November 1998

Volume 3 of 3 Appendices

Sheboygan River and Harbor

Aquatic Ecological Risk Assessment

Prepared for:

United States Environmental Protection Agency

Chicago, Illinois

Prepared by:

ENVIRONMENT

Seattle, Washington

National Oceanic and Atmospheric Administration

Seattle, Washington

AQUATIC ECOLOGICAL RISK ASSESSMENT

Volume 3 of 3 Appendices

Prepared for

United States Environmental Protection Agency, Region 5 77 West Jackson Blvd. Chicago, IL 60604

Prepared by

National Oceanic and Atmospheric Administration 7600 Sand Point Way NE Seattle, WA 98115 and EVS Environment Consultants, Inc. 200 West Mercer Street, Suite 403 Seattle, WA 98119

EVS Project No.

2/575-37, 2/789-10

NOVEMBER 1998

VOLUME 3 OF 3

APPENDIX A

Analytical Data

- A-1 1997 Ecological Risk Assessment Results
- A-2 Quality Assurance Review Summaries, Chemical Analyses of Sediment and Fish Tissue Samples
- A-3 WDNR Food Chain Study Results

APPENDIX B

Toxic Equivalent Calculations

- *B-1* Toxic Equivalent Concentrations for Fish
- **B-2** Toxic Equivalent Concentrations for Birds
- **B-3** Toxic Equivalent Concentrations for Mammals

APPENDIX C

Laboratory Report, Freshwater Sediment Toxicity Testing Program

APPENDIX D

Benthic Community Data

APPENDIX E

Life History of Limnodrilus hoffmeisteri and L. cervix

APPENDIX F

Parameterization of the Time-Dependent Food Web Bioaccumulation Model

APPENDIX G

Impacts on Lake Michigan Salmonids

APPENDIX H

Recommendations for Long-Term Monitoring

APPENDIX I

Analytical Methods

APPENDIX J

Taxonomic Methods

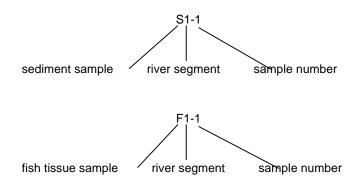
APPENDIX A

Analytical Data

APPENDIX A-1

1997 Ecological Risk Assessment Results

Table A1-1.	Results of the metal analyses of sediment samples collected in August 1997
Table A1-2.	Results of the PCB and pesticide analyses of sediment samples collected in August 1997
Table A1-3.	Results of the PAH analyses of sediment samples collected in August 1997
Table A1-4.	Results of the conventional parameter analyses of sediment samples collected in August 1997
Table A1-5.	Results of the SEM/AVS analyses of sediment samples collected in August 1997
Table A1-6.	Results of the PCB congener analyses of sediment samples collected in August 1997
Table A1-7.	Results of the PCB congener analyses of juvenile smallmouth bass tissue samples collected in August 1997


APPENDIX A-1 DEFINITION OF TERMS

Definition of qualifiers

- > sample over linear range of method
- D diluted sample
- J estimated value above detection limit below the quantitation limit
- L labeled compound
- R peak detected but did not meet quantification criteria
- U undetected
- Y raised detection limit due to interference

1997 ERA sample identification

T01 through T20 - sediment quality triad stations; FD indicates a field duplicate

	Arsenic	_	Cadmium		Chromium		Copper		Lead	_	Mercury	_	Nickel		Silver		Zinc	
	Conc	Q																
	(mg/kg dw)		(mg/kg dw)		(mg/kg dw)		(mg/kg dw)		(mg/kg dw)		(mg/kg dw)		(mg/kg dw)		(mg/kg dw)		(mg/kg dw)	—
Station																		1
T01	0.9		0.05		7		4.4		4		0.02		5		0.03		14.8	
T02	1.4		0.23		18		15.1		13		0.08		11		0.05	U	46.2	
T03	0.8		0.06		9		6.5		5		0.01		6		0.03	U	17.4	
T04	1.9		0.25		18		16.6		16		0.08		11		0.04	U	60	
T07	2.4		0.47		78.6		29.1		47		0.2		15		0.25		96.1	
T08	1		0.19		12.5		11.7		12		0.04		7		0.03	U	38.8	
T09	0.9		0.12		16.8		25.1		32		0.03		8		0.03		44.1	
T10	2.4		0.41		33		36		36		0.08		19		0.05	U	98.2	
T10-FD	2.5		0.39		32		35.3		35		0.09		18		0.05	U	96.3	
T11	1.7		0.33		21.5		32		47		0.04		11		0.04		81.4	
T11-FD	2.1		0.28		21.8		32		44		0.06		11		0.04	U	86.3	
T12	0.8		0.13		13.4		16.3		21		0.03		8		0.03	U	39.5	
T13	1.9		0.7		28.4		29		128		0.07		14		0.05		94.4	
T14	1.9		0.46		26		29.6		49		0.06		12		0.05		93.2	
T15	2.1		0.42		28		34.2		45		0.08		16		0.05		99	
T16	2.2		0.48		30		35.4		49		0.08		18		0.06		111	
T17	1.3		0.21		16.5		18.6		23		0.04		9		0.03		52.5	
T18	2		0.36		27		30.9		34		0.07		15		0.05		89.9	
T19	2		0.34		25		28.3		48		0.07		15		0.04	U	87.2	
T20	2.8		0.47		36		37		37		0.1		19		0.06	U	112	

	Chlordane - alpha	Chlordane - gamma	gamma-HCH (Lindane)	Dibenzofuran	Dieldrin	Endrin
Station	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
T01	1 U	1 U	1 U	5.8 U	1.9 U	1.9 U
T02	1 U	1 U	1 U	5.8 U	1.9 U	1.9 U
T03	1 U	1 U	1 U	5.9 U	2 U	2 U
T04	1 U	1 U	1 U	6 U	2 U	2 U
T07	310 Y	1000 Y	81 U	5.8 U	160 U	160 U
T08	4.9 Y	31 Y	0.9 U	5.7 U	12 Y	7 Y
T09	0.8 Y	7.1 Y	0.7 U	12	4.8 Y	2.3 Y
T10	1 U	5.8 Y	1 U	5.8 U	3 Y	1.9 U
T10-FD	1 U	6 Y	1 U	6 U	3.6 Y	2 U
T11	1 U	5.9 Y	1 U	26	2.6 Y	1.9 U
T11-FD	0.9 U	5.5 Y	0.9 U	27	3.3 Y	1.9 U
T12	1 U	5.3 Y	1 U	18	2.4 Y	1.9 U
T13	1 U	9 Y	1 U	18	5.2 Y	3 Y
T14	1 U	9.6 Y	1 U	24	5.8	2.7 Y
T15	1 U	8.6 Y	1 U	12	5 Y	2.6 Y
T16	1 U	9.9 Y	1 U	15	5.4 Y	2.8 Y
T17	1 U	10 Y	1 U	10	5.8 Y	3 Y
T18	1 U	9.5 Y	1 U	8.9	5.4 Y	3.2 Y
T19	1 U	9.3 Y	1 U	31	5.2 Y	2.6 Y
T20	1 U	8.7 Y	1 U	8.3	4.2 Y	2.1 Y

All concentrations are in ug/kg, dry weight. HCH - Hexachlorocyclohexane-gamma (Lindane)

	Heptachlor e	epoxide Aroc	lor 1016	Arocio	or 1221	Aroclor	1232	Arocio	or 1242	Aroclor '	248
Station	Conc	Q Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
T01	1 U	1	9 U	39	U	19 l	J	19	U	19 U	
T02	1 U	1	9 U	39	U	19 l	J	19	U	19 U	
T03	1 U	1	9 U	39	U	19 l	J	19	U	19 U	
T04	1 U	2	0 U	40	U	20 l	J	20	U	20 U	
T07	81 U	160	0 U	3300	U	750000 [)	1600	U	1600 U	
T08	21 Y	1	9 U	38	U	19 l	J	920		19 U	
T09	5.5 Y	1	5 U	30	U	15 l	J	78		15 U	
T10	4.9 Y	1	9 U	38	U	19 l	J	71		19 U	
T10-FD	5.2 Y	2	0 U	40	U	20 l	J	80		20 U	
T11	4 Y	1	9 U	39	U	19 l	J	69		19 U	
T11-FD	4.4 Y	1	9 U	38	U	19 l	J	84		19 U	
T12	4.5 Y	1	9 U	38	U	19 l	J	71		19 U	
T13	7.1 Y	1	9 U	39	U	19 l	J	140		19 U	
T14	7.8 Y	1	9 U	38	U	19 l	J	150		19 U	
T15	6.6 Y	2	0 U	39	U	20 l	J	120		20 U	
T16	7.8 Y	1	9 U	39	U	19 l	J	150		19 U	
T17	7.5 Y	1	9 U	38	U	19 l	J	150		19 U	
T18	7.4 Y	2	0 U	39	U	20 l	J	120		20 U	
T19	7.3 Y	1	9 U	39	U	19 l	J	170		19 U	
T20	7.5 Y	2	0 U	40	U	20 l	J	150		20 U	

All concentrations are in ug/kg, dry weight.

	Aroclor 12	254 Ar	oclor 12	60 p,p'-	DDD	p,p'-	DDE	p,p'-	DDT
Station	Conc	Q Con	с	Q Conc		Conc	Q	Conc	Q
T01	19 U		19 U	1.9	U	1.9	U	1.9	U
T02	19 U		19 U	1.9	U	1.9	U	1.9	U
T03	19 U		19 U		U	2	U	2	U
T04	20 U		20 U	2	U	2	U	2	U
T07	8100 Y	1	600 U	160	U	710	Y	240	Y
T08	1000		19 U	2.6	Y	16	Y	6.6	Y
T09	220		15 U	1.5	U	4.6	Υ	3.7	Y
T10	150		19 U	1.9	U	3.7	Y	2.9	Y
T10-FD	160		20 U	2	U	3.9	Y	3	Y
T11	120		19 U	2.1	Y	3.5	Y	2.3	Y
T11-FD	160		19 U	1.9	U	3.6	Y	2.8	Y
T12	110		19 U	1.9	U	4	Y	2.8	Y
T13	270		19 U	2.7	Y	6.5	Y	4.8	Y
T14	290		19 U	2.5	Y	7.3		4.8	Y
T15	240		20 U	2	U	6.2	Y	3.9	Y
T16	270		19 U	2.2	Y	7.1	Y	3.9	Y
T17	260		19 U	1.9		6.4	Y	3.8	Y
T18	250		20 U	2	U	6.4	Y	3.9	Y
T19	270		19 U	1.9		5.8	Y	3.3	Y
T20	200		20 U	2	U	6	Y	3	Y

Table A1-2. Results of the PCB and pesticide analyses of sediment samples col	ollected in August 1997
---	-------------------------

All concentrations are in ug/kg, dry weight.

	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Dibenz(a,h)anthracene	Benzo(a)pyrene
Station	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
T01	5.8 U	5.8 U	5.8 U	16	5.8 U	26
T02	5.8 U	5.8 U	5.8 U	12 J	5.8 U	16
T03	5.9 U	5.9 U	5.9 U	5.9 U	5.9 U	5.9 J
T04	6 U	6 U	10	60	10	68
T07	5.8 U	5.8 U	5.8 U	29	5.8 U	34
T08	7.4 J	5.7 U	22	78	15	91
T09	15	4.4 U	43	110	5.8	110
T10	5.8 U	5.8 U	16	80	6.9	100
T10-FD	6 U	6 U	12	71	7.2	92
T11	44	7.5	120	490	34	490
T11-FD	40	5.7 U	93	430	82	460
T12	29	5.7 U	80	300	36	290
T13	24	6.4	110	440	21	390
T14	31	8	60	310	17	320
T15	18	16	57	260	26	300
T16	24	12	40	240	16	250
T17	25	5.7 U	55	170	24	180
T18	13	5.9 U	30	150	17	190
T19	49	32	110	580	75	680
T20	11	5.9 U	26	150	31	180

	Benzo(b)fluoranthen	e Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Carbazole	Chrysene
Station	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
T01	22	14 J	21	7.5 J	27
T02	17	5.8 U	11 J	5.8 U	14 J
T03	5.9 J	7 J	5.9 J	5.9 U	6.4 J
T04	80	30	64	13	72
T07	47	18	31	5.8 U	44
T08	83	42	91	12	94
T09	160	35	78	25	95
T10	160	40	87	17	99
T10-FD	120	57	89	17	99
T11	550	250	380	92	470
T11-FD	480	240	410	92	460
T12	350	90	180	51	240
T13	420	140	410	60	410
T14	440	120	270	64	350
T15	350	190	290	39	330
T16	320	100	230	36	270
T17	180	90	160	25	200
T18	200	130	180	27	190
T19	670	260	490	68	550
T20	200	98	170	30	190

	Fluorant	hene	Fluore	ne	Indeno(1	,2,3-c,d)pyrene	2-Methyln	aphthalene	Naphtl	nalene
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
T01	55		5.8 U		16		5.8	U	5.8	U
T02	27		5.8 U		10	J	5.8	U	5.8	U
T03	11 J		5.9 U		9.4	J	5.9	U	5.9	U
T04	160		8.4		43		6	U	6	U
T07	63		6.9 J		18		9.2	J	9.2	J
T08	160		13 J		53		5.7	U	5.7	U
T09	240		21		53		7.1		6.2	
T10	180		9.8		69		14		9.8	
T10-FD	230		11		75		14		11	
T11	1600		68		340		9.8		12	
T11-FD	1100		64		320		19		17	
T12	500		39		140		12		16	
T13	1300		49		200		18		18	
T14	860		47		170		24		27	
T15	800		33		230		17		17	
T16	560		31		150		28		24	
T17	420		36		110		17		21	
T18	380		19		150		9.4		10	
T19	1200		69		370		41		36	
T20	440		18		130		8.9		9.5	

	Phenan	threne	Pyr	ene	PAHs, 1	total
Station	Conc	Q	Conc	Q	Conc	Q
T01	57		74		348.3	
T02	12 .	J	21		163.2	
T03	8.2	J	12	J	95.3	
T04	84		120		821.4	
T07	48		68		436.9	
T08	120		220		1097.95	
T09	190		170		1341.3	
T10	100		160		1137.3	
T10-FD	110		140		1144.2	
T11	770		860		6495.3	
T11-FD	700		1200		6117.85	
T12	360		410		3074.85	
T13	500		680		5136.4	
T14	440		600		4094	
T15	340		500		3774	
T16	260		430		2985	
T17	300		320		2310.85	
T18	200		400		2271.35	
T19	580		1400		7192	
T20	210		340		2215.35	

	Fines	Gravel	Sand	Total solids	Total organic carbon
Station	(%)	(%)	(%)	(%)	(%)
T01	12	5	83	63.8	5.2
T02	48	19	33	34.2	8.3
T03	20	9	71	69.8	4.9
T04	61	3	36	36.6	5.9
T07	60	2	38	50.3	6.3
T08	35	7	58	47.7	5.8
T09	26	1	73	64.3	4.6
T10	90	0	10	35.4	4.4
T10-FD	90	0	10	34.6	5.2
T11	45	5	50	45.9	5.2
T11-FD	44	4	52	44.6	4.6
T12	16	1	83	74	4.8
T13	62	4	34	47	5.6
T14	65	0	35	48.2	5
T15	79	0	21	40.6	5.5
T16	80	1	19	39.5	5.6
T17	30	3	67	58.8	5.1
T18	68	1	31	43.9	5.4
T19	58	4	38	45.2	5.4
T20	87	0	13	33.5	6.1
S1-1	8	6	86	77.9	5.1
S1-2	61	19	20	28.8	6.2
S1-3	24	6	70	57.4	5.2
S2-1	19	5	76	60.2	5.7
S2-2	54	6	40	56.3	6.4
S2-3	44	3	53	48	5.9
S3-1	8	1	91	76.1	4.7
S3-2	66	8	26	43.9	5.4
S3-3	40	6	54	42.8	5.8
S5-1	25	5	70	69.4	4.4
S5-2	9	1	90	77.6	3.4
S5-3	24	3	73	59.3	4.5
S5-4	31	1	68	63.6	5.1
S5-5	14	38	48	65.9	5.7

 Table A1-4. Results of the conventional parameter analyses of sediment samples collected in August 1997

	SEM/A (umol		Acid Volatile (mg/l		Cadmiı (mg/kç		Copp (mg/l	oer (g)	Lead (mg/k		Mero (mg	•
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
T01	0.18517		39		0.4 U		2.3		4 U		0.004	U
T02	0.12893		200		0.2 U		11.2		9		0.01	U
T03	0.0797		130		0.3 U		5.3		4		0.006	U
T04	0.28953		110		0.4 U		13.3		12		0.009	U
T07	0.10075		530		0.4 U		19.7		40		0.009	U
T08	0.04908		450		0.3 U		8.9		9		0.008	U
T09	0.76609		42		0.3 U		16.2		32		0.007	U
T10	0.29186		180		0.5 U		24.5		31		0.01	U
T10-FD	0.22447		230		0.5 U		23.3		30		0.01	U
T11	0.35648		130		0.3 U		17.3		36		0.008	U
T11-FD	0.29502		130		0.3 U		14.3		29		0.007	U
T12	0.66978		40		0.3 U		10.5		19		0.003	U
T13	0.49856		110		0.4		20.3		61		0.006	U
T14	0.33418		160		0.4 U		20.2		43		0.01	U
T15	0.74732		78		0.4 U		24.2		36		0.01	U
T16	0.37578		170		0.4		25.6		39		0.01	U
T17	0.35134		100		0.2 U		15.2		26		0.005	U
T18	0.6645		88		0.3		23.5		32		0.01	U
T19	1.20699		41		0.4 U		20.9		32		0.01	U
T20	1.66342		40		0.4		28.8		33		0.01	U

Note: SEM/AVS was calculated as the sum of SEMs/AVS and does not include SEM mercury

	Nicko (mg/k		Zinc (mg/k		SEM Cao (umo		SEM Co (umol		SEM (um	
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
T01	2 U		10.5		0.00356 l	J	0.03619		0.01931	U
T02	5		32.6		0.00178 l	J	0.17624		0.04344	
T03	2		12.1		0.00267 l	J	0.0834		0.01931	
T04	5		41.8		0.00356 l	J	0.20928		0.05792	
T07	7		68.1		0.00356 l	J	0.30999		0.19305	
T08	4		28.5		0.00267 l	J	0.14005		0.04344	
T09	5		33.2		0.00267 l	J	0.25492		0.15444	
T10	8		63.1		0.00445 l	J	0.38552		0.14961	
T10-FD	8		62.8		0.00445 l	J	0.36664		0.14479	
T11	5		59.7		0.00267 l	J	0.27223		0.17375	
T11-FD	5		48.7		0.00267 l	J	0.22502		0.13996	
T12	4		33.3		0.00267 l	J	0.16522		0.0917	
T13	6		64.8		0.00356		0.31943		0.2944	
T14	6		67.9		0.00356 l	J	0.31786		0.20753	
T15	8		73.6		0.00356 l	J	0.3808		0.17375	
T16	8		82.5		0.00356		0.40283		0.18822	
T17	4		43.3		0.00178 l	J	0.23918		0.12548	
T18	8		75.9		0.00267		0.36979		0.15444	
T19	8		60.3		0.00356 l	J	0.32887		0.15444	
T20	9		85.4		0.00356		0.45319		0.15927	

Note: SEM/AVS was calculated as the sum of SEMs/AVS and does not include SEM mercury

Table A1-5	Results of the	e SEM/AVS analyse	s of sediment	samples c	collected in A	August 1997
------------	----------------	-------------------	---------------	-----------	----------------	-------------

	SEM Nicke (umol/g)	I SEM Z (umo	-	SEM S (umol	
Station	Conc C	ຊ Conc	Q	Conc	Q
T01	0.03408 U	0.16058		0.22525	
T02	0.08519	0.49855		0.80431	
T03	0.03408	0.18504		0.32317	
T04	0.08519	0.63924		0.99341	
T07	0.11927	1.04144		1.66553	
T08	0.06815	0.43585		0.68883	
T09	0.08519	0.50772		1.00361	
T10	0.13631	0.96498		1.63865	
T10-FD	0.13631	0.96039		1.61036	
T11	0.08519	0.91298		1.44549	
T11-FD	0.08519	0.74476		1.19627	
T12	0.06815	0.50925		0.83566	
T13	0.10223	0.99098		1.7106	
T14	0.10223	1.03839		1.66779	
T15	0.13631	1.12555		1.81819	
T16	0.13631	1.26166		1.99258	
T17	0.06815	0.66218		1.09588	
T18	0.13631	1.16073		1.82394	
T19	0.13631	0.92216		1.54356	
T20	0.15335	1.30601		2.07538	

Note: SEM/AVS was calculated as the sum of SEMs/AVS and does not include SEM mercury

	PCB008/005	PCB015	PCB016/032	2 PCB0	17	PCB0	18	PCB	019
Station	Conc Q	Conc C	Conc (Q Conc	Q	Conc	Q	Conc	Q
S1-1	0.12 R	0.75 R	0.14	0.16		0.08 U		0.08 l	J
S1-2	0.11	2.7 R	0.16 R	0.1		0.07 U		0.07 l	J
S1-3	0.06 U	3.7 R	0.12 R	0.04 U	J	0.04 U		0.04 l	J
S2-1	64	180	120	170		98		40	
S2-2	260	550	670	770		130		250	
S2-3	130	14 R	150	210		81		65	
S3-1	130	13 R	180	210		33		90	
S3-2	8000	1000	4900	5500		150		3900	
S3-3	66	10	75	130		35		23	
S5-1	19	26	35	32		20		12	
S5-2	3	1.1 U	6.3	7		5		1.5	
S5-3	19	3.1	29	38		19		5.7	
S5-4	10	1.8 R	12	20		7.9		3	
S5-5	13	24 R	14	21		9.9		5.9	

	PCB0	22	PCB024	4/027	PCE	3025	PCB	026	PCB031	/028	PCB0	33
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
S1-1	0.05 U		0.08 L	J	0.05	U	0.05	U	0.28		0.05 U	
S1-2	0.05 U		0.07 L	J	0.05	U	0.05	U	0.31		0.05	
S1-3	0.03 R		0.06 F	2	0.03	U	0.03	U	0.03 L	J	0.03 U	
S2-1	22		53		83		100		260		36	
S2-2	120		200		180		200		1000		76	
S2-3	21		75		79		100		290		30	
S3-1	9.5		120		44		61		140		12	
S3-2	36		2800		86		480		490		58	
S3-3	7		47		46		59		170		13	
S5-1	9.1		16		17		24		120		8.4	
S5-2	1.9		3.3		5.7		8.9		34		2.6	
S5-3	4.5		15		22		30		160		6.2	
S5-4	2.1		6.9		10		14		67		3.2	
S5-5	2.6		8.4		9.4	R	12		47		3.3	

	PCB	040	PCB041/0	71/006	PCB	042	PCB	044	PCB0	45	PCB0	46
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
S1-1	0.03 l	J	0.2		0.05		0.13		0.05 U		0.01 U	
S1-2	0.07 l	J	0.46		0.13		0.47		0.05 U		0.05 U	
S1-3	0.03 l	J	0.03 L	J	0.03	U	0.03 l	J	0.02 U		0.02 U	
S2-1	5.2		200		83		160		25		7.1	
S2-2	31		1200		360		740		100		29	
S2-3	7.6		210		84		140		25		7.2	
S3-1	4.2		140		73		73		13		6.9	
S3-2	18		630		280		190		68		45	
S3-3	5.7		110		48		77		10		2.1	
S5-1	6.6 F	२	130		43		84		11		4.3	
S5-2	1.1 L	J	24		9.2		18		2.3		0.93 U	
S5-3	3.4		86		30		66		5		0.28 R	
S5-4	1.4		37		13		27		2.1		0.5	
S5-5	0.82		27		11		18		2.3		0.71	

	PCB047	/048	PCBC	49	PCB0	52	PCB05	6/060	PCB0	66	PCB070	/076
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
S1-1	0.13		0.14		0.18		0.08		0.15		0.16	
S1-2	0.23		0.37		0.69		0.27		0.36		0.92	
S1-3	0.03 U		0.03 L	J	0.08		0.02 L	J	0.06 R		0.11	
S2-1	160		200		220		50		110		170	
S2-2	860		810		1100		420		720		780	
S2-3	170		190		240		49		100		160	
S3-1	180		160		170		22		54		62	
S3-2	1900		560		760		74		140		170	
S3-3	140		140		160		27		75		100	
S5-1	82		95		120		55		90		140	
S5-2	16		24		32		8.1		17		28	
S5-3	88		100		120		30		87		140	
S5-4	40		44		52		13		39		58	
S5-5	25		28		31		9		17		26	

	PCB0)74	PCB	077*	PCE	3083	PCB084	4/089	PCE	8085	PCB0	87
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
S1-1	0.12		0.00398		0.03	U	0.08		0.08		0.13	
S1-2	0.3		0.0363		0.08	U	0.48		0.31		0.64	
S1-3	0.03 L	J	0.00871		0.02	U	0.02 L	J	0.02	U	0.12	
S2-1	120		6.84		9.4		52		20		42	
S2-2	750		68.2	D	65		300		230		490	
S2-3	110		9.12		13	R	72		27		62	
S3-1	57		7.53		15	R	81		16		45	
S3-2	130		11.3		33		220		53		240	
S3-3	77		8.33		11		44		22		50	
S5-1	89		10.9		11		41		31		64	
S5-2	18		2.1		2.9		7.3		6.6		12	
S5-3	92		8.62		7.2		26		24		49	
S5-4	39		6.32		3.6		13		12		23	
S5-5	19		1.82	D	1.6		8		4.4		8.6	

	PCB090	/101	PCB0	91	PCB0	95	PCB)97	PCB0	99	PCB1	05
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
S1-1	0.24		0.03		0.12		0.1		0.12		0.13	
S1-2	1.4		0.16		0.86		0.46		0.6		0.55	
S1-3	0.23		0.03 R		0.12		0.02 l	J	0.09		0.1	
S2-1	92		28		94		40		54		32	
S2-2	700		180		580		330		420		370	
S2-3	130		40		120		49		74		38	
S3-1	91		53		94		26		45		22	
S3-2	270		490		320		64		120		67	
S3-3	91		31		84		39		56		33	
S5-1	90		22		71		46		50		46	
S5-2	17		4.4		16		9.3		10		8.8	
S5-3	78		19		65		35		49		40	
S5-4	38		8.9		31		17		22		17	
S5-5	17		4.5		14		6.8		9.9		7.2	

	PCB1	07	PCB1	10	PCB1 ²	4*	PCB1	118	PCB1	23*	PCB12	26*
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
S1-1	0.02		0.4		0.00244 L		0.24		0.00109 L	•	0.00051 U	
S1-2	0.11		2.1		0.0208 L		1.3		0.011		0.00714 L	
S1-3	0.01 U		0.38		0.00462 L		0.24		0.00496 L		0.0005 U	
S2-1	6.4		180		2.4		76		0.966		0.115	
S2-2	47		1300		23		710		10.7		1.76	
S2-3	10		240		3.17		99		1.42		0.203	
S3-1	6.6		180		2.93		56		1.2		0.177	
S3-2	19 R		660		5.87		120		1.71		0.34	
S3-3	7.5		170		3.73		73		1.54		0.229	
S5-1	7.5 R		180		4.99		81		2.18		0.299	
S5-2	1.8		34		0.954		15		0.344		0.0619	
S5-3	5.9		130		4.16		73		1.81		0.276	
S5-4	3.1		62		2.65		34		1.12		0.194	
S5-5	1.2		33		0.607		15		0.239		0.0479	

	PCB1	28	PCE	8129	PCB	130	PCE	3131	PCE	3134	PCB1	36
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
S1-1	0.1 U		0.06	U	0.06	J	0.05	U	0.05	U	0.05 U	
S1-2	0.54		0.07		0.05	J	0.06	U	0.06	U	0.19	
S1-3	0.06 R		0.03	U	0.03	J	0.03	U	0.03	U	0.03 U	
S2-1	9.3		2		0.05	J	0.63		4.4		11	
S2-2	130		33		8.4 (J	8.2		31		84	
S2-3	17		3.5		0.42	J	1.2		6.3		18	
S3-1	9.8		2.2		0.26	J	0.48		9.2		25	
S3-2	25 R		12	U	12	J	13	U	58		200	
S3-3	12		3.4		1.1	J	1.5		6.6		17	
S5-1	19		7.9	U	7.9 ሀ	J	9.5	U	9.5	U	13	
S5-2	2.1 U		1.2	U	1.2	J	2	U	2	U	2.8	
S5-3	7.6		2.5		0.21	J	0.78	R	2.8		9	
S5-4	4.2		1.2		0.1	J	0.43		1.6		5	
S5-5	2.5		0.5		0.03	J	0.16	R	0.72		1.8	

	PCB	137	PCB138/1	63/164	PCE	3141	PCB14	4/135	PCE	3146	PCB1	49
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
S1-1	0.06	U	0.25		0.06	U	0.05 l	J	0.04	U	0.09	
S1-2	0.11		1.8		0.2		0.22		0.18		0.98	
S1-3	0.03	U	0.31		0.04	R	0.03 l	J	0.03	U	0.18	
S2-1	2.4		44		4.7		8.8		5.5		40	
S2-2	38		510		78		73		45		310	
S2-3	5		83		8.5		17		11		69	
S3-1	2.8		77		4.6		23		13		84	
S3-2	12	U	480		19	R	210		69		750	
S3-3	4.4		71		8.1		15		9.6		66	
S5-1	7.9	U	60		11		11		6.9	U	51	
S5-2	1.2	U	6.5		1.3	U	2.1		1.4	U	8.1	
S5-3	3		52		6.5		8.6		5.2		40	
S5-4	1.6		27		3.5		4.6		2.9		21	
S5-5	0.57		11		1.1		1.7		1.2		8.1	

	PCB1	51	PCB1	53	PCB1	56*	PCB156	/157*	PCB1	57*	PCB1	58
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
S1-1	0.05 U		0.16		0.0115 L		0.0174 L		0.00237 L	-	0.06 U	
S1-2	0.21		1.2		0.134		0.188		0.0289		0.33	
S1-3	0.03 U		0.22		0.026		0.0376 L		0.00593 L		0.03 U	
S2-1	8.5		27		3.36		4.79		0.663		5.7	
S2-2	60		300		39.2		67.2		7.89		69	
S2-3	15		52		6.42		9.43		1.31		10	
S3-1	23		37		5.04		8.33		1.11		5.9	
S3-2	180		140		13.8		17.2		2.48		17	
S3-3	14		45		8.18		10.9		1.81		8.3	
S5-1	9.5 U		33		7.53		9.9		1.54		8.3 R	
S5-2	2 U		3.8		1.43		1.83		0.299		1.2 U	
S5-3	8.4		29		6.95		9.59		1.55		6.6	
S5-4	4.2		16		4.71		5.97		0.954		3.2	
S5-5	1.6		6.3		1.12		1.6		0.236		1.6	

	PCB16	67*	PCB16	69*	PCB17	70*	PCB17	0/190	PCB17	71	PCB1	72
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
S1-1	0.00599 L		0.001 U		0.018 L		0.04	U	0.04 U		0.04 U	
S1-2	0.059		0.001 U		0.288		0.24		0.06		0.02 U	
S1-3	0.0109 L		0.001 U		0.0483		0.06	R	0.02 U		0.02 U	
S2-1	1.27		0.00147 U		4.1		5.3		1		0.59	
S2-2	13		0.00735 U		43		67		14		7.9 U	
S2-3	2.38		0.0022 U		8.41		9.1		1.8		1.1	
S3-1	1.82		0.00163 U		7.71		9.2		1.7		1.2	
S3-2	4.68		0.0028 U		31.3		44		13 U		13 U	
S3-3	2.7		0.00125 U		8.67		9.2		2.5		1.6 U	
S5-1	2.34		0.001 U		6.66		11		4.6 U		4.4 U	
S5-2	0.46		0.001 U		1.02		0.74		0.44 U		0.41 U	
S5-3	2.29		0.001 U		6.52		6.4		1.4		0.84	
S5-4	1.4		0.001 U		4.1		3.5		0.77		0.46	
S5-5	0.42		0.001 U		1.28		1.3		0.23		0.13	

	PCB1	74	PCE	8175	PCB17	76	PCE	8177	PCE	8178	PCB1	79
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
S1-1	0.04 U		0.03	U	0.03 U		0.04	U	0.03	U	0.03 U	
S1-2	0.17		0.02	U	0.04 R		0.09		0.03		0.1 R	
S1-3	0.04 R		0.02	U	0.02 U		0.02	U	0.02	U	0.02 U	
S2-1	2.7		0.14		0.65		2.3		0.82		1.8	
S2-2	35		7.4	U	7.8		27		9.1	R	18	
S2-3	4.9		0.2	U	1.4		4.5		1.9		3.8	
S3-1	3.9		0.23	R	1.6		5.9		2.4		5.1	
S3-2	19		12	U	18		71		25		61	
S3-3	5.8		1.5	U	1.7		4.5		1.7		4	
S5-1	4.8 U		4.1	U	4.1 U		4.8	U	4.1	U	4.1 U	
S5-2	0.44 U		0.38	U	0.38 U		0.44	U	0.38	U	0.38 U	
S5-3	3.7		0.22	U	0.68		2.7		0.85		2.1	
S5-4	2.1		0.12	R	0.47		1.4		0.47		1.2	
S5-5	0.63		0.05	U	0.14		0.48		0.19		0.4	

	PCB18	30*	PCB1	PCB183		3185	PCB1	87/182	PCB1	89*	PCB1	91
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
S1-1	0.0316		0.04 U		0.04	U	0.03	U	0.001 L		0.04 U	
S1-2	0.367		0.11		0.02	U	0.23		0.001 L		0.02 U	
S1-3	0.0707		0.02 U		0.02	U	0.04	R	0.001 L		0.02 U	
S2-1	6.28		1.7		0.26		3.7		0.182		0.16	
S2-2	62.2		27		8.7	U	34		1.9		7.9 U	
S2-3	11.9		3.4		0.64		7.4		0.446		0.4 R	
S3-1	12.2		2.9		0.43		9.1		0.364		0.44	
S3-2	51.2		15 R		14	U	100		2.49		13 U	
S3-3	13.2		3.2		1.7	U	7.7		0.436		1.6 U	
S5-1	10.6		4.8 U		4.8	U	5.1		0.316		4.4 U	
S5-2	1.63		0.44 U		0.44	U	0.38	U	0.0458		0.41 U	
S5-3	9.67		2.2		0.54		4.2		0.324		0.25 R	
S5-4	6.38		1.4		0.26		2.5		0.232		0.12	
S5-5	1.88		0.36		0.06		0.81		0.0648		0.05 U	

	PCB193		PCE	8194	PCB19	95	PCB19	96/203	PCE	3197	PCB19	98
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
S1-1	0.04 U		0.1	U	0.08 U		0.08	U	0.09	R	0.08 U	
S1-2	0.02 U		0.12	R	0.06 R		0.17		0.05	U	0.05 U	
S1-3	0.02 U		0.1	U	0.08 U		0.08	U	0.09	U	0.09 U	
S2-1	0.45		1.7		0.47		1.3		0.09	U	0.09 U	
S2-2	7.9 U		20		7.7		16		8	U	8 U	
S2-3	0.77		2.4		0.63		2.3		0.29	U	0.29 U	
S3-1	0.67		2.6		0.75		2.2		0.35	R	0.17 U	
S3-2	13 U		36	U	30 U		30	U	32	U	32 U	
S3-3	1.6 U		4.8	U	3.4 U		3.4	U	3.4	U	3.4 U	
S5-1	4.4 U		11	U	9.2 U		9.2	U	9.9	U	9.9 U	
S5-2	0.41 U		0.68	U	0.59 U		0.59	U	0.61	U	0.61 U	
S5-3	0.47 R		1.8		0.6		1.5		0.39	U	0.39 U	
S5-4	0.29		1.1		0.25		0.95		0.2	U	0.2 U	
S5-5	0.08		0.43		0.15		0.37		0.04	U	0.04 U	

	PCB1	PCB199		PCB201)5	PCE	8206	PCB	207	PCB2	08
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
S1-1	0.08 U	J	0.04	U	0.1 U		0.14	U	0.14	U	0.14 U	
S1-2	0.17		0.07		0.07 U		0.15	U	0.15	U	0.15 U	
S1-3	0.09 U	J	0.04	U	0.1 U		0.36	U	0.36	U	0.36 U	
S2-1	1.3		0.11		0.1		0.28		0.14	U	0.14 U	
S2-2	13		3.3	U	9.1 U		14	U	14	U	14 U	
S2-3	2.4		0.13	U	0.43 U		0.65		0.49	U	0.49 U	
S3-1	2		0.24	R	0.29 R		0.63		0.24	U	0.48	
S3-2	32 U	J	13	U	36 U		32	U	32	U	32 U	
S3-3	3.4 U	l	1.6	U	4.8 U		4.4	U	4.4	U	4.4 U	
S5-1	9.9 U	J	4	U	11 U		9.2	U	9.2	U	9.2 U	
S5-2	0.61 U	J	0.28	U	0.68 U		0.62	U	0.62	U	0.62 U	
S5-3	1.5		0.18	U	0.55 U		0.41		0.36	U	0.36 U	
S5-4	0.89		0.09	U	0.28 U		0.35		0.18		0.1	
S5-5	0.37		0.04	R	0.05 U		1.7		0.12	U	0.87 R	

	PCE	3209	PCB	Sum	Percent M	oisture
Station	Conc	Q	Conc	Q	Conc	Q
S1-1	0.14	U	6.61		26	
S1-2	0.16	U	26.26		66	
S1-3	1.4	U	8.8		35	
S2-1	0.09	U	3694.13		40	
S2-2	9.5	U	20494.9		49	
S2-3	0.71	U	4133.73		47	
S3-1	0.3	U	3208.39		24	
S3-2	13	U	37922.87		49	
S3-3	2.6	U	2772.78		56	
S5-1	4.5	U	2417.91		23	
S5-2	0.37	U	470.59		17	
S5-3	0.32	U	2067.65		36	
S5-4	0.15	U	958.35		34	
S5-5	0.12	U	573.69		26	

	Percen	t Lipids	Percent	Moisture	PCB0	08/005	PCE	3015	PCB0	16/032
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
F1-1	3.7		75		0.54		0.22	U	0.18	
F1-2	3.5		75		0.37		0.22	U	0.1	
F1-3	3.1		75		0.46		0.29	U	0.13	
F2-1	3.7	D	75	D	120	>D	44	D	200	>D
F2-2	2.9	D	75	D	78	D	31	D	140	D
F2-3	3.1	D	75	D	130	>D	39	D	170	>D
F3-1	2.5		76		200		62		260	
F3-2	2		76		140		42		210	
F3-3	2.4		76		160		54		230	
F5-1	2.7		76		94		42		96	
F5-2	2.5		76		90		35		89	
F5-3	2.8		76		140		51		140	

Table A1-7. Results of the PCB congener analyses of juvenile smallmouth bass tissue samples collected in August 1997

All concentrations are in ug/kg, wet weight, except where noted.

* PCB congeners analyzed under high resolution analysis method.

U - Undetected

R - Peak detected but did not meet quantification criteria

- D Diluted sample
- L Labelled compound
- > Sample over linear range of method

Note: No qualifier for the PCB_SUM values indicates that at least one value was detected in either sediment or tissue.

	PCI	3017	PCE	8018	PCE	3019	PCE	3022	PCB0	24/027	PCE	8025
Station	Conc	Q	Conc	Q								
F1-1	0.33		0.09		0.11		0.05		0.12		0.08	
F1-2	0.15		0.06		0.06		0.04		0.05		0.05	
F1-3	0.17		0.05		0.07	R	0.03		0.06		0.05	
F2-1	300	>D	81	D	71	D	31	D	97	D	91	D
F2-2	230	D	84	D	38	D	31	D	66	D	97	D
F2-3	240	>D	64	D	72	D	27	D	82	D	82	D
F3-1	430		85		100		32		150		130	
F3-2	310		62		79		30		110		100	
F3-3	330		70		90		30		130		110	
F5-1	210		48		61		17		87		61	
F5-2	200		43		59		16		82		55	
F5-3	330		71		94		21		140		84	

	PCI	B026	PCB0	31/028	PCE	3033	PCE	3040		PCB041	/071/006	PCE	3042
Station	Conc	Q	Conc	Q	Conc	Q	Conc		Q	Conc	Q	Conc	Q
F1-1	0.11		0.66		0.06		0.05	R		0.87		0.27	
F1-2	0.05		0.45		0.05		0.05	R		0.7		0.22	
F1-3	0.06		0.41		0.04	R	0.04	U		0.64		0.22	
F2-1	110	D	480	>D	42	D	21	D		700	>D	250	>D
F2-2	130	D	660	>D	47	D	16	D		750	>D	270	D
F2-3	100	D	450	>D	29	D	11	D		420	>D	150	D
F3-1	150	1	660		38		17			760		280	
F3-2	120	1	540		29		19			660		250	
F3-3	140	1	600		33		16			640		230	
F5-1	76		350		16		12			320		130	
F5-2	69		300		15		11			320		120	
F5-3	110		430		23		14	R		390		150	

	PCE	3044	PCE	8045	PCE	3046	PCB0	47/048	PCE	3049	PCE	3052
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
F1-1	0.69		0.03	U	0.03	U	0.9		1.1		1.7	
F1-2	0.54		0.02	U	0.02	U	1		1		1.6	
F1-3	0.49		0.03	U	0.03	U	0.67		0.91		1.5	
F2-1	440	>D	40	D	9	D	600	>D	540	>D	560	>D
F2-2	490	D	39	D	7.7	D	690	>D	790	>D	910	>D
F2-3	250	>D	24	D	5.8	D	480	>D	470	>D	500	>D
F3-1	430		38		11		1000		950		970	
F3-2	370		36		8.7		940		820		840	
F3-3	340		35		8.9		960		820		840	
F5-1	200		25		5.3		480		430		460	
F5-2	190		24		4.9		430		390		440	
F5-3	240		31		8.1	U	620		560		600	

	PCB0	56/060	PCE	3066	PCB0	70/076	PCE	3074	PCE	077 *	PCE	083
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
F1-1	0.55		1.5		2		1.4		0.107		0.36	
F1-2	0.44		1.4		1.6		1.1		0.115		0.33	
F1-3	0.44		1.4		1.7		1.2		0.1		0.29	
F2-1	260	>D	490	>D	660	>D	620	>D	39.4	D	160	D
F2-2	260	D	780	>D	1000	>D	900	>D	53	D	240	D
F2-3	170	>D	420	>D	500	>D	510	>D	25.4		130	D
F3-1	270		870		760		940		35.2	D	85	
F3-2	250		750		610		840		24.4		74	
F3-3	230		740		640		820		26.6	D	71	
F5-1	120		320		280		370		10.3		38	
F5-2	110		320		270		360		10.3		41	
F5-3	120		360		270		410		10.5		45	

	PCB0	84/089	PCE	3085	PCE	3087	PCB0	90/101	PCE	3091	PCE	095
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
F1-1	1.7		1.8		3.6		8.4		0.54		2.6	
F1-2	1.5		1.6		3.1		7.7		0.53		2.5	
F1-3	1.6		1.7		3.3		8.7		0.48		2.3	
F2-1	280	D	740	D	1500	>D	590	>D	160	D	430	>D
F2-2	280	D	830	D	1600	D	920	>D	170	D	500	>D
F2-3	170	D	550	D	1100	>D	530	>D	100	D	290	>D
F3-1	330		310		590		1100		200		580	
F3-2	300		300		520		990		180		480	
F3-3	300		260		480		950		180		490	
F5-1	150		140		270		480		85		250	
F5-2	150		150		280		500		91		250	
F5-3	190		180		340		590		120		310	

	PC	B097	PCE	3099	PCE	3105	PCB	107	PCB1	10	PCB11	14*
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
F1-1	2.2		4.3		2.4		0.76		10		0.186 L	
F1-2	2.1		4.1		2.5		0.7		8.7		0.163 L	
F1-3	2.1		4.2		2.3		0.72		9.5		0.277	
F2-1	1200	>D	520	>D	300	>D	70)	2800 >	D	28.7	
F2-2	1400	D	630	>D	330	D	75	D	4200 >	D	32.7	
F2-3	810	D	410	>D	210	>D	53	D	2300 >	D	24	
F3-1	450	1	750		390		84		1700		34.5	
F3-2	410	1	700		350		78		1500		33.3	
F3-3	380		670		330		75		1400		28.9	
F5-1	180		320		140		36		730		13.9	
F5-2	200		330		160		41		820		17.4	
F5-3	240		390		180		47		940		19.8	

	PCI	B118	PCB1	23*	PCB1	26*	PCE	3128	PCE	3129	PCE	3130
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
F1-1	7.8		0.0888		0.0144		2.6		0.46		0.14	U
F1-2	7.9		0.0722		0.0169		2.6		0.59		0.07	U
F1-3	7.5		0.152		0.0212		2.5		0.44		0.08	U
F2-1	570	>D	11.7		1.07		130	D	25	D	0.49	RD
F2-2	890	>D	11		1.51		98	D	24	D	0.27	RD
F2-3	480	>D	10.9		0.786		88	D	18	D	0.18	RD
F3-1	1100		13.2		1.59		150		31		2.9	U
F3-2	970		13.9		1.29		170		28		3.9	U
F3-3	970		11.5		1.45		170		32		4.6	U
F5-1	420		6.17		0.394		64		12		2.2	U
F5-2	460		8.08		0.522		81		14		4.2	U
F5-3	520		6.51		0.554		90		17		4.2	U

	PCE	3131	PCE	3134	PCE	3136	PCB	137	PCB138/1	63/164	PCB1	41
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
F1-1	0.16	U	0.27		0.58		0.57		13		1.4	
F1-2	0.09		0.32		0.55		0.72		15		1.5	
F1-3	0.16		0.25		0.56		0.62		12		1.3	
F2-1	5.2	D	21	D	54	D	35 I)	650 >	•D	68 C)
F2-2	5.6	D	20	D	56	D	35 I)	600 E)	65 C)
F2-3	3.5	D	14	D	33	D	26 I)	460 >	٠D	50 C)
F3-1	8.4		30		79		45		800		95	
F3-2	6.6		30		78		44		830		95	
F3-3	6.9		27		72		49		830		97	
F5-1	2.7		15		40		20		340		36	
F5-2	4.9		16		36		23		400		45	
F5-3	5.4	U	26		49		25		450		54	

	PCB1	44/135	PCE	8146	PCE	3149	PC	3151	PCI	3153	PCB1	56*
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
F1-1	1.1		1.5		5.8		1		9.9		0.958	
F1-2	0.91		1.4		5.2		1.1		12		1.01	
F1-3	0.94		1.5		5.6		0.97		9.5		0.874	
F2-1	59	D	60	D	340	D	66	D	420	>D	51.4	
F2-2	60	D	59	D	340	D	66	D	380	D	63	
F2-3	44	D	53	D	270	D	47	D	290	D	45.1	
F3-1	88		85		500		98		560		77.8	
F3-2	86		85		490		100		590		67.8	
F3-3	80		84		480		94		580		75.5	
F5-1	42		43		250		48		250		33.7	
F5-2	47		54		290		52		300		35.6	
F5-3	63		69		360		66		310		37.2	

	PCB15	6/157*	PCB1	57*	PCE	8158	PCB16	67*	PCB16	9*	PCB17	70*
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
F1-1	1.38		0.167		1.5		0.495		0.00172 U		0.907	
F1-2	1.64		0.186		1.6		0.573		0.00197 U		1.25	
F1-3	1.50		0.217		1.5		0.553		0.00192 U		0.919	
F2-1	76.6		10.9		76	D	18.7		0.00954 U		48.2	
F2-2	79.1		10.5		72	D	19.9		0.00627 U		45.4	
F2-3	60.4		8.16		52	D	15.7		0.00605 U		37.2	
F3-1	99.7		14		92		30.8		0.00813 U		55.5	
F3-2	83.5		14.5		96		22.1		0.01017 U		56.7	
F3-3	85.5		13.7		97		22.7		0.00669 U		51.7	
F5-1	36.3		5.17		36		10.5		0.00468 U		20.4	
F5-2	46.3		6.29		46		14		0.00585 U		25.1	
F5-3	45.8		6.63		45		13.3		0.00439 U		28.3	

	PCB1	70/190	PCE	3171	PCE	3172	PCI	3174	PCI	3175	PCE	3176
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
F1-1	1.2		0.22		0.16		0.67		0.04	R	0.14	R
F1-2	1.3		0.29		0.21		0.72		0.05		0.14	R
F1-3	1.2		0.23		0.19		0.72		0.03	R	0.14	
F2-1	57	D	11	D	6.1	D	25	D	1.4	D	5.5	D
F2-2	55	D	11	D	6	D	25	D	1.6	D	5.5	D
F2-3	42	D	7.8	D	4.8	D	19	D	0.97	D	3.7	D
F3-1	79		15		11		35		3	U	7.3	
F3-2	79		17		9.3		40		2.7	R	7	R
F3-3	74		18		9.6		38		3.9		9.8	
F5-1	30		7.1		5.2		13		3.3	U	3.3	U
F5-2	41		8.6		5.3		15		4.3	U	4.3	U
F5-3	42		9		7.9		19		1.8	U	2.1	R

	PCE	3177	PCE	3178	PCE	3179	PCB1	80*	PCE	3183	PCE	8185
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
F1-1	0.46		0.43		0.38		2.52		0.57		0.07	
F1-2	0.54		0.43		0.38		2.82		0.71		0.09	
F1-3	0.45		0.26		0.42		2.38		0.6		0.07	
F2-1	20	D	7.9	D	15	D	82.3		20	D	2.8	D
F2-2	19	D	7.8	D	15	D	75.4		19	D	2.8	D
F2-3	15	D	6.2	D	8.6	D	72		14	D	1.9	D
F3-1	31		13		21		98		25		6.1	R
F3-2	30		12		22		97.7		28		5.4	
F3-3	35		15		23		95		28		7.4	
F5-1	14		6		7.5		39.8		12		3.8	U
F5-2	16		6.4		7.6		48		15		4.9	U
F5-3	20		8.9		11		59.5		18		2.9	

	PCB1	PCB187/182		PCB189*		PCB191		PCB193		PCB194		PCB195	
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	
F1-1	1.3		0.0524		0.03		0.12		0.25	R	0.13	U	
F1-2	1.5		0.0658		0.04	U	0.17		0.33		0.19		
F1-3	1.4		0.0687		0.05		0.14		0.31		0.12		
F2-1	44	D	2.16		1.8	D	4.3	D	14	D	3.8	D	
F2-2	41	D	2.35		1.8	D	4.5	D	16	D	3.6	D	
F2-3	37	D	1.8		1.4	RD	3.6	D	9.9	D	2.3	RD	
F3-1	70		2.99		3.3	U	5.8		22		3.8	U	
F3-2	74		2.84		3.6		5.5		19		5.9	U	
F3-3	87		3.18		4.7		7.8		20		6.9	U	
F5-1	37		1.17		3.7	U	4.8		7.2		2.8		
F5-2	40		1.67		4.7	U	4.7	U	7.5		4.9	U	
F5-3	51		1.53		2	U	5.1		12		3.7	U	

	PCB1	PCB196/203		PCB197		3198	PCE	3199	PCE	3201	PCB205		
Station	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	
F1-1	0.4		0.14	U	0.14	U	0.41		0.07	U	0.15	U	
F1-2	0.54		0.14	U	0.14	U	0.56		0.07	U	0.15	U	
F1-3	0.45		0.11	U	0.11	U	0.54		0.07		0.12	U	
F2-1	12	D	0.93	RD	0.45	RD	11	D	0.95	D	0.79	RD	
F2-2	13	D	0.83	D	0.49	RD	12	D	0.95	D	1.5	RD	
F2-3	8.9	D	0.53	UD	0.53	UD	8.4	D	0.64	RD	0.98	UD	
F3-1	15		4.1	U	4.1	U	15		2	U	4.6	U	
F3-2	17		6.3	U	6.3	U	17		3	U	7.1	U	
F3-3	17		7.3	U	7.3	U	16		3.6	U	8.3	U	
F5-1	6.7		1.8	U	1.8	U	7.2		0.85	U	2	U	
F5-2	8.7		5.2	U	5.2	U	9.1		2.5	U	5.9	U	
F5-3	11		3.9	U	3.9	U	12		1.9	U	4.5	U	

	PCE	3206	PCE	8207	PCE	3208	PCE	3209	PCB	Sum
Station	Conc	Q	Conc	Conc Q		Q	Conc	Q	Conc	Q
F1-1	0.3	U	0.3	U	0.3	U	0.3	U	114.4	
F1-2	0.4	U	0.4	U	0.4	U	0.4	UR	115.2	
F1-3	0.4	U	0.4	U	0.4	U	0.4	U	108.9	
F2-1	3.1	RD	1.2	UD	1.5	D	1.2	UD	18829.3	
F2-2	3.1	RD	0.82	RD	1.2	RD	0.75	UD	23143.3	
F2-3	1.8	RD	1.1	UD	1.1	UD	1.1	UD	14479.5	
F3-1	5.1	R	4.9	U	4.9	U	3.2	U	20783.4	
F3-2	3.6	R	1.8	U	1.8	U	3.9	U	18576.4	
F3-3	6.4	U	6.4	U	6.4	U	5.1	U	18412.9	
F5-1	3.1	U	3.1	U	3.1	U	3.3	U	9104.0	
F5-2	4	U	4	U	4	U	2.6	U	9351.0	
F5-3	2.6	U	2.6	U	2.6	U	3.6	U	11601.9	

 Table A1-7. Results of the PCB congener analyses of juvenile smallmouth bass
 tissue samples collected in August 1997

APPENDIX A-2

Quality Assurance Review Summaries Chemical Analyses of Sediment and Fish Tissue Samples

QUALITY ASSURANCE REVIEW SUMMARY— CHEMICAL ANALYSES OF SEDIMENT SAMPLES

Prepared for EVS Consultants, Inc. 200 West Mercer Street, Suite 403 Seattle, Washington. 98119

Prepared by QA/QC Solutions 28329 84th Avenue East Graham, Washington. 98338

December, 1997

INTRODUCTION

This report documents the results of a quality assurance review of data reported for chemical analyses conducted on sediment samples and associated field quality control samples collected in support of the Sheboygan River and Harbor project conducted by EVS Consultants (Seattle, Washington). The results of the quality assurance review are presented herein. The chemical analyses completed included the analysis of polychlorinated biphenyl (PCB) congeners, polycyclic aromatic hydrocarbons (PAHs), a selected list of organochlorine pesticides, PCBs (as Aroclor[®] mixtures), a selected list of metals (as total metals and simultaneously extracted metals), and various conventional parameters (i.e., total solids, total organic carbon, and grain size distribution). The chemical analyses were conducted by Axys Analytical Services, Ltd. (Sidney, British Columbia, Canada) for PCB congeners and Analytical Resources, Inc. (Seattle, Washington) for all other chemical analyses.

The quality assurance review was conducted to verify that the laboratory quality assurance and quality control (QA/QC) procedures were documented and that the quality of the data is sufficient to meet the project DQOs and support the use of the data for its intended purposes. Data validation procedures and qualifier assignments were generally based on U.S. Environmental Protection Agency (EPA) contract laboratory program national functional guidelines for dioxin/furan data validation (U.S. EPA 1993), inorganic data review (U.S. EPA 1994a), and organic data review (U.S. EPA 1994b), as applicable. Modifications of data validation procedures were made, as appropriate, to accommodate project–specific DQOs and quality control requirements for methods not specifically addressed by the national functional guidelines documents (e.g., conventional analyses). The data validation review summaries are included as attachments after this report and the fish tissue data report.

A summary of the data quality objectives (DQOs) established for the chemical analyses completed and the analytical methods used are provided in the quality assurance project plan (QAPP) and applicable laboratory statements of work prepared by EVS Consultants.

DATA VALIDATION PROCEDURES

Data validation was completed to a slightly modified version of EPA Level 2 specifications (U.S. EPA 1995 and PSEP 1991). The level-of-effort included completing a 10 percent review data and calculation checks for all calibration and quality control data, compound quantification and identification; verification of 100 percent of transcriptions; and, a 10 percent calculation checks of positive identifications reported by the laboratories. The following laboratory deliverables were reviewed during the data validation process:

- Chain-of-custody documentation to verify completeness of the data
- The case narrative discussing analytical problems (if any) and procedures
- Sample preparation logs or data summary sheets to verify analytical holding times
- Applicable instrument tuning, instrument calibration, and calibration blank results to assess instrument performance
- Applicable method blanks associated with each sample delivery group (SDG) to check for laboratory contamination
- Results for all applicable laboratory quality control check samples including surrogate compounds (organic analyses only), laboratory control samples (LCSs), matrix spikes, and internal standards (organic analyses only) to check analytical accuracy
- Results for all applicable laboratory duplicate matrix spike analyses, and applicable duplicate or triplicate sample analyses to check analytical precision
- Applicable Mass spectra, chromatograms, and instrument printouts to confirm the reporting of target analytes as detected on undetected were correct
- Applicable instrument and method detection limits for all target analytes.

In addition, results for all applicable field quality control samples (e.g., equipment rinsate blanks and filter wipes) were reviewed. These results provide additional information in support of the quality assurance review (see *Field Quality Control* section for details).

SAMPLE DELIVERY GROUPS

The sample delivery groups (SDGs) contained all documentation and data necessary to conduct the level of effort required to complete the quality assurance review.

DATA QUALITY ASSESSMENT

The results of the quality control procedures used during sample analysis are discussed below. The laboratory data were evaluated in terms of completeness, holding times, instrument performance, accuracy, precision, method reporting limits, and field quality control samples. During the quality assurance review, no data were qualified as estimated (J) and no data were rejected.

COMPLETENESS

The results reported by the laboratory were 100 percent complete. No data were rejected during the quality assurance review.

HOLDING TIMES AND SAMPLE PRESERVATION

The analytical holding time constraints and sample preservation requirements specified in QAPP were met for all samples and analyses, with one exception. The analysis of mercury, as a simultaneously extracted metal, in Sample SR-20-SS-F was completed 3 days past the recommended 28-day holding time constraint specified by the analytical method. The undetected result reported for mercury in this sample was not qualified during the data review because the holding time constraint was only slightly exceeded.

INSTRUMENT PERFORMANCE

The performance of the analytical instruments, as documented by the laboratory, was acceptable. No changes in instrument performance that would have resulted in the degradation of data quality were indicated during any analysis sequence.

Initial and Continuing Calibration

Initial and continuing calibrations were completed for all applicable target analytes and met the criteria for acceptable performance and frequency of analysis, with the exceptions discussed below. Complete details of all calibration data are presented in the attached data review summaries.

For the analysis of metals, a recovery of 112 percent was reported for cadmium in one continuing calibration verification (CCV) analysis and is above the upper control limit of 110 percent. No sample required qualification for this exceedance because the recoveries of the CCV analyzed just prior to, and just after the affected CCV were in control, suggesting the elevated recovery was an isolated occurrence.

For the analysis of organochlorine pesticides, the following CCV exceedances were noted:

- A percent difference of 26 percent was reported for 4,4'-DDT in the CCV analyzed on 9/5/97 at 1046 on the DB-5 column
- Percent differences or 40 percent, 40 percent, 40 percent, and 27 percent were reported for alpha-BHC, beta-BHC, gamma-BHC, and 4,4'-DDT, respectively, for the CCV analyzed on 9/5/97 at 1046 on the DB-608 column

- A percent difference of 30 percent was reported for delta-BHC for the CCV analyzed on 9/5/97 at 1819 on the DB-608 column
- Percent differences of 40, 40, 40, and 31 percent were reported for alpha-BHC, beta-BHC, gamma-BHC, and 4,4'-DDT, respectively, for the CCV analyzed on 9/6/97 at 0128 on the DB-608 column
- Percent differences of 30, 30, 30, 30, 28, and 33 percent were reported for alpha-BHC, gamma-BHC, hepatachlor, endosulfan I, dieldrin, and 4,4'-DDT, respectively, for the CCV analyzed on 9/6/97 at 0730 on the DB-608 column
- Percent differences of 35, 30, 30, 28, and 30 percent were reported for delta-BHC, aldrin, heptachlor epoxide, endosulfan II, and gamma-chlordane, respectively, for the CCV analyzed on 9/6/97 at 0730 on the DB-608 column
- A percent difference of 29 percent was reported for 4,4'-DDT for the CCV analyzed on 9/6/97 at 1154 on the DB-5 column
- Percent differences of 40, 40 30, and 35 percent were reported for alpha-BHC, beta-BHC, gamma-BHC, and 4,4'-DDT, respectively for the CCV analyzed on 9/6/97 1154 on the DB-608 column.

Of the percent difference exceedances listed above, only gamma-BHC, dieldrin, 4,4'-DDT, heptachlor epoxide, and gamma-chlordane are project-specified target analytes. All the percent difference exceedances were due to an increase in instrument sensitivity. None of the affected target analyte pesticides associated with the affected CCVs were detected in the samples associated with the affected CCVs. No data required qualification for the percent difference exceedances because greater instrument sensitivity was observed. Since greater instrument sensitivity was observed, the reported detection limits were not compromised and the reporting of false negatives is unlikely than had the exceedances been due to a decrease in sensitivity.

Initial and Continuing Calibration Blanks

The initial and continuing calibration blank (ICB and CCB) analyses were completed for all applicable target analytes and met the criteria for acceptable performance. No target analytes were detected in any applicable ICBs and CCBs at a concentration above the applicable action limits that would have resulted in qualification of data. Complete details of all calibration blank data are presented in the attached data review summaries.

Method Blank Analyses

No target analytes were detected in any applicable method blank at a concentration above applicable action limits specified by the analytical methods. Some PCB congeners and zinc were detected in a few of the method blanks; however, no data required qualification. Complete details of all method data blanks are presented in the applicable data review summaries included in the attachments to this report.

Instrument-Specific Quality Control Procedures

Instrument-specific quality control procedures for analyses by ICP-AES include interference check samples and serial dilution of field samples. Results for these procedures are discussed below. Complete details are presented in the attached data review summaries.

Interference Check Sample Analyses

All interference check sample results for the analysis of metals met the criteria for acceptable performance and frequency of analysis.

Serial Dilution of Sample Analyses

All serial dilution results for the analysis of metals met the criteria for acceptable performance and frequency of analysis, with three exceptions.

ACCURACY

The accuracy of the analytical results is evaluated in the following sections in terms of analytical bias (surrogate compound, matrix spike, LCS recoveries, and internal standards) and precision (duplicate matrix spikes, duplicate LCSs, duplicate sample analyses, or triplicate sample analyses). Complete details of all surrogate compound, matrix spike, LCS recoveries, internal standards data, and duplicate or triplicate analytical data are presented in the attached data review summaries.

Surrogate Compound Recoveries

The recoveries reported by the laboratory for the applicable surrogate compounds added to all field and quality control samples analyzed for organic compounds generally met the criteria for acceptable performance, with the exceptions discussed below.

Some surrogate recoveries associated with analyses conducted for PAHs were below the lower project-specific control limit of 50 percent. No action was taken for these exceedances because it was deemed more appropriate to defer to laboratory-established control limits for samples processed using larger sample sized and smaller final extract volumes than are routinely specified by the analytical method.

Recoveries of 45.6 percent and 47.8 percent were reported for tetrachloro-m-xylene for the analysis of the matrix spike duplicate analysis conducted on Sample SR-10-SS-F and one LCS (laboratory ID 090397SB). These recoveries were below the lower project-established control limit of 50 percent. No sample data required qualification for this exceedance because surrogate recoveries are used to assess the extraction efficiency of each unique sample.

Matrix Spike Recoveries

The recoveries reported by the laboratory for applicable matrix and duplicate matrix spike analyses and the frequency of analysis met the criteria for acceptable performance, with the following exceptions:

- For the analysis of organochlorine pesticides and PCBs, no recovery was reported for endrin for the matrix spike analysis conducted on Sample SR-10-SS-F. The laboratory case narrative stated that no recovery could be quantified because of significant interference observed in this matrix spike. No sample data were qualified for the lack of this recovery because results for organic compound analyses are not qualified solely on the basis of matrix spike data and because the recovery of endrin in the duplicate matrix spike was acceptable.
- For the analysis of organochlorine pesticides and PCBs, a recovery of 44.9 percent was reported for dieldrin in the matrix spike duplicate analysis conducted on Sample SR-10-SS-F. This recovery was below the lower project-established control limit of 50 percent. No data required qualification for this exceedance because data are not qualified based solely on matrix spike recoveries, the recoveries of dieldrin in the matrix spike of this sample and in the other matrix spikes were acceptable, and the recovery of dieldrin in the LCSs were acceptable.
- For the analysis of TOC, a recovery of 70 percent was reported for the matrix spike duplicate conducted on Sample SR-20-SS-F and is below the lower projectestablished control limit of 80 percent. No data were qualified for this exceedance because the recovery reported for the matrix spike conducted on this sample was in control.
- Some matrix spike data were not reported if the samples required dilutions to bring the analytes into calibration range and, therefore, the spiking compounds could not be detected. In other instances, matrix spike data were not reported if the concentration of one, or more, analytes used in the spiking solution were present in the sample selected for spiking at a concentration significantly above the spiking concentration.

Laboratory Control Sample Recoveries

The recoveries reported by the laboratory for all applicable LCS and duplicate LCS analyses and the frequency of analysis met the criteria for acceptable performance, with one exception.

For the analysis of acid volatile sulfide, a recovery of 73.8 percent was reported for one LCS analysis and is below the lower project-established control limit of 75 percent. No action was taken for this exceedance because the recoveries reported for the associated matrix spike analysis (92 percent recovery) and standard reference material sample (92 percent recovery) in the affected data set were acceptable, which are more representative of the accuracy of the natural sample than is the analysis of an LCS.

Internal Standard Performance

Criteria for retention time and area count were met of all applicable internal standards added to all samples analyzed for organic target analytes.

Precision

The results reported by the laboratory for duplicate analyses and applicable triplicate analyses and the frequency of analysis met the criteria for acceptable performance, with the following exceptions:

- For the duplicate sample analysis of total solids conducted on Sample SR-S2-SC-F-3, a relative percent difference (RPD) of 21 percent was reported and is above the project-established control limit of 20 percent. No data were qualified because the control limit was only slightly exceeded.
- For the duplicate matrix spike analyses conducted for TOC on Sample SR-20-SS-F, an RPD of 52 percent was reported and is above the upper project-established control limit of 20 percent. No data were qualified for this exceedance because the RPDs reported for the analysis of all natural duplicate samples were in control and this exceedance may be due to incorrect spiking technique at the laboratory.
- Some of the RPDs between the duplicate results reported for the PCB congener analysis of Sample SR-S5-SC-F-4 were between 50 to 70 percent and above the project-established control limit of 50 percent. The laboratory case narrative stated that the congener patterns observed, and the physical appearance of the sample strongly suggested an inhomogeneous sample. Additionally, a high degree of precision for some PCB congeners was also observed for the analysis of field duplicate analysis of Sample SR-S3-SC-F-3 taken from separate containers. No data were qualified for these elevated RPDs because other duplicate data were in control, and that it appears that the duplicate results are very sample dependent and is not indicative of poor laboratory performance. In addition, elevated RPDs

are expected when concentrations of the target analytes are near the detection limits; therefore, any slight variability will result in an elevated RPD.

TARGET ANALYE IDENTIFICATION

All criteria for the identification of target analytes reported as detected or undetected, as specified in the applicable analytical methods, were met. Complete details of target analyte identifications are presented in the attached data review summaries.

In some instances some results reported for the analysis of PCB congeners by low resolution gas chromatography/mass spectrometry were flagged 'NDR' by the laboratory to indicate that the ion ratios failed method-specific criteria. None of these results were additionally qualified during the data review because other identification criteria were met, such as retention times and the actual presence of the appropriate ions.

For the analysis of organochlorine pesticides and PCBs, some target pesticides were reported as detected in one sample. Although method-specific criteria for identification of these pesticides were met, their identifications may be due to co-elution with specific PCB congeners eluting at the same retention time (or within the same retention time window). In addition, further evidence that the pesticides reported as detected in the one sample may be the result of co-elution with PCB congeners is that pesticides were not reported as detected in any other sample.

METHOD DETECTION LIMITS AND METHOD REPORTING LIMITS

The method detection limits (MDLs) and method reporting limits (MRLs) used by the laboratories met project DQOs; however, in some instances elevated MDLs/MRLs were reported for some samples and target analytes. Elevated MDLs/MRLs were reported because dilutions were necessary to conduct the analyses because elevated concentrations of target analytes, matrix interferences present in the samples, or both, prevented reliable identification and quantification of the target analytes. Complete details of MDLs/MRLs are presented in the attached data review summaries.

For the analysis of PAHs, the laboratory reported both detection limits (DLs) and practical quantification limits (PQLs). All results were reported down to the DL if not detected. When an analyte was detected, but present at a concentration above the DL, but less than the PQL, the laboratory assigned a J qualifier to indicate there is a greater degree of uncertainty associated with this result than with results reported at a concentration above the PQL.

For the analysis of organochlorine pesticides and PCBs, the laboratory also reported both detection limits (DLs) and reporting limits (i.e., practical quantification limits). All results were reported down to the DL if not detected; however, in some instances, the DLs were elevated for some of the target pesticides. These elevated DLs were reported when PCBs (primarily A1242

and A1254) were reported as detected in the affected samples.

FIELD QUALITY CONTROL SAMPLES

The results for all field quality control samples were acceptable. The field quality control samples included equipment rinsate blanks, filter wipes, and multiple sets of field duplicate samples.

No target analytes were detected in any equipment rinsate blank or filter blank at a concentration that would result in qualification of the sample data.

The field duplicates collected are co-located samples. They provide information regarding variability in analyte concentration in the area from which they were collected and are not used to assess laboratory precision. The results of the co-located samples were acceptable.

REFERENCES

PSEP. 1991. A project manager's guide to requesting and evaluating chemical analyses. Prepared by PTI Environmental Services, Bellevue, WA. U.S. Environmental Protection Agency Region 10, Puget Sound Estuary Program, Seattle, WA.

U.S. EPA. 1993. USEPA contract laboratory program national functional guidelines for dioxin/furan data validation. Draft, April 1993. Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, DC.

U.S. EPA. 1994a. USEPA contract laboratory program national functional guidelines for inorganic data review. EPA 540/R-94/013. February 1994. Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, DC.

U.S. EPA. 1994b. USEPA contract laboratory program national functional guidelines for organic data review. EPA 540/R-94/012. February 1994. Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, DC.

U.S. EPA. 1995. QA/QC guidance for sampling and analysis of sediments, water, and tissues for dredged material evaluations-chemical evaluations. EPA 823-B-95-001. April, 1995. Office of Water, Office of Science and Technology, Standards and Applied Science Division, U.S. Environmental Protection Agency, Washington, DC.

QUALITY ASSURANCE REVIEW SUMMARY-CHEMICAL ANALYSES OF FISH TISSUE SAMPLES

Prepared for EVS Consultants, Inc. 200 West Mercer Street, Suite 403 Seattle, Washington. 98119

Prepared by QA/QC Solutions 28329 84th Avenue East Graham, Washington. 98338

December, 1997

QUALITY ASSURANCE REVIEW SUMMARY-CHEMICAL ANALYSES OF FISH SAMPLES

INTRODUCTION

This report documents the results of a quality assurance review of data reported for chemical analyses conducted on fish tissue samples and associated field quality control samples collected in support of the Sheboygan River and Harbor project conducted by EVS Consultants (Seattle, Washington). The results of the quality assurance review are presented herein. The chemical analyses completed included the analysis of polychlorinated dibenzo-*p*-dioxins and polychlorinated dibenzofurans (PCDDs/Fs), polychlorinated biphenyl (PCB) congeners, percent lipids, and moisture content. The chemical analyses were conducted by Axys Analytical Services, Ltd. (Sidney, British Columbia, Canada.

The quality assurance review was conducted to verify that the laboratory quality assurance and quality control (QA/QC) procedures were documented and that the quality of the data is sufficient to meet the project DQOs and support the use of the data for its intended purposes. Data validation procedures and qualifier assignments were generally based on U.S. Environmental Protection Agency (EPA) contract laboratory program national functional guidelines for dioxin/furan data validation (U.S. EPA 1993), U.S. Environmental Protection Agency (EPA) contract laboratory program national functional guidelines for dioxin/furan data validation (U.S. EPA 1993), U.S. Environmental Protection Agency (EPA) contract laboratory program national functional guidelines organic data review (U.S. EPA 1994), or specific quality control criteria specified in the applicable analytical methods used to complete the chemical analyses, as applicable. Modifications of data validation procedures were made, as appropriate, to accommodate project-specific DQOs and quality control requirements for methods not specifically addressed by the national functional guidelines documents. The data validation review summaries are included as attachments after this report and the sediment data report.

A summary of the data quality objectives (DQOs) established for the chemical analyses completed and the analytical methods used are provided in the quality assurance project plan (QAPP) and applicable laboratory statements of work prepared by EVS Consultants.

DATA VALIDATION PROCEDURES

Data validation was completed to a slightly modified version of EPA Level 2 specifications (U.S. EPA 1995 and PSEP 1991). The level-of-effort included completing a 10 percent review data and calculation checks for all calibration and quality control data, compound quantification and identification; verification of 100 percent of transcriptions; and, a 10 percent calculation checks of positive identifications reported by the laboratories. The following laboratory deliverables were reviewed during the data validation process:

- Chain-of-custody documentation to verify completeness of the data
- The case narrative discussing analytical problems (if any) and procedures
- Sample preparation logs or data summary sheets to verify analytical holding times
- Instrument tuning, instrument calibration, and calibration blank results to assess instrument performance
- Results of all applicable method blanks associated with each sample delivery group (SDG) to check for laboratory contamination
- Results for all applicable laboratory quality control check samples including surrogate compounds, laboratory control samples (LCSs), matrix spikes, and internal standards to check analytical accuracy
- Results for all applicable laboratory duplicate sample analyses to check analytical precision
- Applicable mass spectra, chromatograms, and instrument printouts to confirm the reporting of target analytes as detected on undetected were correct
- Applicable instrument and method detection limits for all target analytes.

In addition, results for all applicable field quality control samples (i.e., field duplicate samples) were reviewed. These results provide additional information in support of the quality assurance review (see *Field Quality Control* section for details).

SAMPLE DELIVERY GROUPS

The sample delivery groups (SDGs) contained all documentation and data necessary to conduct the level of effort required to complete the quality assurance review.

DATA QUALITY ASSESSMENT

The results of the quality control procedures used during sample analysis are discussed below. The laboratory data were evaluated in terms of completeness, holding times, instrument performance, accuracy, precision, method reporting limits, and field quality control samples. During the quality assurance review, no data were qualified as estimated (J) and no data were rejected.

COMPLETENESS

The results reported by the laboratory were 100 percent complete. No data were rejected during the quality assurance review.

HOLDING TIMES AND SAMPLE PRESERVATION

The analytical holding time constraints and sample preservation requirements specified in QAPP were met for all samples and analyses.

INSTRUMENT PERFORMANCE

The performance of the analytical instruments, as documented by the laboratory, was acceptable. No changes in instrument performance that would have resulted in the degradation of data quality were indicated during any analysis sequence.

Initial and Continuing Calibration

Initial and continuing calibrations were completed for all applicable target analytes and met the criteria for acceptable performance and frequency of analysis. Complete details of all calibration data are presented in the attached data review summaries.

Initial and Continuing Calibration Blanks

The initial and continuing calibration blank (ICB and CCB) analyses were completed for all applicable target analytes and met the criteria for acceptable performance. No target analytes were detected in any applicable ICBs and CCBs at a concentration above the applicable action limits that would have resulted in qualification of data. Complete details of all calibration blank data are presented in the attached data review summaries.

Method Blank and Grinder Proof Blanks

No target analytes were detected in any applicable method blank or grinder proof blank (i.e., an equipment rinsate blank of the grinder used to homogenize the fish tissue samples) at a concentration above applicable action limits specified by the analytical methods. Some PCB congeners were detected in a few of the method blanks; however, no data required qualification. Complete details of all method data blanks are presented in the attached data review summaries.

ACCURACY

The accuracy of the analytical results is evaluated in the following sections in terms of analytical bias (surrogate compound, matrix spike, LCS recoveries, and internal standards) and precision (duplicate sample analyses). Complete details of all surrogate compound, matrix spike, LCS recoveries, internal standards data, and duplicate or triplicate analytical data are presented in the attached data review summaries.

Surrogate Compound Recoveries

The recoveries reported by the laboratory for the applicable surrogate compounds added to all field and quality control samples met the criteria for acceptable performance.

Matrix Spike Recoveries

The recoveries reported by the laboratory for the matrix spike analyses conducted for the low resolution PCB congener analyses and the frequency of analysis met the criteria for acceptable performance, with the following exception. A recovery of 68 percent was reported for PCB 31/28) and is slightly below the project-established lower control limit of 70 percent. No data required qualification because the concentration of PCB 31/28 in the natural sample was at a much greater concentration (180 ng/g) than the amount spiked (7.6 ng/kg) in to the sample.

Matrix spike analyses were not conducted for the analysis of PCDDs/Fs or for the HRGC/HRMS PCB congener analyses nor are they required. The lack of matrix spike data does not affect the overall quality of the data set because the analytical method are an isotope dilution technique, and as such each sample is essentially a "matrix spike" (i.e., isotopically labeled surrogate compounds and internal standards are added to each sample).

Laboratory Control Sample Recoveries

The recoveries reported by the laboratory for all applicable LCS analyses (i.e. reference material samples and ongoing precision and recovery samples) and the frequency of analysis met the criteria for acceptable performance. Analyses of ongoing precision and recovery (OPR) samples, as specified by EPA Method 1613B, was completed with each set of analyses. The OPR sample analyses are laboratory blanks spiked with known concentrations of target analytes. The OPRs are processed and analyzed exactly like the samples to assess the adequacy of laboratory performance in the absence of potential matrix effects/interferences.

Internal Standard Performance

Criteria for retention time and area count were met of all applicable internal standards added to all samples analyzed for organic target analytes.

Precision

The results reported by the laboratory for duplicate analyses and the frequency of analysis met the criteria for acceptable performance.

Some of the relative percent differences (RPDs) between the duplicate results reported for the PCB congener analyses were above the project-established control limit of 50 percent. No data were qualified for these elevated RPDs because elevated RPDs are expected when concentrations of the target analytes are near the detection limits and any slight variability will result in elevated RPDs.

For the analysis of PCDDs/Fs, Sample SR-S2-FT-F3 was analyzed in duplicate. The ± 50 RPD project-specific control limit was met, with five exceptions. Elevated RPDs were reported for 1,2,3,4,6,7,8-HpCDD (124 RPD); OCDD (132 RPD); 1,2,3,4,6,7,8-HpCDF (93 RPD); Total Hepta Dioxins (110 RPD); and, Total Hepta Furans (69 RPD). No sample results were qualified on the basis of these duplicate sample results because the concentrations of the affected PCDDs/Fs were very low and are well below the routine reporting limits specified by the analytical method. These elevated RPDs are not unusual because any slight change of concentrations when near the detection limits will result in elevated RPDs.

TARGET ANALYE IDENTIFICATION

All criteria for the identification of target analytes reported as detected or undetected, as specified in the applicable analytical methods, were met. Complete details of target analyte identifications are presented in the attached data review summaries.

In some instances some results reported for the analysis of PCB congeners by low resolution gas chromatography/mass spectrometry were flagged 'NDR' by the laboratory to indicate that the ion ratios failed method-specific criteria. None of these results were additionally qualified during the data review because other identification criteria were met, such as retention times and the actual presence of the appropriate ions.

METHOD DETECTION LIMITS AND METHOD REPORTING LIMITS

The method detection limits (MDLs) and method reporting limits (MRLs) used by the laboratories met project DQOs; however, in some instances elevated MDLs/MRLs were reported for some samples and target analytes. Elevated MDLs/MRLs were reported because dilutions were necessary to conduct the analyses because elevated concentrations of target analytes, matrix interferences present in the samples, or both, prevented reliable identification and quantification of the target analytes. Complete details of MDLs/MRLs are presented in the attached data review summaries.

FIELD QUALITY CONTROL SAMPLES

No field quality control samples are known to be associated with the analysis of the fish tissue samples.

.

REFERENCES

PSEP. 1991. A project manager's guide to requesting and evaluating chemical analyses. Prepared by PTI Environmental Services, Bellevue, WA. U.S. Environmental Protection Agency Region 10, Puget Sound Estuary Program, Seattle, WA.

U.S. EPA. 1993. USEPA contract laboratory program national functional guidelines for dioxin/furan data validation. Draft, April 1993. Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, DC.

U.S. EPA. 1994. USEPA contract laboratory program national functional guidelines for organic data review. EPA 540/R-94/012. February 1994. Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, DC.

U.S. EPA. 1995. QA/QC guidance for sampling and analysis of sediments, water, and tissues for dredged material evaluations-chemical evaluations. EPA 823-B-95-001. April, 1995. Office of Water, Office of Science and Technology, Standards and Applied Science Division, U.S. Environmental Protection Agency, Washington, DC.

