8.0 e7.0 e6.5 e6.5 e7.0	e200 e120 e90 e70 57	7.6 7.0 6.8 6.8	92 100 121 139 162	166 342 158 99 72	217 213 190 162 144	18 17 22 29 28	8.9 9.1 8.2 7.4 7.4
										134 103 108 113 79		
26 27 28 29 30 31	24 26 28 e25 e20 e15	e7.0 e8.0 e9.0 e8.0 e7.0	e5.0 e6.0 e8.0 e8.0 e7.0 e7.0	e5.0 e7.0 e7.0 e7.0 e7.0 e8.0	e4.0 e5.0 e6.0 	20 18 17 16 10 5.2	9.2 36 250 320 307	28 52 80 111 128 145	173 157 132 86 101	49 50 64 82 115 101	12 12 15 15 13 12	7.5 7.4 7.9 9.0 8.8
TOTAL MEAN MAX MIN AC-FT	554.00 17.9 28 0.00 1100	330.6 11.0 15 6.0 656	226.5 7.31 11 4.0 449	180.5 5.82 8.0 4.0 358	174.5 6.23 10 3.0 346	1013.7 32.7 200 3.5 2010	1066.3 35.5 320 2.7 2120	3225 104 238 28 6400	4449 148 435 59 8820	4705 152 243 49 9330	740.6 23.9 84 8.6 1470	252.0 8.40 12 6.6 500
							, BY WATER					
MEAN MAX (WY) MIN (WY)	77.8 335 1994 1.43 2002	73.7 242 1994 3.99 2002	67.0 283 1976 3.65 2002	64.4 222 1976 5.29 2002	95.0 414 1971 5.82 1985	195 1281 1978 6.81 2002	181 788 1975 1.77 2002	415 1811 1976 30.0 2002	664 4315 1967 36.6 2001	296 1308 1975 14.5 2002	188 563 1993 2.11 2001	126 504 1993 0.009 2002
SUMMAR	Y STATIST	'ICS	FOR	2002 CALEN	DAR YEAR	. 1	FOR 2003 WA	TER YEAR		WATER YEAR	S 1947 -	- 2003
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU	T ANNUAL 'ANNUAL M 'T DAILY ME 'DAILY ME SEVEN-DA IM PEAK FL	EAN EAN AN Y MINIMUM			Jun 5 Sep 4 Sep 11		16917.70 46.3 435 a0.00 3.7 b554 c3.17 33560 144 11 5.0			d204 608 17.6 8180 0.00 9610 g13.73 147600 431 99	Jun { Sep { Sep 1 Jun 1} Mar {	1975 2002 3 1967 4 2002 L 2002 3 1967 9 1979
aOct	ober 1 to	4.										

b--Gage height, 2.91 ft.

c-Backwater from ice. d--Median of yearly mean discharges, 184 ft³/s, 133,330 ac-ft/yr. e--Estimated.

f--Gage height, 12.45 ft.

g--Ice jam.

06127020 WILLOW CREEK ABOVE LMGA RESERVOIR, NEAR ROUNDUP, MT

LOCATION.--Lat 46°36′52", long 108°41′40" (NAD 27), in NW¹/₄NW¹/₄SW¹/₄ sec. 27, T.10 N., R.24 E., Musselshell County, Hydrologic Unit 10040202, on right bank, 0.8 mi upstream from Lake Mason Grazing Association Reservoir, and 12 mi northwest of Roundup.

DRAINAGE AREA.--124 mi².

PERIOD OF RECORD.--September 1995 to current year (seasonal records only).

GAGE.--Water-stage recorder. Elevation of gage is 3,660 ft (NGVD 29).

REMARKS.--Seasonal records good. Numerous diversions upstream for irrigation. U. S. Geological Survey satellite telemeter at station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5				0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
6 7 8 9 10				0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
11 12 13 14 15				0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
16 17 18 19 20				0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
21 22 23 24 25				0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
26 27 28 29 30 31				0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
TOTAL MEAN MAX MIN AC-FT				0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00		
STATIST	TICS OF MON	THLY MEAN	DATA F	OR SEASO	NS 1995 -	- 2003						
MEAN MAX (WY) MIN (WY)				0.89 3.33 1996 0.000 2000	0.82 4.25 1996 0.000 2000	2.38 13.1 1997 0.000 2000	1.24 6.04 1997 0.000 1999	0.17 1.36 1997 0.000 1998	0.045 0.20 1996 0.000 1998	0.37 1.82 1998 0.000 1999		
SUMMARY	STATISTIC	!S	FOR	2003 SE	CASON	SEAS	ONS 1995	- 2003				
LOWEST MAXIMUM	T DAILY MEA DAILY MEAN 1 PEAK FLOW 1 PEAK STAG	ī ī	0		or 1 or 1	150 a0. b607 5.	00 Aug Jun	6 1997 7 1996 6 1997 6 1997				

a--No flow many days most years.

b--From rating curve extended above 18 ft³/s on basis of slope-area measurement of peak flow.

06127060 WILLOW CREEK AT U.S. CANAL, NEAR ROUNDUP, MT

 $LOCATION.--Lat\ 46^{\circ}33'17'', long\ 108^{\circ}40'42''\ (NAD\ 27), in\ SW^{1}/_{4}SE^{1}/_{4}NE^{1}/_{4}\ sec.\ 10, T.9\ N., R.24\ E., Musselshell\ County,\ Hydrologic\ Unit\ 10040202, on\ right\ bank,\ 12\ mi\ northwest\ of\ Roundup.$

DRAINAGE AREA.--141 mi².

PERIOD OF RECORD.--September 1995 to current year (seasonal records only).

GAGE.--Water-stage recorder. Elevation of gage is 3,610 ft (NGVD 29).

REMARKS.--Seasonal records good. Regulation by Lake Mason Grazing Association Reservoir upstream from the gage. Numerous diversions upstream from station for irrigation. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5				0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
6 7 8 9				0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
11 12 13 14 15				0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
16 17 18 19 20				0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
21 22 23 24 25				0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
26 27 28 29 30 31				0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
TOTAL MEAN MAX MIN AC-FT				0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00 0.00		
STATIST	ICS OF MON	THLY MEAN	I DATA F	OR SEASON	s 1995 -	2003						
MEAN MAX (WY) MIN (WY)				0.51 2.03 1996 0.000 1999	0.45 2.95 1996 0.000 1998	1.67 9.55 1997 0.000 1998	0.32 1.44 1997 0.000 1998	0.060 0.48 1997 0.000 1996	0.000 0.000 1995 0.000 1995	0.072 0.64 1998 0.000 1996		
SUMMARY	STATISTIC	!S		FOR 2003	SEASON	5	SEASONS 19	95 - 2003				
LOWEST I	DAILY MEAN PEAK FLOW PEAK STAG	Ī		0.00	Apr 1 Apr 1		39 Ju:	n 7 1997 g 26 1995 n 7 1997 n 7 1997				

a--No flow many days most years.

06127500 MUSSELSHELL RIVER AT MUSSELSHELL, MT

LOCATION.--Lat 46°31'23", long 108°06'30" (NAD 27), in SE¹/₄SW¹/₄SW¹/₄ sec. 20, T.9 N., R. 29 E., Musselshell County, Hydrologic Unit 10040202, on left bank 0.9 mi upstream from Hawk Creek, 1 mi west of Musselshell, and at river mile 164.5.

DRAINAGE AREA.--4,568 mi².

PERIOD OF RECORD.--August 1928 to September 1932 (no records December to February for the water years 1930-31), August 1945 to September 1979, October 1982 to September 1983, October 1983 to current season (seasonal record only). Monthly discharge only for some periods, published in WSP 1309.

REVISED RECORDS.--WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 2,984.72 ft (NGVD 29) (levels by U.S. Army Corps of Engineers). Prior to Oct. 8, 1949, nonrecording gage at site 1 mi downstream at different elevations.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Some regulation by Bair (station number 06116500), Martinsdale (station number 06119000), and Deadman's Basin (station number 06122500) Reservoirs. Diversions for irrigation of about 44,600 acres upstream from station, of which about 39,400 acres is flood irrigated. U. S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5				8.6 5.5 6.5 3.5 3.6	181 112 65 44 28	83 89 111 117 124	51 56 65 66 80	68 55 44 34 25	e1.0 e1.0 e1.0 e1.0 e0.70	4.4 5.8 5.5 4.9 3.1		
6 7 8 9 10				5.7 4.3 3.9 3.9 3.6	16 4.4 6.6 14 34	113 94 89 88 96	84 82 75 77 128	19 16 13 10 7.6	e0.70 e1.0 e1.2 e1.5 e2.5	1.9 0.74 0.33 0.23 0.22		
11 12 13 14 15				3.8 4.2 3.9 3.6 3.4	49 59 72 81 74	99 167 297 212 152	127 96 85 80 71	6.2 3.9 2.3 1.6 1.0	e2.0 e1.9 e1.4 e1.4 e1.5	2.6 1.5 1.0 0.89 0.75		
16 17 18 19 20				2.8 2.3 2.2 2.2 2.0	58 42 65 85	e200 e260 e185 e125 e100	77 127 139 126 104	0.70 0.65 0.80 1.2 1.3	e2.0 e3.0 e3.5 e5.0 6.9	2.0 1.8 0.45 0.43 0.01		
21 22 23 24 25				1.8 1.6 1.5 1.4	98 89 66 36 21	e80 e75 e130 e135 e150	92 90 82 77 83	2.0 3.4 4.4 4.4 5.1	6.2 5.4 4.7 4.3 3.6	0.48 0.05 0.00 0.00 0.76		
26 27 28 29 30 31				1.6 4.1 3.6 164 198	21 13 13 38 63 67	102 100 77 61 36	79 61 48 43 52 68	4.6 3.8 2.9 1.9 1.1 e1.0	3.4 5.2 5.6 5.0 4.8	1.2 1.6 2.9 9.2 16		
TOTAL MEAN MAX MIN AC-FT				458.4 15.3 198 1.3 909	1695.0 54.7 181 4.4 3360	3747 125 297 36 7430	2571 82.9 139 43 5100	345.85 11.2 68 0.65 686	88.40 2.95 6.9 0.70 175	89.74 2.89 19 0.00 178		
STATISTI	CS OF MONTH	LY MEAN D	ATA FOR V	VATER YEA	RS 1929 -	1983 AND	SEASONS	1984 - 20	03*			
MEAN MAX (WY) MIN (WY)	71.0 222 1976 0.000 1932	108 460 1971 0.041 1932	273 1356 1979 12.7 1932	188.5 859 1975 1.22 2001	351.2 1670 1976 0.36 1931	570.9 4223 1967 0.49 1931	235.3 1376 1975 0.000 1930	138.2 534 1993 0.000 1931	106.5 477 1993 0.000 1931	75.64 328 1994 0.000 1932	76.5 236 1976 0.000 1932	77.5 269 1976 0.000 1932
SUMMARY	STATISTICS											
50 PERCE	EAN ANNUAL MEAN NNUAL MEAN DAILY MEAN EVEN-DAY MI PEAK FLOW PEAK STAGE UNOFF (AC-F NT EXCEEDS NT EXCEEDS	NIMUM T)	297 .00 330 3.92	Jun 12 Oct 23 Jun 12 Jun 12			1.1 0 Jun 0.00 Sep 0.00 Sep 0 Jun 2.96 Mar 164 105	1975 1961 19 1967 1 1929 8 1929 19 1997 19 1979		6270 0.00 6420 11.25	Jun 16 Aug 14 Jun 16 Jun 16	1997 2001 1997 1997

^{*--}During period of operation.

^{***--}During period of continious operation 1928-29, 1931-32, 1945-79, 1982-83.

***--Seasonal records October 1983 to current season.

a--Gage height, 11.57 ft.

b--Ice jam. e--Estimated.

06130500 MUSSELSHELL RIVER AT MOSBY, MT

LOCATION.--Lat 46°59'41", long 107°53'18" (NAD 27), in SW¹/₄NW¹/₄NW¹/₄ sec.11, T.14 N., R.30 E., Petroleum County, Hydrologic Unit 10040205, on right bank, downstream side of bridge on State Highway 20, 0.3 mi west of Mosby, 10.9 mi downstream from Flatwillow Creek, and at river mile 60.0.

DRAINAGE AREA.--7,846 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May to November 1929, March 1930 to September 1932, February 1934 to current year. Monthly discharge only for some periods, published in WSP 1309.

REVISED RECORDS.--WSP 1559: 1935-36. WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 2,493.23 ft (NGVD 29). Dec. 6, 1962 to Mar. 14, 1966, water-stage recorder at site 900 ft downstream at different elevation. Mar. 15, 1966 to Dec. 11, 1973, water-stage recorder and nonrecording gages at site 400 ft downstream at same elevation. Dec. 12, 1973 to Oct. 1, 1981, nonrecording gage at site 400 ft downstream at same elevation. Oct. 1, 1981 to July 25, 1995, water-stage recorder at site 400 ft upstream from bridge at elevation 2.67 ft higher. See WSP 2116 for history of changes prior to 1962.

REMARKS.--Water-discharge records poor Oct. 1 to Mar. 22 and fair Mar. 23 to Sept. 30. Some regulation by Bair (station number 06116500), Martinsdale (station number 06119000) and Deadman's Basin (station number 06122500) Reservoirs. Diversions for irrigation of about 47,000 acres upstream from station. U. S. Geological Survey satellite telemeter at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0.00 0.00 0.00 0.00 0.07	0.00 0.00 0.00 0.00	e0.10 e0.05 e0.05 e0.01 e0.00	e1.0 e1.0 e1.0 e1.0	e1.0 e1.0 e1.0 e0.70 e0.50	e0.20 e0.20 e0.20 e0.15 e0.15	0.00 0.00 0.00 0.00	21 95 82 59 45	0.00 0.00 0.00 0.76 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
6 7 8 9 10	0.01 0.07 0.03 0.11 0.09	0.00 0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.10	e0.50 e0.50 e0.30 e0.10 e0.05	e0.70 e0.80 e0.90 e1.0 e0.70	e0.15 e0.10 e0.10 e0.15 e1.0	0.00 0.00 0.00 0.00	53 43 16 3.4	1.6 54 58 46 36	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
11 12 13 14 15	0.00 0.06 0.27 0.10 0.10	e0.01 e0.05 e0.10 e0.05 e0.01	e0.90 e1.0 e1.0 e1.0	e0.05 e0.05 e0.05 e0.05 e0.05	e1.0 e1.0 e1.0 e1.0	e10 e30 e100 e200 e400	0.00 0.00 0.00 0.00	208 86 46 28 1.9	47 95 61 87 204	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
16 17 18 19 20	0.07 0.14 0.11 0.23 0.20	e0.00 e0.00 e0.00 e0.00	e1.5 e2.0 e2.0 e2.0 e1.5	e0.00 e0.01 e0.01 e0.05 e0.05	e1.0 e0.80 e0.70 e1.0	e300 e200 e200 e150 e150	0.00 0.00 0.00 0.00	25 29 29 33 29	165 113 69 47 171	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
21 22 23 24 25	0.21 0.00 0.00 0.00 0.00	e0.00 e0.00 e0.00 e0.00	e0.50 e0.10 e0.10 e0.10 e0.10	e0.01 e0.01 e0.01 e0.05 e0.05	e0.30 e0.10 e0.01 e0.00 e0.01	e100 e100 95 58 44	0.00 0.00 0.00 0.00	30 23 25 28 28	78 54 35 27 5.2	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
26 27 28 29 30 31	0.00 0.00 0.00 0.00 0.00	0.10 e0.01 e0.05 e0.05 e0.10	e0.10 e0.50 e1.0 e2.0 e1.0 e1.0	e0.10 e0.20 e0.50 e1.0 e1.5 e2.0	e0.05 e0.10 e0.20	35 30 17 0.56 0.01 0.01	0.00 0.00 0.00 0.00 0.00	7.3 3.0 0.00 0.00 0.00 0.00	2.2 0.70 0.00 0.00 3.5	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
TOTAL MEAN MAX MIN AC-FT	1.87 0.060 0.27 0.00 3.7	0.53 0.018 0.10 0.00 1.1	21.71 0.70 2.0 0.00 43	12.25 0.40 2.0 0.00 24	19.07 0.68 1.5 0.00 38	2221.98 71.7 400 0.01 4410	0.00 0.000 0.00 0.00 0.00	1094.60 35.3 208 0.00 2170	1460.96 48.7 204 0.00 2900	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00
STATIST	TICS OF M	ONTHLY ME	AN DATA F	OR WATER	YEARS 19	31 - 2003,	BY WATE	R YEAR (W	Y)*			
MEAN MAX (WY) MIN (WY)	79.7 478 1994 0.000 1932	79.1 337 1994 0.000 1932	71.0 278 1979 0.000 1931	76.5 376 1997 0.000 1932	172 1858 1971 0.000 1932	454 4658 1978 0.000 1932	283 1917 1979 0.000 2003	521 3772 1975 0.000 1931	870 4967 1967 1.91 1935	319 2153 1975 0.000 1961	113 870 1993 0.000 1934	113 787 1986 0.000 1934

06130500 MUSSELSHELL RIVER AT MOSBY, MT--Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR YEAR	FOR 2003 WATER YEAR	WATER YEARS 1931 - 2003*
ANNUAL TOTAL	2961.78	4832.97	
ANNUAL MEAN	8.11	13.2	c265
HIGHEST ANNUAL MEAN			1089 1978
LOWEST ANNUAL MEAN			8.12 2002
HIGHEST DAILY MEAN	1080 Jun 23	400 Mar 15	15700 Jun 18 1944
LOWEST DAILY MEAN	0.00 Jan 1	a0.00 Oct 1	0.00 Oct 1 1930
ANNUAL SEVEN-DAY MINIMUM	0.00 Jan 7	0.00 Oct 22	0.00 Oct 1 1930
MAXIMUM PEAK FLOW		unknown	d18000 Jun 18 1944
MAXIMUM PEAK STAGE		b8.23 Mar 15	f15.10 Mar 12 1979
ANNUAL RUNOFF (AC-FT)	5870	9590	191600
10 PERCENT EXCEEDS	8.0	43	577
50 PERCENT EXCEEDS	0.09	0.01	81
90 PERCENT EXCEEDS	0.00	0.00	0.10

^{*--}During period of operation (1931-32, 1935 to current year).

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1975 to current year.

PERIOD OF DAILY RECORD.--

SPECIFIC CONDUCTANCE: October 1974 to September 1981.

WATER TEMPERATURE: October 1974 to September 1979, May 2000 to current year (seasonal records only).

SUSPENDED-SEDIMENT DISCHARGE: October 1982 to September 1991, October 1991 to 1995 (seasonal records only).

INSTRUMENTATION.--Temperature recorder installed March 20, 2000.

REMARKS.--Unable to collect sample from July through September visits due to no flow. Daily water temperature record good during period of flow. No daily water temperature data during periods of no flow: Apr. 1-30, May 28 to June 3, June 5, 28, 29, and July 1 to Sept. 30. Unpublished records of instantaneous water temperature and specific conductance are available in files of District office.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily, 4,900 microsiemens per centimeter (μS/cm) at 25°C, Aug. 14, 1977; minimum daily, 678 μS/cm at 25°C, Mar. 23, 1978.

WATER TEMPERATURE: Maximum daily, 33.0°C, July 13, 2000, July 3 and Aug. 6, 2001; minimum daily, 0.0°C on many days during winters.

SEDIMENT CONCENTRATION: Maximum daily mean, 25,800 mg/L, Aug. 3, 1985; minimum daily mean, 7 mg/L Oct. 30, 1989. SEDIMENT LOAD: Maximum daily, 242,000 tons, Sep. 26, 1986; minimum daily, no load, 1985, 1988 during periods of no flow.

EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURE: During period of seasonal operation and flow, maximum daily, 29.5°C, June 19, 30; minimum daily, 2.5°C, Apr. 3

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Ammonia + org-N, water, unfltrd mg/L as N (00625)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Phos- phorus, water, unfltrd mg/L (00665)
OCT 2002 02 MAR 2003	1145	.15		6050	6.5	11.5					
26	1115	35	8.4	1640	8.5	7.5	1.0	.365	.018	<.007	.125
MAY 22 JUN	1030	26	8.3	2480	21.0	16.0	.67	<.022	E.002	<.007	.090
17	0950	126	8.1	1410	26.0	23.5	1.3	<.022	<.002	<.007	.35
Date	Time	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)
MAR 2003 26	1115	490	100	58.8	6.21	4	198	172	12.3	.26	5.71

E--Estimated.

a -- No flow occurred on part or all of many days.

b--Backwater from ice.

c--Median of yearly mean discharge, 200 ft³/s, 144,900 acre-ft/year.d--Gage height, 14.43 ft, from rating extension above 10,000 ft³/s.

e--Estimated.

f--From floodmark, backwater from ice.

06130500 MUSSELSHELL RIVER AT MOSBY, MT--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)		Residue water fltrd tons/	, unfltrd d ug/L	water l unfltr ug/L	r, recove: d -able ug/L	Copper, , water, d unfltrd r recover , -able, ug/L	water, unfltrd recover -able, ug/L	recover	Zinc, water, unfltrd recover -able, ug/L (01092)
MAR 2003 26	666	1150	1.57	109	<2	<.2	1.6	8.7	1.92	8.08	12
	Date	Time	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)	Sus- pended sedi- ment concen- tration mg/L (80154)	pended sedi- ment	Bed sedi- ment, dry svd sve dia percent <.063mm (80164)	sve dia percent <.125mm	sve dia percent <.25mm		Bed sedi- ment, dry svd sve dia percent <1 mm (80168)	
	OCT 2002 02 MAR 2003 26 MAY 22 JUN 17	1145 1115 1030 0950	36 99 99	51 95 169 658	.02 9.0 12 224	<1 2 <1 1	1 3 1 3	2 7 3 7	3 11 8 11	4 14 12 13	
		Date	s dr sv pe <	ent, n y svd di e dia s rcent po 2 mm	sedi- s ment, m ry svd dr ve dia sv ercent pe <4 mm <	ment, ry svd d re dia s ercent p :8 mm	ment, index syd dispersion of the syd disper	sedi- s ment, m ry svd dr ve dia sv ercent pe <32 mm <	Bed edi- ent, y svd e dia rcent 64 mm 0174)		
		OCT 2 02. MAR 2 26. MAY 22.	003	6 15 18	9 18 25	19 23 37	48 35 58	72	100 100 100		
		JUN 17.		14	18	26	50	100	100		

06130500 MUSSELSHELL RIVER AT MOSBY, MT--Continued

WATER TEMPERATURE, DEGREES CELSIUS, APRIL 2003 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		APRIL			MAY			JUNE			JULY	
1				17.5	9.5	13.0						
2				17.5	10.5	14.0						
3				18.5	12.0	15.5						
4				16.5	10.0	13.5	19.0	14.5	16.5			
5				10.0	6.0	7.5						
6				12.5	6.5	9.5	17.0	14.5	15.5			
7				15.5	9.0	12.0	19.5	13.0	16.0			
8				14.0	9.5	12.0	23.0	14.0	18.0			
9				12.0	9.0	10.5	19.5	17.0	18.0			
10				14.5	8.0	11.0	19.0	16.0	17.0			
11				14.5	9.5	12.0	21.5	15.5	18.5			
12				18.5	11.5	14.5	24.0	16.5	20.0			
13				19.0	13.5	16.0	26.5	19.0	22.5			
14				22.5	12.5	17.0	26.5	20.0	23.5			
15				25.5	14.5	19.5	26.0	21.5	24.0			
16				21.0	14.0	16.5	27.5	21.5	24.0			
17				20.5	13.0	16.0	28.5	22.0	24.5			
18				16.5	9.5	12.5	28.0	21.0	24.0			
19				15.5	7.5	11.0	29.5	20.5	24.0			
20				19.0	9.5	14.0	23.5	20.0	22.0			
21				18.0	14.0	15.5	23.5	18.5	21.0			
22				22.0	14.5	18.0	23.5	18.0	20.0			
23				21.5	17.5	19.5	23.0	15.5	19.0			
24				25.0	15.5	20.0	21.0	15.5	18.0			
25				26.5	16.5	21.5	22.5	16.0	19.0			
26				26.5	19.5	22.5	24.0	16.5	20.0			
27				27.0	20.0	23.0	24.0	17.0	20.5			
28												
29												
30							29.5	19.0	24.0			
31												
MONTH												

	AUGUST	S	EPTEMBER	2
1	 	 		
2	 	 		
3	 	 		
4	 	 		
5	 	 		
_				
6	 	 		
7	 	 		
8	 	 		
9	 	 		
10	 	 		
11	 	 		
12	 	 		
13	 	 		
14	 	 		
15	 	 		
1.0				
16	 	 		
17	 	 		
18	 	 		
19	 	 		
20	 	 		
21	 	 		
22	 	 		
22				
23	 	 		
25	 	 		
26	 	 		
27	 	 		
28				
28 29	 	 		
30	 	 		
31	 	 		
MONTH	 	 		

HELL CREEK BASIN

06130650 HELL CREEK NEAR JORDAN, MT

 $LOCATION.--Lat\ 47^{\circ}34'44'',\ long\ 106^{\circ}55'37''\ (NAD\ 27),\ in\ NW^{1}/_{4}\ NE^{1}/_{4}\ sec.\ 14,\ T.21\ N.,\ R.37\ E.,\ Garfield\ County,\ Hydrologic\ Unit\ 10040104,\ NC^{1}/_{4}\ NC^{1}/_$ on left bank 1.5 mi upstream from Fort Peck Lake, and 19 mi north of Jordan.

DRAINAGE AREA.--70.6 mi².

PERIOD OF RECORD.--February 2000 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 2,270 ft (NGVD 29). Prior to Oct. 1, 2000, at elevation 1.0 ft higher.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. U. S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAILT MEAN VALUES													
	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
	1 2 3 4 5	0.00 0.00 0.00 0.00 0.16	e0.00 e0.00 e0.03 e0.06 e0.04	e0.00 e0.00 e0.00 e0.00 e0.00	0.00 0.00 0.00 e0.01 e0.01	e1.0 e0.50 e0.00 e0.00 e0.00	0.00 0.00 0.00 0.00 0.00	0.45 0.47 0.41 0.48 0.26	0.05 0.02 0.01 3.7	e0.05 0.33 0.37 1.5 8.0		e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 0.00 0.00
	6 7 8 9	0.96 e0.00 e0.00 e0.00 e0.00	e0.02 e0.02 e0.03 e0.01 e0.00	e0.00 e0.00 e0.00 e0.01 e0.01	e0.01 e0.01 e0.01 e0.01 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	0.00 0.00 0.00 0.00	0.10 0.07 0.06 0.05 0.02	13 2.5 2.5 94 79	8.0 10 1.2 0.42 0.30	0.00 0.00 46 39 0.30	e130 e60 e1.0 e0.50 e0.30	0.00 0.00 0.00 0.00 0.00
	11 12 13 14 15						0.00 0.00 318 128 30	0.02 0.01 0.01 0.01 0.06	2.7 0.81 0.62 0.31 0.16	0.23 0.42 0.33 e0.10 e0.05	0.03 0.00 0.00 0.00 0.00	e0.10 e0.00 e0.00 e0.00 e0.00	0.00 0.00 0.00 0.00 0.00
	16 17 18 19 20	0.00 0.00 0.00 0.00 0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	0.00 0.00 0.00 0.00	e0.00 e0.00 e0.00 e0.00 e0.00	11 2.8 2.1 2.5 2.1	0.06 0.00 0.94 14 1.2	0.13 0.09 e0.05 0.11 0.15	e0.03 0.03 0.01 0.00 0.00	0.00 0.00 0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	0.00 0.00 0.00 0.00 0.00
	21 22 23 24 25	0.00 0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 0.00	0.00 0.00 0.00 0.00 0.00	e0.00 e0.00 e0.00 e0.00 e0.00	1.4 0.73 0.79 0.44 0.39	0.76 0.30 0.06 0.01 0.14	e0.08 e0.06 e0.04 e0.02 e0.00	0.00 0.00 0.00 0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	0.00 0.00 0.00 0.00 0.00
	26 27 28 29 30 31	e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 e0.50	e0.00 0.00 0.00 	0.38 0.41 0.18 0.10 0.04 0.28	6.8 4.7 0.86 0.44 0.21	e0.00 e0.00 e0.00 e0.00 e0.00 e0.00	0.00 0.00 0.00 0.00 0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	0.00 0.00 0.00 0.00 0.00
	TOTAL MEAN MAX MIN MED AC-FT	0.00	0.00	0.04 0.001 0.01 0.00 0.00 0.00	0.56 0.018 0.50 0.00 0.00	1.50 0.054 1.0 0.00 0.00 3.0	501.64 16.2 318 0.00 0.28 995	32.96 1.10 14 0.00 0.18 65	280.11 9.04 94 0.00 0.09 556	31.37 1.05 10 0.00 0.04 62	85.33 2.75 46 0.00 0.00 169	191.90 6.19 130 0.00 0.00 381	0.00 0.000 0.00 0.00 0.00
	STATIST	TICS OF M	ONTHLY ME	AN DATA F	OR WATER	YEARS 200	0 - 2003	, BY WATE	R YEAR (WY)			
	MEAN MAX (WY) MIN (WY)	0.13 0.35 2001 0.000 2002	2001 0.000	0.002 0.003 2002 0.000 2001	0.20 0.58 2001 0.000 2002	0.54 2.00 2000 0.000 2002	5.08 16.2 2003 0.90 2000	0.56 1.10 2003 0.012 2001	2.72 9.04 2003 0.000 2001	9.15 24.2 2001 1.05 2003	8.56 18.6 2000 2.75 2003	1.99 6.19 2003 0.000 2000	0.61 2.44 2000 0.000 2002
	SUMMARY	STATIST	ICS	FOR	2002 CALE	NDAR YEAR		FOR 2003 T	WATER YEAR		WATER YE	ARS 2000 -	- 2003
	ANNUAL HIGHEST LOWEST HIGHEST ANNUAL MAXIMUM MAXIMUM ANNUAL 10 PERC 50 PERC	ANNUAL TOTAL ANNUAL MEAN ANNUAL MEAN AUGHEST ANNUAL MEAN AUGHEST DAILY MEAN AUGHEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM AAXIMUM PEAK FLOW ANNUAL RUNOFF (AC-FT) AUGHEST DAILY MEAN AUGHE				7 Jun 10 0 Jan 1 0 Jan 1		1126 3.8 0.0 0.1 1090 a6 2230 0.6 0.1 0.6	2.0		2. 3. 1. 581 0. 0. 0. 1770 1. 0.	44 09 16 Jun 1: 00 Feb : Jul 1: 64 Jul 1: 4 00 00	1 2000 1 2000 3 2001

a--From crest-stage gage, during period of no recorded gage-height record. b--From slope-area measurement of peak flow.

e--Estimated.

BIG DRY CREEK BASIN

06131000 BIG DRY CREEK NEAR VAN NORMAN, MT

LOCATION.--Lat 47°20'58", long 106°21'26" (NAD 27), in NE¹/₄SW¹/₄NW¹/₄ sec. 3, T.18 N., R.42 E., Garfield County, Hydrologic Unit 10040105, on left bank 900 ft downstream from Little Dry Creek, 3.2 mi northeast of Van Norman Post Office, 26 mi east of Jordan, and at river mile 55.1. DRAINAGE AREA.--2,554 mi².

PERIOD OF RECORD.--October 1939 to July 1969, July 1970 to current year (discharge measurements only, October 1947 to March 1949). Prior to July 1970, published as "Dry Creek near Van Norman."

REVISED RECORDS.--WSP 1309: 1947(M). WSP 1559: 1944(M), 1947. WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 2,330 ft (NGVD 29). Prior to July 24, 1978, at site 400 ft upstream at same elevation.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Few small diversions for irrigation of hay meadows upstream from station. U.S. Army Corps of Engineers satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003
DAILY MEAN VALUES

	DAILT MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.9 1.9 1.9 2.2 3.1	2.6 2.6 2.6 2.7 2.7	e2.5 e2.5 e2.5 e2.0 e2.0	e2.0 e2.5 e2.5 e2.5 e2.5	e2.5 e2.5 e2.5 e2.0 e2.0	e2.0 e2.5 e3.0 e2.5 e2.0	20 16 15 14 13	6.2 6.1 5.7 6.5	2.6 2.9 6.2 4.6 4.3	12 0.97 0.52 0.34 0.22	0.00 0.00 0.00 26 0.14	0.01 0.01 0.01 0.01 0.01
6 7 8 9 10	3.8 3.4 3.0 2.7 2.6	e2.5 e2.5 e2.5 e2.5 e2.5	e2.0 e2.0 e2.0 e2.0 e2.0	e2.5 e2.5 e2.5 e2.5 e2.0	e2.0 e2.0 e2.0 e2.0	e2.0 e2.0 e2.0 e2.0 e2.5	12 11 11 9.8 8.8	19 13 12 17 40	6.5 7.4 6.1 5.3 6.1	0.12 0.10 39 386 197	0.05 1.5 1.8 27 1.6	0.01 0.01 0.01 0.01 0.01
11 12 13 14 15	2.4 2.4 2.4 2.3 2.3	e2.5 e2.5 e2.5 e2.5 e2.5	e2.0 e2.0 e2.0 e2.0 e2.5	e2.0 e2.0 e2.0 e2.0 e2.0	e2.0 e2.0 e2.5 e2.5 e2.0	e2.5 e2.5 e100 e2300 2010	8.1 7.6 7.3 7.9 8.9	27 26 29 20 20	17 15 15 18 15	51 28 17 11 6.1	0.32 0.17 0.07 0.04 0.02	0.01 0.03 0.01 0.01 0.01
							9.4 9.1 10 10 9.0	17 14 10 8.6 7.9	12 8.7 7.9 5.7 4.3	3.2 1.6 0.78 0.45 0.21	0.01 0.00 0.00 0.00 0.00	0.01 0.01 0.01 0.01 0.01
21 22 23 24 25	2.6 2.5 2.6 2.6 2.6	e2.5 e2.5 e2.5 e2.0 e2.0	e2.0 e2.0 e2.0 e2.0 e2.0	e2.0 e2.0 e2.0 e2.0 e2.0	e2.0 e2.0 e2.0 e2.0	136 88 50 37 28	7.6 6.7 6.5 5.9 5.3	7.5 7.0 5.7 5.3 5.5	5.3 3.1 2.5 2.2 1.7	0.11 0.07 0.05 0.03 0.02	0.00 0.00 0.00 0.00 0.00	0.04 0.05 0.04 0.02 0.02
26 27 28 29 30 31	2.6 2.7 2.7 2.7 2.7 2.6	e2.0 e2.0 e2.5 e2.5 e2.5	e2.0 e2.0 e2.5 e2.5 e2.5 e2.0	e2.0 e2.0 e2.0 e2.0 e2.5 e2.5	e2.5 e2.5 e2.5	22 18 18 26 23 28	5.1 5.6 5.4 6.2 6.7	5.2 4.8 3.8 3.0 2.3 2.2	1.4 1.2 1.1 0.83 2.5	0.01 0.01 0.01 0.00 0.00 0.00	0.00 0.00 0.01 0.01 0.01 0.01	0.02 0.01 0.01 0.02 0.02
TOTAL MEAN MAX MIN AC-FT							278.9 9.30 20 5.1 553				58.76 1.90 27 0.00 117	0.47 0.016 0.05 0.01 0.9
STATIST	TICS OF MO	ONTHLY MEA					BY WATER	YEAR (WY) *			
MEAN MAX (WY) MIN (WY)	6.31 97.5 1987 0.000 1940	2.99 14.2 1987 0.000 1961	2.66 33.7 1976 0.000 1961	6.47 192 1997 0.000 1940	72.8 1004 1997 0.000 1940	256 1760 1959 2.75 1961	83.9 2043 1952 1.05 1961	0.21	58.2 552 1944 0.072 1988	43.8 458 1993 0.000 1961	16.1 367 1954 0.000 1959	16.4 391 1986 0.000 1940
SUMMARY	STATIST:	ICS					FOR 2003 WA	TER YEAR		WATER YEA	RS 1940 -	2003*
ANNUAL ANNUAL HIGHEST LOWEST HIGHEST	MEAN	MEAN EAN EAN		11736.40 32.2 6330			9229.78 25.3 2300			49.7 243 1.1 21300		1978 1985 1947
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS				0.50 0.57) Jan 28 ' Jan 26		0.00 0.00 2300 a6.44 0.00	Jul 29 Aug 17 Mar 14 Mar 14 Jul 29		0.0 0.0 b24600 a15.2 c0.0	0 Oct 1 0 Oct 1 Mar 21 6 Mar 21 0 Oct 1	1939 1939 1947 1947 1940
ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS				2.5			2.5			2.5		
90 PERC	LENT EXCE	EDS		1.0			0.01			0.0	U	

^{*--}During period of operation (1940-47, 1949-68, 1970 to current year).

^{**--}Median of yearly mean discharges, 27.4 ft³/s. a--Backwater from ice.

b--Gage height, 13.39 ft, at different site and datum. c--No flow at times most years. e--Estimated.

06131200 NELSON CREEK NEAR VAN NORMAN, MT

LOCATION.--Lat 47°32′08", long 106°09′11" (NAD 27), in SW¹/4 NW¹/4 sec.36, T.21 N., R.43 E., McCone County, Hydrologic Unit 10040104, on left bank at upstream side of bridge on State Highway 24, 1.5 mi upstream from Fort Peck Lake, and 19 mi northeast of Van Norman. DRAINAGE AREA.--100 mi².

PERIOD OF RECORD.--October 1975 to September 1985, February 2000 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 2,300 ft (NGVD 29).

REMARKS.--Records fair. Diversions for irrigation of about 163 acres upstream from station of which about 158 acres are flood irrigated. Some storage in stock ponds upstream. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

					2.1.							
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.17 0.12 0.21 0.33 0.38	0.02 0.01 0.02 0.01 0.07	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
6 7 8 9 10	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.32 0.30 0.23 0.19 0.14	0.06 0.06 0.37 0.42 1.1	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 7.2 0.29	0.00 0.00 0.00 0.00
11 12 13 14 15	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 72 174 82		1.2 0.67 2.8 2.6 1.00	0.09 3.0 1.3 0.50 0.40	0.00 0.00 0.00 0.00 0.00	0.01 1.3 0.50 0.17 0.01	0.00 0.00 0.00 0.00
16 17 18 19 20	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	19 8.0 4.5 8.2 5.2	0.06 0.02 0.02 0.04 0.01	0.59 0.33 0.22 0.14 0.12	0.24 0.10 0.02 0.00 17	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
21 22 23 24 25	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	2.5 1.7 1.2 0.97 0.78	0.01 0.01 0.06 0.07 0.04	0.09 0.05 0.03 0.00	0.49 0.02 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
26 27 28 29 30 31	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 	0.60 0.36 0.29 0.21 0.21	0.02 0.02 0.01 0.03 0.03	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
TOTAL MEAN MAX MIN AC-FT	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00	381.94 12.3 174 0.00 758	0.11	11.98 0.39 2.8 0.00 24	23.17 0.77 17 0.00 46	0.00 0.000 0.00 0.00 0.00	9.48 0.31 7.2 0.00 19	0.00 0.000 0.00 0.00
STATIST	CICS OF MO	ONTHLY ME.	AN DATA F	OR WATER	YEARS 197	6 - 2003	, BY WATER	YEAR (WY)	*			
MEAN MAX (WY) MIN (WY)	0.18 1.47 1982 0.000 1977	0.017 0.14 1979 0.000 1977	0.021 0.15 1976 0.000 1977	0.38 2.90 1983 0.000 1977	2.26 19.0 1982 0.000 1978	5.10 37.4 1978 0.000 2002	3.28 39.9 1979 0.072 2000	1.47 13.1 1978 0.001 2001	1.72 5.64 1977 0.000 1981	2.57 16.0 1978 0.000 1980	1.32 9.37 1981 0.000 1977	1.16 15.4 1978 0.000 1976
SUMMARY	STATIST	ICS	FOR	2002 CALE	NDAR YEAR	1	FOR 2003 W	ATER YEAR		WATER YEAR	RS 1976	- 2003*
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL 10 PERC 50 PERC	MEAN 'ANNUAL MANNUAL MANNUAL MAILY MEA	EAN EAN AN Y MINIMUM OW AGE AC-FT) EDS		222.0 0.6 113 0.0 0.0 441 0.6 0.0 0.0	Aug 7 0 Jan 1 0 Jan 1		429.8 1.1 174 0.0 0.0 318 5.8 853 0.3 0.0	Mar 14 00 Oct 1 00 Oct 1 Mar 14 19 Mar 14		1.66 7.55 0.14 445 a0.00 0.00 1750 9.30 1220 1.1 0.00	7 4 Jul 0 Oct 0 Oct Jul 0 Jul	1978 1980 4 1978 1 1975 1 1975 4 1978 4 1978
	211001	-		0.0	-		0.0	-		0.00	-	

^{*--}During period of operation (1975-1985, February 2000 to current year).

a--No flow at times most years.

06131500 FORT PECK LAKE AT FORT PECK, MT

LOCATION.--Lat 48°00'26", long 106°23'49" (NAD 27), in sec. 14, T.26 N., R.41 E., McCone County, Hydrologic Unit 10040104, in No. 4 emergency gate shaft of Fort Peck Dam on Missouri River at Fort Peck, 2 mi downstream from Bear Creek, 9.5 mi southwest of Nashua, 9.5 mi upstream from Milk River, and at river mile 1,771.6.

DRAINAGE AREA.--57,500 mi².

PERIOD OF RECORD.--October 1937 to current year. (Monthend contents only, except October 1938 to September 1940, when elevations were included.) Monthend contents for October 1937 to August 1938, published only in WSP 1309. Daily elevations and contents for May to June 1964, published in WSP 1840-B. Prior to October 1970, published as "Fort Peck Reservoir." Daily elevations on file in Helena district office.

REVISED RECORDS .-- WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Prior to May 1, 1941, nonrecording gage at same site and elevation. Elevation of gage is 2095.00 (NGVD 29).

REMARKS.--Reservoir is formed by earthfill dam completed in 1939; storage began in 1937. The following capacity figures are from capacity table effective July 1, 1973; see previous reports for superseded figures. All elevations are referenced to the National Geodetic Vertical Datum of 1929. Total capacity, 18,910,000 acre-ft between elevation 2,095.00 ft, invert of lower ring gates, and 2,250.00 ft, top of 25 ft gates. Elevation of spillway crest, 2,225.00 ft. Normal operating level, 17,930,000 acre-ft, elevation, 2,246.00 ft. Dead storage, 542,800 acre-ft below elevation 2,095.00 ft. Minimum operating level, 4,283,000 acre-ft, elevation, 2,160.00 ft, for on-site power generation. Figures given herein represent total contents; usable contents published in previous water-supply papers for October 1950 to September 1955. Water is used for navigation, recreation, flood control, and power generation. Elevations materially affected by wind.

COOPERATION .-- Elevations and capacity table furnished by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 19,310,000 acre-ft, July 15-17, 1975, elevation, 2,251.6 ft; minimum since first filling, 5,061,000 acre-ft, Jan. 25, 26, 1956, elevation, 2,167.67 ft, by capacity table used Mar. 1, 1940, to Dec. 31, 1965.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 11,860,000 acre-ft, Oct. 1, elevation, 2,217.62 ft; minimum, 10,490,000 acre-ft, Sept. 29, elevation, 2,209.55 ft.

MONTHEND ELEVATION AND CONTENTS AT 2400 HOURS, SEPTEMBER 2002 TO SEPTEMBER 2003

Date	Elevation (feet)	Contents (acre-feet)	Change in Contents (acre-feet)
Sept. 30	2,217.62	11,860,000	
Oct. 31	2,217.26	11,800,000	-60,000
Nov. 30	2,216.77	11,710,000	-90,000
Dec. 31	2,214.58	11,340,000	-370,000
CALEND	AR YEAR 2002		-1,810,000
Jan. 31	2,212.61	11,000,000	-340,000
Feb. 28	2,210.96	10,720,000	-280,000
Mar. 31	2,212.83	11,040,000	+320,000
Apr. 30	2,212.76	11,030,000	-10,000
May 31	2,213.04	11,070,000	+40,000
June 30	2,213.59	11,170,000	+100,000
July 31	2,212.34	10,960,000	-210,000
Aug. 31	2,210.68	10,680,000	-280,000
Sept. 30	2,209.56	10,490,000	-190,000
WATER	YEAR 2003		-1,370,000

06132000 MISSOURI RIVER BELOW FORT PECK DAM, MT

LOCATION.--Lat 48°02'39" (NAD 27), long 106°21'21", in NW¹/₄ sec.6, T.26 N., R.42 E., McCone County, Hydrologic Unit 10060001, on right bank 2 mi upstream from Milk River, 6 mi south of Nashua, 8 mi downstream from Fort Peck Dam, and at river mile 1,763.5.

DRAINAGE AREA.--57,556 mi².

PERIOD OF RECORD.--March 1934 to current year.

REVISED RECORDS.--WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 2,018 ft (NGVD 29) (U.S. Army Corps of Engineers bench mark). Prior to Apr. 14, 1938, at site 0.7 mi upstream at different elevation; Apr. 14, 1938, to Sept. 30, 1963, at present site at elevation 2.00 ft higher, all water-stage recorders. Since Oct. 1, 1969, published discharge is determined by flowmeters and spillway discharge at Fort Peck Dam.

REMARKS.--Flow completely regulated by Fort Peck Lake. Diversions for irrigation of about 880,400 acres upstream from station. Operational level in Fort Peck Lake was reached beginning 1944 water year.

COOPERATION.--Records since Oct. 1, 1969, furnished by U.S. Army Corps of Engineers; 2 to 4 discharge measurements are made each year and the records are reviewed by Geological Survey. Records for March 1934 to September 1969 collected and computed by Geological Survey.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 51,000 ft³/s including 32,000 ft³/s inflow from spillway 1 mi downstream from station, Aug. 8, 1946; maximum gage height observed, 12.30 ft, Mar. 10, 1936 (ice jam), site and elevation then in use; maximum daily reverse flow, 400 ft³/s, Mar. 29, 1943, backwater from Milk River.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES												
DAY OC	T NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 600 2 460 3 400 4 440 5 510	0 5000 0 4900 0 4700	9200 9100 9500 10200 10100	9800 9900 9800 9800 9800	9800 10200 10100 10400 10200	9000 9100 9100 7500 8500	3900 6300 6300 6200 5800	8700 8900 8600 9000 8700	9000 8800 9100 8800 8900	8600 8500 8000 7900 8000	8300 7200 7200 7000 6900	6800 7000 7200 7300 7200	
6 470 7 430 8 430 9 470 10 460	0 5000 0 5000 0 4800	9900 9700 10000 9900 9700	9800 9800 9900 9800 9900	10300 10000 10300 10000 10300	6700 6800 6000 5700 5200	5900 5900 6000 6000 6100	8100 8500 8500 8400 8400	8900 8900 8800 8900	8200 8100 8300 8100 8100	6900 6800 7300 7100 6600	7100 7000 6700 6800 7000	
11 470 12 450 13 400 14 430 15 440	0 4700 0 4800 0 4700	10000 9900 9800 10100 9900	10000 9900 10000 10000	10000 10000 10200 9900 9900	4700 4100 3800 3700 4000	6200 7200 7300 7100 7200	8400 8400 8500 8400 8200	8900 8900 8800 8900	8100 8200 7900 8200 8100	6600 6600 6500 6400 7000	6900 6900 6900 7200 7000	
16 470 17 450 18 460 19 460 20 460	0 4900 0 4700 0 4700	9800 9600 9700 9700 9900	9600 10000 9800 10000 9900	10200 10200 10200 9900 10000	3900 4000 3900 3900 3900	7300 6900 6700 6800 7300	9500 10400 10600 9300 9700	8900 9100 8800 8300 8500	7800 7800 7900 8000 8000	7200 7100 7200 7000 7100	7100 7200 6900 7000 7200	
21 470 22 480 23 480 24 480 25 490	0 4800 0 4800 0 4900	9800 9800 10200 10200 10400	10100 10000 9800 8500 8300	10000 9800 10300 10200 10100	4000 4100 3900 4100 4000	7100 7700 8000 7800 8100	10500 10800 8700 9000 9000	8400 8500 8500 8400 8400	8100 8000 8100 8100 8000	7200 7000 7100 6900 7300	7200 5900 4500 4400 4200	
26 480 27 480 28 490 29 480 30 500 31 490	0 9100 0 9200 0 9000 0 9100	10300 10100 9700 9800 9700 10000	9500 9900 9900 10100 9600 10100	10600 10600 10000 	3900 3900 4300 4100 3800 4100	8400 8400 8400 9100 8700	9000 9300 10600 8800 9000 9000	8200 8300 8600 8200 8500	7900 7900 7900 8000 8200 8400	7800 7200 7200 7400 7400 7100	4400 4400 4400 4300 4300	
TOTAL 14480 MEAN 467 MAX 600 MIN 400 AC-FT 28720	0 169300 1 5643 0 9300 0 4700	305700 9861 10400 9100 606400	303300 9784 10100 8300 601600	283700 10130 10600 9800 562700	157700 5087 9100 3700 312800	210100 7003 9100 3900 416700	280900 9061 10800 8100 557200	261000 8700 9100 8200 517700	250400 8077 8600 7800 496700	219600 7084 8300 6400 435600	188400 6280 7300 4200 373700	
STATISTICS O	F MONTHLY M	EAN DATA	FOR WATER	YEARS 194	4 - 2003	B, BY WATE	ER YEAR (WY	() *				
MEAN 1113 MAX 2880 (WY) 195 MIN 301 (WY) 199	0 21150 6 1998 6 2085	9185 13330 1944 1490 1946	9850 14010 1971 1390 1946	9767 15240 1979 1180 1945	7370 13390 1982 1050 1944	7187 17230 1979 856 1945	8452 18830 1979 950 1944	8663 26190 1975 832 1944	9892 35030 1975 1163 1945	11780 26180 1955 3449 1963	11380 27120 1948 2997 1992	
SUMMARY STAT	ISTICS	FOR	2002 CAL	ENDAR YEAR		FOR 2003	WATER YEAR	1	WATER YE	ARS 1944	- 2003*	
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUA LOWEST ANNUA LOWEST DAILY ANNUAL SEVEN INSTANTANEOU ANNUAL RUNOF	L MEAN Y MEAN MEAN -DAY MINIMU S LOW FLOW F (AC-FT)		2413740 6613 10400 3900 3910 4788000	Dec 25 Mar 21 Mar 21		2774900 7602 10800 3700 3890 5504000	May 22 Mar 14 Mar 13		9474 14950 5313 35400 161 161 6863000	Apr Mar 2	1975 1963 7 1975 6 1978 6 1944 6 1944	
10 PERCENT E			9300			10000			14700			

8100

8400

4080

5400

50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

^{*--}Period of record after operational level in Fort Peck Lake was reached.

06132000 MISSOURI RIVER BELOW FORT PECK DAM, MT--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1964, 1975 to 1987, May 2002 to current year.

PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Water years 1974 to 1981.

WATER TEMPERATURE: Water years, 1974 to 1979; seasonal records, July 2002 to current year.

INSTRUMENTATION.--Temperature recorder installed July 31, 2002.

REMARKS.--Unpublished records of instantaneous water temperature and specific conductance are available in files of District office.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE (water years 1975-81): Maximum daily, 1,080 microsiemens per centimeter (μS/cm), Nov. 30, 1976; minimum daily, 520 μS/cm, June 29, 1978.

WATER TEMPERATURE: Maximum, 18.5°C, Aug. 10, Sept. 4, 19, 2002 and several days in August 2003; minimum, 0.0°C, on several days from December 1977 to January 1978.

EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURE: During period of seasonal operation, maximum, 18.5°C, several days in August; minimum, 0.5°C, Apr. 3.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen percent of sat- uration (00301	d wat , unfi t fie - st n un	ter, colling ltrd eld, wo td its 2	pecif. onduc- tance, at unf uS/cm 5 degC 00095)	Temper ature air deg (e, at , wa C de	nper- ure, u ter, m	Hard- ness, water, unfltrd ng/L as CaCO3 (00900)	wat flt mg	cium ter, trd, g/L 915)	Magnes ium, water fltrd mg/L (00925
MAR 2003	1030	4100	708	10.2	94	8	. 4	556	20.5	8	.5	210	52	4	19.6
MAY 21	1045	10500	720	12.6	121		. 4	557	16.0		.0	210	51		19.3
JUN															
30 AUG	0940	8500	714	10.1	105		. 4	550	29.0		. 0	200	49		19.1
26	1430	7800	715	9.3	105	8	. 2	563	27.5	18	.0	200	48	. 8	18.7
Date MAR 2003 31 MAY 21 JUN 30 AUG 26	siu wat flt	er, adsord, tind,	ion flt	lin. wat txum, fxd (er, lind) (29) (29) 2 1 9 1 2 1 1	end	hlor- ide, ater, ltrd, mg/L 0940) .76 .51 .80	Fluor ide, water fltrd mg/L (00950 .92 .9 .9 .9	Sili , wat , flt mg	er, vrd, frd, frd, frd, frd, frd, frd, frd, f	ulfate water, fltrd, mg/L 00945) 117 115 115	Resid water fltrd sum c constituent mg/L (70301 340 337 336 337	f, d, Resi of wat i- flt is ton L acre	er, rd, s/ -ft 03)	Resid wate filtr tons (7030 9550 7700 7090	er, cd, s/d D2)
Date	org org wat unfl mg	g-N, Ammo cer, wai trd fli g/L mg s N as	g/L mg	rate Nit: er wa erd, fl: g/L mg	pl rite pl ter, waterd, f g/L 1	rtho- hos- hate, ater, ltrd, mg/L as P	Phos- phorus water unfltro mg/L (00665	, wat d flt ug	er, v rd, ur /L	rsenic water nfltrd ug/L 01002)	Barium water fltro ug/I (01005	r, reco d, -ab	er, trd ver le,	Cadmi wate fltr ug/ (0102	er, cd, L
MAR 2003 31 MAY	.1)15 <.0			.007	.010	3.		3	32	36		<.04	
21 JUN	.1		015 <.0			.007	.009	3.		3	38	35		<.04	
30 AUG	.1	.3 <	015 <.0)13 <	002 <	.007	.008	3.	8	3	35	34		<.04	
26	.1	.6 <	015 <.0	122 <.	002 <	.007	.011	3.	8	5	35	37		<.04	1

06132000 MISSOURI RIVER BELOW FORT PECK DAM, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	Cadmium water, unfltrd ug/L (01027)	Chrom- ium, water, fltrd, ug/L (01030)	Chrom- ium, water, unfltrd recover -able, ug/L (01034)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	Iron, water, fltrd, ug/L (01046)	Iron, water, unfltrd recover -able, ug/L (01045)	water,		Mangan- ese, water, fltrd, ug/L (01056)	Mangan- ese, water, unfltrd recover -able, ug/L (01055)
MAR 2003 31 MAY	<.04	<.8	<.8	1.7	2.0	<10	E10	<.08	.06	2.7	6
21	.04	<.8	<.8	1.3	2.1	<10	60	E.05	.06	1.3	4
JUN 30 AUG	<.04	<.8	<.8	1.3	1.5	<8	70	<.08	.06	1.3	5
26	< .04	<.8	<.8	1.4	1.9	<8	60	<.08	.07	2.2	6
Date	Mercury water, fltrd, ug/L (71890)	Mercury water, unfltrd recover -able, ug/L (71900)	Nickel, water, fltrd, ug/L (01065)	Nickel, water, unfltrd recover -able, ug/L (01067)	Selen- ium, water, fltrd, ug/L (01145)	Selen- ium, water, unfltrd ug/L (01147)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)
MAR 2003 31 MAY	<.02	<.02	1.64	2.17	.8	.6	1	E1	75	3	33
21	<.02	<.02	2.90	1.54	.7	.8	3	2			
30	<.01	<.01	2.77	2.51	1.0	.7	2	2	88	4	92
26	<.02	<.02	2.86	3.40	.7	1.0	<1	E1	63	4	84

E--Estimated.

