Earth Observatory Home NASA Earth Observatory Home Data and Images Features News Reference Missions Experiments Search
NASA's Earth Observatory
 Earth Observatory Navigation Bar
Turn glossary mode on Reference

  Carbon Cycle Fact Sheet
 

The Human Role
In addition to the natural fluxes of carbon through the Earth system, anthropogenic (human) activities, particularly fossil fuel burning and deforestation, are also releasing carbon dioxide into the atmosphere. When we mine coal and extract oil from the Earth’s crust, and then burn these fossil fuels for transportation, heating, cooking, electricity, and manufacturing, we are effectively moving carbon more rapidly into the atmosphere than is being removed naturally through the sedimentation of carbon, ultimately causing atmospheric carbon dioxide concentrations to increase. Also, by clearing forests to support agriculture, we are transferring carbon from living biomass into the atmosphere (dry wood is about 50 percent carbon). The result is that humans are adding ever-increasing amounts of extra carbon dioxide into the atmosphere. Because of this, atmospheric carbon dioxide concentrations are higher today than they have been over the last half-million years or longer.
 

 

pullquote

The Carbon Cycle

Introduction
Biological/Physical Carbon Cycle: Photosynthesis and Respiration
Carbon on the Land and in the Oceans: The modern carbon cycle
The Human Role
NASA Missions to Study the Global Carbon Cycle and Climate
References

Long Term Carbon Dioxide Graph

The long-term record of atmospheric carbon dioxide obtained from Antarctic ice cores shows huge fluctuations over the past 150,000 years. Periods of low carbon dioxide concentration correspond to ice ages, while higher carbon dioxide concentrations are linked to warmer periods. The last ice age ended 10,000 to 20,000 years ago, as carbon dioxide levels rose from below 200 parts per million to about 280 parts per million. Current atmospheric carbon dioxide levels are above 370 parts per million because of the burning of fossil fuels. This has raised concern in the scientific community that average global temperatures may rise as a result. (Graph by Robert Simmon, based on data from Lorius, C., J. Jouzel, C. Ritz, L. Merlivat, N.I. Barkov, Y.S. Korotkevitch, and V.M. Kotlyakov. 1995. A 150,000-year climatic record from Antarctic ice. Nature 316:591-596.)

Not all of the carbon dioxide that has been emitted by human activities remains in the atmosphere. The oceans have absorbed some of it because as the carbon dioxide in the atmosphere increases it drives diffusion of carbon dioxide into the oceans. However, when we try to account for sources and sinks for carbon dioxide in the atmosphere we uncover some mysteries. For example, notice in Figure 1 (schematic of the carbon cycle) that fossil fuel burning releases roughly 5.5 gigatons of carbon (GtC [giga=1 billion]) per year into the atmosphere and that land-use changes such as deforestation contribute roughly 1.6 GtC per year. Measurements of atmospheric carbon dioxide levels (going on since 1957) suggest that of the approximate total amount of 7.1 GtC released per year by human activities, approximately 3.2 GtC remain in the atmosphere, resulting in an increase in atmospheric carbon dioxide. In addition, approximately 2 GtC diffuses into the world’s oceans, thus leaving 1.9 GtC unaccounted for.
 

 

Carbon Cycle Digram
 

 

What happens to the leftover 1.9 GtC? Scientists don’t know for sure, but evidence points to the land surface. However, at this time, scientists do not agree on which processes dominate, or in what regions of the Earth this missing carbon flux occurs. Several scenarios could cause the land to take up more carbon dioxide than is released each year. For example, re-growth of forests since the massive deforestation in the Northern Hemisphere over the last century could account for some of the missing carbon while changing climate could also contribute to greater uptake than release. The missing carbon problem illustrates the complexity of biogeochemical cycles, especially those in which living organisms play an important role. It is critically important that we understand the processes that control these sources and sinks so that we can predict their behavior in the future. Will these sinks continue to help soak up the carbon dioxide that we are producing? Or will they stop or even reverse and aggravate the atmospheric increases? With the use of satellites and field studies, NASA scientists will help to obtain crucial information on the carbon cycle.

next: NASA Missions to Study the Global Carbon Cycle and Climate
back: Carbon on the Land and in the Oceans: The modern carbon cycle

  In any given year, tens of billions of tons of carbon move between the atmosphere, hydrosphere, and geosphere. Human activities add about 5.5 billion tons per year of carbon dioxide to the atmosphere. The illustration above shows total amounts of stored carbon in black, and annual carbon fluxes in purple. (Illustration courtesy NASA Earth Science Enterprise)

   
Subscribe to the Earth Observatory
About the Earth Observatory
Contact Us
Privacy Policy and Important Notices
Responsible NASA Official: Lorraine A. Remer
Webmaster: Goran Halusa
We're a part of the Science Mission Directorate
  View Printable Format of Full Article