APPENDIX A-3

WDNR Food Chain Study Results

Table A3-1.	Results of the PCB analyses of sediment samples collected for the WDNR food chain study
Table A3-2.	Results of the PAH analyses of sediment samples collected for the WDNR food chain study
Table A3-3.	Results of the metals analyses of sediment samples collected for the WDNR food chain study
Table A3-4.	Results of the PCB analyses of tissue samples collected for the WDNR food chain study
Table A3-5.	Results of the PAH analyses of tissue samples collected for the WDNR food chain study
Table A3-6.	Results of the metals analyses of crayfish and emergent and larval insect tissue samples collected for the WDNR food chain study
Table A3-7.	Results of the PCB congener analyses of small mammal tissue samples collected for the WDNR food chain study

Table A3-1. Continued

			PCB019)	PCB022		PCB024/0)27	PCB026	6	PCB031/0	28	PCB03	3
	<u> </u>		(ug/kg)	_	(ug/kg)	_	(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)	
	Sample		Conc	Q		Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
603363		Camp Marina	7.5		12		14		33		150			U*I
603364	6B	Camp Marina	11		13		18		44		160			U*I
603365	6C	Camp Marina	6.8		15		17		38		180		25	U*I
603366	6D	Camp Marina	8.7		14		15		34		160		23	U*I
603367	6E	Camp Marina	5.9		7.9		8.3		27		98		16	U*I
603368	5A	Kiwanis Park	7		19		20		49		200		30	U*I
603369	5B	Kiwanis Park	8.4		17		16		47		210		32	U*I
603370	5C	Kiwanis Park	3.9		8.2		6.5		18		110		12	U*I
603371	5D	Kiwanis Park	6.2		14		11		29		150		20	U*I
603372	ЗA	Between Kohler Dams	21		20		33		50		240		42	U*I
603373	3B	Between Kohler Dams	24		27		30		73		220		43	U*I
603374	3C	Between Kohler Dams	21		16		27		42		180		31	U*I
603375	3D	Between Kohler Dams	71		26		81		99		320		71	U*I
603376	3E	Between Kohler Dams	51		35		57		98		370		64	U*I
603377	2A	Rochester Park	30		23		32		47		210		37	U*I
603378	2B	Rochester Park	43		65		44		100		470		74	U*I
603379	2C	Rochester Park	46		26		50		63		330		51	U*I
603380	2D	Rochester Park	270		89		280		300		1500		190	U*I
603381	2E	Rochester Park	46		160		45		190		820		160	U*I
603392	1A	Control	0.3	U	0.6 L	J	0.3	U	0.35	U	1.4	U	0.45	U
603393	1B	Control	0.3	U	0.6 L	J	0.3	U	0.35	U	1.4	U	0.45	U
603394	1C	Control	0.3	U	0.6 L	J	0.3	U	0.35	U	1.4	U	0.45	U
603395	1D	Control	0.3	U	0.6 L	J	0.3	U	0.35	U	1.4	U	0.45	U
603396	1E	Control	0.3	U	0.6 L	J	0.3	U	0.35	U	1.4		0.45	U

			PCB037/0	42	PCB040)	PCB041/071/	006			PCB04	5	PCB04	6
	. .		(ug/kg)	_	(ug/kg)	_	(ug/kg)	-	(ug/kg)		g/kg)	-	(ug/kg)	
	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc C	<u> </u>	onc	Q	Conc	Q
603363		Camp Marina	32		7.3		60		45		6.2		2.4	
603364		Camp Marina	36		8.8		64		52		6.9		5.9	
603365		Camp Marina	36		9.9		76		58		8.1		3.4	
603366	6D	Camp Marina	34		9.5		72		56		7.8		3.4	
603367	6E	Camp Marina	22		5.6		40		32		4.3		2.4	
603368	5A	Kiwanis Park	43		11		87		62		8.5		3.8	
603369	5B	Kiwanis Park	44		12		83		64		8.8		4.9	
603370	5C	Kiwanis Park	19		5.2		45		35		4.4		1.6	
603371	5D	Kiwanis Park	33		8.8		74		59		7.4		2.8	
603372	ЗA	Between Kohler Dams	59		16		130		100		16		5.8	
603373	3B	Between Kohler Dams	67		19		130		110		18		7.2	
603374	3C	Between Kohler Dams	37		9.9		78		54		11		4.5	
603375	3D	Between Kohler Dams	74		19		160		110		27		8.4	
603376	3E	Between Kohler Dams	84		25		180		140		29		9.6	
603377	2A	Rochester Park	49		16		110		87		17		6.1	
603378	2B	Rochester Park	110		39		250		200		38		15	
603379	2C	Rochester Park	56		18		120		98		20		6.6	
603380	2D	Rochester Park	220		57		510		340		92		30	
603381	2E	Rochester Park	250		100		530		500		84		41	
603392	1A	Control	0.4	U	0.3	U	0.5	U	0.3 U		0.3	U	0.35	U
603393	1B	Control	0.4	U	0.3	U	0.5	U	0.3 U		0.3	U	0.35	U
603394	1C	Control	0.4	U	0.3	U	0.5	U	0.3 U		0.3	U	0.35	U
603395	1D	Control	0.4	U	0.3	U	0.5	U	0.3 U		0.3	U	0.44	U*I
603396	1E	Control	0.4	U	0.3	U	0.5	U	0.3 U		0.3	U	0.35	U

			PCB047/0	48	PCB049		PCB052	2	PCB056/0	60	PCB066/0	95	PCB070/0)76
			(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)	
		Location	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
603363	6A	Camp Marina	120		57		62		48		100		63	
603364		Camp Marina	160		73		74		42		92		60	
603365	6C	Camp Marina	130		65		73		56		120		78	
603366	6D	Camp Marina	130		62		69		54		120		75	
603367	6E	Camp Marina	74		41		45		30		64		42	
603368	5A	Kiwanis Park	160		77		84		62		130		83	
603369	5B	Kiwanis Park	150		85		87		56		130		82	
603370	5C	Kiwanis Park	67		36		42		38		78		53	
603371	5D	Kiwanis Park	110		57		69		60		120		80	
603372	3A	Between Kohler Dams	250		110		120		92		200		110	
603373	3B	Between Kohler Dams	220		110		140		71		160		91	
603374	3C	Between Kohler Dams	170		67		73		43		98		57	
603375	3D	Between Kohler Dams	410		150		150		76		230		100	
603376	3E	Between Kohler Dams	370		150		170		94		250		130	
603377	2A	Rochester Park	200		86		99		70		150		98	
603378	2B	Rochester Park	340		180		210		160		320		200	
603379	2C	Rochester Park	250		100		110		69		150		100	
603380	2D	Rochester Park	1300		430		480		200		780		280	
603381	2E	Rochester Park	500		360		480		350		700		550	
603392	1A	Control	0.5	U	0.3 L	J	0.3	U	0.8	U	0.6	U	0.45	U
603393	1B	Control	0.5	U	0.3 L	J	0.3	U	0.8	U	0.7		0.53	
603394	1C	Control	0.5	U	0.3 L	J	0.3	U	0.8	U	0.71	U*I	0.53	U*I
603395	1D	Control	0.5	U	0.3 L	J	0.38	U*I	0.8	U	0.88		0.89	U*I
603396	1E	Control	0.5	U	0.3 L	J	0.3	U	0.8	U	0.81		0.9	U*I

			PCB074	ļ	PCB07	7	PCB077/11	0	PCB082	-	PCB084/0	92	PCB08	5
			(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)	
Station	Sample	Location	Conc	Q	Conc	Q	Conc (Q	Conc	Q	Conc	Q	Conc	Q
603363	6A	Camp Marina	31		5.8		92		8.2		42		10	
603364	-	Camp Marina	29		5.6		93		7.3		44		8.3	
603365	6C	Camp Marina	39		8		110		10		52		12	
603366	6D	Camp Marina	36		7.9		100		10		50		12	
603367	6E	Camp Marina	20		4		59		5		27		6.9	
603368	5A	Kiwanis Park	44		7.3		120		11		57		12	
603369	5B	Kiwanis Park	40		7.5		120		10		60		15	
603370	5C	Kiwanis Park	25		4.6		69		6.8		30		10	
603371	5D	Kiwanis Park	39		6.2		98		9.9		47		15	
603372	3A	Between Kohler Dams	61		10		190		18		99		30	
603373	3B	Between Kohler Dams	51		8.6		170		14		94		22	
603374	3C	Between Kohler Dams	35		5.2		100		7.6		52		11	
603375	3D	Between Kohler Dams	57		9		210		13		110		18	
603376	3E	Between Kohler Dams	69		9.8		230		16		130		26	
603377	2A	Rochester Park	47		7		130		12		75		22	
603378	2B	Rochester Park	110		15		280		29		160		52	
603379	2C	Rochester Park	51		7.3		150		11		79		20	
603380	2D	Rochester Park	180		27		720		46		390		79	
603381	2E	Rochester Park	220		30		590		69		350		120	
603392	1A	Control	0.85	U*I	0.2	U	0.53		0.3	U	0.7	U	0.76	U*I
603393	1B	Control	0.65	U*I	0.2	U	0.82		0.3	U	0.7	U	0.79	U*I
603394	1C	Control	0.95	U*I	0.2	U	0.68		0.3	U	0.7	U	0.65	U*I
603395	1D	Control	0.86	U*I	0.2	U	1.2		0.3	U	0.7	U	1.3	U*I
603396	1E	Control	0.54	U*I	0.2	U	1		0.3	U	0.7	U	1.1	U*I

			PCB087	,	PCB091		PCB097	7	PCB099)	PCB10 ²	1	PCB10	5
			(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)	
Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
603363	6A	Camp Marina	23		24		18		26		38		24	
603364	6B	Camp Marina	18		34		16		23		39		19	
603365	6C	Camp Marina	28		28		22		31		45		30	
603366	6D	Camp Marina	27		27		21		29		44		29	
603367	6E	Camp Marina	14		16		11		15		23		15	
603368	5A	Kiwanis Park	30		32		23		33		47		34	
603369	5B	Kiwanis Park	28		33		23		32		48		30	
603370	5C	Kiwanis Park	20		15		14		19		29		20	
603371	5D	Kiwanis Park	28		24		21		28		41		29	
603372	3A	Between Kohler Dams	48		52		39		53		79		47	
603373	3B	Between Kohler Dams	38		48		33		45		65		34	
603374	3C	Between Kohler Dams	21		32		19		27		40		19	
603375	3D	Between Kohler Dams	37		75		37		55		85		33	
603376	3E	Between Kohler Dams	45		72		44		62		94		37	
603377	2A	Rochester Park	34		39		29		39		57		29	
603378	2B	Rochester Park	81		74		65		79		120		66	
603379	2C	Rochester Park	31		42		29		40		59		25	
603380	2D	Rochester Park	140		230		140		210		300		100	
603381	2E	Rochester Park	210		140		150		170		280		160	
603392	1A	Control	0.62		0.4	U	0.3	U	0.32	U*I	0.3	U	0.2	U
603393	1B	Control	0.63		0.4	U	0.3	U	0.3	U	0.3	U	0.23	
603394	1C	Control	0.63		0.4	U	0.3	U	0.36	U*I	0.3	U	0.2	U
603395	1D	Control	0.69		0.4	U	0.3	U	0.7	U*I	0.3	U	0.34	
603396	1E	Control	0.7		0.4	U	0.3	U	0.61	U*I	0.3	U	0.28	

			PCB118	3	PCB12	3	PCB126	3	PCB128		PCB132/1	53	PCB13	6
			(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)	
Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
603363	6A	Camp Marina	45		2.3	U*I	0.26		6.3		35		1.9	
603364	6B	Camp Marina	39		2	U*I	0.2		5.6		34		2.1	
603365	6C	Camp Marina	55		2.6	U*I	0.41	U*I	8		42		2	
603366	6D	Camp Marina	53		2.9	U*I	0.3	U*I	8		42		2.1	
603367	6E	Camp Marina	26		2.6	U*I	0.2	U	3.7		21		1.3	
603368	5A	Kiwanis Park	59		3	U*I	0.2	U	8.7		44		2.1	
603369	5B	Kiwanis Park	55		3	U*I	0.23	U*I	8.6		44		3.2	
603370	5C	Kiwanis Park	35		1.1	U*I	0.2	U	5.1		26		1.5	
603371	5D	Kiwanis Park	48		1.4	U*I	0.2	U	6.8		35		2.2	
603372	3A	Between Kohler Dams	89		3.3	U*I	0.27		13		76		6	
603373	3B	Between Kohler Dams	68		2.5	U*I	0.36	U*I	11		62		5.6	1
603374	3C	Between Kohler Dams	40		3.5	U*I	0.23	U*I	5.9		42		3	
603375	3D	Between Kohler Dams	79		4.7	U*I	0.2	U	12		86		7.7	
603376	3E	Between Kohler Dams	88		4.9	U*I	0.35	U*I	14		92		8.6	
603377	2A	Rochester Park	59		2.3	U*I	0.26	U*I	8.7		51		4.7	
603378		Rochester Park	120		3.3		0.6		17		89		8.6	1
603379	2C	Rochester Park	60		2.7	U*I	0.22	U*I	8.4		52		4.6	1
603380	2D	Rochester Park	290		15	U*I	1.2	U*I	47		330		31	
603381	2E	Rochester Park	290		9	U*I	0.65	U*I	47		220		20	
603392		Control	0.45	U			0.22		0.5		0.56		0.38	U*I
603393	1B	Control	0.54		0.2	U	0.2	U	0.5	J	0.82		0.4	U*I
603394	1C	Control	0.46		0.2	U	0.2	U	0.5	U	0.71		0.32	U*I
603395	1D	Control	0.82		0.2		0.2	U	0.5		1.3		0.64	
603396	1E	Control	0.76		0.2	U	0.2	U	0.5	U	1.2		0.55	U*I

			PCB137/1	176	PCB138/1	63	PCB141	PCB144/135	PCB146	PCB149
			(ug/kg)		(ug/kg)		(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Station	Sample	Location	Conc	Q	Conc	Q	Conc Q	Conc Q	Conc Q	Conc Q
603363	6A	Camp Marina	2.2	U*I	39		4.2 U	5.6	6.8	23
603364	-	Camp Marina		U*I	39		4 U*I	6.7	8.5	24
603365	6C	Camp Marina	2.7	U*I	48		5.3 U*I	6.8	8.4	27
603366	6D	Camp Marina	2.7	U*I	47		5.3 U*I	6.5	8.3	27
603367	6E	Camp Marina		U*I	23		2.6 U*I	3.1	3.7	13
603368	5A	Kiwanis Park	3	U*I	52		5.6 U*I	7.3	9	29
603369	5B	Kiwanis Park			50		5.4 U*I	7.5	8.8	30
603370	5C	Kiwanis Park	1.9	U*I	31		3.5 U*I	3.7	4.7	16
603371	5D	Kiwanis Park	3.4	U*I	41		4.8 U*I	5.4	6.7	23
603372	3A	Between Kohler Dams	4.7	U*I	83		9.1 U*I	13	15	51
603373	3B	Between Kohler Dams			66		7.6 U*I	11	13	42
603374	3C	Between Kohler Dams	2.2	U*I	40		4.1 U*I	7.4	9.2	28
603375	3D	Between Kohler Dams			82		8.2 U*I	18	20	63
603376	3E	Between Kohler Dams			90		9 U*I	18	21	64
603377	2A	Rochester Park			53		6.1 U*I	9.1	11	33
603378		Rochester Park			100		13 U*I	14	17	57
603379	2C	Rochester Park			50		5.5 U*I	9	11	34
603380	2D	Rochester Park			290		33 U*I	57	70	200
603381	2E	Rochester Park			260		36 U*I	31	39	130
603392	1A	Control	0.3	U	0.57		0.3 U	0.3 U	0.35 U	0.3 U
603393	1B	Control	0.45	U*I	0.86		0.3 U	0.3 U	0.35 U	0.33
603394	1C	Control	0.39	U*I	0.74		0.3 U	0.3 U	0.35 U	0.3 U
603395	1D	Control	0.3	U*I	1.4		0.3 U	0.3 U	0.35 U	0.5
603396	1E	Control	0.3	U	1.3		0.3 U	0.3 U	0.35 U	0.48

			PCB151	1	PCB15	6	PCB157		PCB16	7	PCB16	9	PCB170/	190
			(ug/kg)		(ug/kg)		(ug/kg)	(1	ug/kg)		(ug/kg)		(ug/kg)	
Station	Sample	Location	Conc	Q	Conc	Q	Conc (Q (Conc	Q	Conc	Q	Conc	Q
603363	6A	Camp Marina	6		4.1		1.1		1.4		0.2	U	8.4	
603364	6B	Camp Marina	8		3.2		0.93		1.2		0.2	U	12	
603365	6C	Camp Marina	7.2		4.6		1.4		1.7		0.2	U	10	1
603366	6D	Camp Marina	7.1		4.5		1.3		1.7		0.2	U	9.9	1
603367	6E	Camp Marina	3.5		2.3		0.69		0.85		0.2	U	5.2	
603368	5A	Kiwanis Park	7.8		5.3		1.4		1.9		0.2	U	11	
603369	5B	Kiwanis Park	8		4.9		1.5		1.8		0.2	U	11	
603370	5C	Kiwanis Park	3.9		3		0.92		1		0.2	U	5.7	
603371	5D	Kiwanis Park	5.9		3.9		1.2		1.4		0.2	U	8.2	
603372	ЗA	Between Kohler Dams	13		7.9		2.3		2.8		0.2	U	18	
603373	3B	Between Kohler Dams	12		6.7		2		2.4		0.2	U	15	
603374	3C	Between Kohler Dams	7.5		3.5		1.1		1.3		0.2	U	10	
603375	3D	Between Kohler Dams	18		7.1		2.2		2.7		0.2	U	19	1
603376	3E	Between Kohler Dams	18		7.9		2.3		2.8		0.25	U*D	19	
603377	2A	Rochester Park	9		5		1.6		1.9		0.2	U	11	
603378		Rochester Park	15		10		3		3.5		0.27		21	
603379	2C	Rochester Park	9.2		4.5		1.3		1.8		0.2	U	11	
603380	2D	Rochester Park	56		26		8		9.8		0.64	U*D	63	
603381	2E	Rochester Park	33		27		8.1		9.3		0.5	U*D	48	
603392	1A	Control	0.3	U	0.2	U	0.2 U	J	0.5	U	0.2	U	0.7	U
603393	1B	Control	0.3	U	0.2	U	0.2 U	J	0.5	U	0.2	U	0.7	Ū
603394	1C	Control	0.3	U	0.2	U	0.2 U	J	0.5	U	0.2	U	0.7	U
603395	1D	Control	0.3	U	0.2	U	0.2 U	J	0.5	U	0.2	U	0.7	' U
603396	1E	Control	0.3	U	0.2	U	0.2 U	J	0.5	U	0.2	U	0.7	U

			PCB171/2	202	PCB172/1	97	PCB174	PCB177	PCB178	PCB180
			(ug/kg)		(ug/kg)		(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
		Location	Conc	Q	Conc	Q	Conc Q	Conc Q	Conc Q	
603363	6A	Camp Marina	1.1		1.1		3	2.9	1.1	7.5
603364	6B	Camp Marina	2		2		3.9	4.7	2.8	12
603365	6C	Camp Marina	1.4	U*I	1.3		3.4	3.6	1.3	8.2
603366	6D	Camp Marina	1.4	U*I	1.3		2.8	3.2	1.4	8.1
603367	6E	Camp Marina	0.74				1.9	1.6	0.64	4.6
603368	5A	Kiwanis Park	1.4		1.4		3.5	3.6	1.5	9
603369	5B	Kiwanis Park	1.4	U*I	1.3		2.5 U*I	3.4	1.5	8.7
603370	5C	Kiwanis Park					1.9	1.7	0.63	4.6
603371	5D	Kiwanis Park	0.96		1		2.7	2.5	0.92	6.6
603372	3A	Between Kohler Dams	2.4		2.2		5.9	6.5	2.4	14
603373	3B	Between Kohler Dams	1.9		1.9		4.7	5.2	2.1	12
603374	3C	Between Kohler Dams	1.4		1.3		3	3.7	1.5	8
603375	3D	Between Kohler Dams	2.9		2.5		4.9	8.2	3.7	15
603376	3E	Between Kohler Dams	2.8	U*I	2.5		4.7	5.9	3.6	16
603377	2A	Rochester Park	1.7	U*I	1.6		3.8	4.3	1.8	10
603378	2B	Rochester Park	2.9	U*I	2.6		7.3	7.1	2.4	17
603379	2C	Rochester Park	1.6	U*I	1.4		3.6 U*I	3.9	2	9.1
603380	2D	Rochester Park	7.2		7.6		19	22	8.2	45
603381	2E	Rochester Park	6.1		5.9		16	13	4.1	38
603392	1A	Control	0.3	U	0.5	U	0.3 U	0.35 U	0.4 U	0.35 U
603393	1B	Control	0.3	U	0.5	U	0.3 U	0.35 U	0.4 U	0.35 U
603394	1C	Control	0.3	U	0.5	U	0.3 U	0.35 U	0.4 U	0.35 U
603395	1D	Control	0.3	U	0.5	U	0.3 U	0.35 U	0.4 U	0.35 U
603396	1E	Control	0.3	U	0.5	U	0.3 U	0.35 U	0.4 U	0.35 U

			PCB183	3	PCB18	5	PCB187/182	PCB194	PCB195/208	PCB196/203
			(ug/kg)		(ug/kg)		(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Station	Sample	Location	Conc	Q	Conc	Q	Conc Q	Conc Q	Conc Q	Conc Q
603363	6A	Camp Marina	2.3				3	1.5	1.7	2.5
603364	6B	Camp Marina	3.5				6.8	5.2	5.1	7.7
603365	6C	Camp Marina	2.7				2.8	1.5	1.9	2.6
603366	6D	Camp Marina	2.8				2.6	1.4	1.7	2.5
603367	6E	Camp Marina	1.4				2	0.95		1.6
603368	5A	Kiwanis Park	2.8				3.8	1.6	2	2.8
603369	5B	Kiwanis Park	2.9				3.8	1.4	1.7	2.4
603370	5C	Kiwanis Park	1.5				2.1	0.69		
603371	5D	Kiwanis Park	2.1				3.3	1	1.4	1.8
603372	3A	Between Kohler Dams	4.7				5	2.8	3.2	4.6
603373	3B	Between Kohler Dams	4		0.58		5.5	2.2	2.6	3.8
603374	3C	Between Kohler Dams	2.6				4	1.6	1.9	2.8
603375	3D	Between Kohler Dams	5.2				8.6	3.3	3.6	5.8
603376	3E	Between Kohler Dams	5.4				5.1	2.9	3.5	5
603377	2A	Rochester Park	3.3				2.9	1.9	2.2	3.3
603378	2B	Rochester Park	5.8				7.4	3	3.6	5.1
603379	2C	Rochester Park	3.1				2.4 U*I	1.6	2	2.6
603380	2D	Rochester Park	16				28	6.4	7.8	12
603381	2E	Rochester Park	13				16	4.4	5.3 U*I	8
603392	1A	Control	0.4	U	0.3	U	0.4 U	0.5 U	0.7 U	0.7 U
603393	1B	Control	0.4	U	0.3	U	0.4 U	0.5 U	0.7 U	0.7 U
603394	1C	Control	0.4	U	0.3	U	0.53 U*I	0.5 U	0.7 U	0.7 U
603395	1D	Control	0.4	U	0.3	U	0.4 U	0.5 U	0.7 U	0.7 U
603396	1E	Control	0.4	U	0.3	U	0.4 U	0.5 U	0.7 U	0.7 U

Table A3-1. Continued

			PCB199 (ug/kg)	9	PCB20 [°] (ug/kg)	1	PCB20 (ug/kg)	6
Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q
603363	6A	Camp Marina			2.2		0.84	
603364	6B	Camp Marina			6.3		2.5	
603365	6C	Camp Marina			2.2			
603366	6D	Camp Marina			2.1			
603367	6E	Camp Marina			1.4			
603368	5A	Kiwanis Park			2.5		1	
603369	5B	Kiwanis Park			2			
603370	5C	Kiwanis Park			1			
603371	5D	Kiwanis Park			1.6			
603372	3A	Between Kohler Dams			3.8		1.9	U*I
603373	3B	Between Kohler Dams			3.1		0.86	
603374	3C	Between Kohler Dams			2.3			
603375	3D	Between Kohler Dams			4.8			
603376	3E	Between Kohler Dams			4.2			
603377	2A	Rochester Park			2.8		1.1	
603378	2B	Rochester Park			4.3			
603379	2C	Rochester Park			2.5			
603380	2D	Rochester Park			9.8			
603381	2E	Rochester Park			6.2			
603392	1A	Control	0.3	U	0.5	U	0.4	U
603393	1B	Control	0.3	U	0.5	U	0.4	U
603394	1C	Control	0.3	U	0.5	U	0.4	U
603395	1D	Control	0.3	U	0.5		0.4	U
603396	1E	Control	0.3	U	0.5	U	0.4	U

		Organic carbo	n, total	Acenaphthe	ne	Acenaphthy	lene	Anthracene	
		(mg/kg)		(ug/kg)		(ug/kg)		(ug/kg)	
Station Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc	Q
603363 6A	Camp Marina	21300		100	U	100	U	110	
603364 6B	Camp Marina	24000							
603365 6C	Camp Marina	33200		220		100	U	240	
603365 6DUP	Camp Marina			400		110		460	
603365 6DUPPAH	Camp Marina	66500		400000		16000		330000	
603366 6D	Camp Marina	35900		220		220		300	
603367 6E	Camp Marina	9300							
603368 5A	Kiwanis Park	35100		100	U	100	U	130	
603368 5DUP	Kiwanis Park			100	U	100	U	100	U
603369 5B	Kiwanis Park	10200		100	U	100	U	100	U
603370 5C	Kiwanis Park	8740		100	U	100	U	100	U
603371 5D	Kiwanis Park	12500							
603372 3A	Between Kohler Dams	20100		100	U	100	U	100	U
603373 3B	Between Kohler Dams	20800							
603374 3C	Between Kohler Dams	10200							
603375 3D	Between Kohler Dams	30800		100	U	100	U	100	U
603375 3DUP	Between Kohler Dams			100	U	100	U	100	U
603376 3E	Between Kohler Dams	33100		100	U	100	U	100	U
603377 2A	Rochester Park	23100		100	U	100	U	100	U
603378 2B	Rochester Park	33600							
603379 2C	Rochester Park	19500		100	U	100		100	U
603380 2D	Rochester Park	16200		500	U*D	500	U*D	670	
603381 2E	Rochester Park	14100							
603392 1A	Control	22100							
603393 1B	Control	22600		100	U	100	U	100	U
603394 1C	Control	23200							
603395 1D	Control	40900		100	U	100	U	100	U
603396 1E	Control	34300		100	U	100	U	100	U

		Benz(a)anthrace	ene	Dibenz(a,h)a	nthracene	Benzo(a)pyr	ene	Benzo(b)flue	oranthene
		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)	
Station Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc	Q
603363 6A	Camp Marina	420		100	U	400		440	
603364 6B	Camp Marina								
603365 6C	Camp Marina	800		100		600		760	
603365 6DUP	Camp Marina	1400		100	U	820		860	
603365 6DUPPAH	Camp Marina	180000		13000		210000		170000	
603366 6D	Camp Marina	1800		100	U	1000		1200	
603367 6E	Camp Marina								
603368 5A	Kiwanis Park	730		100	U	640		770	
603368 5DUP	Kiwanis Park	420		100	U	440		580	
603369 5B	Kiwanis Park	100 U		100	U	100	U	100	U
603370 5C	Kiwanis Park	100 U		100	U	100	U	100	U
603371 5D	Kiwanis Park								
603372 3A	Between Kohler Dams	100 U		100	U	100	U	100	U
603373 3B	Between Kohler Dams								
603374 3C	Between Kohler Dams								
603375 3D	Between Kohler Dams	120		100	U	110		180	
603375 3DUP	Between Kohler Dams	120		100	U	120		190	
603376 3E	Between Kohler Dams	100 U		100	U	170		100	U
603377 2A	Rochester Park	100 U		100	U	100	U	100	U
603378 2B	Rochester Park								
603379 2C	Rochester Park	100 U		100	U	100	U	130	
603380 2D	Rochester Park	1800		500	U*D	1500		2100	
603381 2E	Rochester Park								
603392 1A	Control								
603393 1B	Control	100 U		100	U	100	U	100	U
603394 1C	Control								
603395 1D	Control	100 U		100	U	100	U	100	U
603396 1E	Control	100 U		100	U	100	U	100	U

		Benzo(e)pyre	ene	Benzo(g,h,i)	perylene	Benzo(k)fluc	oranthene	Chrysene	
		(ug/kg)	-	(ug/kg)	-	(ug/kg)	-	(ug/kg)	-
Station Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc	Q
603363 6A	Camp Marina	320		160		220		380	
603364 6B	Camp Marina								
603365 6C	Camp Marina	480		100	-	380		600	
603365 6DUP	Camp Marina	560		100	U	420		920	
603365 6DUPPAH	Camp Marina	90000		43000		67000		130000	
603366 6D	Camp Marina	790		380		480		1400	
603367 6E	Camp Marina								
603368 5A	Kiwanis Park	480		190		320		700	
603368 5DUP	Kiwanis Park	400		160		240		400	
603369 5B	Kiwanis Park	100	U	100	U	100	U	100	
603370 5C	Kiwanis Park	100	U	100	U	100	U	100	U
603371 5D	Kiwanis Park								
603372 3A	Between Kohler Dams	100	U	100	U	100	U	100	U
603373 3B	Between Kohler Dams								
603374 3C	Between Kohler Dams								
603375 3D	Between Kohler Dams	100	U	100	U	100	U	100	
603375 3DUP	Between Kohler Dams	100	U	100	U	100	U	110	
603376 3E	Between Kohler Dams	180		100	U	100	U	130	
603377 2A	Rochester Park	100	U	100	U	100	U	100	U
603378 2B	Rochester Park								
603379 2C	Rochester Park	100	U	100	U	100	U	100	U
603380 2D	Rochester Park	1000		540		920		1600	
603381 2E	Rochester Park								
603392 1A	Control								
603393 1B	Control	100	U	100	U	100	U	100	U
603394 1C	Control								
603395 1D	Control	100	U	100	U	100	U	100	U
603396 1E	Control	100		100	U	100		100	

		Fluoranthene		Fluorene		Indeno(1,2,3	-c,d)pyrene	Perylene	
		(ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)	
Station Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc	Q
603363 6A	Camp Marina	1200		100	U	140		110	
603364 6B	Camp Marina								
603365 6C	Camp Marina	1900		170		250		170	
603365 6DUP	Camp Marina	2400		320		260		240	
603365 6DUPPAH	Camp Marina	290000		250000		56000		27000	
603366 6D	Camp Marina	2200		190		460		260	
603367 6E	Camp Marina								
603368 5A	Kiwanis Park	2400		100		260		150	
603368 5DUP	Kiwanis Park	1600		100	U	200		120	
603369 5B	Kiwanis Park	190		100	U	100		100	
603370 5C	Kiwanis Park	130		100	U	100	U	100	U
603371 5D	Kiwanis Park								
603372 3A	Between Kohler Dams	120		100	U	100	U	100	U
603373 3B	Between Kohler Dams								
603374 3C	Between Kohler Dams								
603375 3D	Between Kohler Dams	300		100	U	100	U	100	U
603375 3DUP	Between Kohler Dams	310		100	U	100	U	100	U
603376 3E	Between Kohler Dams	240		100	U	100	U	120	
603377 2A	Rochester Park	160		100	U	100	U	100	U
603378 2B	Rochester Park								
603379 2C	Rochester Park	160		100	U	100	U	100	U
603380 2D	Rochester Park	5200		500	U*D	680		500	U*D
603381 2E	Rochester Park								
603392 1A	Control								
603393 1B	Control	100 U		100	U	100	U	100	U
603394 1C	Control								
603395 1D	Control	100 U		100	U	100	U	100	U
603396 1E	Control	100 U		100	U	100	U	100	U

Table A3-2. Results of the PAH analyses of sediment samples collected for the WDNR food chain study	

			Phenanthrei	ne	Pyrene	
			(ug/kg)		(ug/kg)	
Station	Sample	Location	Conc	Q	Conc	Q
603363	6A	Camp Marina	560		1000	
603364	6B	Camp Marina				
603365	6C	Camp Marina	1200		1900	
603365	6DUP	Camp Marina	2000		2800	
603365	6DUPPAH	Camp Marina	840000		340000	
603366	6D	Camp Marina	1300		2900	
603367	6E	Camp Marina				
603368	5A	Kiwanis Park	940		2100	
603368	5DUP	Kiwanis Park	600		1300	
603369	5B	Kiwanis Park	160		140	
603370	5C	Kiwanis Park	100	U	100	U
603371	5D	Kiwanis Park				
603372	3A	Between Kohler Dams	100	U	100	U
603373	3B	Between Kohler Dams				
603374	3C	Between Kohler Dams				
603375	3D	Between Kohler Dams	160		220	
603375	3DUP	Between Kohler Dams	180		230	
603376	3E	Between Kohler Dams	130		200	
603377	2A	Rochester Park	100	U	120	
603378	2B	Rochester Park				
603379	2C	Rochester Park	100	U	120	
603380	2D	Rochester Park	3500		4000	
603381	2E	Rochester Park				
603392	1A	Control				
603393	1B	Control	100	U	100	U
603394	1C	Control				
603395	1D	Control	100	U	100	U
603396	1E	Control	100	U	100	U

Table	A3-4.	Continued
IUNIC	$\pi v + \cdot$	oonunaoa

					PCB018	3	PCB019)	PCB022		PCB024/0	27	PCB026	
					(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)	
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
Crayfish		603384	. 9409	Control	1	U		U	1.2	U	1	U	0.8	U
Crayfish		603384	9410	Control	1	U	1	U	1.2		1	U	0.8	U
Cravfish		603384	9411	Control	1	U	1	U	1.2		1	U	0.8	
Cravfish		603385	9409	Rochester Park	3.4				9.5				23	
Crayfish		603385	9410	Rochester Park					11				22	-
Crayfish		603385	9411	Rochester Park	3.5				9.5				25	-
Crayfish		603386		Between Kohler Dams	3.3		1		14		2.7		34	-
Crayfish		603386	9410	Between Kohler Dams	3.6				15		3.3		36	-
Cravfish		603386	9411	Between Kohler Dams	3.4				13		2.6		38	
Crayfish		603387	9409	Esselingen Park	1.7		1	U	6.9		1.1		22	
Crayfish		603387	9410	Esselingen Park	1.9		1	U	7.8		1	U	25	-
Crayfish		603387	9411	Esselingen Park	2				6.2				25	-
Emergent Insects		603384	9401	Control	1	U	1	U	1.2	U	1	U	1.1	U*I
Emergent Insects		603384	9402	Control	1	U	1	U	1.2	U	1	U	0.8	U
Emergent Insects		603384	9403	Control	1	U	1	U	1.2	U	1	U	0.8	U
Emergent Insects		603384	9404	Control	1	U	1	U	1.2	U	1	U	0.8	U
Emergent Insects		603385	9401	Rochester Park	64		49		58		64		130	-
Emergent Insects		603385	9402	Rochester Park	110		54		120		84		230	-
Emergent Insects		603385	9403	Rochester Park	68		31		59		61		120	-
Emergent Insects		603385	9404	Rochester Park	68		43		57		69		130	-
Emergent Insects		603386	9401	Between Kohler Dams	87		100		67		150		240	-
Emergent Insects		603386	9402	Between Kohler Dams	74		73		68		130		260	-
Emergent Insects		603386	9403	Between Kohler Dams	36		31		40		67		120	
Emergent Insects		603386	9404	Between Kohler Dams	53		54		45		97		140	
Emergent Insects		603387	9401	Esselingen Park	33		37		54		54		110	
Emergent Insects		603387	9402	Esselingen Park	27		22		29		43		87	
Emergent Insects		603387	9403	Esselingen Park	33		25		39		52		110	
Emergent Insects		603387	9404	Esselingen Park	39		11		40		70		140	
Larval Insects		603384	9405	Control	1	U	1	U	1.2	U	1	U	0.8	U
Larval Insects		603384	9406	Control	1	U	1	U	1.2	U	1	U	0.8	U
Larval Insects		603384	9407	Control	1	U	1	U	1.2	U	1	U	0.8	U
Larval Insects		603384	9408	Control	1	U	1	U	1.2	U	1	U	0.8	U
Larval Insects		603385	9405	Rochester Park	79		15		93		49		110	
Larval Insects		603385	9406	Rochester Park	47		6.2		77		31		86	
Larval Insects		603385	9407	Rochester Park	70		17		85		46		100	
Larval Insects		603385	9408	Rochester Park	46		28		70		38		93	
Larval Insects		603386	9405	Between Kohler Dams	66		68		68		110		160	
Larval Insects		603386	9406	Between Kohler Dams	54		33		63		100		160	
Larval Insects		603386	9407	Between Kohler Dams	51		55		62		96		140	
Larval Insects		603386	9408	Between Kohler Dams	42		43		62		77		130	
Larval Insects		603387	9406	Esselingen Park	30		32		45		51		95	
Larval Insects		603387	9407	Esselingen Park	32		28		53		55		100	
Larval Insects		603387	9408	Esselingen Park	31		25		54		54		110	

					PCB018		PCB019)	PCB022		PCB024/027	PCB026	
					(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)	(µg/kg)	
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc Q	Conc	Q
Longnose Dace	Young of year	603388		Control	1.2			U	1.6		1 U	2.5	
Longnose Dace	Young of year	603388	9414	Control	1	U	1	U	1.2	U	1 U	0.8 L	J
Longnose Dace	Young of year	603388	9415	Control	1	U	1	U	1.2	U	1 U	0.8 L	J
Longnose Dace	Young of year	603389	9413	Rochester Park	44		63		38		69	58	
Longnose Dace	Young of year	603389	9414	Rochester Park	45		67		42		77	65	
Longnose Dace	Young of year	603389		Rochester Park	66		51		63		120	95	
Longnose Dace	Young of year	603390	9413	Esselingen Park	67		110		99		140	180	
Longnose Dace	Young of year	603390		Esselingen Park	70		100		67		160	160	
Longnose Dace	Young of year	603390		Esselingen Park	60		100		62		130	150	
Longnose Dace	Young of year	603391		Between Kohler Dams	53		39		53		130	120	
Longnose Dace	Young of year	603391		Between Kohler Dams	64		26		68		160	160	
Longnose Dace	Young of year	603391	9415	Between Kohler Dams	82		130		90		240	170	
Smallmouth Bass	Adult	603388							1.4			1.5	
Smallmouth Bass	Adult	603388		Control	1.3				1.4		1 U	0.97	
Smallmouth Bass	Adult	603388		Control							1 U	0.8 L	J
Smallmouth Bass	Young of year	603388		Control	1	U	1	U	1.2	J	1 U	0.8 L	
Smallmouth Bass	Young of year	603388		Control		U		U	1.2	-	1 U	0.8 L	-
Smallmouth Bass	Young of year	603388		Control		-	•		1.2		1 U	0.8 L	
Smallmouth Bass	Adult	603389		Rochester Park	83		60		140	-	83	280	
Smallmouth Bass	Adult	603389		Rochester Park	85		110		140		110	290	
Smallmouth Bass	Adult	603389		Rochester Park	78		74		110		87	200	
Smallmouth Bass	Young of year	603389		Rochester Park	99		170		84		180	200	
Smallmouth Bass	Young of year	603389		Rochester Park	93		110		82		180	190	
Smallmouth Bass	Young of year	603389		Rochester Park	61		32		67		94	140	
Smallmouth Bass	Adult	603390		Esselingen Park	68		26		71		92	180	
Smallmouth Bass	Adult	603390		Esselingen Park	77		34		84		110	250	
Smallmouth Bass	Adult	603390		Esselingen Park	59		18		68		84	170	
Smallmouth Bass	Young of year	603390		Esselingen Park	64		86		59		92	120	
Smallmouth Bass	Young of year	603390		Esselingen Park	93		120		82		130	170	
Smallmouth Bass	Young of year	603390		Esselingen Park	76		34		69		120	170	
Smallmouth Bass	Adult	603391	9401	0	71		120		95		110	210	
Smallmouth Bass	Adult	603391		Between Kohler Dams	58		91		73		92	180	
Smallmouth Bass	Adult	603391		Between Kohler Dams	95		20		140		150	270	
Smallmouth Bass	Young of year	603391		Between Kohler Dams	110		150		140		220	330	
Smallmouth Bass	Young of year	603391		Between Kohler Dams	84		86		91		160	240	
Smallmouth Bass	Young of year	603391		Between Kohler Dams	110		150		140		230	370	
White Sucker	Adult	603388		Control	110		100		1.2		1 U	0.8 L	1
White Sucker	Adult	603388		Control	1	U	1	U	1.2	-	10	0.8 L	-
White Sucker	Adult	603388		Control		U		U	1.2		1 U	0.8 L	
White Sucker	Young of year	603388		Control		U		U	1.2		1 U	0.8 0	
White Sucker	Young of year	603388		Control		U		U	1.2	-	1 U	0.8 L	-
White Sucker	Young of year	603388		Control	1	0	1	5	1.2		1 U	1.3	<u>, </u>
White Sucker	Adult	603389	-	Rochester Park	11		15	$\left \right $	1.2	0	48	37	

Table A	3-4. Co	ntinued	
	• ••		

					PCB018		PCB019		PCB022		PCB024/0	27	PCB026	;
					(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)	
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
White Sucker	Adult	603389	940	3 Rochester Park	16		10		27		14		33	
White Sucker	Adult	603389	940	9 Rochester Park	50				79		38		99	
White Sucker	Young of year	603389	941	0 Rochester Park	56		35		67		45		83	
White Sucker	Young of year	603389	941	Rochester Park	49		56		53		70		86	
White Sucker	Young of year	603389	941	2 Rochester Park	64		21		65		77		100	
White Sucker	Adult	603390	940	7 Esselingen Park	14		8.8		13		24		33	
White Sucker	Adult	603390	940	B Esselingen Park	48		58		59		70		100	
White Sucker	Adult	603390	940	9 Esselingen Park	15		21		20		25		36	
White Sucker	Young of year	603390	941	Esselingen Park	25		24		25		32		59	
White Sucker	Young of year	603390	941	1 Esselingen Park	17		17		19		29		48	
White Sucker	Young of year	603390	941	2 Esselingen Park	27		39		35		50		70	
White Sucker	Adult	603391	940	7 Between Kohler Dams	16				23		47		47	
White Sucker	Adult	603391	940	Between Kohler Dams	18		18		21		37		40	
White Sucker	Adult	603391	940	9 Between Kohler Dams	49		57		59		100		130	
White Sucker	Young of year	603391	941	Between Kohler Dams	40		44		39		83		93	
White Sucker	Young of year	603391	941	Between Kohler Dams	72		90		79		170		200	
White Sucker	Young of year	603391	941	2 Between Kohler Dams	40		36		57		84		110	

Table /	A3-4.	Continue	ed
---------	-------	----------	----

					PCB031/0	28	PCB033	PCB037/04	12	PCB040		PCB041/071/006
					(µg/kg)		(µg/kg)	(µg/kg)		(µg/kg)		(µg/kg)
Species	Age Class	Station	Sample	Location	Conc	Q	Conc Q	Conc	Q	Conc	Q	Conc Q
Crayfish	-	603384	9409	Control	2.5	U	1 U	1.1	U	1	U	2 U
Crayfish		603384	9410	Control	2.5	U	1 U	1.1	U	1	U	2 U
Crayfish		603384	9411	Control	3.8		1 U	1.1	U	1	U	2 U
Crayfish		603385	9409	Rochester Park	250		4.5	15				44
Crayfish		603385	9410	Rochester Park	250		4.6	16				45
Crayfish		603385	9411	Rochester Park	250		5.7 U*I	16		1.6		47
Crayfish		603386	9409	Between Kohler Dams	400		5 U*I	18		1.6		52
Crayfish		603386	9410	Between Kohler Dams	320		6 U*I	20		1.9		58
Crayfish		603386	9411	Between Kohler Dams	310		5.8 U*I	19		1.5		57
Crayfish		603387	9409	Esselingen Park	190		2 U*I	12		1	U	36
Crayfish		603387	9410	Esselingen Park	210		2 U*I	13		1	U	39
Crayfish		603387	9411	Esselingen Park	230		1.3 U*I	13				46
Emergent Insects		603384	9401	Control	8		1 U	3		1	U	5.3
Emergent Insects		603384	9402	Control	4.5	U*I	1 U	1.1	U	1	U	2 U
Emergent Insects		603384	9403	Control	2.5	U	1 U	1.1	U	1	U	2 U
Emergent Insects		603384	9404	Control	3.5	U*I	1 U	1.1	U	1	U	2 U
Emergent Insects		603385	9401	Rochester Park	880		85 U*I	290		61		560
Emergent Insects		603385	9402	Rochester Park	1500		61 U*I	490		100		1000
Emergent Insects		603385	9403	Rochester Park	800		77 U*I	270		52		540
Emergent Insects		603385	9404	Rochester Park	840		36 U*I	310		58		580
Emergent Insects		603386	9401	Between Kohler Dams	1200		81 U*I	360		66		730
Emergent Insects		603386	9402	Between Kohler Dams	1200		73 U*I	310		52		640
Emergent Insects		603386	9403	Between Kohler Dams	540		12 U*I	140		25		300
Emergent Insects		603386	9404	Between Kohler Dams	630		91 U*I	180		37		370
Emergent Insects		603387	9401	Esselingen Park	780		80 U*I	140		29		330
Emergent Insects		603387	9402	Esselingen Park	520		67 U*I	130		22		270
Emergent Insects		603387	9403	Esselingen Park	700		62 U*I	160		25		340
Emergent Insects		603387	9404	Esselingen Park	660		93 U*I	190		24		380
Larval Insects		603384	9405	Control	2.5	U	1 U	1.1	U	1	U	2 U
Larval Insects		603384	9406	Control	4.7		1 U	1.1	U	1	U	2 U
Larval Insects		603384	9407	Control	2.5	U	1 U	1.1	U	1	U	2 U
Larval Insects		603384	9408	Control	3.3	U*I	1 U	1.1	U	1	U	2 U
Larval Insects		603385	9405	Rochester Park	790		58 U*I	190		43		420
Larval Insects		603385	9406	Rochester Park	640		64 U*I	130		26		330
Larval Insects		603385	9407	Rochester Park	760		58 U*I	190		45		410
Larval Insects		603385	9408	Rochester Park	770		50 U*I	140		40		340
Larval Insects		603386	9405	Between Kohler Dams	820		130 U*I	170		37		370
Larval Insects		603386	9406	Between Kohler Dams	820		54 U*I	150		30		350
Larval Insects		603386	9407	Between Kohler Dams	750		64 U*I	140		32		320
Larval Insects		603386	9408	Between Kohler Dams	760		62 U*I	120		30		310
Larval Insects		603387	9406	Esselingen Park	470		37 U*I	100		24		230
Larval Insects		603387		Esselingen Park	620		33 U*I	110		24		240
Larval Insects		603387	9408	Esselingen Park	610		34 U*I	110		23		250

Table /	A3-4.	Continue	ed
---------	-------	----------	----

					PCB031/0	28	PCB033	PCB037/0	PCB037/042)	PCB041/071/006	
					(µg/kg)		(µg/kg)	(µg/kg)		(µg/kg)		(µg/kg)	
Species	Age Class	Station	Sample	Location	Conc	Q	Conc (Q	Conc	Q	Conc Q	
Longnose Dace	Young of year	603388	9413	Control	19		3 U*	I 4.8		1.2		12	
Longnose Dace	Young of year	603388	9414	Control	2.5	U	1 U	1.1	U	1	U	2 U	
Longnose Dace	Young of year	603388	9415	Control	2.5	U	1 U	1.1	U	1	U	2 U	
Longnose Dace	Young of year	603389	9413	Rochester Park	720		35 U*	I 100	1	41		330	
Longnose Dace	Young of year	603389	9414	Rochester Park	790		40 U*	I 120	1	47		390	
Longnose Dace	Young of year	603389	9415	Rochester Park	1400		100 U*	I 350	1	74		800	
Longnose Dace	Young of year	603390	9413	Esselingen Park	1500		160 U*	I 380		96		940	
Longnose Dace	Young of year	603390	9414	Esselingen Park	1400		170 U*	I 350		84		890	
Longnose Dace	Young of year	603390	9415	Esselingen Park	1100		140 U*	I 260)	66		650	
Longnose Dace	Young of year	603391	9413	Between Kohler Dams	1200		120 U*	I 250		42		600	
Longnose Dace	Young of year	603391	9414	Between Kohler Dams	1600		160 U*	I 320	1	46		790	
Longnose Dace	Young of year	603391	9415	Between Kohler Dams	1700		190 U*	I 380	1	85		890	
Smallmouth Bass	Adult	603388	9401	Control	15		1 U	7.2		1.7		19	
Smallmouth Bass	Adult	603388	9402	Control	9.1		1.6	1.8		1	U	3.9	
Smallmouth Bass	Adult	603388	9403	Control	3.2							2 U	
Smallmouth Bass	Young of year	603388	9404	Control	2.5	U	1 U	1.1	U	1	U	2 U	
Smallmouth Bass	Young of year	603388	9405	Control	2.5	U	1 U	1.1	U	1	U	2 U	
Smallmouth Bass	Young of year	603388	9406	Control	5			1.1	U			2.8	
Smallmouth Bass	Adult	603389	9401	Rochester Park	1900		130 U*	I 430)	130		1400	
Smallmouth Bass	Adult	603389	9402	Rochester Park	2000		120 U*	I 360	1	120		1300	
Smallmouth Bass	Adult	603389	9403	Rochester Park	1500		90 U*	I 220	1	75		820	
Smallmouth Bass	Young of year	603389	9404	Rochester Park	1500		180 U*	I 320	1	76		720	
Smallmouth Bass	Young of year	603389	9405	Rochester Park	1500		99 U*	I 210	1	74		720	
Smallmouth Bass	Young of year	603389	9406	Rochester Park	1200		80 U*	I 300		52		630	
Smallmouth Bass	Adult	603390	9401	Esselingen Park	1300		120 U*			42		700	
Smallmouth Bass	Adult	603390	9402	Esselingen Park	1500		120 U*	I 300	1	44		770	
Smallmouth Bass	Adult	603390		Esselingen Park	1300		89 U*		1	32		610	
Smallmouth Bass	Young of year	603390	9404	Esselingen Park	860		65 U*			50		430	
Smallmouth Bass	Young of year	603390	9405	Esselingen Park	1200		55 U*	I 180)	71		670	
Smallmouth Bass	Young of year	603390		Esselingen Park	1300		130 U*		1	46		640	
Smallmouth Bass	Adult	603391	9401	Between Kohler Dams	1400		74 U*	I 250	1	52		670	
Smallmouth Bass	Adult	603391	9402	Between Kohler Dams	1100		64 U*	I 200	1	48		540	
Smallmouth Bass	Adult	603391	9403	Between Kohler Dams	1800		130 U*	I 540	1	72		1100	
Smallmouth Bass	Young of year	603391	9404	Between Kohler Dams	1800		260 U*	I 390	1	82		960	
Smallmouth Bass	Young of year	603391	9405	Between Kohler Dams	1400		190 U*	I 310	1	66		780	
Smallmouth Bass	Young of year	603391	9406	Between Kohler Dams	1800		160 U*	I 530		110		1200	
White Sucker	Adult	603388	9407	Control	5.1			1.1	U			2.6	
White Sucker	Adult	603388	9408	Control	2.5	U	1 U	1.1	U	1	U	2 U	
White Sucker	Adult	603388		Control	2.5		1 U	1.1		1	U	2 U	
White Sucker	Young of year	603388		Control	2.5		1 U	1.1			U	2 U	
White Sucker	Young of year	603388		Control	2.5		1 U	1.1	-		U	2 U	
White Sucker	Young of year	603388		Control		U*I	1 U	2.4		1		5.4	
White Sucker	Adult	603389	-	Rochester Park	410	-	39 U*			9.4		210	

Table A3-4. Continued

	PCB031/028		28	PCB033		PCB037/0	42	PCB040		PCB041/071/006				
					(µg/kg)	(µg/kg)			(µg/kg)		(µg/kg)		(µg/kg)	
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
White Sucker	Adult	603389	9408	Rochester Park	370		23	U*I	120		29		310	
White Sucker	Adult	603389	9409	Rochester Park	1200		70	U*I	270		74		960	
White Sucker	Young of year	603389	9410	Rochester Park	690		60	U*I	160		50		520	
White Sucker	Young of year	603389	9411	Rochester Park	860		50	U*I	140		43		450	
White Sucker	Young of year	603389	9412	Rochester Park	880		85	U*I	220		41		540	
White Sucker	Adult	603390	9407	Esselingen Park	230				54		8		140	
White Sucker	Adult	603390	9408	Esselingen Park	1000		35	U*I	170		45		700	
White Sucker	Adult	603390	9409	Esselingen Park	390		14	U*I	69		19		260	
White Sucker	Young of year	603390	9410	Esselingen Park	380		46	U*I	79		17		200	
White Sucker	Young of year	603390	9411	Esselingen Park	330		40	U*I	76		13		170	
White Sucker	Young of year	603390	9412	Esselingen Park	470		57	U*I	110		24		260	
White Sucker	Adult	603391	9407	Between Kohler Dams	430		58	U*I	140		13		330	
White Sucker	Adult	603391	9408	Between Kohler Dams	540		63	U*I	150		23		390	
White Sucker	Adult	603391	9409	Between Kohler Dams	920		120	U*I	210		43		530	
White Sucker	Young of year	603391	9410	Between Kohler Dams	710		92	U*I	160		28		360	
White Sucker	Young of year	603391	9411	Between Kohler Dams	1400		180	U*I	300		56		720	
White Sucker	Young of year	603391	9412	Between Kohler Dams	860		60	U*I	180		32		370	

				PCB044	PCB045	PCB046	PCB047/048	PCB049
				(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
Species	Age Class Station	Sample	Location	Conc Q		Q Conc Q	Conc Q	Conc Q
Crayfish	60338	4 9409	Control	1.1 U	0.8 U	1 U	1.2 U	0.6 U
Crayfish	60338	4 9410	Control	1.1 U	0.8 U	1 U	1.2 U	0.6 U
Crayfish	60338	4 9411	Control	1.2	0.8 U	1 U	4.5	2
Crayfish	60338	5 9409	Rochester Park	12			240	86
Crayfish	60338	5 9410	Rochester Park	11			230	83
Crayfish	60338	5 9411	Rochester Park	12			250	85
Crayfish	60338	6 9409	Between Kohler Dams	11			410	110
Crayfish	60338	6 9410	Between Kohler Dams	13			390	110
Crayfish	60338	6 9411	Between Kohler Dams	12		1 U	330	110
Crayfish	60338	7 9409	Esselingen Park	8	0.8 U	1 U	210	72
Crayfish	60338	7 9410	Esselingen Park	8	0.8 U	1 U	240	81
Crayfish	60338	7 9411	Esselingen Park	8.8			270	93
Emergent Insects	60338	4 9401	Control	5.2	0.8 U	1 U	6.4	4.6
Emergent Insects	60338	4 9402	Control	1.2	0.8 U	1 U	3.1	1.5
Emergent Insects	60338	4 9403	Control	1.1 U	0.8 U	1 U	1.2 U	0.6 U
Emergent Insects	60338	4 9404	Control	1.5	0.8 U	1 U	3.1	1.7
Emergent Insects	60338	5 9401	Rochester Park	460	45	19	940	540
Emergent Insects	60338	5 9402	Rochester Park	800	77	30	1400	810
Emergent Insects	60338	5 9403	Rochester Park	420	39	17	920	440
Emergent Insects	60338	5 9404	Rochester Park	440	42	20	1000	470
Emergent Insects	60338	6 9401	Between Kohler Dams	520	61	25	1900	700
Emergent Insects	60338	6 9402	Between Kohler Dams	450	48	18	1600	600
Emergent Insects	60338	6 9403	Between Kohler Dams	210	23	8	640	280
Emergent Insects	60338	6 9404	Between Kohler Dams	260	34	13	760	330
Emergent Insects	60338	7 9401	Esselingen Park	200	26	6.6	670	280
Emergent Insects	60338	7 9402	Esselingen Park	180	18	6.3	600	280
Emergent Insects	60338	7 9403	Esselingen Park	200	23	7.5	760	340
Emergent Insects	60338	7 9404	Esselingen Park	240	21	7	750	340
Larval Insects	60338	4 9405	Control	1.1 U	0.8 U	1 U	1.2 U	0.6 U
Larval Insects	60338	4 9406	Control	1.3	0.8 U	1 U	4	2
Larval Insects	60338	4 9407	Control	1.1 U	0.8 U	1 U	1.2 U	0.6 U
Larval Insects	60338	4 9408	Control	1.1 U	0.8 U	1 U	1.2 U	0.6 U
Larval Insects	60338	5 9405	Rochester Park	320	32	14	660	340
Larval Insects	60338	5 9406	Rochester Park	200	17	6.7	430	250
Larval Insects	60338	5 9407	Rochester Park	300	31	14	640	320
Larval Insects	60338	5 9408	Rochester Park	190	23	9.4	610	280
Larval Insects	60338	6 9405	Between Kohler Dams	250	37	14	730	310
Larval Insects	60338	6 9406	Between Kohler Dams	210	27	9.1	740	320
Larval Insects	60338	6 9407	Between Kohler Dams	180	28	10	640	280
Larval Insects	60338	6 9408	Between Kohler Dams	120	21	6.8	630	280
Larval Insects	60338	7 9406	Esselingen Park	130	18	6.7	410	190
Larval Insects	60338		Esselingen Park	120	16	6	480	240
Larval Insects	60338	7 9408	Esselingen Park	120	16	5.4	470	230

					PCB044		PCB045	PCB046		PCB047/0	48	PCB049		
					(µg/kg)		(µg/kg)	(ua/ka)	(µg/kg)			(ua/ka)	(µg/kg)	
Species	Age Class	Station	Sample	Location	Conc	Q	Conc Q	Conc	Q	(µg/kg) Conc	Q	Conc	Q	
Longnose Dace	Young of year	603388	9413	Control	8.4		0.92			22		12		
Longnose Dace	Young of year	603388	9414	Control	1.1	U	0.8 U	1	U	1.2	U	0.7		
Longnose Dace	Young of year	603388	9415	Control	1.1	U	0.8 U	1	U	1.2	U	0.6		
Longnose Dace	Young of year	603389	9413	Rochester Park	260		40	8.2		870		340		
Longnose Dace	Young of year	603389	9414	Rochester Park	290		45	8.3		1000		390		
Longnose Dace	Young of year	603389	9415	Rochester Park	620		63	9		1400		760		
Longnose Dace	Young of year	603390	9413	Esselingen Park	700		80	12		1700		910		
Longnose Dace	Young of year	603390	9414	Esselingen Park	640		82	11		1700		850		
Longnose Dace	Young of year	603390	9415	Esselingen Park	470		66	10		1300		630		
Longnose Dace	Young of year	603391	9413	Between Kohler Dams	420		46	7.6		1500		610		
Longnose Dace	Young of year	603391	9414	Between Kohler Dams	520		50	8		1900		790		
Longnose Dace	Young of year	603391	9415	Between Kohler Dams	660		86	17		2200		920		
Smallmouth Bass	Adult	603388	9401	Control	13		0.93			22		15		
Smallmouth Bass	Adult	603388	9402	Control	3.3		0.8 U	1	U	6		3.7		
Smallmouth Bass	Adult	603388	9403	Control	1.3					3.7		2.1		
Smallmouth Bass	Young of year	603388	9404	Control	1.1	U	0.8 U	1	U	1.2	U	0.6	U	
Smallmouth Bass	Young of year	603388	9405	Control	1.1	U	0.8 U	1	U	1.2	U	0.6	U	
Smallmouth Bass	Young of year	603388	9406	Control	1.9		0.8 U	1	U	5.3		2.9		
Smallmouth Bass	Adult	603389	9401	Rochester Park	940		82	27		2400		1300		
Smallmouth Bass	Adult	603389	9402	Rochester Park	790		75	23		2500		1200		
Smallmouth Bass	Adult	603389	9403	Rochester Park	520		55	16		1800		850		
Smallmouth Bass	Young of year	603389	9404	Rochester Park	480		84	23		1900		750		
Smallmouth Bass	Young of year	603389	9405	Rochester Park	490		72	20		1300		590		
Smallmouth Bass	Young of year	603389	9406	Rochester Park	480		43	12		1400		680		
Smallmouth Bass	Adult	603390	9401	Esselingen Park	460		44	11		1600		740		
Smallmouth Bass	Adult	603390	9402	Esselingen Park	490		46	13		1700		780		
Smallmouth Bass	Adult	603390	9403	Esselingen Park	380		33	8.1		1500		700		
Smallmouth Bass	Young of year	603390	9404	Esselingen Park	310		50	15		1200		460		
Smallmouth Bass	Young of year	603390	9405	Esselingen Park	490		71	22		1600		630		
Smallmouth Bass	Young of year	603390	9406	Esselingen Park	460		47	12		1500		680		
Smallmouth Bass	Adult	603391	9401	Between Kohler Dams	390		53	17		2100		810		
Smallmouth Bass	Adult	603391	9402	Between Kohler Dams	350		46	14		1500		600		
Smallmouth Bass	Adult	603391	9403	Between Kohler Dams	710		62	18		2600		1100		
Smallmouth Bass	Young of year	603391	9404	Between Kohler Dams	610		97	27		2200		890		
Smallmouth Bass	Young of year	603391	9405	Between Kohler Dams	460		71	19		1700		680		
Smallmouth Bass	Young of year	603391	9406	Between Kohler Dams	840		97	34		2700		1200		
White Sucker	Adult	603388	9407	Control	1.7					4.9		2.7		
White Sucker	Adult	603388	9408	Control	1.1	U	0.8 U	1	U	1.2	U	0.6	U	
White Sucker	Adult	603388	9409	Control	1.1	U	0.8 U	1	U	1.2	U	0.6	U	
White Sucker	Young of year	603388		Control	1.1		0.8 U	1		1.2		0.6		
White Sucker	Young of year	603388	9411	Control	1.1	U	0.8 U	1	U	1.2	U	0.6	U	
White Sucker	Young of year	603388		Control	3.8		0.8 U			13		7.4		
White Sucker	Adult	603389	-	Rochester Park	110		11			600		190		

					PCB044		PCB045		PCB046		PCB047/048		PCB049	
					(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)	
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
White Sucker	Adult	603389	9408	Rochester Park	210		17		6.8		660		260	
White Sucker	Adult	603389	9409	Rochester Park	600		51		19		1600		730	
White Sucker	Young of year	603389	9410	Rochester Park	350		45		14		900		380	
White Sucker	Young of year	603389	9411	Rochester Park	300		42		11		1200		410	
White Sucker	Young of year	603389	9412	Rochester Park	330		40		12		1200		400	
White Sucker	Adult	603390	9407	Esselingen Park	84		7.9				290		130	
White Sucker	Adult	603390	9408	Esselingen Park	450		45		12		1500		620	
White Sucker	Adult	603390	9409	Esselingen Park	150		15				450		220	
White Sucker	Young of year	603390	9410	Esselingen Park	130		16		4.5		410		190	
White Sucker	Young of year	603390	9411	Esselingen Park	120		13		3		420		180	
White Sucker	Young of year	603390	9412	Esselingen Park	160		22		6.5		580		250	
White Sucker	Adult	603391	9407	Between Kohler Dams	170		14				860		330	
White Sucker	Adult	603391	9408	Between Kohler Dams	230		21		6.1		880		360	
White Sucker	Adult	603391	9409	Between Kohler Dams	350		42		14		1100		480	
White Sucker	Young of year	603391	9410	Between Kohler Dams	250		35		8.2		920		360	
White Sucker	Young of year	603391	9411	Between Kohler Dams	470		72		14		1900		680	
White Sucker	Young of year	603391	9412	Between Kohler Dams	240		35		8.1		1100		410	

PCB052 PCB056/060 PCB066/095 PCB070/076 PCB074 (µg/kg) (µg/kg) (µg/kg) (µg/kg) (µg/kg) Species Age Class Station Sample Location Conc Q Conc Q Conc Q Conc Q Conc Q Crayfish 603384 9409 Control 1 U 1.8 U 2.8 U 2.4 U 1 U 603384 1 U Crayfish 9410 Control 1.8 U 2.8 U 2.4 U 1 U 603384 9411 Control 2.2 2.4 U 1.1 Crayfish 1.8 U 2.8 U 9409 Rochester Park Crayfish 603385 85 64 200 59 78 Crayfish 603385 9410 Rochester Park 83 55 180 58 69 Cravfish 603385 9411 Rochester Park 82 56 170 54 68 Crayfish 603386 9409 Between Kohler Dams 98 67 200 53 84 9410 Between Kohler Dams Crayfish 603386 100 67 200 58 79 9411 Between Kohler Dams Crayfish 603386 99 62 190 55 75 Crayfish 603387 9409 Esselingen Park 68 54 150 41 60 Crayfish 603387 9410 Esselingen Park 76 64 180 46 69 Crayfish 603387 9411 Esselingen Park 87 59 170 47 68 Emergent Insects 603384 9401 Control 6.6 5.3 20 U*I 6.6 14 9402 Control 603384 2.4 8 U*I **Emergent Insects** 1.8 U 7.5 U*I 4 U*I 9403 Control 2.8 U 603384 1 U 1.8 U 2.4 U 1.5 U*I Emergent Insects Emergent Insects 603384 9404 Control 2.2 1.8 U 4 3.3 2 U*I Emergent Insects 603385 9401 Rochester Park 650 390 1100 890 400 Emergent Insects 603385 9402 Rochester Park 1000 680 1700 1400 610 Emergent Insects 603385 9403 Rochester Park 530 400 870 740 340 Emergent Insects 603385 9404 Rochester Park 570 410 890 790 360 Emergent Insects 603386 9401 Between Kohler Dams 790 360 980 810 400 Emergent Insects 603386 9402 Between Kohler Dams 660 310 940 680 340 603386 9403 Between Kohler Dams 300 170 440 330 Emergent Insects 170 490 Emergent Insects 603386 9404 Between Kohler Dams 370 200 360 190 9401 Esselingen Park **Emergent Insects** 603387 330 230 550 360 220 **Emergent Insects** 603387 9402 Esselingen Park 320 180 540 370 170 Emergent Insects 603387 9403 Esselingen Park 370 210 630 410 190 Emergent Insects 603387 9404 Esselingen Park 370 250 590 410 220 arval Insects 603384 9405 Control 1 U 1.8 U 2.8 U 2.4 U 4 U*I 9406 Control 2.3 1.8 U 2.4 U 3 U*I Larval Insects 603384 3.3 Larval Insects 603384 9407 Control 1 U 1.8 U 2.8 U 2.4 U 3.5 U*I 1 U 2.4 U 4 U*I Larval Insects 603384 9408 Control 1.8 U 2.8 U Larval Insects 603385 9405 Rochester Park 400 310 710 560 240 Larval Insects 603385 9406 Rochester Park 290 230 580 470 210 Larval Insects 603385 9407 Rochester Park 380 310 730 580 250 603385 320 250 220 Larval Insects 9408 Rochester Park 660 510 Larval Insects 603386 9405 Between Kohler Dams 340 200 500 360 200 Larval Insects 603386 9406 Between Kohler Dams 350 190 480 340 190 Larval Insects 603386 9407 Between Kohler Dams 310 170 420 310 170 603386 9408 Between Kohler Dams 310 160 400 300 170 arval Insects Larval Insects 603387 9406 Esselingen Park 210 150 350 240 140 Larval Insects 603387 9407 Esselingen Park 260 160 400 240 140 Larval Insects 603387 9408 Esselingen Park 250 160 370 250 140

Table A3-4. Continued

Table A3-4. (Continued
---------------	-----------

					PCB052	2	PCB056/0	60	PCB066/0	95	PCB070/076	PCB07	4
					(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)	(µg/kg))
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc Q	Conc	Q
Longnose Dace	Young of year	603388	9413	Control	14		9.5		33		18	13	3
Longnose Dace	Young of year	603388	9414	Control	1.4		1.8	U	6.4		4.6	2.9	j j
Longnose Dace	Young of year	603388	9415	Control	1	U	1.8	U	3.1		2.6	1.6	3
Longnose Dace	Young of year	603389	9413	Rochester Park	390	1	160		470		260	180	
Longnose Dace	Young of year	603389	9414	Rochester Park	440	1	180		560		300	210	נ
Longnose Dace	Young of year	603389	9415	Rochester Park	930	1	400		1500		740	530	נ
Longnose Dace	Young of year	603390	9413	Esselingen Park	1000	1	430		1100		530	480	נ
Longnose Dace	Young of year	603390	9414	Esselingen Park	980	1	370		1200		490	470	נ
Longnose Dace	Young of year	603390	9415	Esselingen Park	720	1	260		830		410	320	נ
Longnose Dace	Young of year	603391	9413	Between Kohler Dams	670	1	200		780		360	290	נ
Longnose Dace	Young of year	603391	9414	Between Kohler Dams	880)	250		1000		480	380)
Longnose Dace	Young of year	603391	9415	Between Kohler Dams	1000)	310		1300		510	390)
Smallmouth Bass	Adult	603388	9401	Control	16	i	18		55		31	17	7
Smallmouth Bass	Adult	603388	9402	Control	4.8	1	3.9		11		6	3.2	2
Smallmouth Bass	Adult	603388	9403	Control	2.7		1.8	U	6.3		2.8	1.8	3
Smallmouth Bass	Young of year	603388	9404	Control	1	U	1.8	U	2.8	U	2.4 U	1	1 U
Smallmouth Bass	Young of year	603388	9405	Control	1	U	1.8	U	2.8	U	2.4 U	1	1 U
Smallmouth Bass	Young of year	603388	9406	Control	3.5	i	2.1		7.4		4.2	2.7	7
Smallmouth Bass	Adult	603389	9401	Rochester Park	1300)	920		3300		1700	1100	נ
Smallmouth Bass	Adult	603389	9402	Rochester Park	1300)	980		2900		1500	1000	נ
Smallmouth Bass	Adult	603389	9403	Rochester Park	910)	640		1900		900	660	נ
Smallmouth Bass	Young of year	603389	9404	Rochester Park	640)	430		1500		800	520	נ
Smallmouth Bass	Young of year	603389	9405	Rochester Park	770)	420		1200		670	410	נ
Smallmouth Bass	Young of year	603389	9406	Rochester Park	750	1	420		1400		810	520	נ
Smallmouth Bass	Adult	603390	9401	Esselingen Park	840	1	380		1200		530	460	נ
Smallmouth Bass	Adult	603390	9402	Esselingen Park	850	1	430		1300		580	510	נ
Smallmouth Bass	Adult	603390	9403	Esselingen Park	780	1	370		1200		430	480	נ
Smallmouth Bass	Young of year	603390	9404	Esselingen Park	500)	200		540		290	210)
Smallmouth Bass	Young of year	603390	9405	Esselingen Park	700	1	280		870		400	280	נ
Smallmouth Bass	Young of year	603390	9406	Esselingen Park	800	1	270		910		490	350	נ
Smallmouth Bass	Adult	603391	9401	Between Kohler Dams	820	1	450		1400		470	560	נ
Smallmouth Bass	Adult	603391	9402	Between Kohler Dams	620	1	330		890		410	340	נ
Smallmouth Bass	Adult	603391	9403	Between Kohler Dams	1200)	690		2000		760	740)
Smallmouth Bass	Young of year	603391	9404	Between Kohler Dams	950	1	450		1400		710	500	נ
Smallmouth Bass	Young of year	603391	9405	Between Kohler Dams	690)	410		1200		590	450	נ
Smallmouth Bass	Young of year	603391	9406	Between Kohler Dams	1200)	600		1800		900	670)
White Sucker	Adult	603388	9407	Control	3	1	2.1		7.1		3.9	2.5	ذ
White Sucker	Adult	603388	9408	Control	1	U	1.8	U	2.8	U	2.4 U	1	1 U
White Sucker	Adult	603388	9409	Control	1	U	1.8	U	2.8	U	2.4 U	1	1 U
White Sucker	Young of year	603388	9410	Control	1	U	1.8	U	2.8	U	2.4 U	1	1 U
White Sucker	Young of year	603388	9411	Control	1	U	1.8	U	2.8	U	2.4 U	1	1 U
White Sucker	Young of year	603388	9412	Control	5.9)	4.5		15		7.9	5.6	j
White Sucker	Adult	603389	9407	Rochester Park	100)	110		420		190	160	ו

					PCB052	PCB052 PCB056		60	PCB066/09	5	PCB070/076		PCB074	
					(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)	
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
White Sucker	Adult	603389	9408	Rochester Park	170		220		690		330		240	
White Sucker	Adult	603389	9409	Rochester Park	560		430		1400		800		520	
White Sucker	Young of year	603389	9410	Rochester Park	300		280		790		460		270	
White Sucker	Young of year	603389	9411	Rochester Park	300		240		750		380		250	
White Sucker	Young of year	603389	9412	Rochester Park	320		210		670		370		260	
White Sucker	Adult	603390	9407	Esselingen Park	130		66		220		110		87	
White Sucker	Adult	603390	9408	Esselingen Park	650		310		1100		530		400	
White Sucker	Adult	603390	9409	Esselingen Park	190		130		400		180		160	
White Sucker	Young of year	603390	9410	Esselingen Park	150		99		280		160		100	
White Sucker	Young of year	603390	9411	Esselingen Park	140		83		260		130		91	
White Sucker	Young of year	603390	9412	Esselingen Park	180		140		380		200		140	
White Sucker	Adult	603391	9407	Between Kohler Dams	280		160		520		210		200	
White Sucker	Adult	603391	9408	Between Kohler Dams	270		200		690		290		270	
White Sucker	Adult	603391	9409	Between Kohler Dams	330		290		840		470		330	
White Sucker	Young of year	603391	9410	Between Kohler Dams	320		170		510		250		180	
White Sucker	Young of year	603391	9411	Between Kohler Dams	560		330		950		480		350	
White Sucker	Young of year	603391	9412	Between Kohler Dams	320		190		540		290		200	

					PCB077	PCB077/110	PCB082	PCB084/092	PCB085
					(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
Species	Age Class	Station	Sample	Location	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
Crayfish		603384	9409	Control	1 U	1.3 U	1 U	1.3 U	1 U
Crayfish		603384	9410	Control	1 U	1.3 U	1 U	1.3 U	1 U
Crayfish		603384	9411	Control		2.7	1 U	1.3 U	1 U
Crayfish		603385	9409	Rochester Park	5.2	54	4.6	7.9	30
Crayfish		603385	9410	Rochester Park	4.4	48	3.3		24
Crayfish		603385	9411	Rochester Park		55	4.7	7.9	29
Crayfish		603386	9409	Between Kohler Dams	2.5 *Q	64	4.9	7.9	30
Crayfish		603386	9410	Between Kohler Dams	1.9 *Q	69	5.7	10	29
Crayfish		603386	9411	Between Kohler Dams		67	4.8	7.7	26
Crayfish		603387	9409	Esselingen Park	2.3	51	4	6.1	24
Crayfish		603387	9410	Esselingen Park	2.8	57	4.5	6.3	28
Crayfish		603387	9411	Esselingen Park		64	4.8	6.4	27
Emergent Insects		603384	9401	Control	1 U	12	1.2	4.7	1.3 U*I
Emergent Insects		603384	9402	Control	1 U	6.1	1 U	1.6	1.5 U*I
Emergent Insects		603384	9403	Control	1 U	3.7	1 U	1.3 U	1 U
Emergent Insects		603384	9404	Control	1 U	5.6	1 U	1.5	1.5 U*I
Emergent Insects		603385	9401	Rochester Park	30	910	85	390	150
Emergent Insects		603385	9402	Rochester Park	49	1300	120	670	240
Emergent Insects		603385	9403	Rochester Park	32	770	77	290	120
Emergent Insects		603385	9404	Rochester Park	32	820	87	330	140
Emergent Insects		603386	9401	Between Kohler Dams	31	1100	86	450	140
Emergent Insects		603386	9402	Between Kohler Dams	25	900	66	320	100
Emergent Insects		603386	9403	Between Kohler Dams	12 *Q	480	40	160	57
Emergent Insects		603386	9404	Between Kohler Dams	12 *Q	510	43	210	68
Emergent Insects		603387	9401	Esselingen Park	13 *Q	430	38	150	69
Emergent Insects		603387		Esselingen Park	10 *Q	540	41	150	68
Emergent Insects		603387	9403	Esselingen Park	12 *Q	630	47	170	77
Emergent Insects		603387	9404	Esselingen Park	12	610	55	200	91
Larval Insects		603384	9405	Control	1 U	1.6	1 U	1.3 U	1 U
Larval Insects		603384	9406	Control		3.8	1 U	1.3 U	1 U
Larval Insects		603384	9407	Control	1 U	1.3 U	1 U	1.3 U	1 U
Larval Insects		603384	9408	Control	1 U	1.4	1 U	1.3 U	1 U
Larval Insects		603385	9405	Rochester Park	23	470	51	200	93
Larval Insects		603385	9406	Rochester Park		380	38	130	80
Larval Insects		603385	9407	Rochester Park	22	470	55	200	98
Larval Insects		603385	9408	Rochester Park	20	400	46	150	80
Larval Insects		603386	9405	Between Kohler Dams	10 *Q	410	40	180	57
Larval Insects		603386	9406	Between Kohler Dams		400	35	160	54
Larval Insects		603386	9407	Between Kohler Dams	7.5 *Q	360	31	150	48
Larval Insects		603386	9408	Between Kohler Dams	8.6 *Q	370	32	140	50
Larval Insects		603387	9406	Esselingen Park	5.9	300	28	120	44
Larval Insects		603387		Esselingen Park	7.8	320	30	120	46
Larval Insects		603387	9408	Esselingen Park	5.8	320	29	120	47

Table A3-4. Continued

Table A3-4.	Continued
-------------	-----------

					PCB077		PCB077/1	10	PCB082		PCB084/092	PCB085
					(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)	(µg/kg)
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc Q	Conc Q
Longnose Dace	Young of year	603388	9413	Control	1	U	29		2.5		7.2	7.5 U*I
Longnose Dace	Young of year	603388	9414	Control			8.1		1	U	1.5	1.8 U*I
Longnose Dace	Young of year	603388	9415	Control			3.9		1	U	1.3 U	1 U
Longnose Dace	Young of year	603389	9413	Rochester Park			470		38		190	79
Longnose Dace	Young of year	603389	9414	Rochester Park			600		43		210	94
Longnose Dace	Young of year	603389	9415	Rochester Park	16		1200		98		350	180
Longnose Dace	Young of year	603390	9413	Esselingen Park	20		1300		120		500	170
Longnose Dace	Young of year	603390	9414	Esselingen Park			1300		110		480	160 U*I
Longnose Dace	Young of year	603390	9415	Esselingen Park			920		72		360	120 U*I
Longnose Dace	Young of year	603391	9413	Between Kohler Dams			830		60		300	100
Longnose Dace	Young of year	603391	9414	Between Kohler Dams			1000		70		300	130
Longnose Dace	Young of year	603391	9415	Between Kohler Dams	17		1200		89		400	120
Smallmouth Bass	Adult	603388	9401	Control	1.2		45		4.8		12	6.3
Smallmouth Bass	Adult	603388	9402	Control	1	U	13		1	U	2.4	3 U*I
Smallmouth Bass	Adult	603388	9403	Control	1	U	8				1.4	2.6 U*I
Smallmouth Bass	Young of year	603388	9404	Control			3.8		1	U	1.3 U	1 U
Smallmouth Bass	Young of year	603388	9405	Control			4.5		1	U	1.3 U	1 U
Smallmouth Bass	Young of year	603388	9406	Control	1	U	8.6		1	U	1.7	2 U*I
Smallmouth Bass	Adult	603389	9401	Rochester Park	98		2700		240		580	560
Smallmouth Bass	Adult	603389	9402	Rochester Park	86		2400		210		590	530
Smallmouth Bass	Adult	603389	9403	Rochester Park	48		1400		120		380	320
Smallmouth Bass	Young of year	603389	9404	Rochester Park			1200		99		390	220
Smallmouth Bass	Young of year	603389	9405	Rochester Park			1100		130		390	220
Smallmouth Bass	Young of year	603389	9406	Rochester Park	29		1200		100		310	220
Smallmouth Bass	Adult	603390	9401	Esselingen Park	17		1100		73		280	160
Smallmouth Bass	Adult	603390	9402	Esselingen Park	16		1200		82		300	170
Smallmouth Bass	Adult	603390	9403	Esselingen Park	13		1000		65		220	170
Smallmouth Bass	Young of year	603390	9404	Esselingen Park			670		44		240	80
Smallmouth Bass	Young of year	603390	9405	Esselingen Park			900		59		330	110
Smallmouth Bass	Young of year	603390	9406	Esselingen Park	14		940		60		280	110
Smallmouth Bass	Adult	603391	9401	Between Kohler Dams	36		1100		90		250	220
Smallmouth Bass	Adult	603391	9402	Between Kohler Dams	26		830		68		230	150
Smallmouth Bass	Adult	603391	9403	Between Kohler Dams	42		1700		160		420	330
Smallmouth Bass	Young of year	603391	9404	Between Kohler Dams			1400		100		540	200
Smallmouth Bass	Young of year	603391	9405	Between Kohler Dams			1100		92		420	170
Smallmouth Bass	Young of year	603391	9406	Between Kohler Dams	41		2000		170		760	280
White Sucker	Adult	603388	9407	Control	1	U	8.3		1	U	1.8	2 U*I
White Sucker	Adult	603388	9408	Control			2		1	U	1.3 U	1 U
White Sucker	Adult	603388	9409	Control			1.3	U	1	U	1.3 U	1 U
White Sucker	Young of year	603388	9410	Control			1.6		1	U	1.3 U	1 U
White Sucker	Young of year	603388	9411	Control			2.1		1	U	1.3 U	1 U
White Sucker	Young of year	603388	9412	Control	1	U	12		1		3	2 U*I
White Sucker	Adult	603389	9407	Rochester Park	4		440		34		100	99

Table A	3-4. Co	ntinued	
	• ••		

					PCB077	PCB077 PCB07		10	PCB082		PCB084/092		PCB085	;
					(µg/kg)		(µg/kg)		(µg/kg)	(µg/kg			(µg/kg)	
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
White Sucker	Adult	603389	9408	Rochester Park			530		57		160		140	
White Sucker	Adult	603389	9409	Rochester Park			1100		89		360		210	
White Sucker	Young of year	603389	9410	Rochester Park			640		55		250		130	
White Sucker	Young of year	603389	9411	Rochester Park			660		52		240		130	
White Sucker	Young of year	603389	9412	Rochester Park	11		590		43		200		100	
White Sucker	Adult	603390	9407	Esselingen Park	2.3		250		16		61		32	
White Sucker	Adult	603390	9408	Esselingen Park			1100		69		290		140	
White Sucker	Adult	603390	9409	Esselingen Park			400		28		120		58	
White Sucker	Young of year	603390	9410	Esselingen Park			260		20		95		34	U*I
White Sucker	Young of year	603390	9411	Esselingen Park			240		20		90		35	U*I
White Sucker	Young of year	603390	9412	Esselingen Park	6.4		330		29		130		51	
White Sucker	Adult	603391	9407	Between Kohler Dams	5.6		480		40		140		83	
White Sucker	Adult	603391	9408	Between Kohler Dams			650		51		190		68	U*I
White Sucker	Adult	603391	9409	Between Kohler Dams			800		64		270		78	U*I
White Sucker	Young of year	603391	9410	Between Kohler Dams			470		35		200		72	
White Sucker	Young of year	603391	9411	Between Kohler Dams			860		66		390		130	
White Sucker	Young of year	603391	9412	Between Kohler Dams	7.8		450		38		180		78	