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR APRIL 2003 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		APRIL			MAY			JUNE			JULY	
1 2 3 4 5	5.5 3.0 4.5 5.0 6.5	3.0 1.0 0.5 1.0 2.0	4.0 1.5 2.0 2.5 4.0	10.0 10.0 11.0 9.5 7.0	6.0 6.5 6.5 7.0 6.0	7.5 8.0 8.5 8.0 7.0	10.0 12.0 13.0 10.0 11.0	9.0 9.0 9.5 8.5 8.0	9.5 10.5 11.0 9.0 9.5	15.5 15.5 14.5 15.0 16.0	12.0 11.0 10.5 10.0 11.0	13.5 13.0 12.0 12.5 13.0
6 7 8 9 10	5.0 7.5 8.0 9.5 8.5	2.0 2.0 2.5 3.0 3.5	3.5 4.5 5.0 6.0	8.0 8.5 8.0 7.5 8.5	5.5 5.0 6.0 6.5 6.0	6.5 6.5 7.0 7.0	11.5 12.5 12.5 13.0 11.5	8.5 10.0 9.5 11.0 10.0	10.0 11.0 11.0 11.5 11.0	15.5 15.5 14.0 15.5 15.0	11.5 11.0 11.5 11.0	13.5 13.0 13.0 13.0 13.0
11 12 13 14 15	9.5 9.0 8.5 9.0 7.5	3.5 4.0 4.0 4.5 4.5	6.0 6.0 6.5 6.0	10.5 11.0 11.5 12.0 12.5	5.5 6.0 7.5 7.0 7.5	7.5 8.5 9.0 9.0	11.5 14.0 13.5 13.5	10.0 9.5 9.5 10.0 9.5	10.5 11.5 11.5 11.5	15.5 16.5 16.5 16.0	10.5 11.0 12.5 12.0 11.0	13.0 13.5 14.0 13.5 13.5
16 17 18 19 20	8.0 9.5 6.5 8.5 10.0	4.0 4.5 5.5 5.0 4.5	5.5 6.5 6.0 6.0 7.0	11.0 10.5 8.5 9.5 11.0	8.0 7.5 7.0 6.0 6.0	9.5 8.5 7.5 8.0 8.5	12.5 13.0 14.0 16.0 16.0	9.5 9.5 9.5 11.0 10.5	10.5 11.0 11.5 13.5 13.0	17.0 17.0 17.5 16.0 15.5	12.0 12.5 13.0 11.5	14.0 14.5 15.0 13.5 13.5
21 22 23 24 25	10.5 11.0 10.5 8.5 11.0	5.0 5.0 6.0 6.5 6.0	7.0 7.5 8.0 7.5 8.0	10.5 11.0 12.5 12.5 13.5	7.5 8.0 9.0 8.5 9.0	9.0 9.5 10.5 10.5	12.5 13.5 14.0 13.5 13.0	9.5 9.5 10.0 10.5 10.0	11.0 11.0 12.0 12.0 11.5	16.5 16.5 17.0 16.0 15.5	12.0 12.0 12.0 12.0 12.0	14.0 14.0 14.0 13.5 13.5
26 27 28 29 30 31	8.5 9.5 10.0 8.5 10.0	6.5 6.0 5.0 6.0 6.0	7.5 7.5 7.0 7.0 7.5	14.0 13.0 12.0 14.0 12.0 11.5	10.5 10.0 8.5 9.0 8.5 9.0	12.0 11.5 10.0 11.0 10.0	14.5 14.0 13.5 14.5 15.5	10.5 10.5 10.0 10.0	12.0 12.0 11.5 12.0 13.0	16.0 17.5 17.0 16.0 16.0	12.0 13.0 13.0 12.5 11.5	14.0 15.0 14.5 14.0 13.5 14.0
MONTH	11.0	0.5	5.8	14.0	5.0	8.8	16.0	8.0	11.2	17.5	10.0	13.5

06132000 MISSOURI RIVER BELOW FORT PECK DAM, MT--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR APRIL 2003 TO SEPTEMBER 2003--Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN
		AUGUST		5	SEPTEMBE	R
1 2 3 4 5	16.0 17.0 16.0 15.5 17.0	11.5 11.5 12.0 12.5 12.0	13.5 14.0 13.5 14.0	16.5 16.0 16.0 16.0	12.5 12.0 11.5 12.0 12.5	14.0 13.5 13.5 13.5 13.5
6 7 8 9 10	17.5 18.5 18.5 17.0 18.5	12.0 13.5 13.5 13.0 13.0	14.5 15.5 15.5 14.5 15.5	16.0 16.5 16.5 16.0 13.5	12.0 12.0 13.0 13.0 12.0	13.5 14.0 14.5 14.0 12.5
11 12 13 14 15	18.5 18.5 18.0 17.5 17.5	13.5 14.5 13.5 13.0 13.0	16.0 16.0 15.5 15.0	15.0 14.5 13.0 16.0 15.0	11.5 12.5 11.0 11.5 12.5	13.5 13.0 12.0 13.5 14.0
16 17 18 19 20	18.5 18.0 17.0 18.5 16.5	13.5 14.0 13.0 14.0 13.0	16.0 16.0 15.0 16.0 14.5	12.5 11.0 14.0 15.0 14.0	10.5 10.0 9.5 10.5 12.5	11.5 10.5 11.5 12.5 13.5
21 22 23 24 25	16.0 17.0 17.0 16.5 16.5	12.0 13.0 13.0 12.5 12.5	14.0 14.5 14.5 14.5	12.5 14.5 14.0 14.0 16.0	11.5 10.5 11.5 10.0 11.0	12.0 12.5 12.5 11.5 13.0
26 27 28 29 30 31	16.5 14.0 15.5 16.0 17.5 17.0	12.0 12.5 12.0 12.0 12.5 12.5	14.0 13.0 13.5 13.5 14.5	15.5 15.0 15.0 14.5 15.0	13.0 11.5 11.5 11.5 10.5	14.0 13.0 13.0 12.5 12.5
MONTH	18.5	11.5	14.5	16.5	9.5	13.0

06132200 SOUTH FORK MILK RIVER NEAR BABB, MT

 $LOCATION.--Lat\ 48^{\circ}45'14'',\ long\ 113^{\circ}10'00''\ (NAD\ 27),\ in\ NE^{1}/_{4}NW^{1}/_{4}Sec.34,\ T.35\ N.,\ R.12\ W.,\ Glacier\ County,\ Hydrologic\ Unit\ 10050001,\ NE^{1}/_{4}NW^{1}/_{4}Sec.34,\ T.35\ N.,\ R.12\ W.,\ Glacier\ County,\ Hydrologic\ Unit\ 10050001,\ NE^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}Sec.34,\ T.35\ N.,\ R.12\ W.,\ Glacier\ County,\ Hydrologic\ Unit\ 10050001,\ NE^{1}/_{4}NW^{1}/_{4}Sec.34,\ T.35\ N.,\ R.12\ W.,\ Glacier\ County,\ Hydrologic\ Unit\ 10050001,\ NE^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}Sec.34,\ T.35\ N.,\ R.12\ W.,\ Glacier\ County,\ Hydrologic\ Unit\ 10050001,\ NE^{1}/_{4}NW^{1}/_{4}Sec.34,\ T.35\ N.,\ R.12\ W.,\ Glacier\ County,\ Hydrologic\ Unit\ 10050001,\ NE^{1}/_{4}NW^{1}/_{4}Sec.34,\ T.35\ N.,\ R.12\ W.,\ Glacier\ County,\ Hydrologic\ Unit\ 10050001,\ NE^{1}/_{4}NW^{1}/_{4}Sec.34,\ T.35\ N.,\ R.12\ W.,\ Glacier\ County,\ Hydrologic\ Unit\ 10050001,\ NE^{1}/_{4}NW^{1}/_{4}Sec.34,\ T.35\ N.,\ R.12\ W.,\ Glacier\ County,\ Hydrologic\ Unit\ 10050001,\ NE^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}Sec.34,\ T.35\ N.,\ R.12\ W.,\ Glacier\ County,\ Hydrologic\ Unit\ 10050001,\ NE^{1}/_{4}NW^{1}/_{4}NW^{1}/_{4}Sec.34,\ T.35\ N.,\ R.12\ W.,\ Glacier\ County,\ Hydrologic\ Unit\ 10050001,\ NE^{1}/_{4}NW^{1$ Blackfeet Indian Reservation, on right bank 0.4 mi upstream from bridge on FAS 464 ("Duck Lake Road"), 14.4 mi southeast of Babb, 15.2 mi northwest of Browning, and at river mile 17.3.

DRAINAGE AREA.--70.4 mi².

PERIOD OF RECORD.--May 1961 to current season (seasonal records only).

REVISED RECORDS .-- W 1983: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 4,731.6 ft (NGVD 29).

REMARKS.--Records good except those for estimated daily discharges, which are poor. Many small diversions for irrigation upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			e18 e19 e18 e16 e17	181 73 52 47 35	44 40 37 39 41	29 26 25 23 23	10 9.0 7.6 6.8 7.1	1.9 1.9 2.2 2.8 2.7	1.5 1.5 1.6 1.5	5.6 5.5 5.2 5.5 5.5		
6 7 8 9 10				30 27 30 58 86	38 36 34 35 41	25 28 24 33 41	7.8 9.1 8.9 8.4 7.1	3.0 2.6 2.3 2.2 2.0	1.3 1.3 1.4 2.2 2.7	5.3 5.0 5.1 5.4 5.8		
11 12 13 14 15			e13 e17 e50 e400 e250	81 72 82 91 72	43 38 36 32 30	40 33 27 23 21	6.3 5.6 4.7 4.1 3.9	1.6 1.4 1.3 1.2	2.5 2.4 2.6 2.6 3.1	5.8 5.9 6.2 6.5 6.3		
16 17 18 19 20			178 101 71 54 50	58 52 48 44 42	30 28 30 36 36	19 18 17 19 23	3.7 3.6 3.0 2.6 2.3	1.1 1.2 1.7 1.7	5.5 9.8 9.5 6.7 6.5	6.4 6.4 6.2 6.2 6.1		
21 22 23 24 25			50 44 65 52 41	41 43 48 54 57		22 19 18 20 19		2.8 1.5 1.5 1.8 1.5	6.2 5.9 5.7 5.3	6.1 6.1 5.9 6.1 6.2		
26 27 28 29 30 31			34 25 25 27 40 149	53 49 46 43 44	38 34 31 27 25 30	18 14 13 12 11	1.8 1.9 2.1 2.6 2.6 2.2	1.4 1.4 1.2 1.4 1.6	5.1 5.0 5.2 5.4 5.5	6.2 6.1 5.9 6.3 7.5 8.1		
TOTAL MEAN MAX MIN AC-FT			1887 60.9 400 10 3740	1739 58.0 181 27 3450	1049 33.8 44 25 2080	683 22.8 41 11 1350	143.7 4.64 10 1.6 285	55.2 1.78 3.0 1.1 109	122.2 4.07 9.8 1.3 242	186.4 6.01 8.1 5.0 370		
STATIS	TICS OF MO	NTHLY MEA										
MEAN MAX (WY) MIN (WY)		46.0 46.0 1963 46.0 1963	32.0 136 1972 5.76 2001	66.3 153 1969 20.7 1984	86.6 239 1967 10.2 1977	90.7 465 1975 0.89 1977	37.1 96.6 1975 0.000 1977	17.3 42.6 1993 0.38 2001	15.0 43.8 1993 0.22 2001	16.5 37.0 1986 5.07 1964		
SUMMAR	Y STATISTI	cs		FOR 200					SONS 1961			
LOWEST MAXIMU MAXIMU	T DAILY MEA DAILY MEA M PEAK FLO M PEAK STA TANEOUS LO	AN N W GE W FLOW		400 1.1 a500 b6.39	Mar 14 Aug 15 Mar 14 Mar 14			5590 0 c12000 7 0	Jun 2 .00 Aug 2 Jun .17 Feb 2 .00 Aug 2	20 1975 23 1973 8 1964 24 1986 23 1973		

a--About, occurred during ice breakup event.

b--Backwater from ice. c--Gage height, 6.61 ft, from rating extended above 400 ft³/s, on basis of slope-area measurement of peak flow. e--Estimated.

06133000 MILK RIVER AT WESTERN CROSSING OF INTERNATIONAL BOUNDARY

(International gaging station)

LOCATION.--Lat 49°00'27", long 112°32'42" (NAD 27), in NE¹/₄ sec.1, T.1, R.20 W., fourth meridian, in Alberta, Hydrologic Unit 10050001, on left bank 0.8 mi north of international boundary, 22 mi upstream from North Milk River, 23 mi southwest of Milk River, Alberta, and at river mile 656.4.

DRAINAGE AREA.--401 mi².

PERIOD OF RECORD.--March 1931 to current season (seasonal records only). Prior to October 1961, published as South Fork Milk River near international boundary.

REVISED RECORDS.--WSP 1389: 1934(M), 1935, 1936(M), 1937, 1942(M), 1947-48(M). W 1983: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 3,820 ft (NGVD 29). Prior to Aug. 9, 1948, and Aug. 9, 1948, to Oct. 31, 1958, water-stage recorders at sites 0.4 mi and 0.5 mi downstream, respectively, at different elevations.

REMARKS.—Records good except those for estimated daily discharges, which are poor. Several diversions for irrigation upstream from station. Environment Canada satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			e16 e16 e16 e16 e16	256 333 200 133 122	127 119 108 113 117	52 54 51 46 41	14 12 11 9.7 8.8	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
6 7 8 9 10			e15 e14 e14 e14 e15	112 104 100 98 126	127 129 120 107 108	40 38 42 52 53	7.7 6.2 5.2 4.3 3.8	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
11 12 13 14 15			e18 e35 e88 e212 e494	182 192 213 248 256	125 127 109 101 90	86 140 98 77 51	3.0 1.8 0.71 0.32 0.14	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
16 17 18 19 20			e989 e710 325 238 180	207 170 150 137 126	79 74 76 78 90	27	0.04 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
21 22 23 24 25			161 168 153 182 122	119 115 116 137 156	95 89 79 72 69		0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
26 27 28 29 30 31			116 97 95 81 78 107	179 161 142 133 128	73 87 80 68 59 53	26 25 22 19 16	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
TOTAL MEAN MAX MIN AC-FT			4801 155 989 14 9520	4851 162 333 98 9620	2948 95.1 129 53 5850	1318 43.9 140 16 2610	88.71 2.86 14 0.00 176	0.00 0.000 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00		
STATIST			N DATA	FOR SEASON:	3 1931 - 2	2003						
MEAN MAX (WY) MIN (WY)		68.0 99.0 1963 37.0 1935	105 717 1972 1.95 2002	208 615 1969 41.5 1941	208 679 1967 13.3 1941	3.07	58.1 348 1951 0.008 1977	20.5 142 1951 0.000 1939	20.6 168 1951 0.000 1939	25.0 133 1952 0.000 1964		
SUMMARY	STATISTIC			FOR 200	3 SEASON				ONS 1931	- 2003		
LOWEST MAXIMUM	DAILY MEADAILY MEAN PEAK FLOW PEAK STAG	AN I I J BE		989 0.00 a1000 b6.40	Mar 16 Jul 17 Mar 16 Mar 15			5410 0 c7930 b12	Jun .00 Jul Jun .55 Mar	9 1964 31 1931 9 1964 18 1976		

a--About

b--Backwater from ice.

c--Gage height, 9.77 ft.

e--Estimated.

06133500 NORTH FORK MILK RIVER ABOVE ST. MARY CANAL, NEAR BROWNING, MT

(International gaging station)

LOCATION.--Lat 48°57'48", long 113°03'43" (NAD 27), in NE¹/₄NE¹/₄SW¹/₄ sec.16, T.37 N., R.11 W., Glacier County, Hydrologic Unit 10050001, Blackfeet Indian Reservation, on left bank 2.3 mi upstream from outlet of canal, 2.3 mi south of international boundary, 29 mi north of Browning, and at river mile 58.3.

DRAINAGE AREA.--59.0 mi².

PERIOD OF RECORD.--May 1911 to July 1912 and June to July 1918 (published as "near Browning"), May 1919 to current season (seasonal records only). Monthly discharge only for some periods published in WSP 1309.

REVISED RECORDS .-- W 1983: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 4,240 ft (NGVD 29). Prior to June 20, 1921, nonrecording gages at several sites within 1 mi of present site at different elevations. June 20, 1921 to Mar. 19, 1997 water-stage recorder at site 0.5 mile downstream from current site at elevation

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Many small diversions for irrigation upstream from station. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year. COOPERATION .-- This is one of a number of stations which are maintained jointly by the United States and Canada.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			e20 e21 e19 e18 e19	36 31 30 29 29	29 28 27 29 29	22 21 21 20 20	14 15 15 15 15	13 12 13 13	11 11 11 11	14 15 15 14 14		
6 7 8 9 10			e17 e15 e14 e12 e13	29 29 30 34 34	30 30 29 32 36	20 20 19 25 22	16 16 15 15	18 17 17 17 16	12 12 15 17 13	13 14 13 13		
11 12 13 14 15			e15 e19 e50 e300 e200	33 32 40 42 35	38 31 28 26 26	33 23 19 18 17	14 14 13 13	15 15 15 14 14	13 15 16 13 14	13 14 13 14 14		
16 17 18 19 20			e100 e50 43 36 37	32 31 30 29 28	25 24 26 28 28	17 16 16 17	13 13 12 12 12	15 15 15 14 13	16 18 17 13	15 14 13 13		
21 22 23 24 25			37 38 43 30 29	28 28 30 32 31	25 24 23 23 22	17 16 16 17 16	12 13 13 14 15	14 13 13 13 12	12 13 13 14 14	13 12 12 12 13		
26 27 28 29 30 31			29 28 28 29 38 47	31 32 31 30 30	27 23 22 21 21 22	15 15 15 14 14	16 15 15 14 13	12 12 12 13 12 12	12 13 13 14 13	13 12 13 e13 e13 e13		
TOTAL MEAN MAX MIN AC-FT				946 31.5 42 28 1880	832 26.8 38 21 1650	558 18.6 33 14 1110	433 14.0 16 12 859	436 14.1 18 12 865	403 13.4 18 11 799	413 13.3 15 12 819		
STATIST	ICS OF MON	NTHLY MEA	N DATA FO	R SEASONS	1911 - 2	003*						
MEAN MAX (WY) MIN (WY)			23.4 72.1 1997 8.14 2001	38.0 167 1948 9.47 2002	34.3 164 1967 7.14 1941	30.4 147 1995 6.95 1988	19.8 101 1995 4.12 1985	16.6 65.5 1951 3.30 1940	18.4 86.8 1911 3.90 1940	17.8 55.0 1996 4.95 1941		
SUMMARY	STATISTIC				3 SEASON				ONS 1911	- 2003		
LOWEST :	DAILY MEA DAILY MEAN PEAK FLOW PEAK STAG	AN I I SE		300 11 a500 b9.34	Mar 14 Sep 1 Mar 14 Mar 14			1320 1. c3090 d10.	Apr 2 7 Sep 1 May 50 Mar 1	2 1953 7 1940 8 1967 9 1997		

^{*--}During periods of operation (May 1911 to July 1912, June to July 1918, May 1919 to current season).

a--About, occurred during ice breakup event. b--Backwater from ice.

c--Gage height, 7.95 ft, from rating curve extended above 130 ft³/s, on basis of slope-area measurements at gage heights 7.55 ft and 7.95 ft, at previous site and datum.
d--Backwater from ice, gage height, 9.07 ft from floodmarks at previous site, which was destroyed.

e--Estimated.

06134000 NORTH MILK RIVER NEAR INTERNATIONAL BOUNDARY

(International gaging station)

LOCATION.--Lat 49°01'19", long 112°58'16" (NAD 27), in SW¹/₄NE¹/₄ sec.11, T.1, R.23 W., fourth meridian, in Alberta, Hydrologic Unit 10050001, on right bank 0.4 mi upstream from highway bridge, 1.6 mi north of international boundary, 2.8 mi east of Whiskey Gap, Alberta, 11 mi southeast of Kimball, Alberta, and at river mile 49.9.

DRAINAGE AREA.--91.8 mi². Area at site used Apr. 12, 1930, to Aug. 15, 1962, 97.4 mi².

PERIOD OF RECORD.--July 1909 to October 1912 (seasonal records only), January 1913 to October 1922, March 1923 to current season (seasonal records only). Records for November and December 1912, published in WSP 1309, have been found to be unreliable and should not be used. Published as "near Kimball, Alberta" 1913-16. Prior to February 1962, published as North Fork Milk River near international boundary.

REVISED RECORDS.--WSP 1309: 1909-13, 1915(M), 1920(M), 1937(M). WSP 1559: 1948(M). WSP 1729: 1944(M). W 1983: Drainage area. See also PERIOD OF RECORD.

GAGE.--Water-stage recorder. Elevation of gage is 4,112.16 ft, Canadian Geodetic Vertical Datum 1928. Prior to May 1913, nonrecording gage at site 2 mi downstream at different elevation. May 1, 1913, to Apr. 11, 1930, water-stage recorder 700 ft downstream at different elevation. Apr. 12, 1930, to Aug. 15, 1962, water-stage recorder 1,500 ft downstream at different elevation.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Since 1917, flow increased during irrigation season by water from St. Mary Canal (station number 05018500). Several small diversions for irrigation upstream from station. Water Survey of Canada satellite telemeter at station.

COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

					D.11	E I ME	VILLED					
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			e21 e21 e20 e20 e20	41 34 35	576 572 561 572 569	636 632 629 625 625	625 625 625 625 625	600 600 604 604 593	403 399 381 349 341	14 14 14 14 14		
6 7 8 9 10			e20 e19 e18 e16 e17	35 36 57 374 417	572 533 466 360 301	622 614 618 625 604	625 622 625 622 614	597 593 593 593 593	314 280 280 279 275	14 13 13 14 14		
11 12 13 14 15			e18 e21 e106 e353 e247	35 36 57 374 417 431 410 413 427 417	290 274 306 336 367	611 583 600 614 618	614 618 618 614 611	590 590 590 586 590	275 266 216 146 135	14 14 14 14 14		
17 18 19 20			e67 e62 e58 e52	403 403 403 403	392 388 403 406 406	622 614 622 636 643	614 614 614 611	593 586 590 586 586	138 138 137 111 50	15 14 13 13		
21 22 23 24 25			e48 e49 e49 e42	403 427 448 459	406 406 431 516 547	650 643 646 646 639	607 607 604 604	561 537 530 523 526	30 25 24 19 21	13 13 13 13		
26 27 28 29 30 31			e38 36 36 36 46 64	463 470 487 540 576	561 565 593 629 625 636	632 629 625 625 625	607 604 600 600 600	501 445 417 413 410 406	16 15 15 15	13 13 e14 e13 e13		
TOTAL MEAN MAX MIN AC-FT			1781 57.5 353 16 3530	9967 332 576 34 19770	14565 470 636 274 28890	18753	19009 613 625 600 37700	17126 552 604 406 33970	5108 170 403 15 10130	420 13.5 15 13 833		
STATISTIC	S OF MONT	THLY MEAN	DATA I	FOR SEASON	IS 1917 -	2003						
MEAN MAX (WY) MIN (WY)			66.4 402 1981 9.67 2002	194 633 1991 23.6 1940	422 732 2001 38.6 1918	521 745 1976 43.5 1952	559 727 1936 84.3 2002	529 721 1969 16.0 1982	308 702 2002 5.57 1988	59.0 524 1951 6.06 1942		
SUMMARY S	TATISTICS	3		FOR 2003	SEASON			SEA	SONS 1917	- 2003		
HIGHEST DA LOWEST DA MAXIMUM PA MAXIMUM PA				650 13 a657 b4.73	Jun 21 Oct 7 Jun 22 Mar 14			2170 0 c3670 6	Jun .00 Mar Jun .89 Jun	7 1995 1 1940 6 1995 6 1995		
aGage h	aight 3	22 ft										

a--Gage height, 3.22 ft.

b--Backwater from ice.

c--From rating curve extended above 1,500 ft^3/s .

e--Estimated.

06134500 MILK RIVER AT MILK RIVER, ALBERTA

(International gaging station)

LOCATION.--Lat 49°08'37", long 112°04'44" (NAD 27), in NE¹/₄ sec.21, T.2, R.16 W., fourth meridian, in Alberta, Hydrologic Unit 10050002, on right bank 5 ft downstream from highway bridge at Milk River, Alberta, 22 mi downstream from North Milk River, and at river mile 613.4.

DRAINAGE AREA.--1,050 mi².

PERIOD OF RECORD.--June 1909 to October 1910 (no winter records), April 1911 to current year. Monthly discharge only for June 1909, published in WSP 1309.

REVISED RECORDS.--WSP 1309: 1912. WSP 1599: 1916, 1927(M), 1947(M). W 1983: Drainage area. W 1984: 1983 (M).

GAGE.--Water-stage recorder. Elevation of gage is 3,402.78 ft, Canadian Geodetic Vertical Datum 1928. Prior to June 17, 1919, nonrecording gages, and June 17, 1919, to Nov. 2, 1921, water-stage recorder at several sites 300 ft upstream at elevation 0.61 ft higher. Nov. 3, 1921, to Aug. 28, 1947, water-stage recorder at site 60 ft upstream at present elevation. Aug. 29, 1947, to Nov. 10, 1976, water-stage recorder located 700 ft downstream on left bank at present elevation.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Since 1917, flow increased during irrigation season by water from St. Mary Canal (station number 05018500). Several diversions for irrigation upstream from station. Environment Canada satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	639	e88	e58	e66	e59	e37	219	766	727	639	600	388
2 3	629	e94 e108	e55	e67	e59 e58	e37	448 410	798 788	727 735	625 625	597 604	385 381
4	622 600	e108 e120	e51 e54	e68 e70	e58	e36 e36	260	788 784	735	625	611	367
5	540	e120 e126	e54 e55	e70 e70	e58 e57	e35	212	742	720	632	607	334
5	340	6120	633	e70	e57	633	212	742	710	032	607	334
6	463	137	e54	e70	e53	e34	195	742	710	636	600	329
7	406	136	e62	e69	e53	e33	177	756	706	636	597	311
8	388	e132	72	e67	e56	e32	164	717	699	632	597	280
9	346	e120	76	e65	e58	e39	152	643	720	625	593	278
10	266	e113	75	e63	e60	e49	427	540	720	622	590	276
11	222	e117	76	e59	e59	e54	614	473	706	618	586	273
12	176	e125	72	e47	e60	e67	664	473	745	622	590	284
13	139	e120	69	e37	e58	e85	678	441	738	614	586	284
14	118	e106	69	e37	e53	e424	713	441	720	614	583	248
15	114	e102	e67	e42	e55	e1410	752	463	706	614	583	185
16	111	e99	e60	e49	e56	e2650	731	466	682	611	583	165
17	108	e88	e54	e49	e57	e1410	653	484	671	604	590	168
18	100	e84	e47	e48	e54	e699	600	491	660	600	583	163
19	101	e99	e39	e48	e55	600	569	501	660	604	579	156
20	95	107	e34	e42	e54	470	544	509	685	604	583	151
21	94	85	e32	e35	e50	388	530	519	678	607	583	113
22	93	98	e34	e34	e45	360	530	516	682	600	565	76
23	e89	e94	e37	e35	e46	328	569	505	678	604	540	58
24	e77	e87	e49	e37	e42	322	590	523	682	600	523	48
25	e72	e76	e59	e46	e43	309	625	607	682	604	512	43
26	e71	e95	e55	e47	e38	244	646	653	667	607	512	38
27	e70	e98	e54	e46	e37	224	625	650	667	611	484	34
28	e72	e93	e57	e46	e37	196	597	671	657	607	427	33
29	e78	e81	e60	e51		185	632	692	653	604	403	30
30	e82	e66	e63	e54		164	703	713	643	607	392	27
31	e85		e65	e57		160		710		600	396	
TOTAL	7066	3094	1764	1621	1470	11117	15229	18777	20836	19053	17179	5906
MEAN	228	103	56.9	52.3	52.5	359	508	606	695	615	554	197
MAX	639	137	76	70	60	2650	752	798	745	639	611	388
MIN	70	66	32	34	37	32	152	441	643	600	392	27
AC-FT	14020	6140	3500	3220	2920	22050	30210	37240	41330	37790	34070	11710
STATIS	TICS OF M	ONTHLY ME	AN DATA F	OR WATER	YEARS 191	7 - 2003,	, BY WATER	YEAR (WY	*) *			
MEAN	103	56.9	34.0	30.5	61.6	230	496	659	720	616	552	351
MAX	555	216	133	268	616	1025	1384	1179	1633	965	795	713
(WY)	1951	1952	1952	1928	1986	1972	1917	1967	1953	1951	1976	1959
MIN	7.83	8.74	2.06	0.000	0.000	3.44	94.5	236	162	192	29.2	3.65
(WY)	1989	2002	1923	1923	1922	1922	1945	1918	1952	2002	1982	2001

06134500 MILK RIVER AT MILK RIVER, ALBERTA--Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR YEAR	FOR 2003 WATER YEAR	WATER YEARS 1917 - 2003*
ANNUAL TOTAL	153912.92	123112	
ANNUAL MEAN	422	337	327
HIGHEST ANNUAL MEAN			489 1953
LOWEST ANNUAL MEAN			157 1921
HIGHEST DAILY MEAN	7840 Jun 11	2650 Mar 16	7840 Jun 11 2002
LOWEST DAILY MEAN	0.92 Jan 1	27 Sep 30	0.00 Jan 19 1922
ANNUAL SEVEN-DAY MINIMUM	3.2 Jan 25	35 Mar 2	0.00 Jan 19 1922
MAXIMUM PEAK FLOW		a3000 Mar 16	9850 Feb 25 1986
MAXIMUM PEAK STAGE		b7.64 Mar 14	c12.46 Feb 25 1986
ANNUAL RUNOFF (AC-FT)	305300	244200	236800
10 PERCENT EXCEEDS	858	682	741
50 PERCENT EXCEEDS	126	248	158
90 PERCENT EXCEEDS	4.9	46	13

^{*--}Flow increased during irrigation season by water from St. Mary Canal since 1917. a--About. b--Backwater from ice. c--From floodmarks, backwater from ice. e--Estimated.

06134700 VERDIGRIS COULEE NEAR THE MOUTH, NEAR MILK RIVER, ALBERTA

(International gaging station)

LOCATION.--Lat 49°06'39", long 111°45'31" (NAD 27), in NW¹/₄ sec.12, T.2, R.14 W., fourth meridian, in Alberta, Hydrologic Unit 10050002, on left bank, 0.6 mi upstream from mouth, 5 mi downstream from culvert on provincial highway 501, and 15 mi east of Milk River, Alberta.

DRAINAGE AREA.--137 mi², of which 130 mi² is probably noncontributing.

PERIOD OF RECORD.--May 1985 to current season (seasonal records only).

GAGE.--Water-stage recorder. Elevation of gage is 3,040 ft (NGVD 29).

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Nearly all flow is the result of interbasin diversion from St. Mary River into Weston Lake 25 miles upstream. Environment Canada satellite telemeter at station.

COOPERATION .-- This is one of a number of stations which are maintained jointly by the United States and Canada.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			e0.00 e0.00 e0.00 e0.00	0.00 0.00 0.00 0.04 0.04	0.11 0.04 0.00 0.39	1.6 2.1 2.4 2.4 2.9	4.9 5.1 5.4 5.4 5.3	2.2 2.1 2.3 2.3 2.3	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
6 7 8 9			e0.00 e0.00 e0.00 e0.00	0.04 0.04 0.00 0.00 0.00	5.7 5.9 3.6 1.6	3.0 3.2 3.1 3.7 4.2	5.2 5.1 4.8 4.9 4.8	1.5 1.5 1.5 1.7	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
11 12 13 14 15			e0.00 e0.00 e0.00 e0.42 e0.99	0.00 0.00 0.14 0.25 0.18	0.49 0.28 0.18 0.11 0.04	4.2 4.3 4.4 4.6 4.8	4.6 4.3 4.5 4.7	1.1 1.6 1.1 0.32 0.14	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
16 17 18 19 20			e0.71 0.53 0.32 0.11 0.07	0.11 0.07 0.04 0.04 0.00	0.00 0.00 0.00 0.00 0.00	4.9 4.8 4.3 3.7 5.4	4.2 4.0 3.8 3.6 3.7	0.07 0.04 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
21 22 23 24 25			0.04 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	5.9 6.0 6.0 6.0	3.5 3.4 3.0 3.0 3.2	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
26 27 28 29 30 31			0.00 0.00 0.00 0.00 0.00	0.11 0.07 0.04 0.46 1.2	0.00 0.00 0.57 1.1 1.5	5.8 5.8 5.7 5.5 5.0	3.1 2.8 2.8 2.6 2.3 1.9	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 e0.00 e0.00 e0.00		
TOTAL MEAN MAX MIN AC-FT			3.19 0.10 0.99 0.00 6.3	2.87 0.096 1.2 0.00 5.7	25.21 0.81 5.9 0.00 50	131.6 4.39 6.0 1.6 261	124.5 4.02 5.4 1.9 247	23.17 0.75 2.3 0.00 46	0.00 0.000 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00		
	CS OF MON				NS 1985 - 2							
MEAN MAX (WY) MIN (WY)			5.83 43.9 1996 0.000 2001	6.05 29.6 1996 0.048 2002	6.59 20.8 1994 0.000 1998	7.47 18.1 1989 0.000 2000	5.17 16.4 1991 0.000 1999	5.96 24.1 1993 0.000 1998	6.87 25.5 1985 0.000 1999	6.25 26.2 1986 0.000 2000		
SUMMARY	STATISTIC	!S		FOR 200	3 SEASON				SONS 1985	- 2003		
LOWEST D	DAILY MEAN PEAK FLOW PEAK STAG	N I E		6.0 0.00 15 4.04	Jun 22 many days May 6 May 6	3		264 0 a280 6	Mar .00 Nov Mar .51 Mar	11 1996 19 1985 11 1996 2 1994		

a--About, gage height not determined (backwater from ice).

e--Estimated.

06135000 MILK RIVER AT EASTERN CROSSING OF INTERNATIONAL BOUNDARY

(International gaging station)

 $LOCATION.--Lat\ 48^{\circ}58'30'', long\ 110^{\circ}25'19''\ (NAD\ 27), in\ NW^{1}/_{4}SW^{1}/_{4}SE^{1}/_{4}\ sec.9,\ T.37\ N.,\ R.9\ E.,\ Hill\ County,\ Hydrologic\ Unit\ 10050002,\ on\ left\ NW^{1}/_{4}SW^{1}/_{4$ bank 1.6 mi south of international boundary, 1.7 mi upstream from Lost River, 10 mi northwest of Simpson, 35.5 mi north of Rudyard, and at river mile 479.6.

DRAINAGE AREA.--2.506 mi², revised.

PERIOD OF RECORD.--August 1909 to current season (seasonal records only). A few winter records were collected and are on file in the Helena District office. Monthly discharge only for April 1912, published in WSP 1309.

REVISED RECORDS.--WSP 1086: 1927, 1935. WSP 1559: 1920(M), 1922(M), 1926, 1928(M), 1929, 1930(M), 1932(M). WSP 1729: 1912-13, 1921-22, 1929(M). WRD MT-94-1(M). W 1983: Drainage area. WRD MT-98-1: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 2,660 ft (NGVD 29). Prior to Mar. 1, 1998, water-stage recorder or nonrecording gages at several sites within 15 mi upstream at different elevation.

REMARKS.--Records good except those for Mar. 18 to Apr. 3, which are fair and estimated daily discharges, which are poor. Since 1917, flow increased during irrigation season by water from St. Mary Canal (station number 05018500). Many diversions for irrigation upstream from station. Bureau of Reclamation satellite telemeter at station.

COOPERATION .-- This is one of a number of stations which are maintained jointly by the United States and Canada.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAILT MEAN VALUES												
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1			e40	236	786	664	702	559	360	58		
2			e38	206	818	679	680	541	351	54		
3			e38	204	833	675	672	547	351	52		
4			e36	245	858	684	646	569	352	50		
5			e36	546	1020	697	614	583	351	48		
3			650	310	1020	057	011	303	331	10		
6			e34	477	810	705	608	576	347	46		
7			e34	343	746	680	611	570	337	43		
8			e32	293	707	659	617	560	311	40		
9			e30	274	682	661	616	546	301	37		
10			e32	243	666	774	609	542	298	34		
11			e36	213	602	659	581	542	263	32		
12			240	197	543	686	567	554	245	31		
13			045	373	500	685	565	551	255	30		
14			643	750	490	697	548	520	247	30		
			-100									
15			6100	898	479	739	531	506	264	33		
16			e700	821	481	716	517	503	279	32		
17			e4000	850	481	691	518	498	275	31		
18			2300	859	494	669	531	514	250	30		
19			1450	794	510	631	530	514	203	29		
20			920	742	538	705	525	522	182	27		
21			739	699	523	789	520	515	175	26		
22			606	680	519	648	528	527	166	25		
23			551	658	513	663	510	537	157	24		
24			105	648	519	705	517	545	152	23		
25			453	642	492	703	527	511	125	23		
23			401	042	492	720	527	211	125	23		
26			449	676	480	733	538	480	104	23		
27			468	759	497	739	562	472	88	22		
28			451	834	585	752	576	473	75	e20		
29			384	804	622	732	578	479	68	e18		
30			333	777	624	715	578	448	62	e15		
31			268		658		576	399		e12		
TOTAL			15106	16741	19076	20952	17798	16203	6994	998		
MEAN			15196 490	558	615	698	1//98	523	233	32.2		
MAX			4000	898	1020	700	574 702	583	360	58		
MIN			30	197	479		510	399	62	12		
AC-FT			30140	33210	37840	41560	35300	32140	13870	1980		
STATIST	TICS OF MONT	THLY ME	AN DATA 1	FOR SEASON	rs 1917 -	2003*						
MEAN			374	566	712	781	618	543	381	128		
MAX			1522	1691	1943	2561	1046	886	740	566		
(WY)			1978	1965	1927	2002	1951	1927	1972	1990		
MIN			9.88	80.1	257	200	262	77.4	2.21	0.16		
(WY)			9.88	1945	1918	1952	1977	1982	2001	2002		
SUMMARY	STATISTICS	3				SON		SEAS	ONS 1917	- 2003*		
нтспьса	C DAILY MEAN	J		400 1 a500 b10.6	0 Mar	17		1 24 0 0	Jun .00 Feb Jun .03 Mar	12 2002		
	DAILY MEAN	•		1	.2 Oct	1 / 21		12400	00 Ech	1 1022		
	1 PEAK FLOW			2 5 0 0	0 Mar	16		Q14400	.00 FED	12 2002		
		,		a300	3 Mar	16		C144UU	O2 Max	12 1006		
MAYTMON	1 PEAK STAGE	9		טייות	o Mar	10		מומ	.us Mar	13 1330		

^{*--}Flow increased during irrigation season by water from St. Mary Canal since 1917.

a--About.

b--Backwater from ice.

c--Gage height, 10.78 ft, from floodmarks. e--Estimated.

06137400 BIG SANDY CREEK AT RESERVATION BOUNDARY, NEAR ROCKY BOY, MT

LOCATION.--Lat 48°10'27", long 109°49'23" (NAD 27), in SW¹/4NW¹/4NE¹/4 sec. 20, T.28 N., R.15 E., Chouteau County, Hydrologic Unit 10050005, on left bank 0.9 mi downstream from Muddy Creek, 6.0 mi south of Rocky Boy Agency, and at river mile 90.6.

DRAINAGE AREA.--24.7 mi².

PERIOD OF RECORD.--May 1982 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 3,830 ft (NGVD 29). Prior to Sept. 6, 2001, water-stage recorder at site 0.1 mi downstream at different elevation.

REMARKS.--Records good except those for estimated daily discharges, which are poor. No known regulation or diversions upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperatures and specific conductance were made during the year.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES V OCT NOV DEC JAN EEB MAR ADD MAY JUN JUL AUG SED											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.0 3.2 3.0 3.2 3.3	e1.7 e2.0 e2.1 2.0 e2.2	e2.4 2.3 e2.0 e1.4 e1.5	e1.6 e1.7 e1.8 2.0 1.8	1.4 e1.4 e1.3 e1.3	e1.0 e1.1 e1.1 e1.0 e1.0	11 7.1 5.3 4.6 4.5	6.0 5.7 5.5 7.3 8.5	5.8 5.9 6.7 6.6 7.3	3.6 3.4 3.3 3.2 3.1	1.3 1.2 1.4 1.3	0.73 0.77 0.75 0.82 0.76
6 7 8 9 10	3.1 3.3 5.3 3.7 3.1	2.2 2.4 3.0 5.6 3.6	e1.9 e2.1 e2.2 2.4 2.3	1.6 1.7 1.6 e1.3 e1.2	e1.3 e1.3 e1.2 e1.2	e1.0 e1.0 e0.90 e0.90 e1.0	4.8 4.0 5.0 7.6 8.1	7.6 8.0 8.1 9.9	7.4 6.7 6.1 7.2 6.9	3.0 3.0 4.0 4.4 3.3	1.0 1.2 1.2 1.2	0.74 0.77 0.76 0.75 0.82
11 12 13 14 15	3.0 3.0 3.1 3.0 3.0	3.2 2.9 3.0 3.1 2.9	2.1 e2.0 2.0 2.1 2.3	e1.3 e1.3 e1.4 e1.4	e1.2 e1.1 e1.1 e1.2 e1.2	e1.2 e1.6 e4.0 e50 e40	7.3 7.7 7.8 11 15	8.6 8.1 8.5 8.0 7.7	7.0 6.8 6.0 6.0 5.4	3.0 2.6 2.4 2.4	0.94 0.95 1.00 0.92 0.83	0.91 1.4 1.8 1.5
16 17 18 19 20	2.8 3.2 2.9 2.6 2.9	3.3 2.8 3.0 3.2 3.1	2.3 2.2 e2.1 e1.6 e1.3	1.5 1.5 1.5 1.5	e1.2 e1.3 e1.3 e1.4 e1.3	e26 e20 14 12 13	16 11 11 12 8.5	9.9 8.3 7.8 7.8 7.3	5.9 5.7 4.7 4.7 7.4	2.2 2.1 1.9 1.8 1.8	0.82 0.92 0.99 0.86 0.88	1.6 2.0 1.8 1.7
21 22 23 24 25	3.0 2.5 2.2 2.1 2.3	3.2 4.0 3.7 e3.0 e2.8	e1.1 e1.0 e1.1 e1.2 e1.4	e1.2 e1.1 e1.3 1.5 1.3	e1.1 e0.80 e0.60 e0.65 e0.70	11 14 16 9.4 7.3	8.1 7.8 7.6 7.7 7.4	7.2 7.0 6.8 6.7 6.4	6.1 5.4 5.4 5.1 4.8	1.7 1.7 1.6 1.6	0.86 0.88 0.78 0.93 0.77	1.7 1.7 1.5 1.5
26 27 28 29 30 31	2.2 2.3 2.3 2.2 e1.8 e1.6	e2.9 3.0 3.0 2.7 2.5	e1.9 e1.7 e1.7 e1.6 e1.5 e1.6	1.4 1.8 1.7 1.6 1.5	e0.75 e0.80 e0.90 	5.8 5.2 5.0 5.3 8.5	7.3 6.7 6.3 6.1 6.1	7.4 6.7 6.2 5.9 5.7	4.6 4.5 5.5 4.8 4.0	1.7 1.5 1.4 1.5 1.4	0.61 0.76 0.76 0.80 0.86 0.89	1.4 1.4 1.5 1.6
TOTAL MEAN MAX MIN AC-FT	89.2 2.88 5.3 1.6 177	88.1 2.94 5.6 1.7 175	56.3 1.82 2.4 1.0 112	46.5 1.50 2.0 1.1 92	31.40 1.12 1.4 0.60 62	294.30 9.49 50 0.90 584	240.4 8.01 16 4.0 477	230.3 7.43 10 5.5 457	176.4 5.88 7.4 4.0 350	73.8 2.38 4.4 1.3 146	30.11 0.97 1.4 0.61 60	38.98 1.30 2.0 0.73 77
							, BY WATER					
MEAN MAX (WY) MIN (WY)	5.33 14.0 1986 0.66 2002	4.68 11.1 1994 0.92 2002	4.17 11.8 1996 0.81 2002	3.54 9.44 1996 0.71 2002	4.30 21.7 1996 0.76 2002	6.51 28.0 1996 0.90 2002	10.6 32.6 1994 3.67 2002	13.7 68.3 1986 1.84 1988	16.5 50.0 1982 1.42 1988	12.7 53.7 1993 1.01 2001	6.36 29.3 1993 0.50 1988	5.28 18.8 1993 0.65 2001
SUMMARY	STATIST	ICS	FOR	2002 CALE	NDAR YEAF	R I	FOR 2003 W	ATER YEAR		WATER YEAR	RS 1982 -	2003
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MINSTANT ANNUAL 10 PERC 50 PERC	MEAN ANNUAL ME DAILY ME DAILY ME SEVEN-DAY I PEAK FLO I PEAK STA TANEOUS LO	EAN EAN AN Y MINIMUM OW AGE DW FLOW AC-FT) EDS		1406.0 3.8 31 0.5 0.6 2790 8.7 2.6 0.7	Jun 13 8 Jan 33 2 Jan 27	L L	0.60 0.74 a75	Mar 14 0 Feb 23 4 Feb 22 Mar 14 2 Mar 14		0.4 0.4 0510 6.0	Jun 27 2 Aug 10 5 Aug 9 Jun 27 7 Jun 27 3 Jun 26	1988 1988 1998 1998

a--About.

b--Backwater from ice.

c-On basis of slope-area measurement of peak flow. d--Gage height, 2.32 ft, site and datum then in use.

e--Estimated.

06139500 BIG SANDY CREEK NEAR HAVRE, MT

LOCATION.--Lat 48°31'36", long 109°50'27" (NAD 27), in SW¹/₄SW¹/₄SW¹/₄sec.18, T.32 N., R.15 E., Hill County, Hydrologic Unit 10050005, on right bank, 6 mi upstream from mouth, 7.7 mi west southwest of Havre post office, and 22 mi downstream from Sage Creek.

DRAINAGE AREA.--1,805 mi².

PERIOD OF RECORD.--February 1946 to November 1953 (monthly discharge only for February 1946, published in WSP 1309 as "Big Sandy Creek near Assinniboine"), annual maximum, water years 1955-67 (published as "Big Sandy Creek near Assinniboine"), and May 1984 to current year (seasonal records only).

REVISED RECORDS.--WSP 1729: Drainage area.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 2,510 ft (NGVD 29).

REMARKS.--Records good. Diversions for irrigation of about 1,000 acres upstream from station. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD .-- Flood of Mar. 30, 1978, reached a stage of 15.15 ft, from floodmarks, discharge, about 6,000 ft3/s.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5				14 15 16 14 14	0.46 0.35 0.24 0.32 0.97	7.0 7.6 8.4 8.9 9.3	0.17 0.12 0.09 0.08 0.02	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00			
6 7 8 9 10				13 12 11 10 9.1	1.4 1.8 1.9 1.8 2.7	10 11 15 12 5.9	0.00 0.00 0.00 0.02 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00			
11 12 13 14 15				8.4 6.8 4.2 3.9 4.9	1.9 1.0 0.93 0.50 0.41	4.6 3.3 2.3 2.2 2.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00			
16 17 18 19 20				5.1 3.8 3.6 3.2 2.4	7.0 6.6 7.1 8.2 9.5	1.8 1.4 1.1 0.84 0.78	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00			
21 22 23 24 25				1.8 1.3 0.86 0.64 0.59	9.6 9.2 9.1 8.9 8.9	0.79 0.47 0.33 0.24 0.18	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00			
26 27 28 29 30 31				0.67 0.52 0.48 0.36 0.47	8.7 8.2 7.9 7.7 6.9 6.8	0.34 0.41 0.43 0.33 0.26	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00			
TOTAL MEAN MAX MIN AC-FT				182.09 6.07 16 0.36 361	146.98 4.74 9.6 0.24 292	119.20 3.97 15 0.18 236	0.50 0.016 0.17 0.00 1.0	0.00 0.000 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00			
STATIST	rics of Mo	ONTHLY MEAD	N DATA I	FOR WATER	YEARS 194	16 - 1953	AND SEASO	NS 1954 -	2003*			
MEAN MAX (WY) MIN (WY)	0.48 3.39 1947 0.000 1948	6.68 19.5 1947 0.000 1948	61.3 343 1947 0.63 1949	62.6 1218 1952 0.16 2002	14.3 108 1986 0.000 1949	26.2 222 1953 0.000 1949	18.0 137 1993 0.000 1946	5.60 85.9 1993 0.000 1946	4.27 54.4 1993 0.000 1946	7.96 54.5 1987 0.000 1947	0.045 0.31 1953 0.000 1947	0.020 0.14 1953 0.000 1947
SUMMARY	STATIST:	ICS		FOR 7	THE 2003 S	SEASON		SEAS	SONS 1946	- 2003*		
LOWEST MAXIMUN	T DAILY ME DAILY MEA 1 PEAK FLO 1 PEAK STA	AN WC		16 0.0 140 a4.5	Apr 3 00 many 6 Mar 16 73 Mar 16	lays 5		5100 5570 a14	0.00 Feb	3 1952 1 1946 3 1952 3 1952		

 $[\]star$ --During period of operation.

a--From floodmarks.

06139900 BEAVER CREEK AT RESERVATION BOUNDARY, NEAR ROCKY BOY, MT

LOCATION.--Lat 48°13'17", long 109°39'01" (NAD 27), in NW¹/4NW¹/4NE¹/4 sec. 3, T.28 N., R.16 E., Hill County, Hydrologic Unit 10050004, in Rocky Boy's Indian Reservation, on left bank, 20 ft upstream from reservation boundary, 0.4 mi upstream from Blackie Coulee, 6.7 mi southeast of Rocky Boy, 25 mi south of Havre, and at river mile 39.9.

DRAINAGE AREA.--16.1 mi².

PERIOD OF RECORD.--July 2001 to current year. Miscellaneous measurements and water-quality samples were obtained at this site between 1982 and 1991.

GAGE.--Water-stage recorder. Elevation of gage is 4,200 ft (NGVD 29).

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES FEB DAY ОСТ NOV MAR APR TITT. SEP DEC TAN MAY TIIN ATIG 2.9 e1.2 1.9 1.4 1.2 16 6.0 3.8 1.7 0.38 0.28 9.0 6.7 2 3.6 e1.3 e1.4 1.8 $1.4 \\ 1.4$ 1.4 1.1 5.8 3.9 1.6 1.5 0.33 0.26 6.4 1.6 1.1 5.6 4.8 0.25 5.6 1.0 1.3 1.2 5.9 5.3 1.5 0.33 0.23 e1.6 e0.80 1.2 7.0 5 3.0 1.7 1.7 1.3 5.6 6.8 1.4 0.36 0.21 2.6 7.0 6 1.7 e0.90 1.7 1.3 1.3 5.6 6.0 1.3 0.35 2.1 e1.0 e1.1 1.6 e1.2 5.1 6.7 0.49 1.3 7.1 5.1 1.2 0.19 8 3.8 3.0 1.6 1.2 e1.1 7.0 4.6 1.6 0.22 2.6 4.6 1.5 1.5 1.2 e1.1 e1.3 5.8 5.2 1.7 1.3 13 7 9 0.45 0.27 10 e1.0 11 9.3 0.37 0.31 2.9 1.2 11 11 1.6 e0.90 e1.5 11 8.6 5.9 5.7 1.2 0.30 0.32 1.2 1.0 12 e3.0 11 11 1.6 e0.80 8.4 0.30 1.6 8.2 13 11 3.1 e0.70 1.2 e15 10 4.9 0.99 0.30 0.74 0.79 14 8.3 3.1 e0.601.2 41 12 4.9 0.98 0.30 1.2 4.2 15 3.3 2.6 2.0 31 13 7.5 0.89 0.24 0.72 e0.65 2.6 2.5 2.0 e0.701.2 2.4 14 11 9.8 6.0 0.74 0.19 16 0.94 17 2.3 2.4 2.0 e0.90 1.2 18 7.9 4.8 0.65 0.24 1.3 18 2.1 2.4 1.9 e0.90 1.2 11 10 7.5 4.1 0.63 0.28 1.4 7.6 7.4 19 1.9 2.2 1.1 1.3 10 4.2 0.56 0.26 2.4 5.3 20 1.8 0.97 1.00 1.3 8.0 8.9 6.9 0.51 0.28 1.2 2.8 e0.80 8.2 8.4 6.7 0.30 21 1.8 e0.90 e1.1 4.6 0.52 1.2 22 1.8 3.3 e0.70 8.2 6.4 0.49 e0.60 23 1.5 3.2 e0.50 e0.60 e0.60 18 8.2 6.1 3.5 0.49 0.28 0.85 8.7 2.4 1.4 1.8 e0.45e0.70 e0.505.9 3.2 0.71 0.27 0.82 25 1.5 7.7 3.0 0.79 e1.4 e0.45 e1.0 e0.80 6.5 5.5 0.26 7.5 1.5 1.7 e0.50 6.0 2.6 0.83 0.23 0.70 26 e1.4 e1.1 5.8 27 e1.2 6.9 0.71 0.71 0.74 1.6 2.0 e2.0 2.3 28 2.2 1.2 5 0 0.44 2.0 0.81 1.5 6.5 4.6 3.2 0.28 1.9 2.1 5.1 2.6 29 1.3 6.3 4.1 0.30 1.1 1.9 6.5 1.9 0.74 ___ 31 e1 2 1.3 1 2 24 3 8 0 37 0.30 TOTAL 108.5 70.6 38.30 35.15 32.30 281.0 269.9 207.0 132.1 29.05 9.57 19.66 1.13 MEAN 3.50 2.35 1.24 1.15 9.06 9.00 6.68 4.40 0.94 0.31 0.66 4.6 2.0 9.8 6.8 1.7 MAX 11 1.4 41 16 0.51 1.4 1.2 0.45 0.60 0.50 5.1 1.9 0.37 0.19 557 140 76 AC-FT 70 64 535 411 262 58 19 39 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 2001 - 2003, BY WATER YEAR (WY) MEAN 2.04 1.49 0.65 0.85 16.1 2.73 1.81 1.06 3.50 2.35 1.24 1.13 1.15 9.00 6.68 6.67 4.61 2002 2.32 9.06 27 9 MAX 2002 2003 (WY) 0.58 0.63 0.33 0.16 0.55 0.50 4.44 4.40 0.59 0.31 MIN (WY) 2002 2002 2002 2002 2002 2002 2002 2002 2003 2001 2003 2001 FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 2001 - 2003 SUMMARY STATISTICS ANNUAL TOTAL 1804.90 1233.13 ANNUAL MEAN 4.94 3.38 HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN 4.48 2002 2003 HIGHEST DAILY MEAN 101 Jun 12 101 Jun 12 Mar 14 2002 0.02 5 4 0 19 Aug 16 Sep 2 LOWEST DATLY MEAN Jan 0 00 Sep 6 1 2001 ANNUAL SEVEN-DAY MINIMUM 0.22 2001 0.03 Jan 0.03 Sep MAXIMUM PEAK FLOW 78 Mar 134 Jun 12 2002 3.36 MAXIMUM PEAK STAGE Mar 14 3 64 Jun 12 2002 INSTANTANEOUS LOW FLOW 0.00 Sep 5 2001 ANNUAL RUNOFF (AC-FT) 3580 2450 2850 8.2 10 PERCENT EXCEEDS 9 2 8.2 2.4 50 PERCENT EXCEEDS

0.36

0.30

0.35

90 PERCENT EXCEEDS

e--Estimated.

06140500 MILK RIVER AT HAVRE, MT

LOCATION.--Lat 48°33′50″, long 109°41′42″ (NAD 27), in SE¹/₄NE¹/₄NE¹/₄Sec.6, T.32 N., R.16 E., Hill County, Hydrologic Unit 10050004, on left bank, 1.25 mi upstream from Bullhook Creek and 7th Avenue East highway bridge in Havre, 8.2 mi downstream from Big Sandy Creek, 15.8 mi downstream from Fresno Dam, and at river mile 419.2.

DRAINAGE AREA.--5,785 mi², of which 670 mi² is probably noncontributing.

PERIOD OF RECORD.--May to November 1898, April 1899 to November 1922, March, April 1923, March, April 1952 (gage heights only, in WSP 1260-B), June 1953 (in WSP 1320-B), September 1954 to current year. Monthly discharge only for some periods, published in WSP 1309.

