Skip to main content
NIH Clinical Center
  Home | Contact Us | Site Map | Search
About the Clinical Center
For Researchers and Physicians
Participate in Clinical Studies

Back to: About the Clinical Center > Departments and Services > Radiology & Imaging Sciences Home > Interventional Radiology > RadioFrequency Ablation (RFA)
Radiology and Imaging Sciences
RadioFrequency Ablation Background

Neoplastic disease has traditionally been approached either systemically with chemotherapy, or locally with surgery or radiotherapy. Recent advancements in minimally invasive radiofrequency hyperthermia are adding another tool to the anti-neoplastic arsenal. Thermal ablation has been studied in the form of microwave, laser, high intensity focused ultrasound, and cryotherapy. Radiofrequency ablation (RFA) has emerged as a safe, easy, and predictable technology for thermal ablation in the bone, lung, liver (see protocol #99-C-0025, "The Use of Radiofrequency Ablation to Treat Hepatic Neoplasms"), kidney (see protocol #99-C-0170, "A Phase II Study to Evaluate Radiofrequency Ablation of Renal Cancer"), prostate, breast, lymph nodes, nerve ganglia, and soft tissue. RFA is also being used to treat pain from soft tissue neoplasms (see protocol #02-CC-0244 "“Radiofrequency Ablation of Painful Soft Tissue Neoplasm"). Heat has been used to stop bleeding or to kill tumors for a long time. Until recently, however, this method had limited utility because not enough volume of tissue or tumor could be safely heated. This is why RFA is being combined with other therapies like radiation, chemotherapy, chemoembolization, and heat activated drug delivery (see protocol #04-C-0263 "A Phase 1 Dose Escalation Study of Heat Activated Liposome Delivery of Doxorubicin and Radiofrequency Ablation of Primary and Metastatic Tumors of the Liver"). We are also studying new technologies for tissue destruction and drug delivery such as focused ultrasound, microwave, and cryoablation.

Interventional Radiology Suite of the Future. the image guided oncology suite, the operating room of the future.

Radiology is developing and deploying a unique and novel combination of imaging, therapeutic and navigation technologies which together make up the Multimodality Interventional Radiology Suite of the Future. This suite combines rotational flat detector angiography, multidetector CT, stereotactic automated robotic needle placement, electromagnetic tracking for device navigation, stereotactic ultrasound, stereotactic focused ultrasound, and 4-dimensional visualization on an orb with 100 million voxel display. All technologies and modalities are seamlessly integrated and registered with electromagnetic tracking, computer software, stereotactic mechanical frames, or the common table top transfer mechanism. See links below for more information:



This page last reviewed on 08/12/08



National Institutes
of Health
  Department of Health
and Human Services
 
NIH Clinical Center National Institutes of Health