Table A3-4. Co	ontinued
----------------	----------

SpeciesACrayfish	Age Class	Station 603384 603384 603384 603385 603385 603385 603385 603385 603385	9410 9411 9409 9410	Location Control Control Control Rochester Park	1	Q U	(μg/kg) Conc 1	Q	(μg/kg) Conc 0.8 Ι	Q Con		(µg/kg) Conc	Q
Crayfish Crayfish Crayfish Crayfish Crayfish Crayfish Crayfish Crayfish Crayfish Crayfish	Age Class	603384 603384 603384 603385 603385 603385	9409 9410 9411 9409 9409 9410	Control Control Control	Conc 1 1 1	Q U	Conc		Conc	Q Con	c Q	Conc	Q
Crayfish Crayfish Crayfish Crayfish Crayfish Crayfish Crayfish Crayfish Crayfish		603384 603384 603385 603385 603385	9410 9411 9409 9410	Control Control	1	-	1	U	0.8.1				-
Crayfish Crayfish Crayfish Crayfish Crayfish Crayfish Crayfish Crayfish		603384 603385 603385 603385	9411 9409 9410	Control	1	11			0.0 0	J	0.6 U	0.6	ز
Crayfish Crayfish Crayfish Crayfish Crayfish Crayfish Crayfish		603385 603385 603385	9409 9410			0	1	U	0.8 L	J	0.6 U	0.63	3
Crayfish Crayfish Crayfish Crayfish Crayfish Crayfish		603385 603385	9410	Rochester Park		U	1	U	0.8 L	J	1.1	1.7	
Crayfish Crayfish Crayfish Crayfish Crayfish		603385			37		18		25		66	87	,
Crayfish Crayfish Crayfish Crayfish				Rochester Park	30		16		22		58	75	ز
Crayfish Crayfish Crayfish		603386	9411	Rochester Park	33		17		25		60	78	3
Crayfish Crayfish			9409	Between Kohler Dams	38		26		30		76	120)
Crayfish		603386	9410	Between Kohler Dams	36		26		30		71	94	1
		603386	9411	Between Kohler Dams	36		22		29		69	94	F F
		603387	9409	Esselingen Park	32		19		23		56	75	ذ
		603387	9410	Esselingen Park	37		20		27		64	85	ز
Crayfish		603387	9411	Esselingen Park	38		19		28		66	92	2
Emergent Insects		603384	9401	Control	3.7		2.4		3		4.2	7.2	2
Emergent Insects		603384	9402	Control	1.9		1.2		1.4		2.8	4.8	5
Emergent Insects		603384	9403	Control	1.1		1	U	0.8 L	J	1.6	2.8	3
Emergent Insects		603384	9404	Control	1.6		1	U	1.3		2.3	3.7	
Emergent Insects		603385	9401		260		210	-	230		330	510	
Emergent Insects		603385	9402	Rochester Park	400		330		360		500	740)
Emergent Insects		603385	9403	Rochester Park	250		160		170		290	430)
Emergent Insects		603385	9404	Rochester Park	260		190		220		310	460)
Emergent Insects		603386	9401	Between Kohler Dams	270		280		260		390	580)
Emergent Insects		603386	9402	Between Kohler Dams	190		220		170		320	470	
Emergent Insects		603386	9403	Between Kohler Dams	110		130		100		160	240)
Emergent Insects		603386	9404	Between Kohler Dams	120		150		110		180	260	j l
Emergent Insects		603387	9401	Esselingen Park	110		130		100		180	250	j l
Emergent Insects		603387	9402	Esselingen Park	120		130		110		170	280	j l
Emergent Insects		603387		Esselingen Park	130		160		120		190	330	
Emergent Insects		603387		Esselingen Park	160		170		140		220	300	j l
Larval Insects		603384		Control		U	1	U	0.8 L	J	0.65	1.1	
Larval Insects		603384	9406	Control	1	U	1	U	0.8 L	J	1.5	2.3	3
Larval Insects		603384		Control	1	U	1	U	0.8 L		0.6 U	0.61	
Larval Insects		603384		Control	1	U	1	U	0.8 L		0.62	0.86	
Larval Insects		603385		Rochester Park	160	-	120	-	120	-	170	260	
Larval Insects		603385		Rochester Park	120		82		95		140	200	
Larval Insects		603385		Rochester Park	160		120		130		180	260	
Larval Insects		603385		Rochester Park	130		94		97		150	220	
Larval Insects		603386		Between Kohler Dams	100		130		99		160	210	
Larval Insects		603386		Between Kohler Dams	100		110		94		150	220	
Larval Insects		603386		Between Kohler Dams	89		110		78		130	180	
Larval Insects		603386		Between Kohler Dams	85		110		71		130	190	
Larval Insects		603387		Esselingen Park	79		83		65		100	140	
Larval Insects		603387		Esselingen Park	80		88		65		110	140	
Larval Insects		603387		Esselingen Park	83		91		67		110	150	

				PCB087	7	PCB091		PCB097		PCB099	PCB101	1
				(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)	(µg/kg)	
Species	Age Class	Station	Sample Location	Conc	Q	Conc	Q	Conc	Q	Conc Q	Conc	Q
Longnose Dace	Young of year	603388	9413 Control	10)	6.1		8.1		14	22	2
Longnose Dace	Young of year	603388	9414 Control	2.7		1		1.8		3.3	6.7	•
Longnose Dace	Young of year	603388	9415 Control	1.3		1	U	0.85		1.6	3.1	
Longnose Dace	Young of year	603389	9413 Rochester Park	140)	130		120		180	310)
Longnose Dace	Young of year	603389	9414 Rochester Park	160)	150		140		200	350)
Longnose Dace	Young of year	603389	9415 Rochester Park	370)	220		300		440	700)
Longnose Dace	Young of year	603390	9413 Esselingen Park	360)	300		300		450	760)
Longnose Dace	Young of year	603390	9414 Esselingen Park	350)	380		300		450	740)
Longnose Dace	Young of year	603390	9415 Esselingen Park	240)	290		210		320	520)
Longnose Dace	Young of year	603391	9413 Between Kohler Dams	200)	200		160		320	490)
Longnose Dace	Young of year	603391	9414 Between Kohler Dams	250	1	250		210		400	610)
Longnose Dace	Young of year	603391	9415 Between Kohler Dams	290	1	290		260		450	700)
Smallmouth Bass	Adult	603388	9401 Control	17		8.8		13		20	29)
Smallmouth Bass	Adult	603388	9402 Control	4.4		1.8		3		6	10)
Smallmouth Bass	Adult	603388	9403 Control	3		1.2		2		4.2	7	•
Smallmouth Bass	Young of year	603388	9404 Control	1.1		1	U	0.81		1.7	2.8	3
Smallmouth Bass	Young of year	603388	9405 Control	1.5		1	U	0.96		2.1	3.5	5
Smallmouth Bass	Young of year	603388	9406 Control	3		1.4		2.2		4.2	6.8	3
Smallmouth Bass	Adult	603389	9401 Rochester Park	780)	470		650		1200	1700)
Smallmouth Bass	Adult	603389	9402 Rochester Park	720)	520		600		1100	1500)
Smallmouth Bass	Adult	603389	9403 Rochester Park	440	1	330		360		620	920)
Smallmouth Bass	Young of year	603389	9404 Rochester Park	290)	270		250		510	690)
Smallmouth Bass	Young of year	603389	9405 Rochester Park	340	1	240		270		410	640)
Smallmouth Bass	Young of year	603389	9406 Rochester Park	320	1	220		260		510	710)
Smallmouth Bass	Adult	603390	9401 Esselingen Park	330	1	220		260		470	680)
Smallmouth Bass	Adult	603390	9402 Esselingen Park	350	1	280		280		530	730)
Smallmouth Bass	Adult	603390	9403 Esselingen Park	330	1	210		260		520	740)
Smallmouth Bass	Young of year	603390	9404 Esselingen Park	150	1	180		130		200	360)
Smallmouth Bass	Young of year	603390	9405 Esselingen Park	210	1	240		180		310	470)
Smallmouth Bass	Young of year	603390	9406 Esselingen Park	230	1	210		170		280	520)
Smallmouth Bass	Adult	603391	9401 Between Kohler Dams	390)	250		330		730	990)
Smallmouth Bass	Adult	603391	9402 Between Kohler Dams	260	1	200		200		440	620)
Smallmouth Bass	Adult	603391	9403 Between Kohler Dams	590	1	460		490		890	1200)
Smallmouth Bass	Young of year	603391	9404 Between Kohler Dams	330	1	410		320		540	750)
Smallmouth Bass	Young of year	603391	9405 Between Kohler Dams	270	1	330		270		460	590)
Smallmouth Bass	Young of year	603391	9406 Between Kohler Dams	560)	560		500		840	1200)
White Sucker	Adult	603388	9407 Control	2.7	·	1.4		2		3.9	5.9)
White Sucker	Adult	603388	9408 Control	1	U	1	U	0.8	U	0.91	1.2	2
White Sucker	Adult	603388	9409 Control	1	U	1	U	0.8	U	0.6 U	0.72	2
White Sucker	Young of year	603388	9410 Control	1	U	1	U	0.8	U	0.67	0.93	3
White Sucker	Young of year	603388	9411 Control	1	U	1	U	0.8	U	0.88	1.4	ł
White Sucker	Young of year	603388	9412 Control	4		2.6		3.2		5.7	8.2	2
White Sucker	Adult	603389	9407 Rochester Park	130)	100		120		200	230)

					PCB087	PCB087		PCB091		PCB097		PCB099		1
					(µg/kg)		(µg/kg) (µg/kg)			(µg/kg)		(µg/kg)		
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
White Sucker	Adult	603389	9408	Rochester Park	190		130		170		270		350	
White Sucker	Adult	603389	9409	Rochester Park	300		260		270		450		620	
White Sucker	Young of year	603389	9410	Rochester Park	190		170		160		230		330	
White Sucker	Young of year	603389	9411	Rochester Park	190		180		160		240		370	
White Sucker	Young of year	603389	9412	Rochester Park	150		150		140		220		290	
White Sucker	Adult	603390	9407	Esselingen Park	63		52		54		96		140	
White Sucker	Adult	603390	9408	Esselingen Park	270		240		220		420		600	
White Sucker	Adult	603390	9409	Esselingen Park	110		100		93		150		210	
White Sucker	Young of year	603390	9410	Esselingen Park	68		72		56		100		140	
White Sucker	Young of year	603390	9411	Esselingen Park	66		77		59		98		140	
White Sucker	Young of year	603390	9412	Esselingen Park	88		93		78		130		190	
White Sucker	Adult	603391	9407	Between Kohler Dams	120		140		120		230		310	
White Sucker	Adult	603391	9408	Between Kohler Dams	180		180		170		290		390	
White Sucker	Adult	603391	9409	Between Kohler Dams	210		220		200		350		470	
White Sucker	Young of year	603391	9410	Between Kohler Dams	110		160		110		190		280	
White Sucker	Young of year	603391	9411	Between Kohler Dams	210		330		200		340		480	
White Sucker	Young of year	603391	9412	Between Kohler Dams	120		140		110		180		290	

Table A3-4. C	Continued
---------------	-----------

					PCB105	5	PCB118		PCB123		PCB126	PCB128	
					(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)	(µg/kg)	
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc Q	Conc	Q
Crayfish		603384	9409	Control	1	U	0.8	U	1	U	1 U	1.4	U
Crayfish		603384	9410	Control	1	U	0.8	U	1	U	1 U	1.4	U
Crayfish		603384	9411	Control			1.5					1.4	U
Crayfish		603385	9409	Rochester Park	29		98		8	U*I	1 U	10	
Crayfish		603385	9410	Rochester Park	22		83		2.1	U*I	1 U	7.9	
Crayfish		603385	9411	Rochester Park			79					10	
Crayfish		603386	9409	Between Kohler Dams	26		130		7.1	U*I	1 U	12	
Crayfish		603386	9410	Between Kohler Dams	21		95		8.7	U*I	1 U	11	
Crayfish		603386	9411	Between Kohler Dams			88					12	
Crayfish		603387		Esselingen Park	19		80		4	U*I	1 U	9.4	
Crayfish		603387	9410	Esselingen Park	23		87		4	U*I	1 U	11	
Crayfish		603387	9411	Esselingen Park			83					12	
Emergent Insects		603384	9401	Control	2.8		9.3		1	U	1 U	1.5	
Emergent Insects		603384	9402	Control	1.6		6		1	U	1 U	1.4	U
Emergent Insects		603384	9403	Control	1	U	3.6		1	U	1 U	1.4	U
Emergent Insects		603384	9404	Control	1.4		4.9		1	U	1 U	1.4	U
Emergent Insects		603385	9401	Rochester Park	290		710		19	U*I	1 U	73	
Emergent Insects		603385	9402	Rochester Park	260		820			U*I	1 U	79	
Emergent Insects		603385	9403	Rochester Park	170		450		12	U*I	1 U	54	
Emergent Insects		603385	9404	Rochester Park	170		480		19	U*I	1 U	62	
Emergent Insects		603386	9401	Between Kohler Dams	160		600			U*I	1 U	72	
Emergent Insects		603386	9402	Between Kohler Dams	100		480		21	U*I	1 U	53	
Emergent Insects		603386	9403	Between Kohler Dams	87		260		17	U*I	1 U	31	
Emergent Insects		603386	9404	Between Kohler Dams	71		260		20	U*I	1 U	32	
Emergent Insects		603387	9401	Esselingen Park	81		270		15	U*I	1 U	31	
Emergent Insects		603387	9402	Esselingen Park	80		310		16	U*I	1 U	35	
Emergent Insects		603387	9403	Esselingen Park	97		340		19	U*I	1 U	40	
Emergent Insects		603387	9404	Esselingen Park	130		390		13	U*I	1 U	46	
Larval Insects		603384	9405	Control	1	U	1.6		1	U	1 U	1.4	U
Larval Insects		603384	9406	Control			2.6					1.4	U
Larval Insects		603384	9407	Control	1	U	1.2		1	U	1 U	1.4	U
Larval Insects		603384	9408	Control	1	U	1.7		1	U	1 U	1.4	U
Larval Insects		603385	9405	Rochester Park	100		290		9.3	U*I	1 U	34	
Larval Insects		603385	9406	Rochester Park			210					26	
Larval Insects		603385	9407	Rochester Park	110		290		9	U*I	1 U	36	
Larval Insects		603385	9408	Rochester Park	88		250		7.6		1 U	28	
Larval Insects		603386	9405	Between Kohler Dams	81		230		17	U*I	1 U	27	
Larval Insects		603386	9406	Between Kohler Dams			230					27	
Larval Insects		603386	9407	Between Kohler Dams	62		180		11	U*I	1 U	21	
Larval Insects		603386	9408	Between Kohler Dams	63		180		13	U*I	1 U	20	
Larval Insects		603387	9406	Esselingen Park	51	1	170		5.8	U*I	1 U	19	
Larval Insects		603387		Esselingen Park	50	1	170			U*I	1 U	21	
Larval Insects		603387		Esselingen Park	43		180		7.4	U*I	1 U	21	

					PCB105		PCB118	PCB12		3	PCB126	PCB128	3
					(µg/kg)		(µg/kg)	(µg/kg)			(µg/kg)	(µg/kg)	
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc Q	Conc	Q
Longnose Dace	Young of year	603388	9413	Control	9.9		25		1	U	1 U	3.5	
Longnose Dace	Young of year	603388	9414	Control			6.8					1.6	
Longnose Dace	Young of year	603388	9415	Control			3.3					1.4	U
Longnose Dace	Young of year	603389	9413	Rochester Park			300					34	
Longnose Dace	Young of year	603389	9414	Rochester Park			320					36	
Longnose Dace	Young of year	603389	9415	Rochester Park	240		740		17	U*I	2 U*I	71	
Longnose Dace	Young of year	603390	9413	Esselingen Park	260		760			U*I	1 U	87	
Longnose Dace	Young of year	603390	9414	Esselingen Park			700					78	
Longnose Dace	Young of year	603390	9415	Esselingen Park			460					53	
Longnose Dace	Young of year	603391		Between Kohler Dams			460					54	
Longnose Dace	Young of year	603391	9414	Between Kohler Dams			560					63	
Longnose Dace	Young of year	603391	9415	Between Kohler Dams	170		560		16	U*I	1 U	65	
Smallmouth Bass	Adult	603388	9401	Control	8.6		39			U*I	1 U	5.5	
Smallmouth Bass	Adult	603388	9402	Control	4.5		13			U	1 U	2.5	
Smallmouth Bass	Adult	603388	9403	Control	3.1		8.1		1	U	1 U	1.7	
Smallmouth Bass	Young of year	603388	9404	Control			3.9					1.4	U
Smallmouth Bass	Young of year	603388	9405	Control			4.4					1.4	U
Smallmouth Bass	Young of year	603388	9406	Control	1.4		7.6		1	U	1 U	1.4	U
Smallmouth Bass	Adult	603389	9401	Rochester Park	770		2000		110	U*I	5.4	260	
Smallmouth Bass	Adult	603389	9402	Rochester Park	920		1900		120	U*I	4	240	
Smallmouth Bass	Adult	603389		Rochester Park	460		1100			U*I	1.8	130	
Smallmouth Bass	Young of year	603389	9404	Rochester Park			920					90	
Smallmouth Bass	Young of year	603389		Rochester Park			720					110	
Smallmouth Bass	Young of year	603389		Rochester Park	340		920		23	U*I	2.4 U*I	93	
Smallmouth Bass	Adult	603390	9401	Esselingen Park	210		720			U*I	1.2 U*I	73	
Smallmouth Bass	Adult	603390	9402	Esselingen Park	250		820		18	U*I	1.4 U*I	93	
Smallmouth Bass	Adult	603390		Esselingen Park	240		820			U*I	1.5 U*I	92	
Smallmouth Bass	Young of year	603390		Esselingen Park			250			-		32	
Smallmouth Bass	Young of year	603390		Esselingen Park			360					45	
Smallmouth Bass	Young of year	603390		Esselingen Park	170		480		12	U*I	1 U	49	
Smallmouth Bass	Adult	603391		ų	340		1200			U*I	2.2	140	
Smallmouth Bass	Adult	603391	9402	Between Kohler Dams	210		680		18	U*I	1.2	88	
Smallmouth Bass	Adult	603391	9403	Between Kohler Dams	460		1400			U*I	2.4	170	
Smallmouth Bass	Young of year	603391	9404	Between Kohler Dams			830			-		100	
Smallmouth Bass	Young of year	603391	9405	Between Kohler Dams			720					88	
Smallmouth Bass	Young of year	603391	9406	Between Kohler Dams	430		1200		37	U*I	2	160	
White Sucker	Adult	603388	9407	Control	2.8		7.8			U	1 U	1.4	U
White Sucker	Adult	603388		Control			2.1					1.4	-
White Sucker	Adult	603388		Control			1.2					1.4	
White Sucker	Young of year	603388		Control			1.3					1.4	
White Sucker	Young of year	603388		Control			1.6					1.4	-
White Sucker	Young of year	603388		Control	3.2		11		1	U	1 U	1.6	
White Sucker	Adult	603389		Rochester Park	130		320			U*I	1.2 U*I	48	

					PCB105		PCB118		PCB123		PCB12	6	PCB128	8
					(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)	
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
White Sucker	Adult	603389	940	8 Rochester Park			470						57	/
White Sucker	Adult	603389	940	9 Rochester Park			730						82	2
White Sucker	Young of year	603389	941	0 Rochester Park			370						50	ו
White Sucker	Young of year	603389	941	1 Rochester Park			400						50)
White Sucker	Young of year	603389	941	2 Rochester Park	130		310		9	U*I	1.	9 U*I	41	i l
White Sucker	Adult	603390	940	7 Esselingen Park	40		140		4.2	U*I		1 U	17	1
White Sucker	Adult	603390	940	8 Esselingen Park			550						68	3
White Sucker	Adult	603390	940	9 Esselingen Park			200						28	3
White Sucker	Young of year	603390	941	0 Esselingen Park			140						22	2
White Sucker	Young of year	603390	941	1 Esselingen Park			140						20	נ
White Sucker	Young of year	603390	941	2 Esselingen Park	61		200		5.6	U*I		1 U	25	ز
White Sucker	Adult	603391	940	7 Between Kohler Dams	120		330		8.1	U*I		1 U	42	2
White Sucker	Adult	603391	940	8 Between Kohler Dams			470						59	3
White Sucker	Adult	603391	940	9 Between Kohler Dams			540						61	i
White Sucker	Young of year	603391	941	0 Between Kohler Dams			250						36	;
White Sucker	Young of year	603391	941	1 Between Kohler Dams			450						59	J
White Sucker	Young of year	603391	941	2 Between Kohler Dams	83		260		7.1	U*I		1 U	31	1

Table A3-4. Continued

				PCB132/153	PCB136	;	PCB137/176	PCB138/163	PCB141
				(µg/kg)	(µg/kg)		(µg/kg)	(µg/kg)	(µg/kg)
Species	Age Class Station	Sample	Location	Conc Q	Conc	Q	Conc Q	Conc Q	Conc Q
Crayfish	60338	4 9409	Control	1.8 U	2	U	1 U	1.7 U	0.8 U
Crayfish	60338	4 9410	Control	1.8 U	2	U	1 U	1.7 U	0.8 U
Crayfish	60338	4 9411	Control	1.9	2	U	1 U	1.7 U	0.8 U
Crayfish	60338	5 9409	Rochester Park	63				65	12 U*I
Crayfish	60338	5 9410	Rochester Park	55				55	10 U*I
Crayfish	60338	5 9411	Rochester Park	58			1 U	64	9 U*I
Crayfish	60338	6 9409	Between Kohler Dams	78	10	U*I	1 U	84	14 U*I
Crayfish	60338	6 9410	Between Kohler Dams	75	2	U*I	1 U	81	13 U*I
Crayfish	60338	6 9411	Between Kohler Dams	69	2	U	1 U	76	9.9 U*I
Crayfish	60338	9409	Esselingen Park	58	2	U	5.2	66	9 U*I
Crayfish	60338	9410	Esselingen Park	65	2	U	1 U	73	10 U*I
Crayfish	60338	9411	Esselingen Park	70	2	U	1 U	82	11 U*I
Emergent Insects	60338	4 9401	Control	11	2	U	1 U	9.9	1.3 U*I
Emergent Insects	60338	4 9402	Control	8.2	2	U	1 U	8.4	1 U*I
Emergent Insects	60338	4 9403	Control	7	2	U	1 U	6.4	0.8 U
Emergent Insects	60338	4 9404	Control	7.8	2	U	1 U	7.4	0.8 U
Emergent Insects	60338	5 9401	Rochester Park	540	17	U*I	2.1 U*I	550	68 U*I
Emergent Insects	60338	5 9402	Rochester Park	590	21		2.3 U*I	610	83 U*I
Emergent Insects	60338	5 9403	Rochester Park	350	13		1.6 U*I	390	56 U*I
Emergent Insects	60338	5 9404	Rochester Park	390	15		2 U*I	430	63 U*I
Emergent Insects	60338	6 9401	Between Kohler Dams	530	19		2.8 U*I	530	69 U*I
Emergent Insects	60338	6 9402	Between Kohler Dams	420	14		2 U*I	420	51 U*I
Emergent Insects	60338	6 9403	Between Kohler Dams	240	14	U*I		240	35 U*I
Emergent Insects	60338	6 9404	Between Kohler Dams	250	17	U*I		240	36 U*I
Emergent Insects	60338		Esselingen Park	230	10	U*I		230	31 U*I
Emergent Insects	60338	9402	Esselingen Park	240	12	U*I		260	35 U*I
Emergent Insects	60338		Esselingen Park	260	15	U*I		290	42 U*I
Emergent Insects	60338	9404	Esselingen Park	290	18	U*I		320	40 U*I
Larval Insects	60338		Control	2.7	2	U	1 U	2.5	0.8 U
Larval Insects	60338	4 9406	Control	3.6		U	1 U	3.2	0.8 U
Larval Insects	60338	4 9407	Control	2	2	U	1 U	1.9	0.8 U
Larval Insects	60338	4 9408	Control	2.7	2	U	1 U	2.6	0.8 U
Larval Insects	60338	5 9405	Rochester Park	190	9.3		1 U	210	34 U*I
Larval Insects	60338	5 9406	Rochester Park	140	5.6		1 U	160	22 U*I
Larval Insects	60338	5 9407	Rochester Park	190	9.4		1 U	220	36 U*I
Larval Insects	60338	5 9408	Rochester Park	140	5.8		1 U	180	28 U*I
Larval Insects	60338	6 9405	Between Kohler Dams	190	13	U*I		190	27 U*I
Larval Insects	60338	6 9406	Between Kohler Dams	190	12	U*I		190	22 U*I
Larval Insects	60338		Between Kohler Dams	150		U*I		150	21 U*I
Larval Insects	60338		Between Kohler Dams	150		U*I		150	30 U*I
Larval Insects	60338		Esselingen Park	120	-	U*I		130	17 U*I
Larval Insects	60338		Esselingen Park	120		U*I	1 U	130	20 U*I
Larval Insects	60338		Esselingen Park	120		U*I	1 U	140	19 U*I

Table A	3-4. Co	ntinued	
	• ••		

					PCB132/15	53	PCB136	;	PCB137/1	76	PCB138/163	PCB141
					(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)	(µg/kg)
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc Q	Conc Q
Longnose Dace	Young of year	603388	9413	Control	26		2	U	1	U	25	3 U*I
Longnose Dace	Young of year	603388	9414	Control	14		2	U	1	U	12	1.7 U*I
Longnose Dace	Young of year	603388	9415	Control	7.4		2	U	1	U	6.3	0.8 U
Longnose Dace	Young of year	603389	9413	Rochester Park	230		5.7		20	U*I	240	35 U*I
Longnose Dace	Young of year	603389	9414	Rochester Park	260		6.6		20	U*I	260	40 U*I
Longnose Dace	Young of year	603389	9415	Rochester Park	440		14				490	69 U*I
Longnose Dace	Young of year	603390	9413	Esselingen Park	760		15	U*I	2.5	U*I	690	81 U*I
Longnose Dace	Young of year	603390	9414	Esselingen Park	650		12	U*I			620	70 U*I
Longnose Dace	Young of year	603390	9415	Esselingen Park	470		9.5	U*I	1.3		420	50 U*I
Longnose Dace	Young of year	603391	9413	Between Kohler Dams	460		19	U*I			410	50 U*I
Longnose Dace	Young of year	603391	9414	Between Kohler Dams	560		24	U*I	1.6	U*I	500	60 U*I
Longnose Dace	Young of year	603391	9415	Between Kohler Dams	670		14	U*I	2.5	U*I	530	64 U*I
Smallmouth Bass	Adult	603388	9401	Control	31		2	U	1	U	34	4 U*I
Smallmouth Bass	Adult	603388	9402	Control	21		2	U	1	U	18	2 U*I
Smallmouth Bass	Adult	603388	9403	Control	13		2	U	1	U	11	1.3 U*I
Smallmouth Bass	Young of year	603388	9404	Control	6.7		2	U	1	U	5.6	0.8 U
Smallmouth Bass	Young of year	603388	9405	Control	8.3		2	U	1	U	6.8	0.8 U
Smallmouth Bass	Young of year	603388	9406	Control	10		2	U	1	U	9.5	1.2 U*I
Smallmouth Bass	Adult	603389	9401	Rochester Park	1400		44		5	U*I	1600	200 U*I
Smallmouth Bass	Adult	603389	9402	Rochester Park	1400		33		4	U*I	1600	190 U*I
Smallmouth Bass	Adult	603389	9403	Rochester Park	770		17		2	U*I	830	110 U*I
Smallmouth Bass	Young of year	603389	9404	Rochester Park	570		26	U*I	1.4		630	75 U*I
Smallmouth Bass	Young of year	603389	9405	Rochester Park	580		18		1.3		720	110 U*I
Smallmouth Bass	Young of year	603389	9406	Rochester Park	580		19				630	81 U*I
Smallmouth Bass	Adult	603390	9401	Esselingen Park	510		22	U*I			560	65
Smallmouth Bass	Adult	603390	9402	Esselingen Park	620		26	U*I			680	78 U*I
Smallmouth Bass	Adult	603390	9403	Esselingen Park	660			U*I			690	82 U*I
Smallmouth Bass	Young of year	603390	9404	Esselingen Park	240		20	U*I	20	U*I	240	32 U*I
Smallmouth Bass	Young of year	603390	9405	Esselingen Park	380		11		25	U*I	360	45 U*I
Smallmouth Bass	Young of year	603390	9406	Esselingen Park	400		13				390	47 U*I
Smallmouth Bass	Adult	603391	9401	Between Kohler Dams	1100		28	U*I	3.5	U*I	1000	130 U*I
Smallmouth Bass	Adult	603391	9402	Between Kohler Dams	730		12	U*I	2.3	U*I	660	83 U*I
Smallmouth Bass	Adult	603391	9403	Between Kohler Dams	1300		24	U*I	3.7	U*I	1200	160 U*I
Smallmouth Bass	Young of year	603391	9404	Between Kohler Dams	690		26		2.1		690	75 U*I
Smallmouth Bass	Young of year	603391	9405	Between Kohler Dams	550		30	U*I	1.3		580	64 U*I
Smallmouth Bass	Young of year	603391	9406	Between Kohler Dams	1300		35	U*I	4.5	U*I	1200	150 U*I
White Sucker	Adult	603388	9407	Control	10		2	U	1	U	9.5	1 U*I
White Sucker	Adult	603388	9408	Control	4.8		2	U	1	U	4	0.8 U
White Sucker	Adult	603388	9409	Control	3.5		2	U	1	U	2.8	0.8 U
White Sucker	Young of year	603388		Control	3.3			U		U	2.7	0.8 U
White Sucker	Young of year	603388	9411	Control	3.7		2	U	1	U	3.3	0.8 U
White Sucker	Young of year	603388		Control	9.2		2	U	1	U	9.6	1.2 U*I
White Sucker	Adult	603389	9407	Rochester Park	280		7.3				300	31 U*I

Table A	3-4. Co	ntinued	
	• ••		

					PCB132/1	53	PCB136	;	PCB137/1	76	PCB138/1	63	PCB141	1
					(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)	,
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
White Sucker	Adult	603389	9408	Rochester Park	410		8.4		25		410		44	l U*I
White Sucker	Adult	603389	9409	Rochester Park	530		14				600		70) U*I
White Sucker	Young of year	603389	9410	Rochester Park	260		11				290		40) U*I
White Sucker	Young of year	603389	9411	Rochester Park	340		12		22		310		41	U*I
White Sucker	Young of year	603389	9412	Rochester Park	250		10				270		33	3 U*I
White Sucker	Adult	603390	9407	Esselingen Park	130						130		15	5 U*I
White Sucker	Adult	603390	9408	Esselingen Park	520				35	U*I	540		65	5 U*I
White Sucker	Adult	603390	9409	Esselingen Park	200				15	U*I	200		24	l U*I
White Sucker	Young of year	603390	9410	Esselingen Park	140		7.7	U*I			130		11	U*I
White Sucker	Young of year	603390	9411	Esselingen Park	140		17	U*I			130		12	2
White Sucker	Young of year	603390	9412	Esselingen Park	170		18	U*I	12	U*I	170		19) U*I
White Sucker	Adult	603391	9407	Between Kohler Dams	350		6.5	U*I	1.9	U*I	270		31	U*I
White Sucker	Adult	603391	9408	Between Kohler Dams	400		87	U*I			400		36	∂U*I
White Sucker	Adult	603391	9409	Between Kohler Dams	460		90	U*I	1.2		460		45	5 U*I
White Sucker	Young of year	603391	9410	Between Kohler Dams	250		16	U*I			230		22	2 U*I
White Sucker	Young of year	603391	9411	Between Kohler Dams	420		31	U*I	1.7		390		40) U*I
White Sucker	Young of year	603391	9412	Between Kohler Dams	230		7.5	U*I	15	U*I	220		26	6 U*I

Table A3-4. Continued

					PCB144/1	35	PCB146		PCB149		PCB151	PCB156	6
					(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)	(µg/kg)	,
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc Q	Conc	Q
Crayfish		603384	9409	Control	0.8	U	1	U	1.1	U	1 U	1	U
Crayfish		603384	9410	Control	0.8	U	1	U	1.1	U	1 U	1	U
Crayfish		603384	9411	Control	0.8	U	1	U	1.1	U	1 U		
Crayfish		603385	9409	Rochester Park	2.9		17		24		5.1	6.3	6
Crayfish		603385	9410	Rochester Park	2.4		15		20		4.5	5.1	
Crayfish		603385	9411	Rochester Park	3		17		23		5.6		
Crayfish		603386	9409	Between Kohler Dams	4.1		27		32		7.7	5.8	6
Crayfish		603386	9410	Between Kohler Dams	4.3		25		33		8	6.3	6
Crayfish		603386	9411	Between Kohler Dams	3.9		23		30		7.2		
Crayfish		603387	9409	Esselingen Park	3.9		19		26		6.9	3.9	j
Crayfish		603387	9410	Esselingen Park	3.4		20		27		6.1	4.7	
Crayfish		603387		Esselingen Park	3.9		23		32		7.1		
Emergent Insects		603384	9401	Control	0.8	U	1.7		4.1		1 U	1	U
Emergent Insects		603384	9402	Control	0.8	U	1.3		2.6		1 U	1	U
Emergent Insects		603384	9403	Control	0.8	U	1.1		2		1 U	1	U
Emergent Insects		603384	9404	Control	0.8	U	1.2		2.5		1 U		U
Emergent Insects		603385		Rochester Park	48		86		280		18	55	- i
Emergent Insects		603385	9402	Rochester Park	59		100		300		27	57	
Emergent Insects		603385	9403	Rochester Park	38		70		160		18	38	
Emergent Insects		603385	9404	Rochester Park	45		80		210		15	44	i l
Emergent Insects		603386	9401	Between Kohler Dams	71		120		300		21	46	
Emergent Insects		603386	9402	Between Kohler Dams	52		90		240		21	34	
Emergent Insects		603386	9403	Between Kohler Dams	33		65		130		18	20	j l
Emergent Insects		603386	9404	Between Kohler Dams	34		60		130		15	20	j
Emergent Insects		603387	9401	Esselingen Park	23		55		110		27	16	ز
Emergent Insects		603387	9402	Esselingen Park	29		61		130		17	18	5
Emergent Insects		603387		Esselingen Park	37		71		160		19	23	1
Emergent Insects		603387		Esselingen Park	44		75		180		12	18	i
Larval Insects		603384		Control	0.8	U		U	1.1	U	1 U		U
Larval Insects		603384		Control	0.8	U	1	U	1.3	-	1 U		-
Larval Insects		603384		Control	0.8		1	U	1.1	U	1 U	1	U
Larval Insects		603384		Control	0.8			U	1.1		1 U		U
Larval Insects		603385		Rochester Park	21	-	38	-	90	-	20	22	
Larval Insects		603385		Rochester Park	16		28		69		13		-
Larval Insects		603385		Rochester Park	22		39		92		18	21	
Larval Insects		603385		Rochester Park	16		30		72		15	15	
Larval Insects		603386		Between Kohler Dams	26		48		100		24	13	
Larval Insects		603386		Between Kohler Dams	25		45		99		19		1
Larval Insects		603386		Between Kohler Dams	23		39		85		20	10	j
Larval Insects		603386		Between Kohler Dams	24		38		84		23	10	
Larval Insects		603387		Esselingen Park	18		30		68		13	7.4	
Larval Insects		603387		Esselingen Park	19		31		67		16	7.8	
Larval Insects		603387		Esselingen Park	20		31		70		10	6.2	

Table A3-4. Continued

					PCB144/1	35	PCB146	i	PCB149		PCB151	PCB156	;
					(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)	(µg/kg)	,
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc Q	Conc	Q
Longnose Dace	Young of year	603388	9413	Control	1.6		4.8		9.4		2.3	2.4	
Longnose Dace	Young of year	603388	9414	Control	0.8	U	2.1		3.9		1 U		
Longnose Dace	Young of year	603388	9415	Control	0.8	U	1		1.8		1 U		
Longnose Dace	Young of year	603389	9413	Rochester Park	24		49		120		24		
Longnose Dace	Young of year	603389	9414	Rochester Park	26		54		140		28		
Longnose Dace	Young of year	603389	9415	Rochester Park	47		83		210		44	44	
Longnose Dace	Young of year	603390	9413	Esselingen Park	71		140		400		69	54	
Longnose Dace	Young of year	603390	9414	Esselingen Park	71		140		330		67		
Longnose Dace	Young of year	603390	9415	Esselingen Park	53		100		250		52		
Longnose Dace	Young of year	603391		Between Kohler Dams	48		99		200		45		
Longnose Dace	Young of year	603391	9414	Between Kohler Dams	61		120		300		56		
Longnose Dace	Young of year	603391	9415	Between Kohler Dams	65		130		360		59	38	,
Smallmouth Bass	Adult	603388	9401	Control	1.9		5.4		12		2.6	1.6	
Smallmouth Bass	Adult	603388	9402	Control	0.89		2.9		5.8		1.3	1.4	
Smallmouth Bass	Adult	603388	9403	Control	0.8	U	2		3.7		1 U	1.1	
Smallmouth Bass	Young of year	603388		Control	0.8	U	1	U	1.6		1 U		
Smallmouth Bass	Young of year	603388	9405	Control	0.8	U	1.1		2		1 U		
Smallmouth Bass	Young of year	603388	9406	Control	0.8	U	1.6		3.2		1 U	1	U
Smallmouth Bass	Adult	603389	9401	Rochester Park	97		280		600		150	170	,
Smallmouth Bass	Adult	603389	9402	Rochester Park	100		280		590		160	190	,
Smallmouth Bass	Adult	603389		Rochester Park	60		150		350		81	90	,
Smallmouth Bass	Young of year	603389	9404	Rochester Park	57		100		240		67		
Smallmouth Bass	Young of year	603389	9405	Rochester Park	62		140		310		83		
Smallmouth Bass	Young of year	603389	9406	Rochester Park	41		100		200		58	54	
Smallmouth Bass	Adult	603390	9401	Esselingen Park	44		110		260		56	41	
Smallmouth Bass	Adult	603390	9402	Esselingen Park	53		130		310		71	53	,
Smallmouth Bass	Adult	603390	9403	Esselingen Park	46		140		290		62	51	
Smallmouth Bass	Young of year	603390		Esselingen Park	29		53		130		33		
Smallmouth Bass	Young of year	603390	9405	Esselingen Park	41		74		190		46		
Smallmouth Bass	Young of year	603390		Esselingen Park	39		76		170		47	23	,
Smallmouth Bass	Adult	603391	9401	Between Kohler Dams	64		240		490		95	88	,
Smallmouth Bass	Adult	603391	9402	Between Kohler Dams	50		150		340		71	64	
Smallmouth Bass	Adult	603391	9403	Between Kohler Dams	85		240		600		120	120	,
Smallmouth Bass	Young of year	603391	9404	Between Kohler Dams	85		150		380		91		
Smallmouth Bass	Young of year	603391	9405	Between Kohler Dams	63		130		270		69		
Smallmouth Bass	Young of year	603391	9406	Between Kohler Dams	100		230		660		130	99	,
White Sucker	Adult	603388	9407	Control	0.8	U	1.6		2.8		1 U	1	U
White Sucker	Adult	603388		Control	0.8			U	1.1	U	1 U		1
White Sucker	Adult	603388		Control	0.8		1	U	1.1		1 U		1
White Sucker	Young of year	603388		Control	0.8			U	1.1		1 U		1
White Sucker	Young of year	603388		Control	0.8	-	1	U	1.1		1 U		1
White Sucker	Young of year	603388		Control	0.8		1.7	-	3.2		1 U	1	U
White Sucker	Adult	603389	-	Rochester Park	17		60		99		23	27	-

					PCB144/1	35	PCB146		PCB149		PCB151		PCB156	6
					(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg))
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
White Sucker	Adult	603389	940	8 Rochester Park	21		67		140		26			
White Sucker	Adult	603389	940	9 Rochester Park	37		100		230		45			
White Sucker	Young of year	603389	941	0 Rochester Park	25		55		120		31			
White Sucker	Young of year	603389	941	1 Rochester Park	30		64		160		34			
White Sucker	Young of year	603389	941	2 Rochester Park	25		58		110		29		22	2
White Sucker	Adult	603390	940	7 Esselingen Park	11		29		56		9.5		11	1
White Sucker	Adult	603390	940	8 Esselingen Park	44		100		230		44			
White Sucker	Adult	603390	940	9 Esselingen Park	19		44		88		18			
White Sucker	Young of year	603390	941	0 Esselingen Park	14		26		68		17			
White Sucker	Young of year	603390	941	1 Esselingen Park	13		28		66		18			
White Sucker	Young of year	603390	941	2 Esselingen Park	19		38		84		21		13	3
White Sucker	Adult	603391	940	7 Between Kohler Dams	24		67		120		27		22	2
White Sucker	Adult	603391	940	8 Between Kohler Dams	29		90		160		35			
White Sucker	Adult	603391	940	9 Between Kohler Dams	40		110		220		46			
White Sucker	Young of year	603391	941	0 Between Kohler Dams	28		53		130		34			
White Sucker	Young of year	603391	941	1 Between Kohler Dams	55		96		230		65			
White Sucker	Young of year	603391	941	2 Between Kohler Dams	27		56		110		29		19	į

					PCB157	,	PCB167	PCB169		PCB170/190	PCB171/202
					(µg/kg)		(µg/kg)	(µg/kg)		(µg/kg)	(µg/kg)
Species	Age Class	Station	Sample	Location	Conc	Q	Conc Q	Conc	Q	Conc Q	Conc Q
Crayfish		603384	9409	Control	1	U	1.8 U	1	U	2.5 U	0.8 U
Crayfish		603384	9410	Control	1	U	1.8 U	1	U	2.5 U	0.8 U
Crayfish		603384	9411	Control			1.8 U			2.5 U	0.8 U
Crayfish		603385	9409	Rochester Park	2.1		3.5	1	U	10	
Crayfish		603385	9410	Rochester Park	1.7		2.7	1	U	8.1	
Crayfish		603385	9411	Rochester Park			3.3			10	1.6 U*I
Crayfish		603386	9409	Between Kohler Dams	1.4		3.9	1	U	14	3 U*I
Crayfish		603386	9410	Between Kohler Dams	1.4		3.6	1	U	12	3 U*I
Crayfish		603386	9411	Between Kohler Dams			3.4			11	1.9 U*I
Crayfish		603387	9409	Esselingen Park	2.1		3.3	1	U	11	2.5 U*I
Crayfish		603387	9410	Esselingen Park	2.3		3.8	1	U	12	2.5 U*I
Crayfish		603387	9411	Esselingen Park			3.6			12	2.2 U*I
Emergent Insects		603384		Control	1	U	1.8 U	1	U	2.8	0.8 U
Emergent Insects		603384	9402	Control	1	U	1.8 U	1	U	2.5 U	0.8 U
Emergent Insects		603384	9403	Control	1	U	1.8 U	1	U	2.5 U	0.8 U
Emergent Insects		603384	9404	Control	1	U	1.8 U	1	U	2.5 U	0.8 U
Emergent Insects		603385	9401	Rochester Park	23		21	1	U	100	17 U*I
Emergent Insects		603385	9402	Rochester Park	19		25	1	U	110	19 U*I
Emergent Insects		603385	9403	Rochester Park	12		17	1	U	77	13 U*I
Emergent Insects		603385	9404	Rochester Park	15		19	1	U	85	15 U*I
Emergent Insects		603386	9401	Between Kohler Dams	11		22	1	U	110	9.4
Emergent Insects		603386	9402	Between Kohler Dams	8.6		16	1	U	80	7.7 U*I
Emergent Insects		603386	9403	Between Kohler Dams	5.2		10	1	U	52	9 U*I
Emergent Insects		603386	9404	Between Kohler Dams	5.2		10	1	-	49	9 U*I
Emergent Insects		603387	9401	Esselingen Park	4.4		8.8	1		40	7 U*I
Emergent Insects		603387	9402	Esselingen Park	5.1		10	1	U	55	9 U*I
Emergent Insects		603387	9403	Esselingen Park	6.2		12	1	U	62	7 U*I
Emergent Insects		603387	9404	Esselingen Park	9.4		16	1	U	68	10 U*I
Larval Insects		603384	9405	Control	1	U	1.8 U	1	U	2.5 U	0.8 U
Larval Insects		603384	9406	Control			1.8 U			2.5 U	0.8 U
Larval Insects		603384	9407	Control	1	U	1.8 U	1	-	2.5 U	0.8 U
Larval Insects		603384	9408	Control		U	1.8 U	1	U	2.5 U	0.8 U
Larval Insects		603385	9405	Rochester Park	8.7		9.4	1	U	42	4.5 U*I
Larval Insects		603385	9406	Rochester Park			6.6			31	4.9 U*I
Larval Insects		603385	9407	Rochester Park	8.7		9.7	1	U	43	7.5 U*I
Larval Insects		603385	9408	Rochester Park	6.2		7.7	1	U	33	6 U*I
Larval Insects		603386	9405	Between Kohler Dams	3.9		7.2	1	U	36	7 U*I
Larval Insects		603386	9406	Between Kohler Dams			7.4			37	5.9 U*I
Larval Insects		603386	9407	Between Kohler Dams	3		5.4	1	U	28	5 U*I
Larval Insects		603386	9408	Between Kohler Dams	3.1		5	1	U	26	5 U*I
Larval Insects		603387	9406	Esselingen Park	4		5.7	1	U	25	4.5 U*I
Larval Insects		603387		Esselingen Park	4.4		6.4	1	U	27	4.5 U*I
Larval Insects		603387	9408	Esselingen Park	3.4		6.6	1	U	28	4.5 U*I

Table A3-4. Continued

				PCB157	PCB167	PCB169	PCB170/190	PCB171/202
				(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
Species	Age Class	Station	Sample Location	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
Longnose Dace	Young of year	603388	9413 Control	1 U	1.8 U	1 U	4.5	0.8 U
Longnose Dace	Young of year	603388	9414 Control		1.8 U		2.5 U	0.8 U
Longnose Dace	Young of year	603388	9415 Control		1.8 U		2.5 U	0.8 U
Longnose Dace	Young of year	603389	9413 Rochester Park		11		53	10 U*I
Longnose Dace	Young of year	603389	9414 Rochester Park		12		56	10 U*I
Longnose Dace	Young of year	603389	9415 Rochester Park	11	19	1 U	82	13 U*I
Longnose Dace	Young of year	603390	9413 Esselingen Park	26	28	1 U	110	13 U*I
Longnose Dace	Young of year	603390	9414 Esselingen Park		22		110	9.8 U*I
Longnose Dace	Young of year	603390	9415 Esselingen Park		14		71	6.6 U*I
Longnose Dace	Young of year	603391	9413 Between Kohler Dams		16		80	12 U*I
Longnose Dace	Young of year	603391	9414 Between Kohler Dams		19		93	14 U*I
Longnose Dace	Young of year	603391	9415 Between Kohler Dams	19	22	1 U	94	10 U*I
Smallmouth Bass	Adult	603388	9401 Control	1 U	1.8 U	1 U	6.5	0.81
Smallmouth Bass	Adult	603388	9402 Control	1 U	1.8 U	1 U	3.3	0.8 U
Smallmouth Bass	Adult	603388	9403 Control	1 U	1.8 U	1 U	2.5 U	0.8 U
Smallmouth Bass	Young of year	603388	9404 Control		1.8 U		2.5 U	0.8 U
Smallmouth Bass	Young of year	603388	9405 Control		1.8 U		2.5 U	0.8 U
Smallmouth Bass	Young of year	603388	9406 Control	1 U	1.8 U	1 U	2.5 U	0.8 U
Smallmouth Bass	Adult	603389	9401 Rochester Park	52	70	3 U*D	310	60 U*I
Smallmouth Bass	Adult	603389	9402 Rochester Park	54	71	1.5 U*D	290	55 U*I
Smallmouth Bass	Adult	603389	9403 Rochester Park	27	39	1.7 U*D	140	30 U*I
Smallmouth Bass	Young of year	603389	9404 Rochester Park		32		110	10 U*I
Smallmouth Bass	Young of year	603389	9405 Rochester Park		38		130	20 U*I
Smallmouth Bass	Young of year	603389	9406 Rochester Park	16	24	1 U	110	17 U*I
Smallmouth Bass	Adult	603390	9401 Esselingen Park	10	20	1 U	84	14 U*I
Smallmouth Bass	Adult	603390	9402 Esselingen Park	11	25	1 U	110	14 U*I
Smallmouth Bass	Adult	603390	9403 Esselingen Park	11	27	1 U	110	14 U*I
Smallmouth Bass	Young of year	603390	9404 Esselingen Park		9.3		45	10 U*I
Smallmouth Bass	Young of year	603390	9405 Esselingen Park		13		64	11 U*I
Smallmouth Bass	Young of year	603390	9406 Esselingen Park	6.8	13	1 U	58	9.2 U*I
Smallmouth Bass	Adult	603391	9401 Between Kohler Dams	49	56	1 U	170	19 U*I
Smallmouth Bass	Adult	603391	9402 Between Kohler Dams	30	34	1 U	130	15 U*I
Smallmouth Bass	Adult	603391	9403 Between Kohler Dams	36	66	1 U	220	24 U*I
Smallmouth Bass	Young of year	603391	9404 Between Kohler Dams		27		140	13 U*I
Smallmouth Bass	Young of year	603391	9405 Between Kohler Dams		24		110	11 U*I
Smallmouth Bass	Young of year	603391	9406 Between Kohler Dams	36	58	1 U	220	25 U*I
White Sucker	Adult	603388	9407 Control	1 U	1.8 U	1 U	2.5 U	0.8 U
White Sucker	Adult	603388	9408 Control		1.8 U		2.5 U	0.8 U
White Sucker	Adult	603388	9409 Control		1.8 U		2.5 U	0.8 U
White Sucker	Young of year	603388	9410 Control		1.8 U		5.5 U*I	0.8 U
White Sucker	Young of year	603388	9411 Control		1.8 U		2.5 U	0.8 U
White Sucker	Young of year	603388	9412 Control	1 U	1.8 U	1 U	2.5 U	0.8 U
White Sucker	Adult	603389	9407 Rochester Park	6.4	13	1 U	63	11 U*I

Table A3-4. Continued

Table A3-4. Continued

					PCB157		PCB167		PCB169)	PCB170/1	90	PCB171/2	202
					(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg))
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
White Sucker	Adult	603389	9408	Rochester Park			16				81		15	5 U*I
White Sucker	Adult	603389	9409	Rochester Park			24				120		20) U*I
White Sucker	Young of year	603389	9410	Rochester Park			13				69		12	2 U*I
White Sucker	Young of year	603389	9411	Rochester Park			13				70		11	1 U*I
White Sucker	Young of year	603389	9412	Rochester Park	6		10		1	U	52		9.3	3 U*I
White Sucker	Adult	603390	9407	Esselingen Park	2.6		4.7		1	U	24			
White Sucker	Adult	603390	9408	Esselingen Park			20				110		20) U*I
White Sucker	Adult	603390	9409	Esselingen Park			8.1				45		10) U*I
White Sucker	Young of year	603390	9410	Esselingen Park			5.4				42		2.8	3 U*I
White Sucker	Young of year	603390	9411	Esselingen Park			4.3				41		3.3	3 U*I
White Sucker	Young of year	603390	9412	Esselingen Park	5.5		6.2		1	U	29		4	1 U*I
White Sucker	Adult	603391	9407	Between Kohler Dams	10		12		1	U	55		7.5	5 U*I
White Sucker	Adult	603391	9408	Between Kohler Dams			15				73		7.8	3 U*I
White Sucker	Adult	603391	9409	Between Kohler Dams			17				86		8.5	5 U*I
White Sucker	Young of year	603391	9410	Between Kohler Dams			7.5				50		5.4	1 U*I
White Sucker	Young of year	603391	9411	Between Kohler Dams			12				72		8.4	1 U*I
White Sucker	Young of year	603391	9412	Between Kohler Dams	7.2		8.5		1	U	42		6	6 U*I

Table A3-4. Continued

					PCB172/1	97	PCB174		PCB177		PCB178	PCB180	
					(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)	(µg/kg)	
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc Q		Q
Crayfish		603384	9409	Control	1.8	U	1.1	U	1.1	U	1.3 U	2.2 U	J
Crayfish		603384	9410	Control	1.8	U	1.1	U	1.1	U	1.3 U	2.2 U	j
Crayfish		603384	9411	Control	1.8	U	1.1	U	1.1	U	1.3 U	2.2 U	j
Crayfish		603385	9409	Rochester Park			4.2		4.8		2	17	-
Crayfish		603385	9410	Rochester Park			2.9		3.7			13	
Crayfish		603385	9411	Rochester Park	2.1		3.4		4.5		2	14	-
Crayfish		603386	9409	Between Kohler Dams	2.9		5.1		7.1		3.6	20	-
Crayfish		603386	9410	Between Kohler Dams	2.6		4.7		6.5		3.4	18	-
Crayfish		603386	9411	Between Kohler Dams	2.4		4.1		5.7		2.9	16	-
Crayfish		603387	9409	Esselingen Park	2.3		4.2		5.7		3.5	16	-
Crayfish		603387	9410	Esselingen Park	2.6		4.3		5.8		3.3	18	-
Crayfish		603387	9411	Esselingen Park	2.7		4.4		6.1		3.1	18	-
Emergent Insects		603384	9401	Control	1.8	U	1.1	U	1.1	U	1.3 U	4	
Emergent Insects		603384	9402	Control	1.8	U	1.1	U	1.5	U*I	1.3 U	2.4	
Emergent Insects		603384	9403	Control	1.8	U	1.1	U	1.1	U	1.3 U	2.3	-
Emergent Insects		603384	9404	Control	1.8	U	1.1	U	1.1	U	1.3 U	2.3	-
Emergent Insects		603385	9401	Rochester Park	14		27		28		12	95	-
Emergent Insects		603385	9402	Rochester Park	15		30		30		12	110	-
Emergent Insects		603385	9403	Rochester Park	11		21		23		8.9	76	-
Emergent Insects		603385	9404	Rochester Park	12		24		26		10	80	-
Emergent Insects		603386	9401	Between Kohler Dams	16		30		38		18	100	
Emergent Insects		603386	9402	Between Kohler Dams	12		21		28		13	76	-
Emergent Insects		603386	9403	Between Kohler Dams	7.9		15		19		8.7	52	-
Emergent Insects		603386	9404	Between Kohler Dams	7.4		13		17		7.8	49	-
Emergent Insects		603387	9401	Esselingen Park	5.6		9.5		13		5.3	40	-
Emergent Insects		603387	9402	Esselingen Park	8.2		14		19		8.7	54	-
Emergent Insects		603387	9403	Esselingen Park	9.6		18		23		11	63	-
Emergent Insects		603387		Esselingen Park	11		19		24		11	67	-
Larval Insects		603384	9405	Control	1.8	U	1.1	U	1.1	U	1.3 U	2.2 U	J
Larval Insects		603384	9406	Control	1.8	U	1.1	U	1.1	U	1.3 U	2.2 U	J
Larval Insects		603384	9407	Control	1.8	U	1.1	U	1.1	U	1.3 U	2.2 U	J
Larval Insects		603384	9408	Control	1.8	U	1.1	U	1.1	U	1.3 U	2.2 U	J
Larval Insects		603385	9405	Rochester Park	5.4		12		11		4.1	41	
Larval Insects		603385	9406	Rochester Park	4		8.9		8.2		3.1	28	-
Larval Insects		603385	9407	Rochester Park	5.6		13		12		4.2	41	-
Larval Insects		603385	9408	Rochester Park	4.4		10		8.6		3.3	31	-
Larval Insects		603386	9405	Between Kohler Dams	5.1		10		13		5.4	36	-
Larval Insects		603386	9406	Between Kohler Dams	5.3		9.7		13		5.8	35	
Larval Insects		603386	9407	Between Kohler Dams	4.1		8.3		10		4.6	27	
Larval Insects		603386		Between Kohler Dams	3.8		8.3		9.6		4.7	25	
Larval Insects		603387	9406	Esselingen Park	3.7		7.4		8.8		4	25	
Larval Insects		603387		Esselingen Park	3.9		7.9		8.7		4.3	25	
Larval Insects		603387		Esselingen Park	4.1		8.2		9.5		4.6	26	

				PCB172/197	PCB174	PCB177	PCB178	PCB180
				(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
Species	Age Class	Station	Sample Location	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
Longnose Dace	Young of year	603388	9413 Control	1.8 U	1.5	1.4	1.3 U	5.8
Longnose Dace	Young of year	603388	9414 Control	1.8 U	1.1 U	1.1 U	1.3 U	2.9
Longnose Dace	Young of year	603388	9415 Control	1.8 U	1.1 U	1.1 U	1.3 U	2.2 U
Longnose Dace	Young of year	603389	9413 Rochester Park	6.9	13	12	17	53
Longnose Dace	Young of year	603389	9414 Rochester Park	7.5	14	13	4.5	57
Longnose Dace	Young of year	603389	9415 Rochester Park	11	22	20	7.1	77
Longnose Dace	Young of year	603390	9413 Esselingen Park	18	31	36	16	120
Longnose Dace	Young of year	603390	9414 Esselingen Park	16	28	33	14	100
Longnose Dace	Young of year	603390	9415 Esselingen Park	12	20	23	10	76
Longnose Dace	Young of year	603391	9413 Between Kohler Dams	12	20	25	11	82
Longnose Dace	Young of year	603391	9414 Between Kohler Dams	15	24	31	14	95
Longnose Dace	Young of year	603391	9415 Between Kohler Dams	15	25	33	15	99
Smallmouth Bass	Adult	603388	9401 Control	1.8 U	2	1.7	1.3 U	7.8
Smallmouth Bass	Adult	603388	9402 Control	1.8 U	1.2	1.1 U	1.3 U	4.8
Smallmouth Bass	Adult	603388	9403 Control	1.8 U	1.1 U	1.1 U	1.3 U	3.2
Smallmouth Bass	Young of year	603388	9404 Control	1.8 U	1.1 U	1.1 U	1.3 U	2.2 U
Smallmouth Bass	Young of year	603388	9405 Control	1.8 U	1.1 U	1.1 U	1.3 U	2.2 U
Smallmouth Bass	Young of year	603388	9406 Control	1.8 U	1.1 U	1.1 U		2.4
Smallmouth Bass	Adult	603389	9401 Rochester Park	47	75	86	35	300
Smallmouth Bass	Adult	603389	9402 Rochester Park	48	77	85	36	290
Smallmouth Bass	Adult	603389	9403 Rochester Park	24	43	46	19	160
Smallmouth Bass	Young of year	603389	9404 Rochester Park	14	27	29	11	100
Smallmouth Bass	Young of year	603389	9405 Rochester Park	18	32	34	13	120
Smallmouth Bass	Young of year	603389	9406 Rochester Park	15	27	27	11	100
Smallmouth Bass	Adult	603390	9401 Esselingen Park	13	22	27	12	86
Smallmouth Bass	Adult	603390	9402 Esselingen Park	18	29	36	18	110
Smallmouth Bass	Adult	603390	9403 Esselingen Park	20	30	39	19	120
Smallmouth Bass	Young of year	603390	9404 Esselingen Park	6.2	12	14	5.9	48
Smallmouth Bass	Young of year	603390	9405 Esselingen Park	9.3	17	21	8.3	68
Smallmouth Bass	Young of year	603390	9406 Esselingen Park	8.8	15	19	8.4	60
Smallmouth Bass	Adult	603391	9401 Between Kohler Dams	33	51	66	33	210
Smallmouth Bass	Adult	603391	9402 Between Kohler Dams	22	33	43	21	140
Smallmouth Bass	Adult	603391	9403 Between Kohler Dams	36	56	66	31	220
Smallmouth Bass	Young of year	603391	9404 Between Kohler Dams	18	33	39	17	110
Smallmouth Bass	Young of year	603391	9405 Between Kohler Dams	15	27	33	15	100
Smallmouth Bass	Young of year	603391	9406 Between Kohler Dams	32	56	61	28	200
White Sucker	Adult	603388	9407 Control	1.8 U	1.1 U	1.1 U	1.3 U	2.5
White Sucker	Adult	603388	9408 Control	1.8 U	1.1 U	1.1 U	1.3 U	2.2 U
White Sucker	Adult	603388	9409 Control	1.8 U	1.1 U	1.1 U	1.3 U	2.2 U
White Sucker	Young of year	603388	9410 Control	1.8 U	1.1 U	1.1 U	1.3 U	2.2 U
White Sucker	Young of year	603388	9411 Control	1.8 U	1.1 U	1.1 U	1.3 U	2.2 U
White Sucker	Young of year	603388	9412 Control	1.8 U	1.1 U	1.1 U	1.3 U	2.2 U
White Sucker	Adult	603389	9407 Rochester Park	8.6	8.5	15	5.8	57

Table A3-4. Continued

					PCB172/19	97	PCB174		PCB177		PCB178		PCB180	,
					(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)	
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
White Sucker	Adult	603389	9408	Rochester Park	11		13		20		6.8		75	
White Sucker	Adult	603389	9409	Rochester Park	15		18		29		10		110	
White Sucker	Young of year	603389	9410	Rochester Park	8.7		14		17		6.5		65	
White Sucker	Young of year	603389	9411	Rochester Park	9		14		18		6.9		63	
White Sucker	Young of year	603389	9412	Rochester Park	7.2		11		14		6.3		48	
White Sucker	Adult	603390	9407	Esselingen Park	3.7		4.3		7.2		3.3		23	
White Sucker	Adult	603390	9408	Esselingen Park	16		21		31		13		100	
White Sucker	Adult	603390	9409	Esselingen Park	6.4		9		13		5.7		43	
White Sucker	Young of year	603390	9410	Esselingen Park	4.1		5.6		8.3		4.4		21	
White Sucker	Young of year	603390	9411	Esselingen Park	3.9		5.3		8		3.8		22	
White Sucker	Young of year	603390	9412	Esselingen Park	4.3		7.1		10		4.8		29	
White Sucker	Adult	603391	9407	Between Kohler Dams	8.1		8.8		17		7.7		54	
White Sucker	Adult	603391	9408	Between Kohler Dams	9.6		10		21		8.8		65	
White Sucker	Adult	603391	9409	Between Kohler Dams	13		17		27		11		80	
White Sucker	Young of year	603391	9410	Between Kohler Dams	5.7		9.7		14		6.4		39	
White Sucker	Young of year	603391	9411	Between Kohler Dams	9.2		16		24		11		62	
White Sucker	Young of year	603391	9412	Between Kohler Dams	6.2		9.1		15		7.1		41	

Table A	3-4. Co	ntinued	
	• ••		

					PCB183		PCB185		PCB187/18	32	PCB194	ļ	PCB195/208
					(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc Q
Crayfish		603384	9409	Control	1.8	U	1	U	1.5	U	1	U	2 U
Crayfish		603384	9410	Control	1.8	U	1	U	1.5	U	1	U	2 U
Crayfish		603384	9411	Control	1.8	U	1	U	1.5	U	1	U	2 U
Crayfish		603385	9409	Rochester Park	3.2				8.8		2.4		
Crayfish		603385	9410	Rochester Park	2.3				6.9		1.4		
Crayfish		603385	9411	Rochester Park	2.8				7.9		1.6		
Crayfish		603386	9409	Between Kohler Dams	4				13		2.4		2.3
Crayfish		603386	9410	Between Kohler Dams	3.7				12		2		2 U
Crayfish		603386	9411	Between Kohler Dams	3.1				11		1.8		
Crayfish		603387	9409	Esselingen Park	3.2		1	U	11		2.3		2.4
Crayfish		603387	9410	Esselingen Park	3.4		1	U	11		2.5		2.3
Crayfish		603387	9411	Esselingen Park	3.4		1	U	11		1.9		2 U
Emergent Insects		603384	9401	Control	1.8	U	1	U	1.8		1	U	2 U
Emergent Insects		603384	9402	Control	1.8	U	1	U	1.5	U	1	U	2 U
Emergent Insects		603384	9403	Control	1.8	U	1	U	1.5	U	1	U	2 U
Emergent Insects		603384	9404	Control	1.8	U	1	U	1.5	U	1	U	2 U
Emergent Insects		603385	9401	Rochester Park	28		2.5		45		16		14
Emergent Insects		603385	9402	Rochester Park	33		3		50		15		14
Emergent Insects		603385	9403	Rochester Park	21		2.1		35		12		11
Emergent Insects		603385	9404	Rochester Park	24		2.2		39		12		11
Emergent Insects		603386	9401	Between Kohler Dams	31		2.6		61		18		16
Emergent Insects		603386	9402	Between Kohler Dams	23		2		44		13		11
Emergent Insects		603386	9403	Between Kohler Dams	15				31		8.8		7.7
Emergent Insects		603386	9404	Between Kohler Dams	15				28		7.9		6.8
Emergent Insects		603387	9401	Esselingen Park	13				23		4.7		4.5
Emergent Insects		603387	9402	Esselingen Park	16				31		8		7.1
Emergent Insects		603387		Esselingen Park	19		1.7		37		8.8		8.2
Emergent Insects		603387	9404	Esselingen Park	20				39		11		9.5
Larval Insects		603384		Control	1.8	U	1	U	1.5	U	1	U	2 U
Larval Insects		603384		Control	1.8		1	U	1.5		1	U	2 U
Larval Insects		603384	9407	Control	1.8	U	1	U	1.5	U	1	U	2 U
Larval Insects		603384	9408	Control	1.8	U	1	U	1.5		1	U	2 U
Larval Insects		603385	9405	Rochester Park	12				18		5.9		5
Larval Insects		603385		Rochester Park	8.4		1	U	12		3.8		3.5
Larval Insects		603385		Rochester Park	12			-	18		5.2		4.6
Larval Insects		603385		Rochester Park	9.1				13		4.1		3.9
Larval Insects		603386	9405	Between Kohler Dams	11				21		4.8		4.2
Larval Insects		603386	9406	Between Kohler Dams	10				20		5.4		4.3
Larval Insects		603386		Between Kohler Dams	8.7				17		3.7		3.4
Larval Insects		603386		Between Kohler Dams	7.8				16		3.3		3.2
Larval Insects		603387		Esselingen Park	7.3				14		3.7		3.1
Larval Insects		603387		Esselingen Park	7.4		1	U	14		3.9		3.4
Larval Insects		603387		Esselingen Park	7.7		1	-	15		3.9		3.4

					PCB183		PCB185		PCB187/18	32	PCB194	PCB195/208	;
					(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)	(µg/kg)	
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc Q		Q
Longnose Dace	Young of year	603388	9413	Control	1.8	U	1	U	2.7		1 U	2 U	í –
Longnose Dace	Young of year	603388	9414	Control	1.8	U	1	U	1.5	U	1 U	2 U	i
Longnose Dace	Young of year	603388	9415	Control	1.8	U	1	U	1.5	U	1 U	2 U	i
Longnose Dace	Young of year	603389	9413	Rochester Park	14				21		6.9	5.6	-
Longnose Dace	Young of year	603389	9414	Rochester Park	15				23		7		-
Longnose Dace	Young of year	603389	9415	Rochester Park	23		3		32		8.9	7.9	-
Longnose Dace	Young of year	603390	9413	Esselingen Park	37		4.3		65		14	12	-
Longnose Dace	Young of year	603390	9414	Esselingen Park	31		3.9		60		13	11	-
Longnose Dace	Young of year	603390		Esselingen Park	22		3.1		44		8.5	8.3	
Longnose Dace	Young of year	603391	9413	Between Kohler Dams	24		2.7		44		11	9.4	
Longnose Dace	Young of year	603391	9414	Between Kohler Dams	29		3.3		53		12	11	-
Longnose Dace	Young of year	603391	9415	Between Kohler Dams	29		3.3		56		13	11	-
Smallmouth Bass	Adult	603388	9401	Control	2.2		1	U	3.5		1.2	2 U	j
Smallmouth Bass	Adult	603388	9402	Control	1.8	U	1	U	2.3		1 U	2 U	j
Smallmouth Bass	Adult	603388	9403	Control	1.8	U			1.6		1 U	2 U	j
Smallmouth Bass	Young of year	603388	9404	Control	1.8	U	1	U	1.5	U	1 U	2 U	,
Smallmouth Bass	Young of year	603388	9405	Control	1.8	U	1	U	1.5	U	1 U	2 U	,
Smallmouth Bass	Young of year	603388	9406	Control	1.8	U	1	U	1.5	U	1 U	2 U	,
Smallmouth Bass	Adult	603389	9401	Rochester Park	90		12		140		45	43	
Smallmouth Bass	Adult	603389	9402	Rochester Park	90		12		140		48	43	
Smallmouth Bass	Adult	603389	9403	Rochester Park	44		5.7		77		22	20	
Smallmouth Bass	Young of year	603389		Rochester Park	28		3.9		45		12	11	
Smallmouth Bass	Young of year	603389	9405	Rochester Park	37		4.9		69		16	15	
Smallmouth Bass	Young of year	603389	9406	Rochester Park	30		4		45		14	13	
Smallmouth Bass	Adult	603390	9401	Esselingen Park	25		3.2		50		9.7	9.6	
Smallmouth Bass	Adult	603390	9402	Esselingen Park	33		4.3		71		14	15	
Smallmouth Bass	Adult	603390		Esselingen Park	35		4.2		74		16	16	
Smallmouth Bass	Young of year	603390	9404	Esselingen Park	13				25		5.8	4.9	
Smallmouth Bass	Young of year	603390	9405	Esselingen Park	19				37		8.3	7.4	
Smallmouth Bass	Young of year	603390		Esselingen Park	18		2.5		35		6.5	6.2	
Smallmouth Bass	Adult	603391	9401	Between Kohler Dams	53		6.5		120		26	24	
Smallmouth Bass	Adult	603391	9402	Between Kohler Dams	39		4.7		81		19	18	
Smallmouth Bass	Adult	603391	9403	Between Kohler Dams	65		8.3		120		30	26	
Smallmouth Bass	Young of year	603391	9404	Between Kohler Dams	34		4.5		65		14	13	
Smallmouth Bass	Young of year	603391	9405	Between Kohler Dams	31		2.8		54		15	9.9	
Smallmouth Bass	Young of year	603391	9406	Between Kohler Dams	67		8		110		23	23	
White Sucker	Adult	603388	9407	Control	1.8	U	1	U	1.5	U	1 U	2 U	,
White Sucker	Adult	603388	9408	Control	1.8	U	1	U	1.5	U	1 U	2 U	j
White Sucker	Adult	603388		Control	1.8	-	1	-	1.5		1 U	2 U	
White Sucker	Young of year	603388		Control	1.8			U	1.5		1 U	2 U	
White Sucker	Young of year	603388		Control	1.8			U	1.5		1 U	2 U	
White Sucker	Young of year	603388		Control	1.8		1	-	1.5		1 U		
White Sucker	Adult	603389	-	Rochester Park	17		•	-	26	-	8.4	8.8	

					PCB183		PCB185		PCB187/18	32	PCB194		PCB195/2	08
					(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)	
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
White Sucker	Adult	603389	9408	Rochester Park	22				30		11		11	
White Sucker	Adult	603389	9409	Rochester Park	30		3.6		48		16		15	
White Sucker	Young of year	603389	9410	Rochester Park	19		2.5		27		10		11	
White Sucker	Young of year	603389	9411	Rochester Park	19				30		8.8		9.2	
White Sucker	Young of year	603389	9412	Rochester Park	15				25		6.8		7.4	
White Sucker	Adult	603390	9407	Esselingen Park	7				13		3.3			
White Sucker	Adult	603390	9408	Esselingen Park	29		3.5		55		15		15	
White Sucker	Adult	603390	9409	Esselingen Park	12				23		6.5		6.4	
White Sucker	Young of year	603390	9410	Esselingen Park	7.3		1.2		14		3.2		3.8	
White Sucker	Young of year	603390	9411	Esselingen Park	7.2		1.1		15		3		3.8	
White Sucker	Young of year	603390	9412	Esselingen Park	9				18		3.7			
White Sucker	Adult	603391	9407	Between Kohler Dams	17				31		7.7		7.8	
White Sucker	Adult	603391	9408	Between Kohler Dams	21		2.2		40		9.2		9.3	
White Sucker	Adult	603391	9409	Between Kohler Dams	24		2.8		53		11		11	
White Sucker	Young of year	603391	9410	Between Kohler Dams	13		1.6		25		4.7		5.4	
White Sucker	Young of year	603391	9411	Between Kohler Dams	21		2.5		42		8.3		9.1	
White Sucker	Young of year	603391	9412	Between Kohler Dams	13				25		5.4		5.8	

					PCB196/2	03	PCB199		PCB201		PCB206	3
					(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)	,
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc	Q
Crayfish	Ŭ	603384	9409	Control	3	U	0.6 L	J	1.8	U	1.5	U
Cravfish		603384	9410	Control		U	0.6 L		1.8		1.5	
Crayfish		603384	9411	Control		U	0.6 L	J	1.8	U	1.5	U
Crayfish		603385	9409	Rochester Park					3.8			
Crayfish		603385		Rochester Park					2.4			
Crayfish		603385	9411	Rochester Park					2.6			
Crayfish		603386	9409	Between Kohler Dams	3	U			4.6		1.5	U
Crayfish		603386		Between Kohler Dams		U			3.7		1.5	
Crayfish		603386	9411	Between Kohler Dams		-	0.6 L	J	3.3		1.5	U
Crayfish		603387		Esselingen Park	3	U	0.6 L		4		1.5	
Crayfish		603387		Esselingen Park		U	0.6 L		4		1.5	
Crayfish		603387		Esselingen Park		U		_	3.6		1.5	
Emergent Insects		603384		Control	3	U	0.6 L	J	1.8	U	1.5	
Emergent Insects		603384		Control		U	0.6 L		1.8		1.5	
Emergent Insects		603384		Control	3	U	0.6 L		1.8	U	1.5	
Emergent Insects		603384		Control		U	0.6 L		1.8		1.5	
Emergent Insects		603385		Rochester Park	23	-		_	19	_	6.1	
Emergent Insects		603385		Rochester Park	26				19		5.6	
Emergent Insects		603385		Rochester Park	18				15		4.4	
Emergent Insects		603385		Rochester Park	19				15		4.3	
Emergent Insects		603386		Between Kohler Dams	28				22		6.5	
Emergent Insects		603386	9402	Between Kohler Dams	21				16		5.1	
Emergent Insects		603386	9403	Between Kohler Dams	15				12		3.5	
Emergent Insects		603386		Between Kohler Dams	13				10		3	i
Emergent Insects		603387	9401	Esselingen Park	9.2				6.3			
Emergent Insects		603387	9402	Esselingen Park	15				11		3.1	
Emergent Insects		603387		Esselingen Park	18				13		3.4	
Emergent Insects		603387	9404	Esselingen Park	17				14		3.6	i
Larval Insects		603384	9405	Control	3	U	0.6 L	J	1.8	U	1.5	U
Larval Insects		603384	9406	Control	3	U	0.6 L	J	1.8	U	1.5	U
Larval Insects		603384	9407	Control	3	U	0.6 L	J	1.8	U	1.5	U
Larval Insects		603384	9408	Control	3	U	0.6 L	J	1.8	U	1.5	U
Larval Insects		603385	9405	Rochester Park	9.5				7.1			
Larval Insects		603385	9406	Rochester Park	6.2		0.6 L	J	5.1			
Larval Insects		603385	9407	Rochester Park	8.6				6.5		1.6	j
Larval Insects		603385	9408	Rochester Park	6.4				5.3			
Larval Insects		603386		Between Kohler Dams	8.9				6.2		1.5	,
Larval Insects		603386	9406	Between Kohler Dams	8.2				6.7			
Larval Insects		603386		Between Kohler Dams	6.9				5.2			1
Larval Insects		603386	9408	Between Kohler Dams	6.1				5.1			1
Larval Insects		603387		Esselingen Park	5.9				4.7			1
Larval Insects		603387		Esselingen Park	5.9		0.6 L	J	5		1.5	U
Larval Insects		603387		Esselingen Park	6.1		0.6 L		5.2		1.5	

Table A3-4. Continued

					PCB196/2	03	PCB199		PCB201		PCB206
					(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q		Q (conc Q
Longnose Dace	Young of year	603388	9413	Control	3	U	0.6	U	1.8 U		1.5 U
Longnose Dace	Young of year	603388	9414	Control	3	U	0.6	U	1.8 U		1.5 U
Longnose Dace	Young of year	603388	9415	Control	3	U	0.6	U	1.8 U		1.5 U
Longnose Dace	Young of year	603389	9413	Rochester Park	11				7.2		
Longnose Dace	Young of year	603389	9414	Rochester Park	11				7.6		
Longnose Dace	Young of year	603389	9415	Rochester Park	15				10		3.3
Longnose Dace	Young of year	603390	9413	Esselingen Park	25				19		4
Longnose Dace	Young of year	603390	9414	Esselingen Park	22				17		3.7
Longnose Dace	Young of year	603390	9415	Esselingen Park	17				12		2.6
Longnose Dace	Young of year	603391	9413	Between Kohler Dams	18				13		
Longnose Dace	Young of year	603391	9414	Between Kohler Dams	22		0.6	U	16		4.3
Longnose Dace	Young of year	603391	9415	Between Kohler Dams	23				17		3.9
Smallmouth Bass	Adult	603388	9401	Control	3	U	0.6	U	1.9		1.6 U*I
Smallmouth Bass	Adult	603388	9402	Control	3	U			1.8 U		1.5 U
Smallmouth Bass	Adult	603388	9403	Control					1.8 U		1.5 U
Smallmouth Bass	Young of year	603388	9404	Control	-	U	0.6	U	1.8 U		1.5 U
Smallmouth Bass	Young of year	603388	9405	Control	3	U	0.6	U	1.8 U		1.5 U
Smallmouth Bass	Young of year	603388	9406	Control	3	U			1.8 U		1.5 U
Smallmouth Bass	Adult	603389	9401	Rochester Park	70		1.9		54		16
Smallmouth Bass	Adult	603389	9402	Rochester Park	72		1.9		57		16
Smallmouth Bass	Adult	603389	9403	Rochester Park	33		0.95		28		6.8
Smallmouth Bass	Young of year	603389	9404	Rochester Park	20				16		3.9
Smallmouth Bass	Young of year	603389	9405	Rochester Park	26		0.6	U	20		5
Smallmouth Bass	Young of year	603389	9406	Rochester Park	22				17		
Smallmouth Bass	Adult	603390	9401	Esselingen Park	17				13		3.2
Smallmouth Bass	Adult	603390	9402	Esselingen Park	25				22		5.8
Smallmouth Bass	Adult	603390	9403	Esselingen Park	26				24		5.4
Smallmouth Bass	Young of year	603390	9404	Esselingen Park	10				7.1		
Smallmouth Bass	Young of year	603390	9405	Esselingen Park	15				9.9		
Smallmouth Bass	Young of year	603390	9406	Esselingen Park	13				8.7		2
Smallmouth Bass	Adult	603391	9401	Between Kohler Dams	37				39		7.2
Smallmouth Bass	Adult	603391	9402	Between Kohler Dams	30				27		6
Smallmouth Bass	Adult	603391	9403	Between Kohler Dams	47				40		9.3
Smallmouth Bass	Young of year	603391	9404	Between Kohler Dams	24		0.63		20		4.5
Smallmouth Bass	Young of year	603391	9405	Between Kohler Dams	23				19		3.7
Smallmouth Bass	Young of year	603391	9406	Between Kohler Dams	40				33		8
White Sucker	Adult	603388	9407	Control		U			1.8 U		1.5 U
White Sucker	Adult	603388	9408	Control	3	U	0.6	U	1.8 U		1.5 U
White Sucker	Adult	603388	9409	Control	3	U	0.6	U	1.8 U		1.5 U
White Sucker	Young of year	603388	9410	Control	3	U	0.6	U	1.8 U		1.5 U
White Sucker	Young of year	603388	9411	Control	3	U	0.6	U	1.8 U		1.5 U
White Sucker	Young of year	603388	9412	Control	3	U			1.8 U		1.5 U
White Sucker	Adult	603389	9407	Rochester Park	14				9.7		3.9

Table A3-4. Continued

					PCB196/20	03	PCB199		PCB201		PCB206	
					(µg/kg)		(µg/kg)		(µg/kg)		(µg/kg)	
Species	Age Class	Station	Sample	Location	Conc	Q	Conc	Q	Conc	Q	Conc	Q
White Sucker	Adult	603389	9408	Rochester Park	17				13		4.2	
White Sucker	Adult	603389	9409	Rochester Park	25				19		5.7	
White Sucker	Young of year	603389	9410	Rochester Park	17				13		4.5	
White Sucker	Young of year	603389	9411	Rochester Park	14				12		3.5	
White Sucker	Young of year	603389	9412	Rochester Park	12				8.8		2.8	
White Sucker	Adult	603390	9407	Esselingen Park	5.7				4.2			
White Sucker	Adult	603390	9408	Esselingen Park	25				20		5.8	
White Sucker	Adult	603390	9409	Esselingen Park	11				8.6			
White Sucker	Young of year	603390	9410	Esselingen Park	6.4				6			
White Sucker	Young of year	603390	9411	Esselingen Park	6.2				5.1			
White Sucker	Young of year	603390	9412	Esselingen Park	7.1				5.8			
White Sucker	Adult	603391	9407	Between Kohler Dams	14				10			
White Sucker	Adult	603391	9408	Between Kohler Dams	16				12		3.4	
White Sucker	Adult	603391	9409	Between Kohler Dams	20				15		3.9	
White Sucker	Young of year	603391	9410	Between Kohler Dams	9.2				7.2		1.8	
White Sucker	Young of year	603391	9411	Between Kohler Dams	15				12		3	
White Sucker	Young of year	603391	9412	Between Kohler Dams					7.8			

Table A3-4. Continued

Station ID Sample ID	603363 6A		603364 6B		603365 6C		603365 6DUP		603366 6D		603367 6E	
Chemical	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
Arsenic	1.35		1.15		1.86		1.86		1.75		0.65	
Cadmium	0.4	U	0.4	U	0.4	U	0.4	U	1.3		0.4	U
Chromium	22		18		28		26		25		19	
Copper	37		25		39		45		36		24	
Lead	38		63		58		55		59		48	
Mercury	0.068		0.054		0.11		0.13		0.14		0.033	
Selenium	0.32		0.19		0.44		0.31		0.62		0.2	
Silver	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U