REVISED RECORDS.--WSP 1309: 1899-1900, 1902-4, 1907-8, 1909(M), 1912, 1917(M), 1920(M). WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 2,465.24 ft (NGVD 29). Prior to Nov. 4, 1902, nonrecording gage at site 0.75 mi downstream at different elevation. Nov. 4, 1902, to Aug. 6, 1980, nonrecording gages 1.25 mi downstream on 7th Avenue East highway bridges, all at elevations then in use

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Diversions for irrigation of about 6,000 acres upstream from station. Since 1917, flow increased during irrigation season by water from St. Mary Canal (station number 05018500). Since 1939, flow regulated by Fresno Reservoir (station number 06136500). U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	410 411 410 413 413	48 49 51 49 51	e50 e50 e40 e15 e45	e45 e45 e45 e45 e45	e50 e50 e50 e50 e50	e60 e60 e60 e60	71 73 74 79 68	410 405 405 413 430	1230 1200 1090 1070 1060	626 618 628 766 776	972 902 873 843 830	210 203 207 233 233
6 7 8 9 10	412 407 372 367 366	50 47 49 52 48	e50 46 44 47 46	e45 e45 e45 e45 e45	e50 e50 e50 e50 e50	e60 e60 e60 e60	67 64 61 57 59	432 435 495 567 607	1060 1060 1040 1040 1030	773 777 1050 1080 1070	787 767 720 688 678	235 236 237 218 203
11 12 13 14 15	363 341 329 328 327	45 52 50 52 54	49 46 54 52 e45	e45 e45 e45 e45 e45	e50 e50 e50 e50 e50	e60 e60 e60 e60 e120	138 376 411 419 439	632 639 642 619 579	1020 909 889 885 877	1070 1090 1100 1080 1190	668 647 652 626 618	91 72 64 59 58
16 17 18 19 20	263 186 120 103 102	55 55 55 53 54	e50 e50 e50 42 48	e45 e45 e45 e45 e45	e50 e50 e50 e50 e50	e200 e190 e150 e120 e130	442 423 421 422 411	580 540 506 493 467	869 857 862 865 881	1210 1170 1170 1150 1010	630 628 634 646 646	81 66 55 55 59
21 22 23 24 25	97 93 95 93	56 55 54 30 46	46 41 42 45 e40	e45 e45 e45 e45 e45	e50 e50 e55 e60 e60	e170 190 153 121 108	412 414 412 413 420	466 466 608 701 692	710 682 679 680 682	991 1030 1030 1020 1070	660 666 701 684 652	55 55 59 59 60
26 27 28 29 30 31	72 53 52 49 38 41	e50 e50 e50 e50 e50	e45 e45 e45 e45 e45 e45	e50 e50 e50 e50 e50	e60 e60 e	96 83 78 71 62 63	419 411 409 410 412	688 685 809 869 1210 1240	679 679 684 679 678	1070 1090 1070 1020 1040 994	631 621 614 570 392 222	60 61 63 63
TOTAL MEAN MAX MIN AC-FT	7219 233 413 38 14320	1510 50.3 56 30 3000	1403 45.3 54 15 2780	1425 46.0 50 45 2830	1455 52.0 60 50 2890	2945 95.0 200 60 5840	8707 290 442 57 17270	18730 604 1240 405 37150	26626 888 1230 678 52810	30829 994 1210 618 61150	20868 673 972 222 41390	3473 116 237 55 6890
STATIST	FICS OF M	ONTHLY MEA	AN DATA E	FOR WATER	YEARS 1898	- 2003	, BY WATER	YEAR (WY)	*			
MEAN MAX (WY) MIN (WY)	146 628 1994 0.000 1906	76.1 325 1976 0.000 1906	53.2 160 1900 0.000 1906	57.0 780 1918 0.000 1906	90.7 1400 1916 0.000 1922	317 2106 1918 5.00 1919	520 2700 1899 25.0 1983	809 2191 1967 61.4 1905	826 2188 1908 35.2 1905	774 2045 1902 15.3 1910	564 1303 1978 0.000 1910	323 956 1993 0.000 1905
SUMMARY STATISTICS			FOR 2002 CALENDAR YEAR			FOR 2003 WATER YEAR				WATER YEARS 1898 - 2003*		
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS			145980 400 2200 15 22 289600 1180 120 24	Jun 19 Dec 4 Mar 27		125190 344 1240 15 41 1270 4.7 248300 992 103 45	May 31 Dec 4 Dec 3 May 31		381 727 39.2 a16000 b0.0 c20000 d19.3 275800 1050 135 27	Apr 12 0 Jul 11 0 Aug 15 Apr 12	1898 1905 1899	

06140500 MILK RIVER AT HAVRE, MT--Continued

SUMMARY STATISTICS	WATER YEARS 1900 - 1916**	WATER YEARS 1917 - 2003***
ANNUAL TOTAL		
ANNUAL MEAN	273.7	414
HIGHEST ANNUAL MEAN	571 1916	727 1965
LOWEST ANNUAL MEAN	39.2 1905	160 1919
HIGHEST DAILY MEAN	9600 Jun 9 1908	9150 Mar 20 1918
LOWEST DAILY MEAN	a0.00 Aug 16 1904	0.00 Jan 1 1922
ANNUAL SEVEN-DAY MINIMUM	0.00 Aug 15 1905	0.00 Jan 1 1922
MAXIMUM PEAK FLOW	11000 Jun 9 1908	f11400 Apr 3 1952
MAXIMUM PEAK STAGE	16.5 Jun 9 1908	18.60 Apr 3 1952
ANNUAL RUNOFF (AC-FT)	198300	299700
10 PERCENT EXCEEDS	640	1080
50 PERCENT EXCEEDS	110	164
90 PERCENT EXCEEDS	5.0	30

^{*--}During periods of operation (May 1898 to November 1898, April 1899 to Novomber 1922, March 1923 to April 1923, September 1954 to current year.

**--Prior to Operation of St. Mary Canal.

***--Post operation of St. Mary Canal.

a--Observed.

b--Observed, no flow at times in several years.

c--Observed from rating curve extended above 5,200 ft³/s.

d--Site and datum then in use, from floodmarks.

e--Estimated.

f--Observed, about.

06142400 CLEAR CREEK NEAR CHINOOK, MT

 $LOCATION.--Lat\ 48^{\circ}34'44'', long\ 109^{\circ}23'26''\ (NAD\ 27), in\ SE^{1}/_{4}NW^{1}/_{4}sec.33, T.33\ N., R.18\ E., Blaine\ County,\ Hydrologic\ Unit\ 10050004,\ on\ N.$ right bank, 7 mi west of Chinook, and at river mile 2.5.

DRAINAGE AREA.--135 mi².

PERIOD OF RECORD.--June 1984 to current year (seasonal records only).

GAGE.--Water-stage recorder. Elevation of gage is 2,470 ft (NGVD 29).

REMARKS.--Records good except those for periods of flow over 5 ft³/s, which are poor. Diversions for irrigation of about 2,000 acres upstream from station. Bureau of Reclamation satellite telemeter at station. Several observations of water temperatures and specific conductance were made during the year.

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5				8.6 10 13 13	7.0 6.5 7.3 14 25	1.1 1.4 3.2 4.1 4.6	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00			
6 7 8 9 10				8.0 5.9 4.3 4.5 4.0	37 37 32 27 27	2.8 3.2 2.9 4.6 5.5	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00			
11 12 13 14 15				4.0 4.5 7.5 5.2 9.8	27 24 22 17 13	8.3 9.0 7.5 5.9 3.8	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00			
16 17 18 19 20				27 35 22 16 12	13 12 10 11 12	4.1 2.9 1.4 0.99	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00			
21 22 23 24 25				10 7.6 6.4 5.7 6.7	11 6.6 5.3 4.8 3.4	0.67 0.53 0.52 0.42 0.23	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00			
26 27 28 29 30 31				6.1 5.5 4.6 6.3 6.9	2.8 2.6 2.1 1.4 1.0	0.08 0.05 0.12 0.04 0.01	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00			
TOTAL MEAN MAX MIN AC-FT				291.1 9.70 35 4.0 577	422.8 13.6 37 1.0 839	81.36 2.71 9.0 0.01 161	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00			
STATIST	ICS OF MO	NTHLY MEAN	N DATA E	OR SEASONS	1984 - :	2003						
MEAN MAX (WY) MIN (WY)				11.3 46.0 1994 00.000 2002	19.6 137 1986 0.000 2001	15.6 74.0 1986 0.000 2001	8.83 51.4 1993 0.000 1985	2.78 34.9 1993 0.000 1984	4.05 47.4 1986 0.000 1984			
SUMMARY	STATISTIC	CS		FOR 2003 S	EASON		SEASONS	1984 - 20	003			
LOWEST :	DAILY MEA DAILY MEA PEAK FLO PEAK STA	M M		0.00 J	pr 17		360 b0.00 571 8.23	Sep 25 198 Jul 5 198 Sep 25 198 Sep 25 198	34 36			

a--Also occurred May 6, 7. b--No flow at times most years.

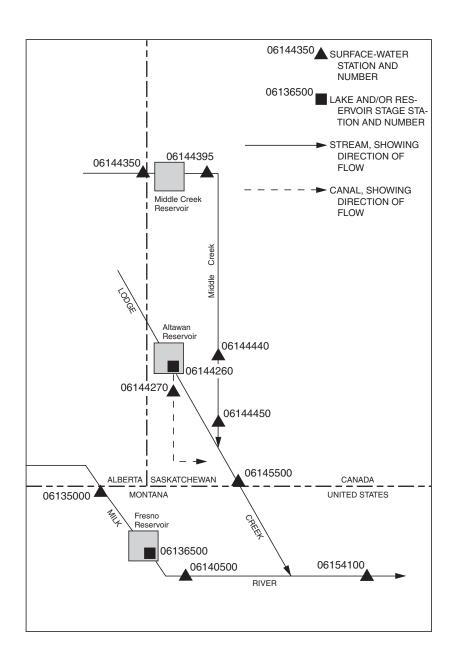


Figure 11. Schematic diagram showing diversions and storage in Lodge Creek Basin.

06144260 ALTAWAN RESERVOIR NEAR GOVENLOCK, SASKATCHEWAN

(International gaging station)

LOCATION.--Lat 49°10′00", long 109°55′00" (NAD 27), in SW¹/₄ sec.35, T.2, R.30 W., third meridian, Hydrologic Unit 10050007, at dam on Lodge Creek, 6.3 mi southwest of Govenlock, and at river mile 113.5.

DRAINAGE AREA.-- 373 mi².

PERIOD OF RECORD.--February 1966 to current season (seasonal records only). February 1960 to current season in reports of Department of the Environment, Canada. Water-stage recorder. Elevation of gage is 2,918.0 (Geodetic Survey of Canada datum). Prior to July 7, 1967, nonrecording gage in gate read every ten days during irrigation season.

REMARKS.--Reservoir is formed by earthfill dam with concrete spillway and control works as well as an emergency earthen spillway, completed in 1959. The following capacity figures are from revised capacity table effective Jan. 1, 1983. All elevations are referenced to the Geodetic Survey of Canada datum. Usable capacity is 5,440 acre-ft between elevation 2,918.0 ft, bottom of outlet works, and 2,952.0 ft, maximum design level. No dead storage. Water is used for irrigation. Water Survey of Canada satellite telemeter at station. This is one of a number of stations which are maintained jointly by Canada and the United States.

REVISED RECORDS .-- W 1983, drainage area.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 8,300 acre-ft, Sept. 26, 1986, elevation, 2,958.10 ft; no contents Mar. 1, 1960, Oct. 6-31, 1984, Mar. 1-18, and Oct. 3-31, 1985.

EXTREMES FOR CURRENT SEASON.--Maximum contents, 6,200 acre-ft, Mar. 23, elevation, 2,953.72 ft; minimum, 924 acre-ft, Feb. 28, elevation, 2,936.56 ft.

SEASONAL MONTHEND CONTENTS, IN ACRE-FT, FEBRUARY 2003 TO OCTOBER 2003

Date	Contents
Feb. 28	924
Mar. 31	5,680
Apr. 30	5,610
May 31	4,660
June 30	4,030
July 31	2,900
Aug. 31	2,600
Sept. 30	2,530
Oct. 31	2,470

06144270 SPANGLER DITCH NEAR GOVENLOCK, SASKATCHEWAN

(International gaging station)

LOCATION.--Lat 49°09'16", long 109°54'58" (NAD 27), in NW¹/₄ sec.26, T.2, R.30 W., third meridian, Hydrologic Unit 10050007, on right bank 0.9 mi south of Altawan Dam, and 6.8 mi southwest of Govenlock.

PERIOD OF RECORD.--March 1966 to current season (seasonal records only). March 1950 to current season, in reports of Department of the Environment, Canada. Some estimates of monthly diversion in several years prior to 1932.

GAGE.--Water-stage recorder. Elevation of gage is 2,920 ft (NGVD 29). Prior to March 1950, nonrecording gages at several sites within 2 mi of present site at different elevations. March 1950 to July 8, 1960, water-stage recorder at site 350 ft downstream at different elevation.

REMARKS.--Records good. Canal diverts water from right bank of Lodge Creek in $SW^{1}/_{4}$ sec. 35, T.2, R.30 W., third meridian, for irrigation of 1,320 acres in Spangler irrigation project. Water Survey of Canada satellite telemeter at station.

COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 65 ft³/s, Apr. 22, 1950, July 9, 1985; no flow most of each season.

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	43 43 44 43 44	0.00 0.00 0.00 0.00 0.00	22 19 8.0 8.5 6.7	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
6 7 8 9 10			0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	44 42 36 26 0.04	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
11 12 13 14 15			0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
16 17 18 19 20			0.00 0.00 0.74 0.71 0.28	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
21 22 23 24 25			0.07 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	41 43 43 43 43	0.00 0.00 0.00 0.00 0.00	18 37 37 37 36	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
26 27 28 29 30 31			0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	43 43 43 43 43	0.00 0.00 0.00 0.00 0.00	36 36 36 35 35 32	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
TOTAL MEAN MAX MIN AC-FT			1.80 0.058 0.74 0.00 3.6	0.00 0.000 0.00 0.00 0.00	488.00 15.7 43 0.00 968	365.04 12.2 44 0.00 724	375.00 12.1 37 0.00 744	64.20 2.07 22 0.00 127	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00		

06144350 MIDDLE CREEK NEAR SASKATCHEWAN BOUNDARY

(International gaging station)

LOCATION.--Lat 49°25'30", long 110°03'08" (NAD 27), in SW¹/₄ sec.34, T.5, R.1 W., fourth meridian, in Alberta, Hydrologic Unit 10050007, on left bank 2 mi upstream from Middle Creek Reservoir, 2 mi west of Saskatchewan boundary, 18 mi northwest of Govenlock, Saskatchewan, and at river mile 65.7.

DRAINAGE AREA.--118 mi².

PERIOD OF RECORD.--March 1963 to current season (seasonal records only). Prior to March 1982, published as "Middle Creek near Alberta boundary". June 1910 to April 1915, published as "at McKinnon's Ranch" and September 1949 to current season in reports of Department of the Environment, Canada.

REVISED RECORDS.--W 1983: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 3,381.13 ft (Geodetic Survey of Canada datum). Prior to Mar. 1, 1951, nonrecording gages, and Mar. 1, 1951, to July 5, 1961, water-stage recorder, at site 0.3 mi downstream at different elevations. Water Survey of Canada satellite telemeter at station. REMARKS.--Records fair. Minor diversions for irrigation upstream from station. Water Survey of Canada telemeter at station. COOPERATION.--This is one of a number of stations which are maintained jointly by Canada and the United States.

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			e0.07 e0.07 e0.07 e0.07 e0.07	36 34 9.5 3.0 6.0	0.57 0.60 0.57 0.74 2.1	0.39 0.39 0.32 0.32	e0.07 e0.07 e0.07 e0.04 e0.04	0.14 0.14 0.14 0.14 0.14	0.11 0.11 0.11 0.11 0.11	0.11 0.11 0.11 0.11 0.11		
6 7 8 9 10			e0.07 e0.07 e0.07 e0.07 e0.07	8.4 1.8 1.2 1.1 0.95	2.1 20 16 7.7 4.5	0.14 0.14 0.14 0.14 0.14	e0.04 e0.04 e0.04 0.04 0.04	0.14 0.14 0.14 0.14 0.14	0.11 0.11 0.11 0.11 0.11	0.07 0.07 0.07 0.04 0.04		
11 12 13 14 15			e0.07 e0.07 e0.07 e0.07 e0.57	0.78 1.0 3.1 3.9	5.8 8.9 4.1 3.7 5.6	0.11 0.14 0.11 0.11	0.07 0.07 0.07 0.07 0.07	0.11 0.11 0.11 0.11 0.11	0.11 0.11 0.11 0.11 0.11	0.04 0.04 0.04 0.04 0.04		
16 17 18 19 20			e1.4 e2.3 44 48 43	16 9.7 5.7 2.5 1.6	2.4 1.3 0.85 0.60 0.46	0.07 0.07 0.04 0.04 0.07	0.07 0.07 0.07 0.07 0.07	0.11 0.11 0.11 0.11 0.11	0.14 0.11 0.07 0.07 0.11	0.04 0.04 0.04 0.04 0.04		
21 22 23 24 25			55 70 82 78 34	1.2 0.88 0.74 0.71 0.67	0.39 0.39 0.39 0.53 0.46		0.11 0.11 0.11 0.11 0.11	0.11 0.11 0.11 0.11 0.11	0.11 0.11 0.11 0.11 0.11	0.04 0.04 0.04 0.04 0.04		
26 27 28 29 30 31			22 12 7.1 4.2 3.4 3.4	0.67 0.60 0.53 0.53 0.57	0.28 0.28 0.28 0.39 0.49 0.42	0.07 0.11 0.14 0.11 e0.07	0.11 0.11 0.14 0.14 0.14 0.14	0.11 0.11 0.14 0.11 0.11	0.11 0.11 0.11 0.11 0.11	0.04 0.04 e0.04 e0.04 e0.04 e0.04		
TOTAL MEAN MAX MIN AC-FT				168.33 5.61 36 0.53 334	92.89 3.00 20 0.28 184	3.94 0.13 0.39 0.04 7.8	0.14 0.04	3.74 0.12 0.14 0.11 7.4	3.25 0.11 0.14 0.07 6.4	1.68 0.054 0.11 0.04 3.3		
	ICS OF MONT											
MEAN MAX (WY) MIN (WY)			14.1 74.2 1960 0.000 1950	37.3 330 1952 0.043 2001	136	3.90 45.1 1953 0.078 2000	1.83 20.0 1963 0.023 2001	0.73 6.99 1993 0.003 2001	0.99 24.8 1986 0.000 1962	0.45 2.38 1966 0.048 1999		
SUMMARY	STATISTICS				SEASON		S	SEASONS 19	10 - 2003	*		
HIGHEST LOWEST I MAXIMUM MAXIMUM	DAILY MEAN DAILY MEAN PEAK FLOW PEAK STAGE	:		82 0.04 118 5.93	Mar 23 Jun 18 Mar 23 Mar 23		2 a4	0.00 M 0.00 M 1980 A b10.27 A	pr 15 195 ar 1 195 pr 15 195 pr 15 195	2 0 2 2		

a--From rating curve extended above 600 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow. b--Previous site and datum.

e--Estimated.

06144395 MIDDLE CREEK BELOW MIDDLE CREEK RESERVOIR, NEAR GOVENLOCK, SASKATCHEWAN

(International gaging station)

LOCATION.--Lat 49°24'44", long 109°55'06" (NAD 27), in SW¹/₄ sec.25, T.5, R.30 W., third meridian, Hydrologic Unit 10050007, on right bank 9.1 mi downstream from Middle Creek Reservoir, 14 mi northwest of Govenlock, and at river mile 57.6.

DRAINAGE AREA.--149 mi².

PERIOD OF RECORD.--April 1972 to current season (seasonal records only). July 1909 to May 1931, September 1935 to October 1936, and April 1972 to current season in reports of Department of the Environment, Canada. Published as "at Ross Ranch" 1909-20, "at Downes and Robert's Ranch" 1920-23, and "at Wright's Ranch" 1920-31, 1935-36. Discharge measurements only during 1928 season.

REVISED RECORDS .-- W 1983: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 3,300 ft (NGVD 29). Prior to April 1972, non recording gages at two sites within 2 mi of present site, at different elevations.

REMARKS.--Records good. Flow completely regulated by Middle Creek Reservoir (station number 06144360). Many diversions for irrigation upstream from station. At high reservoir levels flow may be diverted to Lodge Creek through Middle Creek Reservoir. Diversions for irrigation of 920 acres between Middle Creek Reservoir and station. Water Survey of Canada satellite telemeter at station.

COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 77 ft³/s, May 3, 1985; no flow at times most seasons.

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			0.00 0.00 0.00 0.00 0.00	1.7 0.21 0.07 0.07 0.04	0.00 0.00 0.00 0.00 0.00	6.1 2.3 2.9 4.3 3.3	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
6 7 8 9 10			0.00 0.00 0.00 0.00 0.00	0.04 0.04 0.00 0.04 0.07	0.04 0.49 0.07 0.04 0.00	3.7 5.0 3.0 1.9	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
11 12 13 14 15			0.00 0.00 0.00 0.00 0.00	0.04 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	1.0 1.1 1.3 0.28 0.07	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
16 17 18 19 20			0.00 0.00 0.00 0.00 0.00	1.6 0.25 0.04 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
21 22 23 24 25			0.00 0.00 0.00 0.00 0.00									
26 27 28 29 30 31			0.00 0.04 0.04 0.04 6.2	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 31 53	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
TOTAL MEAN MAX MIN AC-FT			29.32 0.95 23 0.00 58	4.21 0.14 1.7 0.00 8.4	114.64 3.70 53 0.00 227	37.45 1.25 6.1 0.00 74	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00 0.00		

06144440 MIDDLE CREEK NEAR GOVENLOCK, SASKATCHEWAN

(International gaging station)

LOCATION.--Lat 49°13'42", long 109°48'57" (NAD 27), in NW¹/₄ sec.23, T.3, R.29 W., third meridian, Hydrologic Unit 10050007, on left bank 43.9 mi downstream from Middle Creek Reservoir, 0.3 mi northwest of Govenlock, and at river mile 22.8.

DRAINAGE AREA.--253 mi².

PERIOD OF RECORD.--February 1986 to current season (seasonal records only). March 1968 to current season in reports of Department of the Environment, Canada.

GAGE.--Water-stage recorder. Elevation of gage is 3,010 ft (NGVD 29).

REMARKS.--Records fair. Natural flow of stream is affected by Middle Creek Reservoir (station 06144360), several smaller reservoirs, diversions for irrigation, and return flow from irrigated areas. At high reservoir levels flow may be diverted to Lodge Creek through Middle Creek Reservoir. Water Survey of Canada satellite telemeter at station.

COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States.

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			e0.00 e0.00 e0.00 e0.00 e0.00	3.2 22 13 16 13	1.9 1.9 1.8 2.1 3.5	5.9 25 13 8.3 5.9	0.25 0.18 0.11 0.07 0.04	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
6 7 8 9			e0.00 e0.00 e0.00 e0.00 e0.00	8.5 6.5 5.4 5.4 5.1	5.0 5.5 5.4 4.9 4.7	4.0 6.0 4.0 3.1 2.8	0.04 0.04 0.04 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
11 12 13 14 15				4.7 6.5 4.6 5.1 9.5		3.2 3.1 3.4 3.7 3.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
16 17 18 19 20			1.9 30 102 107	13 8.5 6.9 7.9 6.2	2.3 2.3 1.9 1.2 0.88	2.3 1.7 1.3 1.1	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
21 22 23 24 25			47 26 21 9.3 9.1	5.0 4.3 3.8 3.4 3.0	0.74 0.60 0.49 0.39 0.28	1.2 1.8 1.7 1.2 0.85	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
26 27 28 29 30 31			8.4 5.0 3.7 6.5 6.1 3.1	2.9 2.5 2.3 2.2 2.0	0.25 0.18 0.14 0.14 0.07 0.07	0.64 0.49 0.49 0.39 0.32	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00		
TOTAL MEAN MAX MIN AC-FT			461.10	202.4	65 72	111.08 3.70 25 0.32 220	0.77 0.025 0.25 0.00 1.5	0.00 0.000 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00		
STATISTI	CS OF MONT					2003*						
MEAN MAX (WY) MIN (WY)			11.6 53.2 1997 0.000 2002	5.34 36.4 1996 0.83 1992	2.61 6.79 1997 0.27 1992	0.001	0.000	0.14 2.20 1993 0.000 1986	3.24 56.9 1986 0.000 1987	0.58 4.04 1987 0.000 1991		
SUMMARY	STATISTICS								SONS 1986			
HIGHEST LOWEST D MAXIMUM MAXIMUM	DAILY MEAN DAILY MEAN PEAK FLOW PEAK STAGE			107 0.00 151 5.90	Mar 19 Jul 9 Mar 19 Mar 19			724 0 1190 9	Sep .00 Feb Sep .81 Sep	26 1986 19 1986 25 1986 25 1986		

 $[\]star$ --During periods of operation.

e--Estimated.

06144450 MIDDLE CREEK ABOVE LODGE CREEK, NEAR GOVENLOCK, SASKATCHEWAN

(International gaging station)

LOCATION.--Lat 49°06'01", long 109°49'02" (NAD 27), in NE¹/₄ sec.4, T.2, R.29 W., third meridian, Hydrologic Unit 10050007, on left bank, 0.7 mi upstream from Lodge Creek, and 9 mi south of Govenlock.

DRAINAGE AREA.--276 mi².

PERIOD OF RECORD.--March 1962 to October 1966 and February 1986 to current season. Seasonal records only. March 1911 to May 1931 and March 1962 to current season in reports of Department of the Environment, Canada. Published as "at Hammond's Ranch" 1911-31.

GAGE.--Water-stage recorder. Elevation of gage is 2,830 ft (NGVD 29). Prior to Mar. 1, 1962, nonrecording gage at site 1,000 ft downstream at different

REMARKS.--Records good. Natural flow of stream affected by Middle Creek Reservoir (station 06144360), several smaller reservoirs, diversions for irrigation, and return flow from irrigated areas. At high reservoir levels flow may be diverted to Lodge Creek through Middle Creek Reservoir. Water Survey of Canada satellite telemeter at station.

COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States.

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			e0.00 e0.00 e0.00 e0.00	1.2 0.46 0.28 0.18 0.11	3.8 3.6 3.0 2.7 3.0	1.4 0.60 0.21 0.18 0.18	0.04 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00		
6 7 8 9 10			e0.00 e0.00 e0.00 e0.00	0.11 4.0 11 8.9 6.7	19 29 15 4.0 2.1	2.2 0.85 0.25 0.11 0.04	0.00 0.04 0.04 0.04 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
11 12 13 14 15			e0.00 e0.00 e0.00 e0.00 e0.00	5.2 3.5 2.3 1.9 4.9	1.1 0.53 0.21 0.07 0.04	0.04 0.00 0.00 1.4 1.7	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
16 17 18 19 20			e0.85 e13 20 23 29	17 16 9.8 11 12	0.04 0.04 0.85 2.1 2.1	1.7 1.6 2.0 2.2 2.6	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
21 22 23 24 25			29 78 70 54 18	13 13 13 11 7.5	2.2 2.2 2.0 1.8 1.7	2.9 2.5 2.4 2.4	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
26 27 28 29 30 31			11 10 10 9.7 9.5 4.3	5.7 4.2 3.9 4.0 4.0	1.8 1.7 0.81 0.39 1.6 0.81	0.57 0.25 0.14 0.11 0.04	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
TOTAL MEAN MAX MIN AC-FT			389.35 12.6 78 0.00 772	195.84 6.53 17 0.11 388	109.29 3.53 29 0.04 217	32.17 1.07 2.9 0.00 64	0.16 0.005 0.04 0.00 0.3	0.00 0.000 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00		
STATISTI	CS OF MONTH	HLY MEA	AN DATA	FOR SEASON	IS 1911 -	2003*						
MEAN MAX (WY) MIN (WY)			13.0 71.8 1997 0.000 1919	53.1 457 1917 0.000 1991	13.2 222 1927 0.000 1989	6.72 61.1 1965 0.000 1926	3.92 35.1 1923 0.000 1914	0.53 9.76 1915 0.000 1911	2.60 63.3 1986 0.000 1912	0.58 8.35 1987 0.000 1913		
SUMMARY	STATISTICS			FOR 2003	SEASON				ONS 1911			
LOWEST D	DAILY MEAN DAILY MEAN PEAK FLOW PEAK STAGE			111	Mar 22 Jun 12 Mar 22 Mar 22			a1170 0 738 13	Apr .00 Mar Sep .84 Sep	24 1922 13 1911 26 1986 26 1986		

^{*--}During periods of operation.

a--Maximum peak flow not determined.
e--Estimated.

06145500 LODGE CREEK BELOW MCRAE CREEK, AT INTERNATIONAL BOUNDARY

(International gaging station)

LOCATION.--Lat 49°00'19", long 109°43'02" (NAD 27), in SW¹/₄ sec.5, T.1, R.28 W., third meridian, in Saskatchewan, Hydrologic Unit 10050007, on right bank 0.3 mi downstream from McRae Creek, 0.4 mi north of international boundary, 0.8 mi northeast of Willow Creek Port of Entry, 31 mi north of Havre, MT, and at river mile 84.3.

DRAINAGE AREA.--825 mi², of which 88 mi² are noncontributing.

PERIOD OF RECORD.--October 1951 to current season (seasonal records only). Prior to October 1951, records were collected on both McRae Coulee (1927-51) and Lodge Creek above McRae Coulee (1910-51). Summations are equivalent to records at this site. Prior to March 1965, published as "below McRae Coulee."

REVISED RECORDS .-- W 1983: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 2,731.0 ft (International Boundary Survey datum).

REMARKS.--Records good. Natural flow affected by numerous storage reservoirs, diversions for irrigation of about 3,000 acres, and return flow from irrigated areas. Water Survey of Canada satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States.

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			0.04 0.04 0.04 0.04 0.04	35 27 82 92 68	11 9.9 9.7 9.4 13	2.2 2.2 2.3 2.1 1.9	0.49 0.32 0.18 0.11 0.07	0.04 0.04 0.04 0.04 0.04	0.04 0.04 0.04 0.04 0.04	0.07 0.07 0.07 0.07 0.07		
6 7 8 9			e0.04 e0.04 e0.04 e0.04	35 32 32 26	53 36 25 35	0.99 0.78 0.74 0.60	0.04 0.04 0.04 0.04	0.04 0.04 0.04 0.04 0.04	0.04 0.04 0.04 0.04 0.04	0.11 0.07 0.04 0.04 0.04		
11 12 13 14 15			0.04 0.04 0.04 0.04 0.04	25 18 15 18 25	45 40 38 42 38	0.88 0.95 0.71 1.0 0.78	0.04 0.04 0.04 0.04 0.04	0.04 0.04 0.04 0.04 0.04	0.04 0.04 0.04 0.04 0.04	0.04 0.04 0.07 0.07 0.07		
16 17 18 19 20			0.14 16 121 290 388	47 116 118 95 75	39 52 47 40 34	0.42 0.28 0.14 0.11	0.04 0.04 0.04 0.04 0.04	0.04 0.04 0.04 0.04 0.04	0.04 0.04 0.04 0.04 0.04	0.07 0.07 0.07 0.07 0.07		
21 22 23 24 25			249 326 413 357 299	58 48 40 33 27	26 21 14 11 7.8	0.18 0.39 1.8 1.5	0.04 0.04 0.04 0.04 0.04	0.04 0.04 0.04 0.04 0.04	0.04 0.04 0.04 0.04 0.07	0.07 0.07 0.07 0.07 0.07		
26 27 28 29 30 31			203 129 93 69 55 46	26 17 15 15 13	5.3 4.5 4.1 3.7 3.1 2.5	1.2 1.0 1.1 1.0 0.74	0.04 0.04 0.04 0.04 0.04	0.04 0.04 0.04 0.07 0.07	0.07 0.11 0.07 0.07 0.07	0.07 0.07 0.07 0.11 0.07 0.07		
TOTAL MEAN MAX MIN AC-FT			3054.74 98.5 413 0.04 6060	1322 44.1 118 13 2620	761.0 24.5 53 2.5 1510	30.80 1.03 2.3 0.11 61	2.21 0.071 0.49 0.04 4.4	1.33 0.043 0.07 0.04 2.6	1.42 0.047 0.11 0.04 2.8	2.10 0.068 0.11 0.04 4.2		
	CS OF MONT											
MEAN MAX (WY) MIN (WY)			55.3 374 1997 0.000 1953	137 1899 1952 0.000 1992	39.8 500 1967 0.000 1992	24.3 294 1965 0.000 1963	9.86 174 1955 0.000 1958	2.27 33.1 1993 0.000 1954	13.7 678 1986 0.000 1952	1.45 52.3 1987 0.000 1953		
	STATISTICS					N		SEA	SONS 1952			
HIGHEST LOWEST D MAXIMUM MAXIMUM	DAILY MEAN AILY MEAN PEAK FLOW PEAK STAGE			413 0. 487 5.	Mar 2 04 Mar Mar 2 76 Mar 2	3 1 3 3		7770 0 a9890 16	Sep .00 Mar Sep .36 Sep	26 1986 1 1952 25 1986 25 1986		

a--From rating curve extended above $4,000~{\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow. e--Estimated.

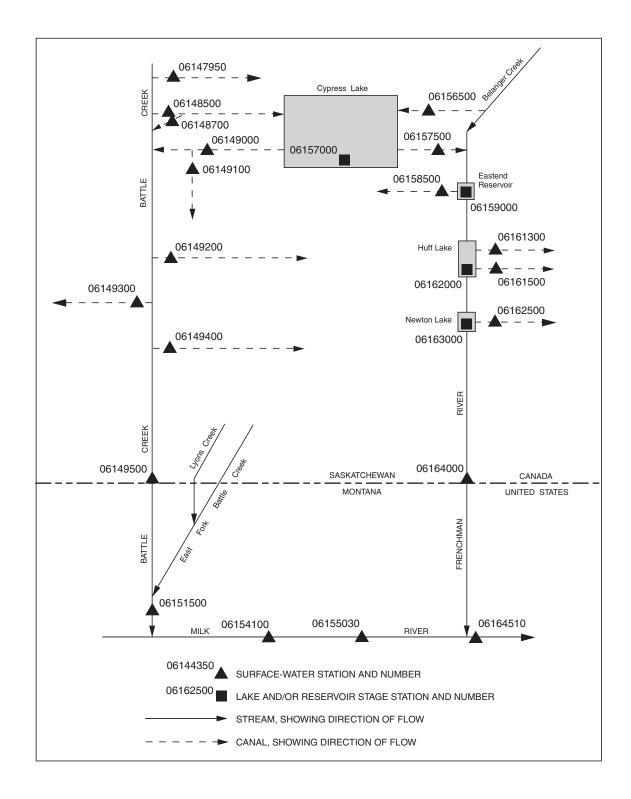


Figure 12. Schematic diagram showing diversions and storage in Battle Creek and Frenchman River Basins.

06147950 GAFF DITCH NEAR MERRYFLAT, SASKATCHEWAN

(International gaging station)

 $LOCATION.--Lat\ 49^{\circ}26'05", long\ 109^{\circ}50'07"\ (NAD\ 27), in\ NW^{1}/_{4}\ sec. 34, T.5, R.29\ W., third meridian, Hydrologic Unit\ 10050008, on\ left\ bank\ about\ 200\ ft\ downstream\ from\ headgates, and\ 4\ mi\ southwest\ of\ Merryflat.$

PERIOD OF RECORD.--March 1972 to current season (seasonal record only). March 1964 to current season in reports of Department of the Environment, Canada.

GAGE.--Water-stage recorder. Elevation of gage is 3,350 ft (NGVD 29).

REMARKS.--Records poor. Water is diverted from left bank of Battle Creek in NW¹/₄ sec.34, T.5. R.29 W., third meridian, for irrigation of about 890 acres along Battle Creek. Water Survey of Canada satellite telemeter at station.

COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 42 ft³/s, Apr. 22, 1971; no flows at times each season.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			e0.00 e0.00 e0.00 e0.00	e23 e9.4 e0.88 e0.88	23 17 1.1 0.92 0.85	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.04 0.04	0.00 0.00 0.00 0.00 0.04	0.04 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
6 7 8 9 10			e0.00 e0.00 e0.00 e0.00 e0.00	e0.64 e0.35 e3.1 15	0.81 0.74 0.67 0.60 0.60	0.00 0.00 0.00 0.00 0.00	0.04 0.04 0.04 0.04 0.04	0.04 0.04 0.04 0.04 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
11 12 13 14 15			e0.00 e0.00 e0.00 e0.00 e0.00	31 30 32 35 33	0.57 0.60 0.71 0.71 0.71	0.00 0.00 0.00 0.00 0.00	0.04 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
16 17 18 19 20			e0.00 e0.00 e0.00 e0.18 e0.35	36 37 32 27 25	0.64 0.49 0.39 0.32 0.25	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
21 22 23 24 25			e0.25 e0.88 e1.4 e1.8 e7.3	24 24 24 23 24	0.21 0.18 0.14 0.07 0.04	0.00 0.00 0.00 0.00 0.04	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
26 27 28 29 30 31			e8.9 e8.2 e8.2 e8.5 e8.1	23 19 20 22 23	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00		
TOTAL MEAN MAX MIN AC-FT			73.06 2.36 19 0.00 145	628.10 20.9 37 0.35 1250	52.32 1.69 23 0.00 104	0.04 0.001 0.04 0.00 0.08	0.32 0.010 0.04 0.00 0.6	0.24 0.008 0.04 0.00 0.5	0.04 0.001 0.04 0.00 0.08	0.00 0.000 0.00 0.00 0.00		

06148500 CYPRESS LAKE WEST INFLOW CANAL NEAR WEST PLAINS, SASKATCHEWAN

(International gaging station)

LOCATION.--Lat 49°28'18", long 109°37'08" (NAD 27), in SE¹/₄ sec.18, T.6, R.27 W., third meridian, Hydrologic Unit 10050008, on left bank 2.5 mi downstream from canal headgates, 5.5 mi northeast of West Plains, and 13 mi northwest of Consul.

PERIOD OF RECORD.--March 1939 to current season (seasonal records only). Monthly discharge only for some periods, published in WSP 1309.

GAGE.--Water-stage recorder. Elevation of gage is 3,210 ft (NGVD 29). Prior to Oct. 16, 1956, at site 2.3 mi upstream at different elevation.

REMARKS.--Records good. Canal diverts water from Battle Creek in NW¹/₄ sec.1, T.6, R.28 W., third meridian, for storage in Cypress Lake. Part or all of flow may be returned to Battle Creek via Cypress Lake West Inflow Canal Drain (station 06148700) 0.4 mi downstream. Water Survey of Canada satellite telemeter at station.

COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 884 ft³/s, Apr. 27, 1965; no flow at times each season.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			e0.00 e0.00 e0.00 e0.00 e0.00	e82 e129 e90 e17 e9.0	0.14 0.07 0.04 0.04 2.9	19 19 19 20 19	0.21 0.18 0.14 0.14	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
6 7 8 9 10			e0.00 e0.00 e0.00 e0.00 e0.00	e15 e17 e25 e23 e19	5.4 5.9 3.2 1.9	19 19 19 19	0.14 0.14 0.18 0.18 0.14	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
11 12 13 14 15			e0.00 e0.00 e0.00 e0.00 e0.00	19 18 20 27 37	0.53 0.21 0.25 0.21 0.07	19 19 20 19	0.14 0.18 0.14 0.14	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
16 17 18 19 20			e0.00 e0.00 e0.07 e101 e155	46 52 49 48 45	0.07 0.04 0.04 0.04 0.04	20 20 20 20 20	0.14 0.11 0.11 0.07 0.07	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
21 22 23 24 25			e161 e143 e130 e119 e109	23 2.3 1.7 1.6 1.5	0.04 14 17 16 17	18 18 19 16 2.5	0.07 0.04 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
26 27 28 29 30 31			e91 e33 e28 e20 e12 e38	2.0 0.92 0.46 0.21 0.14	17 17 18 18 19	1.0 0.71 0.53 0.39 0.28	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
TOTAL MEAN MAX MIN AC-FT			1140.07 36.8 161 0.00 2260	820.83 27.4 129 0.14 1630	194.23 6.27 19 0.04 385	463.41 15.4 20 0.28 919	2.94 0.095 0.21 0.00 5.8	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00 0.00		

06148700 CYPRESS LAKE WEST INFLOW CANAL DRAIN NEAR OXARAT, SASKATCHEWAN

(International gaging station)

LOCATION.--Lat 49°28'25", long 109°36'38" (NAD 27), in NW¹/₄ sec.17, T.6, R.27 W., third meridian, Hydrologic Unit 10050008, on left bank about 500 ft downstream from drain gate on Cypress Lake west inflow canal, 0.5 mi upstream from Battle Creek, and 4 mi northwest of Oxarat.

PERIOD OF RECORD.--March 1963 to current season (seasonal records only). March 1955 to current season in reports of Department of the Environment, Canada.

GAGE.--Water-stage recorder. Elevation of gage is 3,200 ft (NGVD 29).

REMARKS.--Records poor. Drain used as an emergency bypass to return diverted water to Battle Creek. It may also be used to return stored water from Cypress Lake when lake stage is high.

COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 450 ft³/s, Apr. 20, 1955; no flow at times each season.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			e0.00 e0.00 e0.00 e0.00 e0.00	e0.04 e0.04 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	0.04 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
6 7 8 9 10			e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	0.00 0.04 0.04 0.04 0.04	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.04 0.04 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
11 12 13 14 15			e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 e0.00 e0.00 e0.00	0.07 0.07 0.07 0.07 0.07	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
16 17 18 19 20			e0.00 e0.04 e0.04 e0.35 e0.25	e0.00 e0.00 e0.00 e0.00	e0.00 e0.04 e0.04 e0.04 e0.04	0.07 0.07 0.04 0.04 0.04	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
21 22 23 24 25			e0.18 e0.14 e0.11 e0.07 e0.04	e0.00 e0.00 e0.00 e0.00	e0.04 e0.04 0.04 0.04 0.00	0.04 0.04 0.04 0.04 0.04	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
26 27 28 29 30 31			e0.00 e0.00 e0.00 e0.00 e0.04 e0.04	e0.00 e0.00 e0.00 e0.00 e0.00	0.00 0.00 0.00 0.00 0.00	0.04 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
TOTAL MEAN MAX MIN AC-FT			1.30 0.042 0.35 0.00 2.6	0.08 0.003 0.04 0.00 0.2	0.32 0.010 0.04 0.00 0.6	1.05 0.035 0.07 0.00 2.1	0.00 0.000 0.00 0.00	0.08 0.003 0.04 0.00 0.2	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00 0.00		

06149000 CYPRESS LAKE WEST OUTFLOW CANAL NEAR WEST PLAINS, SASKATCHEWAN

(International gaging station)

LOCATION.--Lat 49°28'14", long 109°35'18" (NAD 27), in SW¹/₄ sec.16, T.6, R.27 W., third meridian, Hydrologic Unit 10050008, on left bank 1.1 mi downstream from Cypress Lake West Dam, 6 mi northeast of West Plains, and 13 mi north of Consul.

PERIOD OF RECORD.--March 1940 to current season (seasonal records only). Monthly discharge only for some periods, published in WSP 1309.

GAGE.--Water-stage recorder. Elevation of gage is 3,180 ft (NGVD 29). Prior to Sept. 18, 1952, at site 1 mi upstream and 300 ft downstream from Cypress Lake West Dam at different elevation.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Canal diverts water from Cypress Lake in NW¹/₄ sec.15, T.6, R.27 W., third meridian, for irrigation of 5,500 acres in Battle Creek basin in Saskatchewan. Water may be delivered to Battle Creek or diverted into Vidora Ditch at gate structure near lower end of canal. Water Survey of Canada satellite telemeter at station.

COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 304 ft³/s, May 4, 1951; no flow at times each season.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			e0.00 e0.00 e0.00 e0.00	e10 e16 e13 e5.9 e5.8	0.32 0.32 0.32 0.25 0.28	57 29 0.14 0.07 0.04	0.32 0.32 0.32 4.4 7.1	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
6 7 8 9 10			e0.00 e0.00 e0.00 e0.00	e4.1 2.0 2.2 2.0 1.7	0.25 0.25 48 79 81	0.07 0.07 0.07 0.18 0.28	7.0 6.9 6.5 3.7 0.14	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
11 12 13 14 15			e0.00 e0.00 e0.00 e0.00	3.6 4.8 6.8 15	87 87 91 93 98	0.32 0.28 0.28 0.25 0.21	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
16 17 18 19 20			e0.00 e0.00 e0.32 e0.28 e0.21	8.5 3.3 3.3 3.2 3.0	96 99 103 89 54	0.25 0.28 0.28 0.32 0.35	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
21 22 23 24 25			e0.18 e0.14 e0.25 e23 e17	0.49 0.39 0.39 0.39 0.39	53 53 53 51 49	0.39 0.39 0.39 0.39 0.35	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
26 27 28 29 30 31			e9.1 e6.6 e6.4 e4.3 e1.7 e1.7	0.35 0.35 0.39 0.35 0.32	49 50 50 51 53 56	0.35 0.35 0.35 0.32 0.32	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 e0.00 e0.00 e0.00		
TOTAL MEAN MAX MIN AC-FT			71.18 2.30 23 0.00 141	133.01 4.43 16 0.32 264	1674.99 54.0 103 0.25 3320	93.34 3.11 57 0.04 185	36.70 1.18 7.1 0.00 73	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00 0.00		

06149100 VIDORA DITCH NEAR CONSUL, SASKATCHEWAN

(International gaging station)

LOCATION.--Lat 49°27'27", long 109°35'30" (NAD 27), in SW¹/₄ sec.9, T.6, R.27 W., third meridian, Hydrologic Unit 10050008, on left bank 0.5 mi downstream from headgate near lower end of Cypress Lake west outflow canal, 12 mi north of Consul.

PERIOD OF RECORD.--March 1963 to current season (seasonal records only). March 1952 to current season in reports of Department of the Environment, Canada.

GAGE.--Water-stage recorder. Elevation of gage is 3,200 ft (NGVD 29). Prior to Aug. 1, 1963, at elevation 1.0 ft higher.

REMARKS.—Records fair. Canal diverts water from Cypress Lake west outflow canal in NE¹/₄ sec.8, T.6, R.27 W., third meridian, for irrigation of about 2,140 acres in the Battle Creek basin. Water may be delivered either to this canal or returned to Battle Creek from Cypress Lake. Water Survey of Canada satellite telemeter at station.

COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 101 ft³/s, May 26, 1988; no flow at times each season.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	53 31 0.11 e0.07 e0.07	e0.04 e0.04 e0.04 e0.04 e0.04	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
6 7 8 9 10			0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 18 34 35	e0.07 e0.07 e0.07 e0.07 e0.07	e0.04 e0.04 e0.04 e0.04 e0.04	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
11 12 13 14 15			0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	38 39 44 49 58	e0.07 e0.07 e0.07 e0.07 e0.07	e0.04 e0.04 e0.04 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
16 17 18 19 20			0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	56 58 62 68 52	e0.07 e0.07 e0.07 e0.07 e0.07	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
21 22 23 24 25			0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	53 54 55 54 52	e0.07 e0.07 e0.07 e0.07 e0.07	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
26 27 28 29 30 31			0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	52 52 50 50 51 52	e0.07 e0.07 e0.04 e0.04 e0.04	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
TOTAL MEAN MAX MIN AC-FT			0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	1186.00 38.3 68 0.00 2350	85.91 2.86 53 0.04 170	0.52 0.017 0.04 0.00 1.0	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00 0.00		

06149200 RICHARDSON DITCH NEAR CONSUL, SASKATCHEWAN

(International gaging station)

LOCATION.--Lat 49°21'50", long 109°32'12" (NAD 27), near center of south line of sec.11, T.5, R.27 W., third meridian, Hydrologic Unit 10050008, on left bank 420 ft downstream from headgate, 4.8 mi north of Consul.

PERIOD OF RECORD.--March 1963 to current season (seasonal records only). 1910-12, 1914, 1916-20, 1922-33, 1935, July 1946 to current season in reports of Department of the Environment, Canada. Estimates of seasonal diversion only in most seasons prior to 1946.

GAGE.--Water-stage recorder. Prior to June 26, 1949, nonrecording gages at different sites and elevations. June 26, 1949, to Aug. 28, 1963, water-stage recorder at present site at elevation 1.00 ft higher.

REMARKS.--Records fair. Ditch diverts from left bank of Battle Creek in $SW^{1}/_{4}$ sec. 11, T.5, R.27 W., third meridian, for irrigation of about 1,330 acres along Battle Creek. Water Survey of Canada satellite telemeter at station.

COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 72 ft³/s, June 15, 1974; no flow at times each season.

				2.1.							
JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
		0.00	0.00	32	0.00	0.00	0.00	0.00	0.00		
		0.00	0.00	55	0.00	0.00	0.00	0.00	0.00		
		0.00	0.00	56	0.00	0.00	0.00	0.00	0.00		
		0.00	0.00	49	0.00	0.00	0.00	0.00	0.00		
		0.00	0.00	37	0.00	0.00	0.00	0.00	0.00		
		0.00	0.00	9.2	0.00	0.00	0.00	0.00	0.00		
		0.00	0.00	3.7	0.00	0.00	0.00	0.00	0.00		
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
		0.00		0.00		0.00	0.00		0.00		
		0.00	0.00	590.90	0.00	0.00	0.00	0.00	0.00		
		0.00	0.00	1170	0.00	0.00	0.00	0.00	0.00		
	JAN	JAN FEB	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 32 0.00 0.00 47 0.00 0.00 55 0.00 0.00 56 0.00 0.00 56 0.00 0.00 55 0.00 0.00 53 0.00 0.00 53 0.00 0.00 37 0.00 0.00 20 0.00 0.00 37 0.00 0.00 3.7 0.00 0.00 3.7 0.00 0.00 3.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td>0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 32 0.00 0.00 0.00 43 0.00 0.00 0.00 47 0.00 0.00 0.00 55 0.00 0.00 0.00 56 0.00 0.00 0.00 56 0.00 0.00 0.00 53 0.00 0.00 0.00 53 0.00 0.00 0.00 53 0.00 0.00 0.00 37 0.00 0.00 0.00 37 0.00 0.00 0.00 37 0.00 0.00 0.00 3.7 0.00 0.00 0.00 0.00 0.00 0.00</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 32 0.00 0.00 0.00 43 0.00 0.00 0.00 47 0.00 0.00 0.00 55 0.00 0.00 0.00 56 0.00 0.00 0.00 56 0.00 0.00 0.00 53 0.00 0.00 0.00 53 0.00 0.00 0.00 53 0.00 0.00 0.00 37 0.00 0.00 0.00 37 0.00 0.00 0.00 37 0.00 0.00 0.00 3.7 0.00 0.00 0.00 0.00 0.00 0.00	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				

06149300 MCKINNON DITCH NEAR CONSUL, SASKATCHEWAN

(International gaging station)

LOCATION.--Lat 49°20′00", long 109°29′40" (NAD 27), in NW¹/4 sec.30, T.4, R.26 W., third meridian, Hydrologic Unit 10050008, on right bank 1.0 mi downstream from headgate on Battle Creek, and 2.7 mi northeast of Consul.

PERIOD OF RECORD.--March 1963 to current season (seasonal records only). 1911-26, 1929-31, and March 1938 to current season in reports of Department of the Environment, Canada. Estimates of seasonal diversions only in many years prior to 1947.

GAGE.--Water-stage recorder. Prior to September 1949, nonrecording gages at various sites and elevations. Sept. 4, 1949, to Aug. 29, 1963, water-stage recorder at present site at elevation 1.00 ft higher.

REMARKS.--Records good. Ditch diverts from right bank of Battle Creek in NE¹/₄ sec.30, T.4, R.26 W., third meridian, for irrigation of about 1,320 acres along Battle Creek. Water Survey of Canada satellite telemeter at station.

COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 68 ft³/s, June 18, 1975; no flow at times each season.

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
6 7 8 9 10			0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 13 15 23 37	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
11 12 13 14 15			0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	41 38 56 61 54	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
16 17 18 19 20			0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	50 44 42 38 28	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
21 22 23 24 25			0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	12 4.8 0.28 0.11 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
26 27 28 29 30 31			0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
TOTAL MEAN MAX MIN AC-FT			0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00 0.00	557.19 18.0 61 0.00 1110	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00 0.00		

06149400 NASHLYN CANAL NEAR CONSUL, SASKATCHEWAN

(International gaging station)

LOCATION.--Lat 49°13′57", long 109°33′27" (NAD 27), in NE¹/₄ sec.22, T.3, T.27 W., third meridian, Hydrologic Unit 10050008, on left bank 0.8 mi downstream from headgate on Battle Creek, and 5.9 mi south of Consul.

PERIOD OF RECORD.--March 1963 to current season (seasonal records only); 1912, 1914-35, 1938 to current season in reports of Department of the Environment, Canada. Prior to March 1950, estimates of seasonal diversions only in many seasons. Prior to Mar. 1, 1971, published as "Stirling and Nash Ditch".

GAGE.--Water-stage recorder. Prior to Sept. 21, 1949, water-stage recorder at present site or nonrecording gages at site 0.5 mi downstream at different elevations.

REMARKS.--Records good. Ditch diverts water from left bank of Battle Creek in SW¹/₄ sec.27, T.3, R.27 W., third meridian, for irrigation of about 1,880 acres along Battle Creek. Water Survey of Canada satellite telemeter at station.

COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 85 ft³/s, Apr. 14, 1952; no flow at times each season.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1			0.00	38	0.00	0.00	0.00	0.00	0.00	0.00		
2			0.00	e33	10	0.00	0.00	0.00	0.00	0.00		
1 2 3			0.00	e23	18	0.00	0.00	0.00	0.00	0.00		
4			0.00	e22	19	0.00	0.00	0.00	0.00	0.00		
4 5			0.00	22	21	0.00	0.00	0.00	0.00	0.00		
5			0.00	22	21	0.00	0.00	0.00	0.00	0.00		
6			0.00	19	19	0.00	0.00	0.00	0.00	0.00		
7			0.00	16	0.74	0.00	0.00	0.00	0.00	0.00		
8			0.00	13	0.21	0.00	0.00	0.00	0.00	0.00		
9			0.00	5.8	0.07	0.00	0.00	0.00	0.00	0.00		
10			0.00	0.32	0.00	0.00	0.00	0.00	0.00	0.00		
11			0.00	0.11	0.00	0.00	0.00	0.00	0.00	0.00		
12			0.00	0.11	0.00	0.00	0.00	0.00	0.00	0.00		
13			0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00		
14			0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00		
15			0.00	0.00	0.00	0.00	0.00	0.00	0.00			
15			0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00		
16			0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00		
17			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
18			0.74	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
19			22	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
20			35	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
21			42	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
22			42	0.00	31	0.00	0.00	0.00	0.00	0.00		
23			44	0.00	36	0.00	0.00	0.00	0.00	0.00		
24			41	0.00	21	0.00	0.00	0.00	0.00	0.00		
25			41	0.00	0.95	0.00	0.00	0.00	0.00	0.00		
25			41	0.00	0.95	0.00	0.00	0.00	0.00	0.00		
26			e35	0.00	0.35	0.00	0.00	0.00	0.00	0.00		
27			e31	0.00	0.11	0.00	0.00	0.00	0.00	0.00		
28			e32	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
29			e34	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
30			41	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
31			40		0.00		0.00	0.00		0.00		
TOTAL			480.74	192.45	177.43	0.00	0.00	0.00	0.00	0.00		
MEAN			15.5	6.42	5.72	0.000	0.000	0.000	0.000	0.000		
MAX			44	38	3.72	0.00	0.00	0.00	0.00	0.00		
MIN			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
AC-FT			954	382	352	0.00	0.00	0.00	0.00	0.00		
AC-FI			204	304	352	0.00	0.00	0.00	0.00	0.00		

06149500 BATTLE CREEK AT INTERNATIONAL BOUNDARY

(International gaging station)

LOCATION.--Lat 49°00'07", long 109°25'18" (NAD 27), in SE¹/₄ sec.4, T.1, R.26 W., third meridian, Hydrologic Unit 10050008, on left bank 600 ft north of international boundary, in Saskatchewan, 8 mi upstream from Woodpile Coulee, 30 mi north of Chinook, MT, and at mile 69.8.

DRAINAGE AREA.--997 mi², of which 378 mi² is probably noncontributing.

PERIOD OF RECORD.--April 1917 to current season (seasonal records only most seasons). Monthly discharge only for March 1918 and March 1928, published in WSP 1309.

REVISED RECORDS.--WSP 1389: 1935(M), 1936, 1937-38(M). WSP 1729: 1924, 1926, 1932 (monthly discharge only). W 1983: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 2,729.8 ft (International Boundary Commission Survey Datum).

