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Abstract

Kriging is a widely accepted method for interpolating and estimating
elevations from digital elevation data. Its place of prominence is due
to its elegant theoretical and practical properties. From an interpo-
lation point of view, kriging is equivalent to a thin-plate spline and
is just one species among the many in the genus of weighted inverse
distance methods, albeit with attractive properties. However, from a
statistical point of view, kriging is a best linear unbiased estimator and,
consequently, has a place of distinction among all spatial estimators be-
cause any other estimator that performs as well as kriging (in the least
squares sense) must be equivalent to kriging. Therefore, kriging is held
by many to be the gold standard of digital terrain model (DTM) ele-
vation interpolation. Even so, as used for DTM interpolation, kriging
has an undesirable property that has not been previously documented.
Kriging produces discontinuous surfaces along the boundaries of in-
terpolation patches. This paper documents the situation, explains its
source, provides bounds on the discontinuity, and provides real-world
examples from a digital elevation model of mountainous terrain in cen-
tral New Mexico.

Keywords: kriging, discontinuity, digital terrain modeling, spatial in-
terpolation.

INTRODUCTION

Kriging (Matheron, 1963) is a popular technique for interpolating and esti-
mating elevation values from digital terrain data. General references on the
subject are (Journal and Huijbregts, 1978; David, 1977; Lam, 1983; Isaaks
and Srivastava, 1989; Goovaerts, 1997). Bailey (1994) asserts that “there is
an argument for kriging to be adopted as a basic method of surface interpola-
tion in GIS as opposed to the standard deterministic tessellation techniques
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which currently prevail and which can produce artificially smooth surfaces.”
This argument was supported by Laslett (1994) whose study gives an exam-
ple of a data set for which certain splines are “too smooth,” whereas kriging
produced more precise estimations. Declercq (1996) compared polynomials,
splines, linear triangulation, proximation, distance weighting, and kriging
to test their efficacy to visualize spatial patterns in addition to their perfor-
mance in predicting unvisited sample locations. Kriging performed among
the best in both categories. Katzil and Doytsher (2000) found third-order
polynomials to perform comparably with kriging but they did not have either
the need to compute a variogram or kriging’s complicated matrix computa-
tions. Yang and Hodler (2000) found that kriging outperformed four other
interpolation techniques in preserving the visual character of digital ter-
rain models. Regarding the “spline vs. kriging” debate, it has been shown
(Kimeldorf and Wahba, 1971; Wahba, 1990) that kriging is mathematically
equivalent to thin plate splines. Almansa and others (2002) established
kriging’s place in a more general class of functions, namely, the absolutely
minimizing Lipschitz extension. Although kriging is not without its critics
(Philip and Watson, 1986), there is no question that its use is widespread.

The properties of any mathematical surface being used as a terrain model
define the properties imbued to the model. The onus is on the modeler to
choose the surface model wisely to properly match the properties of the
surface with the desired traits of the terrain. Continuity properties are of
paramount importance. Discontinuous surfaces have “holes” or “tears” in
them, so to speak. A continuous surfaces might not be smooth, meaning
that the surface might have “creases” in it, such as with a triangulated irreg-
ular network (TIN). It is important to catalogue surface model continuity
properties and this paper establishes these properties for kriging interpola-
tion.

Surface Models

In their seminal work, Miller and LaFlamme (1958) suggested, “The digital
terrain model (DTM) is simply a statistical representation of the continuous
surface of the ground by a large number of selected points with known zyz
coordinates in an arbitrary coordinate field.” A DTM was envisioned to
be a set of height samples, that is to say, a set of points. We will denote
this set of sample locations by s = {(z;,¥;)} and denote the set of heights
measured at those locations by h = {z(x;,y;) | (zi,y;) € s}. Miller goes
on to say, “Just as the engineer must interpolate on the topographic map,
the computer will have to interpolate with the DTM.” The mathematical
scheme used for this interpolation is what we call a surface model. We
formally define a surface model to be a real-valued function of two variables,
f:p€ER?— R, or z= f(z,y), where R denotes the set of reals.

Some surface models are defined upon all the sample points in s. Ex-
amples include Lagrange polynomials, Fourier transformations, and kriging.
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Such functions are said to have global support, meaning that every point
in s contributes to the formulation of f. Global support is generally not
desirable for digital terrain modeling for several reasons. Global support
imposes relatively heavy computational burdens, especially for large data
sets. Also, it has the counter-intuitive property that, for certain techniques
such as Lagrange polynomials, making a small change in any particular
sample can produce large changes over the entire surface. This runs con-
trary to Tobler’s Law of Geography, that everything is related to everything,
but closer things are more related. Also, polynomial global support surface
models that interpolate all the points in s must be of an order equal to the
cardinality of s, or greater. This can produce unwanted behaviors such as
extreme surface departures and unrealistic undulations.