Station ID Sample ID	603368 5A		603368 5DUP		603369 5B		603370 5C		603371 5D		603372 3A	
Chemical	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
Arsenic	1.77		1.51		0.84		0.61		0.77		1.03	
Cadmium	0.4	U	1.1		2.2		0.7		0.4	U	0.4	U
Chromium	26		24		16		14		16		14	
Copper	39		39		23		20		28		15	
Lead	59		56		37		30		34		12	
Mercury	0.08		0.083		0.036		0.024		0.031		0.064	
Selenium	0.64		0.4		0.25		0.12		0.23		0.17	
Silver	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U

Station ID Sample ID	603373 3B		603374 3C		603375 3D		603375 3DUP		603376 3E		603377 2A	
Chemical	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
Arsenic	0.81		0.53		0.96		1.15		0.94		0.77	
Cadmium	0.9		0.7		0.4	U	1.2		0.4	U	0.4	U
Chromium	12		8.4		17		14		14		11	
Copper	11		7.8		23		18		14		13	
Lead	10		11		16		17		12		11	
Mercury	0.051		0.022		0.076		0.075		0.06		0.051	
Selenium	0.37		0.08		0.33		0.32		0.3		0.16	
Silver	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U

Station ID Sample ID	603378 2B		603379 2C		603380 2D		603381 2E		603392 1A		603393 1B	
Chemical	Conc	Q										
Arsenic	0.98		0.91		1.02		0.72		1.16		1.17	
Cadmium	2.2		1		0.4	U	0.4	U	0.4	U	0.4	U
Chromium	14		12		22		7.3		10		16	
Copper	44		16		87		7.2		10		14	
Lead	13		12		53		8		5		11	
Mercury	0.05		0.056		0.27		0.044		0.036		0.06	
Selenium	0.36		0.22		0.41		0.15		0.36		0.41	
Silver	2.5	U	2.5	U	6		2.5	U	2.5	U	2.5	U

Station ID Sample ID	603394 1C		603395 1D		603396 1E	
Chemical	Conc	Q	Conc	Q	Conc	Q
Arsenic	0.84		1.27		1.35	
Cadmium	0.4	U	0.4	U	0.4	U
Chromium	12		19		16	
Copper	9.6		19		16	
Lead	7		13		12	
Mercury	0.05		0.12		0.081	
Selenium	0.44		0.73		0.46	
Silver	2.5	U	2.5	U	2.5	U

Table A3-5. Results of the PAH analyses of tissue samples collected for the WDNR food chain study

		Crayfish		
	Control	Rochester Park	Between Kohler Dams	Esselingen Park
PAH	mg/kg ww	mg/kg ww	mg/kg ww	mg/kg ww
Acenaphthylene	0.0035	0.0035	0.0035	0.0035
Acenapthene	0.0035	0.0035	0.0035	0.0035
Fluorene	0.0035	0.0035	0.0035	0.0035
Phenanthrene	0.0035	0.0035	0.0035	0.0035
Anthracene	0.0035	0.0035	0.0035	0.0035
Fluoranthene	0.0035	0.0035	0.0035	0.0035
Pyrene	0.0035	0.0035	0.0035	0.0035
Benzo(a)anthracene	0.0035	0.0035	0.0035	0.0035
Chrysene	0.0035	0.0035	0.0035	0.0035
Benzo(b)fluoranthene	0.0035	0.0035	0.0035	0.0035
Benzo(k)fluoranthene	0.0035	0.0035	0.0035	0.0035
Benzo(e)pyrene	0.0035	0.0035	0.0035	0.0035
Benzo(a)pyrene	0.0035	0.0035	0.0035	0.0035
Perylene	0.0035	0.0035	0.0035	0.0035
Ideno(1,2,3-cd)pyrene	0.0035	0.0035	0.0035	0.0035
Dibenzo(a,h)anthracene	0.0035	0.0035	0.0035	0.0035
Benzo(g,h,i)perylene	0.0035	0.0035	0.0035	0.0035

Note: 0.0035 is 1/2 the detection limit

Table A3-5. Results of the PAH analyses of tissue samples collected for the WDNR food chain study

		Larval Insects		
РАН	Control mg/kg ww	Rochester Park mg/kg ww	Between Kohler Dams mg/kg ww	Esselingen Park mg/kg ww
Acenaphthylene	0.0035	0.0035	0.0035	0.0035
Acenapthene	0.0035	0.0035	0.0035	0.0035
Fluorene	0.0097	0.0112	0.0106	0.0157
Phenanthrene	0.0035	0.0145	0.0172	0.0382
Anthracene	0.0035	0.0035	0.0035	0.0035
Fluoranthene	0.0035	0.016	0.007	0.0335
Pyrene	0.0035	0.0126	0.0127	0.0281
Benzo(a)anthracene	0.0035	0.0035	0.0035	0.0035
Chrysene	0.0035	0.0035	0.0035	0.0035
Benzo(b)fluoranthene	0.0035	0.0072	0.0035	0.0096
Benzo(k)fluoranthene	0.0035	0.0035	0.0035	0.0035
Benzo(e)pyrene	0.0035	0.0035	0.0035	0.0035
Benzo(a)pyrene	0.0035	0.0035	0.0035	0.0035
Perylene	0.0035	0.0035	0.0035	0.0035
ldeno(1,2,3-cd)pyrene	0.0035	0.0035	0.0035	0.0035
Dibenzo(a,h)anthracene	0.0035	0.0035	0.0035	0.0035
Benzo(g,h,i)perylene	0.0035	0.0035	0.0035	0.0099

Note: 0.0035 is 1/2 the detection limit

Table A3-5. Results of the PAH analyses of tissue samples collected for the WDNR food chain study

		Emergent Insects		
РАН	Control mg/kg ww	Rochester Park mg/kg ww	Between Kohler Dams mg/kg ww	Esselingen Park mg/kg ww
Acenaphthylene	0.0035	0.0035	0.0035	0.0035
Acenapthene	0.0035	0.0035	0.0035	0.0035
Fluorene	0.014	0.0435	0.010	0.0091
Phenanthrene	0.0159	0.0171	0.025	0.0351
Anthracene	0.0035	0.0035	0.000	0.0000
Fluoranthene	0.0035	0.010	0.015	0.0241
Pyrene	0.0035	0.007	0.009	0.0230
Benzo(a)anthracene	0.0035	0.012	0.004	0.0035
Chrysene	0.0035	0.009	0.009	0.0217
Benzo(b)fluoranthene	0.0035	0.0035	0.0035	0.0035
Benzo(k)fluoranthene	0.0035	0.0035	0.0035	0.0035
Benzo(e)pyrene	0.0035	0.0035	0.0035	0.0035
Benzo(a)pyrene	0.0035	0.0035	0.0035	0.0035
Perylene	0.0035	0.0035	0.0035	0.0035
deno(1,2,3-cd)pyrene	0.0035	0.0035	0.0035	0.0035
Dibenzo(a,h)anthracene	0.0035	0.0035	0.0035	0.0080
Benzo(g,h,i)perylene	0.0035	0.0035	0.0035	0.0083

Note: 0.0035 is 1/2 the detection limit

Table A3-6. Results of metals analyses of crayfish and emergent and larval insect tissue samples collected for the WDNR food chain study

	Emergent Insects									
Station ID Sample ID	603384 9401		603384 9402			603384 9403				
Chemical	Conc	Q	Conc	Q	Conc	Q	Conc	Q		
Arsenic	0.1	U	0.1		0.1	U	0.1	U		
Cadmium	0.01		0.015		0.009		0.012			
Chromium	0.2		0.1		0.1		0.1			
Copper	7.7		11		9		9.5			
Lead	2.8		0.04		0.11		0.08			
Mercury	0.048		0.076		0.064		0.056			
Selenium	0.64		0.48		0.968		1.33			
Silver	0.019		0.024		0.018		0.007			

Segment 1, Control

Segment 1, Control

		Larval Insects							
Station ID Sample ID	603384 9405		603384 9406			603384 9407			
Chemical	Conc	Q	Conc	Q	Conc	Q	Conc	Q	
Arsenic	0.2		0.2		0.2		0.1		
Cadmium	0.019		0.024		0.016		0.014		
Chromium	0.7		0.8		0.6		0.6		
Copper	3.2		3.4		3.2		3.7		
Lead	0.57		0.55		0.36		0.35		
Mercury	0.03		0.028		0.018		0.022		
Selenium	0.48		0.567		0.39		0.511		
Silver	0.004				0.01	U	0.011		

Segment 1, Control

			Crayfish	۱			
Station ID	603384		603384		603384		
Sample ID	9409		9410		9411		
Chemical	Conc	Q	Conc	Conc	Q		
Arsenic	0.7		0.6		0.5		
Cadmium	0.01		0.013		0.011		
Chromium	0.3		0.5		0.3		
Copper	18		15		17		
Lead	0.14		0.17		0.12		
Mercury	0.042		0.038		0.049		
Selenium	0.35		0.25		0.27		
Silver	0.066		0.08		0.073		

Table A3-6. Continued

Segment 2, Rochester Park

		Emergent Insects								
Station ID	603385		603385		603385		603385			
Sample ID	9401	9401			9403		9404			
Chemical	Conc	Conc Q Conc Q Co		Conc	Q	Conc	Q			
Arsenic	0.1 U		0.1		0.1	U	0.2			
Cadmium	0.015		0.016		0.008		0.011			
Chromium	0.1		0.1		0.1		0.1			
Copper	8.2		7.6		7.9		7.6			
Lead	0.14		0.05		0.17		0.16			
Mercury	0.048		0.053		0.044		0.049			
Selenium	1.058		0.899		1.11		1.139			
Silver	0.019		0.021		0.017		0.02			

Segment 2, Rochester Park

			Laı	val I	nsects			
Station ID	603385		603385				603385	
Sample ID Chemical	9405 Conc	Q	9406 Conc	Q	9407 Conc	Q	9408 Conc	Q
Arsenic	0.1	-	0.2	_	0.2	_	0.2	_
Cadmium	0.016		0.017		0.018		0.013	
Chromium	0.8		0.7		0.9		0.6	
Copper	2.8		3.9		3.7		5.2	
Lead	0.84		0.73		0.79		0.59	
Mercury	0.026				0.026		0.01	
Selenium	0.426		0.581		0.448		0.358	
Silver	0.009		0.011		0.011		0.002	

Segment 2, Rochester Park

	Crayfish									
Station ID	603385		603385		603385					
Sample ID	9409		9410		9411					
Chemical	Conc	Q	Conc	Q	Q					
Arsenic	0.5		0.6		0.4					
Cadmium	0.01		0.007		0.007					
Chromium	0.3		0.3		0.3					
Copper	24		24		23					
Lead	0.18		0.23		0.25					
Mercury	0.017		0.024		0.02					
Selenium	0.253		0.61		0.311					
Silver	0.065		0.07		0.065					

NOTE: All concentrations are in mg/kg dry weight

Table A3-6. Continued

Segment 3, Between Kohler Dams

		Emergent Insects								
Station ID	603386	603386		603386		603386		i		
Sample ID	9401	9401			9403		9404			
Chemical	Conc	Q	Conc	Q	Conc	Q	Conc	Q		
Arsenic	0.1	U	0.1	U	0.1	U	0.1	U		
Cadmium	0.006		0.014		0.012		0.011			
Chromium	0.2		0.1		0.1		0.1			
Copper	8.3		7.8		6.7		6.4			
Lead	0.2		0.43		0.45		0.19			
Mercury	0.031		0.035		0.031		0.034			
Selenium	1.039		0.965		0.964		1.314			
Silver	0.01	U	0.01	U	0.01	U	0.01	U		

Segment 3, Between Kohler Dams

			La	rval I	nsects			
Station ID	603386		603386		603386		603386	
Sample ID	9405		9406		9407		9408	
Chemical	Conc	Q	Conc	Q	Conc	Q	Conc	Q
Arsenic	0.2		0.1		0.1		0.1	
Cadmium	0.015		0.014		0.015		0.01	
Chromium	0.7		0.7		0.9		0.7	
Copper	4		4.1		3.9		3.9	
Lead	0.65		0.63		0.49		0.42	
Mercury	0.02		0.025		0.018		0.017	
Selenium	0.332		0.399		0.332		0.191	
Silver	0.01	U	0.01	U	0.01	U	0.01	U

Segment 3, Between Kohler Dams

	Crayfish									
Station ID	603386		603386		603386					
Sample ID	9409	9409			9411					
Chemical	Conc	Q	Conc	Q	Conc	Q				
Arsenic	0.5		0.5		0.6					
Cadmium	0.007		0.008		0.009					
Chromium	0.7		0.4		0.4					
Copper	23		22		23					
Lead	0.26		0.26		0.3					
Mercury	0.022		0.028		0.023					
Selenium	0.355		0.333		0.41					
Silver	0.05		0.06		0.05					

NOTE: All concentrations are in mg/kg dry weight

Table A3-6. Continued

Segment 5, Esslingen Park

		Emergent Insects											
Station ID	603387		603387		603387		603387						
Sample ID	9401		9402		9403		9404						
Chemical	Conc	Q	Conc	Q	Conc	Q	Conc	Q					
Arsenic	0.1	U	0.1	U	0.1		0.1	U					
Cadmium	0.027		0.014		0.013	0.013							
Chromium	0.1		0.1		0.2		0.2						
Copper	7.7		8.9		9		9.5						
Lead	0.3		0.31		0.31		0.33						
Mercury	0.048		0.039		0.035		0.027						
Selenium	0.909		1.067		1.283		1.177						
Silver	0.01		0.01	U	0.01	U	0.01	U					

Segment 5, Esslingen Park

			La	rval I	nsects			
Station ID Sample ID	603387 9405		603387 9406		603387 9407		603387 9408	
Chemical	Conc	Q	Conc	Q	Conc	Q	Conc	Q
Arsenic	0.1	U	0.1	U	0.1		0.1	
Cadmium	0.016		0.017	0.017		0.013		
Chromium	0.8		1.3		0.9		0.8	
Copper	4		4.8		5.2		5.4	
Lead	1		1.5		0.88		0.9	
Mercury	0.019		0.018		0.03		0.015	
Selenium	0.32		0.482		0.347		0.49	
Silver	0.01	U	0.01	U	0.01	U	0.01	U

Segment 5, Esslingen Park

			Crayfish	۱			
Station ID	603387		603387		603387		
Sample ID	9409		9410		9411		
Chemical	Conc Q		Conc	Q	Conc	Q	
Arsenic	0.6		0.5		0.6		
Cadmium	0.011		0.01		0.01		
Chromium	0.4		0.3		0.3		
Copper	29		28		29		
Lead	0.48		0.41		0.46		
Mercury	0.028		0.028		0.03		
Selenium	0.43		0.215		0.388		
Silver	0.03		0.03		0.03		

NOTE: All concentrations are in mg/kg dry weight

Genus	WDNR ID	Weight (g) Sex	Lipids	PCB026	PCB028	PCB052	PCB049	PCB047	PCB044	PCB041	PCB074
			(%)								
Clethrinomys	94088	22 F	1.3	2.5 U	5.6	1 U	0.6 U	2.6	1.1 U	2 U	17
Clethrinomys	94086	46 F	2.5	2.5 U	2.5 U	1 U	0.6 U	1.2 U	1.1 U	2 U	1 U
Clethrinomys	94087	46 F	2.5	2.5 U	2.5 U	1 U	0.6 U	1.2 U	1.1 U	2 U	1 U
Microtus	94090	28 M	2.3	2.5 U	14	1.4	0.87	10	1.1 U	2 U	12
Microtus	94091	13	1.8	2.5 U	2.5 U	1 U	0.6 U	1.2 U	1.1 U	2 U	1 U
Microtus	94100	22 M	2.8	2.5 U	2.5 U	1 U	0.6 U	1.2 U	1.1 U	2 U	1 U
Microtus	94101	43 F	4.7	0.96	110	8.1	5	50	1.4	11	53
Microtus	94089	51 F	2.1	2.5 U	2.5 U	1 U	0.6 U	1.2 U	1.1 U	2 U	1 U
Peromyscus	94092	27 F	4.2	2.5 U	12	4.9	2.1	34	1.1 U	3.4	12
Peromyscus	94093	26 M	4.1	2.5 U	24	2.8	0.78	33	1.1 U	2.7	29
Peromyscus	94094	18 M	2.4	2.5 U	13	1.5	0.6 U	17	1.1 U	2 U	16
Peromyscus	94095	22 M	3.1	2.5 U	2.5 U	1 U	0.6 U	4.8	1.1 U	2 U	3.4
Peromyscus	94104	20 M	2.2	2.5 U	2.5 U	1 U	0.6 U	1.2 U	1.1 U	2 U	1 U
Peromyscus	94103	18 M	3.5	2.5 U	2.5 U	1 U	0.6 U	1.5	1.1 U	2 U	3.1
Peromyscus	94102	22 M	0.8	2.5 U	2.5 U	1 U	0.6 U	6.3	1.1 U	2 U	1.4
Tamias	94099	94 F	1.7	2.5 U	2.5 U	1 U	0.6 U	2	1.1 U	2 U	1.7
Tamias	94098	88 M	1.3	2.5 U	2.5 U	1 U	0.6 U	1.2 U	1.1 U	2 U	1 U
Tamias	94106	106 F	2.5	2.5 U	18	2	1.3	27	1.1 U	2 U	30
Tamias	94105	51 M	1	2.5 U	5.4	1 U	0.6 U	8.7	1.1 U	2 U	36
Zapus	94096	13 M	1.6	2.5 U	2.5 U	1 U	0.6 U	2	1.1 U	2 U	1 U
Zapus	94097	23 F	3.1	2.5 U	2.5 U	1 U	0.6 U	1.2 U	1.1 U	2 U	1 U
		NOTE: All PCB	concentra	tions are in µg/	kg.						

Genus	WDNR ID	PCB070	PCB066	PCB056	PCB084	PCB101	PCB099	PCB097	PCB087	PCB085
Clethrinomys	94088	2.4 U	13	3.6	1.3 U	0.91	2.1	0.8 U	1 U	1 U
Clethrinomys	94086	2.4 U	2.8 U	1.8 U	1.3 U	0.6 U		0.8 U	1 U	1 U
Clethrinomys	94087	2.4 U	2.8 U	1.8 U	1.3 U	0.6 U		0.8 U	1 U	1 U
Microtus	94090	6.2	34	8.7	1.3 U	6.1	21	1	1.5	1 U
Microtus	94091	2.4 U	2.8 U	1.8 U	1.3 U	0.6 U		0.8 U	1 U	1 U
Microtus	94100	2.4 U	2.8 U	1.8 U	1.3 U	0.6 U		0.8 U	1 U	1 U
Microtus	94101	48	140	47	1.3 U	15	32	2.7	7	13
Microtus	94089	2.4 U	2.8 U	1.8 U	1.3 U	0.6 U		0.8 U	1 U	1 U
Peromyscus	94092	2.4 U	20	6.2	4.2	5.7	63	0.8 U	2.5	8.8
Peromyscus	94093	2.4 U	24	11	1.3 U	6.8	45	0.8 U	2.3	7.1
Peromyscus	94094	2.4 U	13	5.7	1.3 U	3.6	24	0.8 U	1.2	3.8
Peromyscus	94095	2.4 U	2.8	1.8 U	1.3 U	1.3	9.7	0.8 U	1 U	1 U
Peromyscus	94104	2.4 U	2.8 U	1.8 U	1.3 U	0.6 U		0.8 U	1 U	1 U
Peromyscus	94103	2.4 U	3.2	1.8 U	1.3 U	1.3	4.8	0.8 U	1 U	1 U
Peromyscus	94102	2.4 U	2.8 U	1.8 U	1.3 U	1.1	19	0.8 U	1 U	2.4
Tamias	94099	2.4 U	4.5	1.8 U	1.3 U	0.6 U	6.9	0.8 U	1 U	1 U
Tamias	94098	2.4 U	2.8 U	1.8 U	1.3 U	0.6 U		0.8 U	1 U	1 U
Tamias	94106	3.5	35	16	1.3 U	2.5	25	0.8 U	2.1	8.7
Tamias	94105	2.4 U	6.1	11	1.3 U	0.6 U	27	0.8 U	1.9	4
Zapus	94096	2.4 U	2.8 U	1.8 U	1.3 U	0.7	2.3	0.8 U	1 U	1 U
Zapus	94097	2.4 U	2.8 U	1.8 U	1.3 U	0.6 U		0.8 U	1 U	1 U
	1	NOTE: All PCB	concentrations a	re inµg/kg.						

Genus	WDNR ID	PCB077	PCB149	PCB118	PCB146	PCB132	PCB138	PCB178	PCB182	PCB183
Clethrinomys	94088	1.3 U	1.1 U	51	5.2	1.9	17	1.3	4.1	1.8 U
Clethrinomys	94086	1.3 U	1.1 U		1 U			1.3 U	1.5 U	1.8 U
Clethrinomys	94087	1.3 U	1.1 U		1 U			1.3 U	1.5 U	1.8 U
Microtus	94090	4.5	1.6	52	6.7	27	35	1.3 U	3.8	1.8 U
Microtus	94091	1.3 U	1.1 U		1 U			1.3 U	1.5 U	1.8 U
Microtus	94100	1.3 U	1.1 U		1 U			1.3 U	1.5 U	1.8 U
Microtus	94101	13	1.1 U	97	8.3	16	38	1.3 U	4.4	1.8 U
Microtus	94089	1.3 U	1.1 U		1 U			1.3 U	1.5 U	1.8 U
Peromyscus	94092	2.7	1.6	33	19	180	140	3.2	23	4.7
Peromyscus	94093	1.9	1.2	120	22	180	140	4.8	32	5.5
Peromyscus	94094	1.3 U	1.1 U	61	11	92	72	2.5	16	2.8
Peromyscus	94095	1.3 U	1.1 U	20	6.3	110	71	1.5	26	3.7
Peromyscus	94104	1.3 U	1.1 U		1 U			1.3 U	1.5 U	1.8 U
Peromyscus	94103	1.3 U	1.1 U	28	7.7	43	34	1.8	14	1.8 U
Peromyscus	94102	1.3 U	1.1 U	19	14	160	120	3.6	33	5.1
Tamias	94099	1.3 U	1.1 U	10	2.6	28	20	1.3 U	2.4	1.8 U
Tamias	94098	1.3 U	1.1 U		1 U			1.3 U	1.5 U	1.8 U
Tamias	94106	2.4	1.1 U	37	1 U	27	21	1.3 U	1.5 U	1.8 U
Tamias	94105	1.3 U	1.1 U	59	2.3	42	33	1.3 U	1.9	1.8 U
Zapus	94096	1.3 U	1.1 U	18	9.9	110	67	1.4	23	3.1
Zapus	94097	1.3 U	1.1 U		1 U			1.3 U	1.5 U	1.8 U
		NOTE: All PCE	concentrations	are in µg/kg.						

Genus	WDNR ID	PCB177	PCB172	PCB180	PCB170	PCB201	PCB196	PCB194	PCB206
Clethrinomys	94088	1.8	1.8 U	7.8	8.1	2.3	3 U	1.3	1.5 U
Clethrinomys	94086	1.1 U	1.8 U	2.2 U	2.5 U	1.8 U	3 U	1 U	1.5 U
Clethrinomys	94087	1.1 U	1.8 U	2.2 U	2.5 U	1.8 U	3 U	1 U	1.5 U
Microtus	94090	2.4	1.8 U	6.5	9.1	1.8 U	3 U	1 U	1.5 U
Microtus	94091	1.1 U	1.8 U	2.2 U	2.5 U	1.8 U	3 U	1 U	1.5 U
Microtus	94100	1.1 U	1.8 U	2.2 U	2.5 U	1.8 U	3 U	1 U	1.5 U
Microtus	94101	2.2	1.8 U	8	9.5	2.1	3 U	1.1	1.5 U
Microtus	94089	1.1 U	1.8 U	2.2 U	2.5 U	1.8 U	3 U	1 U	1.5 U
Peromyscus	94092	1.2	5	46	46	9.2	17	7.8	4.5
Peromyscus	94093	2.6	5.1	59	45	9.7	17	9.2	4.4
Peromyscus	94094	1.3	2.7	31	23	4.9	8.3	4.7	2.3
Peromyscus	94095	1.1 U	3.4	63	42	12	23	9.3	4.7
Peromyscus	94104	1.1 U	1.8 U	2.2 U	2.5 U	1.8 U	3 U	1 U	1.5 U
Peromyscus	94103	1.1 U	2.1	12	9.2	3.3	3.1	1.9	1.5 U
Peromyscus	94102	1.1	5	68	51	14	22	11	5.4
Tamias	94099	1.1 U	1.8 U	10	10	1.8 U	3.3	2.4	1.7
Tamias	94098	1.1 U	1.8 U	2.2 U	2.5 U	1.8 U	3 U	1 U	1.5 U
Tamias	94106	1.1 U	1.8 U	5.7	6.5	1.8 U	3 U	1 U	1.5 U
Tamias	94105	1.1 U	1.8 U	7	7.6	1.8 U	3 U	1.1	1.5 U
Zapus	94096	1.1 U	1.8 U	59	36	3.8	15	6.9	2.5
Zapus	94097	1.1 U	1.8 U	2.2 U	2.5 U	1.8 U	3 U	1 U	1.5 U
		NOTE: All PCE	concentrations	are in µg/kg.					

Genus	WDNR ID	SUM (detected values only)	Total of first 17	Total of next 17	Total of all 34			
			Congeners	Congeners	congeners**			
Clethrinomys	94088	170.81	51.66	107.05	158.71			
Clethrinomys	94086	46.5	11.8	11.45	23.25			
Clethrinomys	94087	46.5	11.8	11.45	23.25			
Microtus	94090	285.47	120.72	154.7	275.42			
Microtus	94091	46.5	11.8	11.45	23.25			
Microtus	94100	46.5	11.8	11.45	23.25			
Microtus	94101	755.56	544.81	204.85	749.66			
Microtus	94089	46.5	11.8	11.45	23.25			
Peromyscus	94092	729.5	182.2	543.9	726.1			
Peromyscus	94093	855.98	192.53	659.4	851.93			
Peromyscus	94094	447.4	104.15	336.7	440.85			
Peromyscus	94095	439.4	31	397.65	428.65			
Peromyscus	94104	46.5	11.8	11.45	23.25			
Peromyscus	94103	198.8	22.9	163.5	186.4			
Peromyscus	94102	584.6	40.1	533.4	573.5			
Tamias	94099	134.3	24.4	95.5	119.9			
Tamias	94098	46.5	11.8	11.45	23.25			
Tamias	94106	295.3	174.95	108.05	283			
Tamias	94105	281	106.25	161.25	267.5			
Zapus	94096	387.7	15.9	358.25	374.15			
Zapus	94097		11.8	11.45	23.25			
		note this simply	** Detected conc.	+ 1/2 undetected c	only if congener o	letected in ar	nother sampl	e.
		adds the columns						
		NOTE: All PCB concentrations	are in µg/kg.					

APPENDIX **B**

Toxic Equivalent Calculations

APPENDIX B-1

Toxic Equivalent Concentrations for Fish

- Table B1-1.
 Fish TEQs using 1997 ERA fish data
- Table B1-2.
 Fish TEQs using fish tissue samples collected for the WDNR food chain study

APPENDIX B-1 DEFINITION OF TERMS

Definition of qualifiers

> - sample over linear range of method

D - diluted sample

L - labeled compound

U - undetected

U*I - significant interference present; value represents operator's best judgement of reporting limit

1997 ERA sample identification

F1-1 sample number river segment

•

fish tissue sample

Station		F1-1		Percent of	F1-2		Percent of	F1-3		Percent of
Chemical	Fish TEFs	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.00016	1.71E-05		13.88%	1.84E-05		13.33%	1.60E-05		10.23%
PCB105	0.00000172	4.13E-06		3.35%	4.30E-06		3.11%	3.96E-06		2.53%
PCB114	0.000005	9.30E-07	L	0.75%	8.15E-07	L	0.59%	1.39E-06		0.89%
PCB118	0.00000302	2.36E-05		19.10%	2.39E-05		17.28%	2.27E-05		14.48%
PCB123	0.000005	4.44E-07		0.36%	3.61E-07		0.26%	7.60E-07		0.49%
PCB126	0.005	7.20E-05		58.37%	8.45E-05		61.21%	1.06E-04		67.77%
PCB156	0.00000167	1.60E-06		1.30%	1.69E-06		1.22%	1.46E-06		0.93%
PCB157	0.000005	8.35E-07		0.68%	9.30E-07		0.67%	1.09E-06		0.69%
PCB167	0.000005	2.48E-06		2.01%	2.87E-06		2.08%	2.77E-06		1.77%
PCB189	0.000005	2.62E-07		0.21%	3.29E-07		0.24%	3.44E-07		0.22%
Total TEQ		1.23E-04			1.38E-04			1.56E-04		

Table B1-1. Fish TEQs using 1997 ERA fish data

All concentrations in ug/kg wet weight.

1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.

2) PCB congeners 114, 189, and 81 were not analyzed in any samples.

3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.

Station	F2-1		Percent of	F2-2		Percent of	F2-3		Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	6.30E-03	D	43.97%	8.48E-03	D	42.89%	4.06E-03		39.91%
PCB105	5.16E-04	>D	3.60%	5.68E-04	D	2.87%	3.61E-04	>D	3.55%
PCB114	1.44E-04		1.00%	1.64E-04		0.83%	1.20E-04		1.18%
PCB118	1.72E-03	>D	12.01%	2.69E-03	>D	13.59%	1.45E-03	>D	14.24%
PCB123	5.85E-05		0.41%	5.50E-05		0.28%	5.45E-05		0.54%
PCB126	5.35E-03		37.31%	7.55E-03		38.18%	3.93E-03		38.59%
PCB156	8.58E-05		0.60%	1.05E-04		0.53%	7.53E-05		0.74%
PCB157	5.45E-05		0.38%	5.25E-05		0.27%	4.08E-05		0.40%
PCB167	9.35E-05		0.65%	9.95E-05		0.50%	7.85E-05		0.77%
PCB189	1.08E-05		0.08%	1.18E-05		0.06%	9.00E-06		0.09%
Total TEQ	1.43E-02			1.98E-02			1.02E-02		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congeners 114, 189, and 81 were not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.

Station	F3-1	Percent of	F3-2		Percent of	F3-3	Percent of
Chemical	TEQ C	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q Total TEQ
PCB077	5.63E-03 D	30.98%	3.90E-03		27.05%	4.26E-03 [27.41%
PCB105	6.71E-04	3.69%	6.02E-04		4.17%	5.68E-04	3.66%
PCB114	1.73E-04	0.95%	1.67E-04		1.15%	1.45E-04	0.93%
PCB118	3.32E-03	18.27%	2.93E-03		20.30%	2.93E-03	18.86%
PCB123	6.60E-05	0.36%	6.95E-05		0.48%	5.75E-05	0.37%
PCB126	7.95E-03	43.72%	6.45E-03		44.69%	7.25E-03	46.69%
PCB156	1.30E-04	0.71%	1.13E-04		0.78%	1.26E-04	0.81%
PCB157	7.00E-05	0.38%	7.25E-05		0.50%	6.85E-05	0.44%
PCB167	1.54E-04	0.85%	1.11E-04		0.77%	1.14E-04	0.73%
PCB189	1.50E-05	0.08%	1.42E-05		0.10%	1.59E-05	0.10%
Total TEQ	1.82E-02		1.44E-02			1.55E-02	

- For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congeners 114, 189, and 81 were not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.

Station	F5-1		Percent of	F5-2		Percent of	F5-3		Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	1.65E-03		30.70%	1.65E-03		26.50%	1.68E-03		25.34%
PCB105	2.41E-04		4.49%	2.75E-04		4.43%	3.10E-04		4.67%
PCB114	6.95E-05		1.29%	8.70E-05		1.40%	9.90E-05		1.49%
PCB118	1.27E-03		23.63%	1.39E-03		22.34%	1.57E-03		23.68%
PCB123	3.09E-05		0.57%	4.04E-05		0.65%	3.26E-05		0.49%
PCB126	1.97E-03		36.70%	2.61E-03		41.97%	2.77E-03		41.77%
PCB156	5.63E-05		1.05%	5.95E-05		0.96%	6.21E-05		0.94%
PCB157	2.59E-05		0.48%	3.15E-05		0.51%	3.32E-05		0.50%
PCB167	5.25E-05		0.98%	7.00E-05		1.13%	6.65E-05		1.00%
PCB189	5.85E-06		0.11%	8.35E-06		0.13%	7.65E-06		0.12%
Total TEQ	5.37E-03			6.22E-03			6.63E-03		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congeners 114, 189, and 81 were not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.

Station Sample Species Age class	603388 9413 Iongnose dace			94139414longnose dacelongnose dace				603388 9415 Iongnose dace		
Location		control		control				control	-	
Chemical	Fish TEFs	TEQ	Q	Percent of Total TEQ	TEQ	Q	Percent of Total TEQ	TEQ	Q	Percent of Total TEQ
PCB077	0.00016	0.00008	U	2.98%			na			na
PCB105	0.00000172	1.7E-05		0.63%			na			na
PCB118	0.00000302	7.55E-05		2.81%	2.05E-05		na	9.97E-06		na
PCB126	0.005	0.0025	U	93.16%			na			na
PCB156	0.00000167	4.01E-06		0.15%			na			na
PCB157	0.000005	2.5E-06	U	0.09%			na			na
PCB167	0.000005	4.5E-06	U	0.17%	4.5E-06	U	na	4.5E-06	U	na
Total TEQ		0.002684			na			na		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congeners 114, 189, and 81 were not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, and 156 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

Station Sample	603389 9413			603389 9414			603389 9415		
Species longnose dace				longnose d	ace	longnose dace			
0	Age class								
Location	Location rochester park			rochester p	bark		rochester pa	rk	_
			Percent of			Percent of			Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077			na			na	0.00256		24.54%
PCB105			na			na	0.000413		3.96%
PCB118	0.000906		na	0.000966		na	0.002235		21.42%
PCB126			na			na	0.005 U*	1	47.93%
PCB156			na			na	7.35E-05		0.70%
PCB157			na			na	0.000055		0.53%
PCB167	0.000055		na	0.00006		na	0.000095		0.91%
Total TEQ	na			na			0.010431		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congeners 114, 189, and 81 were not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, and 156 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

Station Sample Species Age class Location			603390 9414 longnose dad esselingen p		603390 9415 Iongnose dace esselingen park				
	j	P	Percent of	eeeeinigen p	an	Percent of	ooooningon p	an	Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.0032		36.35%			na			na
PCB105	0.000447		5.08%			na			na
PCB118	0.002295		26.07%	0.002114		na	0.001389		na
PCB126	0.0025	U	28.40%			na			na
PCB156	9.02E-05		1.02%			na			na
PCB157	0.00013		1.48%			na			na
PCB167	0.00014		1.59%	0.00011		na	0.00007		na
Total TEQ	0.008803			na		. U	na		

- For PCB congeners that were not detecte₃d, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congeners 114, 189, and 81 were not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not de tected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, and 156 weare only analyzed in some samples.
- 5) na not applicable when all TEF congenears are not measured.

Station	603391			603391			603391				
Sample	9413			9414			9415				
Species	longnose dace	e	longnose dace				longnose da	се			
Age class											
Location	between kohle	er dams		between kohler	dams		between koh	ler dams			
			Percent of			Percent of			Percent of		
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ		
PCB077			na			na	0.00272		36.40%		
PCB105			na			na	0.0002924		3.91%		
PCB118	0.0013892		na	0.0016912		na	0.0016912		22.63%		
PCB126			na			na	0.0025	U	33.46%		
PCB156			na			na	0.00006346		0.85%		
PCB157			na			na	0.000095		1.27%		
PCB167	0.00008		na	0.000095		na	0.00011		1.47%		
Total TEQ	na			na			0.00747206				

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congeners 114, 189, and 81 were not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, and 156 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

Station 603388 Sample 9401 Species smallmouth bass Age class adult Location control				603388 9402 smallmout adult control	h bass	603388 9403 smallmouth bass adult control			
			Percent of			Percent of			Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.000192		6.77%	0.00008	U	3.03%	0.00008	U	3.06%
PCB105	1.48E-05		0.52%	7.74E-06		0.29%	5.33E-06		0.20%
PCB118	0.000118		4.16%	3.93E-05		1.49%	2.45E-05		0.93%
PCB126	0.0025	U	88.21%	0.0025	U	94.83%	0.0025	U	95.47%
PCB156	2.67E-06		0.09%	2.34E-06		0.09%	1.84E-06		0.07%
PCB157	2.5E-06	U	0.09%	2.5E-06	U	0.09%	2.5E-06	U	0.10%
PCB167	4.5E-06	U	0.16%	4.5E-06	U	0.17%	4.5E-06	U	0.17%
Total TEQ	0.002834			0.002636			0.002619		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congeners 114, 189, and 81 were not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, and 156 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

Station 603388 Sample 9404 Species smallmouth bass Age class young of year Location control				603388 9405 smallmout young of y control		603388 9406 smallmouth bass young of year control			
			Percent of			Percent of			Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077			na			na	0.00008	U	3.06%
PCB105			na			na	2.41E-06		0.09%
PCB118	1.18E-05		na	1.33E-05		na	2.3E-05		0.88%
PCB126			na			na	0.0025	U	95.67%
PCB156			na			na	8.35E-07	U	0.03%
PCB157			na			na	2.5E-06	U	0.10%
PCB167	4.5E-06	U	na	4.5E-06	U	na	4.5E-06	U	0.17%
Total TEQ	na			na			0.002613		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congeners 114, 189, and 81 were not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, and 156 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

Station 603389 Sample 9401 Species smallmouth bass Age class adult Location rochester park				603389 9402 smallmout adult rochester		603389 9403 smallmouth bass adult rochester park			
			Percent of			Percent of			Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.01568		30.78%	0.01376		32.74%	0.00768		36.10%
PCB105	0.001324		2.60%	0.001582		3.77%	0.000791		3.72%
PCB118	0.00604		11.86%	0.005738		13.65%	0.003322		15.62%
PCB126	0.027		53.01%	0.02		47.59%	0.009		42.31%
PCB156	0.000284		0.56%	0.000317		0.76%	0.00015		0.71%
PCB157	0.00026		0.51%	0.00027		0.64%	0.000135		0.63%
PCB167	0.00035		0.69%	0.000355		0.84%	0.000195		0.92%
Total TEQ	0.050938			0.042023			0.021274		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congeners 114, 189, and 81 were not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, and 156 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

Age class				603389 9405 smallmouth bass young of year rochester park			603389 9406 smallmouth bass young of year rochester park			
			Percent of			Percent of			Percent of	
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	
PCB077			na			na	0.00464		32.46%	
PCB105			na			na	0.000585		4.09%	
PCB118	0.002778		na	0.002174		na	0.002778		19.44%	
PCB126			na			na	0.006	U*I	41.98%	
PCB156			na			na	9.02E-05		0.63%	
PCB157			na			na	0.00008		0.56%	
PCB167	0.00016		na	0.00019		na	0.00012		0.84%	
Total TEQ	na			na			0.014293			

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congeners 114, 189, and 81 were not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, and 156 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

Age class				603390 9402 smallmouth bass adult esselingen park			603390 9403 smallmouth bass adult esselingen park			
			Percent of			Percent of			Percent of	
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	
PCB077	0.00272		32.10%	0.00256		27.72%	0.00208		23.13%	
PCB105	0.000361		4.26%	0.00043		4.66%	0.000413		4.59%	
PCB118	0.002174		25.66%	0.002476		26.82%	0.002476		27.53%	
PCB126	0.003	U*I	35.40%	0.0035	U*I	37.90%	0.00375	U*I	41.69%	
PCB156	6.85E-05		0.81%	8.85E-05		0.96%	8.52E-05		0.95%	
PCB157	0.00005		0.59%	0.000055		0.60%	0.000055		0.61%	
PCB167	0.0001		1.18%	0.000125		1.35%	0.000135		1.50%	
Total TEQ	0.008474			0.009235			0.008994			

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congeners 114, 189, and 81 were not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, and 156 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

Species Age class	Station 603390 Sample 9404 Species smallmouth bass Age class young of year Location esselingen park			603390 9405 smallmouth bass young of year esselingen park			603390 9406 smallmouth bass young of year esselingen park			
			Percent of			Percent of			Percent of	
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	
PCB077			na			na	2.24E-03		33.84%	
PCB105			na			na	2.92E-04		4.42%	
PCB118	0.000755		na	1.09E-03		na	1.45E-03		21.90%	
PCB126			na			na	2.50E-03 L	J	37.77%	
PCB156			na			na	3.84E-05		0.58%	
PCB157			na			na	3.40E-05		0.51%	
PCB167	4.65E-05		na	6.50E-05		na	6.50E-05		0.98%	
Total TEQ	na			na			6.62E-03			

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congeners 114, 189, and 81 were not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, and 156 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

	Sample 9401 Species smallmouth bass Age class adult			603391 9402 smallmouth bass adult			603391 9403 smallmouth bass adult			
-	Location between kohler dam			between koh	ler dams					
			Percent of			Percent of			Percent of	
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	
PCB077	5.76E-03		26.62%	0.00416		32.00%	0.00672		27.49%	
PCB105	5.85E-04		2.70%	0.0003612		2.78%	0.0007912		3.24%	
PCB118	3.62E-03		16.75%	0.0020536		15.79%	0.004228		17.29%	
PCB126	1.10E-02		50.83%	0.006		46.15%	0.012		49.08%	
PCB156	1.47E-04		0.68%	0.00010688		0.82%	0.0002004		0.82%	
PCB157	2.45E-04		1.13%	0.00015		1.15%	0.00018		0.74%	
PCB167	2.80E-04		1.29%	0.00017		1.31%	0.00033		1.35%	
Total TEQ	2.16E-02			0.01300168			0.0244496			

- For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congeners 114, 189, and 81 were not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, and 156 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

Station	603391			603391			603391		
Sample	9404			9405			9406		
Species	smallmouth ba	iss		smallmouth ba	SS		smallmouth ba	SS	
Age class	young of year			young of year			young of year		
Location	between kohle	r dams		between kohlei	r dams between kohler dams				
			Percent of			Percent of			Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077			na			na	0.00656		30.43%
PCB105			na			na	0.0007396		3.43%
PCB118	0.0025066		na	0.0021744		na	0.003624		16.81%
PCB126			na			na	0.01		46.38%
PCB156			na			na	0.00016533		0.77%
PCB157			na			na	0.00018		0.83%
PCB167	0.000135		na	0.00012		na	0.00029		1.35%
Total TEQ	na			na			0.02155893		

- For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congeners 114, 189, and 81 were not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, and 156 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

Age class	Sample 9407 Species white sucker Age class adult Location control				(er		603388 9409 white suck adult control	ker	
			Percent of			Percent of			Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.00008 L	J	3.06%			na			na
PCB105	4.82E-06		0.18%			na			na
PCB118	2.36E-05		0.90%	6.34E-06		na	3.62E-06		na
PCB126	0.0025 L	J	95.56%			na			na
PCB156	8.35E-07 L	J	0.03%			na			na
PCB157	2.5E-06 L	J	0.10%			na			na
PCB167	4.5E-06 L	J	0.17%	4.5E-06	U	na	4.5E-06	U	na
Total TEQ	0.002616			na			na		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congeners 114, 189, and 81 were not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, and 156 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

Age class				603388 9411 white sucker young of year control			603388 9412 white sucker young of year control			
			Percent of			Percent of			Percent of	
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	
PCB077			na			na	0.00008 U		3.05%	
PCB105			na			na	5.5E-06		0.21%	
PCB118	3.93E-06		na	4.83E-06		na	3.32E-05		1.26%	
PCB126			na			na	0.0025 U		95.18%	
PCB156			na			na	8.35E-07 U	l	0.03%	
PCB157			na			na	2.5E-06 U		0.10%	
PCB167	4.5E-06 I	U	na	4.5E-06	U	na	4.5E-06 U		0.17%	
Total TEQ	na			na			0.002627			

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congeners 114, 189, and 81 were not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, and 156 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

Age class	Sample 9407 9408 pecies white sucker white sucker e class adult adult ocation rochester park rochester park						603389 9409 white sucke adult rochester p		
		•	Percent of	•		Percent of	•		Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.00064		12.87%			na			na
PCB105	0.000224		4.50%			na			na
PCB118	0.000966		19.44%	0.001419		na	0.002205		na
PCB126	0.003	U*I	60.34%			na			na
PCB156	4.51E-05		0.91%			na			na
PCB157	0.000032		0.64%			na			na
PCB167	0.000065		1.31%	0.00008		na	0.00012		na
Total TEQ	0.004972			na			na		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congeners 114, 189, and 81 were not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, and 156 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

Age class				603389 9411 white sucker young of year rochester park			603389 9412 white sucker young of year rochester park			
			Percent of			Percent of			Percent of	
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	
PCB077			na			na	0.00176		22.60%	
PCB105			na			na	0.000224		2.87%	
PCB118	0.001117		na	0.001208		na	0.000936		12.02%	
PCB126			na			na	0.00475	U*I	61.00%	
PCB156			na			na	3.67E-05		0.47%	
PCB157			na			na	0.00003		0.39%	
PCB167	0.000065		na	0.000065		na	0.00005		0.64%	
Total TEQ	na			na			0.007787			

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congeners 114, 189, and 81 were not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, and 156 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

Age class				603390 9408 white sucker adult esselingen park			603390 9409 white sucker adult esselingen park			
			Percent of			Percent of			Percent of	
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	
PCB077	0.000368		10.78%			na			na	
PCB105	6.88E-05		2.01%			na			na	
PCB118	0.000423		12.38%	0.001661		na	0.000604		na	
PCB126	0.0025	U	73.22%			na			na	
PCB156	1.84E-05		0.54%			na			na	
PCB157	0.000013		0.38%			na			na	
PCB167	2.35E-05		0.69%	0.0001		na	4.05E-05		na	
Total TEQ	0.003414			na			na			

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congeners 114, 189, and 81 were not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, and 156 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

Species Age class	Station 603390 Sample 9410 Species white sucker Age class young of year Location esselingen park			603390 9411 white sucker young of year esselingen park			603390 9412 white sucker young of year esselingen park			
			Percent of			Percent of			Percent of	
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	
PCB077			na			na	0.001024		23.74%	
PCB105			na			na	0.000105		2.43%	
PCB118	0.000423		na	0.000423		na	0.000604		14.00%	
PCB126			na			na	0.0025 L	J	57.96%	
PCB156			na			na	2.17E-05		0.50%	
PCB157			na			na	2.75E-05		0.64%	
PCB167	0.000027		na	2.15E-05		na	0.000031		0.72%	
Total TEQ	na			na			0.004313			

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congeners 114, 189, and 81 were not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, and 156 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

Station Sample Species Age class	603391 9407 white sucker adult		603391 9408 white sucker adult between kobler dams						
Location	between kohle	er dams	between kohler dams				dams		
			Percent of			Percent of			Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.000896		18.88%			na			na
PCB105	0.0002064		4.35%			na			na
PCB118	0.0009966		21.00%	0.0014194		na	0.0016308		na
PCB126	0.0025	U	52.68%			na			na
PCB156	0.00003674		0.77%			na			na
PCB157	0.00005		1.05%			na			na
PCB167	0.00006		1.26%	0.000075		na	0.000085		na
Total TEQ	0.00474574			na			na		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congeners 114, 189, and 81 were not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, and 156 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

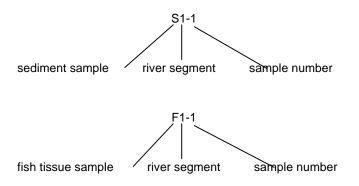
Station	603391			603391			603391		
Sample	9410			9411			9412		
Species	white sucker			white suck	er		white sucker		
Age class	young of year			young of ye	ear		young of year		
Location	between kohle	r dams		between ko	ohler dams	i	between kohle	r dams	
			Percent of			Percent of			Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077			na			na	0.001248		26.08%
PCB105			na			na	0.00014276		2.98%
PCB118	0.000755		na	0.001359		na	0.0007852		16.41%
PCB126			na			na	0.0025	U	52.23%
PCB156			na			na	0.00003173		0.66%
PCB157			na			na	0.000036		0.75%
PCB167	0.0000375		na	0.00006		na	0.0000425		0.89%
Total TEQ	na			na			0.00478619		

- For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congeners 114, 189, and 81 were not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, and 156 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

APPENDIX B-2

Toxic Equivalent Concentrations for Birds

Table B2-1.	Bird	TEQs	using	1997	ERA	fish	data
-------------	------	------	-------	------	-----	------	------


- Table B2-2.
 Bird TEQs using 1997 ERA sediment data
- Table B2-3.Bird TEQs using juvenile fish tissue samples collected for the
WDNR food chain study
- Table B2-4.
 Bird TEQs using crayfish samples collected for the WDNR food chain study
- Table B2-5.
 Bird TEQs using sediment samples collected for the WDNR food chain study

APPENDIX B-2 DEFINITION OF TERMS

Definition of qualifiers

- > sample over linear range of method
- D diluted sample
- L labeled compound
- *Q unexplainable result
- R peak detected but did not meet quantification criteria
- U undetected
- U*I significant interference present; value represents operator's best judgement of reporting limit

1997 ERA sample identification

Station		F1-1		Percent of	F1-2		Percent of	F1-3		Percent of	F2-1		Percent of
Chemical	Bird TEFs	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB066	0.002	3.00E-03		8.24%	2.80E-03		7.35%	2.80E-03		7.52%	9.80E-01	>D	19.76%
PCB077	0.03	3.21E-03		8.82%	3.45E-03		9.05%	3.00E-03		8.06%	1.18E+00	D	23.83%
PCB105	0.005	1.20E-02		32.96%	1.25E-02		32.80%	1.15E-02		30.89%	1.50E+00	>D	30.24%
PCB110	0.00005	5.00E-04		1.37%	4.35E-04		1.14%	4.75E-04		1.28%	1.40E-01	>D	2.82%
PCB118	0.001	7.80E-03		21.42%	7.90E-03		20.73%	7.50E-03		20.15%	5.70E-01	>D	11.49%
PCB126	0.3	4.32E-03		11.86%	5.07E-03		13.30%	6.36E-03		17.09%	3.21E-01		6.47%
PCB128	0.001	2.60E-03		7.14%	2.60E-03		6.82%	2.50E-03		6.72%	1.30E-01	D	2.62%
PCB156	0.001	9.58E-04		2.63%	1.01E-03		2.65%	8.74E-04		2.35%	5.14E-02		1.04%
PCB157	0.002	3.34E-04		0.92%	3.72E-04		0.98%	4.34E-04		1.17%	2.18E-02		0.44%
PCB167	0.002	9.90E-04		2.72%	1.15E-03		3.01%	1.11E-03		2.97%	3.74E-02		0.75%
PCB170	0.0002	1.81E-04		0.50%	2.50E-04		0.66%	1.84E-04		0.49%	9.64E-03		0.19%
PCB180	0.0002	5.04E-04		1.38%	5.64E-04		1.48%	4.76E-04		1.28%	1.65E-02		0.33%
PCB194	0.00005	1.25E-05	R	0.03%	1.65E-05		0.04%	1.55E-05		0.04%	7.00E-04	D	0.01%
Total TEQ		3.64E-02			3.81E-02			3.72E-02			4.96E+00		

Table B2-1. Bird TEQs using 1997 ERA fish data

All concentrations in ug/kg wet weight.

 For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.

- 2) PCB congener 138 was measured as 138/163/164, so this value was not included in total TEQ sum.
- 3) PCB congener 169 was not detected in any samples, so was not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.

Station	F2-2		Percent of	F2-3		Percent of	F3-1		Percent of	F3-2		Percent of	F3-3	Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ Q	Total TEQ
PCB066	1.56E+00	>D	23.64%	8.40E-01	>D	22.79%	1.74E+00		25.75%	1.50E+00		26.06%	1.48E+00	25.73%
PCB077	1.59E+00	D	24.09%	7.62E-01		20.67%	1.06E+00	D	15.63%	7.32E-01		12.72%	7.98E-01 D	13.87%
PCB105	1.65E+00	D	25.00%	1.05E+00	>D	28.49%	1.95E+00		28.86%	1.75E+00		30.40%	1.65E+00	28.69%
PCB110	2.10E-01	>D	3.18%	1.15E-01	>D	3.12%	8.50E-02		1.26%	7.50E-02		1.30%	7.00E-02	1.22%
PCB118	8.90E-01	>D	13.49%	4.80E-01	>D	13.02%	1.10E+00		16.28%	9.70E-01		16.85%	9.70E-01	16.86%
PCB126	4.53E-01		6.86%	2.36E-01		6.40%	4.77E-01		7.06%	3.87E-01		6.72%	4.35E-01	7.56%
PCB128	9.80E-02	D	1.48%	8.80E-02	D	2.39%	1.50E-01		2.22%	1.70E-01		2.95%	1.70E-01	2.96%
PCB156	6.30E-02		0.95%	4.51E-02		1.22%	7.78E-02		1.15%	6.78E-02		1.18%	7.55E-02	1.31%
PCB157	2.10E-02		0.32%	1.63E-02		0.44%	2.80E-02		0.41%	2.90E-02		0.50%	2.74E-02	0.48%
PCB167	3.98E-02		0.60%	3.14E-02		0.85%	6.16E-02		0.91%	4.42E-02		0.77%	4.54E-02	0.79%
PCB170	9.08E-03		0.14%	7.44E-03		0.20%	1.11E-02		0.16%	1.13E-02		0.20%	1.03E-02	0.18%
PCB180	1.51E-02		0.23%	1.44E-02		0.39%	1.96E-02		0.29%	1.95E-02		0.34%	1.90E-02	0.33%
PCB194	8.00E-04	D	0.01%	4.95E-04	D	0.01%	1.10E-03		0.02%	9.50E-04		0.02%	1.00E-03	0.02%
Total TEQ	6.60E+00			3.69E+00			6.76E+00			5.76E+00			5.75E+00	

All concentrations in ug/kg wet weight.

1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.

- 2) PCB congener 138 was measured as 138/163/164, so this value was not included in total TEQ sum.
- 3) PCB congener 169 was not detected in any samples, so was not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.

Table B2-1. C	ontinued
---------------	----------

Statio	n F5-1		Percent of	F5-2		Percent of	F5-3		Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB066	6.40E-01		27.06%	6.40E-01		24.82%	7.20E-01		25.23%
PCB077	3.09E-01		13.06%	3.09E-01		11.98%	3.15E-01		11.04%
PCB105	7.00E-01		29.60%	8.00E-01		31.02%	9.00E-01		31.54%
PCB110	3.65E-02		1.54%	4.10E-02		1.59%	4.70E-02		1.65%
PCB118	4.20E-01		17.76%	4.60E-01		17.84%	5.20E-01		18.22%
PCB126	1.18E-01		5.00%	1.57E-01		6.07%	1.66E-01		5.82%
PCB128	6.40E-02		2.71%	8.10E-02		3.14%	9.00E-02		3.15%
PCB156	3.37E-02		1.42%	3.56E-02		1.38%	3.72E-02		1.30%
PCB157	1.03E-02		0.44%	1.26E-02		0.49%	1.33E-02		0.46%
PCB167	2.10E-02		0.89%	2.80E-02		1.09%	2.66E-02		0.93%
PCB170	4.08E-03		0.17%	5.02E-03		0.19%	5.66E-03		0.20%
PCB180	7.96E-03		0.34%	9.60E-03		0.37%	1.19E-02		0.42%
PCB194	3.60E-04		0.02%	3.75E-04		0.01%	6.00E-04		0.02%
Total TEQ	2.37E+00			2.58E+00			2.85E+00		

- 2) PCB congener 138 was measured as 138/163/164, so this value was not included in total TEQ sum.
- 3) PCB congener 169 was not detected in any samples, so was not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.

For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.

Station		S1-1		Percent of	S1-2		Percent of	S1-3		Percent of
Chemical	Bird TEFs	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB066	0.002	3.00E-04		20.05%	7.20E-04		7.92%	1.20E-04	R	8.82%
PCB077	0.03	1.19E-04		7.98%	1.09E-03		11.98%	2.61E-04		19.20%
PCB105	0.005	6.50E-04		43.43%	2.75E-03		30.24%	5.00E-04		36.73%
PCB110	0.00005	2.00E-05		1.34%	1.05E-04		1.15%	1.90E-05		1.40%
PCB118	0.001	2.40E-04		16.04%	1.30E-03		14.30%	2.40E-04		17.63%
PCB126	0.3	7.65E-05	U	5.11%	2.14E-03	L	23.56%	7.50E-05	U	5.51%
PCB128	0.001	5.00E-05	U	3.34%	5.40E-04		5.94%	6.00E-05	R	4.41%
PCB156	0.001	1.15E-05	L	0.77%	1.34E-04		1.47%	2.60E-05		1.91%
PCB157	0.002	4.74E-06	L	0.32%	5.78E-05		0.64%	1.19E-05	L	0.87%
PCB167	0.002	1.20E-05	L	0.80%	1.18E-04		1.30%	2.18E-05	L	1.60%
PCB170	0.0002	3.60E-06	L	0.24%	5.76E-05		0.63%	9.66E-06		0.71%
PCB180	0.0002	6.32E-06		0.42%	7.34E-05		0.81%	1.41E-05		1.04%
PCB194	0.00005	2.50E-06	U	0.17%	6.00E-06	R	0.07%	2.50E-06	U	0.18%
Total TEQ		1.50E-03			9.09E-03			1.36E-03		

Table B2-2. Bird TEQs using 1997 ERA sediment data

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congener 138 was measured as 138/163/164, so this value was not included in total TEQ sum.
- 3) PCB congener 169 was not detected in any samples, so was not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.

Station	S2-1		Percent of	S2-2		Percent of	S2-3		Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB066	2.20E-01		30.41%	1.44E+00		20.95%	2.00E-01		22.98%
PCB077	2.05E-01		28.37%	2.05E+00		29.77%	2.74E-01		31.43%
PCB105	1.60E-01		22.12%	1.85E+00		26.92%	1.90E-01		21.83%
PCB110	9.00E-03		1.24%	6.50E-02		0.95%	1.20E-02		1.38%
PCB118	7.60E-02		10.51%	7.10E-01		10.33%	9.90E-02		11.37%
PCB126	3.45E-02		4.77%	5.28E-01		7.68%	6.09E-02		7.00%
PCB128	9.30E-03		1.29%	1.30E-01		1.89%	1.70E-02		1.95%
PCB156	3.36E-03		0.46%	3.92E-02		0.57%	6.42E-03		0.74%
PCB157	1.33E-03		0.18%	1.58E-02		0.23%	2.62E-03		0.30%
PCB167	2.54E-03		0.35%	2.60E-02		0.38%	4.76E-03		0.55%
PCB170	8.20E-04		0.11%	8.60E-03		0.13%	1.68E-03		0.19%
PCB180	1.26E-03		0.17%	1.24E-02		0.18%	2.38E-03		0.27%
PCB194	8.50E-05		0.01%	1.00E-03		0.01%	1.20E-04		0.01%
Total TEQ	7.23E-01			6.87E+00			8.70E-01		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congener 138 was measured as 138/163/164, so this value was not included in total TEQ sum.
- 3) PCB congener 169 was not detected in any samples, so was not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.

Station	S3-1		Percent of	S3-2		Percent of	S3-3		Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB066	1.08E-01		18.40%	2.80E-01		21.88%	1.50E-01		20.03%
PCB077	2.26E-01		38.50%	3.39E-01		26.49%	2.50E-01		33.37%
PCB105	1.10E-01		18.75%	3.35E-01		26.18%	1.65E-01		22.04%
PCB110	9.00E-03		1.53%	3.30E-02		2.58%	8.50E-03		1.14%
PCB118	5.60E-02		9.54%	1.20E-01		9.38%	7.30E-02		9.75%
PCB126	5.31E-02		9.05%	1.02E-01		7.97%	6.87E-02		9.17%
PCB128	9.80E-03		1.67%	2.50E-02	R	1.95%	1.20E-02		1.60%
PCB156	5.04E-03		0.86%	1.38E-02		1.08%	8.18E-03		1.09%
PCB157	2.22E-03		0.38%	4.96E-03		0.39%	3.62E-03		0.48%
PCB167	3.64E-03		0.62%	9.36E-03		0.73%	5.40E-03		0.72%
PCB170	1.54E-03		0.26%	6.26E-03		0.49%	1.73E-03		0.23%
PCB180	2.44E-03		0.42%	1.02E-02		0.80%	2.64E-03		0.35%
PCB194	1.30E-04		0.02%	9.00E-04	U	0.07%	1.20E-04	U	0.02%
Total TEQ	5.87E-01			1.28E+00			7.49E-01		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congener 138 was measured as 138/163/164, so this value was not included in total TEQ sum.
- 3) PCB congener 169 was not detected in any samples, so was not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.

Station	S5-1		Percent of	S5-2		Percent of	S5-3		Percent of	S5-4		Percent of	S5-5	Percent of
Chemical	TEQ	Q	Total TEQ	TEQ Q	Total TEQ									
PCB066	1.80E-01		18.85%	3.40E-02		18.80%	1.74E-01		21.21%	7.80E-02		16.82%	3.40E-02	21.09%
PCB077	3.27E-01		34.25%	6.30E-02		34.84%	2.59E-01		31.52%	1.90E-01		40.89%	5.46E-02 D	33.87%
PCB105	2.30E-01		24.09%	4.40E-02		24.33%	2.00E-01		24.38%	8.50E-02		18.33%	3.60E-02	22.33%
PCB110	9.00E-03		0.94%	1.70E-03		0.94%	6.50E-03		0.79%	3.10E-03		0.67%	1.65E-03	1.02%
PCB118	8.10E-02		8.48%	1.50E-02		8.30%	7.30E-02		8.90%	3.40E-02		7.33%	1.50E-02	9.30%
PCB126	8.97E-02		9.40%	1.86E-02		10.27%	8.28E-02		10.09%	5.82E-02		12.55%	1.44E-02	8.91%
PCB128	1.90E-02		1.99%	1.05E-03	U	0.58%	7.60E-03		0.93%	4.20E-03		0.91%	2.50E-03	1.55%
PCB156	7.53E-03		0.79%	1.43E-03		0.79%	6.95E-03		0.85%	4.71E-03		1.02%	1.12E-03	0.69%
PCB157	3.08E-03		0.32%	5.98E-04		0.33%	3.10E-03		0.38%	1.91E-03		0.41%	4.72E-04	0.29%
PCB167	4.68E-03		0.49%	9.20E-04		0.51%	4.58E-03		0.56%	2.80E-03		0.60%	8.40E-04	0.52%
PCB170	1.33E-03		0.14%	2.04E-04		0.11%	1.30E-03		0.16%	8.20E-04		0.18%	2.56E-04	0.16%
PCB180	2.12E-03		0.22%	3.26E-04		0.18%	1.93E-03		0.24%	1.28E-03		0.28%	3.76E-04	0.23%
PCB194	2.75E-04	U	0.03%	1.70E-05	U	0.01%	9.00E-05		0.01%	5.50E-05		0.01%	2.15E-05	0.01%
Total TEQ	9.55E-01			1.81E-01			8.20E-01			4.64E-01			1.61E-01	

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congener 138 was measured as 138/163/164, so this value was not included in total TEQ sum.
- 3) PCB congener 169 was not detected in any samples, so was not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.

Station Sample Species Location		603388 9413 Iongnose dace control			603388 9414 Iongnose control	dace		603388 9415 Iongnose (control	dace	
Chemical	Bird TEFs	TEQ	Q	Percent of Total TEQ	TEQ	Q	Percent of Total TEQ	TEQ	Q	Percent of Total TEQ
PCB077	0.03	0.015	U	6.01%			na			na
PCB105	0.005	0.0495		19.85%			na			na
PCB118	0.001	0.025		10.02%	0.0068		na	0.0033		na
PCB126	0.3	0.15	U	60.15%			na			na
PCB128	0.001	0.0035		1.40%	0.0016		na	0.0007	U	na
PCB156	0.001	0.0024		0.96%			na			na
PCB157	0.002	0.001	U	0.40%			na			na
PCB167	0.002	0.0018	U	0.72%	0.0018	U	na	0.0018	U	na
PCB180	0.0002	0.00116		0.47%	0.00058		na	0.00022	U	na
PCB194	0.00005	0.000025	U	0.01%	0.000025	U	na	0.000025	U	na
Total TEQ		0.249385			na			na		

Table B2-3. Bird TEQs using young-of-year fish tissue samples collected for the WDNR food chain study

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the Percent of Total TEQ sum.
- 2) PCB congener 138 was measured as 138/163 and PCB congener 170 as 170/190, so these were not included in Percent of Total TEQ sum.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.
- 5) PCB congeners 77, 105, 126, 156, and 157 were only analyzed in some samples.
- 6) na not applicable when all TEF congeners are not measured.

				603389 9414 ongnose da rochester pa		603389 9415 Iongnose rochester			603390 9413 ongnose d esselingen			
			Percent of			Percent of			Percent of			Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077			na			na	0.48		16.49%	0.6		19.46%
PCB105			na			na	1.2		41.23%	1.3		42.16%
PCB118	0.3		na	0.32		na	0.74		25.42%	0.76		24.65%
PCB126			na			na	0.3	U*I	10.31%	0.15 l	J	4.86%
PCB128	0.034		na	0.036		na	0.071		2.44%	0.087		2.82%
PCB156			na			na	0.044		1.51%	0.054		1.75%
PCB157			na			na	0.022		0.76%	0.052		1.69%
PCB167	0.022		na	0.024		na	0.038		1.31%	0.056		1.82%
PCB180	0.0106		na	0.0114		na	0.0154		0.53%	0.024		0.78%
PCB194	0.000345		na	0.00035		na	0.000445		0.02%	0.0007		0.02%
Total TEQ	na			na			2.910845			3.0837		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the Percent of Total TEQ sum.
- 2) PCB congener 138 was measured as 138/163 and PCB congener 170 as 170/190, so these were not included in Percent of Total TEQ sum.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.
- 5) PCB congeners 77, 105, 126, 156, and 157 were only analyzed in some samples.
- 6) na not applicable when all TEF congeners are not measured.

				603390 9415 longnose da esselingen p			603391 9413 Iongnose d between ko		6	603391 9414 Iongnose da between kol		าร
			Percent of			Percent of			Percent of			Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077			na			na			na			na
PCB105			na			na			na			na
PCB118	0.7		na	0.46		na	0.46		na	0.56		na
PCB126			na			na			na			na
PCB128	0.078		na	0.053		na	0.054		na	0.063		na
PCB156			na			na			na			na
PCB157			na			na			na			na
PCB167	0.044		na	0.028		na	0.032		na	0.038		na
PCB180	0.02		na	0.0152		na	0.0164		na	0.019		na
PCB194	0.00065		na	0.000425		na	0.00055		na	0.0006		na
Total TEQ	na			na			na			na		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the Percent of Total TEQ sum.
- 2) PCB congener 138 was measured as 138/163 and PCB congener 170 as 170/190, so these were not included in Percent of Total TEQ sum.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.
- 5) PCB congeners 77, 105, 126, 156, and 157 were only analyzed in some samples.
- 6) na not applicable when all TEF congeners are not measured.

-	603391 9415 Iongnose (between k	dace ohler dams		603388 9404 smallmouth bass control			603388 9405 smallmout control	h bass		603388 9406 smallmouth I control	bass	
			Percent of			Percent of			Percent of			Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.51		22.41%			na			na	0.015 U		8.15%
PCB105	0.85		37.36%			na			na	0.007		3.80%
PCB118	0.56		24.61%	0.0039		na	0.0044		na	0.0076		4.13%
PCB126	0.15	U	6.59%			na			na	0.15 U		81.48%
PCB128	0.065		2.86%	0.0007	U	na	0.0007	U	na	0.0007 U		0.38%
PCB156	0.038		1.67%			na			na	0.0005 U		0.27%
PCB157	0.038		1.67%			na			na	0.001 U		0.54%
PCB167	0.044		1.93%	0.0018	U	na	0.0018	U	na	0.0018 U		0.98%
PCB180	0.0198		0.87%	0.00022	U	na	0.00022	U	na	0.00048		0.26%
PCB194	0.00065		0.03%	0.000025	U	na	0.000025	U	na	0.000025 U		0.01%
Total TEQ	2.27545			na			na			0.184105		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the Percent of Total TEQ sum.
- 2) PCB congener 138 was measured as 138/163 and PCB congener 170 as 170/190, so these were not included in Percent of Total TEQ sum.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.
- 5) PCB congeners 77, 105, 126, 156, and 157 were only analyzed in some samples.
- 6) na not applicable when all TEF congeners are not measured.

	Sample 9404 Species smallmouth bass Location rochester park		603389 9405 smallmouth bass rochester park Percent of Total			Percent of Total	603389 9406 smallmout rochester			603390 9404 smallmouth esselingen		Percent of Total
Chemical	TEQ	Q	TEQ	TEQ	Q	TEQ	TEQ	Q	TEQ	TEQ	Q	TEQ
PCB077			na			na	0.87		21.23%			na
PCB105			na			na	1.7		41.49%			na
PCB118	0.92		na	0.72		na	0.92		22.45%	0.25		na
PCB126			na			na	0.36	U*I	8.79%			na
PCB128	0.09		na	0.11		na	0.093		2.27%	0.032		na
PCB156			na			na	0.054		1.32%			na
PCB157			na			na	0.032		0.78%			na
PCB167	0.064		na	0.076		na	0.048		1.17%	0.0186		na
PCB180	0.02		na	0.024		na	0.02		0.49%	0.0096		na
PCB194	0.0006		na	0.0008		na	0.0007		0.02%	0.00029		na
Total TEQ	na			na			4.0977			na		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample.
- This value contributes to the Percent of Total TEQ sum.
- 2) PCB congener 138 was measured as 138/163 and PCB congener 170 as 170/190, so these were not included in Percent of Total TEQ sum.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.
- 5) PCB congeners 77, 105, 126, 156, and 157 were only analyzed in some samples.
- 6) na not applicable when all TEF congeners are not measured.

	Sample 9405 Species smallmouth bass Location esselingen park			603390 9406 smallmouth bass esselingen park Percent of Total			603391 9404 smallmout between ko	h bass ohler dams	Percent	603391 9405 smallmouth between koł		Percent
		-	of Total		-	of Total		-	of Total		-	of Total
Chemical	TEQ	Q	TEQ	TEQ	Q	TEQ	TEQ	Q	TEQ	TEQ	Q	TEQ
PCB077			na	0.42		20.75%			na			na
PCB105			na	0.85		42.00%			na			na
PCB118	0.36		na	0.48		23.72%	0.83		na	0.72		na
PCB126			na	0.15	U	7.41%			na			na
PCB128	0.045		na	0.049		2.42%	0.1		na	0.088		na
PCB156			na	0.023		1.14%			na			na
PCB157			na	0.0136		0.67%			na			na
PCB167	0.026		na	0.026		1.28%	0.054		na	0.048		na
PCB180	0.0136		na	0.012		0.59%	0.022		na	0.02		na
PCB194	0.000415		na	0.000325		0.02%	0.0007		na	0.00075		na
Total TEQ	na			2.023925			na			na		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample.
- This value contributes to the Percent of Total TEQ sum.
- 2) PCB congener 138 was measured as 138/163 and PCB congener 170 as 170/190, so these were not included in Percent of Total TEQ sum.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.
- 5) PCB congeners 77, 105, 126, 156, and 157 were only analyzed in some samples.
- 6) na not applicable when all TEF congeners are not measured.

	603391 9406 smallmouth bass between kohler dam		603388 9410 white suck control	er	Percent of Total	603388 9411 white suck control	ker	Percent of Total	603388 9412 white sucker control		Percent of Total
Chemical	TEQ Q	TEQ	TEQ	Q	TEQ	TEQ	Q	TEQ	TEQ	Q	TEQ
PCB077	1.23	21.70%			na			na	0.015 U	- 1	7.61%
PCB105	2.15	37.93%			na			na	0.016		8.12%
PCB118	1.2	21.17%	0.0013		na	0.0016		na	0.011		5.58%
PCB126	0.6	10.59%			na			na	0.15 U		76.09%
PCB128	0.16	2.82%	0.0007	U	na	0.0007	U	na	0.0016		0.81%
PCB156	0.099	1.75%			na			na	0.0005 U		0.25%
PCB157	0.072	1.27%			na			na	0.001 U		0.51%
PCB167	0.116	2.05%	0.0018	U	na	0.0018	U	na	0.0018 U		0.91%
PCB180	0.04	0.71%	0.00022	U	na	0.00022	U	na	0.00022 U		0.11%
PCB194	0.00115	0.02%	0.000025	U	na	0.000025	U	na	0.000025 U		0.01%
Total TEQ	5.66815		na			na			0.197145		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample.
- This value contributes to the Percent of Total TEQ sum.
- 2) PCB congener 138 was measured as 138/163 and PCB congener 170 as 170/190, so these were not included in Percent of Total TEQ sum.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.
- 5) PCB congeners 77, 105, 126, 156, and 157 were only analyzed in some samples.
- 6) na not applicable when all TEF congeners are not measured.

	Sample 9410 Species white sucker Location rochester park			603389 9411 white sucker rochester park Percent of Total			603389 9412 white suck rochester			603390 9410 white sucke esselingen		Percent of Total
Chemical	TEQ	Q	TEQ	TEQ	Q	TEQ	TEQ	Q	TEQ	TEQ	Q	TEQ
PCB077			na			na	0.33		19.64%			na
PCB105			na			na	0.65		38.69%			na
PCB118	0.37		na	0.4		na	0.31		18.45%	0.14		na
PCB126			na			na	0.285	U*I	16.96%			na
PCB128	0.05		na	0.05		na	0.041		2.44%	0.022		na
PCB156			na			na	0.022		1.31%			na
PCB157			na			na	0.012		0.71%			na
PCB167	0.026		na	0.026		na	0.02		1.19%	0.0108		na
PCB180	0.013		na	0.0126		na	0.0096		0.57%	0.0042		na
PCB194	0.0005		na	0.00044		na	0.00034		0.02%	0.00016		na
Total TEQ	na			na			1.67994			na		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample.
- This value contributes to the Percent of Total TEQ sum.
- 2) PCB congener 138 was measured as 138/163 and PCB congener 170 as 170/190, so these were not included in Percent of Total TEQ sum.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.
- 5) PCB congeners 77, 105, 126, 156, and 157 were only analyzed in some samples.
- 6) na not applicable when all TEF congeners are not measured.

				603390 9412 white sucker esselingen park Percent of Total			603391 9410 white suck between ko	ter ohler dams	Percent	603391 9411 white sucker between koh		Percent
Chamical	TEO	0		TEO	0	of Total	TEO	•	of Total	TEO	0	of Total TEQ
PCB077	IEQ	Q	TEQ	TEQ 0.192	Q	TEQ	TEQ	Q	TEQ	TEQ	Q	
			na			21.00%			na			na
PCB105			na	0.305		33.36%			na			na
PCB118	0.14		na	0.2		21.87%	0.25		na	0.45		na
PCB126			na	0.15	U	16.40%			na			na
PCB128	0.02		na	0.025		2.73%	0.036		na	0.059		na
PCB156			na	0.013		1.42%			na			na
PCB157			na	0.011		1.20%			na			na
PCB167	0.0086		na	0.0124		1.36%	0.015		na	0.024		na
PCB180	0.0044		na	0.0058		0.63%	0.0078		na	0.0124		na
PCB194	0.00015		na	0.000185		0.02%	0.000235		na	0.000415		na
Total TEQ	na			0.914385			na			na		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample.
- This value contributes to the Percent of Total TEQ sum.
- 2) PCB congener 138 was measured as 138/163 and PCB congener 170 as 170/190, so these were not included in Percent of Total TEQ sum.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.
- 5) PCB congeners 77, 105, 126, 156, and 157 were only analyzed in some samples.
- 6) na not applicable when all TEF congeners are not measured.

Station Sample	603391 9412		
	white suck	er	
-		ohler dams	
	both oon h		Percent
			of Total
Chemical	TEQ	Q	TEQ
PCB077	0.234		20.37%
PCB105	0.415		36.12%
PCB118	0.26		22.63%
PCB126	0.15	U	13.06%
PCB128	0.031		2.70%
PCB156	0.019		1.65%
PCB157	0.0144		1.25%
PCB167	0.017		1.48%
PCB180	0.0082		0.71%
PCB194	0.00027		0.02%
Total TEQ	1.14887		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the Percent of Total TEQ sum.
- 2) PCB congener 138 was measured as 138/163 and PCB congener 170 as 170/190, so these were not included in Percent of Total TEQ sum.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.
- 5) PCB congeners 77, 105, 126, 156, and 157 were only analyzed in some samples.
- 6) na not applicable when all TEF congeners are not measured.

Station Sample Species Location		603384 9409 crayfish control			603384 9410 crayfish control				603384 9411 crayfish control		Percent of
Chemical	Bird TEFs	TEQ	Q	Total TEQ	TEQ	(Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.03	0.015 U		8.71%	0.015 L	J		8.71%			na
PCB105	0.005	0.0025 U		1.45%	0.0025 L	J		1.45%			na
PCB118	0.001	0.0004 U		0.23%	0.0004 L	J		0.23%	0.0015		na
PCB126	0.3	0.15 U		87.14%	0.15 L	J		87.14%			na
PCB128	0.001	0.0007 U		0.41%	0.0007 L	J		0.41%	0.0007	U	na
PCB156	0.001	0.0005 U		0.29%	0.0005 L	J		0.29%			na
PCB157	0.002	0.001 U		0.58%	0.001 L	J		0.58%			na
PCB167	0.002	0.0018 U		1.05%	0.0018 L	J		1.05%	0.0018	U	na
PCB180	0.0002	0.00022 U		0.13%	0.00022 L	J		0.13%	0.00022	U	na
PCB194	0.00005	0.000025 U		0.01%	0.000025 L	J		0.01%	0.000025	U	na
Total TEQ		0.172145			0.172145				na		

Table B2-4. Bird TEQs using crayfish samples collected for the WDNR food chain study

- For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congener 138 was measured as 138/163 and PCB congener 170 as 170/190, so these were not included in total TEQ sum.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.
- 5) PCB congeners 77, 105, 126, 156, and 157 were only analyzed in some samples.
- 6) na not applicable when all TEF congeners are not measured.

Station Sample Species Location	603385 9409 crayfish rochester p	bark	603385 9410 crayfish rochester park Percent of			Percent of	oark	Percent of	
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.156		26.90%	0.132		26.43%			na
PCB105	0.145		25.00%	0.11		22.02%			na
PCB118	0.098		16.90%	0.083		16.62%	0.079		na
PCB126	0.15	U	25.86%	0.15	U	30.03%			na
PCB128	0.01		1.72%	0.0079		1.58%	0.01		na
PCB156	0.0063		1.09%	0.0051		1.02%			na
PCB157	0.0042		0.72%	0.0034		0.68%			na
PCB167	0.007		1.21%	0.0054		1.08%	0.0066		na
PCB180	0.0034		0.59%	0.0026		0.52%	0.0028		na
PCB194	0.00012		0.02%	0.00007		0.01%	0.00008		na
Total TEQ	0.58002			0.49947			na		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congener 138 was measured as 138/163 and PCB congener 170 as 170/190, so these were not included in total TEQ sum.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.
- 5) PCB congeners 77, 105, 126, 156, and 157 were only analyzed in some samples.
- 6) na not applicable when all TEF congeners are not measured.

Station Sample Species Location	603386 9409 crayfish between koł	nler dams	603386 9410 crayfish between kohler dams Percent of			Percent of	Percent of		
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.075	*Q	14.49%	0.057	*Q	13.01%			na
PCB105	0.13		25.12%	0.105		23.97%			na
PCB118	0.13		25.12%	0.095		21.69%	0.088		na
PCB126	0.15	U	28.98%	0.15	U	34.25%			na
PCB128	0.012		2.32%	0.011		2.51%	0.012		na
PCB156	0.0058		1.12%	0.0063		1.44%			na
PCB157	0.0028		0.54%	0.0028		0.64%			na
PCB167	0.0078		1.51%	0.0072		1.64%	0.0068		na
PCB180	0.004		0.77%	0.0036		0.82%	0.0032		na
PCB194	0.00012		0.02%	0.0001		0.02%	0.00009		na
Total TEQ	0.51752			0.438			na		

- For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congener 138 was measured as 138/163 and PCB congener 170 as 170/190, so these were not included in total TEQ sum.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.
- 5) PCB congeners 77, 105, 126, 156, and 157 were only analyzed in some samples.
- 6) na not applicable when all TEF congeners are not measured.

Station Sample Species Location	603387 9409 crayfish esselinger	n park	603387 9410 crayfish esselingen park Percent of			Percent of	park	Percent of	
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.069		16.37%	0.084		17.96%			na
PCB105	0.095		22.54%	0.115		24.59%			na
PCB118	0.08		18.98%	0.087		18.60%	0.083		na
PCB126	0.15	U	35.59%	0.15	U	32.08%			na
PCB128	0.0094		2.23%	0.011		2.35%	0.012		na
PCB156	0.0039		0.93%	0.0047		1.01%			na
PCB157	0.0042		1.00%	0.0046		0.98%			na
PCB167	0.0066		1.57%	0.0076		1.63%	0.0072		na
PCB180	0.0032		0.76%	0.0036		0.77%	0.0036		na
PCB194	0.000115		0.03%	0.000125		0.03%	0.000095		na
Total TEQ	0.421415			0.467625			na		

- For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congener 138 was measured as 138/163 and PCB congener 170 as 170/190, so these were not included in total TEQ sum.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.
- 5) PCB congeners 77, 105, 126, 156, and 157 were only analyzed in some samples.
- 6) na not applicable when all TEF congeners are not measured.