REMARKS.--Records good except those for estimated daily discharges, which are poor. Natural flow of stream affected by storage reservoirs, diversions for irrigation of about 9,500 acres, and return flow from irrigated areas. Water may be diverted into or from Frenchman River basin through Cypress Lake. Water Survey of Canada satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

COOPERATION.--This is one of a number of stations which are maintained jointly by Canada and the United States.

					<i>D</i> 11	ibi mibi ii	· · · · · · · · · · · · · · · · · · ·					
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			e4.2 e3.9 e3.5 e3.5 e3.5	73 54 29 19 33	37 37 32 22 12	32 31 30 25 25	15 14 12 9.5 9.1	0.49 0.39 0.32 0.28	0.04 0.04 0.04 0.00 0.00	10 9.3 8.5 8.2 7.6		
6 7 8 9 10			e3.5 e3.2 e2.8 e2.5 e3.2	39 57 67 69 54	8.8 8.7 36 36 23	22 16 13 13	9.7 9.6 9.7 10	0.25 0.21 0.18 0.14 0.11	0.00 0.00 0.00 0.00 0.00	7.4 7.0 6.5 6.6 7.0		
11 12 13 14 15			e3.5 e3.9 e4.2 e4.6 e6.4	61 60 46 60 71			12 11 11 8.9 7.8	0.07 0.04 0.04 0.04 0.00	0.00 0.00 0.00 0.00 0.00	7.1 7.3 7.3 7.7 7.7		
16 17 18 19 20			e11 e18 e53 e212 e530	98 104 107 88 80	48 91 66 59 75	11 10 17 24 21	6.3 4.6 3.7 3.3 3.7	0.00 0.00 0.00 0.00 0.92	0.00 0.00 0.00 0.00	7.8 7.9 8.3 8.6 8.6		
21 22 23 24 25				72 46 29 22 19	79 70 43 22 25	16 13 10 9.5 8.3	3.2 2.7 2.1 1.5 1.2	1.1 0.92 0.71 0.57 0.42	0.00 0.00 4.3 8.2 8.6	9.2 9.6 8.7 8.9 9.6		
26 27 28 29 30 31			105 67 83 67 47	23 29 28 28 32	45 60 49 48 35 30	7.1 6.3 5.9 5.4 9.2	0.92 0.92 0.95 0.92 0.81 0.64	0.32 0.18 0.14 0.11 0.07	9.5 10 11 11 11	9.2 9.0 9.1 e8.5 e7.8 e6.7		
TOTAL MEAN MAX MIN AC-FT			2451.4 79.1 530 2.5 4860	1597 53.2 107 19 3170	1331.5 43.0 91 8.7 2640	465.7 15.5 32 5.4 924	198.76 6.41 15 0.64 394	8.37 0.27 1.1 0.00	73.72 2.46 11 0.00 146	252.7 8.15 10 6.5 501		
STATISTI	CS OF MON	THLY MI	EAN DATA FO	OR SEASON	NS 1917 -	2003						
MEAN MAX (WY) MIN (WY)			49.9 353 1997 0.000 1936	126 1526 1952 4.34 1981	57.7 538 1927 0.77 1937	32.5 261 1927 0.000 1937	0.000	6.95 50.7 1975 0.000 1919	7.98 332 1986 0.000 1919	7.95 57.7 1987 0.000 1920		
SUMMARY	STATISTICS		FOR						SONS 1917			
LOWEST D	DAILY MEAN AILY MEAN PEAK FLOW PEAK STAGI	N E		530 0.00 a700 b6.83	Mar 20 Aug 15 Mar 20 Mar 20			5590 0 c9780 11	Apr .00 Mar Sep .57 Sep	15 1952 1 1918 25 1986 25 1986		

a--About, occurred during period affected by backwater from ice.

b--Backwater from ice.

c--From rating table extended above $4,400~\mathrm{ft}^3/\mathrm{s}$ on basis of slope-area measurement of peak flow.

06151500 BATTLE CREEK NEAR CHINOOK, MT

 $LOCATION.--Lat\ 48^{\circ}39'05",\ long\ 109^{\circ}13'47"\ (NAD\ 27),\ in\ NW^{1}/_{4}SW^{1}/_{4}NE^{1}/_{4}\ sec.3,\ T.33\ N.,\ R.19\ E.,\ Blaine\ County,\ Hydrologic\ Unit\ 10050008,\ on\ left\ bank,\ 4\ mi\ north\ of\ Chinook,\ and\ at\ river\ mile\ 14.$

DRAINAGE AREA.--1,539 mi².

PERIOD OF RECORD.--April 1905 to September 1921 (monthly discharge only, published in WSP 1309), June 1984 to current year (seasonal records only). Published as North Fork Milk River near Chinook prior to 1913.

GAGE.--Water-stage recorder. Elevation of gage is 2,410 ft (NGVD 29). Apr. 22, 1905 to Apr. 8, 1918, chain gage 100 ft downstream, and Apr. 9, 1918 to Sept. 30, 1921, chain gage on bridge 600 ft downstream at same elevation but different from present elevation.

REMARKS.—Records fair. Diversions for irrigation of about 11,000 acres upstream from station. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

					Ditti	DI WILLIAM	VILLEE					
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5				55 66 66 52 39	28 31 34 36 41	27 24 23 23 25	15 6.9 13 17 19	4.2 3.8 1.8 1.7 0.34	3.1 1.6 1.6 3.0 3.3			
6 7 8 9 10				29 33 42 51 56	38 29 23 19 21	18 14 14 15 14	14 17 14 11	0.21 0.20 0.18 0.16 0.14	3.1 3.2 1.8 3.3 1.8			
11 12 13 14 15				54 46 48 48	36 27 22 28 36	12 12 11 10 10	7.9 7.7 9.5 9.5 9.9	0.13 0.48 0.69 0.65 0.44	0.99 0.42 0.40 0.39 0.45			
16 17 18 19 20				53 65 84 102 89	50 51 44 67 53	8.0 2.5 4.1 9.5 9.2	9.5 9.0 8.8 11	0.46 0.26 0.16 0.14 0.12	0.94 0.80 0.66 0.65 0.78			
21 22 23 24 25				72 67 56 43 34	48 57 56 53 38	6.5 20 19 16 14	11 9.0 9.0 8.9 8.8	0.11 0.10 0.56 8.4 0.88	0.66 0.59 0.56 0.53 0.42			
26 27 28 29 30 31				29 24 22 28 27	27 21 27 40 34 33	18 20 14 12 16	8.8 8.8 9.0 9.0 9.0	0.12 2.8 1.4 0.39 0.13	0.37 0.34 0.38 0.34 0.35			
TOTAL MEAN MAX MIN AC-FT				1522 50.7 102 22 3020	1148 37.0 67 19 2280	440.8 14.7 27 2.5 874	332.5 10.7 19 6.9 660	32.04 1.03 8.4 0.10 64	36.82 1.23 3.3 0.34 73			
STATISTI	CS OF MON	THLY MEAN	DATA FOR	SEASONS	1984 - 2	003						
MEAN MAX (WY) MIN (WY)				59.9 539 1996 0.031 2002	24.6 101 1986 0.000 2002	20.9 48.3 2002 0.085 1984	12.9 57.6 2000 0.016 1984	2.58 15.3 2002 0.000 1984	49.3 910 1986 0.000 1984			
SUMMARY	STATISTIC	CS		FOR 20	03 SEASO	N	SEAS	ONS 1984	- 2003			
LOWEST :	DAILY MEA DAILY MEA PEAK FLO PEAK STA	4 4		102 0.10 107 2.71	Apr 1	2 9	19400	00 Jul 1	6 1986			

06154100 MILK RIVER NEAR HARLEM, MT

LOCATION.--Lat 48°29'22", long 108°45'28" (NAD 27), in NE¹/₄SE¹/₄NE¹/₄ sec.32, T.32 N., R.23 E., Blaine County, Hydrologic Unit 10050004, Fort Belknap Indian Reservation, on right bank 30 ft downstream from U.S. Highway 2 bridge, 0.6 mi northeast of unincorporated community of Fort Belknap Agency, 3.5 mi southeast of Harlem, and at river mile 332.2.

DRAINAGE AREA.--9,822 mi².

PERIOD OF RECORD.--October 1959 to September 1969, October 1982 to current year (seasonal record beginning 1994 water year). Gage heights only for period Apr. 3-25, 1952, published as "at Fort Belknap" in 1260-B.

REVISED RECORDS .-- WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 2,319.48 ft (NGVD 29). Apr. 3-25, 1952, nonrecording gage on old bridge 200 ft downstream at different elevation. Nov. 1, 1959, to Mar. 12, 1968, nonrecording gage or water-stage recorder at several sites within 0.5 mi of present site at different elevation.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow increased during irrigation season by water from St. Mary Canal (station number 05018500). Flow mainly regulated by Fresno Reservoir (station number 06136500) since 1939. Diversions for irrigation of about 60,000 acres of which about 13,000 acres lie downstream from station. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 1952 reached a stage of about 23.5 ft, present site and elevation.

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1			e70	243	447	487	446	473	165	78		
2			e70	215	446	543	436	412	117	77		
3			e70	220	448	556	384	403	66	77		
4			e70	236	453	533	395	413	78	83		
5			e70	223	481	501	427	446	98	76		
6			e70	207	537	519	460	409	96	73		
7			e70	190	556	531	411	411	110	77		
8			e70	175	530	525	408	417	108	75		
9			e70	165	517	551	374	415	100	76		
10			e70	115	569	597	472	405	103	73		
11			e70	129	642	605	485	371	103	75		
12			e70	158	669	610	447	354	89	75		
13			e70	143	689	592	438	338	72	72		
14			e500	306	690	569	414	296	42	80		
15			e1000	470	623	523	389	262	37	78		
3.5			1.400	504		-16	400	0.45	2.2			
16			e1400	504	559	516	423	245	93	66		
17			e2000	531	550	506	493	229	107	79		
18			e1900	549	549	467	541	255	110	81		
19			e1800	537	492	457	485	248	117	81		
20			e1800	545	451	530	503	244	106	80		
21			1710	587	415	551	492	231	94	76		
22			1720	573	330	533	416	227	92	75		
23			1660	557	279	425	409	204	91	80		
24			936	538	260	407	414	213	85	76		
25			791	503	373	391	433	252	85	74		
23			,,,	303	3,3	371	100	202	0.5	, -		
26			671	483	433	386	444	234	84	77		
27			572	468	398	395	480	199	80	77		
28			460	449	311	391	517	181	80	74		
29			355	442	266	403	547	203	78	e75		
30			287	447	315	417	561	220	78	e70		
31			270		357		521	204		e70		
TOTAL			20742	10908	14635	15017	14065	9414	2764	2356		
MEAN			669	364	472	501	454	304	92.1	76.0		
MAX			2000	587	690	610	561	473	165	83		
MIN			70	115	260	386	374	181	37	66		
AC-FT			41140	21640	29030	29790	27900	18670	5480	4670		
STATIS	TICS OF M	ONTHLY ME	AN DATA F	OR WATER	YEARS 196	0 - 1993	AND SEASO	NS 1994 -	2003*			
MEAN	69.42	84.49	71.79	444	569	662	593	572	395	345	94.4	71.8
MAX	139	200	198	2287	2935	3506	1506	2484	726	1913	289	198
(WY)	1990	1987	1987	1996	1965	1967	1965	1965	1965	1986	1987	1987
MIN	1990	26.5	25.9	37.1	54.4	129	232	138	1965	20.9	31.2	25.9
(WY)	19.0	26.5 1985	25.9 1985	2002	1961	2001	232 1985	2001	10.3	1988	1964	25.9 1985
(W I)	T203	TAOD	T202	2002	TAGT	2001	TAOD	2001	1200	1200	1204	TAOD

06154100 MILK RIVER NEAR HARLEM, MT--Continued

SUMMARY STATISTICS	FOR 2003 SEA	ASON	WATER YEARS 1	.960 - 1993*	SEASONS 1	994 - 2003*
ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN			349.5 857 139	1965 1984		
HIGHEST DAILY MEAN	2000	Mar 17 Sep 15	12900 c0.00	Sep 29 1986 Aug 10 1988	6190 2.5	Mar 18 1996 Apr 6 2001
ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW	a2350	Mar 23	0.00	Aug 24 1988 Sep 29 1986	6450	Mar 18 1996
MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW	b17.44	Mar 17	25.73 0.00	Sep 29 1986 Aug 1 1988	23.88	Mar 18 1996
ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS			253200 682	1145 1 1900		
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS			180 39			

^{*--}During period of operation (1960-69, 1983 to current year. Seasonal record station beginning 1994 water year).
a--Gage height, 15.17 ft.
b--Backwater from ice.
c--No flow on many days in August and Semptember 1988.
e--Estimated.

06154400 PEOPLES CREEK NEAR HAYS, MT

LOCATION.--Lat 48°13'25", long 108°42'48" (NAD 27), in SW¹/₄ sec.35, T.29 N., R.23 E., Blaine County, Hydrologic Unit 10050009, on right bank 45 ft downstream from bridge on State Highway 66, 2.5 mi downstream from Myrtle Creek, 16.4 mi north of Hays, and at river mile 47.2. DRAINAGE AREA.--220 mi².

PERIOD OF RECORD.--December 1966 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 2,714.10 ft (NGVD 29).

REMARKS.--Records poor. Some storage in numerous stock and beaver ponds and diversions for irrigation of about 1,300 acres upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

					<i>D</i> , 11	ET WIE	· · · · · · · · · · · · · · · · · · ·					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e0.00 e0.00 e0.00 e0.00	e0.00 e0.00 0.04 0.02 0.01	e0.10 e0.10 e0.10 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.10	1.1 1.1 1.4 1.5	0.99 0.74 0.64 0.74 2.2	0.04 0.03 0.04 0.03 0.05	0.17 0.20 0.21 0.24 0.22	0.12 0.11 0.11 0.05 0.01	0.00 0.00 0.00 0.00 0.00
6 7 8 9 10	e0.00 e0.00 e0.00	0.04 0.07 0.08 0.11 e0.10	e0.10 e0.10 e0.10	e0.10 e0.10 e0.10	e0.10 e0.10	e0.05 e0.05	1.3 1.6 1.2 0.73 0.75	2.4 2.3 3.0 3.5 3.5	0.04 0.04 0.06 0.08 0.05	0.22 0.20 0.26 0.19 0.13	0.00 0.01 0.02 0.00 0.00	0.00 0.00 0.00 0.00
11 12 13 14 15	e0.00 e0.00 e0.00 e0.00	e0.10 e0.10 e0.10 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.10	e0.05 e0.05 e0.05 e0.05 e0.05	e0.10 e0.10 e0.10 e0.10 e0.10	e0.05 e0.10 185 309 141	0.64 0.72 0.45 0.45 0.86	2.4 1.9 1.3 0.88 0.59	0.09 0.10 0.12 0.16 0.20	0.08 0.08 0.09 0.13 0.10	0.00 0.00 0.00 0.00	0.02 0.03 0.03 0.07 0.03
16 17 18 19 20	e0.00	e0.10	e0.10	e0.05 e0.05 e0.05 e0.05 e0.05	e0.10 e0.10 e0.10 e0.10 e0.05	117 87 43 19 16	5.3 9.7 9.9 9.3 7.6	0.45 0.29 0.20 0.22 0.17	0.23 0.17 0.23 0.26 0.31	0.09 0.09 0.09 0.10 0.11	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
21 22 23 24 25	e0.00	e0.10 e0.10	e0.05	e0.05 e0.05		12 9.3 6.7 5.2 3.6		0.22 0.22 0.12 0.16 0.13	0.30 0.30 0.29 0.28 0.25	0.11 0.13 0.14 0.15 0.18		
26 27 28 29 30 31	e0.00 e0.00 e0.00 e0.00 e0.00	e0.10 e0.10 e0.10 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.05 e0.05	e0.05 e0.05 e0.05 e0.05 e0.05 e0.05	e0.10 e0.10 e0.10	3.0 2.9 2.5 2.0 1.8 1.4	0.56 0.42 0.63 0.82 1.1	0.10 0.08 0.07 0.03 0.04 0.05	0.28 0.30 0.31 0.23 0.17	0.16 0.13 0.10 0.11 0.12 0.11	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
TOTAL MEAN MAX MIN AC-FT	0.00 0.000 0.00 0.00 0.00	2.47 0.082 0.11 0.00 4.9	2.65 0.085 0.10 0.05 5.3	2.00 0.065 0.10 0.05 4.0	2.55 0.091 0.10 0.05 5.1	968.30 31.2 309 0.05 1920	72.64 2.42 9.9 0.42 144	29.63 0.96 3.5 0.03 59	5.04 0.17 0.31 0.03 10	4.44 0.14 0.26 0.08 8.8	0.43 0.014 0.12 0.00 0.9	0.18 0.006 0.07 0.00 0.4
STATIST	rics of M	ONTHLY ME	AN DATA F	OR WATER	YEARS 196	7 - 2003	, BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	3.43 37.1 1987 0.000 1972	3.32 20.5 1987 0.000 1972	1987	3.47 30.0 1971 0.000 1972	1971	28.9 285 1979 0.000 2002	17.5 122 1979 0.048 2002	29.8 190 1975 0.007 2001	20.7 123 1982 0.034 2001	1975 0.000	2.36 21.3 1975 0.000 1967	
SUMMAR	Y STATIST	'ICS	FOR	2002 CALE	NDAR YEAR	. 1	FOR 2003 W	ATER YEAR		WATER YEA	RS 1967 -	- 2003
LOWEST HIGHES	MEAN F ANNUAL ANNUAL M F DAILY M	MEAN IEAN IEAN		48.6 0.1 5.0	3		1090.33	9		10.9 47.8 0.1 1000		1979 2001 7 1979
ANNUAL MAXIMUI MAXIMUI	M PEAK FL M PEAK ST	AN Y MINIMUM OW AGE OW FLOW		0.0	0 Jan 18 0 Jan 18		0.00 0.00 391 7.7: 0.00	O Oct 1 O Oct 1 Mar 14 Mar 14 O Oct 1		0.1 1000 a0.0 0.0 b8460 15.0 0.0 7910 21 1.0	0 Dec 1 0 Dec 1 Jun 8 3 Jun 8 0 Jan 2	1 1966 1 1966 3 1972 3 1972 2 1995
10 PERC 50 PERC 90 PERC	CENT EXCE	AC-FT) EDS EDS EDS		0.1 0.0 0.0	0 0 0		1.4 0.10 0.00	0		21 1.0 0.0	0	

^{*--}Median of yearly mean discharge, 4.92 $\rm ft^3/s$, 3,560 ac-ft/yr.a--No flow at times most years.

b--From floodmark, from rating curve extended above 490 ft³/s on basis of slope-area measurement of peak flow. e--Estimated.

06154410 LITTLE PEOPLES CREEK NEAR HAYS, MT

LOCATION.--Lat 47°57′58", long 108°39′36" (NAD 27), in SE¹/₄SE¹/₄NW¹/₄ sec.32, T.26 N., R.24 E., Blaine County, Hydrologic Unit 10050009, on right bank 0.5 mi upstream from west entrance to Mission Canyon, 2 mi southeast of Hays, and at river mile 23.1. DRAINAGE AREA.--13.0 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--August 1972 to current year.

REVISED RECORDS.--WDR MT-81-1: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 3,769.72 ft (NGVD 29). August 1972 to June 24, 1976, gage at former site at elevation 10.00 ft higher. Prior to Apr. 22, 1987, gage located 330 ft downstream.

REMARKS.--Water-discharge records fair. No known regulation or diversion upstream from station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR MAY JUN JUL AUG SEP APR 1 1.5 1.4 1.3 1.1 1.0 1.0 1.3 2.4 3.4 1.8 1.1 1.2 2 1.5 1.3 1.0 1.0 1.3 2.4 3.2 1.7 1.4 1.1 1.1 1.1 3.2 1.1 1.5 1.4 1.3 1.1 1.0 1.0 1.3 2.4 1.6 1.1 2.6 1.6 4 1.5 1.5 1.3 1.1 1.0 1.0 1.3 1.1 5 1.5 1.4 1.2 1.2 1.0 0.96 1.4 2.8 2.9 1.6 1.2 1.1 2.9 6 1.5 1.4 1.2 1.1 1.0 1.0 1.4 3.0 1.6 1.2 1.1 1.2 1.4 1.3 1.6 1.5 1.1 1.0 1.0 2.9 2.8 1.4 1.2 1.5 1.5 1.2 0.98 1.4 2.7 1.5 1.2 1.2 8 1.1 1.0 2.8 1.1 1.0 3.1 1.2 1.2 1.2 10 1.5 1.4 1.1 1.0 0.96 1.5 6.2 1.4 11 1.5 1.4 1.2 1.1 1.0 0.95 1.7 8.4 2.9 1.4 1.2 1.1 12 1.5 1.3 1.2 1.1 1.0 0.97 1.7 8.2 2.8 1.4 1.2 1.1 13 1.5 1.5 1.3 1.2 1.1 1.0 1.0 1.8 8 2 2.8 $1.4 \\ 1.4$ 1.2 1 1 1.3 1.0 2.8 1.2 14 1.1 1.0 2.0 8.1 1.1 1.2 2.0 1.2 1.3 1.0 1.1 7.2 2.8 1.3 1.1 16 1.5 1.3 1.2 1.1 1.0 1.5 1.9 6.4 2.8 1.3 1.2 1.1 1.2 1.2 1.2 1.9 5.9 2.8 1.3 1.2 17 1.5 1.3 1.1 1.0 1.1 1.1 1.5 1.5 2.2 2.7 1.3 18 1.3 1 0 1.0 1 0 5 3 1.2 1 1 1.3 1.2 19 1.1 1.0 0.97 4.9 20 1.5 1.3 1.2 1.0 0.97 2.2 4.7 2.5 1.3 1.2 21 1.5 1.0 2.1 2.3 1.3 1.2 1.1 4.5 1.3 1.2 1.1 1.2 2.1 4.0 1.2 22 1.4 1.3 0.99 0.99 1.1 2.3 1.3 1.1 2.3 1.3 23 1 4 1.3 1 0 1 0 1 1 3 8 1 1 24 1.2 1.3 2.2 1.2 25 1.4 1.3 1.2 1.0 1.1 2.3 3.7 2.1 1.3 1.2 1.1 26 1.4 1.2 1.0 1.0 1.2 2.4 2.1 1.3 1.2 1.4 1.2 1.2 2.5 3.1 2.1 1.3 1.2 1.1 27 1.3 1.0 1.0 28 1.3 1.0 1.0 29 1.4 1.2 1.0 1.2 2.4 1.9 1.2 1.2 1.4 1.1 ___ 1.2 1.2 1.2 30 1.3 1.0 2.4 3.4 1.8 1.2 31 1.0 3.4 TOTAL 45.6 40.5 37.4 32.99 28.39 33.23 56.4 137.8 78.5 42.9 37.0 33.8 1.21 1.35 1.07 1.88 2.62 1.19 1.01 4.45 1.38 MEAN 1.47 1.06 1.13 1.6 1.5 1.3 1.2 2.5 8.4 3.4 1.8 1.3 1.2 MAX 1.3 1.1 1.1 MTN 1.4 1.3 0.99 0.99 0.95 2.4 1.8 1.2 1.1 273 67 AC-FT 90 85 80 65 56 66 156 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1972 - 2003, BY WATER YEAR (WY) MEAN 2.35 2.16 2.00 1.89 1.78 2.29 4.47 11.9 8.18 5.31 2.90 2.55 3.75 3.51 1986 3.84 1976 21.5 1979 75.6 26.6 1975 32.9 MAX 6.92 4.60 5.52 8.11 8.42 1987 1987 1986 1996 1974 1993 1993 1978 (WY) MIN 1.11 1.07 0.93 0.90 0.95 1.07 1.20 1.45 1.98 1.38 1 19 1 13 2002 2003 2002 2002 2003 2003 (WY) 2002 2002 2002 1997 2000 2003 SUMMARY STATISTICS FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR WATER YEARS 1972 - 2003 ANNUAL TOTAL ANNUAL MEAN 2.21 1.66 3.99* HIGHEST ANNUAL MEAN 11.6 1974 LOWEST ANNUAL MEAN 1.46 500 May 25 1974 HIGHEST DAILY MEAN 43 Jun 23 8 4 May 11 LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM 0.85 0.95 Mar 11 0.67 May 21 1997 4 Jan May 18 0.97 MAXIMUM PEAK FLOW 9.8 May 10 a576 May 25 1974 b4.57 MAXIMUM PEAK STAGE .80 May 10 May 25 1974 INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) 21 1997 0 .67 May 1600 1200 2890 10 PERCENT EXCEEDS 3.9 6.6

50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

1.0

2.8

1.0

2.2

1.3

^{*--}Median of yearly mean discharge, 3.10 ${\rm ft}^3/{\rm s}$. a--From rating curve extended above 44 ${\rm ft}^3/{\rm s}$, on basis of slope-area measurement of peak flow.

b--From floodmark, at site and datum then in use.

06154410 LITTLE PEOPLES CREEK NEAR HAYS, MT--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1977 to June 2003, discontinued.

REMARKS.--Unpublished records of instantaneous water temperature and specific conductance for many days are available in files of the District office.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

water, fltrd, mg/L	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	ide, water, fltrd, mg/L	fltrd, mg/L	water, fltrd, mg/L	water, fltrd, mg/L		water, fltrd, tons/ acre-ft	22.0 22.7 Residue water, fltrd, tons/d (70302)	fltrd, mg/L as N	water fltrd, mg/L as N
Sodium, water, fltrd, mg/L(00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chloride, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L	Sulfate water, fltrd, mg/L	Residue water, fltrd, sum of consti- tuents mg/L	Residue water, fltrd, tons/ acre-ft	Residue water, fltrd, tons/d	Ammonia water, fltrd, mg/L as N	Nitrite + nitrate water fltrd, mg/L as N
water, fltrd, mg/L (00930)	linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	ide, water, fltrd, mg/L (00940)	ide, water, fltrd, mg/L (00950)	water, fltrd, mg/L	water, fltrd, mg/L	water, fltrd, sum of consti- tuents mg/L	water, fltrd, tons/ acre-ft	Residue water, fltrd, tons/d	water, fltrd, mg/L as N	+ nitrate water fltrd, mg/L as N
		.98	31							(00031)
		.,,		11.3	81.5	311	.42	2.52	<.04	<.06
	214	1.13	. 3	11.7		320	.44			<.06
	Date	water fltrd mg/L as N	phos- e phate , water , fltrd mg/L as P	, Arseni , water unfltr ug/I	water d unfltr ug/L	ium, water unfltr recove d -able ug/L	Copper , water d unfltr r recove , -able ug/L	, water d unfltro r recove: , -able ug/L	d r	
	MAY 2003 07	<.008	<.02	E2	<.04	<.8	1.9	40		
		<.008	<.02	<2	<.04	<.8	.9	30		
	MAY 07 JUN	2003 7	water, nfltrd u ecover r -able, ug/L 01051) (water, nfltrd u ecover r -able, ug/L 01067) (Zinc, water, unfltrd ecover d -able, p ug/L <	sedi- ment, sieve liametr c ercent t	pended sedi- ment oncen- ration mg/L	sedi- ment load, tons/d		
		MAY 2003 07 JUN 25 Dat MAY 0'	Water fltrd Date mg/L as N (00613 MAY 2003 07 <.008 JUN 25 <.008	Nitrite	Water, water, Arseni fltrd, fltrd, water mg/L mg/L mg/L unfltrd water as N as P ug/I (00613) (00671) (01002)	Nitrite phos- Nitrite phate, water, water, water water water fltrd, fltrd, water wat	Nitrite phos- water wa	Nitrite	Nitrite phase water, water, water, water, water, water, fltrd, fltrd, water water, water, recover recover recover	Nitrite phos- phate, water, w

06154550 PEOPLES CREEK BELOW KUHR COULEE, NEAR DODSON, MT

LOCATION.--Lat 48°21'49", long 108°21'16" (NAD 27), in NW¹/₄NW¹/₄NE¹/₄ sec.16, T.30 N., R.26 E., Phillips County, Hydrologic Unit 10050009, on right bank 10 ft downstream from bridge on county highway, 2.4 mi downstream from Kuhr Coulee, 5.5 mi southwest of Dodson, and at river mile 7.8.

DRAINAGE AREA.--675 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1918 to November 1921 (fragmentary), June 1951 to September 1973, October 1981 to September 1988 (published as "near Dodson"), October 1988 to current year. Monthly discharge only for some periods, published in WSP 1309.

GAGE.--Water-stage recorder. Elevation of gage is 2,309.18 ft (NGVD 29) (levels by Bureau of Indian Affairs). Prior to June 1951, nonrecording gage at site 0.5 mi upstream at different elevation. June 1, 1951 to Sept. 30, 1988, water-stage recorder at sites 2.5 mi upstream at different elevation. REMARKS.--Water-discharge records fair. Diversions for irrigation of about 3,300 acres upstream from station. U. S. Geological Survey satellite telemeter at station.

ci ai statio	11.												
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP													
OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	e0.10 e0.10 e0.05 e0.05 e0.05	e0.10 e0.10 e0.10 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.10	e0.05 e0.10 e0.05 e0.05 e0.05	0.21 1.2 2.0 3.6 4.1	0.22 0.03 0.01 0.22 3.6	0.03 0.02 0.01 0.25 0.77	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
0.00 0.00 0.00 0.00	e0.01 e0.10 e0.10 e0.10 e0.10	e0.05 e0.05 e0.05 e0.10 e0.10	e0.10 e0.10 e0.10 e0.05 e0.05	e0.10 e0.10 e0.10 e0.10 e0.10	e0.05 e0.05 e0.05 e0.05 e0.05	6.0 4.8 1.1 0.89 0.56	4.9 8.7 12 16 19	2.0 2.6 2.4 3.7 2.4	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.05 0.00	0.00 0.00 0.00 0.00 0.00		
0.00 0.00 0.00 0.00 0.00	e0.10 e0.10 e0.10 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.10	e0.05 e0.05 e0.05 e0.05 e0.05	e0.10 e0.10 e0.10 e0.05 e0.05	e0.05 e0.10 e10 e640 630	0.17 0.11 0.26 0.45 1.2	19 18 17 15	2.7 4.4 7.6 6.5 7.6	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
0.00 0.00 0.00 0.00 0.00	e0.10 e0.10 e0.10 e0.10 e0.10	e0.10 e0.05 e0.05 e0.05 e0.05	e0.05 e0.05 e0.05 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.05	263 160 67 26 10	3.9 7.2 9.9 16 13	7.6 5.0 3.6 2.4 1.5	14 11 8.2 6.3 4.6	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
0.00 0.00 0.00 0.00 0.00	e0.10 e0.10 e0.05 e0.05 e0.05	e0.05 e0.05 e0.05 e0.05 e0.10	e0.01 e0.00 e0.00 e0.00 e0.00	e0.05 e0.05 e0.05 e0.05 e0.05	7.2 9.3 7.0 5.3 5.1	12 9.5 7.2 4.8 2.7	1.0 0.83 0.49 0.29 0.04	3.6 2.5 1.2 0.42 0.08	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
0.00 0.00 0.00 0.00 0.00	e0.05 e0.10 e0.10 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.10 e0.10	e0.00 e0.00 e0.00 e0.01 e0.10 e0.10	e0.10 e0.05 e0.10	3.2 1.9 1.3 1.1 0.72 0.33	1.8 0.96 1.4 0.82 0.50	0.03 0.25 0.87 0.66 0.44	0.09 0.27 0.17 0.02 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
0.00 0.000 0.00 0.00 0.00	2.21 0.074 0.10 0.00 4.4	2.40 0.077 0.10 0.05 4.8	1.72 0.055 0.10 0.00 3.4	2.35 0.084 0.10 0.05 4.7	1849.15 59.6 640 0.05 3670	118.33 3.94 16 0.11 235	170.80 5.51 19 0.01 339	95.43 3.18 14 0.00 189	0.00 0.000 0.00 0.00 0.00	0.05 0.002 0.05 0.00 0.1	0.00 0.000 0.00 0.00 0.00		
8.36 195 1987 0.000 1959	5.68 63.6 1987 0.000 1957	4.47 61.5 1987 0.000 1953	5.19 64.1 1971 0.000 1956	30.0 369 1971 0.000 1956	78.4 385 1996 0.000 2002	53.9 520 1965 0.57 1962	53.4 575 1986 0.094 1998	41.2 332 1953 0.001 2001	22.1 128 1983 0.000 1918	3.33 31.2 1993 0.000 1919	12.7 480 1986 0.000 1918		
Y STATIST	CICS	FOR	2002 CALE	NDAR YEA	R	FOR 2003 V	NATER YEAR		WATER YEAR	RS 1918 -	2003*		
					1918 1918 1986 1952								
	OCT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	OCT NOV 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 e0.10	OCT NOV DEC 0.00 0.00 e0.10 0.00 0.00 e0.10 0.00 0.00 e0.05 0.00 0.00 e0.05 0.00 0.00 e0.05 0.00 e0.01 e0.05 0.00 e0.10 e0.05 0.00 e0.10 e0.10 0.00 e0.10 e0.05 0.00 e0.05 e0.10 0.00 e0.05 e0.10 0.00 e0.10 e0.1	OCT NOV DEC JAN 0.00 0.00 e0.10 e0.10 e0.10 0.00 0.00 e0.05 e0.10 0.00 0.00 e0.05 e0.10 0.00 e0.10 e0.05 e0.10 0.00 e0.10 e0.10 e0.05 0.00 e0.10 e0.10 e0.05 0.00 e0.10 e0.10 e0.00 0.00 e0.10 e0.10 e0.00 0.00 e0.10 e0.05 e0.00 0.00 e0.10 e0.10 e0.10 e0.00 0.00 e0.10 e0.10 e0.10 e0.10 0.00 e0.10 e0.10 e0.00 0.00 e0.10 e0.10 e0.00 0.00 e0.10 e0.10 e0.00 0.00 e0.10 e0.10 e0.00 0.00 e0.10 e0.00 e0.00 e0.00 0.00 e0.10 e0.00 e0.00 e0.00 e0.00 0.00 e0.00 e0	DISCHARGE, CUBIC FEET PER SECONDA OCT NOV DEC JAN FEB 0.00 0.00 e0.10 e0.10 e0.10 e0.10 0.00 0.00 e0.00 e0.10 e0.10 e0.10 0.00 0.00 e0.05 e0.10 e0.10 0.00 e0.10 e0.10 e0.05 e0.05 0.00 e0.10 e0.05 e0.00 e0.05 0.00 e0.10 e0.05 e0.10 e0.05 0.00 e0.10 e0.05 e0.10 e0.05 0.00 e0.10 e0.05 e0.00 e0.05 0.00 e0.05 e0.05 e0.00 e0.05 0.00 e0.05 e0.05 e0.00 e0.05 0.00 e0.10 e0.10 e0.10 e0.00 e0.10 0.00 e0.10 e0.10 e0.00 e0.05 0.00 e0.10 e0.00 e0.00 e0.05 0.00 e0.10 e0.00 e0.00 e0.05 0.00 e0.10 e0.00 e0.00 e0.00 e0.05 0.00 e0.10 e0.00 e0.00 e0.00 e0.05 0.00 e0.10 e0.00	DISCHARGE, CUBIC FEET PER SECOND, WATE DAILY MEAN OCT NOV DEC JAN FEB MAR 0.00 0.00 e0.10 e0.10 e0.10 e0.10 e0.05 0.00 0.00 e0.10 e0.10 e0.10 e0.10 e0.10 0.00 0.00 e0.05 e0.10 e0.10 e0.10 e0.05 0.00 0.00 e0.05 e0.10 e0.10 e0.05 0.00 0.00 e0.05 e0.10 e0.10 e0.05 0.00 e0.01 e0.05 e0.10 e0.10 e0.05 0.00 e0.10 e0.10 e0.05 e0.05 e0.10 e10 0.00 e0.10 e0.10 e0.05 e0.05 e0.10 e0.00 0.00 e0.10 e0.05 e0.05 e0.10 e0.05 0.00 e0.10 e0.05 e0.00 e0.05 f0.00 e0.05 e0.00 e0.0	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR O DAILY MEAN VALUES OCT NOV DEC JAN FEB MAR APR 0.00 0.00 e0.10 e0.10 e0.10 e0.10 e0.05 0.21 0.00 0.00 e0.00 e0.10 e0.10 e0.10 e0.05 0.21 0.00 0.00 e0.05 e0.10 e0.10 e0.05 2.0 0.00 0.00 e0.05 e0.10 e0.10 e0.05 3.6 0.00 0.00 e0.05 e0.10 e0.10 e0.05 3.6 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 4.1 0.00 e0.11 e0.05 e0.10 e0.10 e0.05 6.0 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 1.1 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 4.8 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 1.1 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 1.1 0.00 e0.10 e0.10 e0.05 e0.10 e0.10 e0.05 0.89 0.00 e0.10 e0.10 e0.05 e0.10 e0.10 e0.50 0.89 0.00 e0.10 e0.10 e0.05 e0.10 e0.10 e0.05 0.89 0.00 e0.10 e0.10 e0.05 e0.10 e0.10 e0.50 0.89 0.00 e0.10 e0.10 e0.05 e0.10 e0.10 e0.50 0.89 0.00 e0.10 e0.10 e0.05 e0.10 e0.10 e0.50 0.89 0.00 e0.10 e0.10 e0.05 e0.10 e0.10 e0.10 0.26 0.00 e0.10 e0.10 e0.05 e0.10 e0.10 e0.10 0.26 0.00 e0.10 e0.10 e0.05 e0.05 e1.00 10 0.26 0.00 e0.10 e0.10 e0.05 e0.05 e0.10 e0.10 0.26 0.00 e0.10 e0.05 e0.05 e0.05 e640 0.45 0.00 e0.10 e0.05 e0.05 e0.10 160 7.2 0.00 e0.10 e0.05 e0.05 e0.10 160 7.2 0.00 e0.10 e0.05 e0.05 e0.10 160 7.2 0.00 e0.10 e0.05 e0.05 e0.00 e0.10 13 0.00 e0.10 e0.05 e0.05 e0.00 e0.10 13 0.00 e0.10 e0.05 e0.05 e0.00 e0.05 1.2 0.00 e0.00 e0.00 e0.00 e0.00 e0.05 1.2 0.00 e0.00 e0	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 20 DAILY MEAN VALUES OCT NOV DEC JAN FEB MAR APR MAY 0.00 0.00 e0.10 e0.10 e0.10 e0.10 e0.05 0.21 0.22 0.00 0.00 0.00 e0.10 e0.10 e0.10 e0.10 1.2 0.03 0.00 0.00 0.00 e0.05 e0.10 e0.10 e0.05 2.0 0.01 0.00 0.00 0.00 e0.05 e0.10 e0.10 e0.05 2.0 0.01 0.00 0.00 e0.05 e0.10 e0.10 e0.05 3.6 0.22 0.00 0.00 e0.05 e0.10 e0.10 e0.05 4.1 3.6 0.00 e0.01 e0.05 e0.10 e0.10 e0.05 4.1 3.6 0.00 e0.00 e0.05 e0.10 e0.10 e0.05 4.8 8.7 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 6.0 4.9 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 1.1 12 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 1.1 12 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 0.56 19 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.1 12 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.1 12 0.00 e0.10 e0.10 e0.05 e0.10 e0.10 e0.05 1.1 18 0.00 e0.10 e0.10 e0.05 e0.10 e0.10 e0.05 1.1 18 0.00 e0.10 e0.10 e0.05 e0.10 e0.10 e0.10 0.26 17 0.00 e0.10 e0.10 e0.05 e0.10 e0.10 e0.10 0.26 17 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 e0.10 e0.10 0.26 17 0.00 e0.10 e0.10 e0.05 e0.05 e0.10 e0.10 0.26 17 0.00 e0.10 e0.10 e0.05 e0.05 e0.10 e0.05 e0.10 0.26 17 0.00 e0.10 e0.10 e0.05 e0.05 e0.10 e0.05 e0.00 0.26 17 0.00 e0.10 e0.10 e0.05 e0.05 e0.00 e0.05 e0.00 0.26 17 0.00 e0.10 e0.10 e0.05 e0.05 e0.00 e0.05 e0.00 0.26 17 0.00 e0.10 e0.10 e0.05 e0.05 e0.00 e0.05 e0.00 0.26 17 0.00 e0.10 e0.05 e0.05 e0.05 e0.00 e0.05 e0.00 e0.05 e0.00 e0.	OCT NOV DEC JAN FEB MAR APR MAY JUN 0.00 0.00 e0.10 e0.10 e0.10 e0.10 e0.05 0.11 0.22 0.03 0.00 0.00 e0.10 e0.10 e0.10 e0.10 e0.05 0.21 0.22 0.03 0.00 0.00 e0.05 e0.10 e0.10 e0.05 2.0 0.01 0.01 0.00 0.00 e0.05 e0.10 e0.10 e0.05 2.0 0.01 0.01 0.00 0.00 e0.05 e0.10 e0.10 e0.05 2.0 0.01 0.01 0.00 0.00 e0.05 e0.10 e0.10 e0.05 2.0 0.01 0.01 0.00 0.00 e0.05 e0.10 e0.10 e0.05 2.0 0.01 0.01 0.00 0.00 e0.05 e0.10 e0.10 e0.05 2.0 0.01 0.07 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 4.1 3.6 0.27 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 4.8 8.7 2.6 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 1.1 12 2.4 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 1.1 12 2.4 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 1.1 12 2.4 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.1 12 2.4 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.1 12 2.4 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.1 12 2.4 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.1 12 2.4 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.1 12 2.4 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.1 12 2.4 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.1 12 2.4 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.89 16 3.7 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.89 16 3.7 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.56 19 2.4 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.1 18 4.4 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.1 18 4.4 0.00 e0.10 e0.10 e0.05 e0.10 e0.05 1.2 12 7.6 0.00 e0.10 e0.10 e0.05 e0.10 e1.0 1.1 18 4.4 0.00 e0.10 e0.10 e0.05 e0.10 e1.0 1.2 12 7.6 0.00 e0.10 e0.10 e0.05 e0.05 e0.05 e640 0.15 12 12 7.6 0.00 e0.10 e0.10 e0.05 e0.05 e0.05 e640 0.12 12 12 7.6 0.00 e0.10 e0.10 e0.05 e0.05 e0.05 e0.05 e0.05 e640 0.15 6.0 1.2 12 12 7.6 0.00 e0.10 e0.05 e0.05 e0.05 e0.05 e640 0.12 12 12 7.6 0.00 e0.10 e0.05 e0.05 e0.05 e0.05 e0.05 e640 0.12 12 12 7.6 0.00 e0.10 e0.05 e0.	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER DAILY MEAN VALUES OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 0.00 0.00 e0.10 e0.10 e0.10 e0.11 e0.15 0.21 0.22 0.03 0.00 0.00 0.00 e0.10 e0.10 e0.10 e0.10 e0.15 0.21 0.22 0.03 0.00 0.00 0.00 e0.05 e0.10 e0.10 e0.10 e0.15 1.2 0.03 0.02 0.00 0.00 0.00 e0.05 e0.10 e0.10 e0.05 1.2 0.00 0.00 1.00 0.00 0.00 e0.05 e0.10 e0.10 e0.05 1.2 0.00 1.00 1.00 0.00 0.00 e0.05 e0.10 e0.10 e0.05 1.2 0.00 1.00 1.00 0.00 0.00 e0.05 e0.10 e0.10 e0.05 1.2 0.00 1.00 1.00 0.00 0.00 e0.00 e0.05 e0.10 e0.10 e0.05 1.2 0.00 0.00 0.00 e0.00 e0.05 e0.10 e0.10 e0.05 1.2 0.00 0.00 0.00 e0.00 e0.05 e0.10 e0.10 e0.05 1.2 0.00 0.00 0.00 e0.00 e0.05 e0.10 e0.10 e0.05 1.2 0.00 0.00 0.00 e0.00 e0.05 e0.10 e0.10 e0.05 1.2 0.00 0.00 e0.10 e0.05 e0.10 e0.10 e0.05 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 0.00 0.00 0.00 e0.10 e0.10 e0.10 e0.10 e0.10 1.2 0.03 0.02 0.00 0.00 0.00 0.00 e0.10 e0.10 e0.10 e0.10 e0.10 1.2 0.03 0.02 0.00 0.00 0.00 0.00 0.00 e0.10 e0.10 e0.10 e0.10 e0.5 0.00 1.01 0.01 0.01 0.00 0.00 0.00 0		

^{*--}During period of operation (1918-21 (fragmentary), 1951-73, 1982 to current year.

a--Backwater from ice. b--Gage height, 15.91 ft, from floodmark, at different site and datum.

c--Backwater from ice, from floodmark in gage house, at different site and datum.

PERIOD OF RECORD.--Water years 1989-92, 1994, May 1999 to current year.

REMARKS.—Due to no flow for July through September, a fourth sample was not collected this year. Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

	Date		Instan- taneous dis- charge, cfs (00061)	field, std units (00400)	wat unf uS/cm 25 degC (00095)		ature, water, deg C (00010)	org-N, water, unfltrd mg/L as N (00625)	water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	
	19 MAY	1230	19	8.3	583		1.5	2.2	.313	.024	
	07 JUN	1215	8.0	8.6	1420	0.0	7.0	.52	<.022	<.002	
	25	1215	.03	9.3	1330	22.5	19.0	.78	<.022	<.002	
			Date	Orthorphose phate water fltromg/I as I (0067)	Phoser, Phoser, phorus d, water unfltr mg/l	s, sieve r, diamet rd percen L <.063m	pende, sedi- sedi- e men- tr concer nt tration mg/1	ed Sus- pende sedi- ment n- load tons	ed : :		
			MAR 2003 19 MAY	.038	3 .32	56	199	10			
			07	< .00	7 .026	89	54	1.2			
			25	<.007	7 .033	76	5	.00)		
Date	Time	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)
MAY 2003 07	1215	390	68.5	53.8	7.74	4	174	261	12.1	.46	3.68
Date	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d	water unfltrd	water,		Copper, water, unfltrd recover -able, ug/L (01042)	Lead, water, unfltrd recover -able, ug/L (01051)	Nickel, water, unfltrd recover -able, ug/L (01067)	unfltrd recover
MAY 2003 07	484	961	1.31	20.8	E2	<.2	<.8	3.8	.28	4.52	4

 $\mathtt{E--Estimated}.$

06155030 MILK RIVER NEAR DODSON, MT

LOCATION.--Lat 48°24'11", long 108°17'35" (NAD 27), in NE¹/₄SE¹/₄NW¹/₄ sec.36, T.31 N., R.26 E., Phillips County, Hydrologic Unit 10050004, on left bank 30 ft downstream from U.S. Highway 2 bridge, 0.95 mi downstream from Dodson Dam, 1.9 mi west of Dodson, and at river mile 273.2.

DRAINAGE AREA.--11,192 mi².

PERIOD OF RECORD.--October 1982 to current year (seasonal record beginning water year 1994).

GAGE.--Water-stage recorder. Elevation of gage is 2,250 ft (NGVD 29).

REMARKS.--Records good except those for estimated daily discharges, which are poor. Numerous diversions for irrigation upstream from station. Bureau of Reclamation satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			e50 e50 e50 e50 e60	139 124 116 103 100	6.8 6.0 6.2 7.8 9.3		56 58 17	6.5 4.5 5.2	0.14 0.20 0.26 0.10 0.00	0.41 0.32 0.39 0.53 0.58		
6 7 8 9 10			e50 e50 e50 e50 e60	102 231 188 11 10	9.2 10 12 11 9.8	e5.0 e5.0 e5.0 e5.0	5.7 7.4 9.8 13 9.5	10 8.9 3.8 3.7 4.2	0.00 0.00 0.00 0.00 0.00	131 205 116 113 107		
11 12 13 14 15			e60 e60 e70 e200 e400	9.7 10 10 9.7 8.9	13 16 43 72 106	9.0 16 19 33 64	8.4 13 13 10 4.3	3.3 1.4 0.35 0.07 0.00	0.00 0.00 0.00 0.00 0.00	101 93 82 74 79		
16 17 18 19 20			e950 e1500 2320 1980 1410	8.7 9.6 9.3 10	117 55 56 50 29	54 71 52 35 21	3.5 3.5 3.8 4.8 4.7	0.32 0.00 0.00 0.00 0.00	0.06 0.06 0.00 0.00	76 84 64 73 80		
21 22 23 24 25			986 1130 1140 1070 786	18 35 76 74 75	16 9.5 8.3 8.5 6.1	22 43 78 65 71	3.4	0.00 0.07 0.12 0.00 0.00	0.00 0.24 0.06 0.00	79 79 79 73 74		
26 27 28 29 30 31			664 591 492 320 232 174	73 51 25 11 8.1	4.9 4.9 6.1 5.8 6.4 6.6	69 57 61 57 55	3.2 3.5 4.5 6.4 9.3 9.4	0.54 0.70 0.00 0.00 0.00 0.00	0.00 0.00 0.07 0.25 0.36	75 74 77 86 87 e90		
TOTAL MEAN MAX MIN AC-FT			17055 550 2320 50 33830	1668.0	728.2		313.9 10.1 58 3.2 623	2.04	1.87 0.062 0.36 0.00 3.7	2353.23 75.9 205 0.32 4670		
STATISTI	CS OF MON	THLY MEAN	I DATA FO	OR WATER Y	EARS 1982	- 1993 A	ND SEASONS	3 1994 - 2	2003*			
MEAN MAX (WY) MIN (WY)	83.2 230 1990 18.2 1985	129 526 1986 20.3 1985	454 2252 1996 15.9 1985	190 1691 1996 2.35 1999	182 1685 1986 3.41 2001	234 655 1995 16.4 1983	173 599 1991 8.72 2001	64.3 362 1993 2.04 2003	128 1727 1986 0.062 2003	194 2688 1987 5.07 1991	106 421 1987 25.3 1985	77.8 275 1987 17.3 1985
SUMMARY	STATISTI				ASON	SE	ASONS 1994	1 - 2003*		WATER Y	EARS 1982	- 1993
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MISTANT ANNUAL 10 PERC 50 PERC	MEAN ANNUAL ME DAILY ME DEAK FLO COMMON C	AN AN N MINIMUM GE W FLOW C-FT) DS DS		2320 M 0.00 A 2560 M 15.75 M		5 a5		ar 20 1996 ay 6 2001 ar 17 1994 ar 14 1996	5 - 4 5	13200 29	Sep 2 .00 Sep 1 .00 Sep 1 .00 Sep 1 .5ep 2 .79 Sep 2	1996 1985 6 1986 6 1983 6 1986 6 1986 6 1990

^{*--}Seasonal record beginning water year 1994. a--Gage height, 22.71 ft. b--Backwater from ice. c--No flow at times most years.

e--Estimated.

06155900 MILK RIVER AT CREE CROSSING, NEAR SACO, MT

 $LOCATION~(REVISED).--Lat~48^{\circ}32'25",~long~107^{\circ}31'10"~(NAD~27),~in~NW^{1}/_{4}SE^{1}/_{4}~sec.11,~T.32~N.,~R.32~E.,~Phillips~County,~Hydrologic~Unit~NAD~27),~in~NW^{1}/_{4}SE^{1}/_{4}SE^{1}/_{4}~sec.11,~T.32~N.,~R.32~E.,~Phillips~County,~Hydrologic~Unit~NAD~27),~in~NW^{1}/_{4}SE^$ 10050004, on right bank 25 ft upstream from bridge on Phillips County road, 500 ft upstream from Nelson Canal, 9.9 mi northwest of Saco, and at river mile 176.4.

DRAINAGE AREA.--13,118 mi².

PERIOD OF RECORD.--May 2000 to current year (seasonal records only).

GAGE.--Water-stage recorder. Elevation of gage is 2,188 ft (NGVD 29).

REMARKS.--Seasonal records good except those for estimated daily discharges, which are poor. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1			e100	338	72 91 64 50 72	121	115	118	111	20		
2			e100	284	91	127	111	119	117	20		
3			e100	234	64	139	111	119	125	21		
4			e100	199	50	135	115	122	121	21		
5							122	150	103	21		
6			e100	169	151 197 217 213 206	146	121	149	79 58 45 38 32	21		
7			e100	168	197	168	108	141 155 142 141	58	22		
8			e100	163	217	173	120	155	45	22		
9			e100	210	213	164	120	142	38	116		
10			e100	312	206	150	133			207		
11			e100	169	188 175 175 168 172	153	151	129 111 107 120 117	29	145		
12			e100	97	175	145	169	111	28	138		
13			e100	69	175	143	160	107	26	136		
14			e100	60	168	146 179	166	111 107 120 117	25	133		
15			e100	0.5	1/2	1/9				128		
16			e240	66	211	199	133	104 100 89 90 90	27	120		
17			e500	59	277	228	131	100	27	115		
18			e1000	56	306	235	120	89	27	112		
19			e1500	52	259	218	100	90	27	108		
20			e2000	54	211 277 306 259 221	205	97	90	29	113		
21			e2600	52	221	182	94	81 54 50 52 60	29	104		
22			e2300	47	212	170	114	54	27	100		
23			e1800	44	189	149	142	50	26	112		
24			e1600	43	169	147	132	52	24	112		
25			e1300	45	148	187	126	60	23	107		
26			e900	92	137	213	141	59	23	110		
27			796	119	131	176	136	58	22	107		
28			657	109	110	148	135	63	21	106		
29			598	103	113	121	130	91	21	124		
30			527	89	115	113	122	85	21	124		
31			430		116		116	59 58 63 91 85 88		e120		
TOTAL			20248	3743	5146	4914	3921	3154	1338	2965		
MEAN			653	125	166	164	126	102	44.6	95.6		
MAX			2600	338	306	235	169	155	125	207		
MIN			100	43	50	113	94	50	21	20		
AC-FT			40160	7420	10210	9750	7780	3154 102 155 50 6260	2650	5880		
STATISTIC					2000 - 20							
MEAN			252	56.1	74.8	218	140	109 225 2002 16.7 2001	48.2	42.4		
MAX			653	125	166	517	244	225	108	91.3		
(WY)			2003	2003	2003	2002	2002	2002	2002	2004		
MIN			38.3	20.5	9.44	68.1	28.3	16.7	18.6	12.6		
(WY)			2002	2002	2001	2001	2001	2001	2000	2002		
SUMMARY	CTATTCTT	70		EOD.	2002 6576	NT.	CE	ACOME SOOK	2002			
нтсирот	DATIV ME	N NI		260	∩ M ₂ ~	21	2600) Mar 2.6 May) Mar L.16 Mar 2.6 May	21 2002			
LOWEST	DATLY MEA	V.		200	0 0c+	1	2000	2.6 May	28 2001			
MAXIMIM	PEAK FLO	W		unknow	n occ	-	c260) Mar	21 2003			
MAXIMUM	PEAK STA	GE		a1	1.16 Mar	21	a11	L.16 Mar	21 2003			
INSTANTA	NEOUS LO	W FLOW		b1	9 Oct	1	2	2.6 May	28 2001			

a--Backwater from ice.

b--Gage height, 2.37 ft. c--Daily mean discharge.

e--Estimated.

06156500 BELANGER CREEK DIVERSION CANAL NEAR VIDORA, SASKATCHEWAN

(International gaging station)

LOCATION.--Lat 49°29'39", long 109°21'54" (NAD 27), in NW¹/₄ sec.19, T.6, R.25 W., third meridian, Hydrologic Unit 10050013, on left bank 0.3 mi downstream from diversion weir and 12 mi north of Vidora.

PERIOD OF RECORD.--March 1946 to current season (seasonal records only). Monthly discharge only for some periods, published in WSP 1309.

GAGE.--Water-stage recorder. Elevation of gage is 3,200 ft (NGVD 29), from Cypress Lake elevation.

REMARKS.--Records fair. Canal diverts water from right bank of Belanger Creek in SW¹/₄ sec.30, T.6, R.25 W., third meridian, for storage in Cypress Lake. Water Survey of Canada satellite telemeter at station.

COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 696 ft³/s, June 28, 1998; no flow at times each season.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			e0.00 e0.00 e0.00 e0.00 e0.00	92 36 1.4 5.0 2.1	10 10 5.9 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
6 7 8 9 10			e0.00 e0.00 e0.00 e0.00 e0.00	0.07 0.00 0.07 26 53	0.00 0.07 0.04 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
11 12 13 14 15			e0.00 e0.00 e0.00 e0.00 e0.00	25 18 15 24 33	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
16 17 18 19 20			e0.00 e0.00 e0.00 e95 e183	57 54 37 25 19	0.00 0.00 0.00 0.00 3.3	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
21 22 23 24 25			e191 e177 e204 e172 e103	15 13 12 12 12	7.3 7.1 7.1 7.1 6.8	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
26 27 28 29 30 31			e52 29 16 7.5 8.9 48	14 15 16 12 11	7.4 7.3 7.2 7.3 7.2 4.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
TOTAL MEAN MAX MIN AC-FT			1286.40 41.5 204 0.00 2550	654.64 21.8 92 0.00 1300	105.11 3.39 10 0.00 208	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00		

06157500 CYPRESS LAKE EAST OUTFLOW CANAL NEAR VIDORA, SASKATCHEWAN

(International gaging station)

LOCATION.--Lat 49°29'12", long 109°21'08" (NAD 27), in SE¹/₄ sec.19, T.6, R.25 W., third meridian, Hydrologic Unit 10050013, on right bank 500 ft upstream from Belanger Creek, and 12.3 mi north of Vidora.

PERIOD OF RECORD.--April to October 1940, April 1943 to current season (seasonal records only). Monthly discharge only for some periods, published in WSP 1309.

GAGE.--Water-stage recorder. Elevation of gage is 3,180 ft (NGVD 29). Prior to Sept. 26, 1946, at elevation 2.24 ft higher and Sept. 26, 1946, to May 18, 1950, at elevation 1.54 ft higher.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Canal diverts water from Cypress Lake for irrigation in Frenchman River basin in Saskatchewan. Water Survey of Canada satellite telemeter at station.

COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 202 ft³/s, Apr. 19, 1952; no flow at times most seasons.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAV	7737	FFD	MAD	7 DD	242.37	TITAT	7777	AIIO	CED	OCITI	NOT	DEC
DAY 1 2 3 4 5	JAN	FEB	MAR e0.18 e0.18 e0.18 e0.18	APR e0.60 e0.64 e0.67 e0.71 e1.3	MAY 11 9.7 8.8 8.9 9.3	JUN 0.81 0.85 0.85 0.85 0.85	JUL 3.8 3.3 2.9 2.5 2.2	AUG 0.00 0.00 0.00 0.00	SEP 0.00 0.00 0.00 0.00	OCT 0.00 0.00 0.00 0.00 0.00	NOV	DEC
6 7 8 9			e0.18 e0.18 e0.18 e0.18 e0.18	e2.0 e2.7 e2.8 e2.8 e2.7	10 8.8 5.4 4.4 3.8	0.78 0.78 0.78 0.78 0.74 0.78	2.0 1.7 1.6 1.4	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.04 0.11 0.11		
11 12 13 14 15			e0.18 e0.18 e0.21 e0.21 e0.21	e2.8 e3.1 e3.3 e3.2 e3.2	3.3 3.1 3.2 3.0 2.8	0.78 0.78 0.74 0.78 0.71	1.1 0.88 0.74 0.64 0.53	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.18 0.21 0.21 0.25 0.28		
16 17 18 19 20			e0.21 e0.42 e2.6 e8.1 e8.8	4.0 3.2 2.7 4.4 3.7	2.8 2.6 2.6 2.5 2.4	0.67 0.64 0.57 0.74 6.6	0.46 0.35 0.21 0.11 0.07	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.32 0.35 0.39 0.39 0.35		
21 22 23 24 25			e7.1 e5.8 e4.5 e3.2 e1.9	3.2 3.7 11 11 9.8	1.5 1.1 0.85 0.78	10 10 9.6 9.1 8.3	0.04 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.42 0.39 0.42 0.57		
26 27 28 29 30 31			e0.67 e0.53 e0.42 e0.35 e0.46 e0.57	8.5 7.5 10 14 13	0.78 0.78 0.71 0.71 0.67 0.71	7.4 6.5 5.7 4.9 4.3	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.64 0.67 0.78 e0.81 e0.85 e0.85		
TOTAL MEAN MAX MIN AC-FT			48.42 1.56 8.8 0.18 96	142.22 4.74 14 0.60 282	117.73 3.80 11 0.67 234	96.84 3.23 10 0.57 192	27.73 0.89 3.8 0.00 55	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	10.27 0.33 0.85 0.00 20		

06158500 EASTEND CANAL AT EASTEND, SASKATCHEWAN

(International gaging station)

LOCATION.--Lat 49°30'21", long 108°50'54" (NAD 27), in NW¹/₄ sec.25, T.6, R.22 W., third meridian, Hydrologic Unit 10050013, on left bank 600 ft downstream from Eastend Reservoir headgate, 1.5 mi west of Eastend.

PERIOD OF RECORD.--March 1937 to current season (seasonal records only). Monthly discharge only for some periods, published in WSP 1309.

GAGE.--Water-stage recorder. Elevation of gage is 2,998.58 ft (Canadian Geodetic Vertical Datum 1928). Prior to June 1973, at sites within 1 mi, at different elevations.

REMARKS.--Records good. Canal diverts water from Eastend Reservoir in $NW^1/_4$ sec.25, T.6, R.22 W., third meridian, on right bank for irrigation of about 3,100 acres in the Frenchman River basin in Saskatchewan. Water Survey of Canada satellite telemeter at station.

COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 91 ft³/s, May 18, 1993; no flow at times each season.

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	77 72 65 60 59	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
6 7 8 9 10			0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	48 34 28 20 4.9	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
11 12 13 14 15			0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
16 17 18 19 20			0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
21 22 23 24 25			0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	89 88 87 85 83	0.00 0.00 0.00 0.00	42 65 69 69 74	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
26 27 28 29 30 31			0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	81 79 78 75 77	0.00 0.00 0.00 0.00 0.00	74 71 66 46 17 0.64	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
TOTAL MEAN MAX MIN AC-FT			0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00 0.00	958.00 30.9 89 0.00 1900	467.90 15.6 77 0.00 928	593.64 19.1 74 0.00 1180	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00 0.00		

06161300 HUFF LAKE PUMPING CANAL NEAR VAL MARIE, SASKATCHEWAN

(International gaging station)

LOCATION.--Lat 49°22'20", long 107°53'05" (NAD 27), in NW¹/₄ sec.7, T.5, R.14 W., third meridian, Hydrologic Unit 10050013, on right bank 50 ft downstream from pump discharge outlet, and 11 mi northwest of Val Marie.

PERIOD OF RECORD.--March 1963 to current season (seasonal records only). Published as Val Marie West Pumping Canal near Val Marie, Saskatchewan, March 1963 to October 1980. July 1950 to current season in reports of Department of the Environment, Canada.

GAGE.--Water-stage recorder. Prior to 1956 and subsequent to 1960, records obtained from occasional discharge measurements and records of pump operation.

REMARKS.--Records fair. Canal diverts water from Huff Lake in NW¹/₄ sec.7, T.5, R.14 W., third meridian, on left bank for irrigation of about 2,100 acres in the Frenchman River basin in Saskatchewan.

COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 31 ft³/s, May 30 to June 2, 7-10, 1975, May 5, 6, 7, 9, 1977; no flow at times each season.

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	22 22 23 23 10	0.00 0.00 0.00 0.00	25 25 25 24 23	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
6 7 8 9 10			0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 11 5.7 0.00 0.00	0.00 0.00 0.00 0.00	24 22 13 2.9 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
11 12 13 14 15			0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 18 21	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
16 17 18 19 20			0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	21 23 22 23 23	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
21 22 23 24 25			0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	23 23 23 23 22	0.00 0.00 0.00 0.00	19 25 25 25 25	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
26 27 28 29 30 31			0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	21 22 22 16 22 21	0.00 0.00 0.00 0.00	25 26 26 26 25 25	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
TOTAL MEAN MAX MIN AC-FT			0.00 0.000 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00	389.00 12.5 23 0.00 772	116.70 3.89 23 0.00 231	272.00 8.77 26 0.00 540	183.90 5.93 25 0.00 365	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00		

06161500 HUFF LAKE GRAVITY CANAL NEAR VAL MARIE, SASKATCHEWAN

(International gaging station)

LOCATION.--Lat 49°22'10", long 107°53'06" (NAD 27), in SW¹/₄, sec. 7, T. 5, R.14 W., third meridian, Hydrologic Unit 10050013, on right bank 100 ft downstream from Huff Lake headgate and 11 mi northwest of Val Marie.

PERIOD OF RECORD.--March 1946 to current season (seasonal records only). Published as Val MarieWest Gravity Canal near Val Marie, Saskatchewan, March 1946 to October 1980. Monthly figures only prior to March 1947, published in WSP 1309.

GAGE.--Water-stage recorder. Elevation of gage is 2,662.88 ft (Canadian Geodetic Vertical Datum 1928). Prior to Sept. 27, 1949, at site 0.5 mi downstream at different datum.

REMARKS.--Records fair. Canal diverts water from Huff Lake in SW¹/₄, sec. 7, T. 5, R.14 W., third meridian, on left bank for irrigation of about 1,900 acres in the Frenchman River basin in Saskatchewan. Since 1962, records have been based on gate openings in Huff Lake Dam.

COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 68 ft³/s, July 24, 1996; no flow at times each season.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	20 26 36 34 30	0.00 0.00 0.00 0.00	32 26 22 20 17	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
6 7 8 9 10			0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	29 25 17 14 7.9	0.00 0.00 0.00 0.00	e14 e7.1 e0.00 e0.00 e0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
11 12 13 14 15			0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 30 32	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	e0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
16 17 18 19 20			0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	26 26 30 40 28	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
21 22 23 24 25			0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	36 39 41 42 36	0.00 0.00 0.00 0.00	32 44 44 37 32	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
26 27 28 29 30 31			0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	32 37 43 36 26 19	0.00 0.00 0.00 0.00 0.00	34 32 32 38 39 36	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
TOTAL MEAN MAX MIN AC-FT			0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00 0.00	599.00 19.3 43 0.00 1190	238.90 7.96 36 0.00 474	400.00 12.9 44 0.00 793	138.10 4.45 32 0.00 274	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00		

06162500 NEWTON LAKE MAIN CANAL NEAR VAL MARIE, SASKATCHEWAN

(International gaging station)

LOCATION.--Lat $49^{\circ}18'18''$, long $107^{\circ}48'05''$ (NAD 27), in NE $^{1}/_{4}$ sec. 15, T.4, R.14 W., third meridian, Hydrologic Unit 10050013, on right bank about 500 ft downstream from Newton Lake headgate, and 5.4 mi northwest of Val Marie.

PERIOD OF RECORD.--April 1937 to current season (seasonal records only). Published as Val Marie Main Canal near Val Marie, Saskatchewan, March 1962 to October 1980. Prior to April 1947 monthly discharge only, published in WSP 1309. Prior to March 1962, published as Val Marie Canal near Val Marie.

GAGE.--Water-stage recorder. Elevation of gage is 2,622.03 ft (Canadian Geodetic Vertical Datum 1928). Prior to May 21, 1963, at several sites within 2 mi of present site at different elevations.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Canal diverts water from Newton Lake in SE¹/₄ sec.22, T.4, R.14 W., third meridian, on left bank for irrigation of about 4,700 acres in the Frenchman River basin in Saskatchewan.

COOPERATION .-- This is one of a number of stations which are maintained jointly by Canada and the United States.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 131 ft³/s, May 23, 1997; no flow at times each season.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1			0.00	0.00	0.00	66	0.00	56	0.00	0.00		
2			0.00	0.00	0.00	48	0.00	35	0.00	0.00		
3			0.00	0.00	0.00	48	0.00	15	0.00	0.00		
4 5			0.00	0.00	0.00	47	0.00	8.1	0.00	0.00		
5			0.00	0.00	0.00	31	0.00	9.5	0.00	0.00		
6			0.00	0.00	0.00	6.0	0.00	11	0.00	0.00		
7			0.00	0.00	0.00	0.00	0.00	3.6	0.00	0.00		
7 8			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
9			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
10			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
11			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
12			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
13			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
14			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
15			0.00	0.00	0.64	0.00	0.00	0.00	0.00	0.00		
16			0.00	0.00	64	0.00	e71	0.00	0.00	0.00		
17			0.00	0.00	96	0.00	e88	0.00	0.00	0.00		
18			0.00	0.00	96	0.00	e83	0.00	0.00	0.00		
19			0.00	0.00	105	0.00	e97	0.00	0.00	0.00		
20			0.00	0.00	115	0.00	e100	0.00	0.00	0.00		
21			0.00	0.00	119	0.00	e98	0.00	0.00	0.00		
22			0.00	0.00	113	0.00	94	0.00	0.00	0.00		
23			0.00	0.00	105	0.00	92	0.00	0.00	0.00		
24			0.00	0.00	105	0.00	90	0.00	0.00	0.00		
25			0.00	0.00	105	0.00	89	0.00	0.00	0.00		
26			0.00	0.00	103	0.00	88	0.00	0.00	0.00		
27			0.00	0.00	101	0.00	89	0.00	0.00	0.00		
28			0.00	0.00	98	0.00	88	0.00	0.00	0.00		
29			0.00	0.00	90	0.00	97	0.00	0.00	0.00		
30			0.00	0.00	77	0.00	91	0.00	0.00	0.00		
31			0.00		66		79	0.00		0.00		
TOTAL			0.00	0.00	1558.64	246.00	1434.00	138.20	0.00	0.00		
MEAN			0.000	0.000	50.3	8.20	46.3	4.46	0.000	0.000		
MAX			0.00	0.00	119	66	100	56	0.00	0.00		
MIN			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
AC-FT			0.00	0.00	3090	488	2840	274	0.00	0.00		

06164000 FRENCHMAN RIVER AT INTERNATIONAL BOUNDARY

(International gaging station)

left bank 50 ft north of international boundary, 22 mi northeast of Whitewater, MT, and at river mile 76.4. DRAINAGE AREA.--2,120 mi², of which 343 mi² probably is noncontributing.

PERIOD OF RECORD.--April 1917 to current season (seasonal records only for most years).

REVISED RECORDS.--WSP 1389: 1938(M), 1939-41, 1942(M), 1943, 1950(M). W 1983: Drainage area.

GAGE.--Water-stage recorder and concrete control since August 1949. Elevation of gage is 2,420 ft (NGVD 29). Prior to June 23, 1937, water-stage recorder at site 0.5 mi upstream at different elevation. June 23, 1937, to October 1952, water-stage recorder at site 100 ft downstream at present

REMARKS.--Seasonal records fair. Natural flow of stream affected by several storage reservoirs, diversions for irrigation of about 14,500 acres, and return flow from irrigated areas. Water may be diverted into or from Battle Creek basin through Cypress Lake. Water Survey of Canada satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

COOPERATION.--This is one of a number of stations which are maintained jointly by the United States and Canada.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			e3.5 e3.5 e3.5 e5.3 e7.1	319 262 142 102 121	62 57 56 55 69	42 44 41 37 35	0.81 0.78 0.74 0.71 0.49	19 17 28 23 19	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
6 7 8 9 10			e7.1 e3.5 e1.8 e1.8 e3.5	132 197 228 243 240	115 158 175 151 141	32 31 31 30 24	0.32 0.25 0.18 0.18 0.14	17 13 8.0 5.5 3.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
11 12 13 14 15			e3.5 e5.3 e8.8 e18 e26	190 187 178 100 61	150 142 137 133 121	17 13 12 12 11	0.11 0.11 19 65 46	1.5 0.92 0.67 0.46 0.32	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
16 17 18 19 20			e177 e883 1460 1320 1270	53 63 77 91 144	80 47 29 22 40	9.3 7.5 6.0 3.7 3.4	38 32 31 32 24	0.21 0.14 0.11 0.07 0.07	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
21 22 23 24 25			1350 1130 1160 1080 667	190 188 187	42 45 48 65 56	3.4 3.2 3.2 3.2 3.0	17 14 13 10 9.5	0.07 0.04 0.04 0.04 0.04	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
26 27 28 29 30 31			643 713 791 795 727 441	185 108 76 73 72	52 41 40 39 39 39	2.8 2.6 2.4 1.5 0.99	14 22 17 12 20 20	0.04 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 4.8		
TOTAL MEAN MAX MIN AC-FT			14709.2 474 1460 1.8 29180	4577 153 319 53 9080	2446 78.9 175 22 4850	468.19 15.6 44 0.99 929	460.32 14.8 65 0.11 913	157.24 5.07 28 0.00 312	0.00 0.000 0.00 0.00	4.80 0.15 4.8 0.00 9.5		
STATIST	ICS OF MONT	HLY ME	EAN DATA FO	R SEASONS	1917 -	2003*						
MEAN MAX (WY) MIN (WY)			181 1490 1997 0.000 2002	402 5313 1952 0.35 2000	138 1051 1927 2.54 1937	84.7 886 1923 0.39 1937	53.0 602 1955 0.021 1984	17.1 199 2002 0.000 1934	7.21 65.9 1951 0.000 1919	10.4 77.7 1966 0.000 1932		
SUMMARY	STATISTICS					EASON	2	SEASONS 19	17 - 2003	*		
LOWEST MAXIMUM	DAILY MEAN DAILY MEAN PEAK FLOW PEAK STAGE			146 155	0 Ma 0.00 Au 0 Ma 9.85 Ma	ar 18 1g 27 ar 18 ar 18	192 a221 k	200 Ap 0.00 Ju 700 Ap 519.90 Ap	r 15 1952 1 28 1919 r 15 1952 r 15 1952			

^{*--}Seasonal record most years.

a-From rating curve extended above 2,300 ft^3/s on basis of slope-area measurement of peak flow. b--From floodmark.

e--Estimated.

RESERVOIRS IN FRENCHMAN RIVER BASIN IN SASKATCHEWAN

(International gaging stations)

All elevations listed for the following reservoirs are referenced to the National Geodetic Vertical Datum of 1929.

06157000 CYPRESS LAKE.--Lat 49°27'30", long 109°30'25" (NAD 27), in SE¹/₄ sec.12, T.6, R.27 W., third meridian, Hydrologic Unit 10050013, on south shore, and 12 mi north of Consul. DRAINAGE AREA, 107 mi². PERIOD OF RECORD, February 1939 to current season (seasonal records only). Records prior to October 1946, published only in WSP 1309. March to May 1952 daily elevations and contents, published in WSP 1260-B. Water-stage recorder. Elevation of gage is at mean sea level (Geodetic Survey of Canada datum; subtract 33.67 ft to obtain Reclamation Service datum). Prior to 1969 season, at Reclamation Service datum. Prior to 1940, nonrecording gage on natural lake at "South" station. February 1940 to Apr. 28, 1955, elevation obtained from average of nonrecording gage readings at west and east dams. Apr. 29, 1955, to Aug. 21, 1984, gage located at east dam. REMARKS, This is an offstream reservoir formed by two earthfill dams on a natural lake of the same name which is the head of the Frenchman River. There are concrete control works at both dams. The following capacity figures are from capacity table effective January 1971; see previous reports for superseded figures. Usable capacity, 79,500 acre-ft between elevation 3,187.0 ft, bottom of west outlet works, and 3,201.9 ft, maximum design level. Dead storage, 24,300 acre-ft. Water is diverted from Battle Creek on west, 12 mi northwest of Consul, and from Belanger Creek, in the Frenchman River basin, on the east, 12 mi north of Vidora. Water is released to the same streams for irrigation. Figures given herein represent total contents. Water Survey of Canada satellite telemeter at station. This is one of a number of stations which are maintained jointly by Canada and the United States. REVISED RECORDS, W 1983: Drainage area.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 117,300 acre-ft, Apr. 21, 1955, elevation, 3,203.36 ft; minimum observed since first filling, 8,190 acre-ft, Nov. 17, 1992, elevation, 3,183.17 ft.

EXTREMES FOR CURRENT SEASON: Maximum contents, 28,260 acre-ft, May 4, elevation, 3,187.84 ft; minimum, 14,180 acre-ft, Oct. 23, elevation, 3,184.68 ft.

06159000 EASTEND RESERVOIR.--Lat 49°30'26", long 108°51'08" (NAD 27), in NW¹/₄ sec.25, T.6, R.22 W., third meridian Hydrologic Unit 10050013, at dam on Frenchman River, 1.6 mi west of Eastend, and at mile 300.5. DRAINAGE AREA, 619 mi². PERIOD OF RECORD, February 1937 to current season (seasonal records only). Prior to 1958, published as East End Reservoir at East End. Nonrecording gages read about once a day during irrigation season and twice a day during high stages February 1937 to July 1979. Water-stage recorder. Elevation of gage is at mean sea level (Geodetic Survey of Canada datum). REMARKS, Reservoir is formed by earthfill dam completed in 1939, breached during flood in 1952 and rebuilt the same year with a concrete spillway and control works. The following capacity figures are from capacity table effective September 1982. Usable capacity, 1,690 acre-ft between elevation 2,993.5 ft, bottom of outlet works, and 3,012.0 ft, maximum design level. No dead storage. Water is used for irrigation. Water Survey of Canada satellite telemeter at station. This is one of a number of stations which are maintained jointly by Canada and the United States. REVISED RECORDS (SEASONS), WSP 1309: 1948(M). WSP 1729: Drainage area. WSP 2116: 1937-65. W 1983: Drainage area.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, about 3,700 acre-ft, Apr. 15, 1952, elevation, about 3,015 ft, dam overtopped; no contents at times.

EXTREMES FOR CURRENT SEASON: Maximum contents, 2,370 acre-ft, May 7, elevation, 3,013.66 ft; minimum, 395 acre-ft, Sept. 11, elevation, 3,007.07 ft.

06162000 HUFF LAKE.--Lat 49°22'16", long 107°53'07" (NAD 27), in SW¹/₄ sec.7, T.5, R.14 W., third meridian, Hydrologic Unit 10050013, near dam on Frenchman River, 11 mi northwest of Val Marie, and at mile 169.7. DRAINAGE AREA, 1,274 mi². PERIOD OF RECORD, February 1940 to current season (seasonal records only). February 1940 to October 1979, published as Val Marie West Reservoir. Records prior to October 1946, published only in WSP 1309. April to May 1952 daily elevations and contents, published in WSP 1260-B. Water-stage recorder. elevation of gage is at mean sea level (Geodetic Survey of Canada datum). May 1952 to May 1954, reference point on control structure. May 1954 to May 10, 1966, nonrecording gages. May 11, 1966, to Oct. 31, 1979, recording gage on riparian gatewell. REMARKS, Reservoir is formed by earthfill dam with concrete control works completed in 1939. The following capacity figures are from capacity table effective February 1983. Usable capacity, 3,610 acre-ft between elevation 2,663.2 ft, bottom of outlet works, and 2,676.5 ft, maximum design level. Dead storage, 11 acre-ft. Water is used for irrigation. Figures given herein represent total contents. Water Survey of Canada satellite telemeter at station. This is one of a number of stations which are maintained jointly by Canada and the United States. REVISED RECORDS (SEASONS), WSP 1309: 1947-50.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 5,160 acre-ft, Mar. 26, 1997, elevation, 2,678.91 ft; no contents Feb. 28, Mar. 31, 1950, Oct. 22-31, 1984, Mar. 1-7, Aug. 6 to Sept. 14, 1985 and Feb. 28 to Apr. 11, 2002.

EXTREMES FOR CURRENT SEASON: Maximum contents, 4,010 acre-ft, Mar. 23, elevation, 2,677.10 ft; minimum, 265 acre-ft, Sept. 26, elevation, 2.666.60 ft.

06163000 NEWTON LAKE.--Lat 49°18'12", long 107°48'20" (NAD 27), in NE¹/₄ sec.15, T.4, R.14 W., third meridian, Hydrologic Unit 10050013, at dam on Frenchman River, 5.4 mi northwest of Val Marie, and at mile 156.2. DRAINAGE AREA, 1,349 mi². PERIOD OF RECORD, February 1937 to current season (seasonal records only). February 1937 to October 1979, published as Val Marie Reservoir. Water-stage recorder. Elevation of gage is at mean sea level (Geodetic Survey of Canada datum). Prior to May 11, 1966, nonrecording gages. REMARKS, Reservoir is formed by earthfill dam with concrete control works; construction began in 1936; storage began in 1937; construction completed in 1938. The following capacity figures are from capacity table effective February 1983. Usable capacity, 9,950 acre-ft between elevation 2,616.1 ft, bottom of outlet works, and 2,635.4 ft maximum design level. No dead storage. Water is used for irrigation. Water Survey of Canada satellite telemeter at station. This is one of a number of stations which are maintained jointly by Canada and the United States. REVISED RECORDS (SEASONS), WSP 2116: 1937-65. WSP 1729: 1949.

EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 18,920 acre-ft, Apr. 19, 1952, elevation, 2,638.80 ft; no contents at times.

EXTREMES FOR CURRENT SEASON: Maximum contents, 12,750 acre-ft, Mar. 20, elevation, 2,637.19 ft; minimum, 3,130 acre-ft, Oct. 31, elevation, 2629.08 ft.

RESERVOIRS IN FRENCHMAN RIVER BASIN IN SASKATCHEWAN--Continued

SEASONAL MONTHEND CONTENTS, IN ACRE-FEET, FEBRUARY 2003 TO OCTOBER 2003

		Eastend		
Date	Cypress Lake	Reservoir	Huff Lake	Newton Lake
Feb. 28	18,670	486	3,360	10,960
Mar. 31	24,390	1,780	3,350	10,420
Apr. 30	27,370	2,320	3,660	10,830
May 31	23,860	1,070	2,710	8,790
June 30	22,940	1,490	2,960	8,630
July 31	20,130	469	1,120	4,620
Aug. 31	18,120	419	298	4,110
Sept. 30	17,460	465	278	3,900
Oct. 31	17,140	480	572	3,130

06164510 MILK RIVER AT JUNEBERG BRIDGE, NEAR SACO, MT

LOCATION.--Lat 48°30'32", long 107°13'02" (NAD 27), in NE¹/₄NE¹/₄ sec.30, T.32 N., R.35 E., Phillips County, Hydrologic Unit 10050014, on left bank 25 ft upstream from Juneberg bridge on Phillips County road, 1.5 mi downstream from Frenchman River, 6.9 mi northeast of Saco, and at river mile 152.3.

DRAINAGE AREA. --17,670 mi².

PERIOD OF RECORD.--October 1977 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 2,130 ft (NGVD 29).

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow increased during irrigation season by water from St. Mary Canal which diverts from the St. Mary River near Babb (station number 05017500). Flow regulated by Fresno Reservoir (station number 06136500), two reservoirs in Lodge Creek basin in Saskatchewan (station numbers 06144260 and 06144360 and four reservoirs in Frenchman River basin in Saskatchewan. There are many small dams for the diversion of irrigation canals upstream. U. S. Army Corps of Engineers satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

	-	olo elli ilke	E, CODIC	122112			VALUES	102211200	21001	I TEMBER 2	,,,,	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	140 144 144 143 125	90 90 90 91 90	e90 e90 e70 e70 e70	e90 e90 e100 e100 e100	e100 e90 e80 e80 e80	e100 e90 e90 e90 e120	1180 910 688 483 306	173 158 156 136 157	153 164 170 227 180	140 275 265 268 268	268 267 265 279 275	109 126 132 142 139
6 7 8 9	113 101 109 100 98	90 89 88 e70 e70	e90 e90 e90 e90	e100 e100 e100 e80 e80	e80 e80 e80 e80 e80	e100 e70 e70 e70 e70	242 219 234 293 551	204 362 441 606 519	155 185 207 199 187	282 267 351 411 407	289 305 289 253 245	113 82 74 62 55
11 12 13 14 15	98 100 97 97 94	e80 e80 e100 e100	e100 e120 e120 e120 e120	e70 e70 e70 e70 e70	e90 e90 e90 e80 e80	e80 e90 e100 e130 e130	502 336 264 242 240	433 364 357 336 323	178 167 151 155 169	340 345 194 181 245	232 212 174 178 186	54 53 44 43 43
16 17 18 19 20	93 89 89 91 91	e100 e100 e100 e100 e100	e120 e90 e90 e90 e70	e70 e80 e80 e90	e80 e90 e100 e100 e90	e130 e600 e1100 e2000 e2500	217 173 160 156 158	344 377 423 374 283	205 224 246 246 232	325 338 252 217 207	220 222 213 205 202	52 55 53 53 57
21 22 23 24 25	93 94 91 91 91	e100 e100 e80 e80 e80	e70 e70 e70 e70 e70	e80 e70 e70 e70 e70	e80 e70 e70 e70 e70	e3000 e2700 e2500 e2200 e2100	165 172 194 224 231	239 224 206 185 168	214 196 183 180 200	209 263 304 385 329	187 166 147 148 157	59 57 55 53 52
26 27 28 29 30 31	90 89 92 93 84 93	e80 e90 e90 e90 e90	e70 e70 e80 e90 e80 e80	e80 e90 e100 e100 e100 e100	e100 e100 e100 	e2000 1900 1590 1520 1430 1370	239 291 292 256 208	152 144 138 128 123 140	236 230 172 138 126	335 335 345 338 282 276	160 158 160 168 114 96	51 50 51 51
TOTAL MEAN MAX MIN AC-FT	3157 102 144 84 6260	2698 89.9 100 70 5350	2700 87.1 120 70 5360	2630 84.8 100 70 5220	2380 85.0 100 70 4720	30040 969 3000 70 59580	9826 328 1180 156 19490	8373 270 606 123 16610	5675 189 246 126 11260	8979 290 411 140 17810	6440 208 305 96 12770	2071 69.0 142 43 4110
STATIST MEAN MAX (WY) MIN	289 4043 1987 24.9	152 597	120 406 1987 44.8 1986	'OR WATER 118 271 1987 33.1	219 1758 1996 49.1	1010 4075 1979 47.4	, BY WATER 760 6221 1978 38.4	462 2545 1986 56.4	473 2258 1982 103	418 1844 1991 29.6	238 693 1993 9.35	236 1517 1986 22.7
(WY) SUMMARY	2002 STATIST			1985 2002 CALI	2002 ENDAR YEAR	2002	2002 FOR 2003 V	1989 WATER YEAR	2001	1984 WATER YEAR	1984 S 1978 -	1984
LOWEST HIGHEST		IEAN IEAN		65155 179 1610	Jun 27		84969 233 3000	Mar 21		375* 1042 70.1 12300	Apr 3	

25

May 11

22

25

324

90

42

129200

Sep 14

12

Sep

Mar 21

Mar

43

49

b13.10

a3000

168500

345

120

1986

Aug 20 1984

4

Juĺ 27 1984

Apr 3 1978

Mar

2.1

4.0

b26.70

c12400

271900

693

150

LOWEST DAILY MEAN

MAXIMUM PEAK FLOW

MAXIMUM PEAK STAGE

10 PERCENT EXCEEDS 50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

ANNUAL RUNOFF (AC-FT)

ANNUAL SEVEN-DAY MINIMUM

^{*--}Median of yearly mean discharge 221 ft^3/s .

a--About.

b--Backwater from ice.

c--Gage height, 24.20 ft.

e--Estimated.

06166000 BEAVER CREEK BELOW GUSTON COULEE, NEAR SACO, MT

LOCATION.--Lat 48°21'25", long 107°34'48" (NAD 27), in SE¹/₄SW¹/₄NW¹/₄ sec. 16, T.30 N., R.32 E., Phillips County, Hydrologic Unit 10050014, on right bank, 25 ft upstream from bridge on county road, 13 mi southwest of Saco, 22.5 river miles downstream from Guston Coulee, and at mile 61.1.

DRAINAGE AREA. --1,208 mi².

PERIOD OF RECORD.--April 1920 to September 1921, April 1981 to current year (seasonal records only).

GAGE.--Water-stage recorder. Elevation of gage is 2,215 ft (NGVD 29).

REMARKS.--Seasonal records fair. Some regulation by numerous small reservoirs on tributary streams. Diversions for irrigation upstream from gage. U.S. Geological Survey satellite telemetry at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			e0.00 e0.00 e0.00 e0.00 e0.00	12 25 17 6.5 4.6	3.7 2.7 3.4 6.6	2.2 22 28 26 24	0.38 0.28 0.16 0.06 0.01	1.1 0.64 0.45 0.39 0.40	0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.00 0.00 0.00		
6 7 8 9 10			e0.00 e0.00 e0.00 e0.00	1.3	39 38 46 38 79	20 15 8.8 14 28	0.00 0.00 0.63 6.7 5.8	0.45 0.59 0.75 1.7 8.3	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
11 12 13 14 15			e0.00 e0.00 e0.00 e0.00 e1.0	1.6 3.3 4.2 4.1 4.3	84 93 154 150 108	16 7.9 5.2 4.6 5.9	5.3 6.2 11 11 8.1	11 11 6.3 4.4 4.8	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
16 17 18 19 20			e10 e50 e100 e200 e300	3.3 2.8 2.9 2.7 2.1	90 73 56 52 45	9.4 12 7.0 5.4 6.7	5.7 2.1 1.2 3.9 24	2.1 2.1 1.4 1.2	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
21 22 23 24 25			e250 e200 139 105 82	9.1	39 30 34 33 16	5.2 3.0 2.2 2.7 2.0	18 3.7 2.2 13 14	1.2 0.98 0.67 0.51 0.46	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
26 27 28 29 30 31			58 39 25 12 14 e10	15 26 25 13 8.4	13 9.7 8.0 0.11 0.00 0.00	1.1 0.83 0.65 0.49 0.43	14 15 15 8.5 4.4 2.9 1.8	0.42 0.30 0.17 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
TOTAL MEAN MAX MIN AC-FT			1595.00	211.4	1377.21 44.4 154 0.00 2730	0 5	C 1 C	2 10	0 000	0.00 0.000 0.00 0.00 0.00		
	ICS OF MONT											
MEAN MAX (WY) MIN (WY)			53.6 204 1986 0.000 1995	20.2 140 1987 0.000 1995	60.2 718 1986 0.000 1984	35.9 315 1982 0.000 2001	46.1 223 1998 0.021 1985	7.44 40.7 1993 0.000 2001	61.2 1187 1986 0.000 1984	22.9 342 1987 0.000 1985		
	STATISTICS	3			2003 SEASOI				981 - 2003			
HIGHEST LOWEST I MAXIMUM MAXIMUM	DAILY MEAN PEAK FLOW PEAK STAGE	E 1		300 0.(unknov 7.1	Mar 20 00 Mar 1 vn 14 Mar 20) 1)	11 b23	900 a0.00 500 14.68	Sep 27 19 Apr 5 19 Sep 26 19 Sep 26 19	86 81 86 86		

^{*--}During period of operation (1981 to current year). a--No flow at time each year. b--From slope-area measurement of peak flow. e--Estimated.

06169500 ROCK CREEK BELOW HORSE CREEK, NEAR INTERNATIONAL BOUNDARY

(Hydrologic bench-mark station)

LOCATION.--Lat 48°58'10", long 106°50'20" (NAD 27), in NE¹/₄NW¹/₄ sec.15, T.37 N., R.37 E., Valley County, Hydrologic Unit 10050015, on right bank 2 mi south of international boundary, 3 mi downstream from Horse Creek, 21 mi northwest of Opheim, MT, and at river mile 82.0.

DRAINAGE AREA.--328 mi².

PERIOD OF RECORD.--March 1916 to October 1926, September 1956 to current year (seasonal records only prior to October 1978). Monthly discharge only for some periods, published in WSP 1309. Published as Rock Creek near Barnard, Mt. 1916-17. Prior to September 1956, records were collected at both Horse Creek (1914-56) and Rock Creek above Horse Creek (1914-56). Summations are equivalent to records at this site.

REVISED RECORDS.--WSP 1509: 1925(M), WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 2,530 ft (NGVD 29). March 1916 to October 1926, nonrecording gages at several sites within 500 ft upstream at different elevation.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Several small diversions for irrigation upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Apr. 15, 1952, reached a stage of 12.6 ft, from floodmarks, discharge, 5,110 ft³/s, by slopearea measurement of peak flow.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.5 1.4 1.5 1.4	1.3 1.2 1.1 1.1	e1.2 e0.90 e0.70 e0.70 e0.80	e0.40 e0.35 e0.35 e0.40 e0.45	e0.10 e0.10 e0.10 e0.10 e0.10	e0.05 e0.05 e0.05 e0.05 e0.05	15 15 12 14 13	6.0 5.9 5.4 5.2 6.3	3.2 3.6 4.3 11	1.0 0.86 0.72 0.59	0.01 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
6 7 8 9 10	1.6 1.8 1.9 2.0 2.1	e1.1 e1.1 e1.1 e1.1	e0.80 e0.76 e0.60 e0.60	e0.45 e0.45 e0.45 e0.45 e0.30	e0.10 e0.10 e0.10 e0.10 e0.10	e0.05 e0.05 e0.05 e0.05 e0.05	11 11 21 37 42	6.7 8.9 18 23 18	12 12 12 11 8.7	0.40 0.36 0.35 0.40 0.39	0.00 0.01 0.01 0.01 0.01	0.00 0.00 0.00 0.00
11 12 13 14 15	2.0 2.0 2.0 1.9	e1.1 e1.1 e1.1 e1.1	e0.50 e0.50 e0.50 e0.50 e0.50	e0.20 e0.15 e0.15 e0.10 e0.10	e0.15 e0.15 e0.15 e0.10	e0.05 e0.05 e0.50 e1.0	31 22 16 14	14 12 10 8.7 7.6	8.0 7.3 6.3 5.9 6.9	0.40 0.38 0.32 0.31 0.27	0.00 0.00 0.00 0.00	0.01 0.01 0.01 0.01 0.01
16 17 18 19 20	2.0 2.0 1.9 1.9 2.0	e1.1 e1.1 e1.1 e1.1	e0.60 e0.60 e0.70 e0.70	e0.10 e0.10 e0.15 e0.15 e0.10	e0.15 e0.15 e0.15 e0.15 e0.10	e50 e150 e250 668 376	12 11 11 10	7.3 15 22 15	6.1 5.7 4.5 4.5 4.1	0.21 0.13 0.09 0.07 0.04	0.00 0.00 0.00 0.00	0.01 0.02 0.02 0.02 0.02
21 22 23 24 25	2.3 2.4 2.1 1.8 1.8	e1.1 e1.1 e1.1 e1.1	e0.70 e0.70 e0.70 e0.70 e0.70	e0.10 e0.10 e0.10 e0.10 e0.10	e0.05 e0.05 e0.05 e0.05	250 192 167 133 86	10 9.4 8.3 7.6 7.2	8.7 7.0 5.9 5.1 4.6	3.0 3.0 2.4 2.0	0.03 0.02 0.02 0.01 0.01	0.00 0.00 0.00 0.00	0.03 0.03 0.03 0.02 0.02
26 27 28 29 30 31	2.0 2.1 2.3 2.3 1.9 1.5	e1.1 e1.1 e1.0 e1.2 e1.2	e0.60 e0.50 e0.40 e0.40 e0.40	e0.15 e0.15 e0.10 e0.10 e0.10 e0.10	e0.10 e0.10 e0.10	58 39 30 23 19	6.9 6.5 6.2 6.1 6.0	4.0 3.5 3.3 3.1 2.8 2.8	1.7 1.7 1.6 1.1	0.01 0.01 0.01 0.01 0.01 0.01	0.00 0.00 0.00 0.00 0.00	0.02 0.02 0.02 0.02 0.02
TOTAL MEAN MAX MIN AC-FT	58.7 1.89 2.4 1.4 116	33.5 1.12 1.3 1.0 66	19.66 0.63 1.2 0.40 39	6.55 0.21 0.45 0.10 13	2.90 0.10 0.15 0.05 5.8	2519.10 81.3 668 0.05 5000	414.2 13.8 42 6.0 822	276.8 8.93 23 2.8 549	172.5 5.75 16 1.1 342	7.94 0.26 1.0 0.01 16	0.05 0.002 0.01 0.00 0.1	0.37 0.012 0.03 0.00 0.7
STATIST	rics of M	MONTHLY ME	AN DATA	FOR WATER	YEARS 19	56 - 2003,	BY WATER	YEAR (WY) *			
MEAN MAX (WY) MIN (WY)	1.85 9.33 1987 0.001 1989	1.50 2.79 1981 0.10 1989	0.75 2.19 1980 0.026 1996	0.29 1.78 1981 0.000 1984	5.93 96.1 1981 0.000 1980	80.7 369 1976 0.000 1965	82.9 437 1969 3.97 1992	15.2 89.0 1982 1.46 1992	12.8 102 1991 0.17 1988	9.59 63.6 1969 0.004 1988	1.25 13.4 1975 0.000 1959	1.08 12.5 1986 0.000 1958

06169500 ROCK CREEK BELOW HORSE CREEK, NEAR INTERNATIONAL BOUNDARY--Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR YEAR	FOR 2003 WATER YEAR	WATER YEARS 1956 - 2003*
ANNUAL TOTAL	2822.24	3512.27	
ANNUAL MEAN	7.73	9.62	14.1**
HIGHEST ANNUAL MEAN			37.4 1999
LOWEST ANNUAL MEAN			1.88 1998
HIGHEST DAILY MEAN	451 Jun 11	668 Mar 19	3460 Apr 7 1969
LOWEST DAILY MEAN	0.00 Jan 1	0.00 Aug 2	0.00 Mar 1 1957
ANNUAL SEVEN-DAY MINIMUM	0.00 Jan 1	0.00 Aug 11	0.00 Mar 1 1957
MAXIMUM PEAK FLOW		a764 Mar 19	c4420 Apr 7 1969
MAXIMUM PEAK STAGE		b7.87 Mar 17	b13.40 Mar 29 1978
INSTANTANEOUS LOW FLOW			d0.00 Mar 1 1957
ANNUAL RUNOFF (AC-FT)	5600	6970	10250
10 PERCENT EXCEEDS	9.5	12	14
50 PERCENT EXCEEDS	1.1	0.70	1.0
90 PERCENT EXCEEDS	0.00	0.01	0.00

^{*--}During period of operation (September 1956 to current year; seasonal records only prior to October 1978.)

**--Median of yearly discharge, 9.62 ft³/s, 6,970 acre-ft/yr (October 1978 to current year).

a--Gage height, 6.53 ft.

b--Backwater from ice.

c--Gage height, 12.03 ft.

d--At times most years.

e--Estimated.

06172310 MILK RIVER AT TAMPICO, MT

LOCATION.--Lat 48°18'29", long 106°49'19" (NAD 27), in SW¹/₄SW¹/₄SW¹/₄ sec.32, T.30 N., R.38 E., Valley County, Hydrologic Unit 10050012, on right bank, at county bridge 0.8 miles downstream from Buggy Creek and 0.3 miles northeast of Tampico, and at river mile 98.7. DRAINAGE AREA.--21,078 mi².

PERIOD OF RECORD.--October 1973 to September 1977, May 1987 to current year (seasonal record beginning 1995 water year). GAGE.--Water-stage recorder. Elevation of gage is 2,110 ft (NGVD 29).

REMARKS.--Records good except those for Mar. 1 to Sept. 16, which are poor. Flow increased during irrigation season by water from St. Mary Canal which diverts from the St. Mary River near Babb. Flow regulated by Fresno and Nelson Reservoirs, five reservoirs in Lodge Creek basin in Saskatchewan, and four reservoirs in Frenchman River basin in Saskatchewan. Many small dams for the diversion of irrigation canals upstream, the closest being Vandalia Dam 19 mi upstream. Diversions upstream from station for irrigation of about 126,000 acres of which about 17,000 acres lies downstream from station. Several observations of water temperature and specific conductance were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Apr. 17, 1952 reached an observed stage of 38.67 ft at gage 200 ft downstream from Vandalia Dam, furnished by the U.S. Army Corps of Engineers; discharge about 45,000 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			e130 e130 e130 e120 e130	1360 1170 965 769 618	215 194 180 154 144	58 55 54 52 55	44 40 37 37 38	92 95 88 82 83	47 115 456 354 358	62 63 64 66		
6 7 8 9 10			e120 e100 e100 e100 e100	503 435 395 390 431	186 405 972 1040 1080	70 76 103 146 153	37 37 41 44 42	79 83 87 96 97	167 141 113 102 92	69 68 69 69		
11 12 13 14			e100 e100 e120 e150 e160	637 677 548 440 375	1260 1490 1010 621 517	178 211 200 215 183	116 144 155 103 74	90 89 83 73 64	85 76 72 66 60	86 190 181 168 165		
16 17 18 19 20			e200 e1500 e3500 e4300 e4400	337 299 251 224 204	556 540 592 557 464	155 153 234 364 277	67 69 82 85 75	59 58 56 58 60	59 61 67 68 68	163 157 154 149 144		
21 22 23 24 25			4280 4420 5250 4050 3040	186 177 181 214 215	383 271 234 215 181	236 207 184 131 103	68 65 64 65 72	60 60 58 56 54	71 75 73 71 66	139 138 137 134 137		
26 27 28 29 30 31			3190 2810 2180 1780 1610 1490	221 234 266 300 262	150 131 117 103 86 64	277 236 207 184 131 103 88 77 69 57 47 	75 83 93 104 102 93	52 52 50 49 48 47	66 65 63 63	137 139 140 141 153 162		
TOTAL MEAN MAX MIN AC-FT			49790 1606 5250 100 98760	13284 443 1360 177 26350	14112 455 1490 64 27990	4191 140 364 47 8310	2251 72.6 155 37 4460	2158 69.6 97 47 4280	3303 110 456 47 6550	3781 122 190 62 7500		
STATIST						74 - 1994,	AND SEASO	NS 1995 -				
MEAN MAX (WY) MIN (WY)	211 791 1974 55.2 1989	178 433 1974 49.3 1989	1050 3809 1994 46.6 2002	771 3911 1996 3.35 1992	551 4555 1975 6.59 2001	568 1852 1974 11.7 1977	507 2515 1991 8.35 1977	206 769 1993 4.63 1988	0.52	182 906 1994 29.1 2002	217 710 1976 90.0 1989	152 363 1976 66.9 1989
SUMMARY	STATISTI	CS		FOR 2003	SEASON	SEA	ASONS 1995	5 - 2003*		WATER YEA	ARS 1974	- 1994*
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL 10 PERC 50 PERC	ANNUAL MEANUAL MEA	CAN CAN AN MINIMUM AGE DW FLOW AC-FT) CDS		5250 37 5490 18.20	Mar 23 Jul 3 Mar 23 Mar 23	a11000	0 Mar 1.8 Jun 0 Mar 7.64 Mar	27 1997 7 2002 27 1997 27 1997		400 998 84 8180 0. 0. c8210 25, 0. 308500 920 128 13	May 00 Aug 00 Sep May 40 Jul	1975 1988 26 1974 28 1988 7 1988 6 1974 4 1991 28 1988

^{*}--During period of operation (1974-1977, 1987 to current year. Seasonal records beginning 1995 water year). a--Estimated daily discharge, ungaged bypass flow. b--Backwater from ice.

c--Gage height, 23.65 ft.

e--Estimated.

06174500 MILK RIVER AT NASHUA, MT

LOCATION.--Lat 48°07'47", long 106°21'50" (NAD 27), in NE¹/₄NE¹/₄ sec.1, T.27 N., R.41 E., Valley County, Hydrologic Unit 10050012, on right bank at downstream side of former highway bridge site, 0.6 mi southwest of Nashua, 2.0 mi upstream from Porcupine Creek, and at river mile 22.7. DRAINAGE AREA.--22.332 mi².

PERIOD OF RECORD .-- October 1939 to current year.

WATER-DISCHARGE RECORDS

REVISED RECORDS.--WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 2,027.75 ft (NGVD 29).

REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. Flow increased during irrigation season by water from St. Mary Canal which diverts from the St. Mary River near Babb. Flow regulated by Fresno Reservoir (station number 06136500), two reservoirs in Lodge Creek basin in Saskatchewan, and four reservoirs in Frenchman River basin in Saskatchewan. Diversions for irrigation of about 140,000 acres upstream from station. U.S. Army Corps of Engineers satellite telemeter at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e80 e100 e100 e100 e100 e100 e80 e90 e100 e100 62 e90e90 e100 e100 e100e100 e115 e100 e100 e100 e100 455 179 e100 e110 e90 e100 e100 e110 e90 e90 e100 e100 e90 e90 e100 e90 e100 e90 e100 e90 e100 e110 e90 e100 e90 e100 e120 e90 e90 e150 e100 e100 e180 e110 e140 e90 e100 e300 e110 e130 e100 e100 e500 e110 285 1 a e1000 e1500 e110 e110 e90 e100 22 e100 e9n e2000 75 70 e110 e110 e100 e90 e90 e3000 e100 e90 e90 e90 e4000 e100 e90 e9n e90 e100 e90 e90 e90 e90 e90 e90 e90 e100 e100 e90 e90 e100 e100 e100 e100 e110 e100 e110 e100 e100 e90 e100 TOTAL MEAN 96.8 94.6 98.8 99.5 MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1940 2003, BY WATER YEAR (WY) MEAN MAX 39.7 36.0 (WY) 12.6 MIN 34.4 61.2 38.9 56.5 15.1 10.5 28.0 3.56 3.42 FOR 2002 CALENDAR YEAR FOR 2003 WATER YEAR SUMMARY STATISTICS WATER YEARS 1940 - 2003 ANNUAL TOTAL 642* ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 57.7 Jun 28 Mar 25 Apr Jul 0.00 Jul LOWEST DAILY MEAN Мау ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW Мау Jul 0.00 Jul a4790 Mar Apr MAXIMUM PEAK STAGE b17.46 Mar 31.38 INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) c40 Jul 0.00 Jul 14 1984 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS

^{*--}Median of yearly discharge, $540 \text{ ft}^3/\text{s}$.

a--Gage height, 12.03 ft, may have been greater during estimated record.

b--Backwater from ice.

c--Gage height, 1.55 ft.

e--Estimated.

06174500 MILK RIVER AT NASHUA, MT--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1950-53, October 1959 to August 1994, May 1999 to current year. PERIOD OF DAILY RECORD.--

рH,

water,

unfltrd

field,

Instan-

taneous

dis-

WATER TEMPERATURE (seasonal records): April 2001 to current year.

INSTRUMENTATION.--Temperature recorder installed Mar. 1, 2001.

REMARKS.--Water temperature records rated fair. Missing temperature data for May 17-21, 28 due to equipment problems. Unpublished records of instantaneous water temperature and specific conductance are available in files of District office.

EXTREMES FOR PERIOD OF DAILY RECORD.--

WATER TEMPERATURE (seasonal records): Maximum, 28.5°C, June 24, 2001; maximum may have been higher during period of lost record; minimum, 0.0°C, Apr. 1, 2001, many days in April 2002.

EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURE: During period of seasonal operation, maximum, 27.0°C, Aug. 13-15; minimum, 1.0°C, Apr. 3 and 5.

Specif. conduc-

tance,

wat. unf

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Temper-

ature,

Temper-

ature.

Ammonia Nitrite

nitrate

water fltrd,

Nitrite

water, fltrd,

org-N,

water, unfltrd

	Date	Time	dis- charge, cfs (00061)	field, std units (00400)	wat unf uS/cm 25 degC (00095)	ature, air, deg C (00020)	ature, water, deg C (00010)	unfltrd mg/L as N (00625)	fltrd, mg/L as N (00631)	fltrd, mg/L as N (00613)	
	MAR 2003		4500	0.0	405	10.0	- 0	4.0	405	01.0	
	24 MAY	1145	4690	8.0	435	18.0	5.0	4.2	.427	.010	
	05 JUN	1345	258	8.5	893	14.0	13.0	.89	<.022	<.002	
	24 AUG	1320	215	8.5	1580	17.5	21.0	.85	<.022	<.002	
	25	1415	72	8.6	1130	30.5	22.5	.81	<.022	<.002	
			Date	Orth phos phat wate fltr mg/as (0067	e, Phoser, phored, wate L unflt	us, siem er, diame trd perce /L <.06	i- pend t, sed: ve mendetr conce ent trat: 3mm mg,	ded Susi- pend i- pend nt sedi en- mer ion load /L tons	ded i- nt d, s/d		
			MAR 2003	<.00	7 1.46	5 98	2210	2800	10		
			MAY 05	<.00			5:		36		
			JUN 24	.02	1 .14	13 83	136	5 5	79		
			AUG 25	.01	.13	34 89	7:	2 1	14		
Date	Time	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	fltrd, mg/L	adsorp- tion ratio	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)
MAY 2003 05	1345	240	53.5	25.6	8.98	3	102	239	14.9	. 26	4.44
AUG 25	1415	310	69.5	33.6	8.73	4	149	288	26.3	. 4	8.29
		Residue water, fltrd, sum of	Residue water,			Cadmium	Chrom- ium, water, unfltrd	Copper, water,	Lead, water,	Nickel, water, unfltrd	Zinc, water,
Date	water, fltrd, mg/L (00945)	consti- tuents mg/L	fltrd, tons/ acre-ft	water, fltrd, tons/d	water	water, unfltrd ug/L	recover -able, ug/L	recover -able, ug/L	recover -able, ug/L (01051)		recover -able, ug/L (01092)
MAY 2003 05	245	597	.81	416	E2	<.2	E.7	4.5	1.02	5.87	7
25	278	747	1.02	145	13	E.02	1.0	4.7	1.32	6.80	6
EEstim	ated.										

06174500 MILK RIVER AT NASHUA, MT--Continued

WATER TEMPERATURE, DEGREES CELSIUS, APRIL 2003 TO SEPTEMBER 203

DAY	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN	MAX	MIN JUNE	MEAN	MAX	MIN	MEAN
1 2 3 4 5	4.5 4.0 3.0 2.5 3.5	4.0 1.5 1.0 1.5	4.5 3.0 2.0 2.0 2.0	15.5 16.5 18.0 17.0 16.0	13.5 14.0 14.5 15.5 14.5	14.5 15.0 16.0 16.0 15.0	21.5 20.5 20.5 20.5 19.0	19.5 18.5 18.5 18.5 17.0	20.0 19.5 19.5 19.0 18.0	25.5 25.5 25.0 24.5 25.5	23.0 24.0 23.5 23.0 23.0	24.0 24.5 24.5 24.0 24.0
6 7 8 9 10	3.5 5.0 6.5 8.5 9.5	2.0 2.5 3.0 4.5 7.0	2.5 3.5 4.5 6.5 8.5	14.5 13.5 12.5 10.5 11.5	13.0 12.0 10.5 10.0 9.5	13.5 12.5 11.5 10.0 10.5	18.5 18.0 19.5 19.5	17.0 16.0 16.5 18.0 18.0	17.5 17.0 18.0 18.5 18.5	24.0 24.0 23.0 22.5 23.0	22.5 22.0 20.0 20.0 22.0	23.0 23.0 22.0 21.5 22.5
11 12 13 14 15	11.0 12.0 13.0 13.0									24.5 25.0 25.5 26.0 26.5		
16 17 18 19 20	12.5 13.0 12.5 13.0 14.5	10.5 10.5 11.5 11.0	11.5 11.5 12.0 12.0 12.5	17.0 17.0 16.5 15.5	16.0 16.0 15.5 14.0 13.5	16.0 16.5 16.0 15.0 14.5	23.5 24.5 24.5 24.5 25.0	21.5 22.0 22.0 22.0 23.0	22.5 23.0 23.5 23.0 24.0	25.5 25.5 26.5 26.5 26.5	23.5 24.0 24.5 25.5 25.0	24.5 24.5 25.5 26.0 26.0
21 22 23 24 25	15.0 16.0 16.5 16.0 16.5	12.5 13.0 13.5 15.0 14.0	13.5 14.5 15.0 15.0	15.5 17.0 18.0 19.5 20.0	14.5 14.5 16.0 17.0 18.0	15.0 15.5 17.0 18.0 19.0	24.0 23.0 22.5 21.5 21.0	22.5 22.0 21.0 20.0 19.0	23.5 22.5 21.5 21.0 20.0	26.5 26.0 26.0 25.5 26.0	24.5 24.5 25.0 25.5 25.0	25.5 25.5 25.5 25.5 25.5
26 27 28 29 30 31	15.5 15.5 15.0 14.0 15.5	14.5 13.0 12.5 12.5 13.0	14.5 14.0 13.5 13.5 14.0	21.5 22.0 22.5 22.5 22.5 22.5	19.0 20.0 20.0 20.5 20.0 20.0	20.0 21.0 21.0 21.5 21.5 21.5	21.5 21.5 22.5 22.5 23.5	18.5 19.5 20.0 20.5 22.0	20.0 20.5 21.0 22.0 23.0	25.5 25.5 26.0 26.0 26.0 26.0	24.5 24.5 24.5 24.0 23.5 24.0	25.0 25.0 25.0 25.0 25.0 24.5
MONTH	16.5									26.5		
		AUGUST		S								
1 2 3 4 5	25.5 25.0 25.0 24.5 25.0	23.5 23.5 23.0 22.5 23.5	24.5 24.5 24.0 23.5 24.0	21.0 21.0 21.0 22.0 21.0	20.0 20.0 19.5 19.5 20.0	20.5 20.5 20.5 20.5 20.5						
9	25.0 25.5 26.0 26.0 25.5	23.0 23.0 24.0 24.5 24.0	24.0 24.0 25.0 25.0 25.0	21.5 22.5 23.0 22.5 22.5	20.0 20.5 21.5 21.5 20.5	21.0 21.5 22.0 22.0 21.0						
11 12 13 14 15	26.0 26.5 27.0 27.0 27.0	23.5 24.0 25.0 25.5 25.0	25.0 25.5 26.0 26.0 26.0	20.5 20.5 19.0 17.5	19.0 18.5 17.0 16.0 16.5	20.0 19.0 17.5 17.0 17.0						
16 17 18 19 20	26.0 25.5 24.5 25.0 24.5	24.5 24.0 23.0 23.5 23.0	25.5 24.5 24.0 24.0 24.0	17.0 15.5 15.0 15.5	15.0 13.5 13.5 14.0 14.5	16.0 14.5 14.0 14.5 15.0						
21 22 23 24 25	23.5 23.0 23.0 23.0 22.5	22.5 22.0 22.0 22.5 22.0	23.0 22.5 22.5 22.5 22.5	14.5 14.0 14.5 13.5 14.0	13.5 13.5 13.5 12.5 13.0	14.0 13.5 14.0 13.0 13.5						
26 27 28 29 30 31	22.5 22.0 20.5 20.5 20.5 21.0	21.5 20.0 20.0 19.0 19.0 20.0	22.0 21.0 20.0 19.5 20.0 20.0	15.5 15.5 15.5 15.5 14.5	14.0 14.5 14.5 13.5 13.0	15.0 15.0 15.0 15.0 13.5						

23.0 12.5 17.0

MONTH 27.0 19.0 23.5

06177000 MISSOURI RIVER NEAR WOLF POINT, MT

LOCATION.--Lat 48°04′00", long 105°31′55" (NAD 27), in SW¹/4NW¹/4 sec.28, T.27 N., R.48 E., McCone County, Hydrologic Unit 10060001, on right bank 500 ft downstream from bridge on State Highway 13, 5 mi southeast of Wolf Point, 7.8 mi downstream from Wolf Creek, and at river mile 1,701.4.