Although kriging is defined with global support, in practice, it is not
typically used that way for terrain modeling. Instead, s is subdivided
into neighborhoods, being subsets of s with relatively few elements that
roughly (or strictly) partition s. Then, kriging is used to interpolate over
these neighborhoods in the following way. Suppose we want to interpolate
a surface value at the point p = (z,y) and p € s. Let n; denote a neigh-
borhood containing p. Then, the height estimate at p is a weighted sum
of the heights of the points in n;. The weights are related inversely to the
distance from the sample to p in such a way that minimizes the variance of
the estimate. The surface produced over a neighborhood is called a patch.

There are several heuristics for choosing neighborhoods for a point of
interest (e.g., Isaaks and Srivastava, 1989, p. 338). Some of the heuristics
include using all samples within some circle or ellipse enclosing p, using all
samples within some convex polygon enclosing p, using a limited number
of samples from the four quadrants enclosing p, or using Voronoi nearest
neighbors.

Continuity

Although the physical surface of the Earth is arguably not mathematically
continuous (Meyer, 1999), it is generally modeled as if it were. The Earth’s
surface is seen as being piece-wise continuous, meaning that, on the whole,
the surface is continuous but it is possible that there are local discontinu-
ities such as knick points and cliffs. Consequently, piece-wise continuity is
commonly considered a desirable property in terrain surface models.

Any surface model that is based on polynomials (i.e., not a fractal) will
be smooth within a patch. This is a direct consequence of the infinite dif-
ferentiability of polynomials. However, the piece-wise continuity of surface
patches cannot be taken for granted. There is a huge body of literature in the
Computer Aided Geometric Design (CAGD) community devoted to creating
piece-wise continuous surfaces of various orders with first and second order
being the most common (e.g., see Lancaster and Salkauskas (1986); Farin
(1993, 1995); Dierckx (1995)). These patches are smooth in their interiors
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Figure 1: DEM of the Sandia Mountains in north-central New Mexico.

and form, say, a first-order continuous surface on the whole. The remain-
der of the paper will document that kriging creates a zero-order, piecewise
continuous surface model.

Kriging Continuity

The equivalence of kriging and thin—plate splines guarantees that, within a
patch, kriging produces a continuous surface. The question then becomes
what continuity can be expected along the border between two neighbor-
hoods?

Claim: When used with local support, kriging is in the class of piecewise,
zero-order continuous surfaces.

Proof: To establish the claim, it suffices to produce a single example. The
proof proceeds as follows.

1

2.

Choose a sample height data set.

Subdivide the data set into neighborhoods.

. Select a border between two abutting neighborhoods.

Interpolate the border twice, once for each neighborhood.

. If the two interpolated borders differ in elevation, then kriging is dis-

continuous along the border.
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Figure 2: The topographic data set.

The data set and its covariance function

The topographic data set comes from the the Sandia Mountains of north—
central New Mexico, see Fig. 1. This DEM was chosen because of the wide
variety of topography within a single DEM, from flat tails of alluvial planes
to sheer cliffs. These mountains, although quite rugged, are not remote in
the sense that Albuquerque, New Mexico, is built up to and around them.
Therefore, surveyors can encounter terrain of this type in their work.

The data for this proof comes from the foothills of these mountains, see
Fig. 2. The site is located in UTM zone 13 with corner coordinates (364140,
n3900690) and (e364980, n3901590) and measures 840 meters east to west
and 810 meters north to south. The corners and extent of the site were
chosen to coincide with elevations available in the USGS Sandia Crest 7%
minute digital elevation model of the area.

The omni-directional variogram of the data set was computed using
relational database queries as described in (Maggio and others, 1997). The
result is shown in Fig. 3. There is no discernable anisotropy for distances
less than two hundred meters, a distance greater than the largest nearest
neighbor distance. Therefore, the omni—directional variogram was judged to
be an adequate model and no directional variograms were computed. The
variogram was deemed to be Gaussian and, thus, be of the form

y(h) =1 — e/,

where h is the lag distance and a is the practical range. In this case, a was
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Figure 3: The omni-directional variogram and its least squares model.

Figure 4: The Voronoi diagram for the study area. Individual sample points
are indicated by numbers. The polygons are subregions of R such that every
point in a polygon corresponds to the same interpolation neighborhood.
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Figure 5: The border as interpolated with the nearest neighbors of point 6.

chosen to be 500 meters. A least squares fit yielded the model
y(h) = 3219.67 (1 _ 673112/250000) .

The model and the data are depicted in Fig. 3.
By assuming stationarity, the covariance function is related to the vari-
ogram by

cou(h) = o — y(h), 1)

where o2 is the variance of the data set and has a value of 2352.829 m?2.

Patches

Having created a covariance function with which to krige, the next task
was to tessellate the region into neighborhoods. It was decided to create
neighborhoods using Voronoi nearest neighbors. This choice is arbitrary;
any other neighborhood scheme would confirm the claim. Twenty easting,
northing pairs were generated randomly from a uniform distribution. These
pairs were constrained to fall within the study area. Figure 4 shows the
points and the Voronoi diagram of the points.