Station Sample		603363 6A camp marina			603364 6B			603365 6C		
Location		camp marin	าล	Percent of	camp mari	na	Percent of	camp marina	a	Percent of
Chemical	Bird TEFs	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.03	0.174		40.09%	0.168		48.31%	0.24		45.54%
PCB105	0.005	0.12		27.65%	0.095		27.32%	0.15		28.46%
PCB118	0.001	0.045		10.37%	0.039		11.22%	0.055		10.44%
PCB126	0.3	0.078		17.97%	0.03	U	8.63%	0.0615 U	*	11.67%
PCB128	0.001	0.0063		1.45%	0.0056		1.61%	0.008		1.52%
PCB156	0.001	0.0041		0.94%	0.0032		0.92%	0.0046		0.87%
PCB157	0.002	0.0022		0.51%	0.00186		0.53%	0.0028		0.53%
PCB167	0.002	0.0028		0.65%	0.0024		0.69%	0.0034		0.65%
PCB180	0.0002	0.0015		0.35%	0.0024		0.69%	0.00164		0.31%
PCB194	0.00005	0.000075		0.02%	0.00026		0.07%	0.000075		0.01%
Total TEQ		0.433975			0.34772			0.527015		

Table B2-5. Bird TEQs using sediment samples collected for the WDNR food chain study

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congener 138 was measured as 138/163 and PCB congener 170 as 170/190, so these were not included in total TEQ sum.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.

Station Sample	603366 6D			603367 6E			603368 5A			
Location	camp mari	ina	Percent of	camp mari	na	Percent of	kiwanis pa	ark		Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ		Q	Total TEQ
PCB077	0.237		47.38%	0.12		45.97%	0.219			43.76%
PCB105	0.145		28.99%	0.075		28.73%	0.17			33.97%
PCB118	0.053		10.60%	0.026		9.96%	0.059			11.79%
PCB126	0.045	U*I	9.00%	0.03	U	11.49%	0.03	U		5.99%
PCB128	0.008		1.60%	0.0037		1.42%	0.0087			1.74%
PCB156	0.0045		0.90%	0.0023		0.88%	0.0053			1.06%
PCB157	0.0026		0.52%	0.00138		0.53%	0.0028			0.56%
PCB167	0.0034		0.68%	0.0017		0.65%	0.0038			0.76%
PCB180	0.00162		0.32%	0.00092		0.35%	0.0018			0.36%
PCB194	0.00007		0.01%	4.75E-05		0.02%	0.00008			0.02%
Total TEQ	0.50019			0.261048			0.50048			

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congener 138 was measured as 138/163 and PCB congener 170 as 170/190, so these were not included in total TEQ sum.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.

Station Sample	603369 5B			603370 5C				603371 5D			
Location	kiwanis pa	ırk	Percent of	kiwanis pa	ırk		Percent of	kiwanis pa	ırk		Percent of
Chemical	TEQ	Q	Total TEQ	TEQ		Q	Total TEQ	TEQ		Q	Total TEQ
PCB077	0.225		46.26%	0.138			43.69%	0.186			43.63%
PCB105	0.15		30.84%	0.1			31.66%	0.145			34.02%
PCB118	0.055		11.31%	0.035			11.08%	0.048			11.26%
PCB126	0.0345	U*I	7.09%	0.03	U		9.50%	0.03	U		7.04%
PCB128	0.0086		1.77%	0.0051			1.61%	0.0068			1.60%
PCB156	0.0049		1.01%	0.003			0.95%	0.0039			0.91%
PCB157	0.003		0.62%	0.00184			0.58%	0.0024			0.56%
PCB167	0.0036		0.74%	0.002			0.63%	0.0028			0.66%
PCB180	0.00174		0.36%	0.00092			0.29%	0.00132			0.31%
PCB194	0.00007		0.01%	3.45E-05			0.01%	0.00005			0.01%
Total TEQ	0.48641			0.315895				0.42627			

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congener 138 was measured as 138/163 and PCB congener 170 as 170/190, so these were not included in total TEQ sum.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.

Station Sample	603372 3A		603373 3B				603374 3C		
	between kohle	r dams	Percent of	between kohle	r dams	Percent of	between koh	ler dams	Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.3		40.59%	0.258		44.56%	0.156		45.70%
PCB105	0.235		31.80%	0.17		29.36%	0.095		27.83%
PCB118	0.089		12.04%	0.068		11.74%	0.04		11.72%
PCB126	0.081		10.96%	0.054	U*I	9.33%	0.0345	U*I	10.11%
PCB128	0.013		1.76%	0.011		1.90%	0.0059		1.73%
PCB156	0.0079		1.07%	0.0067		1.16%	0.0035		1.03%
PCB157	0.0046		0.62%	0.004		0.69%	0.0022		0.64%
PCB167	0.0056		0.76%	0.0048		0.83%	0.0026		0.76%
PCB180	0.0028		0.38%	0.0024		0.41%	0.0016		0.47%
PCB194	0.00014		0.02%	0.00011		0.02%	0.00008		0.02%
Total TEQ	0.73904			0.57901			0.34138		

- For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congener 138 was measured as 138/163 and PCB congener 170 as 170/190, so these were not included in total TEQ sum.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.

Station Sample	603375 3D		603376 3E			603377 2A		
	between kohler dams	Percent of	J⊑ between kohl	er dams	Percent of		nark	Percent of
Chemical	TEQ Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.27	46.87%	0.294		44.89%	0.21		44.14%
PCB105	0.165	28.64%	0.185		28.25%	0.145		30.48%
PCB118	0.079	13.71%	0.088		13.44%	0.059		12.40%
PCB126	0.03 U	5.21%	0.0525	U*I	8.02%	0.039	U*I	8.20%
PCB128	0.012	2.08%	0.014		2.14%	0.0087		1.83%
PCB156	0.0071	1.23%	0.0079		1.21%	0.005		1.05%
PCB157	0.0044	0.76%	0.0046		0.70%	0.0032		0.67%
PCB167	0.0054	0.94%	0.0056		0.86%	0.0038		0.80%
PCB180	0.003	0.52%	0.0032		0.49%	0.002		0.42%
PCB194	0.000165	0.03%	0.000145		0.02%	0.000095		0.02%
Total TEQ	0.576065		0.654945			0.475795		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congener 138 was measured as 138/163 and PCB congener 170 as 170/190, so these were not included in total TEQ sum.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.

Station Sample	603378 2B			603379 2C			603380 2D		
	rochester	nark	Percent of		nark	Percent of		nark	Percent of
					•			•	
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.45		43.54%	0.219		47.82%	0.81		42.68%
PCB105	0.33		31.93%	0.125		27.29%	0.5		26.34%
PCB118	0.12		11.61%	0.06		13.10%	0.29		15.28%
PCB126	0.09	U*I	8.71%	0.033	U*I	7.21%	0.18	U*I	9.48%
PCB128	0.017		1.64%	0.0084		1.83%	0.047		2.48%
PCB156	0.01		0.97%	0.0045		0.98%	0.026		1.37%
PCB157	0.006		0.58%	0.0026		0.57%	0.016		0.84%
PCB167	0.007		0.68%	0.0036		0.79%	0.0196		1.03%
PCB180	0.0034		0.33%	0.00182		0.40%	0.009		0.47%
PCB194	0.00015		0.01%	0.00008		0.02%	0.00032		0.02%
Total TEQ	1.03355			0.458			1.89792		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congener 138 was measured as 138/163 and PCB congener 170 as 170/190, so these were not included in total TEQ sum.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.

Station	603381			603392				603393			
Sample	2E rochester	nark	Percent of	1A control			Percent of	1B control			Percent of
Chemical	TEQ	Q	Total TEQ	TEQ		Q	Total TEQ	TEQ		Q	Total TEQ
PCB077	0.9	~	40.83%	0.003	U	~	7.93%	0.003	U	S.	8.38%
PCB105	0.8		36.30%	0.0005	-		1.32%	0.00115	-		3.21%
PCB118	0.29		13.16%	0.000225	Ū		0.59%	0.00054			1.51%
PCB126	0.0975	U*I	4.42%	0.033	U		87.25%	0.03	U		83.83%
PCB128	0.047		2.13%	0.00025	U		0.66%	0.00025	U		0.70%
PCB156	0.027		1.22%	0.0001	U		0.26%	0.0001	U		0.28%
PCB157	0.0162		0.73%	0.0002	U		0.53%	0.0002	U		0.56%
PCB167	0.0186		0.84%	0.0005	U		1.32%	0.0005	U		1.40%
PCB180	0.0076		0.34%	0.000035	U		0.09%	0.000035	U		0.10%
PCB194	0.00022		0.01%	1.25E-05	U		0.03%	1.25E-05	U		0.03%
Total TEQ	2.20412			0.037823				0.035788			

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congener 138 was measured as 138/163 and PCB congener 170 as 170/190, so these were not included in total TEQ sum.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.

Station Sample	603394 1C			603395 1D				603396 1E			
Location			Percent of	control			Percent of	control			Percent of
Chemical	TEQ	Q	Total TEQ	TEQ		Q	Total TEQ	TEQ		Q	Total TEQ
PCB077	0.003	U	8.56%	0.003	U		8.19%	0.003	U		8.27%
PCB105	0.0005	U	1.43%	0.0017			4.64%	0.0014			3.86%
PCB118	0.00046		1.31%	0.00082			2.24%	0.00076			2.10%
PCB126	0.03	U	85.57%	0.03	U		81.93%	0.03	U		82.74%
PCB128	0.00025	U	0.71%	0.00025	U		0.68%	0.00025	U		0.69%
PCB156	0.0001	U	0.29%	0.0001	U		0.27%	0.0001	U		0.28%
PCB157	0.0002	U	0.57%	0.0002	U		0.55%	0.0002	U		0.55%
PCB167	0.0005	U	1.43%	0.0005	U		1.37%	0.0005	U		1.38%
PCB180	0.000035	U	0.10%	0.000035	U		0.10%	0.000035	U		0.10%
PCB194	1.25E-05	U	0.04%	1.25E-05	U		0.03%	1.25E-05	U		0.03%
Total TEQ	0.035058			0.036618				0.036258			

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congener 138 was measured as 138/163 and PCB congener 170 as 170/190, so these were not included in total TEQ sum.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 2, 12, 35, 37, 66, 78, 79, 80, 81, 110, 122, 127, and 139 were not analyzed in any samples.

APPENDIX B-3

Toxic Equivalent Concentrations for Mammals


Table B3-1.	TEQs for mammals by chemical and station using 1997 ERA tissue data
Table B3-2.	TEQs for mammals by chemical and station using 1997 ERA sediment data
Table B3-3.	Mammal TEQs using fish tissue samples collected for the WDNR food chain study
Table B3-4.	Mammal TEQs using sediment data collected for the WDNR food chain study

APPENDIX B-3 DEFINITION OF TERMS

Definition of qualifiers

- > sample over linear range of method
- D diluted sample
- L labeled compound
- U undetected
- U*I significant interference present; value represents operator's best judgement of reporting limit

1997 ERA sample identification

Station		F1-1		Percent of	F1-2		Percent of	F1-3		Percent of	F2-1		Percent of
Chemical	Mammal TEFs	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.0001	1.07E-05		0.34%	1.15E-05		0.33%	1.00E-05		0.26%	3.94E-03	D	1.61%
PCB105	0.0001	2.40E-04		7.64%	2.50E-04		7.28%	2.30E-04		6.03%	3.00E-02	>D	12.25%
PCB114	0.0005	9.30E-05	L	2.96%	8.15E-05 L	-	2.37%	1.39E-04		3.63%	1.44E-02		5.86%
PCB118	0.0001	7.80E-04		24.84%	7.90E-04		23.00%	7.50E-04		19.65%	5.70E-02	>D	23.28%
PCB123	0.0001	8.88E-06		0.28%	7.22E-06		0.21%	1.52E-05		0.40%	1.17E-03		0.48%
PCB126	0.1	1.44E-03		45.86%	1.69E-03		49.20%	2.12E-03		55.55%	1.07E-01		43.70%
PCB156	0.0005	4.79E-04		15.25%	5.05E-04		14.70%	4.37E-04		11.45%	2.57E-02		10.50%
PCB157	0.0005	8.35E-05		2.66%	9.30E-05		2.71%	1.09E-04		2.84%	5.45E-03		2.23%
PCB189	0.0001	5.24E-06		0.17%	6.58E-06		0.19%	6.87E-06		0.18%	2.16E-04		0.09%
Total TEQ		3.14E-03			3.43E-03			3.82E-03			2.45E-01		

Table B3-1. TEQs for mammals by chemi	ical and station using 1997 ERA tissue data
---------------------------------------	---

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congener 81 was not analyzed in any samples.
- 3) PCB congener 169 was not detected in any samples, so was not included in the TEQ sum.

Station	F2-2		Percent of	F2-3		Percent of	F3-1		Percent of	F3-2		Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	5.30E-03	D	1.59%	2.54E-03		1.34%	3.52E-03	D	0.94%	0.00244		0.76%
PCB105	3.30E-02	D	9.92%	2.10E-02	>D	11.05%	3.90E-02		10.36%	0.035		10.84%
PCB114	1.64E-02		4.91%	1.20E-02		6.31%	1.73E-02		4.58%	0.01665		5.16%
PCB118	8.90E-02	>D	26.75%	4.80E-02	>D	25.26%	1.10E-01		29.23%	0.097		30.04%
PCB123	1.10E-03		0.33%	1.09E-03		0.57%	1.32E-03		0.35%	0.00139		0.43%
PCB126	1.51E-01		45.38%	7.86E-02		41.36%	1.59E-01		42.25%	0.129		39.95%
PCB156	3.15E-02		9.47%	2.26E-02		11.87%	3.89E-02		10.34%	0.0339		10.50%
PCB157	5.25E-03		1.58%	4.08E-03		2.15%	7.00E-03		1.86%	0.00725		2.25%
PCB189	2.35E-04		0.07%	1.80E-04		0.09%	2.99E-04		0.08%	0.000284		0.09%
Total TEQ	3.33E-01			1.90E-01			3.76E-01			3.23E-01		

- 2) PCB congener 81 was not analyzed in any samples.
- 3) PCB congener 169 was not detected in any samples, so was not included in the TEQ sum.

¹⁾ For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.

Station	F3-3		Percent of	F5-1		Percent of	F5-2		Percent of	F5-3		Percent of
Chemical	TEQ	Q	Total TEQ									
PCB077	0.00266	D	0.79%	0.00103		0.83%	0.00103		0.71%	0.00105		0.66%
PCB105	0.033		9.76%	0.014		11.33%	0.016		10.97%	0.018		11.32%
PCB114	0.01445		4.27%	0.00695		5.63%	0.0087		5.97%	0.0099		6.22%
PCB118	0.097		28.68%	0.042		33.99%	0.046		31.54%	0.052		32.69%
PCB123	0.00115		0.34%	0.000617		0.50%	0.000808		0.55%	0.000651		0.41%
PCB126	0.145		42.88%	0.0394		31.89%	0.0522		35.79%	0.0554		34.83%
PCB156	0.03775		11.16%	0.01685		13.64%	0.0178		12.20%	0.0186		11.69%
PCB157	0.00685		2.03%	0.002585		2.09%	0.003145		2.16%	0.003315		2.08%
PCB189	0.000318		0.09%	0.000117		0.09%	0.000167		0.11%	0.000153		0.10%
Total TEQ	3.38E-01			1.24E-01			1.46E-01			1.59E-01		

- 2) PCB congener 81 was not analyzed in any samples.
- 3) PCB congener 169 was not detected in any samples, so was not included in the TEQ sum.

¹⁾ For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.

Station		S1-1		Percent of	S1-2	Percent of	S1-3		Percent of	S2-1		Percent of
Chemical	Mammal TEFs	TEQ	Q	Total TEQ	TEQ Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.0001	3.98E-07		0.56%	3.63E-06	0.36%	8.71E-07		1.11%	6.84E-04		2.60%
PCB105	0.0001	1.30E-05		18.26%	5.50E-05	5.52%	1.00E-05		12.71%	3.20E-03		12.16%
PCB114	0.0005	1.22E-06	L	1.71%	1.04E-05 L	1.04%	2.31E-06	L	2.94%	1.20E-03		4.56%
PCB118	0.0001	2.40E-05		33.70%	1.30E-04	13.06%	2.40E-05		30.50%	7.60E-03		28.89%
PCB123	0.0001	1.09E-07	L	0.15%	1.10E-06	0.11%	4.96E-07	L	0.63%	9.66E-05		0.37%
PCB126	0.1	2.55E-05	U	35.81%	7.14E-04 L	71.71%	2.50E-05	U	31.77%	1.15E-02		43.71%
PCB156	0.0005	5.75E-06	L	8.07%	6.70E-05	6.73%	1.30E-05		16.52%	1.68E-03		6.39%
PCB157	0.0005	1.19E-06	L	1.66%	1.45E-05	1.45%	2.97E-06	L	3.77%	3.32E-04		1.26%
PCB189	0.0001	5.00E-08	U	0.07%	5.00E-08 U	0.01%	5.00E-08	U	0.06%	1.82E-05		0.07%
Total TEQ		7.12E-05			9.96E-04		7.87E-05			2.63E-02		

Table B3-2. TEQs for mammals by chemical and station using 1997 ERA sediment data

All concentrations in ug/kg dry weight.

1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.

2) PCB congener 81 was not analyzed in any samples.

3) PCB congener 169 was not detected in any samples, so was not included in the TEQ sum.

Station	S2-2		Percent of	S2-3		Percent of	S3-1		Percent of	S3-2		Percent of
Chemical	TEQ	Q	Total TEQ									
PCB077	6.82E-03		2.08%	9.12E-04		2.25%	7.53E-04		2.43%	1.13E-03		1.73%
PCB105	3.70E-02		11.31%	3.80E-03		9.37%	2.20E-03		7.11%	6.70E-03		10.26%
PCB114	1.15E-02		3.52%	1.59E-03		3.91%	1.47E-03		4.73%	2.94E-03		4.49%
PCB118	7.10E-02		21.70%	9.90E-03		24.42%	5.60E-03		18.09%	1.20E-02		18.37%
PCB123	1.07E-03		0.33%	1.42E-04		0.35%	1.20E-04		0.39%	1.71E-04		0.26%
PCB126	1.76E-01		53.80%	2.03E-02		50.06%	1.77E-02		57.19%	3.40E-02		52.05%
PCB156	1.96E-02		5.99%	3.21E-03		7.92%	2.52E-03		8.14%	6.90E-03		10.56%
PCB157	3.95E-03		1.21%	6.55E-04		1.62%	5.55E-04		1.79%	1.24E-03		1.90%
PCB189	1.90E-04		0.06%	4.46E-05		0.11%	3.64E-05		0.12%	2.49E-04		0.38%
Total TEQ	3.27E-01			4.05E-02			3.09E-02			6.53E-02		

- 2) PCB congener 81 was not analyzed in any samples.
- 3) PCB congener 169 was not detected in any samples, so was not included in the TEQ sum.

¹⁾ For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.

Station	S3-3		Percent of	S5-1		Percent of	S5-2		Percent of	S5-3		Percent of
Chemical	TEQ	Q	Total TEQ									
PCB077	8.33E-04		2.01%	1.09E-03		2.14%	2.10E-04		2.07%	8.62E-04		1.86%
PCB105	3.30E-03		7.97%	4.60E-03		9.02%	8.80E-04		8.66%	4.00E-03		8.64%
PCB114	1.87E-03		4.51%	2.50E-03		4.90%	4.77E-04		4.69%	2.08E-03		4.49%
PCB118	7.30E-03		17.64%	8.10E-03		15.89%	1.50E-03		14.76%	7.30E-03		15.76%
PCB123	1.54E-04		0.37%	2.18E-04		0.43%	3.44E-05		0.34%	1.81E-04		0.39%
PCB126	2.29E-02		55.33%	2.99E-02		58.66%	6.19E-03		60.92%	2.76E-02		59.60%
PCB156	4.09E-03		9.88%	3.77E-03		7.39%	7.15E-04		7.04%	3.48E-03		7.50%
PCB157	9.05E-04		2.19%	7.70E-04		1.51%	1.50E-04		1.47%	7.75E-04		1.67%
PCB189	4.36E-05		0.11%	3.16E-05		0.06%	4.58E-06		0.05%	3.24E-05		0.07%
Total TEQ	4.14E-02			5.10E-02			1.02E-02			4.63E-02		

- 2) PCB congener 81 was not analyzed in any samples.
- 3) PCB congener 169 was not detected in any samples, so was not included in the TEQ sum.

¹⁾ For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.

Station	S5-4		Percent of	S5-5		Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	6.32E-04		2.15%	1.82E-04	D	2.22%
PCB105	1.70E-03		5.78%	7.20E-04		8.78%
PCB114	1.33E-03		4.50%	3.04E-04		3.70%
PCB118	3.40E-03		11.56%	1.50E-03		18.28%
PCB123	1.12E-04		0.38%	2.39E-05		0.29%
PCB126	1.94E-02		65.93%	4.79E-03		58.39%
PCB156	2.36E-03		8.00%	5.60E-04		6.83%
PCB157	4.77E-04		1.62%	1.18E-04		1.44%
PCB189	2.32E-05		0.08%	6.48E-06		0.08%
Total TEQ	2.94E-02			8.20E-03		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.
- 2) PCB congener 81 was not analyzed in any samples.
- 3) PCB congener 169 was not detected in any samples, so was not included in the TEQ sum.

Station Sample Species Location		603388 9413 ongnose dace control			603388 9414 ongnose dace ontrol)		603388 9415 longnose dac control	e	Percent of
Chemical	Mammal TEFs	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.0001	0.00005 U	Q	0.09%		Q	na	I L Q	Q	na
PCB105	0.0001			1.80%						
		0.00099					na			na
PCB118	0.0001	0.0025		4.55%	0.00068		na	0.00033		na
PCB126	0.1	0.05 U		90.93%			na			na
PCB156	0.0005	0.0012		2.18%			na			na
PCB157	0.0005	0.00025 U		0.45%			na			na
Total TEQ		0.05499			na			na		

Table B3-3. Mammals TEQs using fish tissue samples collected for the WDNR food chain study

All concentrations in ug/kg wet weight.

1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the Percent of Total TEQ sum.

2) PCB congener 81 was not analyzed in any samples.

3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.

4) PCB congeners 77, 105, 126, 156 and 157 were only analyzed in some samples.

5) na - not applicable when all TEF congeners are not measured.

	603389 9413 ongnose dace ochester park		r	603389 9414 ongnose dace ochester park		603389 9415 Iongnose dace rochester park			
			Percent of			Percent of			Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077			na			na	0.0016		0.70%
PCB105			na			na	0.024		10.57%
PCB118	0.03		na	0.032		na	0.074		32.58%
PCB126			na			na	0.1	U*I	44.03%
PCB156			na			na	0.022		9.69%
PCB157			na			na	0.0055		2.42%
Total TEQ	na			na			0.2271	•	÷

- 2) PCB congener 81 was not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, 156 and 157 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

¹⁾ For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the Percent of Total TEQ sum.

	603390 9413 longnose dac esselingen pa			603390 603390 9414 9415 longnose dace longnose dace esselingen park esselingen park ent of Percent of					Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.002		1.03%			na			na
PCB105	0.026		13.40%			na			na
PCB118	0.076		39.18%	0.07		na	0.046		na
PCB126	0.05 L	J	25.77%			na			na
PCB156	0.027		13.92%			na			na
PCB157	0.013		6.70%			na			na
Total TEQ	0.194			na			na		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the Percent of Total TEQ sum.
- 2) PCB congener 81 was not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, 156 and 157 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

				603391 9414 Iongnose dae between koh						
				Percent of			Percent of			
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	
PCB077			na			na	0.0017		1.11%	
PCB105			na			na	0.017		11.10%	
PCB118	0.046		na	0.056		na	0.056		36.55%	
PCB126			na			na	0.05	U	32.64%	
PCB156			na			na	0.019		12.40%	
PCB157			na			na	0.0095		6.20%	
Total TEQ	na			na			0.1532			

- 2) PCB congener 81 was not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, 156 and 157 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

¹⁾ For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the Percent of Total TEQ sum.

Station Sample Species s				603388 9405 smallmouth	bass		SS		
Location of	control			control		control Bereast of			
			Percent of			Percent of			Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077			na			na	0.00005 U		0.10%
PCB105			na			na	0.00014		0.27%
PCB118	0.00039		na	0.00044		na	0.00076		1.48%
PCB126			na			na	0.05 U		97.18%
PCB156			na			na	0.00025 U		0.49%
PCB157			na			na	0.00025 U		0.49%
Total TEQ	na			na			0.05145		

- 2) PCB congener 81 was not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, 156 and 157 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

¹⁾ For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the Percent of Total TEQ sum.

	603389 9404 smallmouth b rochester parl			603389 9405 smallmouth b rochester par		Percent of	Percent of		
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077		-	na		-	na	0.0029	-4	1.02%
PCB105			na			na	0.034		11.98%
PCB118	0.092		na	0.072		na	0.092		32.41%
PCB126			na			na	0.12	U*I	42.27%
PCB156			na			na	0.027		9.51%
PCB157			na			na	0.008		2.82%
Total TEQ	na		·	na		·	0.2839		

- 2) PCB congener 81 was not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, 156 and 157 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

¹⁾ For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the Percent of Total TEQ sum.

				603390 9405 smallmouth t esselingen p		Percent of	Percent of		
Chemical	TEQ	Q	Percent of Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077		~	na		~	na	0.0014		1.07%
PCB105			na			na	0.017		12.95%
PCB118	0.025		na	0.036		na	0.048		36.56%
PCB126			na			na	0.05	U	38.08%
PCB156			na			na	0.0115		8.76%
PCB157			na			na	0.0034		2.59%
Total TEQ	na			na			0.1313		

- 2) PCB congener 81 was not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, 156 and 157 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

¹⁾ For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the Percent of Total TEQ sum.

				603391 9405 smallmouth b between koh			oass Ier dams		
			Percent of			Percent of		Percent of	
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077			na			na	0.0041		0.94%
PCB105			na			na	0.043		9.89%
PCB118	0.083		na	0.072		na	0.12		27.61%
PCB126			na			na	0.2		46.02%
PCB156			na			na	0.0495		11.39%
PCB157			na			na	0.018		4.14%
Total TEQ	na			na			0.4346		

- 1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the Percent of Total TEQ sum.
- 2) PCB congener 81 was not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, 156 and 157 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

Station Sample Species v Location c	603388 9410 white sucker control			603388 9411 white sucker control					
			Percent of			Percent of			Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077			na			na	0.00005 U		0.10%
PCB105			na			na	0.00032		0.62%
PCB118	0.00013		na	0.00016		na	0.0011		2.12%
PCB126			na			na	0.05 U		96.21%
PCB156			na			na	0.00025 U		0.48%
PCB157			na			na	0.00025 U		0.48%
Total TEQ	na			na			0.05197		÷

- 2) PCB congener 81 was not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, 156 and 157 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

¹⁾ For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the Percent of Total TEQ sum.

	603389 9410 white sucker rochester park	ſ		603389 9411 white sucker rochester pa			r ark	Percent of	
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077			na			na	0.0011		0.71%
PCB105			na			na	0.013		8.44%
PCB118	0.037		na	0.04		na	0.031		20.12%
PCB126			na			na	0.095	U*I	61.65%
PCB156			na			na	0.011		7.14%
PCB157			na			na	0.003		1.95%
Total TEQ	na			na			0.1541		

- 2) PCB congener 81 was not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, 156 and 157 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

¹⁾ For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the Percent of Total TEQ sum.

	603390 9410 white sucker esselingen pa	94109411ite suckerwhite suckerselingen parkesselingen park					603390 9412 white sucke esselingen p	-	Percent of
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077			na			na	0.00064		0.74%
PCB105			na			na	0.0061		7.09%
PCB118	0.014		na	0.014		na	0.02		23.26%
PCB126			na			na	0.05	U	58.15%
PCB156			na			na	0.0065		7.56%
PCB157			na			na	0.00275		3.20%
Total TEQ	na			na			0.08599		

- 2) PCB congener 81 was not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, 156 and 157 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

¹⁾ For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the Percent of Total TEQ sum.

				603391 9411 white sucker between koh						
				Percent of			Percent of			
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	
PCB077			na			na	0.00078		0.79%	
PCB105			na			na	0.0083		8.45%	
PCB118	0.025		na	0.045		na	0.026		26.48%	
PCB126			na			na	0.05	U	50.93%	
PCB156			na			na	0.0095		9.68%	
PCB157			na			na	0.0036		3.67%	
Total TEQ	na			na			0.09818			

- 2) PCB congener 81 was not analyzed in any samples.
- 3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.
- 4) PCB congeners 77, 105, 126, 156 and 157 were only analyzed in some samples.
- 5) na not applicable when all TEF congeners are not measured.

¹⁾ For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the Percent of Total TEQ sum.

	Sample 6D Species sediment Location camp marina			603367 6E sediment camp marina	I	Percent of	٢	Percent of	
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.00079		2.94%	0.0004		2.50%	0.00073		3.12%
PCB105	0.0029		10.78%	0.0015		9.38%	0.0034		14.54%
PCB118	0.0053		19.71%	0.0026		16.26%	0.0059		25.24%
PCB126	0.015	U*I	55.78%	0.01	U	62.52%	0.01	U	42.77%
PCB156	0.00225		8.37%	0.00115		7.19%	0.00265		11.33%
PCB157	0.00065		2.42%	0.000345		2.16%	0.0007		2.99%
Total TEQ	0.02689			0.015995			0.02338		

Table B3-4. Mammal TEQs using sediment data collected for the WDNR food chain study

All concentrations in ug/kg dry weight.

1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.

2) PCB congener 81 was not analyzed in any samples.

3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.

	Sample 5B Species sediment Location kiwanis park			603370 5C sediment Percent of kiwanis park			603371 5D sediment Percent of kiwanis park			
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	
PCB077	0.00075		3.13%	0.00046		2.57%	0.00062		2.97%	
PCB105	0.003		12.53%	0.002		11.16%	0.0029		13.90%	
PCB118	0.0055		22.96%	0.0035		19.53%	0.0048		23.00%	
PCB126	0.0115	U*I	48.02%	0.01	U	55.80%	0.01	U	47.92%	
PCB156	0.00245		10.23%	0.0015		8.37%	0.00195		9.34%	
PCB157	0.00075		3.13%	0.00046		2.57%	0.0006		2.87%	
Total TEQ	0.02395			0.01792			0.02087			

All concentrations in ug/kg dry weight.

1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.

2) PCB congener 81 was not analyzed in any samples.

3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.

	Sample 3A Species sediment Location between kohler dams			603373 3B sediment between kor	nler dams	Percent of	nler dams	Percent of	
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.001		2.14%	0.00086		2.57%	0.00052		2.57%
PCB105	0.0047		10.06%	0.0034		10.18%	0.0019		9.40%
PCB118	0.0089		19.06%	0.0068		20.35%	0.004		19.78%
PCB126	0.027		57.82%	0.018	U*I	53.88%	0.0115	U*I	56.87%
PCB156	0.00395		8.46%	0.00335		10.03%	0.00175		8.65%
PCB157	0.00115		2.46%	0.001		2.99%	0.00055		2.72%
Total TEQ	0.0467			0.03341			0.02022		

All concentrations in ug/kg dry weight.

1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.

2) PCB congener 81 was not analyzed in any samples.

3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.

	603375 3D sediment between koh	ller dams		603376 3E sediment between koł	nler dams	s Percent of	Percent of		
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.0009		3.36%	0.00098		2.72%	0.0007		2.71%
PCB105	0.0033		12.34%	0.0037		10.25%	0.0029		11.24%
PCB118	0.0079		29.53%	0.0088		24.39%	0.0059		22.87%
PCB126	0.01	U	37.38%	0.0175	U*I	48.50%	0.013	U*I	50.39%
PCB156	0.00355		13.27%	0.00395		10.95%	0.0025		9.69%
PCB157	0.0011		4.11%	0.00115		3.19%	0.0008		3.10%
Total TEQ	0.02675			0.03608	·		0.0258		

All concentrations in ug/kg dry weight.

1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.

2) PCB congener 81 was not analyzed in any samples.

3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.

	603378 2B sediment rochester pa	ırk		603379 2C sediment rochester pa	ırk	s Percent of re	Percent of		
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.0015		2.65%	0.00073		3.16%	0.0027		2.27%
PCB105	0.0066		11.66%	0.0025		10.81%	0.01		8.42%
PCB118	0.012		21.20%	0.006		25.94%	0.029		24.43%
PCB126	0.03	U*I	53.00%	0.011	U*I	47.56%	0.06	U*I	50.55%
PCB156	0.005		8.83%	0.00225		9.73%	0.013		10.95%
PCB157	0.0015		2.65%	0.00065		2.81%	0.004		3.37%
Total TEQ	0.0566			0.02313			0.1187		

All concentrations in ug/kg dry weight.

1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.

2) PCB congener 81 was not analyzed in any samples.

3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.

Station Sample Species s Location r	603381 2E sediment rochester pa	ark	Percent of	603392 1A sediment control		ercent of the	Percent of		
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.003		3.06%	0.00001	J	0.09%	0.00001	U	0.10%
PCB105	0.016		16.32%	0.00001	J	0.09%	0.000023		0.23%
PCB118	0.029		29.58%	0.0000225	J	0.20%	0.000054		0.53%
PCB126	0.0325	U*I	33.15%	0.011	J	98.72%	0.01	U	98.16%
PCB156	0.0135		13.77%	0.00005	J	0.45%	0.00005	U	0.49%
PCB157	0.00405		4.13%	0.00005	J	0.45%	0.00005	U	0.49%
Total TEQ	0.09805			0.0111425			0.010187		

All concentrations in ug/kg dry weight.

1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.

2) PCB congener 81 was not analyzed in any samples.

3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.

Station Sample Species s Location o			Percent of	603395 1D sediment control		s Percent of c	Percent of		
Chemical	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ	TEQ	Q	Total TEQ
PCB077	0.00001	U	0.10%	0.00001	U	0.10%	0.00001	U	0.10%
PCB105	0.00001	U	0.10%	0.000034		0.33%	0.000028		0.27%
PCB118	0.000046		0.45%	0.000082		0.80%	0.000076		0.74%
PCB126	0.01	U	98.37%	0.01	U	97.79%	0.01	U	97.90%
PCB156	0.00005	U	0.49%	0.00005	U	0.49%	0.00005	U	0.49%
PCB157	0.00005	U	0.49%	0.00005	U	0.49%	0.00005	U	0.49%
Total TEQ	0.010166			0.010226			0.010214		

All concentrations in ug/kg dry weight.

1) For PCB congeners that were not detected, 1/2 the detection limit was used if that congener was detected in another sample. This value contributes to the total TEQ sum.

2) PCB congener 81 was not analyzed in any samples.

3) PCB congeners 123 and 169 were not detected in any samples, so were not included in the TEQ sum.

APPENDIX C

Laboratory Report Freshwater Sediment Toxicity Testing Program October 1997

LABORATORY REPORT

NOAA - Sheboygan, WI

Freshwater Sediment Toxicity Testing Program

PREPARED FOR:

EVS Environment Consultants Seattle, WA

PREPARED BY:

North Vancouver, BC

FRESHWATER SEDIMENT TOXICITY TESTING PROGRAM

NOAA - SHEBOYGAN, WI

LABORATORY REPORT

Prepared for

EVS Environment Consultants 200 West Mercer Street Suite 403 Seattle WA 98119

Prepared by

EVS Environment Consultants 195 Pemberton Avenue North Vancouver, BC V7P 2R4

EVS Project No. 9/575-37.10

October 1997

Environmental Services for Industry and Government

Vancouver, Canada Seattle, U.S.A.

Our File #: Work Order #

9/575-37.10 9700658 and 9700659

October 16, 1997

Ms. Kim Magruder **EVS Environment Consultants** 200 West Mercer Street Suite 403 Seattle, WA 98119 USA

Dear Ms. Magruder:

Report of the Freshwater Sediment Toxicity Testing for NOAA -Re: Sheboygan, WI

We are pleased to provide the results of toxicity testing on freshwater samples received on behalf of NOAA in Sheboygan, WI.

We have completed toxicity testing on eighteen (18) freshwater sediment samples, collected between August 12 and 13, 1997

This report includes data and results for tests using the freshwater midge (Chironomus tentans) and the amphipod (Hyalella azteca). The test methods, results and raw data including statistical printouts are provided in the following report. If you have any questions or comments, please do not hesitate to contact the undersigned.

Yours truly,

EVS ENVIRONMENT CONSULTANTS

Joshifer V. Stewart, B.Sc. Manager, Laboratory Services

PAH/jag

195 Pemberton Avenue North Vancouver, B.C. V7P 2R4 Canada Tel: (604) 986-4331 Fax: (604) 662-8548 evs_consultants@mindlink.bc.ca evswa@halcyon.com

200 West Mercer Street Suite 403 Seattle, WA 98119 Tel: (206) 217-9337 Fax: (206) 217-9343

Freshwater sediment toxicity testing was conducted by George Yang, Lori Suffredine, May Lee, Betty Yung, Patricia Haynes, Stefan Santos, Elizabeth Thys, Bushra Jamil, Amanda Ward, Andy Diewald, Edmund Canaria, Alice Yang, Kevin Bahr, Camille Merchant, Micaele Madison, Jan Widmer and Julianna Galfi Kalocai. The statistical analyses and report preparation were conducted by Patricia Haynes. Quality assurance/quality control (QA/QC) review of the data was conducted by Cathy McPherson. The report was reviewed by Jennifer Stewart. Kristen Ramsden and Jackie Gelling were responsible for word processing.

1.0 INTRODUCTION

Eighteen sediment samples were received by the EVS Laboratory on August 20 and 22, 1997. These samples were collected between August 12 and 18, 1997. Toxicity tests were conducted on all samples using the freshwater midge, *Chironomus tentans* and the juvenile amphipod, *Hyalella azteca*. This report describes the results of these tests. Chain-of-Custody forms submitted with the samples are provided in Appendix A. Test data and statistical printouts are provided in Appendices B and C, respectively.

The samples were each shipped in one 2-L glass containers which were then homogenized thoroughly. Prior to test initiation the sediments were stored at $4 \text{ }^{\infty}C$ in the dark.

Both the midge test and the amphipod test were initiated with cultured organisms obtained from a commercial supplier. The exposure duration was 10 days for both tests, the endpoints were survival and growth.

1.1 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

This study was conducted under our comprehensive QA/QC Program to ensure full documentation and minimize possible errors in computation and reporting of results. The details of our QA/QC Program are documented in our Laboratory QA/QC Manual which describes all aspects of our program, including information on general laboratory procedures, sample handling, toxicity test procedures, data interpretation and management, and documentation of results. The following general QA/QC guidelines apply to all toxicity tests: use of negative controls, use of positive controls, replication, instrument calibration, water quality maintenance and record-keeping, and use of standard operating procedures (SOP). To ensure the highest quality of data and reporting, all data and statistical analyses for each toxicity test are reviewed by a member of our QA/QC Committee prior to the report being released.

2.1 METHODS

Ten-day water-renewal toxicity tests using the freshwater midge, *Chironomus tentans*, were conducted according to methods described in ASTM (1996). Test organisms were obtained from a commercial supplier in Wisconsin and were third instar at test initiation. The chironomids were cultured in moderately hard water (80 - 100 mg/L as CaCO₃) at 23 \approx 1 \approx C under a 16:8 h light:dark photoperiod.

Tests were conducted in 300 mL glass beakers. Six replicates, plus one sacrificial replicate for Day 0 ammonia analysis were prepared for each sample, including the negative control. One of the six replicates was used for monitoring daily water quality and Day 10 ammonia analysis. Moderately hard reconstituted water was used for testing. Reagent-grade chemicals were added to dechlorinated water to achieve a final hardness of 80 - 100 mg/L as CaCO₃. The toxicity tests were conducted at 23 \approx 1 $^{\circ}$ C, under a 16:8 h light:dark photoperiod, in a constant environment chamber.

Sediments were distributed to the test containers the day prior to test initiation (Day -1). A 100-mL volume of test sediment was added to each beaker. Approximately 175 mL of moderately hard water (80 - 100 mg/L CaCO₃) was added gently to each beaker using a turbulence reducer to minimize disturbing the sediments. Water renewal by volume was initiated the same day, the beakers were then covered with clean plexiglass and left to settle overnight. On Day 0, each beaker was seeded with 10 randomly selected chironomids of similar size (approximately 7 mm in length). Prior to seeding, the head capsule widths were measured on 20 additional larvae to ensure that 50% of the midges were in third instar. The test was not aerated until Day 3, when the dissolved oxygen dropped below 3.4 mg/L (40% saturation). The test organisms were fed a diet of 1.5 mL of Tetra-Min fish food mixture daily.

Two additional sets of 10 larvae were set aside for determination of initial dry weight (biomass). Water quality parameters (temperature, pH, dissolved oxygen, and conductivity) were measured daily for each treatment, in a replicate designated for measuring water quality parameters. Two overlying water renewals (by volume) were completed daily. Hardness and alkalinity were measured in composite samples of overlying water from each treatment on Days 0 and 10, using methods described in APHA (1995). Ammonia concentrations in interstitial water and sulfide concentrations in overlying water were measured on Days 0 and 10.

Total ammonia concentrations were measured in the interstitial water from each sample,

using the Salicylate Method (Hach Company, 1992). Interstitial water was collected by centrifugation of a small portion of sediment from the sacrificial replicate. Appropriate reagents were added and the absorbance was measured for each sample using a spectrophotometer. The absorbance reading was compared to a standard curve to determine the total ammonia concentration (mg/L N) in each sample. Composite subsamples of overlying water were collected from each sample and analyzed for total sulfides using an ion specific electrode.

The test was terminated after 10 d when the sediments were sieved and the live and dead larvae were removed and counted. For the test to be considered valid, mean negative control survival had to be at least 70% and average size of *C. tentans* in the negative control be at least 0.6 mg at the end of test (ASTM, 1996). Surviving larvae (excluding pupae and flies) from each replicate were transferred to pre-weighed aluminum pans and dried at 60 so C for 24 hours for determination of total dry weight. The larvae were weighed to an accuracy of 0.1 mg to obtain final dry weights. Mean individual dry weights were obtained by dividing the final dry weight of each replicate by the number of larvae weighed.

Statistical analyses were performed using the TOXCALC computer program (Tidepool Scientific Software, 1994). Survival and dry weight data were analysed separately. The survival and dry weight data were tested for normality and homogeneity of variance. If the survival data did not pass the tests for normality and homogeneity of variance, then the data were transformed. If transformation did not allow the data to pass these tests, untransformed data were used. Dry weight data were not transformed. Homoscedastic *t*-tests or the non-parametric Heteroscedastic *t*-tests were then performed to determine if any of the test sediments were significantly different ($p \stackrel{>}{\rightarrow} 0.05$) from the negative control with respect to survival or dry weight. Samples significantly different with respect to survival were omitted from dry weight analyses.

A concurrent 96-h LC50 positive (toxic) control test was conducted with the reference toxicant potassium chloride (KCl) to assess the health and sensitivity of the chironomids. Potassium chloride solutions were prepared from reagent grade KCl and diluted with moderately hard reconstituted water to obtain the specified concentrations. The test consisted of five concentrations (1.25, 2.5, 5, 10 and 20 g/L KCl) with three replicates each. Ten randomly selected larvae of third instar testing size were exposed to each treatment. Test containers were 300-mL beakers, each containing 150 mL of test solution and a monolayer of control sediment for burrowing. Water quality measurements were recorded at the beginning and end of the test, and temperature and survival were recorded daily. The chironomids were fed 1.25 mL of Tetra-Min mixture on Day 0 and 2. Beakers were not aerated during testing.

2.2 RESULTS

Results of the sediment toxicity test is summarized in Table 2-1. Raw data and statistical

printouts are provided in Appendix B.

Mean survival in the negative control was 96.7%. Mean survival in the samples ranged from 0 to 95.0%. Mean dry weight in the negative control was 0.81 mg/larva. Mean dry weight in the samples ranged from 1.44 to 2.16 mg/larva.

With respect to survival, Heteroscedastic *t*-tests indicated there were significant differences $(p \gtrsim 0.05)$.

With respect to dry weight, Homoscedastic *t*-tests indicated there were no significant differences $(p \stackrel{\circ}{\leftarrow} 0.05)$ between samples and the negative control.

2.3 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

Mean survival responses in the negative control met the criterion for test acceptability as outlined in ASTM (1996).

Seven replicates were initially requested for testing, however at the time of seeding only six replicates were seeded due to a shortage of animals received from the supplier. Client was previously notified of this deviation.

Water quality parameters measured during the 10-d exposure period were in the following ranges: temperature, 22.0 - 23.0 $^{\odot}$ C; pH 7.0 - 8.3; dissolved oxygen, 3.0 - 8.6 mg/L and conductivity 280 - 500 $^{\odot}$ mhos/cm. Hardness measurements ranged from 106 - 166 mg/L as CaCO₃ on Day 0 and from 104 - 152 mg/L as CaCO₃ on Day 10. Alkalinity measurements ranged from 67 - 136 mg/L as CaCO₃ on Day 0 and 86 - 124 mg/L as CaCO₃ on Day 10. Dissolved Oxygen measurements were generally 2° /40% saturation (3.4 mg/L) during the 10-d exposure, however there were some exceptions. Aeration was checked daily and adjusted as needed. These low oxygen measurements do not appear to have affected the test results. Sulfide levels in overlying water and interstitial ammonia concentrations measured during the 10-d exposure are summarized in Table 2-2.

The 96-h LC50 value for the KCl reference toxicant (initiated September 5, 1997) was determined using the TOXCALC computer program. The 96-h LC50 value for KCl was 5.4 g/L KCl (95% confidence limits: 4.2 and 6.8 g/L KCl) which is within the laboratory range of 4.5 \approx 3.0 g/L KCl (mean \approx 2SD). Water quality parameters measured during the 96-h exposure period were within the following ranges: temperature, 22.0 - 23.0 \approx C; pH, 7.4 - 8.0; dissolved oxygen, 4.8 - 8.6 mg/L; and conductivity, 200 - 47,000 \propto mhos/cm.

Table 2-1. Summary of Chironomus tentans sediment toxicity test results

	Mean	SD
Sample ID	SURVIVAL (%) ¹	DRY WEIGHT (mg) ²
Negative Control	96.7 🄀 5.2	0.81 🄀 0.19
SR-1-SS-B	95.0 ⊁ 5.5	1.90 >< 0.18
SR-2-SS-B	68.3 >> 18.4*	1.71 🄀 0.25
SR-3-SS-B	81.7 🄀 17.2*	2.16 >> 0.25
SR-4-SS-B	88.3 > 7.5*	1.62 >> 0.18
SR-7-SS-F	0.0 ≫ 0.0*	
SR-8-SS-F	91.7 🄀 7.5	2.01 >< 0.18
SR-9-SS-F	77.5 🔀 9.6*	1.96 ≫ 0.18
SR-10-SS-F	88.3 🔀 7.5*	2.04 >< 0.22
SR-11-SS-F	78.3 >> 18.4*	2.14 >> 0.41
SR-12-SS-F	91.7 🄀 9.8	1.54 >> 0.19
SR-13-SS-F	85.0 🄀 13.8	1.58 >> 0.14
SR-14-SS-F	76.7 ≫ 22.5*	1.62 >> 0.17
SR-15-SS-F	83.3 🄀 31.4	1.68 >< 0.31
SR-16-SS-F	86.7 🄀 17.5	1.44 >> 0.30
SR-17-SS-F	73.3 >> 26.6*	1.70 >> 0.34
SR-18-SS-F	93.3 >< 8.2	1.49 🄀 0.15
SR-19-SS-F	81.7 🄀 17.2*	1.60 🄀 0.27
SR-20-SS-F	83.3 >< 21.6	1.59 >< 0.43

1

Asterisks (*) indicate samples significantly different ($p \sim 0.05$) from the negative control. Samples significantly different with respect to survival were omitted from dry weight statistical analyses. 2

_	TOTAL INTERST		TOTAL SULFIDES (mg/L S)				
SAMPLE ID	DAY 0	Day 10	Day 0	Day 10			
Negative Control	< 0.1	1.1	0.000	0.000			
SR-1-SS-B	7.0	0.3	0.000	0.000			
SR-2-SS-B	17.3	0.2	0.000	0.000			
SR-3-SS-B	11.6	1.9	0.000	0.000			
SR-4-SS-B	26.9	7.1	0.000	0.000			
SR-7-SS-F	5.9	2.7	0.000	0.000			
SR-8-SS-F	16.4	2.1	0.000	0.000			
SR-9-SS-F	9.6	4.2	0.000	0.000			
SR-10-SS-F	27.8	0.9	0.000	0.000			
SR-11-SS-F	22.8	<0.1	0.000	0.001			
SR-12-SS-F	16.4	1.8	0.000	0.000			
SR-13-SS-F	25.1	7.1	0.000	0.000			
SR-14-SS-F	31.0	5.5	0.000	0.000			
SR-15-SS-F	20.5	6.7	0.000	0.000			
SR-16-SS-F	16.8	3.8	0.000	0.000			
SR-17-SS-F	12.3	8.4	0.000	0.000			
SR-18-SS-F	24.6	7.1	0.000	0.000			
SR-19-SS-F	25.5	4.7	0.000	0.000			
SR-20-SS-F	19.1	3.8	0.000	0.000			

Table 2-2. Summary of *Chironomus tentans* interstitial ammoniaand overlying sulfide results

3.1 METHODS

Ten-day water-renewal toxicity tests using the freshwater amphipod *Hyalella azteca* were conducted according to methods described in ASTM (1996). Test organisms were obtained from a commercial supplier in New Hampshire and were 14 d old at test initiation. The amphipods were cultured in moderately hard water (80 - 100 mg/L as CaCO₃) at 23 $> 1 \ C$ under a 16:8 h light:dark photoperiod. The amphipods were fed a combination of algae (*Selenastrum capricornutum*), d-YCT (yeast/cereal flakes/digested trout food), and Tetra-Min mixture every second day during the holding period.

Tests were conducted in 300 mL glass beakers. Eight replicates were prepared for each sample, including the negative control. Of the 8 replicates, one sacrificial replicate was used for Day 0 interstitial ammonia analysis and one for monitoring daily water quality and Day 10 interstitial ammonia. Moderately hard reconstituted water was used for testing. Reagent-grade chemicals were added to dechlorinated water to achieve a final hardness of 80 - 100 mg/L as CaCO₃. The toxicity tests were conducted at 23 > 1 ∞ C, under a 16:8 h light:dark photoperiod, in a constant environment chamber.

Sediments were distributed to the test containers the day prior to test initiation (Day -1). A 100-mL volume of test sediment was added to each beaker. Approximately 175 mL of moderately hard water ($80 - 100 \text{ mg/L CaCO}_3$) was added gently to each beaker using a turbulence reducer to minimize disturbing the sediments. Water renewal by volume was initiated the same day, the beakers were then covered with clean plexiglass and left to settle overnight. On Day 0, each beaker was seeded with 10 randomly selected amphipods of similar size (approximately 2 - 3 mm in length). The test was not aerated until Day 8 when the dissolved oxygen dropped below 3.4 mg/L (40% saturation). Test organisms were fed a diet of 1.5 mL of d-YCT daily.

Two additional sets of 10 amphipods were set aside for determination of initial dry weight (biomass). Water quality parameters (temperature, pH, dissolved oxygen, and conductivity) were measured daily for each treatment, in a replicate designated for measuring water quality parameters. Two overlying water renewals (by volume) were completed daily. Hardness and alkalinity were measured in composite samples of overlying water from each treatment on Days 0 and 10, using methods described in APHA (1995). Ammonia concentrations in interstitial water and sulfide concentrations in overlying water were measured on Days 0 and 10.

Total ammonia concentrations were measured in the interstitial water from each sample,

using the Salicylate Method (Hach Company, 1992). Interstitial water was collected by centrifugation of a small portion of sediment from the sacrificial replicate. Appropriate reagents were added and the absorbance was measured for each sample using a spectrophotometer. The absorbance reading was compared to a standard curve to determine the total ammonia concentration (mg/L N) in each sample. Composite subsamples of overlying water were collected from each sample and analyzed for total sulfides using an ion specific electrode.

The test was terminated after 10 d when the sediments were sieved and the live and dead amphipods were removed and counted. Amphipods were considered dead when there was no response to physical stimulation. Missing amphipods were assumed to have died and decomposed prior to the termination of the test. For the test to be considered valid, mean negative control survival had to be at least 80% (ASTM, 1996). Surviving amphipods from each replicate were transferred to pre-weighed aluminum pans and dried at $60 \text{ }^{\odot}\text{C}$ for 24 hours for determination of total dry weight. The amphipods were weighed to an accuracy of 0.1 mg to obtain final dry weights. Mean individual dry weights were obtained by dividing the final dry weight of each replicate by the number of amphipods weighed.

Statistical analyses were performed using the TOXCALC computer program (Tidepool Scientific Software, 1994). Survival and dry weight data were analysed separately. The survival and dry weight data were tested for normality and homogeneity of variance. If the survival data did not pass the tests for normality and homogeneity of variance, then the data were transformed. If transformation did not allow the data to pass these tests, untransformed data were used. Dry weight data were not transformed. Homoscedastic *t*-tests or non-parametric Heteroscedastic *t*-tests were then performed to determine if any of the test sediments were significantly different ($p \ge 0.05$) from then negative control with respect to survival or dry weight. Samples significantly different with respect to survival were omitted from the dry weight analysis.

A concurrent 96-h LC50 positive (toxic) control test was conducted with the reference toxicant, zinc (prepared from zinc sulphate, $ZnSO_4$ \$7H₂O) to assess the health and sensitivity of the amphipods. Zinc stock solution was prepared from reagent grade zinc sulphate and diluted with moderately hard reconstituted water to obtain the specified concentrations. The test consisted of five concentrations (32, 56, 100, 180 and 320 \Im g/L as Zn) with three replicates each. Ten randomly selected amphipods (2 - 3 mm in length) were exposed to each treatment. The test containers were 300-mL beakers each containing 200 mL of test solution and a small 110 \Im g piece of nylon mesh as substrate. Water quality measurements were recorded at the beginning and end of the test, and temperature and survival were recorded daily. The amphipods were fed 0.5 mL of d-YCT on Days 0 and 2. Beakers were not aerated during testing.

3.2 RESULTS

Results of the sediment toxicity test is summarized in Table 3-1. Raw data and statistical

printouts are provided in Appendix C.

Mean survival in the negative control was 96.7%. Mean survival in the samples ranged from 0 to 95.0%. Mean dry weight in the negative control was 0.12 mg/amphipod. Mean dry weight in the samples ranged from 0.09 to 0.19 mg/amphipod.

With respect to survival, Heteroscedastic *t*-tests indicated there were significant differences $(p \gtrsim 0.05)$.

With respect to dry weight, Homoscedastic *t*-tests indicated no significant differences between the samples and the negative control.

3.3 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

Mean survival responses in the negative control met the criterion for test acceptability as outlined in ASTM (1996).

Please note that Samples SR-9-SS-F, SR-13-SS-F, and SR-15-SS-F, had one replicate where the survival varied from the other replicates. Therefore statistical analysis was performed including and excluding this replicate of each sample. The results from comparing both statistical analysis, demonstrated that there was no statistical difference in each sample analysis regardless of whether the replicate was included or not.

Water quality parameters measured during the 10-d exposure period were within the following ranges: temperature, 22.0 - 24.0 C; pH, 7.1 - 8.3; dissolved oxygen, 2.4 - 8.7 mg/L; and conductivity, 300 - 600 mhos/cm. Hardness measurements ranged from 94 - 136 mg/L as CaCO₃ on Day 0 and 112 - 156 mg/L as CaCO₃ on Day 10. Alkalinity measurements ranged from 64 - 112 mg/L as CaCO₃ on Day 0 and 76 - 118 mg/L as CaCO₃ on Day 10. Dissolved oxygen measurements were generally 6 - 40% saturation (3.4 mg/L) during the 10-d exposure, however there were some exceptions. Aeration was checked daily and adjusted as needed. These low oxygen measurements do not appear to affect the test results. Sulfide levels in overlying water and interstitial ammonia concentrations measured during the 10-d exposure for each batch of testing are summarized in Table 3-2.

The 96-h LC50 for the zinc reference toxicant (initiated August 26, 1997) was determined using the TOXCALC computer program. The 96-h LC50 value for zinc was 145 \Im g/L Zn (95% confidence limits: 130 and 162 \Im g/L Zn). A laboratory mean has not yet been generated due to insufficient data points for this method. However, this value is consistent with values obtained for our in-house cultures. Water quality parameters measured during the 96-h exposure period were within the following ranges: temperature, 22.5 - 24.0 \Im C; pH, 7.7 - 8.0; dissolved oxygen, 7.4 - 8.5 mg/L; and conductivity, 310 - 320 \Im mhos/cm.

Sample ID	Mean 🔀	SD
	SURVIVAL (%) ¹	DRY WEIGHT (mg) ²
Negative Control	96.7 🌫 5.2	0.12 🄀 0.03
SR-1-SS-B	95.0 >> 8.4	0.16 >> 0.02
SR-2-SS-B	86.7 ≻ 10.3*	0.14 >< 0.02
SR-3-SS-B	68.3 >> 21.4*	0.17 >> 0.04
SR-4-SS-B	46.7 >< 12.1*	0.18 >> 0.09
SR-7-SS-F	0.0 × 0.0*	-
SR-8-SS-F	91.7 >> 7.5	0.19 >> 0.08
SR-9-SS-F	75.0 >> 41.8 (90.0 >> 22.4)	0.17 >< 0.04
SR-10-SS-F	66.7 ≻ 25.0*	0.17 >< 0.06
SR-11-SS-F	85.0 >< 8.4*	0.13 >> 0.04
SR-12-SS-F	88.3 🔀 11.7	0.12 >> 0.03
SR-13-SS-F	66.1 ≫ 28.0* (60.0 ≫ 26.5*)	0.09 >< 0.02
SR-14-SS-F	78.3 ≻ 14.7*	0.10 >> 0.03
SR-15-SS-F	65.0 ≫ 38.9 (78.0 ≫ 24.9)	0.15 🄀 0.03
SR-16-SS-F	61.7 >> 28.6*	0.15 >> 0.03
SR-17-SS-F	86.7 🔀 12.1	0.16 >< 0.05
SR-18-SS-F	78.3 ≻ 13.3 *	0.13 >< 0.02
SR-19-SS-F	60.0 >> 37.4*	0.19 >< 0.06
SR-20-SS-F	63.3 ≻ 25.8*	0.14 >> 0.04

Table 3-1. Summary of Hyalella azteca sediment toxicity test results

Asterisks (*) indicate samples significantly different ($p \ge 0.05$) from the negative control (Bracketed survival values indicate anomalous replicate removed from statistical analysis. See text for details). Samples significantly different with respect to survival were omitted from dry weight statistical analyses. 1 2

SAMPLE ID	Total Interst (mg/		TOTAL SULFIDES (mg/L S)				
_	DAY 0	DAY 10	DAY 0	DAY 10			
Negative Control	<0.1	1.5	0.000	0.000			
SR-1-SS-B	10.7	8.2	0.000	0.000			
SR-2-SS-B	16.3	10.9	0.000	0.000			
SR-3-SS-B	11.1	10.4	0.000	0.000			
SR-4-SS-B	29.5	17.2	0.000	0.000			
SR-7-SS-F	7.5	5.0	0.000	0.000			
SR-8-SS-F	17.8	10.4	0.015	0.000			
SR-9-SS-F	13.3	5.9	0.000	0.000			
SR-10-SS-F	23.6	19.1	0.000	0.000			
SR-11-SS-F	21.0	15.4	0.015	0.001			
SR-12-SS-F	16.0	10.4	0.000	0.000			
SR-13-SS-F	25.4	16.3	0.000	0.000			
SR-14-SS-F	27.7	14.5	0.000	0.000			
SR-15-SS-F	28.6	20.0	0.000	0.000			
SR-16-SS-F	20.1	15.4	0.000	0.000			
SR-17-SS-F	14.2	9.1	0.000	0.000			
SR-18-SS-F	17.2	10.4	0.000	0.000			
SR-19-SS-F	21.0	15.4	0.000	0.000			
SR-20-SS-F	18.5	15.0	0.000	0.000			

Table 3-2. Summary of Hyalella azteca interstitial ammoniaand overlying sulfide results

- APHA (American Public Health Association). 1995. Standard Methods for the Examination of Water and Wastewater. 19th edition. American Public Health Association, American Water Works Association and Water Environment Federation, Washington, DC.
- ASTM (American Society for Testing and Materials). 1996. Standard test methods for measuring the toxicity of sediment-associated contaminants with fresh water invertebrates. Method E1706-95b. In: 1996 Annual Book of ASTM Standards, Water and Environmental Technology, Volume 11.05. American Society for Testing and Materials, Philadelphia, PA.
- Hach Company. 1992. Water Analyses Handbook: Second Edition. Hach Company, Loveland, CO. 831 pp.
- Tidepool Scientific Software. 1994. TOXCALC: Comprehensive Toxicity Data Analysis and Database Software, Version 5.0. Tidepool Scientific Software, McKinleyville, CA. 80 pp.
- U.S. EPA (U.S. Environmental Protection Agency). 1994. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. Office of Research and Development. U.S. Environmental Protection Agency, Duluth, MN. EPA/600/R-94/024. 131 pp.

APPENDIX A

Chain-of-Custody Forms

	Kim n	12gruder (EVS)	-CUSTODY/				Ship tes 195	EV Pen Jenn	s La nber ifer	abora	tore,	N.V.	MOUVER B.C. V7P2R Hoping Date: 8/18/97 Nay bill #: 400-5448 50
Sample Collection Date (d/m/y)	Time (ant/pm)	Sample Identification	Volume of Semple/# of Containers	10-d Rheponynius	allediate the state of the stat	Test(s)	Requested H-021/4-05 H-021/4-05	a.	20-d Nearthes	Microlox Microlox	Benthic	Officer (Picase Specify)	CommentalInstructions
13/97	1115	1 SR-17-55-F	1/64 02		-	~							6007 21°C
113/97	1115	58-17-55-F	1/6402		~								6008 21°C
13/97	135	SR-16-55-F	1/6402			~							6009 21°C
113/97	1315	SR-16-55-F	1/6402		1								6010 21 °C
13/97	1510	58-15-55 -F	1/64 02			1							6012 22°C
13/17		SR-B-SJ-E	1/6402	_	~								6012 22 0 6017
1) Palessed by: Ald M. Mill 2) Released by: Determine: O/18/97 0800 Determine:						ased by: /Time:				To be completed by EVS Laboratory upon sample receipt. EVS Project #: <u>91575-37.10</u> EVS W.O #: <u>970065</u> Date of Receipt: <u>29 Avg</u> 97 Time of receipt: <u>0942</u>			
Detertime: 20 Aug 97 Detertime:					о оу. /Пите:				Cendtion Upon Receipt: Received by:				

"Instructions for completion of Chain-of-Custody/Test Request Form on back.

.

"Distribution: White and yellow oppies accompany elignent; pirit-consigner's copy; white-consignee return with results; yellow-consignee's copy

C 195 Periberton Avenue North Vancovver, B.G. Caneda, Y7P 294 Tair (h04) 965-4331 Fax: (504) 652-6348

© 200 West Marter Dreet Suite 403 Seattle, VA 90119 Tel: 000 2174037 Fax: (200) 2174042

٢

act Name:_	Kin 1 Gang Ro	Magnder sen the /					Attn:	To		- 54		t si	Wear vor BC U7P2A Npping Data: 8/18/97 Jaybill#:400-4417482	
Sample Collection Date (dim/y)	Time (em/pm)	Sample Identification	Volume of Sample/# of Containers	10-d Rheponymius	10-d Hyalaña	Test(e)	Requested Echicoderm Hocking	cpeok Lavval avkave Has	souther the souther	Microtox Microtox	Benthis	Other (Please Specify)	Commente/Instructions	
rlizho	1415	5R-20-55-F	1 64-			~	-						1001 20°C	
		5R-20-55-F	1 6%02		/								6002 21°C	
8/12/97	(17)	5R-19-55-F	1 6402			V							6003 2100	
3/12/97	1817	5R-19-55-F	1 1.402		~							_	6004 20°C	
3/13/57	0950	5R-18-55-1=	1 6402			~							6005 21°C	
8/13/5	0950	5R-18-55-F	1 6402		1								6006 21°C	
		M. WW 2) Released by: 7 (28.60 Date/Time:			3) Relea	nsed by: Time:		-		Contractor Di	PERMIT	AND THE R. P. LEWIS CO., Name	S Laboratory upon sample receipt. 15 - 37-10 EVS W.O •: 97000	
Date/Time: B/1B/97 BED Date/Time: 1) Rec'd by: AMC 0942 2] Rec'd by: Date/Time: 30 Aug 97 Date/Time:				3) Reo'd by: Date/Time:				·	Date of Receipt: <u>20 Avg 77</u> Time of receipt: <u>099</u> Condition Upon Pecelpt Received by:					

"Instructions for completion of Chain-of-Custody/Test Request Form on back, "Destruction: While and yellow copies accompany arigment; pitch consigner's copy; white-consigner rotum with results; yellow-consigner's copy

to 185 Percenton Avenue
Not Vancouver, B.C.
Canada, V7P 2R4
Tet (504) 965-4331
Fax: (804) 662-8548

C) 200 West Mercer Street Subs 413 Seattle, WA 95119 Tet: (205) 217-9337 Fail: (205) 217-9342

lient Name: ontact Name:	Kim	Magnuder (EVS)							<u>S Lak</u>			V. Van	COUVER B.C. Canda V7P2R
mpled By;	Garry	Rotenthal					Attn:	Jenni		Acres	usit		Shipping Date: 8/20/97 W34bill#-: 400-5448-59
Sample Collection	Time (am/pm)	Sample Identification	Volume of Sample/#			Teo!(e)	Requested	(check	test(s) re	quired)			0
Date (dîmiy)		sediment	ef Contsiners	10-d Rhepowynius	10-d Hyalella	10-d Chironomid	40-IV120-h Eshinoderm Lavval	45-h Bivaive Larval	20-6 Nearthes	Microtax	Benthic	Other (Piezse Specify)	Commente/Instructions
3/14/97	1130	88 - 12 - 55 - F	1/4/2							-	Carl and the second sec		6164
11/197	1130	SR . 12-53-F	1 lettoe			/							4163
14/97	1302	SR-12-55-F	1/600		1								6187
114/97		SR-11-55-F	1/ 6/02			/				1.17			6188
		JR - 10 - 55-F	1/6402		1	,							6203
15/97	1145	SR - 10-55-F	1/6400	_				_	_	_		_	to 204 imm
							Tor	100	tures	1	13°0		
							- rea	YEAR	17016		120		
	Rver 7	(- Mill 2) Released by: 0850 Date/Time:			3) Roles Date/						REPORT NAMES		1 1 Laboratory upon eample receipt. 75-37-1/2 EVS W.O +: 979069
1) Rec'd by:	-	(000 2) Red'd by:			J) Reo'd Dete/	i by:				Dete o	Receipt:_	22	Arg (17 Time of receipt: 1000 Received by:

"Instructions for completion of Chain-of-Custody/Test Request Form on back.

"Deviduator: White and parlow copies accompany alignment; pink consignor's copy; white-consignee return with results, reflow consignee's copy

D 195 Pemberton Avenue North Vancouver, B.C. Geneda, VTP 254 Tel: (804) 950-4331 Fax: (904) 952-4545 C 200 West Mercer Street Suite 400 Seattle, WX 90119 Tet: (201) 217-0337 Fax: (201) 217-0342

Sample Collection (r Date	Time						Attn	lenn		Sten	vavt		(0.11 Ver BC. (2412d2 V7P2F Hipping Data: 8/20/17 Naybill#:400-4054-78
(d/mly)	(em/pm)	Sample Identification	Volume of Sample/# of Containers	10-d Rheponymius	10-d Hyalalla	10-d Chircromid	Revisor Echicoderm Lavval	3	sod New Diag	Microtox Microtox	Berchio	Other Please Specify	Commenta/Instructions
8/14/17 11 8/15/17 0 9/15/17 1-	800 945 740	<u>SR-9-SS-F</u> SR-9-SS-F SR-10-SS-F SR-7-SS-F SR-7-SS-F	1/6402 1/6402 1/6402 1/6402										6/94 11/15 42.04 6244 42.15
1) Beleased by/	then	. N(W 2) Released by:			3) Relea	med by:	Ten	pero	Ures				Laboratory upon sample receipt:

"Instructions for completion of Chain of Custody/Test Request Form on back. "Destruction: White and yefore explose accompany altipment; pink consignor's copy; white-consignee return with results; yefore-consignee's copy

C 195 Periberon Avenue North Vancouver, B.C. Carada, V7P 2R4 Tet (104) 800-4331 Fac (104) 012-8548

C 200 West Marcar Street Bulle 409 Sectle, WA 98119 Tet (200) 217-0037 Fax (201) 217-43-2

	Fay P	Magneler (EUS)					Attn:	Jan	inter 3	skua,			ipping Date: 8/20/97 when bill = 400-5448:
Sample Collection Date (dim/y)	Time (am/pm)	Sample Identification	Volume of Sample/# of Containers	10-d Rheponymius	10-d Nyalella	2	Requested unpopulation unpopulation	45-h Bivalve Laval	sord Nearthes	Marotax	Berthic	Other (Please Specify)	Commenta/Instructions
X/13/97	1510	5R-15=55-F	1 6402		~	1			-				601/
×13/97	1607	SR-14-55-F	1 6402		~			-					6057
×/13/27	1608	SR-14-55-F	1 6/02			~							6056
8/13/17	BUCI	5R-13-55-F	1 6400		V								986064 6063
2/13/17	צורן	SR-13-55-F	16402			4							6064
							-		-				See Email
						Temp	rat	res	¥	3.0	,		to consirm ande to consirm ande chimige,
									-				<u>-</u>
1) Released by Data/Time:		M. Mul 2) Released by: 0900 Date/Time:			3) Relea	nsed by: Time:				2200220-2	NG (200	COLORED IN	aboratory upon sample receipt: 5-37.10 EVS W.O +: 9700657
1) Rec'd by: A	5	000 2) Rec'd by: 97 DeterTime:			3) Rec'o					Date of	Receipt	22-A	<u>A 97</u> Time of receipt <u>JOOP</u> Received by:

"wexetione for completion of Chabrol Quelocy/Test Request Form on back. "DetBuildon: White and yellow cookies accorrighted bigment; pink-consignor's copy; white-consignes return with results; yellow-consignes's copy;

C 195 Pemberton Avenu
North Vancouver, B.C.
Canada, V7P 294
Tel: (NO4) 200-4331
Fax: (104) 652-5548

[] 200 West Mercer Street 547:100 5- , WK 96119 Tex. (00) 2174007 Fax: 006) 217-8342

lient Name:		Inner (cuc)		-					bera	1		
antact Name:	nim "	lagrudur (EVS) Rounithol		-								ouver B.C. Canada V7P
mpled by:	Aan g	Kasaringi		-		Attn:	enni per:	Fer	Hewa	Mr.	s	shipping Date: <u>8/20/97</u> Nay bill 11 : 400-4056-76
Sample Collection	Time (em/pm)	Sample Identification	Volume of Sample/#		Tee	t(e) Requested		-				0
Date (d/m/y)		Sediment	of Containers	10-d Rhepaynius	10-d Hyalette	48-M120-h Echinoderm Larval	46-h Bhaive Larval	20-d Nearthes	Microtox	Benthio	Other (Please Specify)	Commerrie/Instructions
8/17/97	1100	SR-1-55-7 84	1/4/2		1		-	-			-	6274
3/17/17		SR-1-SS-FB god				-	7.5					6274
8/17/97	1745	SR-2-SS-# B 92	1/440	_	-	-		-	-		-	6280
3/18/97	1720	5R-4-55-17-B 440	1/6402		-					-	1	4275
8/18/17	1720	SR- 4-SS- #B Ofw	1/6 th		V	-	_					6281
		B= backaro	und	_	-		10	1 101	atue	0 -	15-1	
		confirmed b		Rosen	ho	_	_104	-yes				
1) Released by Date/Time: S				3)	Released I	y:			DR SOCOR	0.00.000		Laboratory upon earrple receipt: 75 - 37-10 EVS W.O #: 97 00651
) Rec'd by: 🖗 Dete(Time:)	ym .	000 2) Reo'd by: 97 Dete/Time:		3)	Rec'd by: Date/Time:				Date of	Receipt:	22 A	In 98 Time of receipt 100

Textnutions for completion of Chain of Custody/Text Request Form on back. "Detroution: White and yeflow exples accompany alignment; pink consignor's copy; white-consignee return with results; yeflow-consignee's copy.