DRAINAGE AREA.--82,290 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1928 to current year.

REVISED RECORDS.--WSP 1146: 1931. WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 1,958.57 ft (NGVD 29). Prior to Apr. 13, 1930, nonrecording gages at Wolf Point ferry landing 5.5 mi upstream at different elevation.

REMARKS.-- Water-discharge records good except those for estimated daily discharges, which are fair. Flow partly regulated by Fort Peck Lake and many other reservoirs upstream from station. Diversion for irrigation of about 1,010,400 acres upstream from station. U.S. Army Corps of Engineers satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 14, 1908, reached a stage of about 20 ft, (site and elevation then in use).

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	5200 5140 5350 5160	5140 5190 5200 5220	9260 9290 9190 9130	10300 10400 10100 10200		e10200 e9200 e9300 e9300	6500 6250 7030 7860	9310 9290 9120 8850	8830 9020 8820 8830	8370 8420 8380 7990	8090 8220 6820 6780	7140 6930 6760 6750
5	5150	5210	9830	9990	e10500	e7800	7660	9130	8850	7490	6880	6910
6 7 8 9	5200 5250 5240 5120	5150 5300 5260 5320	10200 10400 10000 10100	10100 10100 10100 10100	e10300 e10400 e10200 e10400	e8800 e7000 e7000 e6200	7370 7000 6880 6760	9820 8750 8870 9030	8800 8850 8760 8940	7530 7650 7830 7980	6770 7050 6760 6910	7030 7160 7120 7030
10	5120	5190	10000	e9700	e10200	e5900	6450	9440	8800	8040	6930	6750
11 12 13 14 15	5070 5110 5030 5110 5180	5210 5190 5200 5100 5150	10000 10100 10100 10000 10000	e10000 e10100 e10000 e10100 e10100	e10400 e10100 e10100 e10300 e10000	e5400 e4900 e4300 e4000 e3900	6520 6600 7140 7580 7640	9710 10300 11100 10900 10600	8860 9280 9010 9200 9030	7970 7840 7970 7890 7860	6660 6880 6990 7050 6970	6770 6790 6730 6670 6960
16 17 18 19 20	5080 4980 5180 4990 4980	5180 5280 5220 5180 5160	10000 9940 9930 9720 10000	e10100 e9800 e10100 e9900 e10100	e10000 e10300 e10300 e10300 e10000	e4200 e4700 e5700 e6200 e7200	7870 7690 7600 7600 7290	10300 9660 11400 11300 10900	9110 9180 9100 8870 8550	8040 7800 7770 7760 7850	6710 6910 6960 7010 6940	7340 6680 6650 6660 6660
21 22 23 24	5040 5130 5130 5220	5260 5240 5310 5200	9910 9980 10100 10100	e10000 e10200 e10100 e10000	e10200 e10100 e10000 e10400	e8700 10300 10200 9630	7460 7140 7380 7800	9790 11200 11300 9910	8620 8790 8730 8460	7700 7620 7660 7630	6810 6940 6660 7200	6620 6620 6290 5210
25	5170	5280	e10000	e8700	e10300	9460	8050	9420	8330	7570	6900	4780
26 27 28 29 30 31	5220 5110 5090 5130 5140 5210	5910 8070 9440 9220 9180	e10500 e10400 10200 10200 10100 10200	e8500 e9700 e10100 e10000 e10200 e9800	e10200 e10700 e10700 	9600 8820 8030 7780 7700 7010	8170 8290 8320 8350 8910	9320 9310 9150 10300 9430 8760	8180 8330 8270 8240 8360	7620 7650 7740 7890 7640 7730	6860 6940 7040 6810 6880 7060	4750 4720 4710 4680 4620
MEAN MAX MIN	159230 5136 5350 4980 315800	172160 5739 9440 5100 341500	308880 9964 10500 9130 612700	308690 9958 10400 8500 612300	287100 10250 10700 10000 569500	228430 7369 10300 3900 453100	223160 7439 8910 6250 442600	305670 9860 11400 8750 606300	263000 8767 9280 8180 521700	242880 7835 8420 7490 481800	216390 6980 8220 6660 429200	190490 6350 7340 4620 377800
STATIS	TICS OF I	MONTHLY MI	EAN DATA	FOR WATER	YEARS 1943	3 - 2003	3, BY WATI	ER YEAR (WY	() *			
MEAN MAX (WY) MIN (WY)	11430 29130 1956 3151 1993	9152 22210 1998 2328 1947	9030 13420 1944 1338 1943	9714 14270 1971 995 1943	9923 15820 1976 1195 1943	8902 16750 1976 2301 1945	9538 27180 1952 1470 1945	9254 21800 1979 1182 1945	9418 26040 1975 1268 1945	10270 36270 1975 1171 1945	12010 27110 1955 3515 1963	11750 27150 1955 3274 1992
SUMMAR	Y STATIS	TICS	FOF	2002 CAL	ENDAR YEAR		FOR 2003	WATER YEAR	!	WATER YEA	RS 1943 -	- 2003*
ANNUAL HIGHES LOWEST HIGHES	TOTAL MEAN TANNUAL ANNUAL TDAILY DAILY			2526650 6922 11000 4000 4010	Aug 24 Mar 21		2906080 7962 11400	May 18		10030 15850 5607 45100	Apr 19	1955 1963 9 1952 5 1942
ANNUAL MAXIMU MAXIMU	SEVEN-DA M PEAK FI M PEAK S'	TAGE			Mar 21		4490 a11500 b9	May 18 Mar 15 Mar 11 May 18		906 c46800 15.6 d320	Jan 12 Apr 19 4 Mar 27 Dec 10	2 1943 9 1952 7 1960 0 1941
ANNUAL 10 PER 50 PER 90 PER	RUNOFF CENT EXCI CENT EXCI CENT EXCI	LOW FLOW (AC-FT) EEDS EEDS EEDS		5012000 9950 5460 4530			5764000 10200 7980 5160			7269000 15700 9030 4560		

06177000 MISSOURI RIVER NEAR WOLF POINT, MT--Continued

SUMMARY STATISTICS	WATER	YEARS	1929-19	39**		
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL FUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS		84 91 £6680	00 91 00 40 10 00 14.40	Nov Feb Mar	25 29 10 25	1937 1938 1939
*After Fort Peck Lake reache **Prior to Fort Peck Lake re aGage height, 4.41 ft. bBackwater from ice. cGage height, 9.98 ft. dOccurred outside period of eEstimated. fFrom rating curve extended	aching record	operat	ional l	evel	(1	929-1939).

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1949-51, 1961-62, 1965-68, 1970-73, May 2002 to current year.

PERIOD OF DAILY RECORD .--

WATER TEMPERATURE: July 1979 to September 1985, seasonal records May 2002 to current year.

INSTRUMENTATION.--Temperature recorder installed May 16, 2002.

REMARKS.--Seasonal daily water temperature record good. Unpublished records of instantaneous water temperature and specific conductance are available in files of District office.

EXTREMES FOR PERIOD OF DAILY RECORD .--

WATER TEMPERATURE: Maximum, 21.5°C, Aug. 12-14, 2003; minimum, 0.0°C, many days during winter periods.

EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURE: During period of seasonal operation, maximum, 21.5°C, Aug. 12-14; minimum, 1.0°C, Apr. 3, 4.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instar taneo dis charg cfs (0006	us metr - pres e, sure mm H	ic Dis - solv , oxyge g mg/	ed perce n, of sa L urati	red wate n, unflt nt fiel t- std	r, condu rd tand d, wat u uS/c s 25 de	c- e, Tempe inf atur m air gC deg	e, ature , water C deg C	, unflt; , mg/L a	, r, Calciu rd water as fltrd 3 mg/I	water, l, fltrd, mg/L
APR 2003 01 MAY	1200	6470	710	11.2	102	8.4	560	5.0	8.0	190	46.5	18.3
08	1115	8890	715	12.0	110	8.5	562	14.0	8.5	200	49.4	18.8
JUL 08 AUG	1015	7310	716	8.9	100	8.4	561	24.0	18.0	230	55.7	20.9
26	1015	6370	720	9.1	102	8.3	570	26.5	18.0	210	51.6	19.9
Date		Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d (70302)
APR 20 01 MAY		5.18	1	43.7	150	6.87	.66	6.4	126	344	.47	6010
08		3.89	1	40.1	159	8.79	.85	6.9	120	344	.47	8260
JUL 08 AUG		4.03	1	40.7	158	8.75	. 9	6.7	117	350	.48	6900
26		3.64	1	38.1	165	8.53	.9	7.4	115	344	.47	5920

06177000 MISSOURI RIVER NEAR WOLF POINT, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	Ammonia + org-N, water, unfltrd mg/L as N (00625)	Ammonia water, fltrd, mg/L as N (00608)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Phos- phorus, water, unfltrd mg/L (00665)	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)	Barium, water, fltrd, ug/L (01005)	Barium, water, unfltrd recover -able, ug/L (01007)	Cadmium water, fltrd, ug/L (01025)
APR 2003 01	.90	.060	.128	.004	E.005	.22	2.3	6	33	95	< .04
MAY 08	.28	<.015	E.014	<.002	<.007	.092	3.1	5	37	54	<.04
JUL 08 AUG	.26	<.015	<.022	<.002	<.007	.057	3.2	4	35	63	< .04
26	.17	<.015	<.022	<.002	E.004	.035	2.9	4	35	52	<.04
Date	Cadmium water, unfltrd ug/L (01027)	Chrom- ium, water, fltrd, ug/L (01030)	Chrom- ium, water, unfltrd recover -able, ug/L (01034)	Copper, water, fltrd, ug/L (01040)		Iron, water, fltrd, ug/L (01046)	Iron, water, unfltrd recover -able, ug/L (01045)	Lead, water, fltrd, ug/L (01049)	Lead, water, unfltrd recover -able, ug/L (01051)	Mangan- ese, water, fltrd, ug/L (01056)	Mangan- ese, water, unfltrd recover -able, ug/L (01055)
APR 2003 01 MAY	.10	<.8	3.4	2.3	10.3	<10	5850	<.08	5.04	3.4	143
08 JUL	.05	<.8	1.6	1.4	4.2	<10	2140	<.08	1.82	1.5	52
08 AUG	.04	<.8	E.6	1.4	2.9	<8	1330	<.08	1.04	1.9	33
26	< .04	<.8	E.4	1.4	2.8	<8	740	<.08	.61	1.4	26
Date	Mercury water, fltrd, ug/L (71890)	Mercury water, unfltrd recover -able, ug/L (71900)		Nickel, water, unfltrd recover -able, ug/L (01067)	Selen- ium, water, fltrd, ug/L (01145)	Selen- ium, water, unfltrd ug/L (01147)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)
APR 2003 01	<.02	E.02	2.37	9.50	.7	.8	1	30	94	279	4870
MAY 08 JUL	<.02	<.02	2.88	5.52	.8	.7	1	11	43	140	3360
08 AUG	<.02	<.02	2.15	3.73	.9	.7	1	7	57	74	1460
26	<.02	<.02	2.70	4.12	.7	1.0	<1	3	38	56	963

E--Estimated.

06177000 MISSOURI RIVER NEAR WOLF POINT, MT--Continued WATER TEMPERATURE, DEGREES CELSIUS, APRIL 2003 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1 2 3 4 5	8.0	6.5 2.0 1.0 1.0 2.5	7.5 4.0 1.5 2.0 3.5	11.0 11.0 12.0 12.0 10.5	9.0 9.0 10.0 10.5 9.0	10.0 10.0 11.0 11.0 9.5		JUNE 12.5 11.5 12.0 13.0 11.5	12.5 12.0 13.0 13.5 12.0	19.0 19.5 19.0 17.5 17.5	JULY 16.5 17.5 17.5 15.0	18.0 18.5 18.0 16.0 16.5
6 7 8 9 10	9.0	4.0 5.0 5.0 6.5 8.0	4.5 5.5 6.0 7.5 9.0	9.0 8.0 8.0 8.0	7.5 7.0 7.0 7.5 7.5	8.0 7.5 7.5 8.0 8.0	12.0 12.0 14.0 14.0	10.5 10.5 11.5 13.0 13.0	11.0 11.0 12.5 13.5	17.5 17.5 17.0 17.5 18.0	16.0 16.0 15.5 15.0	17.0 17.0 16.0 16.0
11 12 13 14 15	11.0 10.5	9.0 10.0	9.5 10.0 10.0 9.0 9.5	10.0 11.0 11.5 12.5 13.5	7.5 9.0 10.5 10.5	8.5 10.0 11.0 11.5 12.5	13.5 15.0 17.0 17.5 17.0	12.5 12.5 13.5 15.5	13.0 13.5 15.0 16.5 16.0	18.0 18.0 19.0 19.0	16.5 16.5 17.0 17.5	17.5 17.5 18.0 18.5 18.0
16 17 18 19 20	9.5 9.0 9.0 8.5 9.5	8.0 7.0 8.5 8.0 7.5	8.5 8.5 8.5 8.5 8.5	13.5 12.0 11.5 9.5 10.5	12.0 11.0 9.5 8.5 8.5	12.5 11.5 10.0 9.0 9.5	16.5 16.5 17.0 18.5 19.0	14.5 14.0 14.5 15.0 17.0	15.5 15.5 16.0 16.5 18.0	19.0 19.5 21.0 20.5 20.5	17.0 17.5 19.0 19.0 18.0	18.0 18.5 20.0 20.0 19.0
21 22 23 24 25	11.0 12.0 12.0 12.0 11.0	9.5 11.0	9.5 11.0 11.5 11.0	11.5 12.0 13.5 15.0 15.5	10.0 11.5	10.5 11.0 12.5 13.5 14.5	18.5 17.0 15.5 15.0 14.5	16.0 14.5 13.5 13.5	17.0 15.5 14.5 14.0 13.5	19.0 18.5 19.5 19.5 19.0	17.0 16.5 17.0 18.0 17.0	18.0 17.5 18.0 18.5 17.5
26 27 28 29 30 31	11.0 10.0 10.0 10.0	10.0 8.5 8.5 9.0 8.5	10.0 9.5 9.5 10.0 9.5	16.5 16.5 16.5 16.0 15.5 15.0	14.5 14.5 14.5 14.0 13.5 13.0	15.5 15.5 15.5 15.0 14.5 13.5	14.5 16.0 16.0 16.5 18.0	13.0 14.0 14.5 14.5 15.0	14.0 15.0 15.5 15.5	18.0 18.5 19.5 19.5 19.0 18.5	16.0 16.5 17.0 17.5 17.0	17.0 17.5 18.0 18.5 18.0
MONTH	12.0	1.0	8.1			11.2	19.0	10.5	14.4	21.0	15.0	17.8
		AUGUST			SEPTEMB	ER						
1 2 3 4 5	18.5 18.0 18.0 18.5 18.5	16.5 16.5 16.5 17.0 17.0	17.5 17.5 17.5 17.5 18.0	17.5 17.0 16.5 16.0 16.0	16.0 16.0 15.0 15.0	17.0 16.5 16.0 15.5 16.0						
6 7 8 9 10	18.5 20.0 21.0 21.0 20.0	17.0 18.0 19.0 19.5 18.5	18.0 19.0 20.0 20.5 19.5	16.5 17.0 17.5 17.5	15.5 15.5 16.0 16.5 14.0	16.0 16.5 17.0 17.0						
11 12 13 14 15	21.0 21.5 21.5 21.5 20.5	18.5 19.5 20.0 19.5 18.5	19.5 20.5 21.0 20.5 19.5	14.5 14.5 14.0 14.0	13.5 14.0 12.5 12.0 13.0	14.0 14.0 13.0 13.0						
16 17 18 19 20	20.0 20.0 19.5 20.0 19.5	18.5 18.5 18.5 18.5 18.0	19.5 19.5 19.0 19.0	13.5 13.0 11.5 13.0 13.5	13.0 11.0 10.0 11.0 12.5	13.0 12.0 10.5 12.0 13.0						
21 22 23 24 25	18.5 18.0 19.0 19.0	17.0 16.5 17.5 17.5	18.0 17.5 18.0 18.0	13.5 13.0 13.0 12.5 13.0	12.5 12.0 12.5 11.0	13.0 12.5 12.5 11.5 12.0						
26 27 28 29 30 31	18.0 17.0 16.0 16.0 16.5	16.5 16.0 15.0 14.5 14.5	17.5 16.5 15.5 15.5 15.5	13.5 14.0 13.5 13.0 12.5	12.5 12.5 12.0 12.0 11.0	13.0 13.0 13.0 12.5 11.5						

21.5 14.5 18.3 17.5 10.0 13.8

MONTH

REDWATER RIVER BASIN

06177500 REDWATER RIVER AT CIRCLE, MT

LOCATION.--Lat 47°24′51", long 105°34′30" (NAD 27), in SW¹/₄SW¹/₄ sec.11, T.19 N., R.48 E., McCone County, Hydrologic Unit 10060002, on left bank at Circle, 1 mi upstream from Horse Creek, and at river mile 110.2.

DRAINAGE AREA.--547 mi².

PERIOD OF RECORD.--April to November 1929, March to November 1930, July 1931 to December 1932, March to June 1933, February to November 1934, April 1935 to December 1936, April 1937 to June 1972, October 1974 to current year. Monthly discharge only for some periods, published in WSP 1309. Prior to October 1967, published as Redwater Creek at Circle.

REVISED RECORDS.--WSP 1006: 1929-30, 1932-33, 1935-39. WSP 1509: 1929, 1934. WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Sharp-crested weir since Sept. 24, 1938. Elevation of gage is 2,394.32 ft (NGVD 29) (levels by U.S. Army Corps of Engineers). Prior to June 1, 1941, and Mar. 23, 1943, to Feb. 16, 1948, nonrecording gage at site 0.3 mi upstream at same elevation. June 1, 1941, to Mar. 22, 1943, nonrecording gage at site 200 ft upstream at elevation 2.8 ft lower. Feb. 26, 1948, to May 7, 1950, nonrecording gage at site 200 ft upstream at present elevation.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Diversions for irrigation of about 1,200 acres upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

		DISCHAR	GE, CUB	IC FEET FI		ILY MEAN		CIOBER 2	.002 TO SE	FIENIDEN	2003	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0.06 e0.05 e0.05 e0.05 e0.05	e0.10 e0.10 e0.10 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.10	e0.15 e0.10 e0.15 e0.10 e0.10	e0.20 e0.30 e0.50 e0.30 e0.30	0.71 0.58 0.49 0.41 0.32	0.55 0.55 0.54 0.53 0.67	0.36 0.42 0.43 0.43 0.43	0.32 0.27 0.26 0.24 0.25	0.12 0.12 0.11 0.09 0.07	0.02 0.02 0.02 0.01 0.01
6 7 8 9 10	e0.05 e0.05 e0.10 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.10	e0.20 e0.20 e0.20 e0.20 e0.20	0.28 0.57 0.54 1.9	0.75 0.73 0.73 0.71 0.73	0.44 0.48 0.44 0.55 0.49	0.23 0.22 0.25 0.32 0.26	0.05 0.04 0.05 0.12 0.10	0.01 0.02 0.02 0.02 0.02
11 12 13 14 15	e0.10 e0.10 e0.10 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.10	e0.10 e0.10 e0.15 e0.15 e0.15	e0.20 e0.30 e0.50 e25.0 e200	1.4 1.3 1.3 1.3	0.71 0.64 1.0 1.4 1.5	0.58 0.66 0.57 0.53 0.44	0.25 0.23 0.20 0.21 0.19	0.05 0.04 0.03 0.03 0.03	0.02 0.02 0.03 0.03 0.03
16 17 18 19 20	0.10 0.10 0.13 0.19 e0.20	e0.10 e0.10 e0.10 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.10	e0.20 e0.20 e0.20 e0.20 e0.20	90 39 27 23 19	1.1 1.2 1.1 1.2	1.8 1.9 1.7 1.5	0.41 0.45 0.36 0.35 0.34	0.21 0.21 0.20 0.20 0.20	0.03 0.02 0.02 0.02 0.01	0.03 0.03 0.03 0.04 0.04
21 22 23 24 25	e0.20 e0.20 e0.15 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.10	e0.20 e0.15 e0.15 e0.15 e0.15	14 11 9.0 5.6 4.0	0.90 0.71 0.32 0.55 0.55	1.1 0.95 0.82 0.74 0.59	0.49 0.50 0.48 0.62 0.59	0.19 0.17 0.15 0.15 0.15	0.01 0.01 0.01 0.01 0.01	0.04 0.05 0.04 0.04 0.04
26 27 28 29 30 31	e0.10 e0.10 e0.10 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.10	e0.10 e0.10 e0.10 e0.10 e0.10 e0.10	e0.10 e0.15 e0.15 e0.10 e0.10 e0.15	e0.15 e0.20 e0.20	2.9 2.1 1.6 1.2 1.1 0.88	0.52 0.55 0.49 0.44 0.52	0.47 0.44 0.37 0.33 0.32 0.31	0.45 0.41 0.39 0.36 0.32	0.15 0.16 0.16 0.13 0.13	0.01 0.00 0.00 0.00 0.00 0.00	0.04 0.05 0.05 0.05 0.05
TOTAL MEAN MAX MIN AC-FT	3.23 0.10 0.20 0.05 6.4	3.00 0.10 0.10 0.10 6.0	3.10 0.10 0.10 0.10 6.1	3.25 0.10 0.15 0.10 6.4	4.10 0.15 0.20 0.10 8.1	479.98 15.5 200 0.20 952	25.15 0.84 1.9 0.28 50	26.38 0.85 1.9 0.31 52	13.77 0.46 0.66 0.32 27	6.39 0.21 0.32 0.13 13	1.22 0.039 0.12 0.00 2.4	0.92 0.031 0.05 0.01 1.8
STATIST	TICS OF M	MONTHLY ME	AN DATA	FOR WATER	YEARS 19	29 - 2003,	, BY WATER	YEAR (WY	() *			
MEAN MAX (WY) MIN (WY)	0.51 19.2 1987 0.000 1941	0.36 7.11 1987 0.000 1931	0.43 8.58 1952 0.000 1936	0.35 6.13 1976 0.000 1936	14.9 141 1943 0.000 1939	72.1 476 1994 0.045 1941	17.0 418 1952 0.070 1961	3.66 32.1 1979 0.023 1961	14.5 167 1944 0.003 1961	11.1 116 1957 0.000 1939	1.98 37.4 1932 0.000 1939	2.38 139 1986 0.000 1940

REDWATER RIVER BASIN

06177500 REDWATER RIVER AT CIRCLE, MT--Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR YEAR	FOR 2003 WATER YEAR	WATER YEARS 1929 - 2003*
ANNUAL TOTAL	270.14	570.49	11 5+4
ANNUAL MEAN	0.74	1.56	11.5**
HIGHEST ANNUAL MEAN			61.6 1952
LOWEST ANNUAL MEAN			0.04 1941
HIGHEST DAILY MEAN	37 Mar 28	200 Mar 15	4510 Mar 31 1952
LOWEST DAILY MEAN	0.00 Jan 1	0.00 Aug 27	0.00 Oct 8 1929
ANNUAL SEVEN-DAY MINIMUM	0.04 Jul 28	0.00 Aug 24	0.00 Nov 20 1929
MAXIMUM PEAK FLOW		a200 Mar 15	c6960 Jun 29 1986
MAXIMUM PEAK STAGE		b8.80 Mar 15	12.93 Mar 4 1994
ANNUAL RUNOFF (AC-FT)	536	1130	8310
10 PERCENT EXCEEDS	1.2	1.1	7.1
50 PERCENT EXCEEDS	0.11	0.12	0.20
90 PERCENT EXCEEDS	0.05	0.03	d0.00

^{*--}During period of operation (1932, 1936, 1938-71, 1975 to current year).

**--Median of yearly discharges, 6.04 ft³/s.
a--About.
b--Backwater from ice.
c--From rating curve extended above 3,500 ft³/s, gage height, 12.85 ft, from floodmark.
e--Estimated.

06178000 POPLAR RIVER AT INTERNATIONAL BOUNDARY

(International gaging station)

LOCATION.--Lat 48°59'25", long 105°41'46" (NAD 27), in NE¹/₄NE¹/₄SE¹/₄ sec.6, T.37 N., R.46 E., Daniels County, Hydrologic Unit 10060003, on left bank 0.7 mi south of international boundary, 1.5 mi upstream from Coal Creek, 18.5 mi northwest of Scobey, MT, and at river mile 135.7. DRAINAGE AREA.--358 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March 1931 to current season (seasonal records only for most years). Published as Middle Fork Poplar River at international boundary, March 1931 to November 1975.

REVISED RECORDS.--WSP 1389: 1931, 1935-37(M), 1939-40, 1942(M), 1943, 1948(M), 1950(M). WSP 1729: Drainage area. W 1984: Drainage

GAGE.--Water-stage recorder and concrete control since September 1977. Elevation of gage is 2,460 ft (NGVD 29).

REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. U.S. Geological Survey satellite telemeter at station. A few small diversions for irrigation upstream from station.

COOPERATION .-- This is one of a number of stations which are maintained jointly by the United States and Canada.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 12,700 ft³/s, Apr. 6, 1954, gage height, 10.25 ft, from floodmark, from rating curve extended above 2,500 ft³/s, on basis of slope-area measurement of peak flow; no flow at times.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			e0.30 e0.30 e0.30 e0.0 e0.0	15 11 13 14 21	15 15 15 15 17	5.1 5.8 8.2 8.6 8.0	2.2 1.7 1.3 0.98 0.74	0.11 0.06 0.06 0.14 0.13	0.32 0.36 0.42 0.51 0.54	0.29 0.33 0.30 0.32 0.38		
6 7 8 9 10			e0.0 e0.0 e0.0 e0.0 e0.0	15 18 21 32 32	26 55 68 66 71	8.6 7.7 7.4 7.5 7.5	0.48 0.35 0.50 0.67 0.52	0.11 0.14 0.15 0.14 0.10	0.57 0.55 0.53 0.36 0.35	0.41 0.46 0.95 1.3		
11 12 13 14 15			e0.0 e0.0 e0.0 e2.0	26 22 19 22 33	72 51 43 40 33	7.8 7.9 7.9 7.5 8.0	0.36 0.53 0.50 0.53 0.43	0.07 0.05 0.04 0.04 0.05	0.31 0.35 0.37 0.26 0.25	1.4 1.5 1.6 1.9 2.2		
16 17 18 19 20			e300 e600 e500 434 238	34 32 31 27 24	34 46 47 35 26	8.3 6.8 5.8 4.9 4.3	0.29 0.26 0.33 0.17 0.12	0.06 0.04 0.03 0.05 0.13	0.28 0.38 0.36 0.32 0.43	2.4 2.5 2.4 2.5		
21 22 23 24 25			112 71 53 41 35	21 19 18 17 17	21 20 18 15	4.4 4.3 4.0 4.1 5.0	0.17 0.16 0.13 0.12 0.16	0.23 0.22 0.14 0.05 0.09	0.59 0.44 0.33 0.29 0.29	2.4 2.4 2.5 2.5 2.4		
26 27 28 29 30 31			30 27 24 22 20 17	16 17 17 16 16	11 9.7 9.4 7.7 6.6 5.8	4.2 3.6 3.2 2.8 2.6	0.11 0.11 0.10 0.10 0.10 0.11	0.07 0.12 0.31 0.43 0.37 0.31	0.29 0.27 0.28 0.29 0.29	2.5 2.7 2.7 2.2 e2.0 e1.5		
TOTAL MEAN MAX MIN MED AC-FT				636 21.2 34 11 19 1260	927.2 29.9 72 5.8 21 1840	181.8 6.06 8.6 2.6 6.3 361	14.33 0.46 2.2 0.10 0.33 28	4.04 0.13 0.43 0.03 0.11 8.0	11.18 0.37 0.59 0.25 0.35 22	52.64 1.70 2.7 0.29 2.0 104		
STATIST	CICS OF MO	NTHLY M	EAN DATA FO	R SEASONS	1931 -	2003*						
MEAN MAX (WY) MIN (WY)	0.000 0.000 1936 0.000 1936	20.2 61.3 1981 0.000 1936	418 1999 0.000	81.6 699 1952 5.52 1988	17.2 86.2 1982 3.05 1992	14.4 191 1963 0.16 1988	8.63 120 1993 0.041 1988	0.000	0.007	2.68 11.8 1955 0.039 1989	4.90 9.35 1955 0.12 1937	0.000 0.000 1936 0.000 1936
SUMMARY	STATISTI		FOR 2				FOR 2003					
LOWEST MAXIMUM	DAILY ME. DAILY MEA PEAK FLO PEAK STA	AN N W GE		150 0.00	Apr 12 Mar 1		a600 0.00 unknown a6.90	Mar 17 Mar 4 Mar 16		5000 0.00 b127000 10.25	Apr 6 Jun 30 Apr 6 Apr 6	1954 1932 1954 1954

^{*--}Seasonal record most years.

a--Backwater from ice

b--From rating curve extended above 2,500 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow.

e--Estimated.

06178000 POPLAR RIVER AT INTERNATIONAL BOUNDARY--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1964-65, 1976 to current year.

REMARKS.--Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	mm Hg	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	pH, water, unfltrd field, std units (00400)	Specif. conductance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	unfltrd mg/L as CaCO3	Magnes alcium ium, water, water fltrd, fltrd mg/L mg/L 00915) (00925	i, l,
MAR 2003 20	1315	220	702	10.8	92	8.1	364	6.0	5.0	120	21.5 15.0	
MAY 14	1200	41	700	10.2	110	8.4	1600	12.0	14.5	420	49.6 72.6	
JUN 16	0900	9.0	711	10.8	124	8.3	1220	21.0	18.5	320	37.2 54.5	
AUG 13	0900	.03	706	7.7	98	8.9	1950	29.0	23.5	260	20.0 50.5	
Date	Pota sium wate fltr mg/ (0093	r, Sodi r, adsor d, tio L rat:	on fltr lo mg/	r, la d, mg/L L CaC	ty, flt Chl end id o, wat as flt O3 mg	rd, flt: /L mg	e, Silic er, wate rd, fltr /L mg/	er, wate d, flt: 'L mg	er, const rd, tuer /L mg,	er, rd, Resid of wate ti- fltr nts tons /L acre-	r, Residue d, water, / fltrd, ft tons/d	
MAR 2003	16.0		0.5	0 14	2 0		2 10 5	. 25	0 000	2.0	121	
20 MAY	16.2		27.			57 .1:						
14 JUN	14.2		217	61		35 .4	18.7		1050			
16 AUG	8.6		174	49		06 .4	1.5		776			
13	9.8	6 9	342	63	1 13.	3 .6	. 5	5 422	1240	1.68	.10	
Date	Ammon + org- wate unflt mg/ as (0062	N, Ammon r, wate rd flt: L mg, N as	er, wate cd, fltr 'L mg/ N as	te Nitr r wat d, flt L mg N as	phoite phaser, waterd, flt N as	te, Phoser, phore rd, water water reference re	us, Arsen er, wate trd fltr /L ug/	er, wate d, unfli 'L ug	er wate trd flt: /L ug,	er, recov rd, -abl /L ug/	r, rd Cadmium er water, e, fltrd, L ug/L	
Date MAR 2003 20	org- wate unflt mg/ as	N, Ammon r, wate rd flt: L mg, N as	nia nitra er, wate ed, fltr /L mg/ N as 08) (0063	te Nitr r wat d, flt L mg N as 1) (006	pho ite pha er, wat rd, flt /L mo N as 13) (006	os- ite, Phos ier, phor ird, wate i/L unfli	us, Arsen er, wate trd fltr /L ug/	er, waterd, unflight unflight unflight unflight unflight (010)	er wate trd flt: /L ug, 02) (0100	wate um, unflt er, recov ed, -abl /L ug/	r, rd Cadmium er water, e, fltrd, L ug/L	
MAR 2003 20 MAY 14	org- wate unflt mg/ as (0062	N, Ammon r, wate rd flt: L mg, N as 5) (006)	hia nitra er, wate cd, fltr /L mg/ N as 08) (0063	te Nitr r wat d, flt L mg N as 1) (006	pholite phaser, wat flt mg N as 13) (006	es- ete, Phos er, phor rd, wat r/L unfl recommended	us, Arsener, waterd fltr ug/65) (0100	er, wated, unfl: (L ug: (00) (010)	er wate trd flt: /L ug, 02) (0100	wate um, unflt er, recov ed, -abl /L ug/ 05) (0100	r, rd Cadmium er water, e, fltrd, L ug/L 7) (01025)	
MAR 2003 20 MAY 14 JUN 16	org- wate unflt mg/ as (0062	N, Ammoi r, wate rd flt: L mg, N as 5) (0066	+ nitra er, wate erd, fltr (L mg/ N as 08) (0063	te Nitrr wat d, flt L mg N as 1) (006	pho phae phae phae phae phae phae phae phae	s- te, Phose er, phori erd, wate f/L unfl' P mg (771) (006)	us, Arsener, waterd fltr (100) (0100)	er, waterd, unflict ug. (010)	er wate trd flt: /L ug, 02) (0100	wate um, unflt er, recov cd, -abl /L ug/ 05) (0100	r, rd Cadmium er water, e, fltrd, L ug/L 7) (01025)	
MAR 2003 20 MAY 14 JUN	org- wate unflt mg/ as (0062	N, Ammoi r, wate rd flt: L mg, N as 5) (0066	+ nitra arr, water, water, water, water, fltr (L mg/N as) (0063)	te Nitrr wat d, flt L mg N as 1) (006 6 .0 2 .0 2 <.0	pho pha wat rd, flt mg l3) (006	tte, Phoi- eer, phorn rd, wat- f/L unfl- P mg, r71) (006) 34 .26 28 .073	us, Arser water, water fltrd fltrd fltrd sign (0100 2.6 3 4.4 2 4.2	er, waterd, unflict ug 00) (010) 5 2 4 3	er wate trd flts /L ug, 02) (0100 45	wate um, unflt er, recov cd, -abl /L ug/ 05) (0100	r, rd Cadmium er water, e, fltrd, L ug/L 7) (01025) <.04 <.04	
MAR 2003 20 MAY 14 JUN 16 AUG	+ org- wate unfit mg/ as (0062 1.8 1.5	N, Ammon rr, wat rd fltr L mg N as 5) (0066 01 <.01 <.02 <.02 .03 .04 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	+ nitra arr, wate rd, fltr (0063	te Nitr r wat d, flt L mg N as 1) (006 6 .0 2 .0 2 <.0 2 <.0 m-, rr, copper wat e, flt L ug	pho pha	ns- ite, Phoi. ite, Phoi. ite, Phoi. ite, Phoi. ite, phor. ite, ph	us, Arserer, wate trd filtr (1 ug/65) (0100 2.6 3 4.4 2 4.2 0 7.8 4.4 2 4.2 4.2 1 1 ror wate unfit er, recoverd, -abl (/L ug/L ug/4 1 ug/L ug/L ug/4 1 ug/L ug/4 1 ug/4 ug/4 1 ug/4 ug/4 1 ug/4 ug/4 ug/4 ug/4 ug/4 ug/4 ug/4 ug/4	er, wat. d, unfli (L ug 00) (010) 5 2 4 3 2 4 3 7 11, er, er, trd Leac rer wat. Le, flt: Lu ug	er water trd fltr dig (wate unflt rer, recov rd, -abl ug/ 05) (0100 50 77 51 37 d, er, Manga erd ere wate le, fltr /L ug/	r, rd Cadmium er water, e, fltrd, L ug/L 7) (01025) <.04 <.04 <.04 <.04 Mangan- ese, n- water, , unfltrd r, recover d, -able, L ug/L	
MAR 2003 20 MAY 14 JUN 16 AUG 13	cadmi wate unflu ug/(0102	N, Ammon rr, waterd fltr L mg N as 5) (0066 03 03 03 03 03 03 03 03	hiia nitra arr, wate rd, fltr mg/ as 88) (0063 as 85 .86 ll <.02 chromom-wate unflt recover and recove	te Nitr r wat d, flt L mg N as 1) (006 6 .0 2 .0 2 <.0 2 <.0 m-, r, rd Copp er wat e, flt L ug 4) (010	pho pha	ns- ite, Phoi. ite, Phoi. ite, Phoi. ite, Phoi. ite, phorn ind, wate unfl' if Market i	us, Arserer, wate trd fltr ug/ (0100	er, wat. d, unfil L ug 00) (010) 5 2 4 3 2 4 3 7 11, er, erd Lead ver wat. (L ug 15) (010)	er water trd fltr fltr graph (0100) (wate um, wate unflt rer, recov rd, -abl ug/ 05) (0100 50 77 51 37 d, er, Manga erd ese wate le, fltr UL ug/ (0105	r, rd Cadmium er water, e, fltrd, L ug/L 7) (01025) <.04 <.04 <.04 <.04 Mangan- ese, n- water, unfltrd r, recover d, -able, L ug/L 6) (01055)	
MAR 2003 20 MAY 14 JUN 16 AUG 13	+ org-wate unflt mg/ as (0062	N, Ammon r, waterd fltr rd fltr L mg N as 5) (0066 <.00 <.00 <.00 <.00 chreater waterd fltr L ug 7) (0100	hia nitra er, wate rd, fltr Mg/ N as 08) (0063 35 .86 11 <.02 15 <.02 15 <.02 Chro ium om- wate ner, recov cunflt recov d, -abl L'L ug/ 80) (0103	te Nitr r wat d, flt. L mg N as 1) (006 6 .0 2 .0 2 <.0 2 <.0 7 <.0 6 copp er wat e, flt. L ug 4) (010	pho pha	sette, Pho: tte, phor tte, phor er, phor rd, wate (/L unfl' s P mg (71) (006) 34 .26 28 .07 15 .04 107 .05 Der, er, trd Irol wate le, flt ug (42) (010 4 18	us, Arser er, wate trd fltr ug/ Lug/55) (0100 2.6 3 4.4 2 4.2 0 7.8 Iron wate unflt er, recoverd, -abl ug/ 46) (0104	er, wat. d, unfil L ug 00) (0100 2 4 3 7 1, er, er, fil Leadrer wat. ee, filt: L ug 15) (0100	er wate filt trd filt ug (02) (0100 45 82 47 34 Lead wate unfil er, record, -ab. /L ug (49) (0109 8 .59	wate um, wate unflt er, recov rd, -abl /L (0100 50 77 51 37 d, er, Manga erd er wate le, fltr (U105) (0105) 17.6	r, rd Cadmium er water, e, fltrd, L ug/L 7) (01025) <.04 <.04 <.04 <.04 <.04 .04 .04 .0	
MAR 2003 20 MAY 14 JUN 16 AUG 13 Date	+ org-wate unflt mg/as (0062 1.8 1.5 .80 1.2 Cadmi wate unflt ug/(0102 .05 .04	N, Ammon r, waterd fltr L mg N as 5) (0066 00	thia nitra arr, waterd, fltr mg/ as 88) (0063 as 85 .86 arr continue water and market	te Nitr r wat d, flt L mg N as 1) (006 6 .0 2 .0 2 <.0 2 <.0 2 <.0 m-, rr, copper wat e, flt L ug 4) (010	pho pha pha water, water, rd, flt mg N as 13) (006 48 .1 03 .0 02 .0 02 <.0 Copp water, unfler, record, august of the control of the con	nete, Phoise, per phore of the	us, Arser wate firm wate firm for the firm of the firm	er, wath unfil (L ug (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	er water trd fltr fltr fltr graph (0100) (01	wate um, wate um, control of the con	r, rd Cadmium er water, e, fltrd, L ug/L 7) (01025) <.04 <.04 <.04 <.04 .04 .04 .04 .0	
MAR 2003 20 MAY 14 JUN 16 AUG 13 Date	+ org-wate unflt mg/ as (0062	N, Ammon r, waterd fltr I mg N as 5) (0066 00 <.00 <.00 <.00 00 00 00 00	thia nitra arr, water depth arrow water as a series with a series water as a series water arrow and a series water arrow arrow arrow and a series water arrow a	te Nitr r wat d, flt. L mg N as 1) (006 6 .0 2 .0 2 <.0 2 <.0 2 <.0 m-, r, rd Copp er wat e, flt. L ug 4) (010 2. 3.	pho pha	rete, Phote, Pho	us, Arser er, wate to the control of	er, wat. d, unfil L ug 00) (010) 5 2 4 3 2 4 3 7 11, erd Lead wat. ee, filt: (L ug (5) (010) 1 .1: 0 E.0' 0 < .06	er water trd fltr dig,	wate um, wate umflt rer, recov rd, -abl ug/ 05) (0100 50 77 51 37 d, er, Manga ese wate le, fltr r/L ug/ (0105) 17.6 51 17.6 65 11.5	r, rd Cadmium er water, e, fltrd, L ug/L 7) (01025) <.04 <.04 <.04 <.04 Mangan- ese, n- water, unfltrd r, recover d, able, L ug/L 6) (01055) 31 16 10	

E--Estimated.

06178000 POPLAR RIVER AT INTERNATIONAL BOUNDARY--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	Mercury water, fltrd, ug/L (71890)	Mercury water, unfltrd recover -able, ug/L (71900)	Nickel, water, fltrd, ug/L (01065)	Nickel, water, unfltrd recover -able, ug/L (01067)	Selen- ium, water, fltrd, ug/L (01145)	Selen- ium, water, unfltrd ug/L (01147)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	Suspnd. sedi- ment, sieve diametr percent <.063mm (70331)	Sus- pended sedi- ment concen- tration mg/L (80154)	Sus- pended sedi- ment load, tons/d (80155)
MAR 2003 20 MAY	<.02	E.01	2.16	2.25	E.3	<.5	2	5	88	22	13
14	<.02	<.02	3.53	3.43	.6	.7	3	4	33	182	20
JUN 16 AUG	<.02	<.02	2.22	2.17	E.3	E.4	<2	E2	40	28	.68
13	<.02	<.02	1.56	2.42	E.4	<.5	2	2	46	51	.00

E--Estimated.

06178500 EAST POPLAR RIVER AT INTERNATIONAL BOUNDARY

(International gaging station)

LOCATION.--Lat 49°00'00", long 105°24'32" (NAD 27), in SW¹/₄SW¹/₄ sec.3, T.1 N., R.26 W., second meridian, in Saskatchewan, Hydrologic Unit 10060003, on left bank 10 ft north of international boundary, 400 ft southwest of Canadian East Poplar Port of Entry, 14 mi north of Scobey, MT, and at river mile 21.9.

DRAINAGE AREA.--541 mi².

(WY)

1993

1993

1993

1982

1982

1992

1992

1978

1992

1977

1992

1992

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March 1931 to current year (seasonal records only in most seasons prior to October 1974). Prior to March 1962, published as East Fork Poplar River at international boundary.

REVISED RECORDS.--WSP 1389: 1932, 1939, 1942-43, 1947. W 1983: Drainage area.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 2,410.92 ft (International Boundary Commission Survey Datum). Prior to Oct. 5, 1953, water-stage recorder at site 80 ft upstream at same elevation.

REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. U.S. Geological Survey satellite telemeter at station. Since September 1975 flow regulated by Morrison Dam at Cookson Reservoir 3.1 mi upstream.

COOPERATION.--This is one of a number of stations which are maintained jointly by Canada and the United States.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 2.1 2.6 2.4 2.2 2.3 2.1 3.4 2.1 1.9 e1.8 4.1 1.9 1.9 8.1 e1.6 2.2 2.1 2.0 2.5 8.4 3.3 2.0 1.8 1.8 e1.4 $\frac{1.4}{1.4}$ 2.6 2.7 e3.5 2.4 2 1 2.1 3 0 1 8 5 2.4 2.2 2.3 2.1 2.9 1.9 e3.0 6.9 2.0 1.8 2.4 2.4 2.3 2.3 2.6 7 1 2.0 1.9 e2.5 e2.5 2 0 2.9 1 8 6 7 1.8 1.9 1.8 2.6 2.8 2.0 1.8 2.6 8 e2.2 2.4 2.2 2.3 2.0 1.7 3.0 5.9 1.8 2.0 1.8 2 2 1.6 2.7 e2 2 2 5 2 0 3 4 6 3 2.1 2 0 10 2.3 2.2 2.0 3.4 6.3 2.2 1.9 2.0 11 e3.0 2.4 2.4 2.2 2.0 1.6 3.1 5.6 2.8 2.1 1.9 1.9 12 2.1 2.0 1.9 3.0 2.1 2.0 2.8 2.4 2.0 2.1 13 2.4 2.1 2.1 2.9 6.7 2.8 1.8 2.2 2.0 2.4 2.8 2.7 14 2.5 6.8 1.9 2.0 15 2.5 2.4 2.4 2.0 2.0 3.2 2.8 2.7 2.1 1.8 2.6 2.4 2.4 2.1 2.0 4.9 2.7 2.7 2.1 16 4.3 1.9 17 2.7 2.4 2.4 2.1 2.1 8.5 2.7 3.9 2.7 1.9 1.9 2.2 2.7 18 2.6 2.4 2.4 2.1 2.0 7.1 4.3 2.4 1.9 1.7 2.2 4.5 2.0 1.9 19 2.4 20 2.4 2.4 2.4 2.2 2.1 3.8 2.7 6.5 2.3 1.9 1.9 2.2 2.4 2.1 2.6 2.3 21 2.4 2.4 2.0 3.4 6.7 2.3 1.9 1.7 22 2.4 2.4 2.4 2.0 2.0 3.3 2.5 6.7 2.3 1.9 1.7 2.2 23 2.4 2.2 $\frac{2.4}{2.4}$ 2.0 3.4 2.5 6.7 1.9 2.3 1.9 1.9 2.3 1.9 24 2.4 6.6 25 2.4 2.2 2.3 2.0 1.8 3.0 2.4 6.5 2.2 2.0 e1.5 2.1 6.7 2.5 2.3 2.6 2.2 2.0 e2.0 2.1 26 27 2.4 2.2 2.3 2.0 1.9 2.8 2.9 6.6 2.2 2.0 e2.0 2.1 2.8 2.5 2.1 2.2 2.3 2.0 2.8 5.9 1.9 e2.0 2.1 2.0 29 2.5 2.3 2.4 2.5 2.6 4.1 2.0 e2.0 2.0 30 2.5 2.2 2.3 2.0 ___ 2.5 2.6 6 0 2.0 1.9 2 0 2.0 31 2.4 2.3 2.1 ---2.6 4.5 1.8 2.0 77.8 71.9 TOTAL 76.1 70.8 66.2 56.1 89.8 82.0 188.3 61.2 58.0 61.0 2.14 2.00 2.90 6.07 2.59 1.97 1.87 MEAN 2.45 2.36 2.32 2.73 2.03 3.5 2.5 2.4 2.4 2.1 3.4 8.4 3.4 2.2 2.0 2.3 8.5 2 1 1 8 MIN 1 9 1 4 1 5 1 8 140 163 373 115 AC-FT 151 143 131 111 178 154 121 121 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1977 - 2003, BY WATER YEAR (WY)* MEAN 2.46 2.26 2.65 11.3 40.7 2.37 22.8 5.28 2.83 2.50 4.65 MAX 4 37 4 40 280 306 23 2 6 84 4 10 1980 1980 1980 1997 1999 1982 1979 1979 1999 1997 1979 1980 (WY) 1.27 1.26 0.93 1.91 1.80 2.98 1.72 1.79 1.58 1.53 1.64

06178500 EAST POPLAR RIVER AT INTERNATIONAL BOUNDARY--Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR YEAR	FOR 2003 WATER YEAR	WATER YEARS 1977 - 2003*
ANNUAL TOTAL	1019.3	959.2	
ANNUAL MEAN	2.79	2.63	6.75
HIGHEST ANNUAL MEAN			32.3 1982
LOWEST ANNUAL MEAN			2.13 1992
HIGHEST DAILY MEAN	12 May 2	8.5 Mar 17	2930 Apr 15 1982
LOWEST DAILY MEAN	1.4 Sep 24	1.4 Oct 3	c0.70 Feb 28 1998
ANNUAL SEVEN-DAY MINIMUM	1.9 Sep 27	1.6 Mar 4	0.80 Jan 16 1982
MAXIMUM PEAK FLOW	-	all Mar 17	d4020 Apr 23 1975
MAXIMUM PEAK STAGE		b5.97 Oct 3	12.80 Mar 25 1943
INSTANTANEOUS LOW FLOW			0.70 Feb 28 1998
ANNUAL RUNOFF (AC-FT)	2020	1900	4890
10 PERCENT EXCEEDS	3.5	3.6	6.7
50 PERCENT EXCEEDS	2.3	2.3	2.5
90 PERCENT EXCEEDS	2.0	1.9	1.7

^{*--}Since initial filling of Cookson Reservior. a--Gage height, 5.94 ft. b--Backwater from beavers.

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1964-65, 1975 to current year.

PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: February 1982 to current year.

WATER TEMPERATURE: June 1975 to September 1983.

INSTRUMENTATION.--Specific conductance monitor installed April 1995.

REMARKS.--Daily specific conductance records fair. Missing conductance data for June 28 to Sept. 25 due to equipment problems. Unpublished records of instantaneous water temperature and specific conductance are available in files of District office.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily mean, 2,040 microsiemens per centimeter (µS/cm) at 25.0°C, Feb. 10-12, 1997; minimum daily mean, 363 μS/cm at 25.0°C, July 2, 1991.

WATER TEMPERATURE: Maximum, 29.5°C, July 6, 1975, July 25, 26, 1978; minimum, 0.0°C on many days during winters most years. EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: During period of usable record (October to June), maximum daily mean, 1,630 microsiemens per centimeter (µS/ cm) at 25.0°C, Jan. 14-26 and Feb. 18-24; minimum daily mean, 1,030 µS/cm at 25.0°C, Mar. 18-20.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)
MAY 2003 14	0915	6.7	706	8.4	85	8.3	1530	7.5	12.0	360	56.2
JUN 16	1200	2.8	712	6.1	74	8.3	1440	23.0	21.0	360	62.0
AUG 13 SEP	1200	1.8	707	8.7	113	8.5	1440	36.0	24.5	300	44.1
09	1245	1.9	700	8.2	96	8.4	1490	22.0	18.5	350	55.9
Date	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)
MAY 2003 14 JUN	54.0	14.4	5	211	534	7.04	. 4	8.5	318	991	1.35
16 AUG	49.7	8.77	5	221	517	6.28	.3	11.1	289	958	1.30
13 SEP	46.5	8.17	5	205	476	6.77	.3	12.0	287	896	1.22
09	52.1	9.81	5	238	471	7.25	. 4	10.7	296	952	1.29

c--No flow at times prior to filling Cookson Reservior. d--Gage height, 12.01 ft.

e--Estimated.

06178500 EAST POPLAR RIVER AT INTERNATIONAL BOUNDARY--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	Resi wat flt ton (703	er, rd, s/d	Ammonia + org-N water unfltro mg/L as N (00625	, Ammoni , water d fltrd mg/L as N	, water , fltrd, mg/L as N		wate fltr mg/ as	se, Pho er, pho ed, was 'L unfi P m	ter, ltrd g/L	rsenic water, fltrd, ug/L 01000)	wat unfl	er trd:	arium, water, fltrd, ug/L 01005)	Bariu wate unflt recov -abl ug/	er, erd er e,
MAY 2003	3 17.	9	1.6	.462	.149	.017	<.00)7 .1	10	3.7	6	;	68	75	
JUN 16	7.	24	.82	E.009	<.022	E.002	<.00	7 .0	50	5.9	6	i	58	66	
AUG 13	4.	35	1.2	<.015	<.022	<.002	<.00	7 .1	22	6.2	6	i	54	64	
SEP 09	4.	88	.67	<.015	<.022	<.002	<.00	7 .0	46	4.0	5	i	49	55	
Date	Cadm wat flt ug (010	er, rd, /L	Cadmium water unfltro ug/L (01027	, water d fltrd ug/L	unfltrd , recover , -able, ug/L	Copper	recov -abl ug/	er, ord Iro ver wa .e, fl:	on, u ter, r trd, g/L	Iron, water, nfltrd ecover -able, ug/L 01045)	flt	d, und, reserved, red,	Lead, water, nfltrd ecover -able, ug/L 01051)	Manga ese wate fltr ug/ (0105	er, ed, L
MAY 2003 14	3 <.0	4	.05	<.8	E.6	1.5	5.1	. 1:	2	1970	<.0	18	. 95	60.0	
JUN 16	<.0	4	<.04	<.8	<.8	1.3	2.5	5 1'	7	460	<.0	8	.36	11.6	
AUG 13	<.0	4	<.04	<.8	<.8	1.1	2.5	5 1	0	70	<.0	8	.50	5.5	
SEP 09	<.0	4	<.04	<.8	<.8	1.2	2.0	1	8	410	<.0	8	.38	4.4	
Date	Mangan- ese, water, unfltrd recover -able, ug/L (01055)	wa fl u	cury unter, retrd,	ecover -able, ug/L	ickel, un water, re fltrd, - ug/L	fltrd cover wable, fug/L	Selen- ium, water, Eltrd, ug/L)1145)	Selen- ium, water, unfltrd ug/L (01147)	Zinc, water fltrd ug/L (01090	, reco , -ab ug	c, er, trd ver ole,	Suspnd sedi- ment, sieve diamet: percent <.063mm (70331	pen sed me: r conc t trat m mg	ded i- nt en- ion /L	Sus- pended sedi- ment load, tons/d 80155)
MAY 2003	133	<.	02	<.02	3.83 4	.44	E.5	.8	2	7		92	12	1	2.2
JUN 16	72	<.	02	<.02	2.89 2	.55	E.3	<.5	1	2		94	9	1	.69
AUG 13	83	<.	02	<.02	2.56 3	.13	<.5	E.4	<1	3		40	7	5	.36
SEP 09	41	<.	02	<.02	1.93 2	.69	E.3	E.4	<1	2		74	10	5	.54

 $\mathtt{E--Estimated}.$

06178500 EAST POPLAR RIVER AT INTERNATIONAL BOUNDARY--Continued

SPECIFIC CONDUCTANCE, US/CM @ 25 DEGREES CENTIGRADE, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1500	1530	1540	1590	1600	1620	1080	1400	1500			
2	1500	1530	1540	1590	1600	1600	1080	1410	1500			
	1500	1530	1540	1590	1600	1590	1080	1410	1500			
4	1510 1510	1530 1530	1540 1540	1590 1600	1600 1610	1590 1590	1090 1090	1410 1420	1500 1500			
5	1510	1530	1540	1000	1010	1590	1090	1420	1500			
6	1510	1530	1540	1600	1610	1590	1100	1430	1500			
7	1510	1530	1540	1600	1610	1600	1100	1450	1500			
8	1510	1530	1540	1600	1610	1590	1110	1460	1500			
9	1510	1530	1550	1600	1610	1590	1110	1470	1500			
10	1510	1530	1540	1600	1620	1590	1120	1490	1500			
11	1510	1540	1550	1600	1620	1590	1160	1500	1500			
12	1510	1540	1540	1610	1620	1570	1200	1510	1500			
13	1510	1540	1540	1620	1620	1480	1230	1520	1500			
14	1520	1540	1540	1630	1620	1390	1270	1530	1500			
15	1520	1540	1550	1630	1620	1290	1300	1530	1500			
16	1520	1540	1550	1630	1620	1180	1300	1530	1480			
17	1520	1540	1550	1630	1620	1050	1310	1530	1450			
18	1520	1540	1550	1630	1630	1030	1320	1530	1450			
19	1520	1540	1560	1630	1630	1030	1330	1530	1450			
20	1520	1540	1560	1630	1630	1030	1340	1520	1450			
21	1520	1540	1570	1630	1630	1040	1340	1530	1450			
22	1520	1540	1570	1630	1630	1040	1350	1530	1450			
23	1520	1540	1570	1630	1630	1040	1360	1530	1450			
24	1520	1540	1570	1630	1630	1050	1360	1530	1450			
25	1530	1540	1570	1630	1620	1050	1370	1530	1450			
26	1530	1540	1580	1630	1610	1060	1380	1520	1450			1520
27	1530	1540	1580	1620	1610	1060	1380	1520	1450			1520
28	1530	1540	1590	1600	1610	1060	1380	1520				1510
29	1530	1540	1590	1600		1070	1390	1520				1500
30	1530	1540	1590	1600		1070	1390	1510				1480
31	1530		1590	1600		1080		1500				
MEAN	1517	1537	1557	1613	1617	1297	1247	1494				
MAX	1530	1540	1590	1630	1630	1620	1390	1530				
MIN	1500	1530	1540	1590	1600	1030	1080	1400				

06181000 POPLAR RIVER NEAR POPLAR, MT

LOCATION.--Lat $48^{\circ}10'15''$, long $105^{\circ}10'42''$ (NAD 27), in NE $^{1}/_{4}$ NE $^{1}/_{4}$ sec.19, T.28 N., R.51 E., Roosevelt County, Hydrologic Unit 10060003, on right bank 4 mi north of Poplar, and at river mile 11.