Proof by example

Consider the border between the polygons generated by points 6 and 10.
The nearest neighbors of point 6 are {10,9,4,5,12}. The nearest neighbors
of point 10 are {6,12,16,17,9}. The two Voronoi vertices defining the com-
mon border between points 6 and 10 are (285.4, 466.7) and (320.5, 261.3).
The border between the polygons was defined by kriging the surface at 100
points distributed evenly between these two Voronoi vertices. The ordinary
kriging was done using Mathematica v3.0 by constructing the matrices and
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Figure 6: The border as interpolated with the nearest neighbors of point 10.
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Figure 7: The difference of the two interpolated borders. Any value not
equal to zero indicates a discontinuity.

computing their inverses. However, the other types (universal kriging, krig-
ing with a trend, block kriging, and cokriging) have the same basic structure
and the argument applies equally to them, as well.

The results are shown in Fig. 5 and 6. The visual similarity of the
two borders confirms that the interpolation is working correctly; one could
expect them to be very similar. However, the difference of the interpolated
values shown in Fig. 7 clearly depicts the discontinuity. The discontinuity
ranges in value from 3.08 meters to -1.72 meters. This completes the proof.

Causes

The source of the discontinuity comes from the observation that the border
is being interpolated via two different covariance matrices. The matrices
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Gap (m) | Count
0-1 206939
1-2 102100
2-3 13383
3-4 3449
4-5 1047
5-6 450
6-7 228
7-8 132
8-9 85

9-10 49
10-11 40
11-12 20
12-13 15
13-14 17
14-15 )
15-16 8
16-17 2
17-18 1
18-19 1
19-20 1

Table 1: Distribution of Discontinuity Magnitude (m).
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are different because the interpolation neighborhoods are different. If the
samples are not reflective symmetric, then there is no reason to expect the
patches to match on their borders. Therefore, this is a completely general
result; it is not specific to the chosen data set.

This property of polynomial surfaces is essentially why CAGD exists.
Global support has long been known to be undesirable for reasons listed
above. These drawbacks lead to using piecewise curves and surfaces that
have local support. However, it is usually desirable to have surface-wide con-
tinuity of first or second order. If the piecewise curves are not constructed
to be continuous, in general, they will not be (de Boor, 1978). The cen-
tral theme of CAGD is to develop piecewise curves and surfaces that enjoy
continuity across their borders, in addition to other properties as well.

Examination of a DEM

To explore the range of possible discontinuities further, the entire Sandia
Crest DEM was analyzed in the manner described above. That is to say,
random points were generated to cover the entire DEM and the borders
between all adjacent neighborhoods were interpolated. This resulted in the
analysis of 327972 borders. 94.2% of the borders had a maximum absolute
discontinuity (gap) of one meter or less. The maximum gap observed was
19.48 meters. The average maximum gap was 0.54 meters with a standard
deviation of 0.62 meters. See Table 1.

We observed a correlation between slope and increasing discontinuity
size so we grouped the tests by slope and created histograms of the discon-
tinuity size. Slope was computed using a technique specifically designed for
irregularly spaced data (Meyer and others, 2001). The gaps were grouped
by slope. Table 2 shows the distributions of the gaps for four particular
slope values. For 0°, meaning flat ground for both neighborhoods, 86% of
the gaps are between zero and one meter in magnitude, with the overall
shape of the distribution appearing to be a decreasing exponential. Inter-
estingly, there was a single instance in which flat ground produced a nine
meter gap. We next show the results for the next slope group, those less than
3.75°. Again, the distribution appearing to be a decreasing exponential. We
skip to the results for 49.7°. Notice that the distribution now appears to
be lognormal with a mean around 3 meters. Finally, the distribution for
the steepest sloped neighborhoods has very few samples but appears to be
roughly uniform.

Conclusions and Discussion

We note several trends in the gap distributions. Overall, the distributions
of the gaps appear to be lognormal. Next, the average gap size steadily
increases with slope. Third, the variability of gap size increases with slope.
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(m) | 0° | 3.75° | 49.7° | 52.7°

0 | 1901 | 38765 | 1

1 | 288 | 3644 | 7

2 | 9 89 18 2
3 | 5 12 13 1
4 4 14 2
5 2 12 4
6 7 1
7 7

8 3

9 | 1 4

10 3

11 0

12 2

13

14

15 3

16

17 1

18

19

20 1

Table 2: Slope (degrees) vs. Discontinuity Magnitude (m).
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This suggests that kriging with a trend might perform better than the ordi-
nary kriging used in this study because kriging with a trend removes trends
(slope) in the data, which can arguably be violating the stationarity assump-
tion upon which kriging is based. This is a subject for future research.

The ramifications of this discontinuity depend largely upon the needs
of the user. Discontinuities such as the one presently above will be clearly
visible on high—accuracy topographic maps. Survey maps frequently have
one—foot contour lines and discrepancies of three meters will be significant.
In contrast, these data were taken from a digital elevation model developed
from a map with 40 foot contour lines. These discontinuities do not compro-
mise such a map’s conformance with the National Map Accuracy Standards
and, therefore, could be ignored in its compilation.
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