C 195 Periberton Avenue
North Vancouver, B.C.
Canada, V7P 254
Tel: (904) 909-4331
Fax: (104) 012-0348

C 200 West Mercer Street Buile 403 Beatle, WA 90119 Tel: (200) 217-4337 Fax: (201) 2174342

-948

••		CHAIN-OF-	CUSTODY	TEST	REQ	UEST	FORM	FOR	SEDI	MENT	SAM	PLE(S).
lient Name:				0			Ship to	ENS	5 Lat	perate	MU		
		Magruder (EUS)											mowner B.C. Canady, V7P21
ampled By:	ary R	osenthal / charret	Grag				Ship	lenn per:	ifor Fed	Ex .	wt_	5	htpping Date: 0/20/97 W341日#:400-40576-7881
Sample Collection	Time (am/pm)	Sample Identification	Volume of Sample/#	1		Test(s)	Requested	(check	test(s) re	quired)			0
Data (d/m/y)		Sediment	ef Containera	10-d Rhepoorniue	10-d Hysiella	10-d Chircnomid	40-M120-h Echinodern Levval	40-h Bivalve Larval	20-d Nearthes	Microtox	Benthic	Other (Please Specify)	Commente/Instructions
8/17/97	1705	5R-2-55-78"	1 /6402	and the lot	~				1	-	1	1	6279
		SR-3- 55-7 8 4			~					-			62.77
8/17/97		SR - 3 - SS - F-B				V							6278
0/14/97		SR . 8 - 55 - F	1/6/12		~								4217
B/1/97	1522	SR-8-55-P	1/4402			/							6.218
		B= background	4			Ta	mpere	tra		12	C		
		Confirmed by Gar.		01		10	idrae	2010	2	15			
1) Released by Date/Time: 8	P	1. Will 2) Released by: 0830 DeterTime:	1		3) Roles		I			and the second second			Laboratory upon eample receipt:
1) Rec'd by: / Date/Time:	tiω 1	000 2) Reald by:			Date/ J) Recid Date/	t by:				Date o	t Receipt:	22	75-37.10EVB W.O #: 970959 09 92 Time of receipt: 1000 Received by:

-

"Instructions for completion of Chain-of-Quetody/Test Request Form on back,

"Dividuotion: White and yellow copies accompany shipment; pink consignor's copy; white-consignee return with results; reflow-consignee's copy

1015 Participan Avenue North Vancouver, B.C. Caracte, VIP 274 Tel: (504) 950-4131 Fax: (504) 952-5548 C 200 West Marcer Street Sube 403 Deaths, VIA 95119 Tel: (201) 217-6037 Fac: (201) 217-6037

APPENDIX B

10-d C. tentans Sediment Toxicity Test Raw Data

EVS CONSULTANTS FRESHWATER SEDIMENT TOXICITY TEST DATA SUMMARY

Client NOAN	
EVS Project No.	9/575-31.10
EVS Work Order N	0.97.00658

SAMPLE

Identification	Variou	2
Amount Received	2.4	
Date Collected	August	12-18 1997
Date Received	August	20102,1997

DILUTION AND CONTROL MEDIUM

	Moderately Hord Vie (°C) _ 22-23
	7.9-8.1
Dissolved C	xygen (mg/L) \$.5 - 8.8
Conductivit	y (umhos/cm)325
	g/L as CaCO,) 96-100
Alkalinity (mg/L as CaCO3) 64 - \$6 72
Other	

EVS Analysts AH, AIW, BST, JGK, ETT, MKC, 545, IW, AFY, MIM, KTI Test Type 10-of Freshmet Section toxicity Test Test Initiation Date September 5, 1977

TEST SPECIES INFORMATION

Organism <u>C.tentans</u>	
Source/Date Received Ect / Sept. 4/97	_
Age/Dry Weight on Day 0 (mg/ind) 11d / 0.30 mg/ind.	_
Reference Toxicant Kr.1	
Current Reference Toxicant Result (LC50 and 95% CL) 5.4 g/L KCl (95% CL: 4.2 and 6.8)g/L	KCI
Reference Toxicant Warning Limits (mean $\pm 2SD$) (4.5 ± 3.0 916 KC1	

TEST CONDITIONS

Temperature Range (°C) pH Range	0.0.2	
Dissolved Oxygen Range (m	g/L) _ 3. 2 = 8	b Day 3 due to
Conductivity (umhos/cm)	280-500	
Hardness (mg/L as CaCO1) .	100-166	104-152-
Alkalinity (mg/L as CaCO ₃)	67-136	PAN \$ - 124
Photoperiod (L:D h)	16:8	
Other Interstitiel Muy Co	Day 0	Dayie
Overlying 5 la	145) (000-00	

		Mean ± SD
Sample ID	Survival (%)	Individual Dry Weight (mg)
5P- 15-55-F	\$3.3 - 3.4	1.48 2 0.31
52 - 12 -55-F	91.7 - 9.8	1.54 2 0.19
3R - 2-55-B	\$ 68.32 18.4	-AN170 1 0.25
5R - 13 -55-F	85.0 2 3.8	1.58 2 0.14
5R-20-59-F	83.3 2 21.0	1.59 -0.43
52-10-50-8	¥ 88.3 ± 7.5	- 2.04 1 0.22
SR - 17-55-F	* 73.3 = 20.6	- 1.70 t 0.34
5R-1-55-18	15.0 1 5.5	1.91 = 0.18
SR - 11- 55-F	x 783 + 18.4	- 2.143 0.41
Control	76.7 = 5.2	0.512 0.19
Verified By C. W. A.	SA_ Date Verif	ied Oct 9/97

Form/Ealt/Delustra/Sodiment/Preat/SUMMARY.WPD

Folwary 21, 1997

EVS CONSULTANTS FRESHWATER SEDIMENT TOXICITY TEST DATA SUMMARY

Client_	NOAA	

EVS Project No	9/575-31.10	_
EVS Work Order	No.9700658	

SAMPLE

	Identification	Variou	2
	Amount Received	21	
1	Date Collected	August	12-18 1997
	Date Received	August	20122, 1997

EVS Analysis BAH, AIW, BST, JGK, ETT, MEL, STS, TW, AFY, MJM, KTB Test Type 10-18 French Section and Toxicity Test Test Initiation Date September 5, 1977

TEST SPECIES INFORMATION

Organism .	C.tentan2
Source/Dat	e Received ECT / Sept. 4/97
Age/Dry W	eight on Day 0 (mg/ind) ud / c. 30 mg lind.
Reference 7	Foxicant KC1
	ference Toxicant Result (LC50 and 95% CL) 11. KC1 (95% CL : 4.2 a-d 6.8) gle KC1
Reference	$foxicant Warning Limits (mean \pm 2SD) \\ \pm 3.0 9 16 KC1$

TEST CONDITIONS

Temperature Range (°C, pH Range		
Dissolved Oxygen Rang	e (mg/L) 3.2 - 8.	6 Day 3 dueto 1
Conductivity (umhos/cm	1) 280-500	
Hardness (mg/L as CaO	03) 100-100	Ring 10
Alkalinity (mg/L as CaC		78-124
Photoperiod (L:D h)		
Other	Day O	Day 10
Overlying 5	(aglen) (12.1-2+8) (agles) (0-0-0-0)	(0.0-000)

Water Type Temperature (°C)_22.	23
рН	7.9-5	2.1
Dissolved Oxyg	en (mg/L)	8.5-8.8
Conductivity (u	mhos/cm)	300 . 335
Hardness (mg/L		
Alkalinity (mg/I	as CaCO3)_	6.4 - 56 72
Other		

		Mean ± SD
Sample ID	Survival (%)	Individual Dry Weight (mg)
5R-3-\$5-8	* \$ 1.7 - 17.2	2.161 0.25
5R -8-55-F	91.7 27.5	2.01 - 0.18
3R-4-55-B	* 88.3 1 4.5	- 1.62 = 0.18
5R - 14-55-E	* 76.7 2 22.5	- 1.62 \$ 0.17
5R -7-55-F	* 0.0 . 0.0	
5R - 16 - 55-F	86.7 1 .7.5	1.44 = 0.30
5R-18-55-F	93.3 - 8.2	1.49 2 0.15
5R -9- 55-F	* 77.5 1 9.6	- 1.96 = 0.18
5R - 15 - 55 - F	* 91.7 1 17.2	- 160 - 0.27
at alor		A. WiPhan

Data Verified By ______ Cet 9/47

Date Verified _ C. MCPWSO~

FormerLabsDatashurSodiment/Prob/SUNMARY.WPD

Client_NOAA EVS Project No_9/STS - 37.00 EVS Work Order No_97604.58 Source/Batch Ecy / Hadebut Aug as 197

		Temperature (*C)									_								-		0	10
Sample ID	0	1	2	3 .	4	5	6	7	8	9	10.	0	1	2	3	4	50	6	6.	02		
58.3-55-\$(1)	12.0	22.0	22.5	22.5	22.5	22.0		22.5		22.0	22.0	7.4	7.6		1 .	8.1	8,3	8.1	8.1	8.3	8.1	7.
52-8-55-F(A	22 -	23.0	22.5	22.5	22.5	22.0	22.0	22.5	22.0	72.0	22.0	7.5	7.5	73	7.3	8.1	8.1	8.1	8.1	8.3	8.0	3
52-5-55-FA	12.0	220	22.5	22.5	22.5	22.0	22.0	32.0	22.0	72.0	22.0	7.1	7.4	7-1	7.2	8-1	8.2	8.2	8.0	8.0	29	7
5K-14-35- F (8)	220	02.0	29.0	22.5	22.5	28.5	22.5	22.0	72.0	72.0	72.0	34	7.4	7.2	7.2	8.2	7.3	8.2	8.0	8.2		7
(1)	23.0	25.0	1000	30.5	122.5	90.0	22.0	22.5	12.0	21.0	22.0	3.8		7.3	7.4	8.1	3.1	8-1	8.1	8.2	8.1	7
A. 7. 9. 0 (F)	23.0	25.0	72.5	Jac.	an (44.6	22.5	22.0	120		020	74		7.2	7.3	7.5	8.1	8.1	8.1	8.2	29	7
52. 10-11-F (F)	230	250	23.D	000	22.4	22.7	66.4	erre	010	77.9	22.0	3.4		-	72	82	8.2	7.9	8.2	83	8.1	7
54. 18-51- 6 (E)	230	23.0	23.0	22.5	22.5	22.5	27.5	22.0	.40	22.5	22.0	1.3	1		7.4	8,0	8.2	2.2		8.2	8.2	1 -
	120	230	22.5	26.5	22.5	22.0	22.0	22.4	22.0	25.0	22.0	7.5	7.7			and the second s	8.1	2.9		8.3	14	7
54-17-53-F (6)	120	28.0	230.	22.5	12-5	28.5	22.6	22.0	22.0	23.0	22.0	74			_	8.2		7.7	-	8.3	-	1
51.15-55.E (E)	- ac	120	23.0	22.5	25	29.5	22.5	22.0	22.0	22.0	22.0	1.3	7.5	7.3	7.2	8.9	8.2	4.1	8.0	-	8.1	-
52-15-55-F K	23.0	200	00.5	92.5	22.5	0.00	22.0	221	22.0	22.0			17.5	7.2	7.3	8.0	8.0	8.0	7.9	8.2	8.1	1
				1	44	les d	166	HE.	m	h	(AN)	004	(du)	BST	855	342	1855	JEL	2 mar	60	12	10
hnician's Initials	204	AW	1355	840	1300	1073	1.00	1200	10	1	1000	1 1/11	Inflo			-						0

Data Verified By CHANST

Date Verified _ Oct 8/19

Nerson's de Constant (auf anna Vende ; 10 mil) MPD (a. 1 el 2) here (3, 1991

Client NO.4 EVS Project No. 1/STS - 37.40 EVS Work Order No. 1700.658

Test Initiation I	ate (Day 0) September 5, 1997
Test Terminatio	n Date (Day 10) September 15, 1997
Test Species	C. tentous
Source/Batch_	ECT / Haddeled Aug. 25/97

					Terr	perature	(0)		0.000		-						pH		-		-	-
Sample ID	0	1	2	5-	4	5	6	7	8	2	10.	0	1	2	3	40	5	6	7	8	9	-
×. 12.5. + "(1)	-	220	13.0	23.0	22.5	22.5	22.0	22.0	20	225	22.0	7.9	7.6	7.3	7.4	8.1	8.1	8.0	8.0	8.0	8-1	-
×. 2. 33 . FA (6)	210	220	90.5	22.5	12.6	22.0	22.0	22.5	_	21.5	22.0	3.4	7.6	7.3	7,3	7-7	8.2	8.1	8.1	8.3	7.9	1
10	-3.	25.0	13.0	925	22.6	22.5					22.0	U	7.6	73	73	8.2	8.2	8.1	8.0	8.2	8.0	7
1.1	30	25.0	199.0	22.5	22.6	199.5	_				22.0		24	7.1	7.5	8.2	8.2	2.0	8,0	8.2	77	7
3.2. 20-53. F (4)	3.0	25.0	ant	20.5	21.5	90.0	22.0	22.5	and the second second		22.0	Construction of the local division of the lo	27	7.3	7.4	8.1	8.3	8.1	2.9	8.1	8-1	8
58-10-55-P (4	30	23.0	22.5	1995	11-4	105	22.5	22.0	and the owner of the local division of the l			7.8	25	7.2	7.3	8.1	8.2	8.0	8.1	8.3	8.1	17
	13.0	25.0	20.0	77.5	234	04.0	1 2 2 4	22.5			22.0		1.0	7.4	7.5	8.1	8.2	8.1	8.1	8.2	8.2	18
se.1. 55. 78 (b)	25.0	28.0	12.5	000	44-3	1000	22.0	22.0	12.0	1000	22.0		7.5		-		8.1	8.2	8.0	8.3	8-0	7
Se.11.30-A (C)	ne			225	22.2	22.0	22.9	20.0	-01	22.5	12.0	+-4	1.0			4.1	-	0.4	-		-	
	3	Zoho		-		-	-	-		-	-	-	-	·	-							
	· ·	-		-	-	-							1	1			-		ŀ.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			L
chnician's Initials	1204	AW	85	641	05/10	4545	Joh	et for	10-	1	· and	104	AW	355	RAT	att Xa	13.22	JGh	- Jou	Gn	m	a
O laurente Uked: Ter	p. Co	1. 4,	Arm	<u>. </u>	- /	pl	1.7	-A-26			Ø.		•	۰.								
mments O used					26		e. 0	A	. the	4444	facia	nia the	reter	e 409	sons d	m	~ 1	ndont	sele	kel 14	Sunte	
ta Verified By C. R	4/13	successor		TV.0.39	~s_~~	Diseson	aux_a		0_0-01	1	Date Ver	ified_6	618/	17					f	4	4	
in . ciura n/																				4	A	

Personal and December 3 address of Personal address with the 1 of 21 June 13, 1991

Client_NDAX	
EVS Project No. 7/STS - 37.10	
EVS Work Order No 1700 558	

Test Initiation I	Date (Day 0) So prian ner 5, 1997
Test Terminatio	on Date (Day 10) September 15, 1997
Test Species	C. testoss
Source/Batch	ECT / Hadeled Aug. 25197

6			_	1	Dissolve	d Oryg	en (mg/l	()								Conduc	tivity (ut	nhos/cm)				10000
Sample ID	0	1	2	3.0	4	5	6	7	8	9	10	0	1	2	3	4.1	5	6	7	8	9	10
S. R. 52. 3. 53-\$(D)	200		-	3.2	the second se	7.9	7.7	8.1	25	8.6	6.9	333	430	390	360	1735	400	400	360	370	375	380
34 8-55. 5(4)		and the second se			-	7.6	and the second second	8.1	7.8	8.3	7.3	35	440	410	360	320	370	390	370	370	350	40
28-4-53-46								8.1	7.1	7.9	7.1	3755	500	410	370	490	380	390	375	390	380	3.8
44-14-35-5-68	20	5.2	9/4/	3.4	77	5.3	8.0	8.0	7.4	8.1		37.95		425	375	440	390	390	380	390	385	384
3R-7 -55. F(E	新 4	5.2	5.5	4.4	8.2	8.0	8-1	8.0	7.6	8.3	7.2	348	400	365	350	365	370	360	340	355	345	350
52-16-52-F	\$700	5.4	4.6	3.8	6.7	7.2	7.7	8.1	8.0	77	7.3	380	470	420	370	385	390	390	370	390	390	380
52. 11-55.F	6.6	5.0	3.8	3.2	8.1	7.4	7.2	8.3	7.7	8.2				400			370	400	380	390	380	38
58.9-33-6			3.6	3.5	8.0	7.4	8.1	8.2	7.8	8.3				390	360	370	360	370	350	360	370	36
3R- 17-45- P	6%	5.2	4.7	3.6	8.0	7.6	7.2	8.2	7.6	8.2	7.7	370	460	420	370	385	370	395	385	390	385	39
58. 15 -55-6	63	5.2	4.4	3.3	8.1	7.5	7.9	7.9	7.4	8.0	7.5	860			380	410	390	400	390	405	380	37.
004 . (E)	验	5.1	5.1	4.6	8.2	8.1	8.4	8.4	8.3			300			310	320	SAO	320	310	20	310	320
chnician's Initials	5%	MW	655	1355	With	355	J64	W.	en	h	an	Den	R(4)	855	855	855	657	In case of the local division of the local d	Concernsion of the local division of the loc	en	d	Ope
Instruments Used: DO minents D Dwe to W $\overline{N} - A - 2 D + D$ to Verified By	he he	and c	stop	ver en	l, ae	Con	idactivi	ty 1	-1-100	atte		nt 50	- wa 2		area	- Che	mqc	. ©) Wsee	1 00)	0

Terrent and Contents (Sectores Press/100WQ W7D (p 2 of 2) Jane 13, 1917

Clicat_NOAA	
EVS Project No. 1/575 - 37.10	
EVS Work Order No 7700 6 18	

Test Initiation	Date (Day 0) _ Sightin b-1 5, 1917
Test Terminat	ion Date (Day 10) Septem ber 15, 1977
	C. textons
Source/Batch	ECT / Hatched Aug. 25/97
	0

				1	Dissolve	d Oxyg	en (mg/)	L)								Conduc	tivity (µr	mhos/em)	· ·			
Sample ID .	0	1	2	3-	4	5	6	7	8	9	10	0	1	2	3	4	5	6	7	8	9	10
52-12-55-6 (#)	6.7	5.3	4.3	3.0	8.1	7.0	7.5	8.0	8.1	172	7.4	350	410	370	350	360	345	380	350	380	370	37
32. 2 -55 - A (c)		5.4	4.1	3.6	8.5	7.8	7.8	8.2	7.8	35	7.0	320	410	390	360	370	370	380	350	350	365	34
se 19-55- 0 (D)	6.4			the second se	8.4	77	7.8	7.9	7.6	130	7.4	323	450	410	370	400	500 C	440	380	390	390	39
52-20-55-2 (4)	臨	5.2	4.6	3.2	8.2	7-6	7.5	7.8	7.6	650	7.7	370	450	400	356	390	37-6	370	370	390		
52. 10-55-F(D)	6.3	5.3	3.6	35	8.3	7.6	7.8	7.3	7.8	7.8	7.0	450	500	450	410	425	405	420	400	410	340	395
30. A 33. p(c)	63	5.1	3-6	3.0	8.1	7.6	7.4	8.1	7.6	8.(7.4	3790	430	380	355	390	360	385	365	380	370	37
30-1-32-4 (0)	6%	5.0	4.1		8.2	8.0	7.9	18.2	7.1	8.4	7.3	355	410	380	350	400	390	380	360	360	365	
52-11-52-5 (9)	anten	.5.2	4.0	36	8.5	7.5	8.0	8.0	7.7	78	7.5	323.	470	400	390	375	370	385	370.	390	740	390
			-			_																
mician's Initials	02	elu)	RAT	RET	of the	317	JGh		m	w	ALA	Car	(Ala)	1955	Ber	857	351	Jon	Stree-	En	m	aji

Ferrer C. An Densite Suffamer Production WO (p. 2 of 2) June 13, 1997

Client <u>NOAA</u> BVS Project No. <u>9/575 - 37/0</u> BVS Work Order No. <u>9700 658</u> Test Type <u>Sectors</u> Fish Test Species <u>C. 1200 Bar Antion</u> Fish Test Initiation Date (Day 0) <u>MANDON 26</u> (997 Test Termination Date <u>Sectors</u> (97

Sample ID	Rep.	Pan No.	No. Alive	No. Dead	Total Recovered	No Missing	Tech. Init.	Temp. (°C)	pH	Cond. (umhos/cm) 🗗 Salinity (ppt) 🗖	DO (mg/L)
52-3-55-86	A		9	0	.9	(Joh	22.0	7.8	380	7.0
A= 3- 12-10	в	2	5	0	5	5	JGh	22.0	7.8	380	7.2
	C	3	9	0	9	1	JGL	22.0	7.8	380	7.0
	0	4	(5	0	10	. 0 .	Jon.	22.0	7.8	380	6.9
	E	5	8	.0	8	2	266	22.0	7.8	380	7.1
	£	6*	.8	0	8	2	Jeh	22.0	7.8	380	7.1
58.4.45===	A	Г	.8.	6.	5	N.	.515	22.0	8.1	400	7.3
	1B	8	9	.0	9.	1 .	ists	22.0	8.0	380	7.1
	4	.9	10	0	10	0	sk	22.0	8.1	380	17.4
	D	10	10 :	0.	1.0	0.	svs.	22.0	7.8	375	7.4
(¹ 2	E.	Ĩ	9	0	9	. 1	st.	22.0	7.8	375	7.2
	F Read	12	209	0.	0:409	01	543	22.0	7.8	380	7.0
			1								
P	16-2									1	.**
ud the pa	n' .	ince	d frois	and	despire	Technic	ian's Initials .	AW	AW	AW	Plu
A Local A A Loca	Tem Tem	WSor	Hy There	p. pH_	T-4-26	. Cond.	Sal H-A-	looc Oct 819	DO	<u>-1-1-19</u>	0

 Test Type 10 of Great worker Sectionent Topicty Tost

Sample ID	Repi	Pan No.	No. Alive	No. Dead	Total Recovered	No Missing	Tech. Init.	L	Temp. (*C)	pH	Cond. (umhoalem) 🗗 Salinity (ppi) 🗖	DO (mg/L)
5R-4-55- Fo	A	13	0478	0	178	233	357		22.0	7.9	380	7.2
16-9-55-28	ß	14	10	0	10	0	95J.	E	22.0	1.4	380	7.2
	1	15	9	0	9	1	35	L	22.0	7.6	390	7.1
	0	16	9	Q	9	. 1 .	357		22.0	7.6	380	7.0
	F	11	8	0	8	2	90		22.0	7.7	380	7.1
	Ę	18	9	0	9	1	13/5	-	22.0	18	380	7.1
			2	1			·	-			-0.5	
5R 4 - 5- F	p	19	4	.0	4.	: 6	Ju		22.0	7.6	385	7.4
	B	20	90	0	48.	21	RW.		22.0	7.6	385	7.4
•	l c	21	9	0.	9	1.	Ju		22.0	7.6	390	7.2
	0.	22	· 10	D.	10	0	RW	-	22.0	7.6	380	7.4
	6.	23	8	0.	8	2	riv		22.0	7.5	380	7.2
	£	24	6	0	6	. 4.	Jul		22.0	7.6	380	7.4
ţ			-	·			·. ·	$\left \right $			1	
D.I lost in trans	fei		J	ľ		Technik	len's Initials		(Ilu)	alu	an	ayu
				1		Contractor			1	1	ш- <i>А</i> -М	. 0
Q Instruments Used	1: Tem	Pico	Hothe	- pH_	I-A-24	Cond/ D	Sal. <u>1-A</u> ate Verified	.6	Det 8/9-	7 00	<u>w 21 (1</u>	ð
am venned by		Thereary	21; 1997									;

Client_MOAA		
BVS Project No. 9/575 - 37/0	 	+
EVS Work Order No. 9700.05%		

Test Type 10- 1 Free hander 3 - 1 men + Torice Test Species <u>C. Profons</u> Test Initiation Date (Day 0) the ATELL - 526 1997 Test Termination Date <u>Sept. 15 197</u> 4 Tart

Sample ID	Rep	Pan No.	No. Alive	No. Dead	Total Recovered	No. Missing	Tech. Init.	Temp. (°C)	pH	Cond. (umhos/em)	DO (mg/L)
R-7-65-F	A	3	Q	0	.0	10	4SJ	22.0	8.1	385	7.4
K14+50-4	8	26	0	0	0	10	dfy.	22.0	7.7	370	7.3
	c	27	0	0	D.	. (0	454	22.0	7.7	370	7.3
	2	28	0	0.	ó	. 10	Afry	22.0	7.7	370	7.4
	E	24	0	0	0	10	HT4	22.0	7.7	350	7.2
	F	30	0	D	0	. 10	Afy.	22.0	7.7	340	7.3
			2.0		· · ·				+		-
58-10-55-5	6	3(9	0	9.	1 1	BST	22.0	7.6	380	7.2
	в	'32	6	0	6	4	335	22.0	7.7	380	7.4
	c.	33	10	0	(0)	0.	14	22.0	7.0	380	7.4
	D.	34	. 10	0	10	0.	1491	22.0	7.7	380	4.1
	E .	35	7	ο.	F	3	134	22,0	7.7	375	7.3
	F	35	10	6	10	0	845	22.0	7.6	380	7.3
									· · ·	1	
@ when run	eving ai	stines	noticio	L aisli	te was	Technic	lan's Initials	(UAL)	and	an	an
not comple					T-4-71	Contraction of the local distance of the loc	Sal. 1-A-	0	0	π-4~19	Ų
Q Instruments Used	Octe	1970	i Crl	these	2	D	ate Verified	Oct \$27			

Client_NOAA EVS Project No. 9/575-3740 EVS Work Order No. 9700 458

Test Type 10-of Freehout - Sedies of Torrity Test Test Species C + Pripos Test Initiation Date (Day 0) Pri Light 526 1997 Test Termination Date _____ . 15 h7

Sample ID	Rep	Pan No.	No. Alive	No. Dead	Total Recovered	No Missing	Tech. Init.	Temp. (*C)	pH	Cond. (umhos/cm) 🖬' Salinity (ppt) 🗖	DO (mg/L)
	A	37	8 9/200	° Que	8 gru	2/200	307	22.0	7.8. Taw	380	7.4
5e-19-55-F	B	38	9	D	9	1	5200	22:0	7. S.t yw	380	7.4
	C.	39	ID	0	10	D	JUN	22.0	** 7.7 m		7.4
	D	40	10	0	10	. D .	JEW	22.0	7.7 7.7 8	385	7.5
	Е	41	10	.0	10	0	J2W	22.0	****	385	7.4
	2	42	9	0	9.	<u>t</u>	JW	22.0	3.4-2-7-8	380	7.4
		43	8	0	8.	2	jal	22.0	8.1	360	7.4
5R.9-33-F	B	.44	7	0	2.	3	JGh	22.0	7.8	360	7.4
	c.	45	7	0	7	3:	JOhi	: 22.0	7.8	360	7.2
	1	46						22.0	7.8	360	7.3
	E.	41	9	0.	9	1.	JGL				
	P	48					-				
÷		-	-			•	<u></u>		1	te.	
][Technik	lan's Initials	Alu	Alw	AW	AW
WQ Instruments Use Data Verified By	Cine	PUSI	Hather 21:1997	. pH_	Т-А-26	Cond./ D	Sal. <u> </u>	5	DO	u-1-19	-

Client_NQA4	÷		(+
EVS Project No. 9/575-37/0			
EVS Work Order No. 9700 458		•	

.

.

Test Type _____ Factors for solitons torsity Test Test Species _____ C. +Cotons Test Initiation Date (Day 0) _____ Digit 26 (997 Test Termination Date _____ Sept. 15/97

Sample ID	Rep	Fan No.	No. Alive	No. Dead	Total Recovered	No Missing	Tech. Init.	Temp. (°C)	pH	Cond. (urnhos/cm)	DO (mg/L)
		49	6	0	1:6	4	mm	22.0	7.5	390	7.5
58-19-55-F	P	50	10	0	10	0	mm	22.	5 7.5	385	7.7
	-	51	7	0	7	3	mm	22.1	7.5	385	7.3
	c	52	9	Q	9	. 1	1357	22.	0 7.5	395	7.3
	0	53	10	0	10	0	BST	22.	0 7.5	390	7.3
	¢.	54	7	U	7	3	855	22.	0 7.5	390	7.4
			10	0	10	10	inter	22.	0 75	375	7.3
58-15-55-5	A	55		0	1	1.0	mm	22.		385	7.4
"Hus mos were	B	56	10	0	101	10	mm	22.		380	7.2
used .	C	51			mp 9	8	mm	22.			7.4
*	0.	58	2	0	-d-			22		375	7.5
°	E.	59	9	0.	10	0	MM			380	7.0
	Þ	60	9	0	9		mIn	_22	1.6	580	
		-	-							:	
		-	l'anna anna anna anna anna anna anna ann	Contraction of the		Techni	cian's Initials	au) and	am	1 asu
WQ Instruments Us Data Verified By	CAC	nn al Auson	rí -	₂·pH_	II-A-26	Cond.	Sal. <u>1</u> -2	1-100 5	() DO	-π-1-19.	:

Client_NOA4		
EVS Project No. 9/575 - 37/0		
EVS Work Order No. 9700658	•	

Test Type 10-0 Franking der Stelingent Toricity Test Test Species <u>C. 181603</u> Test Initiation Date (Day 0) <u>MASSACE 1987</u> Test Termination Date <u>Sert</u> 15 197

and the

Sample ID	Rep.	Pan No.	No. Alive	No. Dead	Total Recovered	No Missing	Tech. Init.	Temp. (°C)	pH	Cond. (umhos/um) 🗗 Salinity (ppt) 🗖	DO (mg/L)
		61	9	0	. 9	1	Alw	22.0	7.9	310	7.8
(manel	8	62	10	0	10	0	and.	22.0	7.9	320	7.7
	c	63	10	0	10	0	and	22.0	7.9	320	7.7
	0	64	10	0	10	. 0	and	22.0	7.9	320	7.8
	3	65	9	.1	10	0	ano.	22.0	7-9	320	7.7
	£	66	10	0	10	0	ajus	22.0	7.9	320	7.7
5R-12-32-F	~	61			8.	: 2	and	22.0	7.6	365 7,6 AND.	7.5
N. (2.32.4	B	.68	9	0	9.	1	ajw	22.0	7.6	365 7.6 MW	7.
	C	69	10 .	0	.10	0.	au).	22.0	7.5	370 7.5 and	7.4
	0	70	. 8	0	8	2	alui	22:0	7.4	370 7.4 000	7.
	E.	ir	040 9 10	out o	10	0	Ow	22.0	7.3	370 7.3 010	6.5
	F	72	10	0	10	· 0	aju	22.0	7.4	370 7.4 ANN	7.
									-	:	
	1		Jam Internet			Technic	ian's Initials	Alw)	anu	Au)	1 aju
Q Instruments Use ata Verified By	di Tem	p Ca	I.H. A.	>. pH_	TT-A-26	_ Cond/	Sal. <u>7-A</u>	-100C Oct 8/97		ч- <i>4</i> -19	V

Client_NOM	+	
EVS Project No. 9/575- 37/0) ·	
EVS Work Order No. 9700.65		

٠

Test Type <u>10 - C Freehouse</u> Sectioned Toxicity 702 Test Species <u>C. Hortons</u> Test Initiation Date (Day 0) An EEEE - 26 (997 Test Termination Date <u>Sect. 15 /14</u>

Sample ID	Rep.	Pan No.	No. Alivo	No. Dead	Total Recovered	No. Missing	Tech. Init.		Temp. (°C)	pH	Cond. (umhos/cm) 🗗 Salinity (ppt) 🗖	DO (mg/L)
SR-2-55- 7A	,	73	5	0	. 5	5	age		22.0	8.1	370	7.2
58-2-55-94	6	74	6	0	6	4	Joh	L	22.0	7.7	370	7.0
	c	75	7	0	7	3	AFY		22.0	7.7	365	7.0
	2	76	9	0.	9	. (AF1		22.0	7.7	360	7.1
	E	77	9	.0.	9	1	AFY		22.0	7.8	365	6.9
	E	78	5	0	5	5	AFy.	-	22.0	7.8	365	6.9
· · ·		-	.7		7.	3	163	-	22.0	7:5	400	7.3
5R-13-55-F	A	19	10	0	10.1	0	Kin		22.0	7.6	395	7.3
	B	80	7	0	7	2	49		22.0	7.6	395	7.5
	<u> </u>	58	.8	0	8	2	KO	-	22.0	7.4	395	7.4
	D.	83	9	0.	089	1	tos	1	22.0	7.5	395	7.3
	F	84	10	0	(0	0	KFB	E	22.0	7.6	400	7.5
1				-				-		-	*	
		<u> </u>		ſ		Techni	cian's Initials		Alw	- Alua	an)	ayi
Q Instruments Use	ti Ten	ip. col	Hora	a. pH_	T-A-26	Cond	Sal. <u>7</u>	-100	C.	DO	-π-A-A -	0

Client NOAA

EVS Project No. 9/575 - 37/0 EVS Work Order No. 9700 658 Test Type 10 - Fresh and Section Toricity Test Test Species <u>C. + Cotons</u> Test Initiation Date (Day 0) <u>Mr Artfirst 526</u> 1997 Test Termination Date <u>Sect. 15 /9</u> +

Sample ID	Rep.	Pan No.	No. Alive	No. Dead	Total Recovered	No Missing	Tech. Init.	Temp. (°C)	pН	Cond. (umhos/em) @r Salinity (ppt) 🗆	DO (mg/L)
5R-20-55-F	A	85	9	0	9		mm	22.0	1.7	380	7.7
5K- 20195-F	ß	86	9	0	9	1	mm	22.0	7.5	380	7.5
	c	57	10	0	10	0	mm	22.0	7.5	380	7.7
	0	88	9	D.	9	10.10	mm	22.0	7.5	380	7.6
	£	89	4	0	4	6	mm	22.0	7.6	.380	7.6
	F	90	9	0	9	1	mm	22.0	7.5	380	7.4
5R-10-55-F	4	21	9	.0	9	i i	sus	22.0	8.1	385	1.8
012-16-55-1-	B	92	8	0	8.	2	SYS	22.0	8.0	390	7.2
,	C	93	9	0	9	1	sis.	22.0	8.0	390	4.3
	D	94	10	0	10	0	SVS '	22.0	8.1	395	7.0
	E	95	8	0.	8	2	ex	22.0	7.7	400	6.5
	E	96	9	0	9	- 1	sals	22.0	8.1	390	7.
	-								4	:	
						Technik	clan's Initials	AW	PALU)	an	an
Q Instruments Used	i Ner	10. GA	. Ho tha	∽. pH_	TT-A-26	Cond./ D	Sal. <u>7-A</u>	-100 C Qt 8/97		-π-A-19	v

Client_ND44

۰.

EVS Project No. 9/575 - 37.10

EVS Work Order No. 9700 658

Test Type ______ Freshmade Solvent Toricky Test Test Species _______ C. kentans Test Initiation Date (Day 0) ______ Test Termination Date ______ /17

Sample ID	Rep.	Pan No.	No. Alive	No. Dead	Total Recovered	No Missing	Tech. Init.	Temp. (°C)	pH	Cond. (µmhos/cm) 🗗 Salinity (ppt) 🗖	DO (mg/L)
SR - 17 - 55-E	A	97	4	0	. 4	6	Asy	22.0	7.7	390	7.5
	в	98	-4	1	5 .	5	Ary	22.0	7.7	370	7.4
	c	99	9	0	9	1	AFY	22.0	7.7	375	7.4
	D	100	8	1	9	. /	AFY	22.0	7.7	375	7.4
	E	18th	9	0.	9	1	REY	22.0	7.7	375	7.5
	F	102	10	0	10	0	AFy	22.0	7.7	370	7.5
											-
SR-1-55-70	A	103	10	0	10.	0	BST	22.0	7.8	370	7.4
5K-1-52-99	8	104	9	0	9	1	345	22.0	8.1	370	7.4
	c	105	9	0.	9	1.	045	22.0	8.1	365	7.4
	D.	106	10	0	10	0	prs.	22.0	8.0	365	7.3
	E	67	10	0.	10	0	RAS	22.0	8.1	365	7.3
	F	(0%	9	0	9	- 1	RIS	22.0	.8.1	360	7.4
										1	
		1		1		Technic	ian's Initials	ayw	oyu	ano	age
Instruments Used	200	1. <u>c.1</u>	in The	. pH_	₩-A-26	Cond./. D	Sal. <u>#-A</u> ate Verified	0er 8/97	_ DO	. V IT-А-19	V

Client NOAA

EVS Project No9	1575 - 37.10	
EVS Work Order No.		
and the state waters where	second se	

Test Type 10.0 Freshward - Soliment Toxicity Tost Test Species 101 Harten C. Kentans Test Initiation Date (Day 0) 101 Alexand 20 (197 Test Termination Date ______ 197

Sample ID	Rep.	Pan No.	No. Alive	No. Dead	Total Recovered	No Missing	Tech. Init.	Temp. (°C)	pH	Cond. (µmhos/cm) 🗗 Sallnity (ppt) 🗖	DO (mg/L)
5R - 11 - 55- F	A	109	7	0	:7	3	13-57	22:0	7.5	395	7.6
	8	10	7	0	7	3	BST	22.0	7.5	400	7.5
	C	(I)	5	0	5	5	RSI	22.0	7.5	390	7.5
	D	112	9	0.	9	. /	855	22.0	7.5	395	7.4
	E	113	9	0	9	1	BLD	22.0	7.4	395	7.5
	E	114	D.	0	10	0	345	22.0	7.4	395	7.5
						;	<u> </u>				+
						· · .					
		_	-				<u> </u>		-		
										÷	
+			CT-S INCOME			Technic	ian's Initials	(041)	and	and	ayu

		VARIO		Da	te: 15/09/5		Sample Type: SEDIM Leb ID: EVS-Environr		
				\$	urvival	Survival	# of Chironomids	Pan Weight	Pan +
Pos	ID	Rep	Group		Start	Day 10	Weighed	(mg)	Chironomids (mg)
	1	1	D-Control		10	9	9	1002	1011.5
	2	2	D-Control		10	10	10	1002.5	1012.1
	3	3	D-Control		10	10	10	994.1	999.1
	4	4	D-Control		10	10	10	991.9	999.1
	5	5	D-Control		10	9	9	990.2	997.5
	6	6	D-Control		10	10	10	985.7	993.6
	7	1	SR-3-SS	BP	ам 10	9	9	978.5	996.2
	8	2	SR-3-SS-F	ß	10	5	5	961.8	994.8
	9	3	SR-3-SS-F	6	10	9	9	980.4	998.5
	10	4	SR-3-SS-F	3	10	10	10	983.4	1002.9
	11	5	SR-3-SS-F		10	8	8	975.1	992.5
1	12	6	SR-3-SS-F		10	8	8	970.6	986.7
-	13	1	SR-8-SS-F		10	8	8	972.7	990.2
-	14	2	SR-8-SS-F		10	9	9	972.9	990.9
-	15	3	SR-8-SS-F		10	10	10	978.6	995.6
-	10	4	SR-8-SS-F		10	10	10	983.3	1005
-	17	5	SR-8-SS-F	-	10	9	9	981.4	998.5
-	18	6	SR-8-SS-F	-	10	0	0	977.2	995.8
-	19	1	SR-4-SS-F	6.6		8	8	980	992.9
-	20	2	SR-4-SS-F		10	10	10	980.4	997.9
	21	3	SR-4-SS-7	_	10	9	9	980.4	993.3
-	22	4	SR-4-SS-F	-	10	9	9	983.1	999.3
-	23	5	SR-4-SS-P		10	8	8	977.7	988.8
-	24	6	SR-4-SS-F		and the second sec	9	9	985.8	1001.6
-	25	1	SR-14-SS-F	-	10	4	4	978.7	984.8
	26	2	SR-14-SS-F	-	10	9	8	983.5	995.6
-	27	3	SR-14-SS-F	-	10	9	9	981.8	997
-	28	4	SR-14-SS-F	-	10	10	10	987.9	1001.9
-	29	5	SR-14-SS-F	-	10	8	8	988.8	1003.6
-	30	6	SR-14-SS-F	-	10	6	6	984.5	995.1
	31	1	SR-7-SS-F	-	10	0	0	890.5	990.5
	32	2	SR-7-SS-F	<u> </u>	10	0	0	\$87.7	987.7
-	-	_	SR-7-SS-F		10	0	0	\$88.4	988.4
_	33	3	SR-7-SS-F		10	0	0	986.8	986.8
-	34	5	SR-7-55-F		10	0	0	986	986
_	_	6	SR-7-SS-F		10	0	0	900.7	990.7
	36		SR-16-65-F		10	9		987.1	997.6
	_	1	and the second se		10	6	6	\$87.5	997
_	38	2	SR-16-SS-F		10	10	10	991.2	1008.1
-	-		SR-16-SS-F		10	10	10	\$85.6	1003.3
	40	4	SR-16-SS-F SR-16-SS-F		10	7	7	\$85.0	988.8
-	41	6			10	10	10	\$82.7	996.9
	and shares where		SR-16-SS-F SR-18-SS-F		10	8	8	\$85.3	997.9
	43	1	the second		and the second se	9	9	984.2	997.9
	44	2	SR-18-SS-F		10		the second s	985.1	1002
	45	3	SR-18-SS-F		10	10	10		998
	46	4	SR-18-SS-F	•	10	10	10	985.3	1001.7
	47	5	SR-18-SS-F		10	10	9	989.2	
_	48	6	SR-18-SS-F		10	9	9	984.8	998.4
_	49	1	SR-9-SS-F		10	8	8	991.1	1004.8
_	50	2	SR-9-SS-F	· · · · · ·	10	7	7	9953	1009
	51	3	SR-9-SS-F		10	1	7	997.4	1012.4
	52	4	SR-9-SS-F		10	9	9	994	Reviewed by:

Page 1

ToxCalc 5.0

Ľ

Ĩ

1

1

Į

ŗ

No.

ample II		2.2.0			e Type: SEDIME		
art Date		the second se	te: 15/09/97		: EVS-Environme		
53	-	SR-19-SS-F	10	6	6	996.6	1009
54	-	SR-19-SS-F SR-19-SS-F	10	10	10	989.9 995.2	1003.9
56	_	SR-19-SS-F	10	9	9	994.6	1005.8
57	_	SR-19-SS-F	10	10	10	1009.3	1023.5
58	-	SR-19-SS-F	10	7	7	1005.7	1018.2
59	-	SR-15-SS-F	10	10	10	983.3	999.7
60	2	SR-15-SS-F	10	10	10	990.7	1009.5
61	3	SR-15-SS-F	10	9	9	996	1009
62	4	SR-15-SS-F	10	2	2	998.8	1003.2
63	5	SR-15-SS-F	10	10	10	1002.2	1016.4
64	6	SR-15-SS-F	10	9	9	1014	1027.2
65	1	SR-12-88-F	10	8	8	986.4	998.1
60	2	SR-12-SS-F	10	9	9	987.5	999.2
67	-	SR-12-SS-F	10	10	10	985.5	999.5
68	_	SR-12-SS-F	10	8	8	986.7	1001
69	-	SR-12-SS-F	10	10	10	984.4	1000.7
70		SR-12-SS-F	10	10	10	1006.5	1023.3
71	_	SR-2-SS-F 8 #	and the second se	5	5	1020.7	1027.8
72		SR-2-SS-F 3 SR-2-SS-F 3	10	6	6	1016.1 993	1028.6
74	_	SR-2-55-F g	10	9	9	999.6	1014.5
75	-	SR-2-SS-F g	10	9	9	1001.2	1016.6
76	_	SR-2-SS-F 1		5	5	1017.9	1025.3
77	_	SR-13-SS-F	10	7	7	1007.5	1019.8
78	_	SR-13-SS-F	10	10	10	1004.4	1021.7
79	-	SR-13-SS-F	10	7	7	1000.2	1011
80	4	SR-13-SS-F	10	8	8	975.4	987.8
81	5	SR-13-SS-F	10	9	9	978.7	992.1
82	6	SR-13-SS-F	10	10	10	981.9	995.8
83	1	SR-20-SS-F	10	9	9	978.8	988.9
84	2	SR-20-SS-F	10	9	9	994.7	1008.3
85	3	SR-20-SS-F	10	10	10	990.8	1004.3
86	_	SR-20-SS-F	10	9	9	990.2	1003.8
87	_	SR-20-SS-F	10	4	4	982.5	992
88	_	SR-20-SS-F	10	9	9	979.6	994.5
89	-	SR-10-SS-F	10	9	9	972.8	989.3
90	-	SR-10-SS-F	10	8	8	965.5	979.3
91	and the second division of	SR-10-SS-F	10	and the second se	9	962 962.4	980.5
92	-	SR-10-SS-F SR-10-SS-F	10	10 8	8	962.4	983.8 981.1
93	_	SR-10-SS-F	10	9	9	955.4	985.3
95	_	SR-17-SS-F	10	4	4	968.1	976.2
96	_	SR-17-SS-F	10	4	4	974.9	982.6
97	and the second se	SR-17-SS-F	10	9	9	976.2	986.5
98	_	SR-17-SS-F	10	8	8	979.5	991.9
99	-	SR-17-SS-F	10	9	9	970.1	987.8
10	0 6	SR-17-SS-F	10	10	10	1012.8	1028.8
10	1 1	SR-1-SS-FB 2	10	10	10	980.4	998.7
10	2 2	SR-1-SS-F 8	10	9	9	988.8	1005.7
10	And in case of the local division in which the local division in t	SR-1-SS-FB	10	9	9	997.5	1014.7
10	the second s	SR-1-SS-F 5	10	10	10	995	1011.4
10	-	SR-1-SS-F 8	10	10	10	997.6	1017.1
10	6 6	SR-1-55-5 3	+ 10	9	9	1001.8	1021.6 Reviewed by

Page 2

4

1

R

1

1

1

1

1

1

Į

-

Į

1

]

1

ToxCalc 5.0

	VARI		rowth Test	Test ID: EVS5442 Protocol: ASTM 96 Sample Type: SEDIMENT2-Freshwater Lab ID: EVS-Environment Consultants				
107	1	SR-11-SS-F	10	7	7	1004.7	1017	
108	2	SR-11-SS-F	10	7	7	1008.7	1029.2	
109	3	SR-11-SS-F	10	5	5	1013.4	1023.5	
110	4	SR-11-SS-F	10	9	9	1020.7	1039.4	
111	5	SR-11-SS-F	10	9	9	1024.8	1042.2	
112	6	SR-11-SS-F	10	10	10	1024.4	1045.8	

Comments: NOAA; 9/575-37.10; 9700658; Chironomus tentans

Į Reviewed by Ut Col 9/97 ł

F

÷.

÷.

١

Į

ł

l

Start Date:	9/5/97			Chironomi EVS5442			Sample ID	c 1	ARIOUS			
	9/15/97		ab ID:	EVS-Envir	onment C	onsultan	Sample Ty		SEDIMEN			
Sample Date:				ASTM 96			Test Speci	es:	CT-Chiron	omus tent	ans	
Comments:	NOAA: 9	575-37.10	: 970065	8; Chirono	mus tenta	ns						
Conc-%	1	2	3	4	5	6					_	
D-Control	0.9000	1.0000	1.0000	1.0000	0.9000	1.0000						
+ SR-3-SS-F0	0.9000	0.5000	0.0000	1.0000	0.8000	0.8000						
SR-8-SS-F	0.8000	0.9000	1.0000	1.0000	0.9000	0.9000						
AI SR-4-SS-F	0.8000	1.0000	0.9000	0.9000	0.8000	0.9000						
SR-14-SS-F	0.4000	0.9000	0.9000	1.0000	0.8000	0.6000						
SR-7-SS-F	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000						
SR-16-SS-F	0.9000	0.6000	1.0000	1.0000	0.7000	1.0000						
SR-18-SS-F	0.8000	0.9000	1.0000	1.0000	1.0000	0.9000						
SR-0-SS-F	0.8000	0.7000	0.7000	0.9000								
SR-19-SS-F	0.6000	1.0000	0,7000	0.9000	1.0000	0.7000						
SR-15-SS-F	1.0000	1.0000	0.9000	0.2000	1.0000	0.9000				1.2		
SR-12-SS-F	0.8000	0.9000	1.0000	0.8000	1.0000	1.0000				10		
Dr SR-2-SS		0.6000	0.7000	0.9000	0.9000	0.5000						
SR-13-55-F	0.7000	1.0000	0.7000	0.8000	0.9000	1.0000						
SR-20-SS-F	0.9000	0.0000	1.0000	0.9000	0.4000	0.9000						
SR-10-SS-F		0.8000	0.9000	1.0000	0.8000	0.9000						
SR-17-SS-F		0.4000	0.9000		0.9000	1.0000						
AW SR-1-SS-F		0.9000	0.9000		1.0000	0.9000						
SR-11-SS-F		0.7000	0.5000	0.9000	0.9000	1.0000						
01111001				Transform	n: Untran	sformed			1-Talled			
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD		
D-Control		0.0516	0.9667		1.0000	5.342		0.040	0.045	0.0109		
AutsR-3-SS-F		0.1722	0.8167		1.0000	21.091		2.043	2.015	0.0028		
SR-8-SS-F		0.0753	0.9167		1.0000	8.212		1.342		0.0028		
ANSR-4-SS-F		0.0753	0.6833		1.0000	8.522		2.236	2.015	0.0179		
*SR-14-SS-F		0.2251	0.7667		1.0000	29.360		2.121	2.015	0.0170		
SR-7-SS-F		0.0000	0.0000		0.0000	0.000		1 2 4 2	0.045	0.0112		
SR-16-SS-F		0.1751	0.8567		1.0000	20.206		1.342	2.015	0.0031		
SR-18-SS-F		0.0816	0.9333		1.0000	8.748		0.845	2.015			
*SR-9-SS-F		0.0957	0.7750		0.9000	12.354		3.664	2.298	0.0063		
*SR-19-SS-F		0.1722	0.8167		1.0000	21.091		2.043	2.015			
SR-15-SS-F		0.3141	0.8333		1.0000	37.694		1.025	2.015	0.0340		
SR-12-SS-F		0.0983	0.9167		1.0000	10.726		1.103	2.015	0.0041		
PH *SR-2-SS-P	\$ 0.6833	0.1835	0.6833		0.9000	26.851		3.641	2.015	0.0122		
SR-13-55-F		0.1378	0.8500		1.0000	16.217		1.941	2.015	0.0073		
SR-20-55-F		0.2160	0.8333		1.0000	25.923		1.470	2.015	0.0166		
*SR-10-SS-F		0.0753	0.8833		1.0000	8.522		2.236	2.015	0.0028		
*SR-17-SS-F	0.7333	0.2658			1.0000	36.250		2.111	2.015			
# SR-1-SS-		0.0548	0.950	0.9000		5.768		0.542	2.015			
*SR-11-SS-F		0.1835	0.783	3 0.5000	1.0000	23.424		2.356	2.015	0.0122	-	
Auxiliary Tes	sts						Statistic		Critical		Skew	Ku
Kolmogorov I	D Test India	ates non	-normal o	listribution	(p <= 0.01)	1.33188		1.035		-1.217	2.45
Equality of va	riance can	not be co	nfirmed	10 Sec. 10 Sec.						_		
	Test (1-tail											

* Indicates a significant difference when compared to control.

Reviewed by _____

Page 1

1

1

ų,

1

1

-

1

1

and the

ł

1

1

ġ

1

TexCalc v5.0

Start Date:	9/5/07 9/15/97		Test ID: Lab ID:	EV\$5442 EVS-Envi	in a mart (Concultan	Sample II		VARIOUS		-	
				ASTM 96	ionment (Consultan	Test Spec		CT-Chiron			
Sample Date: Comments:		1575-37 1		ia; Chirono	mue tent		rest oper	acs.	CI-CHILD	iomus te	mans	
Conc-%	1	2	3	4	5	6						_
D-Control	1.0556	0.9600	0.5000	0.7200	0.0111	0.7900				_		-
& SR-3-SS-P		2.6000	2.0111	1.9500	2.1750	2 2625						
SR-8-SS-F	2.1875	2.0000	1.7200	2.1700	1,9000	2.0667						
W SR-4-SS-FI		1.7500	1.4333	1.8000	1.3875	1.7556						
SR-14-SS-F	1.5250	1.5125	1.6889	1.4000	1.8500	1.7667						
SR-16-SS-F	1.1667	1.5833		1.7700	1.0143	1.4200						
SR-18-55-F	1.5750	1.5222	1.6900	1.2700	1.3889	1.5111						
SR-0-SS-F	1.7125	1.0571	2.1420	2.0333	1.0000							
SR-19-SS-F	2.0667	1.4000	1.5143	1.4333	1.4200	1.7857						
SR-15-SS-F	1.6400	1.8800	1.4444	2.2000	1.4200	1.4667						
SR-12-SS-F	1.4625	1.3000	1.4000	1.7875	1.6300	1.6800						
- SR-2-SS-70		2.0833		1.6556	1.7111	1.4800						
SR-13-SS-F	1.7571	1,7300	1.5429	1.5500	1.4889	1.3900						
SR-20-55-F	1.1222	1.5111	1.3500	1.5111	2.3750	1.6556						
SR-10-SS-F	1.8333	1.7250	2.0556	2.1400	2.2875	22111						
SR-17-SS-F	2.0250	1.9250	1.1444	1.5500	1.9667	1.6000						
P# SR-1-SS-F	-	1.8778		1.6400	1.9500	2.2000						
SR-11-SS-F	1.7571	2.9286	2.0200	2.0778	1.9333	2.1400						
011-00-1	1.1911	2.0200	2.02.00	Transform					1-Tailed		_	
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD		
D-Control	0.8061	0.1036	0.8061	0.5000	1.0556	24.010	6					
AN SR-3-SS-FA		0.2482		1.9500	2,6000	11.485	6					
SR-8-SS-F	2.0074	0.1770	2.0074	1.7200	2.1875	8.816	6	-11.220	1.812	0.0208		
Ar SR-4-SS-F		0.1770	1.6231	1.3875	1.8000	10.902	6					
SR-14-SS-F	1.6238	0.1721	1.6238	1.4000	1.8500	10.597	6					
SR-16-SS-F	1.4407	0.2994	1.4407	1.0143	1.7700	20.783	6	-4.350	1.812	0.0384		
SR-18-SS-F	1.4929	0.1465	1.4929	1.2700	1.6900	9.812	6	-6.930	1.812	0.0178		
SR-9-SS-F	1.9615	0.1826		1.7125	2.1429	9.311	4	0.000				
SR-19-SS-F	1.6033	0.2682		1.4000	2.0667	16.729	6					
SR-15-SS-F	1.6752	0.3100	1.6752	1.4200	2.2000	18.505	6	-5.825	1.812	0.0403		
SR-12-SS-F	1.5433	0.1855		1.3000	1.7875	12.021	6	-6.735	1.812	0.0217		
W SR-2-SS-P		0.2490	1.7060	1.4200	2.0833	14.599	6	0.100				
SR-13-SS-F	1.5765	0.1418		1.3900	1.7571	8.892	6	-7.865	1.812	0.0174		
SR-20-55-F	1.5875	0.4265		1.1222	2.3750	26.864	G	-4.087		0.0663		
SR-10-SS-F		0.2203		1.7250	2.2875	10.789	6	1.991		4.4040		
SR-17-SS-F		0.3372		1.1444	2.0250	19.813	6					
SR-1-SS-F		0.1820		1.6400	2.2000	9.571	6	-10.099	1.812	0.0213		
SR-11-SS-F		0.4073		1.7571	2.9286	19.007	6	-10.099	1.012	0.0213		
Auxiliary Test	Contraction of the local division of the loc	0.4073	2.1420	1.7071	2.0200	10.007	Statistic		Critical		Skew	Kurt
Kolmogorov D		ates nor	nal distrib	tion (n >)	0.01)		0.45977	_	1.035		0.71615	
Bartlett's Test							4.33979		20.0902		0.11010	1.0144
CONTROL & LOST		, 0.05)	ances (p -	- 0.001			4.00010		20.0002			

Reviewed by ľ

ł

t

ł

1

ł

ł

l

ĺ

ToxCale v5.0

EVS CONSULTANTS FRESHWATER SEDIMENT TOXICITY TEST DATA SUMMARY

Client NOAM	and the second se	
EVS Project No.	9/575-37.10	
EVS Work Order N	0. 9700658	
SAMPLE		,
Identification KC	1 Refor propid Sept 5	59
Amount Received	-	
Date Collected	5.0°*	
Date Received	-	

EVS Analy	ysts A	with	ST, MIKL, I	61, 144
Test Type	96.h	KCI	Recence	Terilant Trest
Test Initiat	ion Date	Se	21.5197	1

TEST SPECIES INFORMATION

	Cotentars
Source/Dat	Received ECT/Sept. 4 97
Age/Dry W	eight on Day 0 (mg/ind) ud lo. 30 mg/ind.
	Poxicant K(1
Current Rei	rerence Toxicant Result (LC50 and 95% CL)
Reference 7	Foxicant Warning Limits (mean ± 2SD)

TEST CONDITIONS

Water Type	ly Hard We
Temperature (*C) 23	4
pH 7.9	
Dissolved Oxygen (mg/L)	8.7
Conductivity (utnhos/cm)	
Hardness (mg/L as CaCO3) _	98
Alkalinity (mg/L as CaCO3)	
Other	

Temperature Range (*C)2 - 2.3
pH Range 7.4 - 9.0
Dissolved Oxygen Range (mg/L) 4.8-1.6
Conductivity (umhos/cm) 200-47 000
Hardness (mg/L as CaCO3)
Alkalinity (mg/L as CaCO ₃)
Photoperiod (L:D h) / 6 : 8
Other

Survival (%) .	Individual Dry Weight (mg)
93.3	
C	
80.0	1
66.7	
ø	
ø	
	01/100
	ø

Date Verified _ Oct 8/97

www.ab/Datachs/Selimen/Ferch/SUMMARY.WPD

February 23, 1997

EVS CONSULTANTS FRESHWATER SEDIMENT - 96-h REFERENCE TOXICANT TEST DATA

Client NOAA	
EVS Project No. 91	575 - 37.10
EVS Work Order No.	
Test Initiation Date	人员的25 24 (997

Reference To EVS Stock II	Preparation Date _stack Sept. 5 19	27
	C. tentens	_
Source/Colle	tion Date EC / Aug. 25/93	_
No. Organist	is/Test Volume _10 / 15'0 ~L	

Concentration		mber of (24 to 9			Dissolved Oxygen (mg/L)						Temperature (*C)					рН					Conductivity (umhos/cm)	
gic Kel	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	96	
20.0 Å	0	o	0	0	8.6	11	11	11	6.4	22	23.0	25.0	28.0	22.4	7.9	1	1	1	7.6	47000	Soon	
в	1	0	0	0	86	1	1	N	6.6	22	250	23.0	23.0	22.5	29	/	0	N	7.6	47000	5000	
c	0	0	0	0	86	1	1	11	6.4	22	23.0	23.0	23.0	22.5	2.9	1	2	N	7.5	4700	49000	
	1					1	1	N	1							1	2	V				
10-0 A	15	3	3	σ	8.4	1	1	1	5.0	22	23.0	25.0	23.0	22.5	80	1	1	N	7.4	29000	37000	
6	5	2	2	0	8.4	11	1	1	5.2	22	23.0	25.0	93.0	22.5	80	N	1	N	7.4	29000	36000	
c	4	2	2	0	8.4	11	1	1	5.6	22	23.0	230	\$3.0	22.5	8.0	1	1	1	7.4	29000	37000	
Technician Init.	AW	BSJ	1355	P(J)	4	-	-	-	366	h	FW)	15-40	250	JGL	m	-			360	h	JGU	
Q Instruments Used:	9	perature		0		1	pH_	T-1-3	26		_	DO	π-4	-19				Cond.	τ-1	-100 C.		
nt Set Up By/	105			D	ata Veri	ifed By	C	state	gn_						D	ato Ver	ifed_	an	8/97	_		
				- 2							+	*					11117					

EVS CONSULTANTS FRESHWATER SEDIMENT - 96-h REFERENCE TOXICANT TEST DATA

Client NQAA	
EVS Project No. 9/5	75-37.10
EVS Work Order No.	7700 458
Test Initiation Date	1.5925 26 (997

Reference Texicant [SC] EVS Stock ID/Preparation Date Proof Sept 5/97 Test Species <u>C - 10/1505</u> Source/Collection Date <u>IST / Aug. 25/97</u> No. Organisms/Test Volume <u>10/100 ml</u>

Concentration		(24 to 96 hours) Dissolved Oxygen (mg/L)									Temperature (*C)					pH					Conductivity (umhos/cm)	
gic sel	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	96	
5.0 A	1d4	66	6	5	\$4	1	1	1	4.9	72	23.0	23.0	23.0	22.5	80	\square	1	1	7.4	15,000	2300	
ß	9	8	7	8	84	1	1	1	4.8	22	23.0	13.0	23.0	22.1	80	N	1	1	7.4	\$000	24000	
c	8	8	8	7	8.4	1	1	7	5.2	22	25.0	23.0	23.0	22.5	80	1	1	0	7.4	18000	24000	
						1	1	1								1	1	1				
۸ 2.5	704	,7-	Ŧ	8	8.4		1	1	5.1	22	23.0	\$3.0	£3.0	22.5	80	1	1	1	7.4	450	475	
ß	10	10	9	9	8.4	1	1	1	5.3	22	23.0	23.0	93.0	22.5	8-0	1	1	1	7.4	4500	470	
د	7	7	7	7	8.4	7	1	1	5.3	22	23.0	28.0	23.0	22.5	80	1	1	1	74	4510	4700	
Technician Init.	(etu)	25	351	eda)	-	-		-	UGE	m	AW	39	1315	JGU	h	-	-	-	Jon	n	Jor	
struments Used:	0		- Cal.	~			pH_7	T-A-2			<u>-</u>			-19				Cond.		-1000		

EVS CONSULTANTS

FRESHWATER SEDIMENT - 96-h REFERENCE TOXICANT TEST DATA

Client NOAA

EVS Project No. 9/575 - 37.10

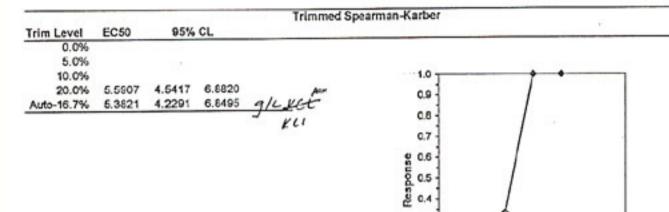
EVS Work Order No. 9700 458 Test Initiation Date 4585 26 (997

.

Reference Toxicant KCl EVS Stock ID/Preparation Date works Stat 5 (97 Test Species <u>C-1641644</u> Source/Collection Date <u>ECT / August 5 / 17</u> No. Organisms/Test Volume <u>6 / ISD prot</u>

Second 1.1

48	72	1		_							•(*C)		L		pН				luctivity bos/cm)
1		96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	96
19	٩	9	8.2	1	1	1	4.9	22	23.0	23.0	230	22.5	79	1	1	1	7.4	63.0	24 .
10	10	7	82	1	1	1	1.6	22	23 0	23.0	23.0	22.1	29		1	1	7.5	0255	2400
10	10	9	9.2	1	1	1	5.2	22	23.0	23.0	23.0	22.0	7.8	1	1	1	21		2450
				1	1	/	-							/	1	1			
9	9	10	9.2	1	1	1	6-1	22	23.0	23.0	23.0	72.1	78	1	1	1	7.5	3.0	340
10	10	10	8.2	1	1	1	5.2	22	23.0	23.D	23.0	27.5	78	/	/	1	7.4	300	330
10	10	10	8.2	1	1	1	5.9	22	23.0	23.0	23.0	11 [78	1	1	1	7.5	300	345
0 85	5 BST	FAW	4		-		JGL	h	de)	857	25	JGh	r	-			J84	h	364
		1	Construction	р	н				-					harr salars			lanara (
	9 9 10 10 0 0 0	9 9 9 10 10 10 10 10 10 10 10	0 10 10 9 9 9 10 10 10 10 10 10 10 10 10 10 0 BST BST ALW mperature (a) HyTL	9 9 10 9.2 9 9 10 9.2 10 10 10 8.2 10 10 10 8.2	9 9 10 9.2 9 9 10 9.2 10 10 10 8.2 10 10 10 9.2 10 10 9.2 10 10 9.2 10 10 9.2 10 10 9.2 10 10 9.2 10 10 10 9.2 10 10 10 8.2 10 10 10 9.2 10 10 10 10 9.2 10 10 9.2 10 10 10 9.2 10 10	9 9 10 9.2 9 9 10 9.2 10 10 10 8.2 10 10 10 10 8.2	9 9 10 9.2 9 9 10 9.2 10 10 10 8.2 10 10 10 8.2 10 10 10 8.2 10 10 10 8.2 10 BST BST ALL MATLECON PH_T-A-2	0 10 10 9 5.2 5.2 9 9 10 9.2 6.1 10 10 10 8.2 5.7 10 10 10 8.2 5.7 10 10 10 8.2 5.7 10 10 10 8.2 5.9 10 10 10 8.2 5.9 10 10 10 8.2 5.9 10 10 10 8.2 5.9 10 10 10 10 10 10 10 10 10 10 10 10 10 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 10 10 9 5.2 5.2 22 23.0 9 9 10 9.2 6.1 22 23.0 10 10 10 8.2 5.7 22 23.0 10 10 10 8.2 5.9 22 5.9 20 0 10 10 10 8.2 5.9 22 5.9 20 0 10 10 10 8.2 5.9 20 0 10 10 10 10 8.2 5.9 20 0 10 10 10 10 8.2 5.9 10 0 10 10 10 10 10 10 10 10 10 10 10 10 10 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							


amp	es: C1 le ID:	-Chiron	er Amphipod Su omus tentans of Toxicant End Da	te: 9/8/97		Test	Protocol: Sample 1	ype: KCL-P	EPA Freshwater Sediment otassium chloride ment Consultants
Pos		Rep	Group	Start	24 Hr	48 Hr	72 Hr	96 Hr	Notes
-0.	1	1	D-Control	10				10	
-	2	2	D-Control	10	1			. 10	
-	3	3	D-Control	10			-	10	
-	4	1	1.250	10				9	
-	5	2	1.250	10			-	7	
-	6	3	1.250	10			1	9	
	7	1	2.5	10				8	
	8	2	2.5	10				9	
-	9	3	2.5	10				7	
-	10	1	5.0	10			-	5	
-	11	2	5.0	10				8	
-	12		5.0	10				7	
	13	11	10.0	10			-	0	
	14	2	10.0	10			-	0	
-	15	3	10.0	10	1			0	
-	16	11	20.0	10				0	
-	17	2	20.0	10				0	
-	18	3	20.0	10			1	0	

Comments: NOAA; 6/575-37.1; 6700658; Chironomus tentans

Reviewed by

ļ

start Date:	9/5/97			ter Amphipod Survival and RTCTKCL4	Sample ID:	REF-Ref Toxicant
ind Date:	9/9/97			EVS-Environment Consultan		KCL-Potassium chloride
Semple Date: Comments:	-	575.37 1		EPAFS 94-EPA Freshwater 3; Chironomus tentans	Test Species:	CT-Chironomus tentans
Conc-gm/L	1	2	3	, one one new containe		
D-Control	1.0000	1.0000	1.0000			
1.25	0.9000	0.7000	0.900			
2.5	0.8000	0.9000	0.7000			
5	0.5000	0.8000	0.7000			
10	0.0000	0.0000	0.0000			
20	0.0000	0.0000	0.0000			

0.3

٤

10

Dose gm/L

100

Ľ

ł

E

-

1

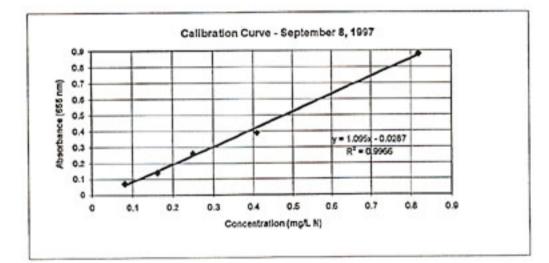
R.

C

Ì

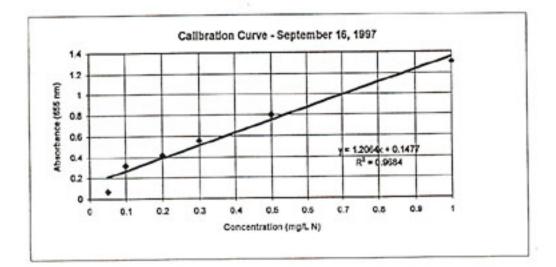
-

Total Ammonia Measurements (reported as ammonia nitrogen, mg/L N)


I

ALC: N

1


R

	Client: Project No.: Work Order No.:	NOAA 9/575-37.1 9700658	Test Type: Test Species: Date Initiated:	10-d Freshwate Chironomus te 5-Sep-97		Toxicity Test
	Date Sampled: Date Measured:	5-Sep-97 8-Sep-97	Day 0 Date Terminated	15-Sep-97		
1	Standard Concentrations (mg/L N)	Absorbance of standards	Sample ID	Absorbance of samples	Dilution factor	Ammonia concentrations (mg/L N)
-		0.07	Control	0.02	16.67	<0.1
1	0.08	0.14	SR-1-SS-B	0.28	25.00	7.0
	0.16	0.26	SR-2-SS-B	0.35	50.00	17.3
	0.41	0.30	SR-2-SS-B rep	0.36	50.00	17.7
	0.82		SR-3-SS-B	0.48	25.00	11.6
	6.64		SR-4-SS-B	0.56	50.00	26.9
			SR-7-SS-F	0.23	25.00	5.9
105			SR-8-SS-F	0.33	50.00	16.4
18			SR-9-SS-F	0.39	25.00	9.6
			SR-10-SS-F	0.58	50.00	27.8
			SR-11-SS-F	0.47	50,00	22.8
1			SR-12-SS-F	0.33	50.00	16.4
100			SR-12-SS-F rep	0.34	50.00	16.8
			SR-13-SS-F	0.52	50.00	25.1
-			SR-14-SS-F	0.65		31.0
			SR-15-SS-F	0.42		20.5
- 3			SR-16-SS-F	0.34		16.8
			SR-17-SS-F	0.51	25.00	12.3
-			SR-18-SS-F	0.51	50.00	24.6
2			SR-19-SS-F	0.53		25.5
- 10			SR-20-SS-F	0.39	50.00	19.1

Total Ammonia Measurements (reported as ammonia nitrogen, mg/L N)

Client	NOAA	Test Type:	10-d Freshwate	er Sediment	t Toxicity Test
Project No.:	9/575-37.1	Test Species:	Chironomus ter	ntans	
Work Order No .:	9700658	Date Initiated:	5-Sep-97		
Date Sampled:	15-Sep-97	Day 10 Date Terminated	15-Sep-97		
Date Measured:	16-Sep-97				
Date in caracter					
		Sample ID	Absorbance	Dilution	Ammonia
Standard	Absorbance	Sample ID	of samples	factor	concentrations
Concentrations	of standards	Interstitial water		lactor	(mg/L N)
(mg/L N)		intersucal water			fundire ret
0.05	0.07				
0.1	0.32	Control	0.25	12.50	1.1
0.2	0.42	SR-1-SS-B	0.15	12.50	0.3
0.3	0.56	SR-2-SS-B	0.17	12.50	0.2
0.5	0.80	SR-3-SS-B	0.33	12.50	1.9
1.0	1.31	SR-4-SS-B	0.32	50.00	7.1
1.0		SR-7-SS-F	0.28	25.00	2.7
		SR-8-SS-F	0.25	25.00	2.1
		SR-9-SS-F	0.25	50.00	4.2
		SR-10-SS-F	0.17	50,00	0.9
		SR-10-SS-F rep		50.00	0.5
		SR-11-SS-F	0.13	50.00	<0.1
		SR-12-SS-F	0.19	50.00	1.8
		SR-13-SS-F	0.32	50.00	7.1
		SR-14-SS-F	0.28	50.00	5.5
		SR-15-SS-F	0.31	50.00	6.7
		SR-16-SS-F	0.24	50.00	3.8
		SR-17-83-F	0.35		8.4
		SR-18-SS-F	0.32		
		SR-18-SS-F rep			
		SR-19-SS-F	0.26		
			0.26		
		SR-20-SS-F	0.24	00.00	0.0

all apt

r

F

١

l

Total Sulfide Measurements (reported as mg/L S) Combination Silver/Sulfide Method

ġ.

1

and the second

8

 Client:
 NOAA
 Test Type:
 10-d Sediment Toxicity Test

 Project No.:
 9/575-37.10
 Test Species:
 C.tentans

 Work Order No.:
 9700658
 Date Initiated:
 05-Sep-07

 Notes:
 Days 0&10
 Date Terminated:
 15-Sep-97

 Please note sulfides preserved on sampling date.
 05-Sep-97

Sample ID	Date Sampled	Date Measured	Sulfide(mg/L)	Comments
	05-Sep-97	23-Sep-97	0.000	Day 0
SR-1-SS-B	05-Sep-97	23-Sep-97	0.000	Day 0
SR-2-SS-B	05-Sep-97	23-Sep-97	0.000	Day 0
SR-3-SS-B	05-Sep-97	23-Sep-97	0.000	Day 0
SR-4-SS-B	05-Sep-97	22-Sep-97	0.000	Day 0
SR-7-SS-F	05-Sep-97	22-Sep-97	0.000	Day 0
SR-8-SS-F	05-Sep-97	23-Sep-97	0.000	Day 0
SR-9-SS-F	05-Sep-97	23-Sep-97	0.000	Day 0
SR-10-SS-F	05-Sep-97	22-Sep-07	0.000	Day 0
SR-11-SS-F	05-Sep-97	23-Sep-97	0.000	Day 0
SR-12-SS-F	05-Sep-07	23-Sep-97	0.000	Day 0
SR-13-SS-F	05-Sep-97	23-Sep-97	0.000	Day 0
SR-14-SS-F	05-Sep-97	23-Sep-97	0.000	Day 0
SR-15-SS-F	05-Sep-97	23-Sep-97	0.000	Day 0
SR-16-SS-F	05-Sep-97	23-Sep-97	0.000	Day 0
SR-17-SS-F	05-Sep-97	23-Sep-97	0.000	Day 0
SR-18-SS-F	05-Sep-97	23-Sep-97	0.000	Day 0
SR-19-SS-F SR-20-SS-F	05-Sep-97	23-Sep-97	0.000	Day 0
0H-20-00-F	00.000			
SR-1-SS-B	15-Sep-97	22-Sep-97	0.000	Day 10
SR-2-SS-B	15-Sep-97	22-Sep-97	0.000	Day 10
SR-3-SS-B	15-Sep-97	22-Sep-97	0.000	Day 10
SR-4-SS-B	15-Sep-97	22-Sep-97	0.000	Day 10
SR-7-SS-F	15-Sep-97	22-Sep-97	0.000	Day 10
SR-8-SS-F	15-Sep-97	22-Sep-97	0.000	Day 10
SR-9-SS-F	15-Sep-97	22-Sep-97	0.000	Day 10
SR-10-SS-F	15-Sep-97	22-Sep-97	0.000	Day 10
SR-11-SS-F	15-Sep-97	22-Sep-97	0.001	Day 10
SR-12-65-F	15-Sep-97	22-Sep-97	0.000	Day 10
SR-13-SS-F	15-Sep-97	22-Sep-97	0.000	Day 10
SR-14-SS-F	15-Sep-97	22-Sep-97	0.000	Day 10
SR-15-SS-F	15-Sep-97	22-Sep-97	0.000	Day 10
SR-16-SS-F	15-Sep-97	22-Sep-97	0.000	Day 10
SR-17-SS-F	15-Sep-97	22-Sep-97	0.000	Day 10
SR-18-SS-F	15-Sep-97	22-Sep-97	0.000	Day 10
SR-19-SS-F	15-Sep-97	22-Sep-97	0.000	Day 10
SR-20-SS-F	15-Sep-97	22-Sep-97	0.000	Day 10

6 de 10/97

Alkalinity/Hardness Measurements

 NOAA
 Test Type
 10-d Sediment Toxicity Test

 EVS Project No
 9/575-37.10
 Test Species
 C.tentans

 EVS Work Order No.
 9700658
 Test Initiation Date
 September 5,1997

 Test Termination Date
 September 15,1997
 September 15,1997

			Alk	alinity Measures	Hardness Measurement						
Sample ID	Subsample Date	Subsample Volume (mL)	Initial H ₂ SO ₄ Vetume (mL)	Volume to pH 4.5 (mL)	Total Volume to pH 4.2 (mL)	Alkalinity (mgl. =: CeCO ₃)	Subsample Volume (mL)	Initial EDTA Volume (mL)	Final EDTA Volume (mL)	Hardness (mgf. == CaCO ₃)	
SR-1-SS & B PAH	Sept. 5/97	50	0.0	6.5	6.7	126	50	0.0	7.5	150	
SR-2-SS-76	Sept. 5/97	50	0.0	6.1	63	118	50	0.0	7.6	152	
SR-3-SS-7 3	Sept. 5/97	50	0.0	5.9	6.0	116	50	0.0	6.5	136	
SR-4-SS-76	Sept. 5/97	1. 5/97 50 1. 5/97 50 1. 5/97 50 1. 5/97 50 1. 5/97 50		6.5	6.6	128	50	15.8	23.1	146	
SR-7-SS-F	Sept. 5/97	50	0.0	4.5	4.7	86	50	0.0	6.1	122	
SR-8-SS-F	Sept. 5/97	50	0.0	6.2	6.4	120	50	0.0	7.2	144	
SR-9-SS-F	Sept. 5/97	50	0.0	4.1	4.2	80	50	36.1	43.1	140	
SR-10-SS-F	Sept. 5/97	50	0.0	6.6	6.7	130	50		7.7	154	
SR-11-SS-F	Sept. 5/97	50	0.0	6.6	6.7	130	50	0.0	7.8	156	
SR-12-SS-F	Sept. 5/97	50	0.0	5.6	5.8	108	50	0.0	7.1	142	
SR-13-SS-F	Sept. 5/97	50	0.0	6.8	7.0	132	50	0.0	7.6	152	
SR-14-SS-F	Sept. 5/97	50	0.0	7.0	7.2	136	50	0.0	7.5	150	
SR-15-SS-F	Sept. 5/97	50	0.0	6.8	6.9	134	50	0.0	7.6	152	
SR-16-SS-F	Sept. 5/97	50	0.0	5.4	5.6	104	50	0.0	6.9	138	
SR-17-SS-F	Sept. 5/97	50	0.0	5.7	5.8	112	50	0.0	7.2	144	
SR-18-SS-F	Sept. 5/97	50	6.6	13.3	13.5	131	50	23.1	30.8	154	
SR-19-SS-F	Sept. 5/97	50	0.0	6.9	7.1	134	50	0.0	83	156	
SR-20-SS-F	Sept. 5/97	50	0.0	6.7	6.9	130	50	0.0	7.7	154	
CONTROL	Sept. 5/97	36	19.4	21.9	22.0	67	50	30.8	36.1	105	

Alkalinity/Hardness Measurements

C	NOAA	Test Type	10-d Sediment Texicity Test
Client	9/575-37.10	Test Species	C.tentans
EVS Project No	9700658	Test Initiation Date	September 5,1997
EVS Work Order No.	9700538	Test Termination Date	September 15,1997

			AB	alinity Measuren	Hardness Measurement						
Sample ID	Subsample Date	Subsample Volume (mL)	initial H ₂ SO ₄ Volume (mL)	Volume to pH 4.5 (mL)	Total Volume to pH 4.2 (mL)	Affailinity (ngit = C+CO ₂)	Subsample Volume (mL)	Initial EDTA Volume . (ml.)	Final EDTA Velume (mL)	Hardness (rg/L == CeCO _b)	
SR-8-SS-F	Sept. 15/97	50	0.0	5.1	5.2	100	50	0.0	7.2	144	
SR-4-SS FB FA	Sept. 15/97	50	0.0	5.8	6.0	112	50		7.5	150	
SR-9-SS-F	Sept. 15/97	50	0.0	4,6	4.8	11	50		6.7	134	
SR-7-SS-F	Sept. 15/97	50	0.0	4.5	4.7	86	50		6.4	12	
SR-2-SS-FO PAN	Sept. 15/97	60	0.0	6.4	6.5	105	50		7.1	14	
SR-1-SS-FB IN	Sept. 15/97	50	0.0	4.9	5.0	96	50		6.7	13	
CONTROL	Sept. 15/97	50	0.0	3.7	3.8	72	50		5.2	10	
SR-3-55 #6 P**	Sept. 15/97	50	0.0	5.1	5.3	98	50		7.3	14	
5R-10-55-F	Sept. 15/97	50	0.0	6.3	6.4	124	50		7.6	15	
5R-13-55-F	Sept. 15/97	50	0.0	5.1	5.3	98	50		7.3	14	
5R-11-SS-F	Sept. 15/97	50	0.0	5.3	5.4	104	50		7.5	15	
SR-14-SS-F	Sept. 15/97	50	0.0	5.3	5.4	104	50	1	7.5	15	
SR-16-SS-F	Sept. 15/97	50	0.0	5.3	5.4	1	50		7.1	14	
SR-15-SS-F	Sept. 15/97	50	0.0	5.3	5.4				7.5	15	
SR-12-SS-F	Sept. 15/97	50	0.0	4.8	4.9			4 CON	7.0	14	
SR-18-SS-F	Sept. 15/97	50	0.0	5.3	5.4			1		14	
SR-17-SS-F	Sept. 15/97	50	0.0	5.0	5.1	I 1000				14	
\$R-20-\$\$-F	Sept. 15/97	50	0.0	5.4	5.5				7.2	14	
SR-19-SS-F	Sept. 15/97	50	0.0	5.2	5.3	102	50	0.0	7.4	14	

Alkalinity/Hardness Measurements

Client	NOAA	Test Type	96hr KCl Reflox	
EVS Project No	9/575-37.10	Test Species	C.tentans	
EVS Work Order No.	97006.58	Test Initiation Date	5 September 1997	
	Project No 9/575-37.10	Test Termination Date	9 September 1997	

			Alle	alinity Measurer	Hardness Measurement						
Sample ID	Subsample Date	Subsample Volume (mL)	Initial H ₂ SO, Volume (mL)	Volume to pH 4.5 (mL)	Total Volume to pH 4.2 (mL)	Alkalinity (mgt. m GrCQ.)	Subsample Volume (mL)	Initial EDTA Volume (mL)	Final EDTA Volume (mL)	Hardness (ng/L m CaCOs)	
5 g/L KC1	Sept5/97	50	0	3.6	3.7	70	50	31.3	36.3	100	
2.5 g/L KCI	Sept5/97	50	3.7	7.3	7.4	70	50	36.3	41.5	104	
Control	Sept5/97	50	7.4	11.0	11.1	70	50	41.5	46.5	100	
1.25 g/L KC1	Sept5/97	50	11.0	14.6	14.7	70	50	0	5.1	102	
0 g'L KCI	Sept5/97	50	14.7	18.2	18.4	66	50	5.1	10.4	106	
20 gʻL KCI	Sept3/97	50	18.4	21.9	22.0	68	50	10.4	15.8	10	

APPENDIX C

10-d *H. azteca* Sediment Toxicity Test Raw Data

EVS CONSULTANTS FRESHWATER SEDIMENT TOXICITY TEST DATA SUMMARY

CT	Au Au						
Client NoAA	EVS Analysts PAH, DSJ, GSY, MIKE, JGK, EST, 576, 47						
EVS Project No. 91575-37.10	Test Type 10-d Freshwork - Sectionent Toxicity Trest						
EVS Work Order No9700 659	Test Initiation Date August 26, 1997						
SAMPLE	TEST SPECIES INFORMATION						
Identification Jacious	Organism Hereteco						
Amount Received Q L	Source/Date Received ARO / Aug. 22, 1997						
Date Collected August 12-18, 1997	Age/Dry Weight on Day 0 (mg/ind) 14 d / 0.04 mg/ind.						
Date Received August 20-22, 1997	Reference Toxicant Zo						
9	Current Reference Toxicant Result (LC50 and 95% CL)						
	-145.0 ug/ Zn (95% CL: 129.8 and 162.0) ug/ Z.						
	Reference Toxicant Warning Limits (mean ± 2SD)						
	but to insufficient data points a laboratery						
DILUTION AND CONTROL MEDIUM	TEST CONDITIONS						
Water Type modernally unol wholer	Temperature Range (*C)						
Temperature (°C)2 - 23	pH Range 7.1-8.22						
H 7.9-8.1	Dissolved Oxygen Range (mg/L) 2.4 - 8.7 (Day & due to the						
Dissolved Oxygen (mg/L) 8.5 - 8.8	Conductivity (umboelem) 300001						
Conductivity (umhos/cm)	Conductivity (umhos/cm) 300-600 Hardness (mg/L as CaCO ₃) (112-156)						
Hardness (mg/L as CaCO3) _ 90- 100							
Malinity (mg/L as CaCO3) 64- 60 72	Alkalinity (mg/L as CaCO ₃) ($(64-112)$ ($76-118$) Photoperiod (L:D h) (56						
Diter							
	Other Day 0 Day 10 merotician why (agric no) (con 21.0) (1.5.20) Other wind a (agric no) (con 21.0)						
	Overlying 5 (my125) (00-000) (76-115)						
	Mean ± SD						
Sample ID							

Court ID	Mean	±SD
Sample ID	Survival (%)	Individual Dry Weight (mg)
Courd	94.4 - 5.7	0.12 2 0.03
30-19-35-5	400.pt 37.0	-0.9± 0.00
58-20-55-F	F 63.3 2 25.9	- 0.14 1 0.04
32-15-55-5	65.0 - 58.9 (480:25.0)	0.1520.02 (0.1520.02
5R-17-55-F	86.7 1 12.1	0.16 2 0.05
5R-13-55-F	* 60.1 = 28.0 (m. 02 245)	- 0.04 2 0.02
5R-12-55-F	58.3 1.1.7	0.12 2 0.03
3R-1-55-B	95.0 - 84	0.16 E 0.02
5R-7-55-F	* ø t.ø	- ant: ordy
5R-3-55 - B	* 68.3 221.4	- 0.17 tody

() Indicates values for these samples with one replicate removed from statistical analysis due to possible misseeding. Frankerburger

EVS CONSULTANTS FRESHWATER SEDIMENT TOXICITY TEST DATA SUMMARY

EVS Analysts PAH, BST, GSY, MIKL, JGK, ELT, KTB, LTS, ELL,
Test Type 10-d Freshwarder Sectiment Toxicity Test
Test Initiation Date August 26, 1997
TEST SPECIES INFORMATION
Organism Higher Aca
Source/Date Received ARO / Aug. 22, 1997
Age/Dry Weight on Day 0 (mg/ind) 14 d / 0.04 mg/ind.
Reference Toxicant Zo
Ourrent Reference Toxicant Result (LC50 and 95% CL)
145.049/27n (9596CL: 29.3 and 162.0) 41/2 Zn
Reference Toxicant Warning Limits (mean ± 2SD)
Due to insufficient data points a laboratery warm
TEST CONDITIONS
Temperature Range (°C)
nu Panna H L -9.92
Dissolved Oxygen Range (mg/L) 2.4 - 8.7 (bay 8 due to tow De.)
Conductivity (umhos/cm) 300 - 600
Hardness (mg/L as CaOO) Day O

Hardness (mg/L as CaCO₃) <u>90 - 100</u> Alkalinity (mg/L as CaCO₃) <u>64 - \$672</u> Other_____

Temperature Range (°C)	2-24	
pH Range 1.1-8.23		
Dissolved Oxygen Range (mg/l) 2.4-8.7	(Days due to 100
Conductivity (umhos/cm)	00-600	
Hardness (mg/L as CaCO1)	(14-13-)	· (112-136)
Alkalinity (mg/L as CaCO ₂)	(64-112)	(74-118)
Photoperiod (L:D h)	.18	
Other	. Das	0 Day 10
overlying 5 cm		21.6) · (1.5-20-0) 0.012) (76-115)

AWD, LIM

		Mean ±	SD
	Sample ID	Survival (%)	Individual Dry Weight (mg)
	5R-4-33- B	* 467 - 12.1	- 0.18 20.09
_	52-14-55-5	X 49.3 1 14.7	- 0.1020.03
	5R-10-35-F	* 667 25.0	- 0.16 t 0.06
	52-2-55-8	¥ 86.7 ± 10.3	- 0.14 \$ 0.02
	3R-8-95-F	91.7 1 7.5	0.19 = 0.08
	5R - 16-55-F	* 617 2 38.6	- 0.15 \$ 0.03
_	SR - 9-55-F	75.0 1 41.8 (90.01-22.4)	0.17= 0.04 (0.17=0.00
	38 - 11-55-F	* 35.0 + 8.4	- 0.13 : 0.04
	52-18-55-5	4 18.3 1. 3.3	- 0.13-0.02

Data Verified By C. M. Anson

Date Verified Cet 9/97

OssehulSed incent/Pred/SUMMARY.WPD

February 21, 1997

EVS CONSULTANTS 10-d FRESHWATER SEDIMENT TOXICITY TEST - DAILY WATER QUALITY MONITORING

icot	Noti	
IS Pro	Ject No. 4/STS - 37.10	.1
	ork Order No. 9700 659	

Test Initiation Date (Day 0) ______

Test Termination Date (Day 10) _____ ber 5.1997

Test Species H . 02/00. Aug - 11-12, 1997 AHD8-12 19 ##

					Tem	peratore	(9)					pH										
Sample ID	0	1	2	3~	4	5	6	7	8	9	10.	0	1	2	3	4	5	6	7	8	2	10
- 12 - 55-F	210	23.0	250	23.0	23.0	23.0	23.0	22.	12.5	17.5	22	7.9	7.5	7.6	24	7.5	7-5	7.3	7.2	7.8	and the second value of th	7.7
54.7-52-F			240	13.0	23.0	23.0				22.0		7.4	2.3	26	7.4	2.3	7.2	7.2	7.2		8.1	3.1
52.15-53-F		23.0	24.0	33.0	23.0	23.0	25.0	22.0	22.5	22.0	2	73	7.4	21	7.2	7.2	7.1	3-1	7.1	7.9	8.1	7.5
54. 7-59-F	230		250	23.0	23.0	130	23.0	22.0	22.5	22.5	20	24	2.3	72	7.2	1.3	7-2	2.2	7.2		5.0	80
-2.14	230	23.0	28.0	13.0	23.0	23.0					22	29	2.4	7.1	7.3	7.2	7.1	2-1	.7.1	8.0	8.1	8-1
34-19-32-F	23.0	130	29.0	23.0	13.0	13.0	23.0	20.0	22.5	22.0	22	79	7.5	22	4.2	1.5	7.2	7.2	71	8.0	8.0	0
· and		23.0	240	22.0	23.0	25.0	23.0	22.P	22.5	22-5	22	78	7.6	. 7.4	7,5	7.5	7.3	7.2	7.3	7.8	-	8.0
	120			11.0			23.0	22.0	22.5	22.5		7.3	1.5	1.1	7.3	7.3	7.1	1-5	7.)		7.1	4.3
3- 20-55-F		23.0				21.0	23.0	12.D	22.5	22.0			7.3	122	7.3	7.3	7.2	7.2	7.2	7.9	8.2	8.1
	130							22.0	22.5	22.5	22	7.1	1.5	7.4	7.4	74	71	7-1.	7.2	7.8	7.9	2.
	27.0			21.0	_	_		21.5	28.3	22.5	and the owner where the party is not the party of the par	7.3	7.5	-11	7.3	7.2	7.1	1.2	7.1		8.1	7.9
mician's Initials	2014	R	In	R	JOL	-	164	1355	3,55	操約	-	4	GP	M	R	JGK	John	the	Ted.	1855	1000	Engy

1Q Instruments Used: Temp. lol. 19 tecan

pH_T-A-26

donments.