DRAINAGE AREA.---3,174 mi².

PERIOD OF RECORD.--August 1908 to October 1924, August 1947 to September 1969, June 1975 to September 1979, October 1981 to current year. Monthly discharge only for some periods, published in WSP 1309.

WATER-DISCHARGE RECORDS

REVISED RECORDS.--WSP 1176. 1948. WSP 1389: 1911. WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 1,953.16 ft (NGVD 29). Prior to May 1, 1911, nonrecording gage at site 4.2 mi upstream at different elevation. May 1, 1911, to Oct. 4, 1913, nonrecording gage at site 14 mi upstream at different elevation. Oct. 5, 1913, to Oct. 31, 1924, nonrecording gage at site 2.2 mi upstream at different elevation. Aug. 10, 1947, to Sept. 30, 1969, water-stage recorder at present site and elevation.

REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. Diversions for irrigation of about 5,500 acres upstream from station. Flow partially regulated by Coronach Dam, on the East Fork Poplar River, 2 mi north of international boundary. U. S. Geological Survey satellite telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 10, 1946, reached a stage of 18.1 ft, from floodmark, discharge, 40,000 ft³/s, from slope-area measurement of peak flow made at site 20 mi upstream.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	20 20 20 20 21	e30 e30 e30 e30 e30	e25 e20 e20 e20 e25	e10 e10 e10 e15 e15	e6.0 e6.0 e6.0 e6.0	e9.0 e9.0 e9.0 e8.5 e8.5	165 151 111 118 131	79 78 77 78 82	67 67 67 65 65	32 32 32 28 25	5.7 5.4 5.1 7.3 7.0	3.1 2.9 2.9 3.0 3.0
6 7 8 9 10	22 23 25 25 25	e30 e30 e30 e30 e25	e25 e25 e30 e30 e30	e15 e15 e15 e10 e10	e6.0 e6.0 e6.0 e6.0	e8.5 e8.5 e8.5 e9.0 e9.0	144 136 131 125 117	97 115 119 122 144	61 57 54 57 63	23 22 22 25 31	6.6 7.0 6.7 6.5 6.7	3.1 3.1 3.1 3.0 3.0
11 12 13 14 15	24 24 24 25 26	e25 e25 e30 e30 e30	e30 e30 e30 e35 e35	e9.5 e9.5 e9.0 e9.0	e6.5 e7.0 e7.5 e8.0 e8.5	e9.0 e9.5 e10 e15 e100	111 107 108 109	203 216 234 245 227	70 85 73 68 64	25 29 30 26 24	6.4 5.7 5.7 5.2 4.7	3.2 3.5 3.7 4.0 4.2
16 17 18 19 20	27 28 28 28 29	e30 e30 e35 e35 e35	e35 e35 e30 e25 e20	e8.5 e7.0 e7.0 e6.0 e6.0	e9.0 e9.0 e9.0 e9.0 e8.5	e300 e1300 e4000 e2800 1680	104 105 105 106 104	197 179 165 152 139	59 56 53 49 47	23 22 21 18 14	4.3 3.8 3.6 3.5 3.4	4.6 4.8 4.9 5.3
21 22 23 24 25	28 e25 e20 e25 e30	e35 e30 e30 e20 e20	e20 e15 e15 e15 e10	e5.0 e5.0 e6.5 e6.5	e8.0 e7.0 e7.0 e7.0 e8.0	1070 798 620 474 376	105 101 98 95 90	130 123 119 112 103	49 46 44 43 42	12 11 10 9.1 8.9	3.3 3.5 3.2 3.0 3.0	6.1 6.6 6.6 6.4 6.7
26 27 28 29 30 31	e30 e30 e30 e25 e30 e30	e20 e20 e25 e25 e25	e10 e10 e10 e10 e10 e10	e6.0 e6.0 e6.0 e6.0 e6.0	e9.0 e9.0 e9.0	302 268 232 204 186 172	89 90 87 85 82	94 89 83 77 73 69	41 41 39 36 34	8.7 8.7 7.7 6.5 5.9 5.8	3.0 3.0 2.8 2.9 3.0 3.1	6.6 6.7 6.6 6.5 6.4
TOTAL MEAN MAX MIN AC-FT	787 25.4 30 20 1560	850 28.3 35 20 1690	690 22.3 35 10 1370	269.5 8.69 15 5.0 535	206.0 7.36 9.0 6.0 409	15013.0 484 4000 8.5 29780	3319 111 165 82 6580	4020 130 245 69 7970	1662 55.4 85 34 3300	598.3 19.3 32 5.8 1190	144.1 4.65 7.3 2.8 286	139.2 4.64 6.7 2.9 276
STATIST	CICS OF MC	NTHLY MEA	N DATA F	OR WATER	YEARS 19	08 - 2003	, BY WATER	YEAR (WY	*			
MEAN MAX (WY) MIN (WY)	28.1 81.5 1925 2.19 1959	26.7 93.5 1919 4.25 1959	16.6 50.0 1915 1.28 1986	8.50 30.0 1915 0.013 1950	27.0 743 1996 0.10 1959	334 2445 1960 0.18 1965	664 4918 1952 37.3 1992	123 421 1955 17.4 1992	85.7 336 1953 2.77 1988	77.0 800 1993 0.68 1984	27.2 220 1993 0.043 1988	23.9 206 1911 0.15 1988

06181000 POPLAR RIVER NEAR POPLAR, MT--Continued

SUMMARY STATISTICS	FOR 2002 CALENDAR YEAR	FOR 2003 WATER YEAR	WATER YEARS 1908 - 2003*
SUMMARI STATISTICS	FOR 2002 CALENDAR IEAR	FOR 2005 WAIER IEAR	WAIER IEARS 1906 - 2005"
ANNUAL TOTAL	13216.0	27698.1	
ANNUAL MEAN	36.2	75.9	120**
HIGHEST ANNUAL MEAN			435 1952
LOWEST ANNUAL MEAN			13.7 1988
HIGHEST DAILY MEAN	206 Jun 16	4000 Mar 18	34200 Apr 7 1954
LOWEST DAILY MEAN	8.0 Jan 24	2.8 Aug 28	b0.00 Dec 16 1917
ANNUAL SEVEN-DAY MINIMUM	8.0 Jan 24	3.0 Aug 24	0.00 Jan 4 1950
MAXIMUM PEAK FLOW		unknown	37400 Apr 6 1954
MAXIMUM PEAK STAGE		a13.55 Mar 18	c17.86 Apr 6 1954
ANNUAL RUNOFF (AC-FT)	26210	54940	86690
10 PERCENT EXCEEDS	82	122	175
50 PERCENT EXCEEDS	21	24	23
90 PERCENT EXCEEDS	8.0	5.0	2.9

^{*--}During period of operation ($1908-24\ 1947-69$, 1975-79, 1982 to current year). **--Median of yearly mean discharge, $82.1\ \mathrm{ft}^3/\mathrm{s}$. a--Backwater from ice.

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1975-81, 1987-94, May 1999 to current year.

PERIOD OF DAILY RECORD .--

WATER TEMPERATURE: Seasonal records from April 2000 to current year.

INSTRUMENTATION.--Temperature recorder installed Sept. 27, 1999; new probe installed Oct. 23, 2002.

REMARKS.--Seasonal daily water temperature record good. Unpublished records of instantaneous water temperature and specific conductance are available in files of District office.

EXTREMES FOR PERIOD OF DAILY RECORD.--

WATER TEMPERATURE (seasonal records): Maximum, 33.0°C, Aug. 12, 18, 19, 2003; minimum, 0.0°C on many days during winter periods.

EXTREMES FOR CURRENT YEAR .--

WATER TEMPERATURE: During period of seasonal operation, maximum, 33.0°C, Aug. 12, 18, 19; minimum, 0.0°C, Apr.2.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	sure, o	solved p xygen, c mg/L u	oxygen, u percent of sat- uration	pH, water, unfltrd field, std units 00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	water, n	nfltrd ng/L as CaCO3	Calcium water, fltrd, mg/L (00915)
MAR 2003 21 MAY	1100	1080	717	12.8	101	8.5	308	4.0	3.0	77	15.2
15 JUN	1015	235	714	9.2	100	8.6	1400	18.5	16.0	240	36.8
24 AUG	0937	44	721	8.8	99	8.8	1580	11.5	18.0	230	26.4
25	1045	3.2				8.6	2570	30.0	22.0	330	30.6
Date	Magnes- ium, water, fltrd, mg/L (00925)	sium, water, fltrd, mg/L	Sodium adsorp- tion ratio	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Chlor ide water fltrd mg/L (00940	, ide , water , fltrd mg/L	, Silica , water , fltrd mg/L	, water, , fltrd, mg/L	Residue water, fltrd, sum o consti- tuents mg/L (70301)	Residue f water, fltrd,
MAR 2003 21	9.47	12.4	2	31.7	114	3.07	.12	8.6	34.1	187	. 25
15	36.8	8.10	6	230	483	13.1	.5	11.0	262	888	1.21
JUN 24	40.5	8.49	8	295	501	56.0	.5	4.7	273	1000	1.37
AUG 25	61.3	10.2	11	440	515	354	.5	4.1	320	1530	2.08

b--No flow at times.

c--From floodmark, from slope-area measurement of peak flow.

e--Estimated.

06181000 POPLAR RIVER NEAR POPLAR, MT--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

MAR 2003 21 MAY 15 JUN 24 AUG 25	flt ton (703 3 547 564	due wa er, uni rd, rs/d a cool (00)	ater, fltrd mg/L as N 0625) (Ammonia water, fltrd, mg/L as N (00608) .043 <.015 <.015	Nitrite + nitrate water fltrd, mg/L as N (00631) .798 <.022 <.022 <.022	Nitrite water, fltrd, mg/L as N (00613) .032 .005 <.002 <.002	pho pha wat flt mo as	ate, er, pard, erd, erd, erd, erd, erd, erd, erd, e	Phos-phorus, water, unfltrd mg/L (00665) .40 .23 .06	Arsenic water, fltrd, ug/L (01000) 1.9 2.9 3.1 2.8	Arsenic water unfltrd ug/L (01002) 2 4 3 E5	Barium,	Barium, water, unfltrd recover -able, ug/L (01007) 92 104 61 72
Date MAR 2003 21 MAY 15 JUN 24 AUG	w f (0 3	ater, ltrd, ι ug/L	Cadmium water, unfiltrd ug/L (01027) .12 .17	Chromium, water, fltrd, ug/L (01030) <.8 <.8 <.8	unfltr recove -able ug/L	d Copper wate	er, uner, recd, - (L) (10) (0)	opper, vater, ifltrd ecover able, ug/L 1042) 8.2 8.3 4.8	Iron, water fltrd ug/L (01046 127 12 <8	recove, -able	d Lead, r water , fltrd ug/L	, -able, ug/L	ese, water, fltrd, ug/L
25	<	.07	<.07	<.8	<.8	2.6	5	3.4	E4	1340	<.16	.52	10.5
Date	Mangan- ese, water, unfltrd recover -able, ug/L (01055)	Mercury water fltrd ug/L (71890)	, recov , -abl ug/	er, ord Nick ver wat le, flt 'L ug	wa kel, unf ker, red krd, -a g/L u	ltrd over w ble, f g/L	Selen- ium, water, fltrd, ug/L)1145)	Sele ium wate unfli ug (011	m, Zi er, wa trd fl /L u	Zin wat nc, unfl ter, reco trd, -ab g/L ug 090) (010	er, men trd sie ver diam le, perce /L <.06	i- pend t, sedi ve men etr conce ent trati 3mm mg/	ed Sus- - pended t sedi- n- ment on load,
MAR 2003 21	147	<.02	.02	2 2.5	74 8.	08	E.3	<.!	5	2 19	7:	2 214	624
15 JUN	188	<.02	.03	3 4.6	58 16.	5	1.0	1.:	2	3 36	9	9 460	292
24 AUG	91	<.02	<.02	2 2.9	90 4.	99	E.4	E.	4 <	1 6	9:	9 82	9.7
25	75	<.02	<.02	3.0	9 4.	96 <	<1.0	1.	1 E	1 E3	9	6 54	. 47

 $\mathtt{E--Estimated}.$

06181000 POPLAR RIVER NEAR POPLAR, MT--Continued

WATER TEMPERATURE, DEGREES CELSIUS, APRIL 2003 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		APRIL			MAY			JUNE			JULY	
1 2 3 4 5	9.0 5.5 1.0 3.0 5.5	5.5 0.0 0.0 0.0 0.5	7.5 2.0 0.0 1.0 3.0	18.0 16.5 19.0 16.0 12.5	12.0 12.5 12.5 12.5 10.5	15.0 14.5 15.5 14.5 11.5	17.0 19.5 21.0 18.5 18.0	15.5 15.0 15.5 16.0 14.5	16.5 17.0 18.0 17.0 16.0	29.0 28.5 26.5 26.0 26.5	21.0 22.0 22.0 19.0 19.5	25.0 25.5 24.0 22.5 23.0
6 7 8 9 10	4.0 7.0 9.5 13.0 13.5	2.0 3.0 5.0 7.0 9.0	3.0 5.0 7.0 10.0 11.0	11.0 11.5 11.0 10.0 9.5	9.5 8.0 8.0 8.5 8.0	10.0 9.5 9.5 9.5 9.0	15.0 20.0 19.0	13.5 13.0 12.5 16.5 15.5	15.0 14.0 16.5 17.5	24.0 25.0 21.5 24.5 25.0	18.5 17.5 18.0 17.5 19.0	21.5 21.5 19.5 20.5 22.0
11 12 13 14 15	14.0	9.5 11.0 13.0 11.5 11.0	12.0 13.5 14.5 13.0 12.5	12.0 15.0 14.5 17.0 19.0	6.5 10.0 13.0 12.5 14.5	9.0 12.5 13.5 14.5 16.5	21.0	15.0 15.0 17.0 19.5 21.0	16.5 18.0 20.5 22.5 23.0	27.0 28.0 29.0 26.5 28.5	19.0 20.5 22.0 21.5 20.0	23.0 24.5 25.5 24.0 24.5
16 17 18 19 20	11.0 13.0 11.5 13.0 14.5	8.5 7.5 10.0 8.5 10.0	9.5 10.0 10.5 11.0 12.0	18.0 15.0 14.0 11.5 13.5		16.0 14.0 12.5 10.5	26.5 26.5	20.5 21.0 20.5 19.5 21.0	23.0 23.5 23.5 22.5 24.0	27.0 27.0 30.5 32.0 30.0	21.5 21.5 22.5 23.5 22.0	24.0 24.0 26.5 27.5 26.0
21 22 23 24 25	16.5 17.0 18.0 15.5 17.0	11.0 12.0 13.0 14.0 13.0	13.5 14.0 15.0 14.5 14.5	15.5 18.0 20.5 22.0 22.5	12.0 13.0 16.0 16.0	13.5 15.5 18.0 19.0 19.5	23.0 22.5 20.0	20.0 18.0 17.0 17.0	20.5	28.5 28.5 29.5 29.5 25.0	21.5 20.5 21.0 22.5 21.0	24.5 24.5 25.0 25.5 23.5
26 27 28 29 30 31	14.5 14.0 15.0 15.5 17.0	12.0 9.5 9.5 11.0 11.0	13.5 12.0 12.0 13.0 14.0	23.5 23.5 24.0 24.0 21.5 19.5	18.0 19.5 18.5 19.5 17.0 16.0	20.5 21.5 21.0 21.5 19.0 17.5		14.5 16.5 17.0 17.0	17.5 19.0 19.5 21.0 23.0	28.0 29.5 31.0 27.0 28.5 29.0	19.0 21.5 21.5 21.0 18.5 20.0	23.0 25.0 26.0 23.5 23.5 24.0
MONTH	18.0	0.0	10.0	24.0	6.5	14.5	27.5	12.5	19.5	32.0	17.5	24.0
		AUGUST		S	EPTEMBER							
1 2 3 4 5	30.0 29.0 25.0 27.5 29.5	19.0 19.0	24.0 24.0 22.5 23.0 24.5	31 0	EPTEMBER 15.5 14.5 11.5 14.0 15.5	22.5 19.0 19.5 22.0 22.0						
1 2 3 4	29.0 25.0 27.5	19.0 19.0 19.5 19.5 20.5	24.0 24.0 22.5 23.0 24.5 25.0 26.0 26.0 24.0	31.0 24.5 27.5 31.5 30.5	15.5 14.5 11.5 14.0 15.5	22.5 19.0 19.5 22.0						
1 2 3 4 5 5 6 7 8 9 10 11 12 13 14	29.0 25.0 27.5 29.5 26.5 30.5 31.0 27.5 28.0 31.5 33.0 32.5 32.5	19.0 19.0 19.5 19.5 20.5 21.0 22.0 22.0 22.0 21.0 21.5 23.0 22.5	23.5 25.0 26.0 24.0	31.0 24.5 27.5 31.5 30.5 31.0 32.0 28.0 24.0 16.0	15.5 14.5 11.5 14.0 15.5 16.5 17.5 15.0 12.5 11.0 11.5 9.0 7.0	22.5 19.0 19.5 22.0 22.0 22.5 23.0 22.0 19.5 14.0 17.0 13.5 12.0 15.0						
1 2 3 4 5 5 6 7 8 9 10 11 12 13 14	29.0 25.0 27.5 29.5 26.5 30.5 31.0 27.5 28.0 31.5 33.0 32.5 32.5	19.0 19.0 19.5 19.5 20.5 21.0 22.0 22.0 22.0 21.0 21.5 23.0 22.5	23.5 25.0 26.0 24.0 24.0 25.5 27.5 27.5	31.0 24.5 27.5 31.5 30.5 31.0 32.0 28.0 24.0 16.0 24.0 17.0 16.5 23.0	15.5 14.5 11.5 14.0 15.5 16.5 17.5 15.0 12.5 11.0 11.5 9.0 7.0	22.5 19.0 19.5 22.0 22.0 22.5 23.0 22.0 19.5 14.0 17.0 13.5 12.0 15.0						
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	29.0 25.0 27.5 29.5 26.5 30.5 31.0 27.5 28.0 31.5 32.5 32.5 32.0 31.5 30.5 33.0 33.0 33.0	19.0 19.0 19.5 19.5 20.5 21.0 20.0 22.0 22.0 21.5 22.5 22.0 21.5 22.5 22.0	23.5 25.0 26.0 24.0 24.0 25.5 27.5 27.5 27.5 27.5 26.0 25.5 25.5 26.5	31.0 24.5 27.5 31.5 30.5 31.0 32.0 28.0 24.0 16.0 24.0 17.0 16.5 23.0 18.0	15.5 14.5 11.5 14.0 15.5 16.5 15.5 17.5 15.0 12.5 11.0 9.0 7.0 9.5 8.5 6.0 6.5	22.5 19.0 19.5 22.0 22.0 22.5 23.0 22.0 19.5 14.0 17.0 13.5 15.0 13.0 11.5 7.5 10.0 12.5						
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	29.0 25.0 27.5 29.5 26.5 30.5 31.0 27.5 28.0 31.5 32.5	19.0 19.0 19.5 19.5 20.5 21.0 20.0 22.0 22.0 21.0 21.5 22.5 22.0 21.5 22.5 22.0 21.5 22.5 22.0	23.5 25.0 26.0 24.0 24.0 25.5 27.5 27.5 27.5 26.0 25.5 25.5 26.5 23.0 22.5 24.0 24.5 24.0	31.0 24.5 27.5 31.5 30.5 31.0 32.0 28.0 24.0 16.0 24.0 17.0 16.5 23.0 18.0 9.5 15.5 15.5 11.0 15.5 15.5	15.5 14.5 11.5 14.0 15.5 16.5 17.5 15.0 12.5 11.0 9.0 7.0 9.5 6.0 6.5 9.0 8.0 7.5 5.5	22.5 19.0 19.5 22.0 22.0 22.0 19.5 14.0 17.0 13.5 12.0 15.0 13.0 11.5 7.5 10.0 12.5 12.5						

SEP

0.51

 $0.44 \\ 0.33$

0.31

0.30

0.31

0.32

0.31

0.35

0.40

0.47

0.46

0.45

0.40

0.40

0.32

0.26

0.27

0.51

0.66

0.92

0.85

0.82

0.72

5.8

5.0

4.4

b0.00

17.37

0.00

0.20

3190

22630

38

0.00

Aug Jul

Aug

2 1981

23 1984

Mar 22 1999

Apr 14 1982

BIG MUDDY CREEK BASIN

06183450 BIG MUDDY CREEK NEAR ANTELOPE, MT

LOCATION.--Lat 48°40'22", long 104°30'42" (NAD 27), in SW¹/₄SW¹/₄NW¹/₄ sec. 27, T.34 N., R.55 E., Sheridan County, Hydrologic Unit 10060006, on right bank, 3 mi southwest of Antelope, and 7 mi south of Plentywood, MT.

DRAINAGE AREA.--967 mi². Prior to 1981, drainage area published as 1,171 mi².

PERIOD OF RECORD.--October 1978 to current year.

REVISED RECORDS.--WDR MT-81-1: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 2,000 ft (NGVD 29).

REMARKS.--Records good except those for estimated daily discharges, which are poor. Several known diversions for irrigation upstream from station. U.S. Geological Survey satellite telemeter at station. Several observations of instantaneous water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES FEB DAY ОСТ NOV DEC MAR APR MAY .TITN TITT. AHG TAN 1.5 5.2 e5.5 e3.5 e2.0 e1.0 86 23 8.1 6.3 2.3 6.4 6.1 5.7 2 $\frac{1.4}{1.4}$ 5.3 5.3 e5.0 e3.5 e3.5 e1.5 e1.5 e1.0 55 18 8.0 2.2 e4.0 e1.0 33 20 8.3 2.1 1.3 5.3 e3.0 e1.0 39 24 8.3 5.2 e1.5 9.0 2.5 5 1.4 5.1 e3.5 e3.5 e1.0 36 23 2.3 6 2.4 5.2 e3.5 e3.5 e1.5 e1.0 32 8.3 4.8 e1.5 e1.5 4.5 4.4 5.5 e3.5 e3.5 e3.5 40 48 e1.0 8.6 2.4 8 4.6 e5.5 e3.5 e1.0 57 7.9 2.4 4.4 e1.5 e1.5 6.8 e5.0 e4.0 e3.0e1.0 47 68 14 2.3 10 e5.0 e1.0 103 2.1 e4.0 44 14 e2.5 7.9 11 5.8 e5.5 e4.0 e2.5 e1.5 e1.0 50 102 14 1.8 e5.5 e2.0 e2.0 14 e2.5 58 8.4 12 6.0 e4.0 e1.5 104 1.6 6.1 13 e5.5 e4.0 e2.0 e5.0 77 110 15 8.8 1.6 7.0 5.7 14 e5.5 e4.0e2.0e1.5 e2074 100 13 1.5 e5.5 e1.5 64 1.4 15 6.9 e4.0 e50 15 e2.5 85 6.5 7.2 e400 54 74 16 6.0 16 e5.5 e4.0e2.5 e2.0 1.3 47 e5.5 e3.5 e2.5 e2.0 e1500 63 21 6.5 5.9

e2300

e2000

e1300

832

41

37

33

30

0 26

0.32

a16.89

4.6

0.75

unknown

27510

49

Sep 18

Sep

Mar

Mar 18

55

47

41

36

15

10

8.4

8.6

21	7.0	e5.5	e3.0	e1.5	e1.0	832	30	36	8.6	4.4	0.72	0.66
22	e6.0	e5.5	e3.0	e1.5	e1.0	479	23	32	7.1	3.8	0.68	0.61
23	e5.0	e5.0	e3.0	e1.5	e1.0	337	22	27	6.7	3.3	0.61	0.61
24	e5.5	e5.0	e3.5	e1.5	e1.0	263	18	23	6.6	3.3	0.51	0.55
25	e5.5	e5.0	e3.5	e1.5	e1.5	200	14	19	6.1	3.6	0.49	0.61
23	63.3	63.0	65.5	C1.5	C1.5	200	11	10	0.1	3.0	0.40	0.01
26	e5.5	e5.0	e3.5	e1.5	e1.5	136	13	17	5.7	3.2	0.46	0.77
27	e5.5	e5.5	e3.5	e2.0	e1.5	99	23	17	6.0	3.1	0.44	0.87
28	e5.5	e5.5	e3.5	e1.5	e1.5	78	24	14	6.6	3.1	0.43	1.00
29	e5.5	e5.0	e3.5	e2.0		64	21	11	7.4	2.9	0.36	0.96
30	e5.5	e5.0	e3.0	e2.0		53	20	9.8	6.9	2.7	0.42	0.92
31	5.3		e3.0	e2.0		49		8.3		2.5	0.46	
31	3.3		65.0	C2.0		1,5		0.5		2.5	0.10	
TOTAL	157.1	159.4	113.0	75.5	43.5	10177.5	1214	1410.1	303.6	158.8	41.57	15.00
MEAN	5.07	5.31	3.65	2.44	1.55	328	40.5	45.5	10.1	5.12	1.34	0.50
MAX	7.6	5.5	5.5	3.5	2.0	2300	86	110	21	8.8	2.5	1.0
MTN	1.3	5.0	3.0	1.5		1.0	13	8.3	5.7	2.5	0.36	0.26
AC-FT	312	316	224	150	86	20190	2410	2800	602		82	30
710 11	312	310	221	130	00	20170	2110	2000	002	313	02	30
STATIST	TCS OF M	ONTHIV ME	א מדעם זומי	OR WATER	VEARS 19	79 - 2003	BY WATER	YEAR (WY)				
01111101	1200 01 11	.01,111111		on militar	121110 17	., 2005,	21 1111211	. 12111 (111)				
MEAN	5.33	5.88	3.56	1.86	24.1	141	113	25.9	15.8	25.2	8.77	4.32
MAX	25.0	11.8	6.86	6.38	290	851	826	120	62.0	226	92.5	35.7
(WY)	1987	1999	1982	1983	1996	1999	1982	1979	1979	1993	1987	1997
MIN	0.14	0.88	0.45	0.000	0.000	2.65	5.04	5.29	0.23	0.031	0.000	0.000
(WY)	1989	1989	1986	1989	1989	2002	1988	1992	1988	1985	1984	1984
(112)	1,0,	2505	1,00	1707	1,00	2002	1700	1,,2	1,00	1700	1701	1701
SUMMARY	STATIST	'ICS	FOR	2002 CALE	NDAR YEA	R F	OR 2003 W	ATER YEAR		WATER YEA	RS 1979 -	- 2003
ANNUAL	TOTAL			3766.7			13869.0	7				
ANNUAL	MEAN			10.3			38.0	l		31.2	*	
HIGHEST	ANNUAL	MEAN								93.2		1979
LOWEST	ANNUAL M	IEAN								4.7	3	1992
HIGHEST	DAILY M	IEAN		356	Apr 1	5	2300	Mar 18		3160	Mar 23	3 1999
TOTTO				1 0		1				1.0.0		

LOWEST DATLY MEAN

MAXIMUM PEAK FLOW

MAXIMUM PEAK STAGE

10 PERCENT EXCEEDS

50 PERCENT EXCEEDS 90 PERCENT EXCEEDS

ANNUAL SEVEN-DAY MINIMUM

INSTANTANEOUS LOW FLOW

ANNUAL RUNOFF (AC-FT)

18

19

20

21

7.2

7.6

7.2

7.0

e5.5

e5.5

e5.5

e5.5

e3.5

e3.5

e3.0

e3.0

e2.5

e2.5

e2.0

e1.5

1.0

7470

23

4.0

Jan 1

Jan

e2.0

e2.0

e1.5

e1.0

^{*--}Median of yearly mean discharge, $25.1 \text{ ft}^3/\text{s}$.

a--Backwater from ice.

b--No flow many days most years.

e--Estimated.

06183700 BIG MUDDY CREEK DIVERSION CANAL NEAR MEDICINE LAKE, MT

 $LOCATION.--Lat\ 48^{\circ}30'34'', long\ 104^{\circ}32'55''\ (NAD\ 27), in\ SE^{1}/_{4}NW^{1}/_{4}SE^{1}/_{4}\ sec.\ 22,\ T.32\ N.,\ R.55\ E.,\ Sheridan\ County,\ Hydrologic\ Unit\ 10060006,$ on right bank, on dike road about 2 ft upstream from canal headgate and 2.2 miles northwest of Medicine Lake.

PERIOD OF RECORD.--August 1985 to September 1991, October 1991 to current season (seasonal records).

GAGE.--Water-stage recorder. Elevation of gage is 1,940 ft (NGVD 29).

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Canal diverts water into Medicine Lake at the Medicine Lake National Wildlife Refuge. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

								-				
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			e0.00 e0.00 e0.00 e0.00 e0.00			20.0		0.00 0.00 0.00 0.00		0.00 0.00 0.00 0.00 0.00		
6 7 8 9 10			e0.00 e0.00 e0.00 e0.00 e0.00	11 12 16 27 22	13 25 30 35 42	e6.0 e6.0 e6.0 e7.0	1.1 0.79 0.07 0.37 0.14	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
11 12 13 14 15			e0.00 e0.00 e0.50 e1.0		61 64 66 68 63		0.00 0.12 0.28 0.78 1.1	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
16 17 18 19 20			e130 e700 824 784 842	31 27 21 16 12	57 51 46 39 34	e9.0 e8.0 e8.0 e6.0 e5.0	0.92 0.50 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00		
21 22 23 24 25			815 627 335 193 132	10 7.8 5.9 5.7 5.6	29 28 28 19 15	e5.0 e5.0 e4.0 e4.0 e4.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00		
26 27 28 29 30 31			101 70 54 42 36 27	5.2 5.4 6.3 7.6 7.5	12 11 10 9.2 9.4 9.5	e4.0 e4.0 e4.0 e4.0 e0.50	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 e10 e7.0 e5.0 e3.0		
TOTAL MEAN MAX MIN AC-FT			5733.50 185 842 0.00 11370	493.0 16.4 39 5.2 978	911.2 29.4 68 6.5 1810	198.00 6.60 10 0.50 393	15.47 0.50 2.4 0.00 31	0.00 0.000 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00	25.00 0.81 10 0.00 50		
					YEARS 1985							
MEAN MAX (WY) MIN (WY)	0.28 1.10 1990 0.000 1988	5.11 23.4 1986 0.000 1988	100 434 1999 0.000 2002	50.7 260 1997 0.000 1988	15.0 46.5 1999 0.000 1987	9.04 28.5 1994 0.000 1987	23.8 144 1993 0.000 1987	6.06 31.3 1987 0.000 1988	3.72 37.3 1997 0.000 1987	2.89 7.97 1999 0.000 1988	1.66 4.97 1990 0.000 1988	0.580 2.80 1990 0.000 1988
SUMMARY	/ STATISTI	CS		FOR 2003	SEASON	WA	TER YEARS	1985 - 19	991*	SEASONS	1992 - 2	2003*
LOWEST HIGHEST LOWEST ANNUAL MAXIMUN MAXIMUN ANNUAL 10 PERC	C ANNUAL MATTER ANNUAL MEDITY	EAN EAN AN / MINIMU DW AGE AC-FT) EDS	м	842 0.00 1070 a12.18	Mar 20 Mar 1 Mar 20 Mar 20		14.5 31.6 0.17 1300 b0.00 0.00 1300 10540 29 2.6 0.00	19 Mar 2 19 Feb 11 19 Feb 11 19 Mar 2 19	989 988 986 986 986	1340 0.00 c1360 d12.18	Mar 23 Sep 22 Mar 23 Jul 24	1999 1992 1999 1993

^{*--}During periods of operation 1985 - 1991, 1992 to current year. Seasonal records beginning water year 1992. a--Backwater from ice and trash. b--No flow at times most years.

c--Gage height, 10.99 ft. d--Site and datum then in use.

e--Estimated.

06183750 LAKE CREEK NEAR DAGMAR, MT

 $LOCATION.--Lat\ 48^{\circ}33'51'', long\ 104^{\circ}10'38''\ (NAD\ 27), in\ SE^{1}/_{4}SE^{1}/_{4}SW^{1}/_{4}\ sec.\ 31, T.33\ N., R.58\ E., Sheridan\ County,\ Hydrologic\ Unit\ 10060006,$ on left bank, at downstream end of dike, just north of Medicine Lake National Wildlife Refuge and 1.7 mi southeast of Dagmar.

DRAINAGE AREA.--101 mi².

PERIOD OF RECORD. -- September 1985 to October 1989, March 1995 to current year (seasonal records only since 1986).

GAGE.--Water-stage recorder. Elevation of gage is 1,979 ft (NGVD 29).

REMARKS.--Records poor. Numerous diversions upstream for irrigation. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			e0.00 e0.00 e0.00 e0.00	64 e60 e50 e45 e40	0.45 0.47 0.41 0.30 0.33	0.00 0.00 0.00 0.00 0.00	0.45 0.37 0.24 0.13 0.04	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
6 7 8 9 10			e0.00 e0.00 e0.00 e0.00	39 39 37 34 31	1.4 4.5 3.9 3.2 3.2	0.00 0.00 0.07 0.17 0.25	0.00 0.00 0.16 0.36 0.28	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
11 12 13 14 15			e0.00 e0.00 e0.00 e0.00	28 25 22 19 14	3.7 3.3 3.5 4.5 4.0	0.33 0.44 0.43 0.36 0.33	0.18 0.06 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
16 17 18 19 20			e0.00 e0.00 e0.00 e10 e950	12 13 12 11 9.4	3.0 1.6 0.53 0.45 0.46	0.28 0.22 0.19 0.18 0.11	0.00 0.19 0.12 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
21 22 23 24 25			533 256 178 143 114	7.9 6.6 5.0 3.8 2.8	0.41 0.38 0.34 0.29 0.25	0.07 0.05 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00		
26 27 28 29 30 31			89 75 64 58 54 62	1.7 1.8 0.71 0.51 0.48	0.23 0.19 0.13 0.10 0.00	0.00 0.00 0.00 0.00 0.31	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 e0.00 e0.00 e0.00		
TOTAL MEAN MAX MIN AC-FT			2586.00 83.4 950 0.00 5130	635.70 21.2 64 0.48 1260	45.52 1.47 4.5 0.00 90	3.79 0.13 0.44 0.00 7.5	2.58 0.083 0.45 0.00 5.1	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00 0.00		
STATIS	STICS OF M	ONTHLY	MEAN DATA	A FOR SEAS	SONS 1986	- 2003*						
MEAN MAX (WY) MIN (WY)			12.3 83.4 2003 0.000 1988	10.7 45.1 1997 0.000 1988	0.93 3.35 1986 0.000 1998	0.32 2.81 2000 0.000 1997	0.35 1.40 1999 0.000 1986	0.039 0.26 1999 0.000 1986	0.000 0.000 1986 0.000 1986	0.000 0.000 1986 0.000 1986		
SUMMAR	RY STATIST	ics			FOR 2003	SEASON		SEASONS	1986 -	2003*		
LOWEST	ST DAILY M C DAILY ME JM PEAK FL JM PEAK ST	AN OW			950	Mar 20 Mar 1 Mar 20 Mar 20		950 a0.00 950 b10.05	Mar 20 Oct 1 Mar 20 Mar 20	2003 1985 2003 2003		

^{*--}During periods of operation (September 1985 to October 1989, March 1995 to current year).

a-No flow many days most years. b-Backwater from ice. e-Estimated.

06183800 COTTONWOOD CREEK NEAR DAGMAR, MT

LOCATION.--Lat $48^{\circ}30'35''$, long $104^{\circ}10'23''$ (NAD 27), in $SE^{1}/_{4}NE^{1}/_{4}SE^{1}/_{4}$ sec. 21, T.32 N., R.58 E., Sheridan County, Hydrologic Unit 10060006, on right bank, at bridge on county road 1.2 mi southeast of Medicine Lake National Wildlife Refuge, and 5.3 mi south of Dagmar.

DRAINAGE AREA.--126 mi².

PERIOD OF RECORD.--August 1985 to September 1989, March 1995 to current year. Seasonal records only.

GAGE.--Water-stage recorder. Elevation of gage is 1,975 ft (NGVD 29).

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5		e0 e0 e0	.00 .00 .00 .00	1.2 1.3 1.3 1.4	1.4 1.3 1.2 1.2	0.53 0.51 0.54 0.57	0.17 0.17 0.17 0.16 0.14	0.02 0.02 0.00 0.04 0.06	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00		
6 7 8 9 10		e0 e0 e0 e0	.00	1.8 5.1 5.9 4.6 4.0	2.3 9.9 9.1 9.1	0.62 0.97 1.8 1.8 3.3	0.12 0.11 0.13 0.21 0.21	0.05 0.05 0.04 0.14 0.14	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00		
11 12 13 14 15		e0 e0 e0 e1	.00	4.3 4.6 4.2 3.2 2.6	11 8.4 7.8 8.3 7.7	3.6 12 9.7 3.6 1.4	0.17 0.16 0.20 0.20 0.18	0.13 0.10 0.11 0.10 0.08	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00		
16 17 18 19 20		e100 1390 1810 588 175		2.9 6.1 8.3 7.3 6.2	5.7 4.4 3.6 3.2 2.5	0.81 0.54 0.43 0.37 0.32	0.18 0.17 0.15 0.14 0.14	0.04 0.02 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
21 22 23 24 25		104 62 39 26 15		5.0 4.1 3.2 2.8 2.4	1.9 1.6 1.3 1.1	0.31 0.28 0.26 0.26 0.25	0.14 0.12 0.10 0.08 0.09	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		
26 27 28 29 30 31		10 6 3 2 1 1	.2 .5 .1 .5	2.1 2.0 1.8 1.8	0.94 0.82 0.72 0.62 0.52 0.52	0.24 0.25 0.23 0.22 0.21	0.08 0.07 0.07 0.05 0.03 0.02	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 e0.00 e0.00 e0.00		
TOTAL MEAN MAX MIN AC-FT		4344 1 0 8		104.3 3.48 8.3 1.2 207	123.64 3.99 13 0.52 245	1.55	4.13 0.13 0.21 0.02 8.2	1.14 0.037 0.14 0.00 2.3	0.00 0.000 0.00 0.00 0.00	0.00 0.000 0.00 0.00 0.00		
STATIST	TICS OF MONT			R SEASO	NS 1986	- 2003*						
MEAN MAX (WY) MIN (WY)		3 2 0. 1	5.4 140 003 000 988	9.02 32.6 1987 0.000 1988	1.54 6.95 1999 0.000 1988	1.64 13.7 2000 0.000 1987	5.64 27.4 1997 0.000 1986	0.14 0.71 1999 0.000 1986		0.009 0.096 2001 0.000 1986		
SUMMARY	STATISTICS								EASONS 198			
LOWEST MAXIMUM	T DAILY MEAN DAILY MEAN M PEAK FLOW M PEAK STAGE			18 b33	a0.00 80 8.43	Mar 18 Mar 1 Mar 18 Mar 18		18 b3:	310 Ma a0.00 Oc 380 Ma 8.76 Ma	r 18 2003 t 1 1985 r 18 2003 r 22 1997		

^{*--}During periods of operation (1885-1889, 1995 to current year; seasonal records only).

a-No flow most year. b--Gage height, 8.43 ft, from floodmark.

e--Estimated.

06183850 SAND CREEK NEAR DAGMAR, MT

 $LOCATION.--Lat\ 48^{\circ}29'38'', long\ 104^{\circ}16'23''\ (NAD\ 27), in\ SE^{1}/_{4}NW^{1}/_{4}sec.\ 26, T.32\ N., R.57\ E., Sheridan\ County, Hydrologic\ Unit\ 10060006, LOCATION.--Lat\ 48^{\circ}29'38'', long\ 104^{\circ}16'23''\ (NAD\ 27), in\ SE^{1}/_{4}NW^{1}/_{4}sec.\ 26, T.32\ N., R.57\ E., Sheridan\ County, Hydrologic\ Unit\ 10060006, LOCATION.--Lat\ 48^{\circ}29'38'', long\ 104^{\circ}16'23''\ (NAD\ 27), in\ SE^{1}/_{4}NW^{1}/_{4}sec.\ 26, T.32\ N., R.57\ E., Sheridan\ County, Hydrologic\ Unit\ 10060006, LOCATION.--Lat\ 48^{\circ}29'38'', long\ 104^{\circ}16'23''\ (NAD\ 27), in\ SE^{1}/_{4}NW^{1}/_{4}sec.\ 26, T.32\ N., R.57\ E., Sheridan\ County, Hydrologic\ Unit\ 10060006, LOCATION.--Lat\ 48^{\circ}29'38'', long\ 104^{\circ}16'23''\ (NAD\ 27), in\ SE^{1}/_{4}NW^{1}/_{4}sec.\ 26, T.32\ N., R.57\ E., Sheridan\ County, Hydrologic\ Unit\ 10060006, LOCATION.--Lat\ 48^{\circ}29'38'', long\ 104^{\circ}16'23''\ (NAD\ 27), in\ SE^{1}/_{4}NW^{1}/_{4}sec.\ 26, T.32\ N., R.57\ E., Sheridan\ County, Hydrologic\ Unit\ 10060006, LOCATION.--Lat\ 48^{\circ}29'38'', long\ 104^{\circ}16'23''\ (NAD\ 27), long\ 104^{\circ}16''\ (NAD\ 27), long\ 104^{\circ}16''\ (NAD\ 27),$ at Medicine Lake National Wildlife Refuge boundary, on right bank at downstream end of culvert on county road, 1.0 mi upstream from mouth, and 7 mi southwest of Dagmar.

DRAINAGE AREA.--122 mi².

PERIOD OF RECORD.--August 1985 to September 1989, March 1995 to current year (seasonal records).

GAGE.--Water-stage recorder. Elevation of gage is 1,945 ft (NGVD 29).

REMARKS.--Records good except those for estimated daily discharges, which are poor. No known diversions for irrigation upstream from station. Several observations of water temperature and specific conductance were made during the year.

DISCHARGE, CUBIC FEET PER SECOND, CALENDAR YEAR JANUARY TO DECEMBER 2003 DAILY MEAN VALUES

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5			e0.00 e0.00 e0.00 e0.00 e0.00	e2.0 e2.0 e2.0 e2.0 e3.0	2.1 2.1 2.0 2.1 2.9	1.1 1.1 0.93 0.79 1.3	0.43 0.73 0.86 0.83 0.44	e0.05 e0.05 e0.05 e0.05 e0.10	e0.00 e0.00 e0.00 e0.00 e0.00	0.00 0.00 0.00 0.00 0.00		
6 7 8 9			e0.00 e0.00 e0.00 e0.00 e0.00	e4.0 e6.0 e7.0 e6.0 e5.0	5.1 9.9 17 14 13	1.8 4.2 5.0 7.8	0.07 0.01 0.01 1.3 2.3	e0.10 e0.10 e0.10 e0.15 e0.15	e0.00 e0.00 e0.00 e0.00	0.00 0.00 0.00 0.00 0.00		
11 12 13 14 15			e0.00 e0.00 e0.00 e0.00 e0.00	e5.0 e5.0	12 10 9.2 8.6 9.2	14 35 41 26 16	1.5 1.3 1.1 0.95 0.51	e0.15 e0.15 e0.15 e0.15 e0.10	0.00 0.00 0.00 0.00	0.00 e0.00 e0.00 e0.00 e0.00		
16 17 18 19 20			e1.0 e15 e200 e100 e80	e6.0 e8.0 e10 e10 e10	8.1 7.4 7.3 6.2 5.1	11 8.2 6.6 5.3 4.4	0.31 e0.20 e0.20 e0.20 e0.20	e0.10 e0.05 e0.05 e0.00 e0.00	0.00 0.00 0.00 0.00	e0.00 e0.00 e0.00 e0.00 e0.00		
21 22 23 24 25			e65 e50 e40 e30 e25	e9.0 e8.0 e7.0 5.9 4.6	4.3 3.5 3.4 2.9 2.4	4.1 3.8 2.6 2.1 1.8	e0.20 e0.20 e0.15 e0.15 e0.15	e0.00 e0.00 e0.00 e0.00 e0.00	0.00 0.00 0.00 0.00	e0.00 e0.00 e0.00 e0.00 e0.00		
26 27 28 29 30 31			e20 e10 e6.0 e4.0 e3.0 e2.0	3.7 3.4 2.8 3.0 2.5	2.2 1.8 1.4 1.3 1.1	1.8 1.6 1.2 0.85 0.85	e0.10 e0.10 e0.10 e0.10 e0.05 e0.05	e0.00 e0.00 e0.00 e0.00 e0.00 e0.00	0.00 0.00 0.00 0.00 0.00	e0.00 e0.00 e0.00 e0.00 e0.00 e0.00		
TOTAL MEAN MAX MIN AC-FT			651.00 21.0 200 0.00 1290	156.9 5.23 10 2.0 311	178.7 5.76 17 1.1 354	222.22 7.41 41 0.79 441	14.80 0.48 2.3 0.01 29	1.80 0.058 0.15 0.00 3.6	0.00 0.000 0.00 0.00	0.00 0.000 0.00 0.00		
STATISTI	CS OF MONT	THLY M	EAN DATA F	OR SEASONS	3 1986 -	2003*						
MEAN MAX (WY) MIN (WY)			10.8 33.1 1999 0.000 1988	0.000	0.000	0.000	3.57 21.6 1997 0.000 1986	0.33 3.34 1997 0.000 1986	0.061 0.80 1997 0.000 1986	0.000 0.000 1986 0.000 1986		
SUMMARY	STATISTICS	3	FOR 2	003 SEASON	1			1986 - 2	2003 SEAS	SONS*		
LOWEST D	DAILY MEAN AILY MEAN PEAK FLOW PEAK STAGE		200 a0.0 b284 c5.7	Mar 18 0 Mar 1 Mar 18 0 Mar 18				200 a0.00 b284 d5.80	Mar 18	1985 2003		

^{*--}During periods of operation (1985-1989, 1995 to current year; seasonal records only).

a--No flow most years.
b--Result of culvert computation of peak flow.
c--From corkline on crest-stage gage.
d--From floodmark, probable date, backwater from ice.

06185500 MISSOURI RIVER NEAR CULBERTSON, MT

(National stream quality accounting network station)

LOCATION.--Lat 48°07'30", long 104°28'20" (NAD 27), in SE¹/₄NW¹/₄ sec.3, T.27 N., R.56 E., Richland County, Hydrologic Unit 10060005, on right bank at upstream side of bridge on State Highway 16, 2.5 mi southeast of Culbertson, 10 mi downstream from Big Muddy Creek, and at river mile 1,620.76.

DRAINAGE AREA.--91,557 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1941 to December 1951, April 1958 to current year.

REVISED RECORDS.--WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 1,883.4 ft (NGVD 29) (U.S. Army Corps of Engineers bench mark). July 1 to Nov. 6, 1941, water-stage recorder at site 400 ft upstream at elevation 0.11 ft higher. Nov. 7, 1941, to Aug. 17, 1950, water-stage recorder at site 580 ft downstream at present elevation. Aug. 18, 1950, to Dec. 31, 1951, nonrecording gage on bridge at present elevation. Apr. 1, 1958, to Nov. 1, 1967, water-stage recorder at site 580 ft downstream at present elevation.

REMARKS.--Water-discharge records good except those for estimated daily discharges, which are fair. Flow partly regulated by Fort Peck Lake (station number 06131500) and many other reservoirs upstream from station. Diversions for irrigation of about 1,030,400 acres upstream from station. U.S. Army Corps of Engineers satellite telemeter at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES

DAY OCT MOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP													
2 5240 5270 9780 e10400 e10300 e10400 8100 9340 8950 8280 7550 9701 6920 4 5290 5290 9780 e10200 e10300 e300 7830 9370 9100 8390 7550 6720 5 5340 5280 e10800 e10300 e10300 e3000 8840 9470 8950 8200 6790 6630 6 5240 5300 e10300 e10200 e10400 e3000 8840 9100 9140 7610 6720 6680 7 5230 5250 e10600 e10200 e10400 e3000 8940 10100 9100 7390 6700 6780 8 5280 5280 e10800 e10200 e10500 e10500 8940 10100 9100 9060 7400 6750 6980 9 5290 5380 e10300 e10200 e10500 e7200 8440 10000 9060 7400 6750 6980 10 5210 5370 e10400 e10200 e10500 6400 7830 9570 9110 7850 6470 7010 10 5210 5370 e10400 e10200 e10500 6400 7500 9970 9220 7750 6510 7100 11 5100 5380 10200 e9800 e10300 e5600 7220 10300 9290 7900 6630 6710 12 5090 5320 10100 e10100 e10500 e5600 7220 10300 9290 7900 6630 6710 13 5090 5320 10100 e10100 e10500 e5600 7220 10300 9290 7900 6630 6710 13 5090 5300 9880 e10100 e10200 e10200 e7000 7070 10600 9400 7750 6520 6730 14 5100 5370 9860 e10100 e10200 e10200 e7000 7070 10600 9400 7750 6520 6730 15 5100 5330 9810 e10200 e10200 e10400 e400 7600 11700 9430 7820 6690 6770 16 5170 5300 9810 e10200 e10400 e400 7600 11700 9430 7820 6690 6770 17 5250 5320 9760 e10200 e10400 e400 77630 11000 9200 7770 6610 7710 18 5070 5380 9880 e10200 e10400 e400 77630 1100 9210 7770 6610 7180 18 5070 5380 9880 e10200 e10400 e400 7890 11500 9290 7640 6620 6740 17 5250 5320 9760 e10200 e10400 e300 7880 11500 9290 7640 6620 6730 18 5070 5380 9880 e10200 e10400 e300 7880 11500 9290 7640 6620 6730 19 5100 5400 98800 e10200 e10400 e300 7880 11500 9290 7660 6600 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 6660 7770 7770 6780 6660 7770 777	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
6 5240 5300 e10300 e10300 e10100 e10600 e8000 9180 9510 9140 7610 6720 6680 7 5230 5250 e10600 e10200 e10400 e9000 8940 10100 9100 7390 6700 6780 8940 10100 9100 7390 6700 6780 8940 10100 9100 7390 6700 6780 8940 10100 9100 7390 6700 6780 8940 10100 9100 7390 6700 6780 8940 10100 9100 7390 6700 6780 8940 10100 9100 7390 6700 7700 1000 9100 7390 6700 7700 1000 9100 7390 9100 7390 9100 7390 9100 7390 9100 7390 9100 7390 9100 7390 9100 7390 9100 7390 9100 7390 9100 7390 9100 7390 9100 7390 9100 9100 9100 9100 9100 9100 9100 9	2 3 4	5240 5230 5290	5270 5240 5290	9780 9800 9780	e10400 e10500 e10200	e10300 e10100 e10400	e10400 e9400 e9500	8100 7830 7800	9340 9570 9470	8950 9100 9100	8280 8290 8390	7650 7910 7650	6990 6920 6720
12 5090 5320 10100 e10100 e10500 e5600 7220 10300 9290 7900 6630 6710 13 5090 5360 9880 e10200 e10200 e4400 7060 11700 9430 7750 6520 6790 14 5100 5370 9860 e10200 e10400 e4400 7060 11700 9430 7820 6690 6770 6770 15 5100 5330 9810 e10200 e10400 e4400 7060 11700 9430 7820 6690 6770 6770 1660 7150	7 8 9	5230 5280 5290	5250 5280 5380	e10600 e10800 e10300	e10200 e10200 e10200	e10400 e10500 e10300	e9000 e7200 e7200	8940 8440 8050	10100 10000 9420	9100 9060 9020	7390 7400 7750	6700 6750 6910	6780 6980 7100
17	12 13 14	5090 5090 5100	5320 5360 5370	10100 9880 9860	e10100 e10200 e10100	e10500 e10200 e10200	e5600 e5000 e4400	7220 7070 7060	10300 10600 11700	9290 9400 9430	7900 7750 7820	6630 6520 6690	6710 6790 6770
S100	17 18 19	5250 5070 5120	5320 5380 5450	9760 9580 9580	e10200 e10000 e10200	e10100 e10400 e10400	e4600 e6100 e9900	7990 8030 7880	11100 10400 11100	9210 9320 9230	7770 7830 7560	6610 6530 6740	7180 7060 6720
27	22 23 24	5100 5160 5230	5420 5440 5480	e9800 e10100 e10200	e10100 e10300 e10200	e10300 e10200 e10100	e9900 e11200 e10900	7480 7450 7320	10700 11000 11500	8740 8820 8860	7560 7490 7430	6630 6610 6730	6670 6610 6530
MEAN 5211 5697 10050 10080 10320 8274 7979 10310 8965 7719 6838 6439 MAX 5360 9860 10800 10500 10800 11200 9180 12000 9430 8390 7910 7180 MIN 5070 5240 9560 8700 10000 4100 7060 8630 8190 7360 6470 4730 AC-FT 320400 339000 618000 619800 573400 508800 474800 634100 533500 474600 420400 383200 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1941 - 2003, BY WATER YEAR (WY)* MEAN 10600 9196 9159 9917 10520 10310 10500 9557 9723 10200 11290 11030 MAX 28570 22440 13280 14400 17450 20690 32840 26220 26650 37050 25300 26590 (WY) 1949 1952 1944 1986 1976 1976 1976 1979 1979 1975 1975 1975 1948 1948 MIN 1237 1126 1061 1010 1167 2674 1965 1353 1366 1273 3823 3771 (WY) 1942 1942 1942 1943 1942 1943 1942 1950 1945 1945 1945 1945 1945 1945 1945 MANUAL MEAN	27 28 29 30	5360 5350 5270 5250	5670 6940 8990 9860	e10600 e10500 e10300 e10300	e8700 e9800 e10200 e10100	e10300 e10800 	e10000 e9300 e9800 10200	8390 8480 8560 8550	9580 9520 9290 9660	8350 8310 8280 8190	7360 7440 7460 7540	6690 6690 6910 6800	4830 4780 4740
MEAN 10600 9196 9159 9917 10520 10310 10500 9557 9723 10200 11290 11030 MAX 28570 22440 13280 14400 17450 20690 32840 26220 26650 37050 25300 26590 (WY) 1949 1952 1944 1986 1976 1979 1979 1975 1975 1948 1948 MIN 1237 1126 1061 1010 1167 2674 1965 1353 1366 1273 3823 3771 (WY) 1942 1942 1943 1942 1950 1945	MEAN MAX MIN	5211 5360 5070	5697 9860 5240	10050 10800 9560	10080 10500 8700	10320 10800 10000	8274 11200 4100	7979 9180 7060	10310 12000 8630	8965 9430 8190	7719 8390 7360	6838 7910 6470	6439 7180 4730
MAX 28570 22440 13280 14400 17450 20690 32840 26220 26650 37050 25300 26590 (WY) 1949 1952 1944 1986 1976 1976 1979 1975 1975 1948 1948 MIN 1237 1126 1061 1010 1167 2674 1965 1353 1366 1273 3823 3771 (WY) 1942 1942 1943 1942 1950 1945 <t< td=""><td>STATIS</td><td>STICS OF</td><td>MONTHLY ME</td><td>EAN DATA</td><td>FOR WATER</td><td>YEARS 194</td><td>1 - 2003</td><td>, BY WATE</td><td>R YEAR (W)</td><td>7)*</td><td></td><td></td><td></td></t<>	STATIS	STICS OF	MONTHLY ME	EAN DATA	FOR WATER	YEARS 194	1 - 2003	, BY WATE	R YEAR (W)	7)*			
ANNUAL TOTAL 2586330 2974540 ANNUAL MEAN 7086 8149 10170 HIGHEST ANNUAL MEAN 19910 1952 LOWEST ANNUAL MEAN 4083 1942 HIGHEST DAILY MEAN 11800 Aug 26 12000 May 15 69200 Mar 27 1943 LOWEST DAILY MEAN 4300 Mar 23 4100 Mar 15 575 Nov 22 1941 ANNUAL SEVEN-DAY MINIMUM 4400 Mar 21 4840 Mar 11 709 Nov 19 1941 MAXIMUM PEAK FLOW 12000 May 14 c78200 Mar 26 1943 MAXIMUM PEAK STAGE 510.37 Dec 30 519.66 Apr 14 1979	MAX (WY) MIN	28570 1949 1237	22440 1952 1126	13280 1944 1061 1942	14400 1986 1010 1943	17450 1976 1167 1942	20690 1976 2674 1950	32840 1979 1965	26220 1979 1353	26650 1975 1366	37050 1975 1273	25300 1948 3823	26590 1948 3771
ANNUAL TOTAL 2586330 2974540 ANNUAL MEAN 7086 8149 10170 HIGHEST ANNUAL MEAN 19910 1952 LOWEST ANNUAL MEAN 4083 1942 HIGHEST DAILY MEAN 11800 Aug 26 12000 May 15 69200 Mar 27 1943 LOWEST DAILY MEAN 4300 Mar 23 4100 Mar 15 575 Nov 22 1941 ANNUAL SEVEN-DAY MINIMUM 4400 Mar 21 4840 Mar 11 709 Nov 19 1941 MAXIMUM PEAK FLOW 12000 May 14 c78200 Mar 26 1943 MAXIMUM PEAK STAGE 510.37 Dec 30 519.66 Apr 14 1979	SUMMAR	RY STATIS	TICS	FOR	2002 CAL	ENDAR YEAR		FOR 2003	WATER YEAR	2	WATER YEA	RS 1941 -	- 2003*
ANNUAL RUNOFF (AC-FT) 5130000 5900000 7366000 10 PERCENT EXCEEDS 9870 10400 15800 9410 90 PERCENT EXCEEDS 4810 5270 4500	ANNUAI ANNUAI HIGHES LOWEST HIGHES ANNUAI MAXIMU MAXIMU INSTAN ANNUAI 10 PEF 50 PEF	TOTAL MEAN TANNUAL TANNUAL TOALLY TOALLY TOALLY MEAN SEVEN-D MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN	MEAN MEAN MEAN EAN AY MINIMUN LOW TAGE	И	2586330 7086 11800 4300 4400	Aug 26 Mar 23		8149 12000 4100 4840 a12000 b10. 5900000 10400 8280	May 15 Mar 15 Mar 13 May 14 37 Dec 30		19910 4083 69200 575 709 c78200 b19.6 575 7366000 15800 9410	Nov 22 Nov 19 Mar 26 6 Apr 14	1942 7 1943 2 1941 9 1941 5 1943 4 1979

06185500 MISSOURI RIVER NEAR CULBERTSON, MT--Continued

(National stream quality accounting network station)

SUMMARY STATISTICS	FOR WATER YEARS 194	1-51**	WATER YEARS	1958 - 2003***
ANNUAL TOTAL				
ANNUAL MEAN	9245		10330	
HIGHEST ANNUAL MEAN	14520	1948	16580	1975
LOWEST ANNUAL MEAN	4083	1942	6121	1963
HIGHEST DAILY MEAN	69200 Mar 27	1943	52000	Apr 18 1979
LOWEST DAILY MEAN	575 Nov 22		2000	Nov 20 1964
ANNUAL SEVEN-DAY MINIMUM	709 Nov 19		2130	Nov 19 1964
MAXIMUM PEAK FLOW		1943	d55000	Mar 23 1960
MAXIMUM PEAK STAGE	b15.12 Mar 26	1943	b19.66	Apr 14 1979
ANNUAL RUNOFF (AC-FT)	6698000		7482000	
10 PERCENT EXCEEDS	21000		15100	
50 PERCENT EXCEEDS	6910		9600	
90 PERCENT EXCEEDS	1400		5710	
*-During period of operation (**Before operational level a	t Fort Peck Lake was r	eached.		
***After operational level a	t Fort Peck Lake was r	eached.		
aGage height, 6.32 ft.				
bBackwater from ice.		.1 20 000 513	1	
cGage height, 14.80 ft, from	rating curve extended	above 30,000 it	/S.	
dGage height, 19.14 ft.				
eEstimated.				

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1946, 1965 to 1986, 1991 to 1994, October 1996 to current year.

PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: July 1965 to September 1981.

WATER TEMPERATURE: July 1965 to September 1979, seasonal records starting July 18, 2002 to current year.

SUSPENDED-SEDIMENT DISCHARGE: October 1971 to September 1976.

INSTRUMENTATION.--Temperature probe installed July 17, 2002.

REMARKS.--Daily water temperature records good. Unpublished records of instantaneous water temperature and specific conductance are available in files of the District office.

EXTREMES FOR PERIOD OF DAILY RECORD:

SPECIFIC CONDUCTANCE: Maximum daily, 941 microsiemens per centimeter (μS/cm) at 25°C, Jan. 19, 1980; minimum daily, 338 μS/cm at 25°C, Mar. 30, 1967.

WATER TEMPERATURE: Maximum 26.0°C, Aug. 14, 2003; minimum, 0.0°C, on many days during winter period.

SEDIMENT CONCENTRATION: Maximum daily mean, 2,940 mg/L, Aug. 15, 1974; minimum daily mean, 30 mg/L, Jan. 13, 1975.

SEDIMENT LOAD: Maximum daily, 147,000 tons, June 5, 1975; minimum daily, 421 tons, Jan. 13, 1975.

EXTREMES FOR CURRENT YEAR:

WATER TEMPERATURE: During period of seasonal operation, maximum 26.0°C, July 19 and Aug. 14; minimum, 1.5°C, Apr. 3-5.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

			Turbid-	UV	UV						
			ity,	absorb-	absorb-			Dis-	pН,	Specif.	
		Instan-	wat unf	ance,	ance,	Baro-		solved	water,	conduc-	
		taneous	lab,	254 nm,	280 nm,	metric	Dis-	oxygen,	unfltrd	tance,	Temper-
		dis-	Hach	wat flt	wat flt	pres-	solved	percent	field,	wat unf	ature,
Date	Time	charge,	2100AN	units	units	sure,	oxygen,	of sat-	std	uS/cm	_air,
		cfs	NTU	/cm	/cm	mm Hg	mg/L	uration	units	25 degC	deg C
		(00061)	(99872)	(50624)	(61726)	(00025)	(00300)	(00301)	(00400)	(00095)	(00020)
OCT 2002											
22	1130	5100	20	.046	.030	737	11.6	92	8.5	585	-3.5
APR 2003											
07	1030	9000	88	.126	.091	730	12.8	102	8.4	694	12.0
29	1100	8600	50	.054	.037	720	10.6	104	8.4	592	18.0
MAY											
19	1115	11500	170	.076	.053	735	9.8	89	8.3	658	2.0
JUN											
02	1115	9040	40	.047	.031	718	7.8	83	8.4	580	21.0
23	1130	8930	48	.049	.032	714	12.6	145	8.5	577	18.5
JUL											
14	1115	7940	45	.048	.034	720	7.9	98	8.5	582	30.0
AUG	1000	6540	2.1	0.40	004		10.0	100	0.4		20.0
25	1230	6540	31	.049	.034	720	10.0	129	8.4	575	32.0

06185500 MISSOURI RIVER NEAR CULBERTSON, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium adsorp- tion ratio (00931)	Sodium, water, fltrd, mg/L (00930)	Alka- linity, wat flt fxd end lab, mg/L as CaCO3 (29801)	Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)	Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)	Carbon- ate, wat flt incrm. titr., field, mg/L (00452)
OCT 2002 22	4.0	210	51.9	19.6	3.34	1	44.1	E166	161	196	. 0
APR 2003 07	4.0	210	45.9	22.7	5.74	2	74.8	182	166	203	.0
29 MAY 19	12.0 9.5	210 210	51.2 48.9	20.6	4.02 4.61	1 2	46.4 57.9	167 192	154 150	186 183	1
JUN 02	15.5	210	50.1	19.7	3.95	1	43.5	164	149	173	. 0
23 JUL	19.0	210	51.2	20.4	3.89	1	43.8	162	134	160	2
14 AUG	23.0	200	47.8	18.3	3.46	1	40.8	162	135	164	.0
25	25.0	210	52.8	19.7	3.79	1	40.8	161	135	150	7
Date	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue water, fltrd, tons/ acre-ft (70303)	Residue water, fltrd, tons/d (70302)	Residue on evap. at 180degC wat flt mg/L (70300)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia + org-N, water, unfltrd mg/L as N (00625)	Ammonia water, fltrd, mg/L as N (00608)
OCT 2002 22 APR 2003	9.37	.84	6.53	127	359	.51	5180	376	.14	.26	<.015
07 29	8.68 8.50	.65 .88	7.09 6.77	162 129	429 361	.62 .52	11100 8950	457 386	.42 .17	.65 .35	.049 <.015
MAY 19	10.5	.9	6.96	177	419	.65	14900	480	.19	.63	<.015
JUN 02 23	9.29 9.16	.9	7.12 6.93	124 124	349 342	.50 .50	8990 8790	368 365	.15 .16	.28	<.015 <.015
JUL 14 AUG	9.24	.9	6.40	122	330	.48	7610	355	.17	.41	<.015
25	9.57	.9	7.34	121	337	.49	6380	361	.17	.26	<.015
Date	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Phos- phorus, water, fltrd, mg/L (00666)	Phos- phorus, water, unfltrd mg/L (00665)	Total carbon, suspnd sedimnt total, mg/L (00694)	Inor- ganic carbon, suspnd sedimnt total, mg/L (00688)	Organic carbon, suspnd sedimnt total, mg/L (00689)	Organic carbon, water, fltrd, mg/L (00681)	Pheo- phytin a, phyto- plank- ton, ug/L (62360)	Chloro- phyll a phyto- plank- ton, fluoro, ug/L (70953)
OCT 2002 22	<.022	<.002	E.005	.009	.083	. 9	<.1	. 9	2.4	1.0	3.4
APR 2003 07 29	.099 <.022	.003	.013 E.006	.023	.27 .159	2.2 1.4	<.1 .1	2.1 1.3	5.4 2.5	1.8	6.2 3.6
MAY 19	.023	<.002	.010	.016	.35	3.5	.8	2.7	3.2	1.7	4.2
JUN 02 23	<.022 <.022	<.002 <.002	.009	.011	.186 .131	1.9 1.8	.3	1.6 1.8	2.3	. 4	2.1 4.7
JUL 14 AUG	<.022	<.002	.009	.012	.179	1.3	. 4	. 9	2.4	.6	E2.3
25	<.022	<.002	.008	.011	.113	1.4	.3	1.1	2.5	.5	2.0

E--Estimated.

06185500 MISSOURI RIVER NEAR CULBERTSON, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	Arsenic water, fltrd, ug/L (01000)	Arsenic water unfltrd ug/L (01002)	Barium, water, fltrd, ug/L (01005)	Barium, water, unfltrd recover -able, ug/L (01007)	Boron, water, fltrd, ug/L (01020)	Cadmium water, fltrd, ug/L (01025)	Cadmium water, unfltrd ug/L (01027)	Chrom- ium, water, fltrd, ug/L (01030)	Chrom- ium, water, unfltrd recover -able, ug/L (01034)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)
OCT 2002 22	2.9				115						
APR 2003 07	2.6				156						
29 MAY	2.5				108						
19 JUN	2.3	7	43	106	128	< .04	.14	<.8	3.8	2.0	12.0
02 23 JUL	2.6 2.7	 5	 36	 85	102 111	<.04	.07	<.8	3.6	1.9	 5.5
14 AUG	2.8	4	39	74	120	< .04	.07	<.8	1.6	1.5	5.7
25	2.5	4	38	67	101	< .04	.04	<.8	1.1	2.3	8.5
Date	Iron, water, fltrd, ug/L (01046)	Iron, water, unfltrd recover -able, ug/L (01045)	Lead, water, fltrd, ug/L (01049)	Lead, water, unfltrd recover -able, ug/L (01051)	Lithium water, fltrd, ug/L (01130)	Mangan- ese, water, fltrd, ug/L (01056)	Mangan- ese, water, unfltrd recover -able, ug/L (01055)	Mercury water, fltrd, ug/L (71890)	Mercury water, unfltrd recover -able, ug/L (71900)	Nickel, water, fltrd, ug/L (01065)	Nickel, water, unfltrd recover -able, ug/L (01067)
OCT 2002 22 APR 2003	<10				58.0						
07 29	<10 <10				51.5 59.6						
MAY 19 JUN	<10	7640	<.08	6.42	62.5	1.4	154	<.02	.02	3.15	12.1
02	<8 <8	 3020	 E.04	2.43	56.6 58.7	 .7	 65	 <.02	 E.01	2.43	 6.80
JUL 14	<8	3000	<.08	2.34	50.4	.7	61	<.02	E.01	2.45	5.92
AUG 25	<8	2290	<.08	1.71	60.2	.7	56	<.02	<.02	2.20	6.12
Date	Selen- ium, water, fltrd, ug/L (01145)	Selen- ium, water, unfltrd ug/L (01147)	Stront- ium, water, fltrd, ug/L (01080)	Vanad- ium, water, fltrd, ug/L (01085)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	2,6-Di- ethyl- aniline water fltrd 0.7u GF ug/L (82660)	CIAT, water, fltrd, ug/L (04040)	Aceto- chlor, water, fltrd, ug/L (49260)	Ala- chlor, water, fltrd, ug/L (46342)	alpha- HCH, water, fltrd, ug/L (34253)
OCT 2002 22	. 8		467	2.0			<.006	<.006	<.006	<.004	<.005
APR 2003 07 29	E.4 .7		417 480	1.3 1.9			<.006 <.006	<.006 <.006	<.006 <.006	<.004 <.004	<.005 <.005
MAY 19	. 7	. 9	453	.9	1	35	<.006	<.006	<.006	<.004	<.005
JUN 02 23	. 8	 .7	482 469	1.1 1.7	 1	 14	<.006 <.006	<.006 <.006	<.006 <.006	<.004 <.004	<.005
JUL 14	.7	.9	485	2.6	1	13	<.006	<.006	<.006	<.004	<.005
AUG 25	.6	1.3	485	1.3	1	9	<.006	<.006	<.006	<.004	<.005

E--Esimated.

06185500 MISSOURI RIVER NEAR CULBERTSON, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

Date	alpha- HCH-d6, surrog, wat flt 0.7u GF percent recovry (91065)	Atra- zine, water, fltrd, ug/L (39632)	Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	Butyl- ate, water, fltrd, ug/L (04028)	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Carbo- furan, water, fltrd 0.7u GF ug/L (82674)	Chlor- pyrifos water, fltrd, ug/L (38933)	Cis- per- methrin water fltrd 0.7u GF ug/L (82687)	Cyana- zine, water, fltrd, ug/L (04041)	DCPA, water fltrd 0.7u GF ug/L (82682)
OCT 2002 22	93.3	<.007	<.050	<.010	<.002	<.041	<.020	<.005	<.006	<.018	<.003
APR 2003 07	85.3	<.007	<.050	<.010	<.002	<.041	<.020	<.005	<.006	<.018	<.003
29 MAY	101	<.007	<.050	<.010	<.002	E.004	<.020	<.005	<.006	<.018	<.003
19 JUN	105	E.003	<.050	<.010	<.002	<.041	<.020	<.005	<.006	<.018	<.003
02 23 JUL	94.4 104	<.007 <.007	<.050 <.050	<.010 <.010	<.002 <.002	<.041 <.041	<.020 <.020	<.005 <.005	<.006 <.006	<.018 <.018	<.003
14 AUG	97.3	<.007	<.050	<.010	<.002	<.041	<.020	<.005	<.006	<.018	<.003
25	91.5	<.007	<.050	<.010	<.002	<.041	<.020	<.005	<.006	<.018	<.003
Date	Desulf- inyl fipro- nil, water, fltrd, ug/L (62170)	Diazi- non, water, fltrd, ug/L (39572)	Diazi- non-d10 surrog. wat flt 0.7u GF percent recovry (91063)	Diel- drin, water, fltrd, ug/L (39381)	Disul- foton, water, fltrd 0.7u GF ug/L (82677)	EPTC, water, fltrd 0.7u GF ug/L (82668)	Ethal- flur- alin, water, fltrd 0.7u GF ug/L (82663)	Etho- prop, water, fltrd 0.7u GF ug/L (82672)	Desulf- inyl- fipro- nil amide, wat flt ug/L (62169)	Fipro- nil sulfide water, fltrd, ug/L (62167)	Fipro- nil sulfone water, fltrd, ug/L (62168)
OCT 2002 22	<.004	<.005	103	<.005	<.02	<.002	<.009	<.005	<.009	<.005	<.005
APR 2003 07	<.004	<.005	111	<.005	<.02	<.002	<.009	<.005	<.009	<.005	<.005
29 MAY	<.004	<.005	105	<.005	<.02	<.002	<.009	<.005	<.009	<.005	<.005
19 JUN	<.004	<.005 <.005	119 100	<.005 <.005	<.02	<.007	<.009	<.005 <.005	<.009	<.005 <.005	<.005
02 23 JUL	<.004	<.005	102	<.005	<.02	<.002	<.009	<.005	<.009	<.005	<.005
14 AUG	<.004	<.005	107	<.005	< .02	<.002	<.009	<.005	<.009	<.005	<.005
25	<.004	<.005	90.7	<.005	<.02	<.002	<.009	<.005	<.009	<.005	<.005
Date	Fipro- nil, water, fltrd, ug/L (62166)	Fonofos water, fltrd, ug/L (04095)	Lindane water, fltrd, ug/L (39341)	Linuron water fltrd 0.7u GF ug/L (82666)	Mala- thion, water, fltrd, ug/L (39532)	Methyl para- thion, water, fltrd 0.7u GF ug/L (82667)	Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630)	Moli- nate, water, fltrd 0.7u GF ug/L (82671)	Naprop- amide, water, fltrd 0.7u GF ug/L (82684)	p,p'- DDE, water, fltrd, ug/L (34653)
OCT 2002 22	<.007	<.003	<.004	<.035	<.027	<.006	<.013	<.006	<.002	<.007	<.003
APR 2003 07 29	<.007 <.007	<.003 <.003	<.004 <.004	<.035 <.035	<.027 <.027	<.006 <.006	<.013 <.013	<.006 <.006	<.002 <.002	<.007 <.007	<.003 <.003
MAY 19	<.007	<.003	<.004	<.035	<.027	<.006	<.013	<.006	<.004	<.007	<.003
JUN 02 23	<.007 <.007	<.003 <.003	<.004 <.004	<.035 <.035	<.027 <.027	<.006 <.006	<.013 <.013	<.006 <.006	<.002 <.002	<.007 <.007	<.003 <.003
JUL 14	<.007	<.003	<.004	<.035	<.027	<.006	<.013	<.006	<.002	<.007	<.003
AUG 25	<.007	<.003	<.004	<.035	<.027	<.006	<.013	<.006	<.002	<.007	<.003

E--Estimated.

06185500 MISSOURI RIVER NEAR CULBERTSON, MT--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003--Continued

			Pendi-								
		Peb-	meth-			Pron-		Pro-	Propar-		Tebu-
	Para-	ulate,	alin,	Phorate	Prome-	amide,	Propa-	panil,	gite,	Sima-	thiuron
	thion,	water,	water,	water	ton,	water,	chlor,	water,	water,	zine,	water
	water,	fltrd	fltrd	fltrd	water,	fltrd	water,	fltrd	fltrd	water,	fltrd
Date	fltrd,	0.7u GF	0.7u GF	0.7u GF	fltrd,	0.7u GF	fltrd,	0.7u GF	0.7u GF	fltrd,	0.7u GF
	ug/L										
	(39542)	(82669)	(82683)	(82664)	(04037)	(82676)	(04024)	(82679)	(82685)	(04035)	(82670)
OCT 2002											
22	<.010	< .004	<.022	<.011	<.01	< .004	<.010	<.011	< .02	<.005	< .02
APR 2003	<.010	<.004	<.UZZ	<.U11	<.01	<.004	<.U1U	<.U11	<.0∠	<.003	<.02
07	<.010	< .004	< .022	<.011	< .01	< .004	<.010	<.011	< .02	< .005	< .02
29	<.010	< .004	<.022	<.011	E.01	<.004	<.010	<.011	<.18	<.005	<.02
MAY					2.01						2
19	<.010	< .004	< .022	<.011	< .01	E.004	<.010	<.011	< .02	< .005	< .02
JUN											
02	<.010	< .004	<.022	<.011	<.01	< .004	< .010	<.011	< .02	< .005	< .02
23	<.010	< .004	<.022	<.011	<.01	< .004	< .010	<.011	< .02	< .005	< .02
JUL											
14	<.010	< .004	<.022	<.011	<.01	< .004	<.010	<.011	< .25	< .005	< .02
AUG											
25	<.010	< .004	< .022	<.011	<.01	< .004	<.010	<.011	< .09	< .005	< .02

	Terba- cil, water, fltrd	Terbu- fos, water, fltrd	Thio- bencarb water fltrd	Tri- allate, water, fltrd	Tri- flur- alin, water, fltrd	Suspnd. sedi- ment, sieve diametr	Sus- pended sedi- ment concen-	Sus- pended sedi- ment
Date	0.7u GF ug/L (82665)	0.7u GF ug/L (82675)	0.7u GF ug/L (82681)	0.7u GF ug/L (82678)	0.7u GF ug/L (82661)	percent <.063mm (70331)	tration mg/L (80154)	load, tons/d (80155)
OCT 2002								
22 APR 2003	<.034	<.02	<.005	<.002	<.009	28	156	2150
07	< .034	< .02	< .005	< .002	<.009	46	366	8890
29	< .034	< .02	< .005	< .002	< .009	36	299	6940
MAY								
19	<.034	< .02	<.005	.003	<.009	65	477	14800
JUN								
02	<.034	< .02	<.005	< .002	<.009	34	281	6860
23	<.034	< .02	<.005	< .002	<.009	41	269	6490
JUL								
14 AUG	<.034	<.02	<.005	<.002	<.009	48	229	4910
25	< .034	< .02	< .005	< .002	<.009	41	176	3110

E--Estimated.

06185500 MISSOURI RIVER NEAR CULBERTSON, MT--Continued WATER TEMPERATURE, DEGREES CELSIUS, APRIL 2003 TO SEPTEMBER 2003

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1 2 3 4 5	5.5 5.0 2.5 2.0 2.5	5.0 2.5 1.5 1.5	5.5 4.0 2.0 1.5 2.0	13.5 13.0 13.5 13.0	MAY 12.0 12.0 11.5 12.0 11.0	12.5 12.5 12.5 12.5 11.5	16.5 16.0 17.0 16.5 15.5	JUNE 15.0 15.0 15.0 15.5	15.5 15.0 16.0 15.5 15.0	22.5 23.0 22.5 22.0 22.0	20.0 20.5 21.5 20.5 20.5	21.0 22.0 22.0 21.5 21.0
6 7 8 9 10	3.5 4.5 6.0 8.0 10.5	2.0 3.5 4.0 6.0 7.5	2.5 4.0 5.0 6.5 9.0	11.0 10.0 9.5 9.0 9.0	10.0 9.0 8.5 8.5 7.5	10.5 9.5 8.5 9.0 8.0	15.0 14.5 14.5 15.0 16.0	14.5 13.0 13.0 14.0 14.5	14.5 14.0 13.5 14.5	21.0 20.5 19.5 20.5 21.0	19.5 19.0 18.5 18.5	20.5 20.0 19.0 19.5 20.0
11 12 13 14 15	11.5 13.0 14.0 13.5 12.5	9.0 10.5 12.0 12.0 11.0	10.0 11.5 13.0 12.5 11.5	9.5 11.0 11.5 13.0 14.0	7.0 8.5 10.5 11.0 11.5	8.0 9.5 11.0 12.0 13.0	15.5 17.0 18.5 19.5 20.5	15.0 15.0 15.5 17.5	15.5 16.0 17.0 18.5 19.5	22.0 23.0 24.0 23.5 24.0	19.5 20.5 21.5 22.5 22.0	20.5 21.5 22.5 23.0 23.0
16 17 18 19 20	11.0 11.0 11.0 12.0 12.5	9.0 9.0 10.0 10.0	9.5 10.0 10.5 10.5 11.5	14.0 13.5 12.5 11.0 10.5	13.0 12.5 11.0 9.5 8.5	13.5 13.0 12.0 10.0 9.5	21.0 21.0 20.5 20.5 21.5	19.5 19.5 19.0 18.5 19.5	20.0 20.5 20.0 19.5 20.5	24.0 23.5 24.5 26.0 25.5	22.0 22.0 22.0 23.0 24.0	23.0 23.0 23.5 24.5 24.5
21 22 23 24 25	13.0 14.0 15.0 15.0	11.0 12.0 13.0 14.0 13.5	12.0 13.0 14.0 14.5 14.5	11.5 13.5 14.5 16.0 17.5	10.0 11.0 13.0 13.5 15.0	10.5 12.0 14.0 14.5 16.0	21.0 20.5 19.5 18.5 16.0	20.0 19.0 18.0 16.0 15.0	20.5 19.5 19.0 17.0 15.5	24.0 24.0 23.5 24.0 23.0	23.0 22.5 21.5 22.0 21.5	23.5 23.0 22.5 23.0 22.5
26 27 28 29 30 31	14.0 12.5 12.5 13.0 13.0	12.5 11.5 11.0 11.0	13.5 12.0 11.5 12.0	19.0 19.5 20.5 20.5 19.0 18.5	16.5 18.5 18.5 18.5 18.0 16.5	17.5 19.0 19.5 19.5 18.5 17.0	16.5 17.5 18.0 20.0 21.0	14.5 16.0 16.5 17.0 18.5	15.5 16.5 17.0 18.5 19.5	23.0 22.5 23.5 23.0 23.0 23.0	21.0 21.0 21.0 21.5 21.0 21.5	22.0 21.5 22.0 22.5 22.0 22.0
MONTH	15.0	1.5	9.5	20.5	7.0	13.0	21.5	13.0	17.0	26.0	18.5	22.0
		AUGUST			SEPTEMB	ER						
1 2 3 4 5	23.0 22.5 21.5 21.0 22.5	21.0 21.0 20.5 20.0 20.0	22.0 21.5 21.0 20.5 21.0		17.5 17.5 17.0 17.0	18.5 18.0 18.0 18.0						
6 7 8 9 10	23.0 23.0 24.5 24.0 24.5	21.0 21.0 21.5 23.0 22.0	22.0 22.0 23.0 23.5 23.5	19.0 19.0 20.0 19.0 17.5	17.5 17.5 18.0 17.5 16.0	18.0 18.0 18.5 18.5						
11 12 13 14 15	24.5 25.0 25.5 26.0 25.5	22.0 22.5 23.0 24.0 24.0	23.0 23.5 24.0 25.0 24.5	16.5 16.0 14.5 14.0 14.0	15.5 14.5 13.0 12.0 12.5	16.0 15.5 13.5 13.0 13.5						
16 17 18 19 20	25.0 24.0 23.0 24.0 23.0	23.0 22.5 21.5 21.5 21.5	24.0 23.0 22.0 22.5 22.5	13.5 12.5 11.5 12.5 12.5	12.5 11.0 10.0 10.0	13.0 11.5 11.0 11.5 12.0						
21 22 23 24 25	22.5 21.5 22.0 22.0 22.5	20.5 20.0 20.0 20.0 20.5	21.5 20.5 21.0 21.0 21.5	12.0 12.5 13.0 11.5 12.5	11.5 10.5 11.5 10.5	12.0 11.5 12.0 11.0						
26 27 28 29 30 31	21.5 20.0 19.5 18.5 18.5	20.0 19.0 18.0 17.0 16.5 16.5	21.0 19.5 18.5 17.5 17.5	12.5 12.5 13.0 12.5 12.0	11.0 11.5 11.0 11.0 10.0	12.0 12.0 12.0 11.5 11.0						

26.0 16.5 21.5

20.0

10.0

14.0

MONTH

Page

Page

A		BasinContinued	
		Uncle Sam Gulch at mouth, near	160
Access to USGS water data	31	Well 08N05W30BBCD01	141
Acid neutralizing capacity, definition of	31	Well 08N05W30BCBD01	144
Acre-foot, definition of	31	Well 08N06W25AABB01	140
Adenosine triphosphate, definition of	31	Well 08N06W25ADAC01	143
Adjusted discharge, definition of	31	Well 08N06W25ADAC02	142
Alder, Ruby River above reservoir, near	128	Battle Creek basin, schematic diagram of	325
Ruby River below reservoir, near	129	Battle Creek, at international boundary	334
Algae, blue-green, definition of	32	near Chinook	335
Fire, definition of	35	Beattrice Mine tributary at mouth, near Rimini	216
Green, definition of	36	Beaver Creek	
Algal growth potential, definition of	31	(tributary to Milk River) at reservation boundary,	
Alkalinity, definition of	31	near Rocky Boy	313
Altawan Reservoir near Govenlock, Saskatchewan	318	below Guston Coulee, near Saco	355
Annual 7-day minimum, definition of	32	(tributary to Tenmile Creek) tributary No. 2, near Rimini	208
Annual runoff, definition of	31	Beaverhead River, at Barretts	121
Antelope, Big Muddy Creek near	379	at Dillon	123
Aquifer, water table, definition of	44	near Twin Bridges	124
Armells Creek near Landusky	279	Bed material, definition of	32
Aroclor, definition of	32	Bedload discharge, definition of	32
Artificial substrate, definition of	32	Bedload, definition of	32
Ash mass, definition of	32	Belanger Creek diversion canal near Vidora, Saskatchewan	345
Aspect, definition of	32	Benthic organisms, definition of	32
_		Big Dry Creek near Van Norman	296
В		Big Hole River basin, gaging-station records in	130
Dobb St Mary Canal at Intalya maan	114	Big Hole River, below Big Lake Creek, at Wisdom	130
Babb, St. Mary Canal at Intake, near	114	below Mudd Creek, near Wisdom	133
at St. Mary Crossing, near	115 303	near Glen	137
		near Melrose	134
St. Mary River near	112	Big Muddy Creek basin, gaging-station records in	379
Bacteria, definition of	32 33	Big Muddy Creek diversion canal near Medicine Lake	380
Colinbages definition of	33	Big Muddy Creek, near Antelope	379
Coliphages, definition of	35 35	Big Sandy Creek, at reservation boundary, near Rocky Boy	311
Enterococcus, definition of Escherichia coli, definition of	35 35	near Havre	312
Fecal coliform, definition of	35 35	Biochemical oxygen demand, definition of	32
	35	Biomass, definition of	32
Fecal streptococcal, definition of	43	Algal growth potential, definition of	31
Badger Creek below Four Horns Canal, near Browning	255	Ash mass, definition of	32
	32	Dry mass, definition of	34
Bankfull stage, definition ofBanner Creek, at bridge, 0.5 mile above City diversion,	32	Organic mass, definition of	38
near Rimini	202	Pigment ratio, definition of	32
Barretts, Beaverhead River at	121	Volatile mass, definition of	38
	32	Wet mass, definition of	44
Base discharge, definition of	32	Blue-green algae, definition of	32
	32 157	Bottom material, definition of	32
Basin Creek, (tributary to Boulder River) at Basin	145	Boulder River (tributary to Jefferson River) above Kleinsmith	
below Buckeye Mine near logging road, near Basin	157	Gulch, near Basin	139
Basin, Basin Creek at		below Little Galena Gulch, near Basin	162
Basin Creek below Buckeye Mine near logging road, near		near Boulder	163
Boulder River below Little Colone Cyleb magn	139 162	Well 08N05W30BBCD01	141
Boulder River below Little Galena Gulch, near		Well 08N05W30BCBD01	144
Boullion Mine Adit, near	154 155	Well 08N06W25AABB01	140
Bullion Mine tributary at mouth, near		Well 08N06W25ADAC01	143
Cataract Creek above Uncle Sam Gulch, near	158	Well 08N06W25ADAC02	142
Cataract Creek at	161	Boulder River basin, gaging-station records in	139
Crystal Mine Adit, near	159	Boulder, Boulder River near	163
Jack Creek above Bullion Mine Tributary, near	153	Bozeman, East Gallatin River below Bridger Creek, near	182
Jack Creek at mouth, near	156	Browning, Badger Creek below Four Horns Canal, near	255

	Page		Page
BrowningContinued		D	
Cut Bank Creek near	257	2	
Milk River, North Fork, above St. Mary Canal, near	305	Dagmar, Cottonwood Creek near	382
Two Medicine River below South Fork, near	254	Lake Creek near	381
Bulk electrical conductivity, definition of	32	Sand Creek near	383
Bullion Mine, adit near Basin	154	Daily mean suspended-sediment concentration, definition of	34
tributary at mouth, near Basin	155	Daily record station, definition of	34
•		Data collection platform, definition of	34
C		Data logger, definition of	. 34
		Datum, definition of	34
Cameron, Madison River, at Kirby Ranch, near	176	Dearborn River near Craig	231
Canadian Geodetic Vertical Datum 1928, definition of	33	Definition of terms	. 31
Canyon Ferry Lake near Helena	191	Diatom, definition of	
Cataract Creek, above Uncle Sam Gulch, near Basin	158	Diel, definition of	34
at Basin	161	Dillon, Beaverhead River at	
Cell volume (biovolume), definition of	33	Discharge, definition of	34
Cells/volume, definition of	33	Annual 7-day minimum, definition of	. 32
Cfs-day, definition of	33	Instantaneous discharge, definition of	
Channel bars, definition of	33	Mean discharge, definition of	
Chemical oxygen demand, definition of	33	Dissolved oxygen, definition of	
Chester, Marias River near		Dissolved solids concentration, definition of	
Chinook, Battle Creek near	335	Dissolved, definition of	34
Clear Creek near	316	Diversity index, definition of	34
Choteau, Teton River below South Fork, near	264	Dodson, Milk River near	343
Circle, Redwater River at	366	Peoples Creek below Kuhr Coulee, near	341
Clancy, Prickly Pear Creek near	192	Downstream order and station number, explanation of	15
Clark Canyon Reservoir near Grant		Drainage area, definition of	34
Clear Creek near Chinook		Drainage basin, definition of	34
Clostridium perfringens, definition of	33	Dry mass, definition of	34
Coliphages, definition of	33	Dry weight, definition of	34
Color unit, definition of	33	Dutton, Teton River near	266
Confined aquifer, definition of	33	Duval Creek near Landusky	280
Consul, Saskatchewan, Cypress Lake near			
McKinnon Ditch near		E	
Nashlyn Canal near			100
Richardson Ditch near	331	East Gallatin River below Bridger Creek, near Bozeman	
Vidora Ditch near	330	East Poplar River at international boundary	
Contents, definition of	33	Eastend, Saskatchewan, Eastend Canal at	
Continuous-record station, definition of	33	Eastend Reservoir at	
Control structure, definition of	33	Embeddedness, definition of	
Control, definition of	33	Enterococcus bacteria, definition of	
Cooperation	1	EPT Index, definition of	
Cottonwood Creek near Dagmar		Escherichia coli (E. coli), definition of	
Craig, Dearborn River near	231	Estimated (E) value, definition of	
Crystal Mine Adit near Basin	159	Euglenoids, definition of	
Cubic foot per second per square mile, definition of	33	Explanation of ground-water-level records	
Cubic foot per second, definition of	33	Explanation of precipitation records	
Cubic foot per second-day, definition of	33	Explanation of stage- and water-discharge records	
Culbertson, Missouri River near	384	Explanation of the records	
Cut Bank Creek at Cut Bank	258	Explanation of water-quality records	
near Browning	257	Extractable organic halides, definition of	33
Cut Bank, Cut Bank Creek at	258	F	
Cypress Lake, east outflow canal near Vidora, Sask	346	1	
near Consul Saskatchewan	352	Fecal coliform bacteria, definition of	35
west inflow canal drain near Oxarat, Saskatchewan	328	Fecal streptococcal bacteria, definition of	
west inflow canal near West Plains, Saskatchewan		Fire algae, definition of	
west outflow canal near West Plains, Saskatchewan	329	Firehole River near West Yellowstone	
		Flow (discharge), definition of	
		Flow-duration percentiles, definition of	
		•	

INDEX

Fort Logan, Smith River below Eagle Creek, near	253 235 299	Horizontal datum, definition of	
Fort Logan, Smith River below Eagle Creek, near		Huff Lake gravity canal, near Val Marie, Saskatchewan	2.40
Fort Peck Lake at Fort Peck	299		349
Fort Peck Lake at Fort Peck		Huff Lake near Val Marie, Saskatchewan	
	298	Huff Lake pumping canal, near Val Marie, Saskatchewan	348
schematic diagram of	352	Hydrologic conditions, summary of	
	325	Hydrologic index stations, definition of	
	351	Hydrologic unit, definition of	36
		Hydrologic-monitoring activity	
G		I	
Gaff Ditch near Merryflat, Saskatchewan	326	1	
	35	Inch, definition of	36
	35	Instantaneous discharge, definition of	
	36	International Boundary Commission Survey Datum,	
	36	definition of	36
	.81	Introduction	1
	.81	Island, definition of	36
	.83		
near Gallatin Gateway 1	.81	J	
	36		
General hydrologic setting	2	Jack Creek above Bullion Mine Tributary, near Basin	
	36	Jack Creek at mouth, near Basin	
Gibbon River at Madison Junction, YNP	71	Jefferson River basin, gaging-station records in	
	.37	Jefferson River, near Three Forks	
	318	near Twin Bridges	
	323	Jordan, Hell Creek near	
	321	Judith River near mouth, near Winifred	273
Middle Creek near	322	т	
Spangler Ditch near	319	L	
	20	Laboratory reporting level, definition of	36
	.75	Lake Creek, (tributary to Big Muddy Creek) near Dagmar	
	251	(tributary to Missouri River) near Power	
Green algae, definition of	36	Lakes and Reservoirs	232
	13	Altawan Reservoir near Govenlock, Saskatchewan	318
Ground-water-level records, explanation of	28	Canyon Ferry Lake near Helena	
Ground-water-quality data, explanation of	29	Clark Canyon Reservoir near Grant	
	.52	Cypress Lake near Consul, Saskatchewan	
Unnamed Tributary of, SS No. 4, near Rimini 1	46	Eastend Reservoir at Eastend, Saskatchewan	
		Fort Peck Lake at Fort Peck	
Н		Huff Lake near Val Marie, Saskatchewan	
	2.	Newton Lake near Val Marie, Saskatchewan	
1 2	36	Sherburne, Lake, at Sherburne	
<i>'</i>	36	Lakeview, Red Rock Creek above Lakes, near	
	36	Land-surface datum, definition of	
	336	Landusky, Armells Creek near	
,	283	Duval Creek near	
, ,	312	Missouri River near	
	314	Rock Creek near	
J / 1	339	Latent heat flux, definition of	
1	338	Lavina, Musselshell River near	
, ,	.91	Light-attenuation coefficient, definition of	
•	226	Lipid, definition of	
,	224	Little Peoples Creek near Hays	
	225	Little Prickly Pear Creek at Wolf Creek	230
•	222	Lodge Creek basin, Saskatchewan, Schematic diagram of	317
	223		324
	295	Logan Gallatin River at	
8 ,	36	Logan, Gallatin River at Loma, Marias River near	
	36	Loma, Manas Kivei neal	268

	Page		Page
Long-term method detection level, definition of	37	Milk RiverContinued	
Low flow, 7-day 10-year, definition of	41	North Fork, above St. Mary Canal, near Browning	305
Low tide, definition of	37	South Fork, near Babb	303
		Milligrams per liter, definition of	38
M		Minimum reporting level, definition of	38
NA 1 (1 C' '4' C	27	Minnehaha Creek, above City diversion, near Rimini	218
Macrophytes, definition of	37	below Armstrong Mine, near Rimini	214
Madison River basin, gaging-station records in	168	Miscellaneous site, definition of	38
Madison River, above Powerplant, near McAllister	177	Missouri River basin, gaging-station records in	119
at Kirby Ranch, near Cameron	176 178	Missouri River, at Fort Benton	253
below Ennis Lake, near McAllister		at Toston	
below Hebgen Lake, near Grayling	175	at Virgelle	272
near West Yellowstone	174	below Fort Peck Dam	299
Many Glacier, Swiftcurrent Creek above Swiftcurrent Lake, at		below Hauser Dam, near Helena	226
Swiftcurrent Creek at	108 254	below Holter Dam, near Wolf Creek	227
Marias River basin, gaging-station records in	262	near Culbertson	384
·		near Great Falls	
near Loma	263	near Landusky	
near Shelby	260 282	near Ulm	238
Martinsdale, Musselshell River near		near Wolf Point	
McAllister, Madison River above Powerplant, nearbelow Ennis Lake, near	177	Monida, Red Rock River below Lima Reservoir, near	119
McKinnon Ditch near Consul, Saskatchewan	178 332	Monitor Creek, at mouth, near Rimini	
		SS12 near Rimini	
Mean concentration of suspended sediment, definition of	37	Moores Spring Creek at mouth, near Rimini	
Mean discharge, definition of	37 37	Mosby, Musselshell River at	
Mean high tide, definition of		Most probable number (MPN), definition of	
Mean low tide, definition of	37 37	Muddy Creek, at Vaughn	
Mean sea level, definition of	37	near Vaughn	
	380	Multiple-plate samplers, definition of	
Medicine Lake, Big Muddy Creek diversion canal near Megahertz, definition of	37	Musselshell River basin, gaging-station records in	
Melrose, Big Hole River near	134	Musselshell River, above Mud Creek, near Shawmut	285
Membrane filter, definition of	37	at Harlowton	
Merryflat, Saskatchewan, Gaff Ditch near	326	at Mosby	
Metamorphic stage, definition of	37	at Musselshell	
Method detection limit, definition of	37	near Lavina	
Method of Cubatures, definition of	37	near Martinsdale	
Methylene blue active substances, definition of	37	near Roundup	287
Micrograms, per gram, definition of	37	N	
per kilogram, definition of	37	N	
per liter, definition of	38	Nanograms per liter, definition of	38
Microsiemens per centimeter, definition of	38	Nashlyn Canal near Consul, Saskatchewan	
Middle Creek, above Lodge Creek, near Govenlock, Sask	323	Nashua, Milk River at	
below Middle Creek Reservoir, near Govenlock, Sask	321	National Geodetic Vertical Datum of 1929, definition of	
near Govenlock, Saskatchewan	322	Natural substrate, definition of	
near Saskatchewan boundary	320	Nekton, definition of	
Milk River basin, gaging-station records in	303	Nelson Creek near Van Norman	
Milk River, Alberta, Milk River at	307	Nephelometric turbidity unit, definition of	
Verdigris Coulee near the mouth, near	309	Newton Lake Main Canal, near Val Marie, Saskatchewan	
Milk River, at eastern crossing of international boundary	310	Newton Lake near Val Marie, Saskatchewan	
at Cree Crossing, near Saco	344	North American Datum of 1927, definition of	
at Havre	314	North American Datum of 1983, definition of	
at Juneberg Bridge, near Saco	354	North American Vertical Datum of 1988, definition of	
at Milk River, Alberta	307	North Milk River near international boundary	
at Nashua	359	Number system for wells and miscellaneous sites,	
at Tampico	358	explanation of	15
at western crossing of international boundary	304	Numbering system for wells and miscellaneous sites	
near Dodson	343	<i>5</i> ,	_
near Harlem	336		

395

	Page		Page
O		Redwater River at Circle	366
		Replicate samples, definition of	
Open or screened interval, definition of	38	Reservoirs (see Lakes and Reservoirs)	
Organic carbon, definition of	38	Return period, definition of	
Organic mass, definition of	38	Richardson Ditch near Consul, Saskatchewan	331
Organism count/area, definition of	38	Riffle, definition of	41
Total, definition	43	Rimini, Banner Creek at bridge, 0.5 mile above City	
Volume, definition of	38	diversion, near	202
Organochlorine compounds, definition of	39	Beattrice Mine tributary at mouth, near	216
Oxarat, Saskatchewan, Cypress Lake west inflow canal		Beaver Creek tributary No. 2, near	208
drain near	328	Grub Creek above mouth of Unnamed Tributary, near	152
D		Minnehaha Creek above City diversion, near	218
P		Minnehaha Creek below Armstrong Mine, near	214
Parameter Code, definition of	39	Monitor Creek at mouth, near	199
Partial-record station, definition of	39	Monitor Creek SS12, near	
Particle size, definition of	39	Moores Spring Creek at mouth, near	
Particle-size classification, definition of	39	Poison Creek at mouth, near	204
Peak flow, definition of	39	Ruby Creek near RC2A, above Scott Reservoir, near	201
Peoples Creek, below Kuhr Coulee, near Dodson	341	Tenmile Creek above City diversion, near	206
near Hays	338	Tenmile Creek above Monitor Creek, near	196
Percent composition, definition of	39	Tenmile Creek at Tenmile Water Treatment Plant, near .	221
Percent shading, definition of	39	Tenmile Creek below Spring Creek, at	
Periodic station, definition of	39	Tenmile Creek near	
Periphyton, definition of	39	Unnamed Tributary of Grub Creek, SS No. 4, near	146
Pesticides, definition of	39	Unnamed tributary to Grub Creek at mouth,	
pH, definition of	39	SS No. 6, near	
Phytoplankton, definition of	39	Unnamed tributary to Grub Creek, SS No. 5, near	
Fire algae, definition of	35	River mileage, definition of	41
Picocurie, definition of	39	Rock Creek	
Plankton, definition of	40	(tributary to Milk River), below Horse Creek, near	
Poison Creek at mouth, near Rimini	204	international boundary	
Polychlorinated biphenyls (PCB s), definition of	40	(tributary to Missouri River) near Landusky	
Polychlorinated naphthalenes, definition of	40	Rocky Boy, Beaver Creek at reservation boundary, near	
Pool, definition of	40	Big Sandy Creek at reservation boundary, near	
Poplar River basin, gaging-station records in	368	Roundup, Musselshell River near	
Poplar River, at international boundary	368	Willow Creek above LMGA Reservoir, near	
near Poplar	375	Willow Creek at U.S. Canal, near	
Poplar, Poplar River near	375	Ruby Creek RC2A, above Scott Reservoir, near Rimini	
Power, Lake Creek near	252	Ruby River basin, gaging-station records in	
Precipitation records, explanation of	22	Ruby River, above reservoir, near Alder	
Prickly Pear Creek near Clancy	192	below reservoir, near Alder	
Primary productivity, definition of	40	Run, definition of	
Carbon method, definition of	40	Runoff, definition of	41
Oxygen method, definition of	40	S	
Publications, Techniques of Water-Resources Investigations .	44	3	
_		Saco, Beaver Creek below Guston Coulee, near	355
Q		Milk River at Cree Crossing, near	344
Quality of atroomflow	12	Milk River at Juneberg Bridge, near	354
Quality of streamflow	12	Sand Creek near Dagmar	
R		Saskatchewan River basin, gaging-station records in	107
		Reservoir in	109
Radioisotopes, definition of	40	Sea level, definition of	
Reach, definition of	40	Sediment, definition of	41
Records, explanation of	15	Sensible heat flux, definition of	41
Recoverable, bottom material, definition of	40	Sevenmile Creek at mouth, near Helena	224
Recurrence interval, definition of	40	Shawmut, Musselshell River above Mud Creek, near	285
Red Rock Creek above Lakes, near Lakeview	118	Shelby, Marias River near	260
Red Rock River below Lima Reservoir, near Monida	119	Shelves, definition of	41

INDEX

	Page		Page
Sherburne, Lake Sherburne at	109	Tenmile Creek, above City diversion, near Rimini	206
Swiftcurrent Creek at	110	above Monitor Creek, near Rimini	196
Simms, Sun River at	240	at Green Meadow Drive, at Helena	225
Smith River below Eagle Creek, near Fort Logan	235	at Tenmile Water Treatment Plant, near Rimini	221
Sodium adsorption ratio, definition of	41	below Colorado Gulch, near Helena	222
Soil heat flux, definition of	41	below Spring Creek, at Rimini	210
Soil-water content, definition of	41	near Helena	223
Spangler Ditch near Govenlock, Saskatchewan	319	near Rimini	220
Special networks and programs	16	Well 08N06W24DDCD01	195
Specific conductance, definition of	41	Well 08N06W24DDCD02	194
St. Mary River and upper Milk River basin, schematic		Terms, definition of	31
diagram of	113	Teton River at Loma	268
St. Mary Canal, at Intake, near Babb	114	below South Fork, near Choteau	264
at St. Mary Crossing, near Babb	115	near Dutton	266
St. Mary River, at international boundary	116	Thalweg, definition of	43
near Babb	112	Thermograph, definition of	43
Stable isotope ratio, definition of	41	Three Forks, Jefferson River near	164
Stage (see gage height)	41	Time-weighted average, definition of	43
Stage-discharge relation, definition of	41	Tons per acre-foot, definition of	43
Station manuscript, stage- and water-discharge records,		Tons per day, definition of	43
explanation of	19	Toston, Missouri River at	187
Station number, explanation of	15	Total coliform bacteria, definition of	43
Streamflow, definition of	41	Total discharge, definition of	43
Hydrologic conditions of	7	Total length, definition of	43
Quality of	12	Total load, definition of	43
Substrate embeddedness class, definition of	41	Total organism count, definition of	43
Substrate, definition of	41	Total recoverable, definition of	43
Artificial, definition of	32	Total sediment discharge, definition of	43
Natural substrate, definition of	38	Total sediment load, definition of	43
Summary of hydrologic conditions	5	Total, bottom material, definition of	43
Sun River basin, gaging-station records in	240	Total, definition of	43
schematic diagram of	239	Transect, definition of	44
Sun River, at Simms	240	Turbidity, definition of	44
near Vaughn	246	Twin Bridges, Beaverhead River near	124
Surface area, definition of	42	Jefferson River near	138
Surface water, hydrologic conditions of	7	Two Medicine River below South Fork, near Browning	254
Surface-water-quality records	23	TWRI (Techniques of Water-Resources Investigations), list of	44
Surficial bed material, definition of	42		
Surrogate, definition of	42	U	
Suspended sediment, definition of	42		
Suspended solids, total residue at 105 °C concentration,		Ulm, Missouri River near	238
definition of	42	Ultraviolet (UV) absorbance (absorption), definition of	44
Suspended, definition of	42	Uncle Sam Gulch at mouth, near Basin	160
Recoverable, definition of	42	Unconfined aquifer, definition of	44
Total, definition of	42	Unnamed tributary to Grub Creek, SS No. 4, near Rimini	146
Suspended-sediment concentration, definition of	42	at mouth, SS No. 6, near Rimini	150
Suspended-sediment discharge, definition of	42	SS No. 5, near Rimini	148
Suspended-sediment load, definition of	42	V	
Swiftcurrent Creek, above Swiftcurrent Lake, at Many Glacier	107	V	
at Many Glacier	108	Val Marie, Sask., Huff Lake gravity canal near	349
at Sherburne	110	Huff Lake pumping canal near	348
Synoptic studies, definition of	42	Newton Lake Main Canal near	350
• • •		Van Norman, Big Dry Creek near	296
T		Nelson Creek near	290
			243
Tampico, Milk River at	358	Vaughn, Muddy Creek at	243
Taxa (Species) richness, definition of	42	Muddy Creek near Sun River near	241
Taxonomy, definition of	42	Suii Kivei iieai	∠ 4 0

INDEX

397

Page

	Page
Verdigris Coulee near the mouth, near Milk River, Alberta	309
Vertical datum, definition of	44
Vidora Ditch near Consul, Saskatchewan	330
Vidora, Saskatchewan, Belanger Creek diversion canal near .	345
Cypress Lake east outflow canal near	346
Virgelle, Missouri River at	272
Volatile organic compounds, definition of	44
compounds, assume of minimum	
W	
Water table, definition of	44
Water year, definition of	44
Water-quality records, explanation of	23
Water-table aquifer, definition of	44
WDR, definition of	44
Weighted average, definition of	44
West Plains, Saskatchewan, Cypress Lake west inflow	
canal near	327
Cypress Lake west outflow canal near	329
West Yellowstone, Firehole River near	168
West Yellowstone, Madison River near	174
Wet mass, definition of	44
Wet weight, definition of	44
Willow Creek (tributary to Musselshell River) above LMGA	
Reservoir, near Roundup	288
at U.S. Canal, near Roundup	289
Winifred, Judith River near mouth, near	273
Wisdom, Big Hole River below Big Lake Creek, at	130
Big Hole River below Mudd Creek, near	133
Wolf Creek, Little Prickly Pear Creek at	230
Missouri River below Holter Dam, near	227
Wolf Point, Missouri River near	362
WSP, definition of	44
,	•
Y	
Yellowstone National Park, Gibbon River at Madison Junction	171
Z	
Zooplankton, definition of	44

Conversion Factors

Multiply	Ву	To obtain
	Length	
inch (in.)	2.54×10^{1}	millimeter (mm)
	2.54×10^{-2}	meter
foot (ft)	3.048×10^{-1}	meter (m)
mile (mi)	1.609×10^0	kilometer (km)
	Area	
		2
acre	4.047×10^3	square meter (m ²)
	4.047×10^{-1}	square hectometer (hm²)
	4.047×10^{-3}	square kilometer (km ²)
square mile (mi ²)	2.590×10^{0}	square kilometer (km ²)
	Volume	
gallon (gal)	3.785×10^{0}	liter (L)
	3.785×10^{-3}	cubic meter (m ³)
	3.785×10^{0}	cubic decimeter (dm ³)
million gallons (Mgal)	3.785×10^3	cubic meter (m ³)
	3.785×10^{-3}	cubic hectometer (hm ³)
cubic foot (ft ³)	2.832×10^{-2}	cubic meter (m ³)
. ,	2.832×10^{1}	cubic decimeter (dm ³)
cubic-foot-per-second-per-day		, ,
$[(ft^3/s/d]$	2.447×10^3	cubic meter (m ³)
	2.447×10^{-3}	cubic hectometer (hm ³)
acre-foot (acre-ft)	1.223×10^3	cubic meter (m ³)
	1.223×10^{-3}	cubic hectometer (hm ³)
	1.223×10^{-6}	cubic kilometer (km ³)
	Flow rate	
cubic foot per second (ft ³ /s)	2.832×10^{1}	liter (L/s)
• • •	2.832×10^{-2}	cubic meter per second (m ³ /s)
	2.832×10^{1}	cubic decimeter per second (dm ³ /s)
gallon per minute (gal/min)	6.309×10^{-2}	liter per second (L/s)
	6.309×10^{-5}	cubic meter per second (m ³ /s)
	6.309×10^{-2}	cubic decimeter per second (dm ³ /s)
million gallons per day (Mgal/d)	4.381x10 ⁻²	cubic meter per second
	$4.381x10^{1}$	cubic decimeter per second (dm ³ /s)
	Mass	
ton, short (2,000 lb)	9.072x10 ⁻¹	megagram (Mg) or metric ton
	Water Temperature	
degrees Celsius (°C)	°F = (1.8 x °C) + 32	degrees Fahrenheit (°F)