C. M. Susa hata Verified By____

Data Verified Oct 897

June 13, PPPT

ntND4.4 Project No4/STS Work Order No97				_									4	Te	st Initiatio at Termin at Species arce/Bale	tion Data	Day 10	Sec.	A A	5.12	12, 15	47
	T				Tem	perature	00										pH					
Sample ID	0	1	2	3-	4	5	6	7	8	9	10.	0	1	2	3	4	5	6	7	8	19	10
39-2-52-40	23.0	23.0	74.0	\$3.0	23.0	23.0	23.0	22.5	225	22.5	22	74	2.3	721	7.3	7.3	7.2	7.2	71	and the second se	8.2	-
54 - 18 - 33 - F	1	230	240	23.0	2.0	23.0	23.0	22.5	22.5	\$2.5	22	7.4	7.1	7.(7.1	7.2	7.1	7.2	7-1	8.3	- 1	7.1
54 (8 -33-8		23.0	210	230	73 -+	23.0	23.0	22.5	22.5	22.5	22	7.5	7.2	73	7.3	_	7.2	the second s	7.2		8.1	8.0
34. 7.30-1	1230	23.0	240	23.0	230	23.0	23.0	22.5	22.5	22.5	2	7.6	7.4	7.(7.3.	7.6	7.3	-1	_		-	8.0
32.3 -75-70	23.0			25.0	13.0	23,0	23.0	22.5	22.5	82.5	22	74		43	7.2	7.2	3.1	7.2	7.1	8.2	8.1	8.0
5R-16-51-F	220	130	200	23.0	11.0	23.0	23.0	28-5	22.5	22.5	32	7.4	7.3	7.(7.1	7.2	7.1	7.2	7.1	8.2	_	8.1
50-1-53-56	230	75.0	240	200	13.0	23.0	23.0	22.5	82.5	22.5	22	7.4	7.2	7.4	2.3	7.5	7.4	7.3	7.3		_	7.7
Se-10-51-F	23.0	23.0	240	23.0	18.0	23.0	23.0	22.5	22.5	22.5	22	74	7.3	72	1.2	7:3	7.2	7.3	+2	83	8.2	9.1
					_	-				_					-	-			-			\vdash
echnician's Initials	tan	R	10-	A	16%	364	364	PH/S	ઉર્જી	****	Bu	100 A	æ	h	tre.	JGL	John	JGL	050	361	12	2

-

.

Aure 13, 1993

.

EVS CONSULTANTS 10-d FRESHWATER SEDIMENT TOXICITY TEST - DAILY WATER QUALITY MONITORING

Client_NOAA	
EVS Project No_ 5/575 - 37.10	
EVS Work Order No 9700 (59	

Test initiation Date (Day 0)	Fin Ind"	24	1.13	772	
Test Termination Date (Day 10)					

Test Species H. artera Source/Datch ALO Mangame Ash 11-12. As

Ner 292 110 ALO 1920 1197 Aug. 11-12, 1997

Sample ID	-	_		-	Dissolv	ed Oxyg	en (mg/	L)				· ·				Condo	ctivity (un	mhos/cm)			
Sunbig ID	0	1	2	.3	4	5	6.	7	8	9	10	0	1	2	3	1	1 .	6	1 .			
54. 11 -53. E	6.5	49	200	5.1	54	4.7	4.1	3.6	\$.5	8.3	1.5	350	390	370	280	360	340	345	350	360	360	10
54. 9-51-F.C	6.5	4,4	转	4.3	4.6	44	4.3	3.7	8.3	8.6	7.9	370		310	325	370	350	345	3650		390	
SA- 15-11- C	6.2	4.6	50	4.1	4.7	4.2	4.1	3.6	8.3	8.5	7.4	375			420	410	370	370	370	the second se		
M. 8-11.F.	1 . 3	4.5	5.2	5.0	50	4.5	4.2			9.5	35	360	_	385	400	385	360	360	365	370		
54. 14-43-F		4.4	4.6	47	4.0	3.5	3.5	3.1	8.5	8.7	-	360	430	340	390	400	385	370	370	500	1170	
18.19.33-PO	6.5	4.	5.4	4.2	5.3	4.7	3.8	3.1	8.6	8.4		360			420	390	360	-	365			-
Bur enter		46.4	10	4.2	1.0	26	5.2		8.5	0-		300	300	-		320	310	315	315	310	315	-
32-11-33-P	6.4	4.7	5.6	4.9	4.8	39	3.7	2.4	4.10	144	And in case of the local division of the loc	365		400		380	370	360	370		The second second second second	3
== 20-13-P	6.7	4.3	5.8	4.7	4.9	4.2	4.1	4.D	3.5	01		350	450	_		410	375	375	380		390	
54. 4		46	51	4.8	5.6	4.8	4.0	3.4	8.0	79	7.8	370	_	40	420	395	361	365	380	and the second division of the second divisio	200	
52-13-3-F	6.3	4.6	46	٩.٩	3.8	3.7	3.6	240	85	8.3	7.7	360	the second se	475	425	410	360	375			500	50
inician's Initials	2 Car	Q I	h	3	16h	JGU-	Tole	355	PSS/	4%	0%	C.	TAP	N	GA	JGh	364	JGL	BIT	BS	102	0

Deter Verified By C. 2044 Sen- La Conductivity T-1-100C Comments Used to reallibrated & reading rechecked. Deter Verified By C. 2044 Sen-

Note: hermition withland on Day 8.

ferrard and constrained and the state of the

10-d FRESHWATER SEDIMENT TOXICITY TEST - DAILY WATER QUALITY MONITORING

Client NOAA	
EVS Project No. 9/575 - 37.10	
EVS Work Order No. 9700 4 59	

Test Initiation Date (Day 0)	
Test Termination Data (Day 10)	Nr 5. 1997
Test Species H, atka.	
Source/Batch ARO CTITT MA	Aug. 11-12, 1997
Reoferzer AA	

			I	Dissolvo	d Oxyge	m (mg/l	.)			1					Conduct	tivity (am	hos/em				-
0	1	2	··· 9	4	5	6.	7	8	9	10	0	1	2	3	4	5	6	7	8	9	10
6.5	45	51.	4.9	4.9	4.2	4.0	3.8	8.4	8.5	2.8	350	40	45	420	400	360	and shares where the same	365	425	400	420
-					_	4.0	_	8.4	8.5	7.7	350	40	420	420	400	370	380	380			and the second s
		2.2			_											345	340	350	400	380	40
71						-			And in case of the local division of the loc			_			375	345	350	390	350	350	38
1.1				4.8		- and	3.5	4.14	and the second se	_		_	380	200	360	355	350	345		_	5
	_			19		_		_	_	-			320	340	390	360	360				3.
	_					1	_	-	-			_					340	345	600	600	. 6
			_										420			390		-	480	440	_
-	-			-	1.1	-								- •							
								1				10			·			-		_	-
-	100		102	Ind.	VG4	11/1	ar's	1055	1917/2	Int.	AND-	0	4	THE I	164	اللالة	100	Post	BSS	155	5
144	ICH .	m	109	Por-		-		1.0		1210	294	Caf-	~~			-				Committee of	
7-	1-19	•			C	ndectiv	ity_1	T-1-0	DOC.					5 e (00-00	
										_			_		-						
	67 7.1 6.4 6.5 6.6 6.7	67 46 7.1 47 7.1 43 6.4 43 6.5 4.7 6.6 4.4 6.7 4.5	67 46 41 71 47 64 71 43 14 64 43 57 65 47 61 66 44 10	0 1 2 3 6.5 4.5 52 4.9 6.7 4.6 41 5.0 7.1 47 64, 43 7.1 43 64 4.8 7.1 43 5.7 4.4 6.4 4.3 5.7 4.4 6.5 4.7 61 4.3 6.6 4.4 60 4.2 6.7 4.5 61 4.7 6.7 4.5 61 4.7	0 1 2 3 4 6.5 4.5 52 4.9 4.9 6.7 4.6 47 5.0 4.0 7.1 47 64 4.3 4.6 7.1 43 64 4.4 6.9 6.4 4.3 5.7 4.6 4.8 6.5 4.7 61 4.8 3.9 6.6 4.4 60 4.2 4.9 6.7 4.5 61 4.7 5.1 6.7 4.5 61 4.7 5.1 6.7 4.5 61 4.7 5.1	0 1 2 3 4 5 6.5 4.5 52 4.9 4.9 4.2 6.7 4.6 4.7 5.0 4.0 3.7 7.1 47 64, 4.8 4.6 4.3 7.1 47 64, 4.8 4.6 4.3 7.1 4.3 64 4.4 6.9 4.9 6.4 4.3 5.7 4.4 6.9 4.9 6.4 4.3 5.7 4.4 6.8 3.5 6.5 4.7 61 4.8 3.9 3.7 6.6 4.4 60 4.2 4.9 4.5 6.7 4.5 61 4.7 5.1 4.4 6.7 4.5 61 4.7 5.1 4.4 6.7 4.5 61 4.7 5.1 4.4 6.7 4.5 61 4.7 5.1 4.4	0 1 2 3 4 5 6 6.5 4.5 52 4.9 4.9 4.9 4.2 4.0 67 4.6 47 5.0 4.0 3.7 4.0 7.1 47 67 4.8 4.6 4.3 4.2 7.1 43 64 4.4 5.9 4.9 4.8 6.4 4.3 5.7 4.6 4.8 3.5 4.4 6.5 4.7 61 4.8 3.9 3.7 4.6 6.6 4.4 60 4.2 4.9 4.5 4.1 6.7 4.5 61 4.7 5.1 4.4 4.9 6.7 4.5 61 4.7 5.1 4.4 4.9 6.7 4.5 61 4.7 5.1 4.4 4.9 6.7 4.5 61 4.7 5.1 4.4 4.9	67 46 47 5.0 4.0 3.7 4.0 3.7 7.1 47 64 4.8 4.6 4.3 4.2 4.0 7.1 43 64 4.4 5.9 4.9 4.8 5.0 6.4 4.3 5.7 4.4 5.9 3.5 4.4 43 6.5 4.7 61 4.8 3.9 3.7 4.6 4.0 6.6 4.4 60 4.2 4.9 4.5 4.1 4.1 6.7 4.5 61 4.7 5.1 4.4 4.9 5.3 6.7 4.5 61 4.7 5.1 4.4 4.9 5.3	0 1 2 3 4 5 6 7 8 6.5 4.5 52 4.9 4.9 4.9 4.2 4.0 3.8 8.4 6.7 4.6 47 5.0 4.0 3.7 4.0 3.7 8.4 7.1 47 64 4.8 4.6 4.3 4.2 4.0 8.5 7.1 43 64 4.4 6.9 4.9 4.8 5.0 8.4 6.4 4.3 5.7 4.6 4.8 3.5 4.4 43, 8.4 6.5 4.7 61 4.8 3.9 3.7 4.6 4.0 8.4 6.6 4.4 60 4.2 4.9 4.5 4.1 4.1 8.4 6.6 4.4 60 4.2 4.9 4.5 4.1 4.1 8.4 6.7 4.5 61 4.7 5.1 4.4 4.9 5.3 8.5 6.7 4.5 61 4.7 5.1 4.4 4.9 5.3 8.5 6.7 4.5 61 4.7 5.1 4.4 4.9 5.3 8.5	0 1 2 3 4 5 6 7 8 9 6.5 4.5 52 4.9 4.9 4.2 4.0 3.8 8.4 8.5 6.7 4.6 4.7 5.0 4.0 3.7 4.0 3.7 8.9 8.5 7.1 47 64, 4.8 4.6 4.3 4.2 4.0 8.5 8.5 7.1 47 64, 4.8 4.6 4.3 4.2 4.0 8.5 8.5 7.1 43 64 4.4 6.9 4.9 4.8 5.0 8.4 8.6 6.4 4.3 5.7 4.4 6.8 3.5 4.4 43, 8.4 8.5 6.5 4.7 61 4.8 3.9 3.7 4.6 4.0 8.4 8.6 6.6 4.4 60 4.2 4.9 4.5 4.1 4.1 8.4 8.6 6.6 4.4 60 4.2 4.9 4.5 4.1 4.1 8.4 8.6 6.7 4.5 61 4.7 5.1 4.4 4.9 5.3 8.5 8.5 6.7 4.5 61 4.7 5.1 4.9 5.1 8.5 8.5 6.7 4.5 61 4.7 5.1 4.1 5.1 4.4 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	0 1 2 3 4 5 6 7 8 9 10 6.5 4.5 52 4.9 4.9 4.2 4.0 3.8 8.4 8.5 7.8 67 4.6 41 5.0 4.0 3.7 4.0 3.7 8.4 8.5 7.7 7.1 47 64, 4.8 4.6 4.3 4.2 4.0 8.5 8.5 7.7 7.1 43 64 4.4 6.9 4.9 4.8 5.0 8.4 8.6 7.8 6.4 4.3 5.7 4.4 6.8 3.5 4.4 40, 8.4 8.5 7.4 6.5 4.7 61 4.8 3.9 3.7 4.6 4.0 8.4 8.6 7.8 6.6 4.4 60 4.2 4.9 4.5 4.1 4.1 8.4 8.6 7.5 6.7 4.5 61 4.7 5.1 4.4 4.9 5.3 8.5 8.5 7.7 6.7 5.7 5.7 7.7 6.7 5.7 5.7 7.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7	0 1 2 3 4 5 6 7 8 9 10 0 6.5 4.5 52 4.9 4.9 4.9 4.2 4.0 3.8 8.4 2.5 7.8 350 67 4.6 4.7 5.0 4.0 3.7 4.0 3.7 8.9 8.5 7.7 350 7.1 47 64, 4.8 4.6 4.3 4.2 4.0 8.5 8.5 7.7 340 7.1 43 64 4.4 6.9 4.9 4.8 5.0 8.4 8.6 7.8 335 6.4 4.3 5.7 4.4 6.8 3.5 4.4 40, 8.4 8.5 7.1 355 6.5 4.7 61 4.8 3.9 3.7 4.6 4.0 8.4 8.6 7.8 360 6.6 4.4 60 4.2 4.9 4.5 4.1 4.1 8.4 8.6 7.5 345 6.7 4.5 61 4.7 5.1 4.4 4.9 5.3 8.5 8.5 7.7 340 6.7 4.5 61 4.7 5.1 4.4 4.9 5.3 8.5 8.5 7.7 345 6.7 4.5 61 4.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6	0 1 2 3 4 5 6 7 8 9 10 0 1 6.5 4.5 \$2 4.9 4.9 4.2 4.0 3.8 8.4 8.5 7.8 350 4.0 6.7 4.6 4.7 5.0 4.0 3.7 4.0 3.7 8.4 8.5 7.7 350 4.0 7.1 47 64, 4.8 4.6 4.3 4.2 4.0 8.5 8.5 7.7 340 4.3 7.1 47 64, 4.8 4.6 4.3 4.2 4.0 8.5 8.5 7.7 340 4.3 7.1 4.3 64 6.9 4.9 4.8 5.0 8.4 8.6 7.8 335 4.40 6.4 4.3 5.7 4.4 6.9 4.9 4.8 5.0 8.4 8.6 7.8 335 4.40 6.4 4.3 5.7 4.4 6.8 3.5 4.4 4.3 5.0 8.4 8.6 7.8 360 4.0 6.5 4.7 61 4.8 3.9 3.7 4.6 4.0 8.4 8.6 7.8 345 4.0 6.6 4.4 60 4.2 4.9 4.5 4.1 4.1 8.4 8.6 7.8 345 4.0 6.7 4.5 61 4.7 5.1 4.4 4.9 5.3 8.5 8.5 7.7 370 4.0 6.6 4.4 60 4.2 4.9 4.5 4.1 4.1 8.4 8.6 7.8 345 4.0 6.7 4.5 61 4.7 5.1 4.4 4.9 5.3 8.5 8.5 7.7 370 4.0 6.7 4.5 61 4.7 5.1 4.4 4.9 5.3 8.5 8.5 7.7 370 4.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 6.5 4.5 52 4.9 4.9 4.2 4.0 3.8 8.4 8.5 7.8 350 4.0 4.5 4.20 6.7 4.6 4.7 5.0 4.0 3.7 4.0 3.7 8.4 8.5 7.7 350 4.0 4.5 4.20 7.1 47 64 4.3 4.6 4.3 4.2 4.0 8.5 8.5 7.7 340 4.30 380 4.00 7.1 4.3 6.4 4.4 5.9 4.9 4.8 5.0 8.4 8.6 7.8 33.5 4.40 375 30.0 6.4 4.3 5.7 4.4 6.8 3.5 4.4 4.3 5.0 8.4 8.5 7.1 355 6.40 375 30.0 6.4 4.3 5.7 4.4 6.8 3.5 4.4 4.3 8.4 8.5 7.1 3.55 6.40 370 3.40 6.5 4.7 61 4.8 3.9 3.7 4.6 4.0 8.4 8.6 7.5 345 6.0 4.0 370 3.40 6.6 4.4 6 4.2 4.9 4.5 4.1 4.1 8.4 8.6 7.5 3.45 6.0 4.0 370 3.40 6.6 4.4 6 4.2 4.9 4.5 4.1 4.1 8.4 8.6 7.5 3.45 6.0 4.0 370 3.40 6.6 4.4 6 4.2 4.9 4.5 4.1 4.1 8.4 8.6 7.5 3.45 6.0 4.0 3.30 3.40 6.6 4.4 6 4.2 4.9 4.5 4.1 4.1 8.4 8.6 7.5 3.45 6.0 4.0 3.70 3.40 6.6 4.4 6 4.2 4.9 4.5 4.1 4.1 8.4 8.6 7.5 3.45 6.0 4.0 3.70 3.40 6.7 4.5 6.1 4.7 5.1 4.4 4.9 5.3 8.5 8.5 7.7 3.45 6.0 4.0 4.20 4.20 6.7 4.5 6.1 4.7 5.1 4.4 4.9 5.3 8.5 8.5 7.7 3.45 6.0 4.0 4.20 4.20 6.7 4.5 6.1 4.7 5.1 4.4 4.9 5.3 8.5 8.5 7.7 3.45 6.0 4.0 4.20 4.20 6.7 4.5 6.1 4.7 5.1 4.4 4.9 5.3 8.5 8.5 7.7 3.45 6.0 4.0 4.20 4.20 6.7 4.5 6.1 4.7 5.1 4.4 4.9 5.3 8.5 8.5 7.7 3.7 6.0 4.0 4.20 4.20 6.7 4.5 6.1 4.7 5.1 4.4 4.9 5.3 8.5 8.5 7.7 3.7 6.0 4.0 4.20 4.20 6.7 4.5 6.1 4.7 5.1 4.4 4.9 5.3 8.5 8.5 7.7 3.7 6.0 4.0 4.20 4.20	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

AND A CONCOMPOSE OF D ANN 13, 1997

Client___NDAA BVS Project No. __91575-37.1 EVS Work Order No. _9109.659

Test Type 10-of Section Section and Toricity Test Test Species H. G2/cca Test Initiation Date (Day 0) August 20, 1997 Test Termination Date Sector be 5, 1997

Sample ID	Rep.:	Pan No.	No. Alive	No. Dead	Total Recovered	No. Missing	Tech. Init.	Temp. (°C)	pН	Cond. (µmhos/cm)	DO (mg/L)
Control	LQ							22	8.0	375	8.1
	A	1	10	0	10.	. 0	64	22	7.9	330	83
	B	2	10	0	10 1	0	. a	22	7.9	350	8.7
	C	3	0	0	. (0.	0	au	22	7.9	390	7.0
	D	4	9	. 1	(0	0	Ge	22	7.9.	460	7.8
	E	5	9		10.	0 :	au	22	7.8	350	7.7
	P	6	10	0	. 10	0	CC.	22	7.9	340	7.8
R-18-55-F		\geq						22	7.9	380	7.7
	A	109	10	0	10	0	au	22	7.9	500	7.8
	B	110	7	0	7	3	the	. 22	8.0	380	7.9
	C	111	6	0	6	4	ar	22	8.1	380	8.1
	0	112	8	0.	8 .	2	au	22	8.1	500	80
	E	113	8	1	9	1	6	22.	7.9	380	7.7
	F	114	.8	0	8	2	qu	22	7.9	410	7.8
and the second								28		5.e	7.8
						Technicle	an's Initials	En	en	6	5
Instruments Used: ta Verified By	MG			pH_7	-A-2(Cond./Sr Dat	e Verified	Oct 847	DO	म- <i>A</i> - 19	

Client	VDAA	
EVS Project No.	1/575-37.10	
	No. 9700459	

Test Type 10-d Freehunder Sectionent Torici ty Tost Test Species ______ H. Ozfrea Test Initiation Date (Day 0) _____ August 20, 1997 Test Termination Date _____ September 5, 1997

Sample ID	Rep.:	Pan No.	No. Alive	No. Dead	Total Recovered	No. Missing	Tech. Init.	Temp. (°C)	pН	Cond. (urthos/cm)	DO (mg/L)
5R-19-55-F	WQ	1						22	8.1	500	2.8
	A	7	5/8	0	\$ 8.	. 72	*	22	8.0	380	7.6
	B	P	1	0	1 1	9	. t.	22	8.1	500	7.7
	C	2	10	-	.10.		+	22	8.0	420	2.8
	D	1-	2.	.0	. د	9	-2	22	8.1.	380	7.7
	E	11	6	0	6	4 ;	4	22	8.0	370	7.9
	F	12	9.	0			-*	22	8.1	380	7.9
5R-20-42-F	wa			12				22	81	420	8.1
	A	13	° 8	0	8	2	PAU	22	8.0	Ýœ	7.9
	B	14	05	ö	5	5	PAH	22	8.1	410	7.8
	C	15	9	0	9	1	PAH	22	8.1	410	8.0
*	D	16	°δ	0.	8.	11/2	PAIE	22	8.1	420	7.7
	E	17	06	0	6	4	PAH	22	8.1	500	7.8
	F	18	2	0	2	8	fast	22	8.0	420	7.1
										14	
						Technici	an's Initials	E	5	5	En
Q Instruments Used:	Met	Cal.	20	. pH_7	JS-A-7(nl. <u>T-A-</u>	100 C	7 DO .	ज-1 -19	

Client_ NOAA

EVS Project No. _ 9/575- 57.10 EVS Work Order No. _ 970059 Test Type 10-d Fresh and Sectionant Toricity Test Test Species H-024rca Test Initiation Date (Day 0) August 20, 1917 Test Termination Date Sectember 5, 1927

Sample ID	Rep.:	Pan No.	No. Alive	No. Dead	Total Recovered	No. Missing	Tech. Init	Temp. (°C)	pH	Cond. (µmhos/em)	DO (mg/L)
512-15-55F	100							22	7.8	390	7.4
	A	19	0.	0	a	. 10.	35)	22	7.7	380	7.2
	B	20	7	0	7	3	.851	22	7.9	390	7.6
	C	21	10	0	. 10.	. 0	BSI	22	7.8	380	7.4
	D	22	10	.0	10	8	RSD	22	7.9.	380	7.5
	E	23	8	1	9.	1 :	0397	22	7.7	400	7.6
	F	24	3,4	I.	. 6.5	4.5	1357	22	7.9	390	7.7
SR-17-55F	00	2						22	8.0	400	7.7
	A	25	8	0	8	2	15	22	7.7	370	7.4
	B	26	7.	6	7	3	KA	.22	7.8	400	7.6
	C	27	8	0	8	2	LAR !	22	7.8	370	7.5
	0	28	10	0.	10	٥	150	22	7.9	450	7.7
	6	29	10	6	10	0	the	22	8.0	490	7.8
	P	30	9	0	9	1.	150	22	8.0	410	7.8
							-			17	
						Technici	an's Initials	6	.0	6-	5
Q Instruments Used	n. n.Ly	Ivso.	tgileen.	pH_7	J5-A-7		al. <u>H-A-</u> te Verified	100 C	_ DO	म	

Client_ NOAA

EVS Project No. _ 9/575 - 37.10 EVS Work Order No. _ 9700 1655

Test Type 10-d Freshwaler Softment Toxicity Test Test Species H.G2fcca. Test Initiation Date (Day 0) August 26, 1997 Test Termination Date 5 April ber 5, 1997

Sample ID	Rep.:	Pan No.	No. Alive	No. Dead	Total Recovered	No Missing	Tech. Init.	Temp. (°C)	pH	Cond. (umhoslem) 2 Salinity (ppt)	DO (mg/L)
512-13-55-F	wa					+		22	7.9	6350,500	7.7
	A	31	5	2	7.	. 3	855	22	7.9	400	7.6
•	·B	32	3	2	5	5	.816	22	7.9	410	7.1
	C	33	10.	0	.10	0	355	22	7.7	500	7.4
	0	34	29	0	29	0	355	22	7.6.	550	7.2
	E	35	187.	0	187.	123	35	22	7.9	450	7.7
	F	36	5.	1	6	4	855	22	7.8	420	7.6
SR-12-55-F	50	1						22	7.7	380	7.5
	A	37	9	0.	9	1	Gu	22	7.8	380	7.6
	B	38	7	0	3	3	tel	22	7.8	470	7.7
	4	39	8	0	8	2	QU	22	7.7	500	7.4
	0	40	10	0.	10 .	D	Ge	22	7.7	390	7.5
	E	41	9	0	9	. 1	Car-	22	7.8	400	7.6
	F	42	10	D	10	0	Ge	22	7.8	550	7.6
						1. 1.				1. j	
						Technic	ian's Initials	EN	e	5	5
Q Instruments Used	0 015	LGL-H	general	pH_	IT-A-2(_ Cond./S	al. <u>T-A-</u>	Oct 8/9-	DO	म-त-१	

Client_NOAA

BVS Project No. _ 9/575-37.10

EVS Work Order No. 9700-59

Test Type 10-0 Freedwart Section + Toricity Test Test Species Harter Test Initiation Date (Day 0) August 26, 1997 Test Termination Date Scoten Dec 5, 1997

Sample ID	Rep.:	Pan No.	No. Alive	No. Dead	Total Recovered	No. Missing	Tech. Init.	Temp. (°C)	pH	Cond. (umhos/em) B' Salinity (ppt)	DO (mg/L)
5 R-1-55-Fa	WR				-			22	7.7	600	7.5
	A	43	8.	0	5.		-#	22	7.8	8-3600	7.6
•	B	44	10	0	1.0	0	1	22	7.8	370	7.6
	C	45	9.	0		. ,	4	22	27	380	7.4
	0	46	les	.e	10	0	4	22	7.9.	360	7.6
	E	47	in	-	10 .		4	22	7.9	380	7.7
		48	10	0	10	0	3	22	7.9	550	7.7
5R-7-55-F	wQ	\leq				1		22	8.0	380	7.8
	A	49	0	D.	0	10	A.D.	22	9.0	360	7.7
	B	50	0	6	0	10	in	22	8.0	370	7.8
	C	51	0	٥	2	10	A	22	7.9	380	7.7
	9	52		o ·	ъ ·	10	in	22	7.9	500	7.5
	E	53	0		3	. (0	alo	22	7.8	390	7.6
	F	54		0		, ė	AD	22	7.8	550	7.6
										5g	
1						Technicia	n's Initials	5-1	6	en	E
Q Instruments Used	. Me	PLUSE PLUSE		. pH_7	1-4-26		νerified	Oct 819	D0	<u> Т-19</u>	

Client_NOAA	 		
EVS Project No.	57.10		
EVS Work Order No.		•	

Test Type 10.0 Freshwater Schmat Toricity Test Test Species H. G2400A Test Initiation Date (Day 0) August 20, 1997 Test Termination Date Schumber 5, 1992

Sample ID	Rep.:	Pan No.	No. Alive	No. Dead	Total Recovered	No. Missing	Tech. Init.	Temp. (°C)	pH	Cond. (umhos/em)	DO (mg/L)
SR-3-SSFam	WQ	\square						22	8.0	550	8.1
	A	55	8.	0	8.	. 2	Com	22	8.0	390	7.8
· .	B	56	6	0	6	4.	Gnu	22	8.1	400	8.2
	C	57	08.7	0	@3.7	3	Com	22	8.1	470	8.1
	D	58	8.	· 0	8.	2	am	22	8.1.	550	8.2
9	E	59	32	0.	24	\$7:	Airo	22	8.1	500	8.1
	F	60	9	0	. 9	11	Cm	22	8.1	480	6.0
512-4-55 F8"	WQ.	1						22	8.1	400	7.8
212-4-5516	A	61	#3	ю.	\$73	ET.	AND	22	8.0	370	7.7
	B.	62	5	ó	5	5	AND	. 22	8.1	500	7.9
	C	63	4	0	• 4	6	NO	22	8.0	400	7.7
	Ù	64	4	0.	4.	6	AUD	22	8.1	380	7.8
	E	65	1.1	0	: 6	4	Aus	22'	8.1	500	7.7
	F	66	6	0	6	4	wp	22	8.1	410	7.8
						÷				14	
		Service of the		e: 3		Technic	lan's Initials	6	E	e	5
A Instruments Used	C.M		the state	pH_	II-A-2(Sal. <u>T-A-</u>	0 600	17 DO	च-४-५१	·

Client_ NOAA

EVS Project No. 9/575-37.00 EVS Work Order No. 9700 459

Test Type 10. d Fresh water Solinunt Toxicity Test Test Species Harter Test Initiation Date (Day 0) August 24 . 1997 Test Termination Date Sector 5. 1997

Sample ID	Rep.:	Pan No.	No. Alive	No. Dead	Total Recovered	No. Missing	Tech. Init.	Temp. (*C)	pH	Cond. (µmhos/em)	DO (mg/L)
SR-14-SS-F	WQ							22	8.1	550	7.9
	A	67	8	0	8.	. 2	7	22	80	390	7.8
	B	68	10	0	10	0	1.1	22	8.0	400	7.9
	6	69	7.	0	.7.	د .	4.	22	7.9	420	7.6
	D	70	2	.0	2	1	4	22	7.9.	370	7.5
	E	71	6	0	4	4 :	-*	22	7.9	550	7.6
	F	72	7	-	.7	3	来	22	8.0	430	7.8
512-10-55-F	ЦQ	\leq						22	8.1	450	7.8
	A	73	4	0	4	6	Kns.	22	8.1	390	7.7
	B.	74	8.	2:	10	0	Kra	.22	8.2	400	7.8
	C	75	8	0	8	2	the	22	8.2	550	7.8
	D	76	9	0.	9	(KTB	22	8.1	420	7.7
	6	77	8	0	8	. 2	1/13	22	8.1	400	2.8
	F	78	3	0	3	7	60	22	8.1	380	7.7
								to		14	
				ALTYX HERE		Technic	an's Initials	6	e	6	C
Q Instruments Used atz Verified By	CMC		n	pH_	1[1-2(_ Cond./S Da	al. <u>π-A-</u> to Verified	Det 84	DO	<i>щ-л -</i> 19	•.

Client_ NDMA	•
EVS Project No 7/575-37.0	
EVS Work Order No. 9700659	

Test Type 10-0 Freehuset Sediment Toricity Test Test Species H Q24rca Test Initiation Date (Day 0) August 20, 1997 Test Termination Date Section by 5, 1997

Rep.:	Pan No.	No. Alive	No. Dead	Total Recovered	No. Missing	Tech. Init.	Temp. (°C)	pH	Cond. (umhos/em)	DO (mg/L)
wa							22	8.1	420	7.6
A	79	8.	0	8.	. 2	Ex.	22	8.0	370	7.7
·B	80	7	0	7	3	. Ca	22	8.0	380	76
2	87	9.	0	1.9.	. 1	En	22	7.9	400	7.4
D	82	9	.0	9.	i	Cu.	22	7.9.	380	7.7
E	83	10	0	10 .	0 ;	Ell	22	7.9	370	7.6
F	84	9	0	. 9		the.	22	7.7	380	7.1
wo	1						:22	8.0	400	7.8
A	85	9	1.	10	0	1355	22	7.9	440	7.7
B	86	9	0.	9	1	850	22	7.8	400	74
C	87	10	0	10	0	0,45	22	7.8	420	7.4
0	88	10	0.	10	0	353	22	7.8	500	7.3
E	89	8	0	8	2	635	22	7.8	500	7.3
F	90	9	1	01	0.	1355	22	7.8	420	7.3
									14	
					Technici	an's Initials	6	E	E	5
Ma	al .	y Thereway	рН_7	J-A-2(· ·	100 C	- DO -	<u>च-л-</u> เ१	
	ABUDWEBABUDWE	120 A 79 B 2 D E E 20 B 20 E F D E E 20 B 87 B 88 B 7 B 88 B 7 B 88 B 7 B 87 B 8	WQ . A 79 8. B 80 7 C 87 9. D 82 9. E 83 10 E 83 9. S 83 9. E 83 9. S 85 9. S 856 9. C 87 10. S 87 10. E 89 8. F 90 9. F 90 9. F 90 9.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	WQ A 79 8 0 8 B 80 7 0 7 3 C 87 9 0 7 3 D 82 9 0 9 1 D 82 9 0 9 1 E 83 10 0 10 0 A 85 9 1 10 0 A 85 9 1 10 0 A 85 9 0 10 0 A 85 9 1 10 0 C 87 10 0 10 0 B 80 8 8 8	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Client NORA EVS Project No. 4/575-37.10 EVS Work Order No. 9700659 Test Type 10-d Farshwall Sediment Toricity Test Test Species H-G2400A Test Initiation Date (Day 0) August 26, 1997 Test Termination Date Section ber 5, 1997

Sample ID	Rep.:	Pan No.	No. Aliva	No. Dead	Total Recovered	No. Missing	Tech. Init.	Temp. (°C)	pН	Cond. (µmhos/cm) E Salinity (ppt)	DO (mg/L
-16-55-F	UQ							22	8.1	350	7.8
10 32 1	a	91	7.	0	7.	. 3	*	22	80	380	7.6
	B	92	2	0	2	8.	*.	22	8.0	390	7.6
	C	93	4.	0		• 4	4	22	8.1	420	7.7
4	D	94	8.		8	2	7	22	81.	390	2.8
	E	95	4	i	5	5	*	22	8.1	400	7.7
	F	96	10	0	10	0	4	22	8.1	380	7.7
SE-9-SS-F	NQ	1			i	1	V	22	8.1	380	7.0
	A	97	10	D.	10 .	0	Kris_	22	8,0	380	7.7
	B	98	10	σ	10	. 0	10	22	8.1	400	7.8
	L	99	0	0	0	10	63	22	8.1	600	7.7
	D	100	10	0.	10	0	478	22	8.1	500	7.9
	E	101	10	0	0	0	KAS	22.	8.1	420	7.8
	F	102	5	0	5	5	158	22	8.1	410	7.8
				:		t.	ŀ	l.		1.	
		-Common	A COLUMN			Technic	ian's Initials	6-	.02	1 52	a
VQ Instruments Use Data Verified By	d: Ten	p. Cal	Hyther	24. pH_	J5-A-TC	_ CondJ	Sal. <u>T-A</u>	-100 C	7 DO_		

Client_ NOAA		
EVS Project No. 9/575-37.10		
EVS Work Order No. 9700 659	•	

Test Type 10.0 Freshwarder Sediment Terrivity Test Test Species <u>H-G24rca</u> Test Initiation Date (Day 0) <u>August 20, 1997</u> Test Termination Date <u>Scottemport 5, 1997</u>

Sample ID	Rep.:	Pan No.	No. Alive	No. Dead	Total Recovered	No Missing	Tech. Init.	Temp. (°C)	pH	Cend. (umhos/em) E Salinity (ppt)	DO (mg/L)
SR-11-55-F	100					-		ir	7.7	380	7.5
	A	103	8.9.	0 (pr	8,8.2	215	AG	22	7.7	450	7.4
	B.	104	Bar	000	Bor	2 10	BAR	22	7.6	550	7.3
	C	105		° ga		0 15	entra	22	7.7	400	7.6
+	D	106		1.0-	900	1000	Stop	22	7.8.	390	7.7
	E	107	900	060	900	115 :	2 AN	22	28	380	7.7
	F	108	100	08	4	25	A120	22	- 28	500	7.6
							+				
			· . *				· .				
				-		S. 19.					
			:							-	
		1						•			
							· .				
										1. j	
		1	-		And the second second	Technic	ian's Initials	6	on	En	6
			, 2				,	And in the local division of the local divis			1000000000
Q Instruments Use	d: Tem	p. sel	Hatles		JS-A-7C	Cond./	Sal. T-A	-100C	_ DO _	I-1-19	
ata Verified By	CAG	Paurs				D	ate Verified .	Oct 8/9=	1 .		• •

		VARIO 8/25/97		Date: 9/5/97		Sample Type: SEDIMENT Lab ID: EVS-Environment	Consultants	
05	ID	Rep	Group	Survival	Survival Day 10	I of Amphipods Weighed	Pan Weight (mg)	Pan + Amphipod (mg)
03	1	1	D-Centrol	10	10	10	1017.9	1019.2
-	2	2	D-Control	10	10	10	1026.7	1027.8
-	3	3	D-Control	10	10	10	1027.3	1029
-	4	4	D-Control	10	9	9	1025.5	1026.1
-	5	5	D-Control	10	9	9	1021.5	1022.6
-	6	6	D-Control	10	10	10	976.9	978
-	7	1	SR-19-SS-F	10	8	8	978.3	979.8
-	8	2	SR-19-SS-F	10	1	1	970.3	970.6
-	9	3	SR-19-SS-F	10	10	10	973.3	974.8
-	10	4	SR-19-SS-F	10	2	2	1017.3	1017.7
-	10	5	SR-19-SS-F	10	6	6	973.4	974.4
-	11	6	SR-19-SS-F	10	9	9	975.9	977.3
-	12	1	SR-20-SS-F	10	8	8	975.6	976.5
-	13	2	SR-20-SS-F	10	5	5	977.4	978.2
_		_	SR-20-SS-F	10	9	6	976.3	977.4
-	15	3	SR-20-SS-F	10	8	8	976.1	977.3
_	16	4	SR-20-SS-F	10	6	6	980.2	980.7
_	17	5		10	2	2	977.5	977.9
_	18	6	SR-20-SS-F	10	0		975.7	975.7
_	19	1	SR-15-SS-F		7	7	975.7	975.3
_	20	2	SR-15-SS-F	10		10		and the second se
_	21	3	SR-15-SS-F	10	10		972.9 973.5	974.5
	22	4	SR-15-SS-F	10	10		9/3.5	982.1
	23	5	SR-15-SS-F	10	8	8		
	24	6	SR-15-SS-F	10	4	4	981.5	982
_	25	1	SR-17-SS-F	10	8	8	982.8	984
_	26	2	SR-17-SS-F	10	7	7	1019.3	1020.8
_	27	3	SR-17-SS-F	10	8	8	982	983.4
_	28	4	SR-17-SS-F	10	10	10	979.9	\$81.3
_	29	5	SR-17-SS-F	10	10	10	978.1	980.1
_	30	6	SR-17-SS-F	10	9	9	978	978.7
_	31	1	SR-13-SS-F	10	5	5	1016.5	1017
_	32	2	SR-13-SS-F	10	3		1021	1021.3
	33	3	SR-13-SS-F	10	10		1024.3	1025.3
	34	4	SR-13-SS-F		29	29	1017.8	1019.6
	35	5	SR-13-SS-F		7	and the second s	969.3	970
	36	6	SR-13-SS-F		6		969.9	970.2
	37	1	SR-12-SS-F		0		968.1	969
	38	2	SR-12-SS-F		7		970.4	971.5
	39	_	SR-12-SS-F		8		970	670.6
	40	4	SR-12-SS-F		10		968.4	969.4
	41	5	SR-12-SS-F		9		1026.8	1028.2
	42	_	SR-12-SS-F	10	10		1016.3	1017.3
	43		SR-1-SS-P	B 10	8		1016	1017
	44	2	SK-1-33-	10	10		1021.4	1023
	45	3	SR-1-55-9		9		1023	1024.2
	46	4	SR-1-SS-P		10		1028.7	1030.4
T	47	5	SR-1-SS-P	B 10	10			
	48	6	SR-1-85-P	B+ 10	10	10		
-	49	1	SR-7-SS-F		0	0	1014.5	
-	50	-	SR-7-SS-F		0	0	1017.7	
-	51	-	SR-7-SS-F		0	0		and the second se
-	52	_	SR-7-SS-F		0			and the second se

r

l

ToxCalc 5.0

Samp	le ID:	VARI	ous				Sample Type: SEDIMENT2-Freshwater					
		8/26/9		Date	: 9/5/97		Lab ID: EVS-Environment					
	53	5	SR-7-SS-F		10	0	0	1014.8	1014.			
	54	6	SR-7-SS-F		10	0	0	1021.3	1021.			
_	55	1	SR-3-SS-F	18	10	8	8	1026	1027.			
	56	2	SR-3-SS-F	· · · · ·	10	6	6	1024.3	1025.			
	57	3	SR-3-SS-F		10	7	7	1023	1023.			
_	58	4	SR-3-SS-P		10	8	8	1020.6	1021.			
_	59	5	SR-3-SS-F	<u> </u>	10	3	3	1021.1	1021.			
-	60	6	SR-3-SS-F	-	L 10	0	9	1015.8	101			
-	61	1	SR-4-SS-9	2	10	3	3	1018.7	1019.			
-	62	2	SR-4-SS-F		10	5	5	976	977.			
-	63	3	SR-4-SS-F		10	4	4	978.9	979.			
-	64	4	SR-4-SS-F		10	4	4	1019.8	1020.			
-	65	5	SR-4-SS-F	And in case of	10	6	6	1016.2	1016.			
-	66	6	SR-4-SS-	3	4 10	6	6	980.4	981.			
-	67	1	SR-14-SS-F	-	10	8	8	982	982.			
_	68	2	SR-14-SS-F	-	10	10	10	983.9	985.			
-	69		SR-14-SS-F	-	10	7	7	986.7	987.			
-	70	4	SR-14-SS-F	-	10	9	9	986.7	987.			
-	71	5	SR-14-SS-F	-	10	6	6	085.4	985,			
-	72	6	SR-14-SS-F	-	10	7	7	982.5	983,			
-	73	1	SR-10-SS-F	-	10	4	4	987.1	988.			
-	74	2	SR-10-SS-F	<u> </u>	10	8	8	982.7	983.			
-	76	4	SR-10-SS-F	-	10	8	8	979.9	980.			
-	77	5	SR-10-SS-F	-	10	9	9	1013.2	1014.			
-	78	6	SR-10-SS-F SR-10-SS-F	-	10	8	8	981	98			
-	79	1	SR-2-SS-F				3	1023.6	1024.3			
-	80	2	SR-2-55-	Ð	10	8	8	981.8	982.			
-	81	3	SR-2-68-F	10000	10	9	7	979.9	980.			
-	82	4	SR-2-SS-F		10	9	9	970.7	983.			
-	83	5	SR-2-SS-F		10	10	10	985				
-	84	6	SR-2-SS-F		10	10	9	980.7	985, 982,			
-	85	1	SR-8-SS-F	24	10	9		980.6				
-	86	2	SR-8-SS-F	-	10	9	9		981.			
-	87	3	SR-8-SS-F	-	10	10	9	979.8	982.			
-	88	4	SR-8-SS-F	-	10	10	10	976.6	981.			
-	89	5	SR-8-SS-F	-	10	8	8	970.0	977.			
-	90	6	SR-8-SS-F	-	10	9	9	974.7	974.4			
-	91	1	SR-16-SS-F	-	10	7	the second se	and the second se	977.			
_	92	2	8R-16-88-F	-	10	2	7	1016.2	1019.0			
-	93	3	SR-16-SS-F	-	10	6	6	1018.1	1019.			
-	94	4	SR-16-SS-F	-	10	8	8	1005.6	1005.			
-	95	5	SR-16-SS-F	-	10	4	4	1005.6	the second se			
-	96	6	SR-16-SS-F	-	10	10	10	1012.2	1008.			
-	97	1	SR-9-SS-F	-	10	10	10	1005.5	1013.			
	98	2	SR-9-SS-F	-	10	10		1005.1	the second se			
	99	3	SR-9-SS-F	-	10	0	10	1016.5	1006.			
-	100	4	SR-9-SS-F	-	10	10	10	1010.5	1016.			
-	101	5	SR-9-SS-F	-	10	10	10	1020.1	1022.			
-	102	6	SR-9-SS-F	-	10	5	5	1010.4	the second s			
-	102	1	8R-11-88-F	-	10	5		1010.4	101			
-	103	2	SR-11-SS-F	-	10	8	8	1008.0	1009.1			
_	104	3	SR-11-55-F	-	10	and the second se	8	1017.5	1010			
_	105	_	SR-11-55-F	_	10	and the second s	10	1000.3	1010.			

Reviewed by CH CHAR

ToxCalc 5.0

Page 2

1

ł

Test: HY-Fr Species: HA Sample ID:	-Hyal	ella azteca	val and Grow	th Test	Test ID: EVS5460 Protocol: ASTM 96 Sample Type: SEDIMENT2-Freshwater					
Start Date:	8/26/9	7 End Date	9/5/97	Lab ID: EVS-Environment Consultants						
107	5	SR-11-SS-F	10	9	9	1005	1006.3			
108	6	SR-11-SS-F	10	8	7	1005.4	1006.5			
109	1	SR-18-SS-F	10	10	10	1004.4	1005.8			
110	2	SR-18-SS-F	10	7	7	1004.3	1005.2			
111	3	SR-18-SS-F	10	6	6	1006.5	1007.4			
112	4	SR-18-SS-F	10	8	8	1008.9	1009.8			
113	5	SR-18-SS-F	10	8	8	1008.6	1009.5			
114	6	SR-18-SS-F	10	8	8	1014.5	1015.4			

Comments: NOAA: 9/575-37.1; 9700659; Hyallella azteca

Reviewed by Cattorian

i.

ToxCalc 5.0

Dist Date: 1	3/25/97		Test ID:	EV85460			Growth Te Sample ID:		100000			
Crossie Contraction	15/97		Lab ID:	EVS-Emin	onment (Consultan	Sample Typ		EDIMENT		ator	
Elling strates.	8/13/97		Protocol:		5		Test Specie	16: F	A-Hyalella	azteca		
Comments:	NOAA			; Hysilella	azteca					_		
Conc-%	1	2	3	4	5	6			_			_
D-Control	1.0000		1.0000	0.9000	0.9000	1.0000						
SR-10-SS-F	0.8000		1.0000	0.2000	0.6000	0.9000						
SR-20-SS-F	0.8000		0.9000	0.8000	0.6000	0.2000						
SR-15-SS-F	0.0000		1.0000	1.0000	0.8000	0.4000						
SR-17-SS-F	0.8000		0.8000	1.0000	1.0000	0.0000						
SR-13-SS-F	0.5000		1.0000	0.0667	0.7000	0.5000						
SR-12-SS-F	0.9000		0.8000	1.0000	0.9000	1.0000						
14 SR-1-SS-FI			0.9000		1.0000	1.0000						
\$2-7-55-F	0.0000	0.0000	0.0000		0.0000	0.0000						
SR-3-55-F			0.7000		0.3000	0.9000						
W# SR-4-SS-FI	8 0 3000	0.5000	0.4000		0.6000	0.0000						
SR-14-SS-F	0.8000		0.7000		0,6000	0.7000						
SR-10-55-F	0.4000		0.8000		0.8000	0.3000						
## ER-2-55-F					1.0000	0.9000						
SR-8-SS-F	0.9000				0.8000							
SR-16-SS-F	0,700				0.4000							
8R-0-55-F	1.000				1.0000							
SR-11-SS-F	0.800				0.9000		È.					
SR-18-SS-F					0.8000						_	
51-10-00-1	1.000	0 0.1000	0.0000	Transfor		nsformed	1	1000	1-Tailed	Street, St		
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD		
D-Control		and the second se		0.9000	1.0000							
*SR-10-SS-F				0.1000	1.0000	62,361	6	2.378	2.015	0.0479		
*SR-20-SS-F		-			0.9000	40.768	6	3.101	2.015	0.0233		
SR-15-SS-F	0.650				1.0000			1.979	2.015	0.0516		
SR-17-SS-F	0.866				1.0000	13.974		1.861	2.015	0.0058		
*SR-13-55-F				1 0.3000	1.0000	42.35	5 6	2.629	2.015	0.0272		
5R-12-55-F				3 0.7000	1.000	0 13.234		1.597	2.015	0.0055		
PH SR-1-SS-F					1.000	8,80	7 6	0.415	2.015	0.0032		
SR-7-SS-F					0.000	0.00	0 6		0.2222			
## *SR-3-SS-						0 31.27	36	3.157	2.015	0.0102		
AH *SR-4-SS-	4 0464	0.121				0 25.95	1 6	9.303		0.0058		
*SR-14-SS-						0 18.79	16	2.870		0.0082		
*SR-10-SS-					0.900	0 37.65	0 6	2.875		0.0219		
PH "SR-2-55-	0.000						76	2.121		0.0045		
SR-8-SS-4		67 0.075				-		1.342		0.0028		
*SR-16-SS-								2.952		0.0283		
CD 0 001	0.75							1.259		0.0597		
SR-0-554								2.907	2.015			
*SR-11-SS-								3.149	2.015	0.0068		_
*SR-18-SS-		33 0.134	0.103	0.000	1.000		Statistic		Critical		Skew	Kur
Auxiliary Te Kolmogorov	SLS	diaster of	n normal	distribution	0 <= 0	01)	1.26995		1.035		-0.832	1.630
Kolmogorov	Ulestin	uncates no	confirmed									
Equality of v	arlance o	tall, 0.05)	onnineg	_								

Indicates a significant difference when compared to control.
 All replicates included in statistical analysis.

Roviewed by 04/201977

Page 1

Į

ToxCelc v5.0

Start Date:	8/26/97		Freshw Test ID:	EV\$5460			Sample II);	VARIOUS	1		
End Date:	9/5/07		Lab ID:	EVS-Envi	noment	Consultan	Sample T	ypo:	SEDIMEN	T2-Fresh	water	
Sample Date:	8/13/97		Protocol:	ASTM 96			Test Spec	les:	HA-Hyale	lis azteca		
Comments:	NOAA:	9/575-37.	1: 970065	9; Hyallella	azteca			285	2012/2012	1.	6	
Conc-%	1	2	3	4	5	6						
D-Control	0.1300			0.0667	0.1222		1					
8R-19-SS-F	0.1875				0.1667							
SR-20-SS-F	0.1125				0.0833							
SR-15-SS-F	0.1857				0.1250							
SR-17-SS-F	0.1500				0.2000							
SR-13-SS-F	0.1000			0.0586	0.1000							
SR-12-SS-F	0.1000		0.1000	0.1000	0.1556							
/ SR-1-SS-P				0.1700	0.1900							
SR-3-SS-F				0.1625	0.2000							
SR-4-SS-F				0.1500	0.0833							
SR-14-SS-F	0.0750			0.1000	0.0667							
SR-10-SS-F	0.2500		0.1125	0.1333	0.1250	0.2333					50 - E	
SR-2-SS	0.1250	0.1143	0.1333	0.1556	0.1400	0.1778						
8R-8-85-F	0.1222	0.2667	0.1700	0.0900	0.2375	0.2667						
SR-16-SS-F	0.1143	0.2000	0.1500	0.1375	0.1750	0.1200						
SR-0-SS-F	0.1600	0.1600	0.2400	0.1600	0.1200							
8R-11-SS-F	0.1625		0.0900	0.1625	0.1444	0.1571						
SR-18-SS-F	0.1400	0.1286	0.1500	0.1125	0.1125	0.1125	2					
				Transform	n: Untra	nsformed	3 C		1-Tailed			
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD		
D-Control	0.1181		0.1181	0.0007	0.1700		6					
SR-10-SS-F	0.1933	0.0556	0.1933	0.1500	0.3000	28.780	6					
SR-20-SS-F	0.1380	0.0409	0.1380	0.0833	0.2000	29.628	6					
SR-15-SS-F	0.1491	0.0256	0.1491	0.1250	0.1857	17.166	5	-1.691	1.833	0.0006		
8R-17-SS-F	0.1595	0.0491	0.1595	0.0778	0.2143	30.752	6	-1.705	1.812	0.0011		
8R-13-SS-F	0.0864	0.0210	0.0864	0.0586	0.1000	24.314	6					
SR-12-SS-F	0.1188	0.0291	0.1188	0.1000	0.1571	24.501	6	-0.035	1.812	0.0006		
# 8R-1-88-F	0.1581	0.0245	0.1581	0.1250	0.1900	15.532	6	-2.351	1.812	0.0005		
SR-3-SS-F	0.1735	0.0375	0.1735	0.1288	0.2167	21.596	6					
SR-4-SS-F	0.1836		0.1836	0.0833	0.3600	50.476	6					
SR-14-SS-F	0.0977	0.0324	0.0977	0.0667	0.1429	33.200	6					
SR-10-SS-F	0.1653	0.0600	0.1653	0.1125	0.2500	36.312	6					
* SR-2-SS-F	0.1410	0.0228	0.1410	0.1143	0.1778	16.155	6					
6R-8-55-F	0.1922	0.0761	0.1922	0.0900	0.2667	39.614	6	-2.180	1.812	0.0021		
SR-16-SS-F	0.1495		0.1495	0.1143	0.2000		6					
SR-0-SS-F	0.1680		0.1680	0.1200	0.2400		5	-2.141	1.833	0.0010		
SR-11-SS-F	0.1298		0.1298	0.0625	0.1625		6					
SR-18-SS-F	0.1260		0.1260	0.1125	0.1500		6					
Auxillary Test	NAME OF TAXABLE PARTY.						Statistic		Critical		Skew	Kurt
Shapiro-Wilk's		cates norm	nal distribu	ution (p > 0	.01)		0.96639		0,919		-0.1895	
Bartiett's Test							6.39008		16.8119			0.1002
Hypothesis To		the second se	The second secon	510-57					10.0110			

-All replicates included in statistical analysis.

Reviewed by

ľ

I

E

Ē

ł

Ļ

Page 1

TexCalo v5.0

			reshwate	VS5460B	ou surri	val and Gr Se	mple ID:					
	3/26/97		ab ID: E	VSERMIN	oment Co	nsultan Sa	mple Type	SE SE	DIMENT2	Freshwat	er	
	9/5/97		rotocol: A	STM 00		Te	st Species	: H/	-Hyalella	azieca		
Sample Date: I	8/13/97	575-37.1;1	010001. 1	Hallella	aztoca					_		
			3	4	6	6						
Conc-%	1	2	1.0000	0.9000	0.9000	1.0000						
D-Control	1.0000	1.0000	1.0000	0.2000	0.6000	0.9000						
SR-19-SS-F	0.8000	0.1000	0.9000	0.8000	0.6000	0.2000						
SR-20-SS-F	0.8000	0.5000	1.0000	0.8000	0.4000							
4. SR-15-SS-F	0.7000	1.0000	0.8000	1.0000	1.0000	0.9000						
SR-17-SS-F	0.8000		1.0000	0.7000	0.5000						- +	
# SR-13-SS-F	0.5000	0.3000	0.8000	1.0000	0.9000	1.0000						
\$R-12-55-F	0.9000	0.7000	0.9000	1.0000	1.0000	1.0000						
P*SR-1-SS-F	0.8000		0.0000	0.0000	0.0000	0.0000						
SR-7-SS-F	0.0000	0.0000	0.7000	0.8000	0.3000	0.9000						
AHSR-3-SS-F	0.8000	0.6000	0.4000	0.4000	0.6000	0.6000				12		
AN SR-4-SS-P	0.3000	0.5000	0.7000	0.9000	0.6000	0.7000						
SR-14-SS-F	0.8000	1.0000	0.8000	0.0000	0.8000	0.3000						
SR-10-SS-F	0.4000	0.8000	0.0000	0.9000	1.0000	0.6000						
AP# SR-2-SS-F	0.8000	0.7000	1.0000	1.0000	0.8000	0.0003.0						
5R-8-55-F	0.9000	0.0000	0.6000	0.8000	0.4000	1.0000						
SR-16-SS-F	0.7000	0.2000	1.0000	1.0000	0.5000							
t SR-0-SS-F	1.0000		1.0000	0.8000	0.9000	0.8000						
6R-11-55-F	0.8000		0.6000	0.8000	0.8000	0.8000				_		
SR-18-SS-F	1.0000	0.7000	0.0000	Transform	m: Untran	sformed			1-Tailed			
			Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	_	
Conc-%	Mean	SD 0.0516	0.9667	0.9000	1.0000	5.342	6					
D-Contro	0.9667		0.6000	0,1000	1.0000	62.361	6	2.378	2.015	0.0479		
*SR-19-SS-	0.6000		0.6333		0.9000	40.768	6	3.101	2.015	0.0233		1.1
*SR-20-SS-	0.6333		0.7800		1.0000	31,923	5	1.647	2.128	0.0273		
SR-15-SS-	F 0.7800		0.8667		1.0000	13.974	6	1.861	2.015	0.0058		
SR-17-SS-	F 0.8661		0.6000		1.0000	44.006	5	3.051	2.128	0.0307		
*SR-13-SS-	F 0.6000		0.8833		1.0000		6	1.597	2.015	0.0055		
SR-12-SS-	F 0.883		0.9500				6	0.415	2.015	0.0032		
ANA SR-1-SS	P 0.850						6		•			
SR-7-SS-	F 0.000						6	3.157	2.015	0.0162		
AN *SR-3-SS	13 0.683						6	9.303	2.015	0.0058		
A++ +5R-4-55-	PS 0.466						6	2.879	2.015	0.0082		
*SR-14-SS-	F 0.783						6	2.875		0.0219		
*SR-10-SS	F 0.666						6	2.121	2.015	0.0045		
A+ +SR-2-SS	A 0.866						6	1.342		0.0028		
SR-8-SS	-F 0.916						6	2.952	2.015	0.0283		
*SR-16-SS	F 0.616						6	0.652	2.127	0.0222		
5R-0-55	F 0.900							2.907				
*SR-11-SS	-F 0.850	0.0837						3.149		0.0068		
*SR-18-SS	F 0.78	3 0.132	0.783	3 0,600	1.000	10.000	Statistic		Critical		Skew	Kur
				distait at a	ala ce bi	11)	1.13651		1.035		-0.5492	0.697
Kelmonorg	v D Test in	dicates not	n-normal		(p <= 0.0							
Ecuality of	variance c	annot be c	onfirmed		-							_
Upper ath aging	s Test (1-	all. 0.05)				_	_	_	-			

Indicates a significant difference when compared to control.
 Indicates samples with one replicate removed from statistical analysis due to possible misseeding.

Reviewed by 101947

Page 1

1

1

1

ToxCalc v5.0

	8/26/97 9/5/97 8/13/97		Test ID: Lab ID:	EV\$54608	3	onsultan	Growth T Sample ID Sample Ty Test Speci	pe:	VARIOUS SEDIMENT		rater	
Comments:	NOAA: 6			0; Hyaliella	azteoa	1. T.F	1000 C. 1000					
Conc-%	1	2	3	4	5	6					_	
D-Control	0.1300	0.1100	0.1700	0.0667	0.1222	0.1100						
SR-19-SS-F	0,1875	0.3000	0.1500	0.2000	0.1667	0.1556						
SR-20-SS-F	0.1125	0.1600	0.1222	0.1500	0.0833	0.2000						
# SR-15-SS-F	0.1857	0,1600	0.1500	0.1250	0.1250							
SR-17-SS-F	0.1500	0.2143	0.1750	0.1400	0.2000	0.0778						
# GR-13-65-F	0.1000	0.1000	0.1000	0.1000	0.0600							
SR-12-SS-F	0.1000	0.1571	0.1000	0.1000	0.1556	0.1000						
AN'SR-1-SS-FP	3 0,1250	0.1600	0.1333	0.1700	0.1900	0.1700						
SR-3-SS-F4	0.2000	0.2167	0.1286	0.1625	0.2000	0.1333						
+ SR-4-SS-F		0.3600	0.1750		0.0833	0.1667						
SR-14-SS-F	0.0750	0.1300	0.0714	0.1000	0.0667	0.1429						
SR-10-55-F	0.2500	0.1375	0.1125		0.1250	0.2333						
buse-2-SS-F		0.1143	0.1333	0.1556	0.1400	0.1778						
SR-8-SS-F	0.1222	0.2667	0.1700	0.0900	0.2375	0.2667						
SR-16-SS-F	0.1143	0.2000	0.1500	0.1375	0.1750	0,1200						
SR-0-SS-F	0,1600	0.1600	0.2400	0.1600	0.1200							
5R-11-55-F	0.1625	0.0625	0.0900	0,1625	0.1444	0.1571						
SR-18-SS-F	0.1400	0.1266	0.1500		0.1125	0.1125	<u>}</u>					
01110-001				Transform	n: Untran	sformed			1-Tailed	Scores -	1.1.1.1.1.1.1.1	
Conc-%	Mean	SD	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD		
D-Control	0.1181	0.0336	0.1181	0.0667	0.1700	28.399	6					
SR-10-SS-F	0.1933	0.0556	0.1933	0.1500	0.3000	28.780	6					
8R-20-\$\$-F	0.1380	0.0409	0.1380	0.0833	0.2000	29.628	6					
8R-15-88-F	0.1491	0.0256	0.1491	0.1250	0.1857	17.166		-1.691	1.833	0.0006		
SR-17-55-F	0.1595	0.0491	0.1595	0.0778	0.2143	30.752	6	-1.705	1.812	0.0011		
6R-13-55-F	0.0920	0.0179	0.0920	0.0600	0.1000	19.444				0.0000		
5R-12-55-F	0.1188	0.0291	0.1188	0.1000	0.1571	24.501	6	-0.035	1.812	0.0006		
PH# SR-1-SS-F	-	0.0245	0.1581	0.1250	0.1900	15.532	6	-2.351	1.812	0.0005		
SR-3-SS-F					0.2167	21.596						
SR4-SS-F					0.3600	60.476						
SR-14-SS-F				0.0667	0.1420	33.200						
SR-10-55-F					0.2500	36.312	6					
PHI SR-2-SS-F					0.1778	16,155	6			111111		
SR-8-SS-F					0.2667	39.614	6	-2.180	1.812	0.0021		
SR-16-SS-F					0.2000	22.099	6					
SR-0-SS-F					0.2400	26.082	5	-2.141	1.833	0.0010		
SR-11-SS-F					0.1625	33.000	6					
5R-18-55-F									0.755-1262			
Auxiliary Tes		0.0100					Statistic	6	Critical		Skew	Kurt
Provinely 169	e Test Ind	icates non	mal distri	bution (p >	0.01)		0.96639		0.919		-0.1895	0.19521
Shanko Wille		CONTRACTOR DESCRIPTION OF TAXABLE PARTY	and the second s	and the second s			6.78888		16.8119			

** Indicates samples with one replicate removed from statistical analysis due to possible misseeding.

Reviewed by

Ļ

Ľ

Ê

ToxCalc v5.0

EVS CONSULTANTS FRESHWATER SEDIMENT TOXICITY TEST DATA SUMMARY

Client NOAA

DUC Project No. 1/575 57.10		Citet
	-	EVS Project No. 9/575-37.10
Diotion -		Bronger da
EVS Work Order No. 9700.459	-	EVS Work Order No. 1700 (65 7

SAMPLE

Identification In 9	Grenestorice	215+ (94.8-003)
Amount Received	-	
Date Collected		
Date Received	-	

DILUTION AND CONTROL MEDIUM

Water Type <u>Made at by Hard Lu</u> Temperature (*C) <u>33</u> pH <u>7.9</u> Dissolved Oxygen (mg/L) <u>8.7</u>
Conductivity (umhos/cm)
Hardness (mg/L as CaCO ₃)98
Alkalinity (mg/L as CaCO ₁) 68

EVS Analysts 654, 50+, ATW, MK Test Type 96-1 Peterene Toxicant Test Initiation Date August 86, 1997

TEST SPECIES INFORMATION

Organism _	H.azkca	
Source/Date	Received APO / Aug. 22 197	
Age/Dry We	ght on Day 0 (mg/ind) 14 d 1 0.04 mg	
Reference T	xicant Lo	
145	rence Toxicant Result (LC50 and 95% CL)	
Reference T	+ Hog units (mean + 2SD)	Parat

TEST CONDITIONS

pH Range			
Dissolved Oxygen Ra			
Conductivity (umhos	/cm)	310 - 3:	20
Hardness (mg/L as C			
Alkalinity (mg/L as (
Photoperiod (L:D h)			
Other			

	M	fean ± SD
Sample ID/ug/LZn)	Survival (%)	Individual Dry Weight (mg
320	0	
180	23.3	
100	93.3	
36	16.7	
.30	100	
Central	250	
fied By C. W. Aurson		ind Oct \$97

Date Verified Ut \$97

Form/Lab/Disabilition/unew/Treal/SUMMARY.WPD

February 21, 1997

EVS CONSULTANTS FRESHWATER SEDIMENT - 96-h REFERENCE TOXICANT TEST DATA

Clicat_	NOA	4		_		
EVS Proj	oct No	9/57	5 - 34.	10		
EVS Wox	k Order N	10. 73	100.65	7		
Test Initia	ation Date	A	igent ?	16/92	,	
			0			

Reference Toxicant 7. EVS Stock ID/Preparation Date 97.5.003 Test Species the life on the offer of Source Content on the ARO / Augure 197 No. Organisms/Test Volume 10/2000

Concentration		mber e (24 to 9			I	viozzi	d Oxyg	en (mg/	L)		Temp	perature	(*C)	_			pH				octivity os/cm)
NH (Malizan)	24	48	72	96	·0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	.96
320 A/WQ	10		0	-	8.5	7.8	8.2	7.9	-	22.5	73.0		22.0	-	8.0	/	L		-	310	-
в	9	0	0	-		1745			1		230	240		-		1/	1	1/			-
C	10	3	0	-		147			-		20	24.0		-		1	1/		-		-
+						ľ										/					
RO A/Wa	0	4	3	1	8.5	7.6	8.(7.9	7.5	22.5	23.0	240	23.0	23.0	0.9	1	K	1	7.7	310	320
В	10	5	3	2		环					\$6.0	246				V	V	1			
С	ю	5	4	4		4.7		1			20	240				\vee		1			
						1										1/	1,	P			
Technician Init.	P	A	R	Jil	Alus	P	h	GA	364	AW	P	h-	P	Jun	AW				164	AW	364
) Instruments Used: mments				197	era.	•	pH_Z	- A -	2.9	-	_			A9	- 62					,) 	
t Set Up By			-	D	ata Ver	ified By	e.	2/92	18n	-			_		D	Date Ve		at 2	197		
	9 Mar	· 20. 1997										•									

EVS CONSULTANTS FRESHWATER SEDIMENT - 96-h REFERENCE TOXICANT TEST DATA

Concentration		mber o (24 to 9			1	Xissolve	d Oxyg	en (mg/	L)		Tem	perature	(°C)				pH				activity cos/cm)
et (Hair Zn)	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	96
100 A/WQ	0	10	10	9	8.5	7.6	81	7.7	7.5	72.5	23.0	760	73.0	23.0	8.0	\vee	V	1	7.7	হাচ	32.
в	10	10	10	io		46					836	\$\$6				17	∇	V			
С	10	9	9	9	1	146					36	10			1	1	1	1/			
						ľ.					-	1				17	/	1			
56 A/wa	0	10	10	10	8.5	27	8.1	7.8	7.4	22.5	23.0	24.0	23.0	220	8.0				7.7	510	32
В	(D	ю	10	10		\$%					7036	240					P	∇			
C	10	10	10	9		MA	- 2	1			127.0	10	-			1		1/			
						1					ľ					1	/	1			
Technician Init.	P	h	4	See	Alw	P	A	R	164-	ahd	PP	h	R	Ju	(ula	1			J64	elw)	366
Instruments Used:	Temp			+				- A.2		5	_		75-0	•	5			Cend.	77-1	1-100-	د
Sat Up By 654					ata Verij		A	Ma	100			_		_			ified_6	AFS	197		

FRESHWATER SEDIMENT - 96-h REFERENCE TOXICANT TEST DATA

Client NOAR EVS Project No. 9/535-3340

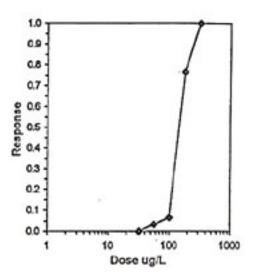
EVS Work Order No. 9700 1059

Test Initiation Date house 26/92

Concentration			f Survi % hour		Ľ	Xissolve	d Oxyz	yen (mg	L)		Tem	perature	•(*C)				pH				os/an)
upllegiczn)	24	48	72	96	0	24	48	72	96	0	24	45	72	96	0	24	48	72	96	0	96
32 A/WQ	10	10	10	10	8.5	7.6	81	2.7	7.4	225	23.0	24.0	23.0	23.0	8.0	V	V	V,	7.7	310	320
В	. 10	10	10	10		BA										7	17	V			
С	10	10	10	10		1/0					36					17	17	1			
						1								-		11	1	K,			
Cantral A/wa	10	10	10	10	8.5	7.7	8.1	28	7.4	22.5	23.0	240	23.0	23.0	8.0		1		7.7	310	320
В	10	10	10	10		14				1		240				7	17				
C	ю	10	10	10		34	•	1				240				1		Z,			
												1				1	V	V			
Technician Init.	P	A	R	JGL	AW	P	h	R	160	AN	P	h	R	JGL	AW				364	Alt)	sen
Instruments Used:	Temp			14 73	7					9	_		<i>∏−</i> A		9					J -100- 1	
Set Up By G54		_			ata Veril		R	nto	tion			_			_		ified (and	197		

Prest Alberta And International Adverse in such

Samp	es: H	A-Hyalel	I Acute Reftox Is azteca of Toxicant End D	Date: 8/30	/97		Protocol: Sample 1	Type: ZNSC	I-EPA Freshwater Sediment D-Zinc sulfate nment Consultants
Pos	ID	Rep	Group	Start	24 Hr	48 Hr	72.Hr	95 Hr	Notes
100	1	1	control	10				10	
-	2	2	control	10				. 10	
	3	3	control	10			1.1	10	
	4	1	32.000	10				10	
	5	2	32.000	10				10	
	6	3	32.000	10				10	
-	7	1	56.00	10			-	10	
	8	2	56,00	10				10	
	9	3	56.00	10				9	
1	10	1	100.00	10				9	
	11	2	100.00	10				10	
	12	3	100.00	10				9	
	13	1	180.00	10				1	
	14	2	180.00	10				2	
	15	3	180.00	10				4	
	16	1	320.00	10				0	
	17	2	320.0	10	+			0	
	18	3	320.0	10				0	


Comments: 6/575-37,10 (we#9700659); 6/743-03 (we#9700669); Source: ARO

Reviewed by Ut

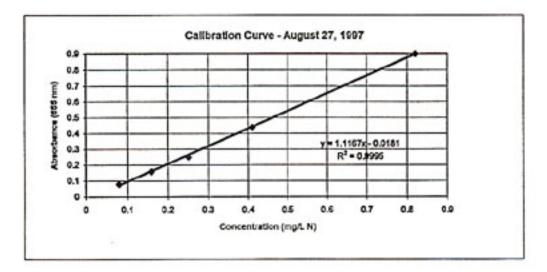
1

				Amphipod Acute Reftor	-96 Hr Surviva		-
Start Date:	8/26/97		Test ID:	RTHAZN3	Sample ID:	REF-Ref Toxicant	-
End Date:	8/30/97		Lab ID:	EVS-Environment Consultan	Sample Type:	ZNSO-Zinc sulfate	
Sample Date:				EPAFS 94-EPA Freshwater		HA-Hyalella azteca	
Comments:	8/575-37	.10 (wo#		8/743-03 (wo#9700669); Sou		search Organisms(ARO)	
Conc-ug/L	1	2	3				-
control	1.0000	1.0000	1.0000	,			-
32	1.0000	1.0000	1.0000				
56	1.0000	1.0000	0.9000				
100	0.9000	1.0000	0.9000				
180	0.1000	0.2000	0.4000				
320	0.0000	0.0000	0.0000				

				Trimmed Spearman-Karber
Trim Level	EC50	95%	CL	
0.0%	145.02	129.80	162.02	
5.0%	147.95	132.46	165.24	
10.0%	146.51	131.70	162.99	1.0 -
20.0%	144.11	130.09	159.63	
Auto-0.0%	145.02	129.80	162.02 44	12 CO -

ş

ł


l

Į

Total Ammonia Measurements (reported as ammonia nitrogen, mg/L N)

ì

	Client Project No.:	NOAA 9/575-37.1	Test Type: Test Species:	10-d Freshwate Hyalella aztoca		t Toxicity Test
	Work Order No .:	9700659	Date Initiated:	26-Aug-97		
-	Date Sampled:	26-Aug-97	Day 0 Date Terminated	5-Sep-97		
	Date Measured:	27-Aug-97				
	Standard	Absorbance	Sample ID	Absorbance	Dilution	Ammonia
	Concentrations	of standards		of samples	factor	concentrations
	(mg/L N)		Interstitial water			(mg/LN)
			0	0.00	-	
9	0.08	0.08	Control	0.02	25.00	<0.1
	0.16		SR-1-53-8	0.22	50.00	10.7
-	0.25		SR-2-SS-8	0.71	25.00	16.3
1	0.41	0.44	SR-3-SS-8	0.23	50.00	11.1
-	0.82	0.90	SR-4-SS-8	0.64	50.00	29.5
			SR-7-SS-F	0.15	50.00	7.5
			SR-8-SS-F	0.38	50.00	17.8
1			SR-9-53-F	0.28	50.00	13.3
8			SR-10-SS-F	0.51	50.00	23.6
			SR-11-SS-F	0.45	50.00	21.0
			SR-12-SS-F	0.34	50.00	16.0
8			SR-13-SS-F	0.55	50.00	25.4
			SR-14-SS-F	0.60	50.00	27.7
			SR-15-SS-F	0.62	50.00	28.6
			SR-15-SS-F rep	0.62	50.00	28.6
8			SR-16-SS-F	0.43	50.00	20.1
1			SR-17-SS-F	0.30	50.00	14.2
			SR-18-SS-F	0.75	25.00	17.2
			SR-18-SS-F rep	0.77	50.00	35.3
1			SR-19-SS-F	0.45	50.00	21.0
э.			SR-20-SS-F	0.81	25.00	18.5

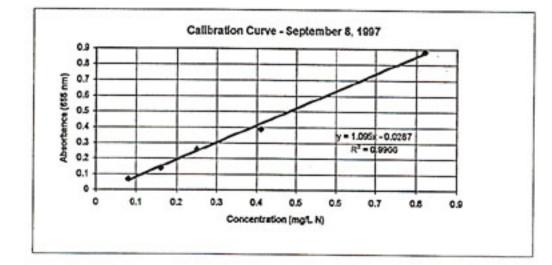
Carl apt

Total Ammonia Measurements (reported as ammonia nitrogen, mg/L N)

ļ

ļ

I


Į,

ē

l

ļ

Client: Project No.: Work Order No.: Date Sampled: Date Measured:	NOAA 9/575-37.1 9700659 5-Sep-97 8-Sep-97	Test Type: Test Species: Date Initiated: Day 10 Date Terminated	10-d Freshwat Hyalella ezteci 26-Aug-97 5-Sep-97		t Toxicity Test
Standard Concentrations (mg/L N)	Absorbance of standards	Sample ID Interstitial water	Absorbance of samples	Dilution factor	Ammonia concentrations (mg/L N)
0.08	0.07	Control	0.10	12.50	1.5
0.16	0.14	SR-1-SS-B	0.15	50.00	8.2
0.25	0.25	SR-2-SS-B	0.21	50.00	10.9
0.41	0.39	SR-3-SS-B	0.20	50.00	10.4
0.82	0.88	SR-4-SS-B	0.16	100.00	17.2
		SR-7-SS-F	0.08	50.00	5.0
		SR-7-SS-F rep	0.08	50.00	5.0
		SR-6-SS-F	0.20	50.00	10.4
		SR-9-SS-F	0.10	50.00	5.9
		SR-10-SS-F	0.18	100.00	19.1
		SR-11-SS-F	0.14	100.00	15,4
		SR-12-SS-F	0.20	50.00	10.4
		SR-13-55-F	0.15	100.00	16.3
		SR-14-SS-F	0.13	100.00	14.5
		SR-15-SS-F	0.19	100.00	20.0
		SR-16-SS-F	0.14	100.00	15.4
		SR-17-SS-F	0.17	50.00	9.1
		SR-18-SS-F	0.20	50.00	10.4
		SR-10-SS-F	0.14	100.00	15.4
		SR-20-SS-F	0.30	50.00	15.0
		SR-20-SS-F rep	0.28	50.00	14.1

Sheet1

Total Sulfide Measurements (reported as mg/L S) Combination Silver/Sulfide Method

Client: NOAA Project No.: 9/575-37.10 Work Order No.: 9700659 Notes: Days 0&10 Please note sulfides preserved or

3

9

đ

Test Type: 10-d Sediment Toxicity Test Test Species: H.azteca Date Initiated: 26-Aug-97 Date Terminated: 05-Sep-97

Please note sulfides preserved on sampling date.

Sample ID	Date Sampled	Date Measured	Sulfide(mg/L)	Comments
SR-1-SS-B	26-Aug-97	23-Sep-97	0.000	Day 0
SR-2-SS-B	26-Aug-97	23-Sep-97	0.000	Day 0
SR-3-SS-B	26-Aug-97	23-Sep-97	0.000	Day 0
SR-4-SS-B	26-Aug-97	23-Sep-97	0.000	Day 0
SR-7-SS-F	20-Aug-97	22-Sep-97	0.000	Day 0
SR-8-85-F	26-Aug-07	22-Sep-07	0.015	Day 0
SR-0-SS-F	26-Aug-07	23-Sep-07	0.000	Day 0
SR-10-SS-F	26-Aug-97	23-Sep-97	0.000	Day 0
SR-10-55-F	26-Aug-97	22-Sep-97	0.015	Day 0
	26-Aug-97	23-Sep-97	0.000	Day 0
SR-12-SS-F	26-Aug-97	23-Sep-97	0.000	Day 0
SR-13-SS-F SR-14-SS-F	26-Aug-97	23-Sep-97	0.000	Day 0
		23-Sep-97	0.000	Day 0
SR-15-SS-F	26-Aug-97	23-Sep-97	0.000	Day 0
SR-16-SS-F	26-Aug-97		0.000	Day 0
SR-17-SS-F	26-Aug-97	23-Sep-97	0.000	Day 0
SR-18-SS-F	26-Aug-97	23-Sep-97	0.000	Day 0
8R-19-55-F	26-Aug-97	23-Sep-97		Day 0
8R-20-88-F	26-Aug-97	23-Sep-97	0.000	Dayo
\$R-1-\$\$-8	05-Sep-97	23-Sep-97	0.000	Day 10
SR-2-SS-B	05-Sep-97	23-Sep-97	0.000	Day 10
SR-3-SS-B	05-Sep-97	23-Sep-97	0.000	Day 10
SR-4-SS-B	05-Sep-97	23-Sep-97	0.000	Day 10
SR-7-SS-F	05-Sep-97	23-Sep-97	0.000	Day 10
SR-8-SS-F	05-Sep-97	23-Sep-97	0.000	Day 10
8R-9-55-F	05-Sep-97	23-Sep-97	0.000	Day 10
SR-10-SS-F	05-Sep-97	23-Sep-97	0.000	Day 10
SR-11-SS-F	05-Sep-97	23-Sep-97	0.001	Day 10
SR-12-SS-F	05-Sep-97	23-Sep-97	0.000	Day 10
6R-13-65-F	05-Sep-97	23-Sep-07	0.000	Day 10
SR-14-SS-F	05-Sep-97	23-Sep-97	0.000	Day 10
SR-15-SS-F	05-Sep-97	23-Sep-97	0.000	Day 10
SR-16-SS-F	05-Sep-97	23-Sep-97	0.000	Day 10
SR-17-SS-F	05-Sep-97	23-Sep-97	0.000	Day 10
SR-18-SS-F	05-Sep-97	23-Sep-97	0.000	Day 10
SR-19-SS-F	05-Sep-97	23-Sep-97	0.000	Day 10
SR-20-SS-F	05-Sep-97	23-Sep-97	0.000	Day 10

Octiok

Alkalinity/Hardness Measurements

Client EVS Project No EVS Work Order No.	NOAA 9/575-37.10 9700659				Test Type Test Species Test Initiation I Test Terminatio		10-d Sediment 7 H.azteca August 26, 199 September 5,	7		
			Alk	alinity Measure	ment			Hardness	deasurement	
Sample ID	Subsample Date	Sabsample Volume (mL)	Initial H ₂ SO ₄ Volume (mL)	Volume to pH 4.5 (mL)	Total Volume to pH 4.2 (mL)	Alkalinity (ngL a CaCO ₃)	Subsample Volume (mL)	Initial EDTA Volume (mL)	Final EDTA Volume (mL.)	Hardness (rg/L e CrCO ₂)
SR-1-SS & PAN	Aug. 26/97	50	0	4.8	4.9	94	50	0	6.2	124
SR-2-SS,F 9	Aug. 26/97	50	0	5.6	5.7	110	50	0	6.5	130
SR-3-SS-F B	Aug. 26/97	50	0	5.0	5.1	98	50	0	6.0	120
SR-4-SS-FB +	Aug. 26/97	50	0	5.5	5.6	108	50	0	6.5	130
R-7-SS-F	Aug. 26/97	50	0	3.9	4.0	76		0	5.5	110
5R-8-SS-F	Aug. 26/97	50	0	5.0	5.1	98	50	0	6.5	130
5R-9-5S-F	Aug. 26/97	50	0	4.6	4.7	90	50	0	5.9	115
SR-10-SS-F	Aug. 26/97	.50	0	5.7	5.8	112	50	0	6.8	13
SR-11-SS-F	Aug. 26/97	50	0	4.9	5.0	96	50	0	6.5	13
SR-12-SS-F	Aug. 26/97	50	0	4.7	4.8	92	50	0	5.9	11
R-13-SS-F	Aug. 26/97	50	0	5.2	5.3	102	50	0	6.3	12
R-14-SS-F	Aug. 26/97	50	0	5.2	5.3	102	50	0	63	12
R-15-SS-F	Aug. 26/97	50	0	5.2	5.3	102	50	0	6.2	12
R-16-SS-F	Aug. 26/97	50	0	4.9	5.0	96	50	0	6.1	12
R-17-SS-F	Aug. 26/97	50	0	4.7	4.8	92	50	0	5.9	111
R-18-SS-F	Aug. 26/97	50	0	5.2	5.3	102	50	0	6.2	124
R-19-SS-F	Aug. 26/97	50	0	5.1	5.2	100	50	0	6.2	124
SR-20-SS-F	Aug. 26/97	50	0	5.1	5.2	100	50	0	6.0	120
CONTROL	Aug. 26/97	50	0	3.3	3.4	64	50	0	4.7	94

APPENDIX **D**

Benthic Community Data

Environmental Services

EVS PROJECT #: 2/575-37.11 PROJECT NAME: SHEBOYGAN RIVER

		#QA		% Sorting		
	Sample I.D.	Organisms	Total Abund.	Efficiency	P/F	Comments
1	SR-1-BC-B-1	0	189	100.0	Р	0 QA/QC ORGANISMS
2	SR-1-BC-B-2	0	151	100.0	Р	0 QA/QC ORGANISMS
3	SR-1-BC-B-3	0	338	100.0	Р	0 QA/QC ORGANISMS
4	SR-1-BC-B-4	0	241	100.0	Р	0 QA/QC ORGANISMS
5	SR-1-BC-B-5	0	132	100.0	Р	0 QA/QC ORGANISMS
6	SR-2-BC-B-1	0	58	100.0	Р	0 QA/QC ORGANISMS
7	SR-2-BC-B-2	0	75	100.0	Р	0 QA/QC ORGANISMS
8	SR-2-BC-B-3	0	171	100.0	Р	0 QA/QC ORGANISMS
9	SR-2-BC-B-4	0	87	100.0	Р	0 QA/QC ORGANISMS
10	SR-2-BC-B-5	0	209	100.0	Р	0 QA/QC ORGANISMS
11	SR-3-BC-B-1	1	221	97.7	Р	Oligs. found In QA/QC
12	SR-3-BC-B-2	0	28	100.0	Р	0 QA/QC ORGANISMS
13	SR-3-BC-B-3	1	289	98.3	Р	Oligs. found In QA/QC
14	SR-3-BC-B-4	1	327	98.5	Р	Oligs. found In QA/QC
15	SR-3-BC-B-5	2	219	95.4	Р	Oligs. found In QA/QC
16	SR-4-BC-B-1	0	102	100.0	Р	0 QA/QC ORGANISMS
17	SR-4-BC-B-2	1	107	95.3	Р	Oligs. found In QA/QC
18	SR-4-BC-B-3	0	102	100.0	Р	0 QA/QC ORGANISMS
19	SR-4-BC-B-4	0	100	100.0	Р	0 QA/QC ORGANISMS
20	SR-4-BC-B-5	1	135	96.3	Р	Oligs. found In QA/QC
21	SR-7-BC-F-1	0	82	100.0	Р	0 QA/QC ORGANISMS
22	SR-7-BC-F-2	0	49	100.0	Р	0 QA/QC ORGANISMS
23	SR-7-BC-F-3	0	30	100.0	Р	0 QA/QC ORGANISMS
24	SR-7-BC-F-4	0	22	100.0	Р	0 QA/QC ORGANISMS
25	SR-7-BC-F-5	0	5	100.0	Р	0 QA/QC ORGANISMS
26	SR-8-BC-F-1	1	589	99.2	Р	Oligs. found In QA/QC
27	SR-8-BC-F-2	5	617	96.0	Р	Oligs. found In QA/QC
28	SR-8-BC-F-3	2	249	96.0	Р	Oligs. found In QA/QC
29	SR-8-BC-F-4	3	419	96.4	Р	Oligs. found In QA/QC
30	SR-8-BC-F-5	5	555	95.5	Р	Oligs. found In QA/QC
31	SR-9-BC-F-1	2	374	97.3	Р	Oligs. found In QA/QC
32	SR-9-BC-F-2	2	354	97.2	Р	Oligs. found In QA/QC
33	SR-9-BC-F-3	2	367	97.3	Р	Oligs. found In QA/QC

Environmental Services

EVS PROJECT #: 2/575-37.11 PROJECT NAME: SHEBOYGAN RIVER

		#QA		% Sorting		
	Sample I.D.	Organisms	Total Abund.	Efficiency	P/F	Comments
34	SR-9-BC-F-4	2	541	98.2	Р	Oligs. found In QA/QC
35	SR-9-BC-F-5	3	520	97.1	Р	Oligs. found In QA/QC
36	SR-10-BC-F-1	0	432	100.0	Р	0 QA/QC ORGANISMS
37	SR-10-BC-F-2	0	214	100.0	Р	0 QA/QC ORGANISMS
38	SR-10-BC-F-3	0	302	100.0	Р	0 QA/QC ORGANISMS
39	SR-10-BC-F-4	0	292	100.0	Р	0 QA/QC ORGANISMS
40	SR-10-BC-F-5	0	254	100.0	Р	0 QA/QC ORGANISMS
41	SR-11-BC-F-1	2	378	97.4	P	Oligs. found In QA/QC
42	SR-11-BC-F-2	1	259	98.1	Р	Oligs. found In QA/QC
43	SR-11-BC-F-3	0	183	100.0	Р	0 QA/QC ORGANISMS
44	SR-11-BC-F-4	1	329	98.5	Р	Oligs. found In QA/QC
45	SR-11-BC-F-5	2	342	97.1	Р	Oligs. found In QA/QC
46	SR-12-BC-F-1	0	371	100.0	Р	0 QA/QC ORGANISMS
47	SR-12-BC-F-2	1	385	98.7	Р	Oligs. found In QA/QC
48	SR-12-BC-F-3	1	381	98.7	Р	Oligs. found In QA/QC
49	SR-12-BC-F-4	2	461	97.8	Р	Oligs. found In QA/QC
50	SR-12-BC-F-5	0	356	100.0	Р	0 QA/QC ORGANISMS
51	SR-13-BC-F-1	1	1714	99.7	Р	Oligs. found In QA/QC
52	SR-13-BC-F-2	0	1446	100.0	Р	0 QA/QC ORGANISMS
53	SR-13-BC-F-3	0	946	100.0	Р	0 QA/QC ORGANISMS
54	SR-13-BC-F-4	1	648	99.2	Р	Oligs. found In QA/QC
55	SR-13-BC-F-5	1	688	99.3	Р	Oligs. found In QA/QC
56	SR-14-BC-F-1	3	421	96.4	Р	Oligs. found In QA/QC
57	SR-14-BC-F-2	1	342	98.5	Р	Oligs. found In QA/QC
58	SR-14-BC-F-3	0	259	100.0	Р	0 QA/QC ORGANISMS
59	SR-14-BC-F-4	4	518	96.1	Р	Oligs. found In QA/QC
60	SR-14-BC-F-5	1	330	98.5	Р	Oligs. found In QA/QC
61	SR-15-BC-F-1	2	284	96.5	Р	Oligs. found In QA/QC
62	SR-15-BC-F-2	0	351	100.0	Р	0 QA/QC ORGANISMS
63	SR-15-BC-F-3	3	515	97.1	Р	Oligs. found In QA/QC
64	SR-15-BC-F-4	4	494	96.0	Р	Oligs. found In QA/QC
65	SR-15-BC-F-5	4	495	96.0	Р	Oligs. found In QA/QC
66	SR-16-BC-F-1	1	344	98.5	Р	Oligs. found In QA/QC

Environmental Services

EVS PROJECT #: 2/575-37.11 PROJECT NAME: SHEBOYGAN RIVER

		#QA		% Sorting		
	Sample I.D.	Organisms	Total Abund.	Efficiency	P/F	Comments
67	SR-16-BC-F-2	1	363	98.6	Р	Oligs. found In QA/QC
68	SR-16-BC-F-3	2	214	95.3	Р	Oligs. found In QA/QC
69	SR-16-BC-F-4	0	313	100.0	Р	0 QA/QC ORGANISMS
70	SR-16-BC-F-5	1	290	98.3	Р	Oligs. found In QA/QC
71	SR-17-BC-F-1	3	339	95.6	Р	Oligs. found In QA/QC
72	SR-17-BC-F-2	0	224	100.0	Р	0 QA/QC ORGANISMS
73	SR-17-BC-F-3	3	482	96.9	Р	Oligs. found In QA/QC
74	SR-17-BC-F-4	2	368	97.3	Р	Oligs. found In QA/QC
75	SR-17-BC-F-5	1	302	98.3	Р	Oligs. found In QA/QC
76	SR-18-BC-F-1	0	409	100.0	Р	0 QA/QC ORGANISMS
77	SR-18-BC-F-2	0	326	100.0	Р	0 QA/QC ORGANISMS
78	SR-18-BC-F-3	1	298	98.3	Р	Oligs. found In QA/QC
79	SR-18-BC-F-4	2	327	96.9	Р	Oligs. found In QA/QC
80	SR-18-BC-F-5	2	441	97.7	Р	Oligs. found In QA/QC
81	SR-19-BC-F-1	2	318	96.9	Р	Oligs. found In QA/QC
82	SR-19-BC-F-2	0	335	100.0	Р	0 QA/QC ORGANISMS
83	SR-19-BC-F-3	2	324	96.9	Р	Oligs. found In QA/QC
84	SR-19-BC-F-4	0	171	100.0	Р	0 QA/QC ORGANISMS
85	SR-19-BC-F-5	2	739	98.6	Р	Oligs. found In QA/QC
86	SR-20-BC-F-1	0	588	100.0	Р	0 QA/QC ORGANISMS
87	SR-20-BC-F-2	2	578	98.3	Р	Oligs. found In QA/QC
88	SR-20-BC-F-3	0	680	100.0	Р	0 QA/QC ORGANISMS
89	SR-20-BC-F-4	0	405	100.0	Р	0 QA/QC ORGANISMS
90	SR-20-BC-F-5	3	520	97.1	Р	Oligs. found In QA/QC

	T01-1	T01-2	T01-3	T01-4	T01-5	T02-1	T02-2	T02-3	T02-4	T02-5	T03-1	T03-2
Ablabesmyia sp.	0	0	0	0	0	0	0	0	0	0	0	0
Baetidae	0	0	0	0	0	1	0	0	0	0	0	0
Baetis sp.	0	1	0	0	0	0	0	0	0	0	0	0
Baetis tricaudatus	0	0	3	1	0	0	0	0	0	0	0	0
Caecidotea sp.	0	0	0	0	0	0	0	0	0	0	0	0
Caenis sp.	1	0	0	0	0	0	0	0	0	0	0	0
Ceratopogoninae sp.	0	0	0	0	1	0	0	0	0	0	0	0
Chironomini	0	0	0	0	0	0	0	0	0	0	0	0
Chironomus sp.	1	0	1	0	0	0	0	0	0	0	10	2
Chloroperlidae	0	0	0	0	0	0	0	0	0	0	0	0
Cladopelma sp.	0	0	0	0	0	0	0	0	0	0	0	0
Clinotanypus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Coenagrionidae	0	0	0	0	0	0	0	0	0	0	0	0
Cricotopus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Cryptochironomus sp.	0	0	1	1	0	0	0	0	0	0	0	1
Cryptotendipes sp.	0	0	0	0	0	0	0	0	0	0	0	0
Dicrotendipes sp.	0	0	0	0	0	0	0	0	0	0	0	0
Dineutus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Dubiraphia sp.	16	25	64	43	23	0	1	5	0	1	26	2
Endochironomus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Ephemeroptera	0	0	0	0	0	0	0	0	0	0	0	0
Erioptera sp.	1	0	0	0	0	0	0	0	0	0	0	0
Eukiefferiella sp.	0	0	0	0	0	1	0	0	0	0	0	0
Gammarus sp.	0	2	0	0	0	0	0	0	0	0	0	0
Glossosomatidae	0	1	0	0	0	0	0	0	0	0	0	0
Glutops sp.	0	0	0	0	0	0	0	0	0	0	0	0
Glyptotendipes sp.	0	0	0	0	0	0	0	0	0	0	0	0
Harnischia sp.	0	0	0	0	0	0	0	0	0	0	0	0
Helobdella stagnalis	0	0	0	0	0	0	0	0	0	0	0	0
Heptageniidae	0	0	0	0	0	0	0	0	0	0	0	0
Hexagenia sp.	1	0	0	0	0	0	0	0	0	0	0	0
Hirudinea	0	0	0	0	0	0	0	0	0	0	0	0
Hyalella azteca	6	0	0	0	0	0	0	0	0	0	0	0
Hydropsyche sp.	0	0	0	0	0	0	0	0	0	0	0	0
Microchironomus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Microcylloepus sp.	1	0	1	1	0	0	0	0	0	0	0	0
Micropsectra sp.	0	0	0	0	0	0	0	0	0	0	0	0
Microtendipes sp.	0	0	0	0	0	0	0	0	0	0	0	0
Oecetis sp.	0	0	0	0	0	0	0	0	0	0	0	0
Ordobrevia sp.	0	0	0	1	0	0	0	0	0	0	0	0
Paralauterborniella sp.	0	0	0	0	0	0	0	0	0	0	0	0
Paramerina sp.	0	0	0	0	0	0	0	0	0	0	0	0
Paratanytarsus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Paratendipes sp.	0	1	0	0	0	0	0	0	0	0	0	0
Pentaneurini	0	0	0	0	0	0	0	0	0	0	1	0
Polypedilum sp.	0	2	3	1	0	0	0	0	0	0	5	1
Procladiini	0	0	0	0	0	0	0	0	0	0	0	0
Procladius sp.	2	1	1	2	0	0	0	0	0	0	1	0
Rheotanytarsus sp.	0	1	1	0	0	0	0	0	0	0	0	0
Sialis sp.	0	0	0	0	0	0	0	0	0	0	0	0
Sphaeriidae	0	1	0	0	0	0	0	0	0	0	0	0
Stenochironomus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Stictochironomus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Tabanidae	0	0	0	0	0	0	0	0	0	0	0	0
Tanypus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Tanytarsini	0	0	0	0	0	0	0	0	0	0	0	0
Tanytarsus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Thienemannimyia gr. sp.	0	0	1	0	0	0	0	0	0	0	0	0
Tricorythodes sp.	0	0	0	0	0	0	0	0	0	0	0	0
Tubificidae	160	116	262	191	108	56	74	166	87	208	178	22
Turbellaria	0	0	0	0	0	0	0	0	0	0	0	0
	189	151	338	241	132	58	75	171	87	209	221	28

	T03-3	T03-4	T03-5	T04-1	T04-2	T04-3	T04-4	T04-5	T07-1	T07-2	T07-3	T07-4
Ablabesmyia sp.	0	0	0	0	0	0	0	0	1	1	0	0
Baetidae	0	0	0	0	0	0	0	0	0	0	0	0
Baetis sp.	0	0	0	0	0	0	0	0	0	0	0	0
Baetis tricaudatus	1	0	0	0	0	0	0	0	0	0	0	0
Caecidotea sp.	0	0	0	0	0	0	0	0	0	1	0	0
Caenis sp.	0	0	1	0	0	0	0	0	0	0	0	0
Ceratopogoninae sp.	0	0	1	0	0	0	0	0	0	0	0	0
Chironomini	1	0	0	0	0	0	0	0	0	0	0	0
Chironomus sp.	16	19	9	1	0	0	0	0	5	3	4	5
Chloroperlidae	1	0	0	0	0	0	0	0	0	0	0	0
Cladopelma sp.	0	0	0	0	0	0	0	0	0	0	0	0
Clinotanypus sp.	0	0	0	5	0	0	0	0	0	0	0	0
Coenagrionidae	0	0	0	0	0	0	0	0	1	0	0	0
Cricotopus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Cryptochironomus sp.	2	2	0	0	0	0	2	3	0	2	2	0
Cryptotendipes sp.	0	0	0	0	0	0	0	0	0	0	0	0
Dicrotendipes sp.	0	0	0	0	0	0	0	0	9	3	0	1
Dineutus sp.	0	0	0	0	0	0	0	0	1	0	0	0
Dubiraphia sp.	17	23	12	2	1	0	0	0	3	6	2	1
Endochironomus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Ephemeroptera	0	0	0	0	0	0	0	0	0	0	0	0
Erioptera sp.	0	0	0	0	0	0	0	0	0	0	0	0
Eukiefferiella sp.	0	0	0	0	0	0	0	0	0	0	0	0
Gammarus sp.	0	0	0	1	0	0	0	0	0	0	0	0
Glossosomatidae	0	0	0	0	0	0	0	0	0	0	0	0
Glutops sp.	0	0	0	0	0	0	0	0	0	0	0	0
Glyptotendipes sp.	0	0	0	0	0	0	0	0	35	4	1	0
Harnischia sp.	0	0	0	0	0	0	0	0	0	0	0	0
Helobdella stagnalis	0	0	0	0	0	0	0	0	0	0	0	0
Heptageniidae	0	0	0	0	0	0	0	0	1	0	0	0
Hexagenia sp.	0	0	0	0	0	0	1	0	0	1	1	0
Hirudinea	0	0	0	0	0	0	0	0	0	0	0	0
Hyalella azteca	0	0	0	0	0	0	0	0	0	0	0	0
Hydropsyche sp.	0	0	0	0	0	0	0	0	0	0	0	0
Microchironomus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Microcylloepus sp.	0	3	1	0	0	0	0	0	1	0	0	0
Micropsectra sp.	0	0	0	0	0	0	0	0	0	0	0	0
Microtendipes sp.	1	1	0	0	0	0	0	0	0	0	0	0
Oecetis sp.	0	0	0	0	0	0	0	0	0	0	0	0
Ordobrevia sp.	0	0	0	1	0	0	0	0	0	0	0	0
Paralauterborniella sp.	0	0	0	0	0	0	0	0	0	0	0	0
Paramerina sp.	0	0	0	0	0	0	0	0	0	0	0	0
Paratanytarsus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Paratendipes sp.	0	0	0	0	0	0	0	0	0	0	0	0
Paratendipes sp. Pentaneurini	1	0	1	0	0	0	0	0	0	0	1	0
Pentaneurini Polypedilum sp.	12	11	8	0	0	0	0	0	3	2	1	2
<i>,</i> , ,	0	0	0	0	0	0	0	0	0	0	0	0
Procladiini Procladius en	-	-	-	-	-	-	-	1	-	-	-	-
Procladius sp.	1	0	4	1	3	1	9		15	5	5	4
Rheotanytarsus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Sialis sp.	0	0	0	0	0	0	0	0	0	0	0	0
Sphaeriidae	0	0	0	0	0	0	0	0	0	0	0	0
Stenochironomus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Stictochironomus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Tabanidae	0	0	0	0	0	0	0	0	3	1	1	0
Tanypus sp.	0	0	0	5	3	0	5	8	0	0	0	0
Tanytarsini	0	0	0	0	0	0	0	0	0	0	0	0
Tanytarsus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Thienemannimyia gr. sp.	0	1	0	0	0	0	0	0	0	0	0	0
Tricorythodes sp.	0	0	0	0	0	0	0	0	2	0	0	0
Tubificidae	236	267	182	86	100	101	83	123	2	20	12	9
Turbellaria	0	0	0	0	0	0	0	0	0	0	0	0
Fotal	289	327	219	102	107	102	100	135	82	49	30	22

Clindarpyus sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		T07-5	T08-1	T08-2	T08-3	T08-4	T08-5	T09-1	T09-2	T09-3	T09-4	T09-5	T10-1
Baete sp. 0	Ablabesmyia sp.	0	0	11	8	5	1	0	0	0	0	0	0
Baets final datus 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 0	Baetidae	0	0	0		0	0	0	0	0	0	0	0
Caecidos sp. 0 3 1 1 0 0 1 0 0 Carato sp. 0 0 0 0 0 0 2 2 2 0 Chronomin 0 0 0 0 0 0 0 0 1 2 2 0 0 1 1 0	Baetis sp.	0	0	0	0	0	0	0	0	0	0	0	0
Caenis p. 0 1 1 0 0 0 0 0 1 2 0 1 2 0 0 Chrienomini 0 0 <td>Baetis tricaudatus</td> <td>0</td>	Baetis tricaudatus	0	0	0	0	0	0	0	0	0	0	0	0
Certatoponina 0 0 0 0 2 2 0 1 1 0 0 1 1 1 0 0 0 1 1 1 0 <	Caecidotea sp.	0	0	3	1	1	1	0	0	1	0	0	0
Chrionomia 0 0 0 2 0 1 1 1 0 0 1 1 Chronomus sp. 0 2 3 2 1 1 1 0	Caenis sp.	0	1	1	0	0	0	0	0	1	0	0	0
Chiconomus sp. 0 2 3 2 1 1 1 0 0 0 1 Chadoppina sp. 0<	Ceratopogoninae sp.	0	0	0	0	0	0	2	0	2	2	0	1
Chicogenidae 0 <t< td=""><td>Chironomini</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>2</td><td>0</td><td>0</td><td>1</td><td>2</td><td>0</td></t<>	Chironomini	0	0	0	0	0	0	2	0	0	1	2	0
Cladoppung sp. 0	Chironomus sp.	0	2	3	2	1	1	1	0	0	0	1	0
Clindarpyus sp. 0	Chloroperlidae	0	0	0	0	0	0	0	0	0	0	0	0
Coenagrinuidae 0		0	0	0	0	0	0	0	0	0	0	0	0
Coenagrinuidae 0	Clinotanypus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Cryptochinonomus sp. 0 2 11 1 1 3 1 0 2 0 2 Cryptotendipes sp. 0 4 5 4 3 0 1 0		0	0	0	0	0	0	0	0	0	0	0	0
Cryptotendiges sp. 0 0 0 0 0 0 0 5 0 Directurdiges sp. 0 4 5 4 3 0 1 0	Cricotopus sp.	0	0	0	0	0	0	0	0	0	1	1	0
Cryptotendiges sp. 0	Cryptochironomus sp.	0	2	11	1	1	3	1	0	2	0	2	4
Dicrotedupes sp. 0 4 5 4 3 0 1 0 0 0 0 Dublraphia sp. 0 12 24 2 10 17 4 10 13 11 12 Endechironomus sp. 0 2 0		0	0	0	0	0	0	0	0	0	5	0	0
Dineturis Sp. 0 <		0	4	5	4		0	1	0				0
Dublinghing 0 12 24 2 10 17 4 10 13 11 12 Endochironomus p. 0 0 1 0								-				-	0
Endochironomus sp. 0 1 0			-										2
Ephemeroptera 0 2 0 <		-							-				0
Einopera sp. 0 <t< td=""><td></td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>0</td></t<>		-	-		-	-	-		-	-	-	-	0
Eukieferiella sp. 0		-		-	-	-	-	-	-	-	-	-	0
Gammarus sp. 0 <t< td=""><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>0</td></t<>		-	-	-	-	-	-		-	-	-	-	0
Glossosomatidae 0		-	-	-	-	-	-		-	-	-	-	0
Glutops sp. 0 <th< td=""><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>0</td></th<>		-	-	-	-		-	-	-	-	-	-	0
Glyptotendipes sp. 0 2 3 3 2 0 0 3 7 8 7 Hamischia sp. 0 3 1 0 2 4 17 15 12 15 18 Heibcdella stagnalis 0			-						-				0
Hamischia sp. 0 3 1 0 2 4 17 15 12 15 18 Helpdagenids 0		-		-					-				1
Helobdella stagnalis 0 0 0 0 1 0 0 0 0 Hexagenidae 0 0 2 0 <td< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>0</td></td<>		-					-						0
Heptageniidae 0 0 2 0 <					-								0
Hexagenia sp. 1 3 2 0 <	U U		-						-	-	-		0
Hirudinea 0			-						-				0
Hyalella azteca 0	V 1												0
Hydropsyche sp. 0 1 0 0 1 0		-	-						-	-	-	-	-
Microchinonaus sp. 0			-						-		-		0
Microcylloepus sp. 0									-	-	-	-	0
Micropsectra sp. 0									-	-	-		3
Microtendipes sp. 0 0 1 0			-						-		-	-	0
Oecetis sp. 0 <th< td=""><td>· ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></th<>	· ·												0
Ordobrevia sp. 0 0 0 0 0 0 0 0 0 1 0 Paralauterborniella sp. 0 0 0 0 1 0													0
Paralauterborniella sp. 0 0 0 1 0													0
Paramerina sp. 0 0 0 1 0 0 1 1 0 0 0 Paratanytarsus sp. 0 <t< td=""><td>•</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td>0</td></t<>	•	-	-	-	-				-			-	0
Paratanytarsus sp. 0			-	-		-							0
Paratendipes sp. 0		-	-	-				-	-		-	-	0
Pentaneurini 0 3 3 0 2 1 0 0 5 1 1 Polypedilum sp. 0 4 0 0 1 3 11 9 4 10 12 Procladiini 0 0 0 0 0 0 0 0 0 0 22 33 51 31 30 Procladius sp. 0 1 0 0 0 22 33 51 31 30 Rheotanytarsus sp. 0 0 0 1 1 1 0	· ·		-	-				-				-	0
Polypedilum sp. 0 4 0 0 1 3 11 9 4 10 12 Procladiini 0	<u> </u>		-									-	0
Procladiini 0 <th< td=""><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>0</td></th<>		-			-			-					0
Procladius sp. 0 1 0 0 0 0 22 33 51 31 30 Rheotanytarsus sp. 0 0 0 1 1 1 0	· · ·	-		-	-				-		-		1
Rheotanytarsus sp. 0 0 0 1 1 1 0 0 0 0 0 Sialis sp. 0 1 0<		-	-	-	-	-	-		-	-	-		0
Sialis sp. 0 1 0	Procladius sp.	-		-	-	-	-			-			67
Sialis sp. 0 1 0													0
Stenochironomus sp. 0 0 1 0 0 0 0 0 0 1 Stictochironomus sp. 0	Sialis sp.				0			0	0	0	0	0	0
Stictochironomus sp. 0 1 0 0 0 0 0 1 1 0			3	4	1	0	2	0	0	1	1	0	0
Stictochironomus sp. 0 1 0 0 0 0 0 1 1 0	Stenochironomus sp.		0					0	0	0	0	1	0
Tabanidae 0 3 4 2 0 1 0 0 5 0 1 Tanypus sp. 0		0	0	0	0	0	0	0	0	0	0	0	0
Tanypus sp. 0 <th< td=""><td>Fabanidae</td><td>0</td><td>3</td><td>4</td><td>2</td><td></td><td>1</td><td>0</td><td>0</td><td>5</td><td>0</td><td>1</td><td>0</td></th<>	Fabanidae	0	3	4	2		1	0	0	5	0	1	0
Tanytarsini 0 0 0 0 1 0 <th< td=""><td>Fanypus sp.</td><td>0</td><td></td><td>0</td><td></td><td></td><td>0</td><td>0</td><td>0</td><td></td><td>0</td><td>0</td><td>0</td></th<>	Fanypus sp.	0		0			0	0	0		0	0	0
Tanytarsus sp. 0													0
Thienemannimyia gr. sp. 0													1
Tricorythodes sp. 0 2 2 1 2 0													0
Tubificidae 3 540 535 222 385 519 310 283 262 454 430													0
	· · ·												352
	Furbellaria	0	0	0	0	0	0	0	0	1	0	0	0
												520	432

	T10-2	T10-3	T10-4	T10-5	T11-1	T11-2	T11-3	T11-4	T11-5	T12-1	T12-2	T12-3
Ablabesmyia sp.	0	0	0	0	0	0	0	0	0	0	0	0
Baetidae	0	0	0	0	0	0	0	0	0	0	0	0
Baetis sp.	0	0	0	0	0	0	0	0	0	0	0	0
Baetis tricaudatus	0	0	0	0	0	0	0	0	0	0	0	0
Caecidotea sp.	0	0	0	0	0	0	0	0	0	0	0	0
Caenis sp.	0	0	0	0	0	0	0	0	1	0	0	0
Ceratopogoninae sp.	0	0	0	0	0	0	0	0	0	2	0	2
Chironomini	1	0	0	0	0	2	0	0	0	0	0	2
Chironomus sp.	1	1	0	0	6	7	4	12	6	14	29	31
Chloroperlidae	0	0	0	0	0	0	0	0	0	0	0	0
Cladopelma sp.	0	0	0	0	1	0	0	0	1	0	0	0
Clinotanypus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Coenagrionidae	0	0	0	0	0	0	0	0	0	0	0	0
Cricotopus sp.	0	0	0	0	1	0	0	0	0	0	0	0
Cryptochironomus sp.	7	4	3	2	1	3	0	1	3	1	2	2
Cryptotendipes sp.	0	0	0	0	0	0	0	0	0	0	0	0
Dicrotendipes sp.	0	0	0	0	0	0	0	0	1	0	0	0
Dineutus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Dubiraphia sp.	1	0	1	1	7	4	0	2	4	4	2	3
Endochironomus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Ephemeroptera	0	0	0	0	0	0	0	0	0	0	0	0
Erioptera sp.	0	0	0	0	0	0	0	0	0	0	0	0
Eukiefferiella sp.	0	0	0	0	0	0	0	0	0	0	0	0
Gammarus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Glossosomatidae	0	0	0	0	0	0	0	0	0	0	0	0
Glutops sp.	0	0	0	0	0	0	0	0	0	0	0	0
Glyptotendipes sp.	0	0	0	0	0	1	0	1	0	0	1	0
Harnischia sp.	1	1	0	0	7	0	0	3	1	4	8	11
Helobdella stagnalis	0	0	0	0	0	0	0	0	0	0	0	0
Heptageniidae	0	0	0	0	0	0	0	0	0	0	0	0
Hexagenia sp.	0	0	0	0	0	0	0	0	0	0	0	0
Hirudinea	0	0	0	0	0	0	0	0	0	0	0	0
Hyalella azteca	0	0	0	0	0	0	0	0	0	0	0	0
Hydropsyche sp.	0	0	0	0	0	0	0	0	0	0	0	0
Microchironomus sp.	1	3	3	1	3	1	0	5	7	65	4	0
Microcylloepus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Micropsectra sp.	0	0	0	0	0	0	0	0	0	0	0	0
Microtendipes sp.	0	0	1	0	0	0	0	0	0	0	0	0
Oecetis sp.	0	0	0	0	0	0	0	0	0	0	1	0
Ordobrevia sp.	0	0	0	0	0	0	0	0	0	0	0	0
Paralauterborniella sp.	0	0	0	0	0	0	0	0	0	0	0	0
Paramerina sp.	0	0	0	0	0	0	0	0	0	0	1	0
Paratanytarsus sp.	0	0	0	0	0	0	0	0	0	0	1	1
Paratendipes sp.	0	0	1	0	0	0	0	0	0	0	0	0
Pentaneurini	0	0	0	0	0	0	0	0	1	0	0	0
Polypedilum sp.	1	1	0	1	1	2	1	6	3	0	4	3
Procladiini	0	0	0	0	0	0	0	0	0	0	0	0
Procladius sp.	45	45	31	34	29	21	3	22	41	17	17	8
Rheotanytarsus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Sialis sp.	0	0	0	0	0	0	0	0	0	0	0	0
Sphaeriidae	0	0	0	0	0	0	0	0	1	0	0	0
Stenochironomus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Stictochironomus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Tabanidae	0	0	0	0	0	0	0	0	0	0	0	0
Tanypus sp.	0	0	0	0	0	2	1	0	2	0	0	0
Tanytarsini	0	0	0	0	0	0	0	0	0	0	0	0
Tanytarsus sp.	0	0	0	0	0	1	0	0	0	0	0	0
Thienemannimyia gr. sp.	0	0	0	0	0	0	0	0	0	0	0	0
Tricorythodes sp.	0	0	0	0	0	0	0	0	0	0	0	0
Tubificidae	156	247	252	215	322	215	174	277	270	264	315	318
Turbellaria Total	0	0	0	0	0	0	0	0	0	0	0	0
	214	302	292	254	378	259	183	329	342	371	385	381

	T12-4	T12-5	T13-1	T13-2	T13-3	T13-4	T13-5	T14-1	T14-2	T14-3	T14-4	T14-5
Ablabesmyia sp.	0	0	0	0	0	0	0	0	0	0	0	0
Baetidae	0	0	0	0	0	0	0	0	0	0	0	0
Baetis sp.	0	0	0	0	0	0	0	0	0	0	0	0
Baetis tricaudatus	0	0	0	0	0	0	0	0	0	0	0	0
Caecidotea sp.	0	0	0	0	0	0	0	0	0	0	0	0
Caenis sp.	0	0	0	0	0	0	0	0	0	0	0	0
Ceratopogoninae sp.	0	1	0	2	0	0	0	0	0	0	0	0
Chironomini	0	0	0	0	1	0	0	0	0	0	0	1
Chironomus sp.	23	15	26	33	15	10	16	7	6	3	16	8
Chloroperlidae	0	0	0	0	0	0	0	0	0	0	0	0
Cladopelma sp.	0	0	0	0	0	0	0	0	0	0	0	0
Clinotanypus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Coenagrionidae	0	0	0	0	0	0	0	0	0	0	0	0
Cricotopus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Cryptochironomus sp.	3	4	0	0	0	0	0	0	1	0	0	0
Cryptotendipes sp.	0	0	0	0	0	0	0	0	0	0	0	0
Dicrotendipes sp.	0	0	0	0	0	0	0	0	0	0	0	0
Dineutus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Dubiraphia sp.	2	2	0	0	0	0	0	1	0	0	1	1
Endochironomus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Ephemeroptera	0	0	0	0	0	0	0	0	0	0	0	0
Erioptera sp.	0	0	0	0	0	0	0	0	0	0	0	0
Eukiefferiella sp.	0	0	0	0	0	0	0	0	0	0	0	0
Gammarus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Glossosomatidae	0	0	0	0	0	0	0	0	0	0	0	0
Glutops sp.	0	0	0	0	0	0	0	0	0	0	1	0
Glyptotendipes sp.	1	0	0	0	0	0	0	0	0	0	0	0
Harnischia sp.	5	4	0	0	0	0	0	0	0	0	0	0
Helobdella stagnalis	0	0	0	0	0	0	0	0	0	0	0	0
Heptageniidae	0	0	0	0	0	0	0	0	0	0	0	0
Hexagenia sp.	0	0	2	0	0	0	0	0	0	0	0	0
Hirudinea	0	0	0	0	0	0	1	0	0	0	1	0
Hyalella azteca	0	0	0	0	0	0	0	0	0	0	0	0
Hydropsyche sp.	0	0	0	0	0	0	0	0	0	0	0	0
Microchironomus sp.	0	1	0	0	0	0	0	0	0	1	0	0
Microcylloepus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Micropsectra sp.	0	0	0	0	0	0	0	0	0	0	0	0
Microtendipes sp.	0	0	0	0	0	0	0	0	0	0	0	0
Oecetis sp.	1	0	0	0	0	0	0	0	0	0	0	0
Ordobrevia sp.	0	0	0	0	0	0	0	0	0	0	0	0
Paralauterborniella sp.	0	0	0	0	0	0	0	0	0	0	0	0
Paramerina sp.	0	0	0	0	0	0	0	0	0	0	0	0
Paratanytarsus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Paratendipes sp.	0	0	0	0	0	0	0	0	0	0	0	0
Pentaneurini	0	0	0	0	0	0	0	0	0	0	0	1
Polypedilum sp.	0	4	0	0	0	0	0	0	1	0	0	0
Procladiini	0	0	0	0	0	0	0	0	0	0	0	0
Procladius sp.	13	5	4	17	12	5	5	4	3	2	4	2
Rheotanytarsus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Sialis sp.	0	0	0	0	0	0	0	0	0	0	0	0
Sphaeriidae	1	0	0	0	0	0	0	0	0	0	0	0
Stenochironomus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Stictochironomus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Tabanidae	0	0	0	0	0	0	0	0	0	0	0	0
Tanypus sp.	0	0	0	0	0	0	0	1	0	0	0	0
Tanytarsini	0	0	0	0	0	0	0	0	0	0	0	0
Tanytarsus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Thienemannimyia gr. sp.	0	0	0	0	0	0	0	0	0	0	0	0
Tricorythodes sp.	0	0	0	0	0	0	0	0	0	0	0	0
Tubificidae	412	320	1682	1394	918	633	666	408	331	253	495	317
Turbellaria	0	0	0	0	0	0	0	0	0	0	0	0
Total	461	356	1714	1446	946	648	688	421	342	259	518	330

	T15-1	T15-2	T15-3	T15-4	T15-5	T16-1	T16-2	T16-3	T16-4	T16-5	T17-1	T17-2
Ablabesmyia sp.	0	0	0	0	0	0	0	0	0	0	0	0
Baetidae	0	0	0	0	0	0	0	0	0	0	0	0
Baetis sp.	0	0	0	0	0	0	0	0	0	0	0	0
Baetis tricaudatus	0	0	0	0	0	0	0	0	0	0	0	0
Caecidotea sp.	0	0	0	0	0	0	0	0	0	0	0	0
Caenis sp.	0	0	0	0	0	0	0	0	0	0	0	0
Ceratopogoninae sp.	0	0	1	1	0	0	0	0	0	0	0	0
Chironomini	0	0	1	0	0	0	0	0	1	0	0	0
Chironomus sp.	1	7	5	8	4	20	12	17	29	16	8	3
Chloroperlidae	0	0	0	0	0	0	0	0	0	0	0	0
Cladopelma sp.	0	0	0	0	0	0	0	0	0	0	0	0
Clinotanypus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Coenagrionidae	0	0	0	0	0	0	0	0	0	0	0	0
Cricotopus sp.	0	0	0	0	0	1	0	0	0	0	0	0
Cryptochironomus sp.	0	0	0	0	0	0	0	1	0	0	0	0
Cryptotendipes sp.	0	0	0	0	0	0	0	0	0	0	0	0
Dicrotendipes sp.	0	0	0	0	0	0	0	0	0	0	0	0
Dineutus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Dubiraphia sp.	1	1	1	0	0	1	0	0	0	0	1	0
Endochironomus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Ephemeroptera	0	0	0	0	0	0	0	0	0	0	0	0
Erioptera sp.	0	0	0	0	0	0	0	0	0	0	0	0
Eukiefferiella sp.	0	0	0	0	0	0	0	0	0	0	0	0
Gammarus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Glossosomatidae	0	0	0	0	0	0	0	0	0	0	0	0
Glutops sp.	0	0	0	0	0	0	0	0	0	0	0	0
Glyptotendipes sp.	0	0	0	0	0	0	0	0	0	0	0	0
Harnischia sp.	0	0	0	0	0	0	0	0	0	0	0	0
Helobdella stagnalis	0	0	0	0	0	0	0	0	0	0	0	0
Heptageniidae	0	0	0	0	0	0	0	0	0	0	0	0
Hexagenia sp.	0	0	0	0	0	0	0	0	0	0	0	0
Hirudinea	0	0	0	0	0	0	0	0	0	0	0	0
Hyalella azteca	0	0	0	0	0	0	0	0	0	0	0	0
Hydropsyche sp.	1	0	0	1	0	0	0	0	0	0	0	0
Microchironomus sp.	0	0	0	0	0	1	1	0	1	0	0	0
Microcylloepus sp.	1	0	0	0	0	0	0	0	0	0	0	0
Micropsectra sp.	0	0	0	1	0	0	0	0	0	0	0	0
Microtendipes sp.	0	0	0	0	0	0	0	0	0	0	0	0
Oecetis sp.	0	0	0	0	0	0	0	0	0	0	0	0
Ordobrevia sp.	0	0	0	0	0	0	0	0	0	0	0	0
Paralauterborniella sp.	0	0	0	0	0	0	0	0	0	0	0	0
Paramerina sp.	0	0	0	0	0	0	0	0	0	0	0	0
Paratanytarsus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Paratendipes sp.	0	0	0	0	0	0	0	0	0	0	0	0
Pentaneurini	0	0	0	0	0	1	0	0	0	0	0	0
Polypedilum sp.	0	0	0	0	0	0	0	0	0	0	1	0
Procladiini	0	0	0	0	0	0	0	0	0	0	0	0
Procladius sp.	5	3	6	5	5	10	22	8	8	8	1	1
Rheotanytarsus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Sialis sp.	0	0	0	0	0	0	1	0	0	1	0	0
Sphaeriidae	0	0	0	0	0	0	0	0	0	0	0	0
Stenochironomus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Stictochironomus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Tabanidae	0	0	0	0	0	0	0	0	0	0	0	0
Tanypus sp.	0	0	0	0	0	1	1	0	1	0	0	0
Tanytarsini	0	0	0	0	0	0	0	0	0	0	1	0
Tanytarsus sp.	0	0	0	0	0	0	0	0	0	0	0	0
Thienemannimyia gr. sp.	0	0	0	0	0	0	0	0	0	0	0	0
Tricorythodes sp.	0	0	0	0	0	0	0	0	0	0	0	0
Tubificidae	275	340	501	478	486	309	326	188	273	265	327	220
Turbellaria	0	0	0	0	0	0	0	0	0	0	0	0
Total	284	351	515	494	495	344	363	214	313	290	339	224

Ablabesmyia sp.0Baetidae0Baetis sp.0Baetis tricaudatus0Caecidotea sp.0Caenis sp.0Caenis sp.0Caratopogoninae sp.0Chironomini0Chironomus sp.9Chloroperlidae0Cladopelma sp.0Clinotanypus sp.0Coreagrionidae0Cricotopus sp.0Coreagrionidae0Dicrotendipes sp.0Dicrotendipes sp.0Dicrotendipes sp.0Dubiraphia sp.2Endochironomus sp.0Eukiefferiella sp.0Glossosomatidae0Glutops sp.0Glutops sp.0Harmischia sp.0Hirudinea0Hydropsyche sp.0Microchironomus sp.0Hirudinea0Hydropsyche sp.0Microchironomus sp.0Microchironomus sp.0Paratanytarsus sp.0Microchironomus sp.0Paratendipes sp.0Microchironomus sp.0Paratendipes sp.0Paratendip	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 2 0	0 0 0 0 0 0 0 0 0 0 9	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0
Baetis sp.0Baetis tricaudatus0Caecidotea sp.0Caenis sp.0Ceratopogoninae sp.0Chironomini0Chironomus sp.9Chloroperlidae0Cladopelma sp.0Clinotanypus sp.0Coenagrionidae0Cryotochironomus sp.1Cryptotendipes sp.0Dicrotendipes sp.0Dirotendipes sp.0Dirotendipes sp.0Dirotendipes sp.0Dubiraphia sp.2Endochironomus sp.0Endochironomus sp.0Endochironomus sp.0Glutops sp.0Glutops sp.0Glutops sp.0Glutops sp.0Glutops sp.0Helobdella stagnalis0Hetagenidae0Hydropsyche sp.0Microchironomus sp.0Microchironomus sp.0Microtendipes sp.0Ordobrevia sp.0Microtendipes sp.0Ordobrevia sp.0Paramerina sp.0Paratanytarsus sp.0Paratendipes sp.0Paratendipes sp.0Procladiini0Procladius sp.0Paratendipes sp.0Sphaeriidae0Procladius sp.0Sphaeriidae0Sphaeriidae0Sphaeriidae0	0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 1 0 0 0 0 0 0 0 0	0 0 0 0 0 0 9 0 0 0 0	0 0 0 0 0 0 10 0 0	0 0 0 0 0 0 2	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0	0 0 0	0	0
Baetis tricaudatus0Caecidotea sp.0Caenis sp.0Caenis sp.0Caratopogoninae sp.0Chironomini0Chironomus sp.9Chloroperlidae0Cladopelma sp.0Cladopelma sp.0Coranagrionidae0Cryptochironomus sp.1Cryptochironomus sp.0Dicrotendipes sp.0Dicrotendipes sp.0Dianeutus sp.0Dubiraphia sp.2Endochironomus sp.0Endochironomus sp.0Endochironomus sp.0Gammarus sp.0Glutops sp.0Glutops sp.0Glutops sp.0Helobdella stagnalis0Hetzageniidae0Hydropsyche sp.0Microchironomus sp.0Microchironomus sp.0Microtendipes sp.0Microtendipes sp.0Paratanytarsus sp.0Paratendipes sp.0Procladiun sp.0Procladius sp.0Procladius sp.0 </td <td>0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>0 1 0 0 1 0 0 0 0 0 0 0 0</td> <td>0 0 0 9 0 0 0 0 0</td> <td>0 0 0 0 10 0 0</td> <td>0 0 0 0 0 2</td> <td>0 0 0 0 0</td> <td>0 0 0 0</td> <td>0 0 0</td> <td>0</td> <td>0</td> <td>0</td> <td></td>	0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 1 0 0 0 0 0 0 0 0	0 0 0 9 0 0 0 0 0	0 0 0 0 10 0 0	0 0 0 0 0 2	0 0 0 0 0	0 0 0 0	0 0 0	0	0	0	
Caecidotea sp.0Caenis sp.0Ceratopogoninae sp.0Chironomini0Chironomini0Chironomus sp.9Chloroperlidae0Cladopelma sp.0Clinotanypus sp.0Coenagrionidae0Cricotopus sp.0Cryptochironomus sp.1Cryptotendipes sp.0Dicrotendipes sp.0Dicrotendipes sp.0Dubiraphia sp.2Endochironomus sp.0Ephemeroptera0Glusososomatidae0Glutops sp.0Glutops sp.0Glybtotendipes sp.0Glybtotendipes sp.0Helobdella stagnalis0Heptageniidae0Hydropsyche sp.0Microchironomus sp.0Microchironomus sp.0Paralauterborniella sp.0Microtendipes sp.0Ordobrevia sp.0Paratanytarsus sp.0Paratendipes sp.0Paratendipes sp.0Picrotendipes sp.0Paratendipes sp.<	0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 1 0 0 0 0 0 0 0	0 0 0 9 0 0 0 0	0 0 0 0 10 0 0	0 0 0 0 2	0 0 0 0	0 0 0	0	0	0	-	0
Caenis sp.0Ceratopogoninae sp.0Chironomini0Chironomus sp.9Chloroperlidae0Cladopelma sp.0Clinotanypus sp.0Coenagrionidae0Cricotopus sp.0Criptochironomus sp.1Cryptochironomus sp.0Dicrotendipes sp.0Dicrotendipes sp.0Dubiraphia sp.2Endochironomus sp.0Endochironomus sp.0Ephemeroptera0Glusososomatidae0Glutops sp.0Glutops sp.0Glutops sp.0Helobdella stagnalis0Hetzagenia sp.0Hirudinea0Hydropsyche sp.0Microchironomus sp.0Microchironomus sp.0Paramerina sp.0Paratendipes sp.0Paratendipes sp.0Microchironomus sp.0Paratendipes sp.0 <td>0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>0 0 1 0 0 0 0 0 0 0</td> <td>0 0 9 0 0 0</td> <td>0 0 0 10 0 0</td> <td>0 0 0 2</td> <td>0 0 0</td> <td>0</td> <td>0</td> <td></td> <td>-</td> <td>^</td> <td>-</td>	0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0 0	0 0 9 0 0 0	0 0 0 10 0 0	0 0 0 2	0 0 0	0	0		-	^	-
Ceratopogoninae sp.0Chironomini0Chironomus sp.9Chloroperlidae0Cladopelma sp.0Clorotanypus sp.0Coenagrionidae0Cricotopus sp.0Cryptochironomus sp.1Cryptochironomus sp.0Dineutus sp.0Dineutus sp.0Dineutus sp.0Dineutus sp.0Endochironomus sp.0Ephemeroptera0Glutops sp.0Glutops sp.0Glutops sp.0Glutops sp.0Harnischia sp.0Hebddella stagnalis0Hetzagenia sp.0Hirudinea0Hydropsyche sp.0Microchironomus sp.0Microchironomus sp.0Paramerina sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Microchironomus sp.0Paratendipes sp.0Procladiini0Procladiini sp.0Procladiini sp.0Procladiini sp.0Sphaeriidae </td <td>0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1</td> <td>0 0 1 0 0 0 0 0 0</td> <td>0 0 9 0 0 0</td> <td>0 0 10 0 0</td> <td>0 0 2</td> <td>0</td> <td>0</td> <td>-</td> <td>0</td> <td></td> <td>0</td> <td>0</td>	0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1	0 0 1 0 0 0 0 0 0	0 0 9 0 0 0	0 0 10 0 0	0 0 2	0	0	-	0		0	0
Chironomini0Chironomus sp.9Chloroperlidae0Cladopelma sp.0Clinotanypus sp.0Coenagrionidae0Cricotopus sp.0Cryptochironomus sp.1Cryptotendipes sp.0Dineutus sp.0Dubiraphia sp.2Endochironomus sp.0Ephemeroptera0Ephemeroptera sp.0Glutops sp.0Glutops sp.0Glutops sp.0Harnischia sp.0Harnischia sp.0Hebdella stagnalis0Hirudinea0Hydropsyche sp.0Microchironomus sp.0Microchironomus sp.0Paratanytarsus sp.0Phetageniidae0Phydropsyche sp.0Microchironomus sp.0Paratanytarsus sp.0Paratendipes sp.0Paratendipes sp.0Procladiini0Procladius sp.0Procladius sp.0Sheotenytarsus sp.0Paratendipes sp.0Sphaeriidae0Sphaeriidae0Sphaeriidae0Sphaeriidae0Sphaeriidae0Sphaeriidae0Sphaeriidae0Sphaeriidae0Sphaeriidae0Sphaeriidae0Sphaeriidae0Sphaeriidae0Sphaeriidae <td>0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 1</td> <td>0 1 0 0 0 0 0 0</td> <td>0 9 0 0</td> <td>0 10 0 0</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td>	0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 1	0 1 0 0 0 0 0 0	0 9 0 0	0 10 0 0	0	0		0	1	0	0	0
Chironomus sp.9Chironoperlidae0Cladopelma sp.0Clinotanypus sp.0Coenagrionidae0Cricotopus sp.0Cryptochironomus sp.1Cryptotendipes sp.0Dineutus sp.0Dineutus sp.0Endochironomus sp.2Endochironomus sp.0Ephemeroptera0Glussosomatidae0Glutops sp.0Glutops sp.0Glutops sp.0Glutops sp.0Glutops sp.0Glutops sp.0Glutops sp.0Harnischia sp.0Helobdella stagnalis0Hetzagenia sp.0Microchironomus sp.0Microchironomus sp.0Microtendipes sp.0Ordbrevia sp.0Paramerina sp.0Paratanytarsus sp.0Paratendipes sp.0Paratendipes sp.0Procladium sp.0Procladius sp.0Procladius sp.0Procladius sp.0Procladius sp.0Procladius sp.0Sialis sp.0Sialis sp.0Sphaeriidae0Sphaeriidae0	11 0 0 0 0 0 0 0 0 0 0 0 0 1	1 0 0 0 0 0	9 0 0 0	10 0 0	2		0		0	0	0	0
Chloroperlidae0Cladopelma sp.0Clinotanypus sp.0Coenagrionidae0Cryotochironomus sp.1Cryptochironomus sp.0Dicrotendipes sp.0Dicrotendipes sp.0Dicrotendipes sp.0Dubiraphia sp.2Endochironomus sp.0Erioptera sp.0Einoptera sp.0Glussosomatidae0Glutops sp.0Glutops sp.0Glutops sp.0Glutops sp.0Helobdella stagnalis0Hetzageniidae0Hydropsyche sp.0Microchironomus sp.0Microchironomus sp.0Microtendipes sp.0O0Paramerina sp.0Picotendipes sp.0O0Pirudinea0Hydropsyche sp.0Microtendipes sp.0O0Paratanytarsus sp.0Paratendipes sp.0Paratendipes sp.0Procladiini0Procladiini0Procladius sp.0Paratendipes sp.0Sphaeriidae0Sphaeriidae0Sphaeriidae0Sphaeriidae0Sphaeriidae0Sphaeriidae0Sphaeriidae0Sphaeriidae0Sphaeriidae0Sphaeriidae0Sph	0 0 0 0 0 0 0 0 0 0 0 1	0 0 0 0 0	0 0 0	0		∩		1	1	0	0	0
Cladopelma sp.0Clinotanypus sp.0Coenagrionidae0Cryotochironomus sp.1Cryptochironomus sp.0Dicrotendipes sp.0Dicrotendipes sp.0Dineutus sp.0Dubiraphia sp.2Endochironomus sp.0Endochironomus sp.0Einoptera sp.0Eukiefferiella sp.0Glutops sp.0Glutops sp.0Helobdella stagnalis0Hetzgeniidae0Hetzgeniidae0Hydropsyche sp.0Microchironomus sp.0Microchironomus sp.0Microchironomus sp.0Microtendipes sp.0Microtendipes sp.0Microtendipes sp.0Microtendipes sp.0Paratanytarsus sp.0Paratendipes sp.0Procladiini0Procladius sp.0Sialis sp.0Sialis sp.<	0 0 0 0 0 0 0 0 0 0 0 1	0 0 0 0	0	0	0		5	9	6	5	6	10
Clinotarypus sp.0Coenagrionidae0Cricotopus sp.0Cryptochironomus sp.1Cryptotendipes sp.0Dicrotendipes sp.0Dicrotendipes sp.0Dineutus sp.0Dubiraphia sp.2Endochironomus sp.0Endechironomus sp.0Endechironomus sp.0Endechironomus sp.0Eukiefferiella sp.0Glussosomatidae0Glytotendipes sp.0Helobdella stagnalis0Heptageniidae0Hyalella azteca0Hydropsyche sp.0Microchironomus sp.0Microtendipes sp.0Microtendipes sp.0Microtendipes sp.0Microtendipes sp.0Paralauterborniella sp.0Paratentipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Pentaneurini0Procladiini0Procladiini sp.0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0	0 0 0 0 0 0 0 1	0 0 0	0	-		0	0	0	0	0	0	0
Coenagrionidae0Coenagrionidae0Cricotopus sp.0Cryptochironomus sp.1Cryptotendipes sp.0Dicrotendipes sp.0Dineutus sp.0Dubiraphia sp.2Endochironomus sp.0Ephemeroptera0Gammarus sp.0Glutops sp.0Glutops sp.0Glutops sp.0Glutops sp.0Helobdella stagnalis0Hertagenidae0Hydropsyche sp.0Microchironomus sp.0Microchironomus sp.0Microthironomus sp.0Microthironomus sp.0Microthironomus sp.0Microthironomus sp.0Paratendipes sp.0Procladiini0Procladius sp.0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0Sphaeriidae0	0 0 0 0 0 0 1	0			0	0	0	0	1	0	0	0
Cricotopus sp.0Cryptochironomus sp.1Cryptotendipes sp.0Dicrotendipes sp.0Dineutus sp.0Dubiraphia sp.2Endochironomus sp.0Ephemeroptera0Gammarus sp.0Glutops sp.0Glutops sp.0Glutops sp.0Glutops sp.0Harnischia sp.0Helobdella stagnalis0Hetzagenia sp.0Hirudinea0Hydropsyche sp.0Microchironomus sp.0Microchironomus sp.0Microthironomus sp.0Microthironomus sp.0Paratendipes sp.0Procladiini0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0	0 0 0 0 0 1	0	0	0	0	0	0	0	0	0	0	0
Cryptochironomus sp.1Cryptotendipes sp.0Dicrotendipes sp.0Dineutus sp.0Dubiraphia sp.2Endochironomus sp.0Ephemeroptera0Gammarus sp.0Glutops sp.0Glutops sp.0Glutops sp.0Glyptotendipes sp.0Harnischia sp.0Helobdella stagnalis0Hetzgeniidae0Hirudinea0Hydropsyche sp.0Microchironomus sp.0Microchironomus sp.0Microchironomus sp.0Microthironomus sp.0Paratendipes sp.0Procladiini0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0Sphaeriidae0	0 0 0 0 1		-	0	0	0	0	0	0	0	0	0
Cryptotendipes sp.0Dicrotendipes sp.0Dicrotendipes sp.0Dineutus sp.0Dubiraphia sp.2Endochironomus sp.0Ephemeroptera0Erioptera sp.0Gammarus sp.0Glossosomatidae0Glutops sp.0Glyptotendipes sp.0Harnischia sp.0Helobdella stagnalis0Hetzagenia sp.0Microchironomus sp.0Microchironomus sp.0Microchironomus sp.0Microchironomus sp.0Microtendipes sp.0Microtendipes sp.0Paramerina sp.0Paratanytarsus sp.0Paratendipes sp.0Procladium sp.0Procladius sp.0Procladius sp.0Procladius sp.0Procladius sp.0Procladius sp.0Procladius sp.0Sialis sp.0Sphaeriidae0Sphaeriidae0	0 0 0 1	0	0	0	0	0	0	0	0	1	0	0
Dicrotendipes sp.0Dineutus sp.0Dubiraphia sp.2Endochironomus sp.0Ephemeroptera0Erioptera sp.0Eukiefferiella sp.0Gammarus sp.0Glutops sp.0Glypotendipes sp.0Helobdella stagnalis0Hetzageniidae0Hydropsyche sp.0Hirudinea0Hydropsyche sp.0Microcylloepus sp.0Microchironomus sp.0Microtendipes sp.0Microtendipes sp.0Microtendipes sp.0Microtendipes sp.0Microtendipes sp.0Microtendipes sp.0Microtendipes sp.0Paralauterborniella sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Procladiuin sp.0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0	0 0 1	-	0	1	0	0	0	0	0	0	0	0
Dineutus sp.0Dubiraphia sp.2Endochironomus sp.0Ephemeroptera0Erioptera sp.0Eukiefferiella sp.0Gammarus sp.0Glutops sp.0Glyptotendipes sp.0Helobdella stagnalis0Hetageniidae0Hyalella azteca0Hydropsyche sp.0Microcylloepus sp.0Microcylloepus sp.0Microcylloepus sp.0Microtylloepus sp.0Microtylloepus sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Procladiini0Procladius sp.0Paratendipes sp.0Sphaeriidae0Paratendipes sp.0Paratendipes sp.0Sphaeriidae0Procladius sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Sphaeriidae0	0	0	0	0	0	0	0	0	0	0	0	0
Dubiraphia sp.2Endochironomus sp.0Ephemeroptera0Erioptera sp.0Gammarus sp.0Gassosomatidae0Glutops sp.0Glytotendipes sp.0Helobdella stagnalis0Hetageniidae0Hirudinea0Hyalella azteca0Microchironomus sp.0Microchironomus sp.0Microchironomus sp.0Microtendipes sp.0Microtendipes sp.0Microtendipes sp.0Microtendipes sp.0Microtendipes sp.0Paralauterborniella sp.0Paratendipes sp.0Pinocladius sp.0Procladiini0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0	1	0	0	0	0	0	0	0	0	0	0	0
Endochironomus sp.0Ephemeroptera0Erioptera sp.0Eukiefferiella sp.0Gammarus sp.0Glossosomatidae0Glutops sp.0Glytotendipes sp.0Helobdella stagnalis0Hetobdella stagnalis0Hetageniidae0Hyalella azteca0Hydropsyche sp.0Microchironomus sp.0Microtendipes sp.0Microtendipes sp.0Microtendipes sp.0Microtendipes sp.0Microtendipes sp.0Paralauterborniella sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Procladiini sp.0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0		0	0	0	0	0	0	0	0	0	0	0
Ephemeroptera0Erioptera sp.0Erioptera sp.0Gammarus sp.0Glossosomatidae0Glutops sp.0Glytotendipes sp.0Harnischia sp.0Helobdella stagnalis0Hetageniidae0Hirudinea0Hydropsyche sp.0Microchironomus sp.0Microtendipes sp.0Microtendipes sp.0Microtendipes sp.0Microtendipes sp.0Microtendipes sp.0Odobrevia sp.0Paralauterborniella sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Pentaneurini0Procladiini0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0	0	0	0	1	1	0	0	0	1	0	0	0
Linoptera sp.0Erioptera sp.0Gummarus sp.0Gammarus sp.0Glossosomatidae0Glutops sp.0Glyptotendipes sp.0Harnischia sp.0Helobdella stagnalis0Heptageniidae0Hexagenia sp.0Hirudinea0Hyalella azteca0Hydropsyche sp.0Microchironomus sp.0Microcylloepus sp.0Ordobrevia sp.0Paratanytarsus sp.0Paratendipes sp.0Paratendipes sp.0Procladiini0Procladius sp.0Sphaeriides sp.0O0Sphaeriidae0Sphaeriidae0Sphaeriidae0	-	0	0	0	0	0	0	0	0	0	0	0
Eukiefferiella sp.0Gammarus sp.0Glossosomatidae0Glutops sp.0Glyptotendipes sp.0Harnischia sp.0Helobdella stagnalis0Heptageniidae0Hexagenia sp.0Hirudinea0Hydropsyche sp.0Microchironomus sp.0Microchironomus sp.0Microchironomus sp.0Ordobrevia sp.0Paratanytarsus sp.0Paratendipes sp.0Paratendipes sp.0Pentaneurini0Polypedilum sp.0Procladiini0Procladius sp.0Sphaeriidae0Sphaeriidae0	0	0	0	0	0	0	0	0	0	0	0	0
Gammarus sp.0Glossosomatidae0Gloysosomatidae0Glutops sp.0Glyptotendipes sp.0Harnischia sp.0Helobdella stagnalis0Heptageniidae0Heytagenia sp.0Hirudinea0Hydropsyche sp.0Microchironomus sp.0Microchironomus sp.0Microtendipes sp.0Ocecetis sp.0Ordobrevia sp.0Paralauterborniella sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Pentaneurini0Polypedilum sp.0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0	0	0	0	0	0	0	0	0	0	0	0	0
Glossosomatidae0Glutops sp.0Glyptotendipes sp.0Harnischia sp.0Helobdella stagnalis0Heptageniidae0Hexagenia sp.0Hirudinea0Hyalella azteca0Hydropsyche sp.0Microchironomus sp.0Microchironomus sp.0Microchironomus sp.0Ordobrevia sp.0Ordobrevia sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Pentaneurini0Procladiini0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0	0	0	0	0	0	0	0	0	0	0	0	0
Glutops sp.0Glyptotendipes sp.0Harnischia sp.0Helobdella stagnalis0Heptageniidae0Hexagenia sp.0Hirudinea0Hyalella azteca0Hydropsyche sp.0Microchironomus sp.0Microchironomus sp.0Microtendipes sp.0Ordobrevia sp.0Ordobrevia sp.0Paratanytarsus sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Pentaneurini0Procladiini0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0	0	0	0	0	0	0	0	0	0	0	0	0
Glyptotendipes sp.0Harnischia sp.0Helobdella stagnalis0Heptageniidae0Heptageniidae0Hirudinea0Hyalella azteca0Hydropsyche sp.0Microchironomus sp.0Microcylloepus sp.0Microtendipes sp.0Ordobrevia sp.0Paralauterborniella sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Pentaneurini0Procladiini0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0	0	0	0	0	0	0	0	0	0	0	0	0
Hamischia sp.0Helobdella stagnalis0Heptageniidae0Hexagenia sp.0Hirudinea0Hyalella azteca0Hydropsyche sp.0Microchironomus sp.0Microcylloepus sp.0Microtendipes sp.0Ordobrevia sp.0Paralauterborniella sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Pentaneurini0Procladiini0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0	0	0	0	0	0	0	0	0	0	0	0	0
Helobdella stagnalis0Heptageniidae0Hexagenia sp.0Hirudinea0Hyalella azteca0Hydropsyche sp.0Microchironomus sp.0Microcylloepus sp.0Microtendipes sp.0Microtendipes sp.0Odobrevia sp.0Paralauterborniella sp.0Paratanytarsus sp.0Paratendipes sp.0Polypedilum sp.0Procladiini0Procladius sp.22Rheotanytarsus sp.0Sphaeriidae0	0	0	0	0	0	0	0	0	0	0	0	0
Heptageniidae0Hexagenia sp.0Hirudinea0Hyalella azteca0Hydropsyche sp.0Microchironomus sp.0Microcylloepus sp.0Microtendipes sp.0Ordobrevia sp.0Ordobrevia sp.0Paralauterborniella sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Pentaneurini0Procladiini0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0	0	0	0	0	0	0	0	0	0	0	0	0
Hexagenia sp.0Hirudinea0Hirudinea0Hyalella azteca0Hydropsyche sp.0Microchironomus sp.0Microcylloepus sp.0Microtendipes sp.0Oceteis sp.0Ordobrevia sp.0Paralauterborniella sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Polypedilum sp.0Procladini0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0	0	0	0	0	0	0	0	0	0	0	0	0
Hirudinea0Hyalella azteca0Hydropsyche sp.0Microchironomus sp.0Microcylloepus sp.0Microcylloepus sp.0Microtendipes sp.0Ocetelis sp.0Ordobrevia sp.0Paralauterborniella sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Polypedilum sp.0Procladiini0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0	0	0	0	0	0	0	0	0	0	0	0	0
Hyalella azteca0Hydropsyche sp.0Microchironomus sp.0Microcylloepus sp.0Micropsectra sp.0Ordobrevia sp.0Ordobrevia sp.0Ordobrevia sp.0Paralauterborniella sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Polypedilum sp.0Procladiini0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0	0	0	0	0	0	0	0	0	0	0	0	0
Hydropsyche sp.0Microchironomus sp.0Microcylloepus sp.0Micropsectra sp.0Ordobrevia sp.0Ordobrevia sp.0Paralauterborniella sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Polypedilum sp.0Procladiini0Procladius sp.22Rheotanytarsus sp.0Sphaeriidae0	0	0	0	0	0	0	0	0	0	0	0	0
Microchironomus sp.0Microcylloepus sp.0Microtendipes sp.0Microtendipes sp.0Ordobrevia sp.0Paralauterborniella sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Polypedilum sp.0Procladiini0Procladius sp.22Rheotanytarsus sp.0Sphaeriidae0	0	0	0	0	0	0	0	0	0	0	0	0
Microcylloepus sp.0Micropsectra sp.0Microtendipes sp.0Ocecetis sp.0Ordobrevia sp.0Paralauterborniella sp.0Paratendipes sp.0Paratendipes sp.0Paratendipes sp.0Polypedilum sp.0Procladiini0Procladius sp.22Rheotanytarsus sp.0Sphaeriidae0	0	0	0	0	0	0	0	0	0	0	0	0
Micropsectra sp.0Microtendipes sp.0Ocectis sp.0Ordobrevia sp.0Paralauterborniella sp.0Paramerina sp.0Paratendipes sp.0Paratendipes sp.0Polypedilum sp.0Procladiini0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0	0	0	0	0	0	1	0	0	1	2	0	0
Microtendipes sp.0Oecetis sp.0Ordobrevia sp.0Paralauterborniella sp.0Paratanytarsus sp.0Paratendipes sp.0Polypedilum sp.0Procladiini0Procladius sp.22Rheotanytarsus sp.0Sphaeriidae0	0	0	0	0	0	0	0	0	0	0	0	0
Oecetis sp.0Ordobrevia sp.0Paralauterborniella sp.0Paramerina sp.0Paratanytarsus sp.0Paratendipes sp.0Paratendipes sp.0Polypedilum sp.0Procladini0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0	0	0	0	0	0	0	0	0	0	0	0	0
Ordobrevia sp.0Paralauterborniella sp.0Paramerina sp.0Paratanytarsus sp.0Paratendipes sp.0Pentaneurini0Polypedilum sp.0Procladiini0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0	0	0	0	0	0	0	0	0	0	0	0	0
Paralauterborniella sp.0Paramerina sp.0Paratanytarsus sp.0Paratendipes sp.0Pentaneurini0Polypedilum sp.0Procladiini0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0	0	0	0	0	0	0	0	0	0	0	0	0
Paramerina sp.0Paratanytarsus sp.0Paratendipes sp.0Pentaneurini0Polypedilum sp.0Procladiini0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0	0	0	0	0	0	0	0	0	0	0	0	0
Paratanytarsus sp.0Paratendipes sp.0Pentaneurini0Polypedilum sp.0Procladiini0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0	0	0	0	0	0	0	0	0	0	0	0	0
Paratendipes sp.0Pentaneurini0Polypedilum sp.0Procladiini0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0	0	0	0	0	0	0	0	0	0	0	0	0
Pentaneurini 0 Polypedilum sp. 0 Procladiini 0 Procladius sp. 22 Rheotanytarsus sp. 0 Sialis sp. 0 Sphaeriidae 0	0	0	0	0	0	0	0	0	0	0	0	0
Polypedilum sp.0Procladiini0Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0	0	0	0	0	0	0	0	0	0	0	0	0
Procladiini 0 Procladius sp. 22 Rheotanytarsus sp. 0 Sialis sp. 0 Sphaeriidae 0	0	0	0	0	0	0	0	0	0	0	0	0
Procladius sp.22Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0	0	0	0	0	0	0	0	2	2	1	0	1
Rheotanytarsus sp.0Sialis sp.0Sphaeriidae0	0	0	0	0	0	0	0	0	0	0	0	0
Sialis sp. 0 Sphaeriidae 0	17	8	4	1	3	4	5	7	18	12	5	9
Sialis sp. 0 Sphaeriidae 0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	1	0	0	0	0	0	0	0
Stenochironomus sp 0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
Stictochironomus sp. 0	0	0	0	0	0	0	0	0	0	0	1	0
Tabanidae 0	0	0	0	0	0	0	0	0	0	0	0	0
Tanypus sp. 0	0	0	0	0	0	0	0	0	0	0	0	0
Tanytarsini 1	0	1	0	0	0	0	0	0	0	0	0	0
Tanytarsus sp. 0	0	0	0	0	0	0	0	0	0	0	0	0
Thienemannimyia gr. sp. 0		0	0	0	0	0	0	0	0	0	0	0
Tricorythodes sp. 0	0	0	0	0	0	0	0	0	0	0	0	0
Tubificidae 447		291	396	313	291	313	431	299	305	303	159	719
Turbellaria 0	0	0	0	0	0	0	0	0	0	0	0	0
Total 482	0	302	409	326	298	327	441	318	335	324	171	739

	T20-1	T20-2	T20-3	T20-4	T20-5	Taxon Abun
Ablabesmyia sp.	0	0	0	0	0	27
Baetidae	0	0	0	0	0	1
Baetis sp.	0	0	0	0	0	1
Baetis tricaudatus	0	0	0	0	1	6
Caecidotea sp.	1	0	0	0	0	10
Caenis sp.	0	0	0	0	0	6
Ceratopogoninae sp.	1	0	1	1	0	21
Chironomini	0	0	0	0	0	17
Chironomus sp.	3	4	8	5	2	620
Chloroperlidae	0	0	0	0	0	1
Cladopelma sp.	0	1	0	1	0	5
Clinotanypus sp.	0	0	0	0	0	5
Coenagrionidae	0	0	0	0	0	1
Cricotopus sp.	0	0	0	0	0	5
Cryptochironomus sp.	0	0	0	0	0	83
•••	0	0	0	0	0	5
Cryptotendipes sp.	0	0	0	0	0	31
Dicrotendipes sp.	0	0	0	0	0	31
Dineutus sp.	0	0	0	1	1	439
Dubiraphia sp.	-	_				
Endochironomus sp.	0	0	0	0	0	1
Ephemeroptera	0	0	0	0	0	2
Erioptera sp.	0	0	0	0	0	1
Eukiefferiella sp.	0	0	0	0	0	1
Gammarus sp.	0	0	0	0	0	3
Glossosomatidae	0	0	0	0	0	1
Glutops sp.	0	0	0	0	0	1
Glyptotendipes sp.	0	0	0	0	0	80
Harnischia sp.	1	0	0	0	0	133
Helobdella stagnalis	0	0	0	0	0	1
Heptageniidae	0	0	0	0	0	3
Hexagenia sp.	0	0	0	0	0	12
Hirudinea	0	0	0	0	0	2
Hyalella azteca	0	0	0	0	0	6
Hydropsyche sp.	0	0	0	0	0	4
Microchironomus sp.	0	0	0	0	0	105
Microcylloepus sp.	0	0	0	0	1	10
Micropsectra sp.	0	0	0	0	0	1
Microtendipes sp.	0	0	0	0	0	4
Oecetis sp.	0	0	0	0	0	2
Ordobrevia sp.	0	0	0	0	0	3
Paralauterborniella sp.	0	0	0	0	0	1
Paramerina sp.	0	0	0	0	0	4
Paratanytarsus sp.	0	0	0	0	0	2
	0	0	0	0	0	2
Paratendipes sp.				_	-	
Pentaneurini	0	0	0	0	0	23
Polypedilum sp.	0	0	0	0	0	141
Procladiini	0	0	0	0	0	2
Procladius sp.	3	3	5	5	4	897
Rheotanytarsus sp.	0	0	0	0	0	5
Sialis sp.	0	0	0	0	0	4
Sphaeriidae	0	0	0	0	0	16
Stenochironomus sp.	0	0	0	0	0	2
Stictochironomus sp.	0	0	0	0	0	1
Tabanidae	0	0	0	0	0	21
Tanypus sp.	0	0	0	0	0	30
Tanytarsini	0	0	0	0	0	4
Fanytarsus sp.	0	0	0	0	0	4
Thienemannimyia gr. sp.	0	0	0	0	0	2
Tricorythodes sp.	0	0	0	0	0	9
Tubificidae	579	570	666	392	511	29310
	0	0	0	0	0	1
Furbellaria	0					
Turbellaria Total	588	578	680	405	520	32142

APPENDIX E

Life History of *Limnodrilus hoffmeisteri* and *L. cervix*

APPENDIX E LIFE HISTORY OF LIMNODRILUS HOFFMEISTERI AND L. CERVIX

L. hoffmeisteri is a common species usually found in slow-flowing waters associated with depositional areas (Mason 1994). Benthic algae and bacteria constitute its basic food source (Sauter and Güde 1996). It is a highly pollution-tolerant organism often identified in the literature as an indicator of pollution and organic enrichment (Lafont et al. 1996; Lafont 1984; Verdonschot 1989). It is also known to be tolerant of arsenic, copper, lead, and zinc (Lawrence and Harris 1979). *L. cervix* is slightly less tolerant (Simpson et al. 1984). In general, good indicators of reduced water quality include increased dominance of *L. hoffmeisteri* and *Tubifex tubifex*, reduction in species richness, and increased dominance of oligochaete biomass (Finogenova 1996; Slepukhina 1984). Rapid adaptation, ability to alter its life cycles, and ability to breed earlier than other tubificids contribute to the numerical dominance of *L. hoffmeisteri* in benthic invertebrate communities and its ability to exploit changing environmental conditions (Kennedy 1966; Mason 1994).

Tubificids are known to alternate between sexual and asexual reproductive modes. Asexual reproduction is accomplished chiefly through transverse fission and parthenogenesis. In transverse fission the individual initiates powerful contractions of the body wall causing it to fragment into pieces which regenerate new anterior and posterior ends (Christensen 1984). Parthenogenesis (reproduction by development of an unfertilized gamete) has been documented in*L. hoffmeisteri* (Poddubnaya 1984). If there is a surplus of eggs under natural conditions, the oligochaetes often will reproduce parthenogenetically after bisexual reproduction (Poddubnaya 1984). The ability of *L. hoffmeisteri* to reach sexual maturity and breed at an earlier age gives it a distinct advantage over other tubificid species and is reflected in its near ubiquitous presence in organically enriched depositional environments.

Natural populations of *L. hoffmeisteri* usually produce a single generation each year between spring and summer (Mason 1994). Timing of the reproductive cycle varies with geographic location. The typical pattern in northern temperate streams is to reproduce during May-June or August-September. Study of a broad English canal approximately 2 m deep found that young *L. hoffmeisteri* hatched in spring and the bulk of the population was in the immature stage in early summer. Sexual maturity of *L. hoffmeisteri* occurs between the first and second years of life depending on the physiochemical conditions present (Poddubnaya 1980). Most individuals die after breeding, but some are capable of breeding a second time in the same season (Kennedy 1966). Tubificid worms can potentially live for several years (Pasteris et al. 1996).

C:\SHEBOYGAN PDF\E-LIFEHI\APPEND-E.DOC November 1998

In a number of studies *L. hoffmeisteri* is the dominant taxon present, occurring in densities ranging from $503/m^3$ to $2167/m^3$ in a river in Indiana to $46,600/m^2$ in a river delta in St. Petersburg, Russia; accounting for up to 95 percent of the tubificid population (Block et al. 1982; Finogenova 1996). *L. hoffmeisteri* is very sensitive to population density and maturation time is density-dependent. Moderate population densities are reported as $< 20,000/m^2$ and densities $> 25,000/m^2$ are detrimental to survival (Mason 1994). Increased density also negatively affects the percentage of a population that is able to reach maturity (Adreani et al. 1984).

Review of the literature indicates cases where mature*L. hoffmeisteri* are not observed at various times of the year (Block et al. 1982; Kennedy 1966; Steinlechner 1987). Tubificid populations composed mainly of immature specimens have been found to occur during the summer months in England and in the Little Calumet River in Indiana (Block et al. 1982; Kennedy 1966). Routinely, up to 80 percent of the collected oligochaete material may contain immature specimens which cannot be identified to species (Adreani et al. 1984; Steinlechner 1987).

Water temperature has been shown to have a direct effect on density and health of oligochaete populations in "unproductive" habitats containing few nutrients (Mason 1994). *In situ* measurements of growth vs. temperature found that*L. hoffmeisteri* and *T. tubifex* only grew within a very narrow temperature range between 10 and 13C. A 0.3°C change in temperature from 9.7 to 10.0 appeared to initiate growth (Reynoldson 1987). Other studies indicate that temperatures below 8–12°C interrupt reproductive activity (Poddubnaya 1959; Block et al. 1982). Differences in egg production between *L. hoffmeisteri* and *T. tubifex* have been documented with*L. hoffmeisteri* exhibiting higher egg production levels at higher temperatures of 20–25°C and *T. tubifex* at lower temperatures of 8°C (Reynoldson 1987; Aston 1973).

The conventional assumption is that oligochaetes as a group prefer or require environments characterized by fine-grained substrates. At the family level this is generally true for tubificids, however, at the species level there appears to be significant variation in the range of exploitable substrate types (Sauter and Güde 1996). Numerous studies indicate that the growth and distribution of*L. hoffmeisteri* are relatively insensitive to sediment type (Reynoldson 1987). *L. hoffmeisteri* can inhabit substrates ranging from 15 to 90 percent clay and silt with abundance peaks occurring at 20 to 30 percent and 50 to 60 percent clay and silt (Sauter and Güde 1996). Results from the Main Channel, Hudson River study indicate that*L. hoffmeisteri* is able to inhabit a wide range of substrate types, reaching maximum abundance in high-organic content, silty-sand areas (Simpson et al. 1984).

C:\SHEBOYGAN PDF\E-LIFEHI\APPEND-E.DOC November 1998

REFERENCES

- Adreani, L., C. Bonacina, G. Bonomi, and C. Monti. 1984. Cohort cultures of *Psammoryctides barbatus* (Grube) and *Spirosperma ferox* Eisen: a tool for better understanding of demographic strategies in Tubificidae. Hydrobiologia. 115:113-119.
- Aston, R.J. 1973. Field and experimental studies on the effects of a power station effluent on Tubificidae (Oligochaeta, Annelida). Hydrocol. Bulletin. 42:242-255.
- Block, E.M., G. Moreno, and C.J. Goodnight. 1982. Observations on the life history of Limnodrilus hoffmeisteri (Annelida, Tubificidae) from the Little Calumet River in temperate North America. Elsevier Biomedical Press. International Journal of Invertebrate Reproduction.
- Christensen, B. 1984. Asexual propagation and reproductive strategies in aquatic Oligochaeta. Hydrobiologia. 115:91-95.
- Finogenova, N.P. 1996. Oligochaete communities at the mouth of the Neva and their relationship to anthropogenic impact. Hydrobiologia. 334:185-191.
- Kennedy, C.R. 1966. The life history of *Limnodrilus hoffmeisteri* Clap. (Oligochaeta: Tubificidae) and its adaptive significance. Oikos. 17(2):158-168.
- Lafont, M. 1984. Oligochaete communities as biological descriptors of pollution in the fine sediments of rivers. Hydrobiologia. 115:127-129.
- Lafont, M., J.C. Camus, and A. Rosso. 1996. Superficial and hyporheic oligochaete communities as indicators of pollution and water exchange in the River Moselle, France. Hydrobiologia. 334:147-155.
- Lawrence, T.M. and T.L. Harris. 1979. A quantitiative method for ranking the water quality tolerances of benthic species. Hydrobiologia. 67(3):193-196.
- Mason, W.T. Jr. 1994. A review of life histories and culture methods for five common species of Oligochaeta (Annelida). World Aquaculture. 25(1):69-75.
- Pasteris, A., G. Bonomi, and C. Bonacina. 1996. Age, stage and size structure as population state variable for *Tubifex tubifex* (Oligochaeta, Tubificidae).
 Hydrobiologia. 334:125-132.
- Poddubnaya, T.L. 1959. Concerning the dynamics of the Tubificidae populations (Oligochaeta, Tubificidae) in Tybinsk Reservoir, Trudy Inst. Biol. Vodokhran, 2. 102.

C:\SHEBOYGAN PDF\E-LIFEHI\APPEND-E.DOC November 1998

- Poddubnaya, T.L. 1980. In: Aquatic Oligochaete Biology. Brinkhurst, R.O., Cook D.G., eds. Plenum Press, New York. P. 175-184.
- Poddubnaya, T.L. 1984. Parthenogenesis in Tubificidae. Hydrobiologia. 115:97-99.
- Reynoldson, T.B. 1987. The role of environmental factors in the ecology of tubificid oligochaetes an experimental study. Holarctic Ecol. 10:241-248.
- Sauter, G. and H. Güde. 1996. Influence of grain size on the distribution of tubificid oligochaete species. Hydrobiologia. 334:97-101.
- Simpson, K.W., R.W. Bode, J.P. Fagnani, and D.M. DeNicola. 1984. The freshwater macrobenthos of the main channel, Hudson River, Part B: Biology, taxonomy and distribution of resident macrobenthic species. Wadsworth Center for Laboratories and Research. New York State Department of Health.
- Slepukhina, T.D. 1984. Comparison of different methods of water quality evaluation by means of oligochaetes. Hydrobiologia. 115:183-186.
- Steinlechner, R. 1987. Identification of immature tubificids (Oligochaeta) of Lake Constance and its influence on the evaluation of species distribution. Hydrobiologia. 155:57-63.
- Verdonschot, P.F.M. 1989. The role of oligochaetes in the management of waters. Hydrobiologia. 180:213-227.

C:\SHEBOYGAN PDF\E-LIFEHI\APPEND-E.DOC November 1998

APPENDIX F

Parameterization of the Time-Dependent Food Web Bioaccumulation Model

APPENDIX F PARAMETERIZATION OF THE TIME-DEPENDENT FOOD WEB BIOACCUMULATION MODEL

This appendix details the data sources used in the parameterization of the food web bioaccumulation model. Model parameters are divided into three major categories: chemical properties, physical attributes of environmental media, and trophic (food web) interactions. Additional information concerning model structure is available in Gobas (1993), Gobas et al. (1995), and Morrison et al. (1996, 1997).

CHEMICAL PROPERTIES AND CONCENTRATIONS

Chemical properties were obtained from Gobas (pers. comm. 1998), who has accumulated a database of chemical data for use in environmental modeling. The values used are presented in Table F-1.

PCB Congener	Molecular Weight (g/mol)	LOG(OCTANOL-WATER PARTITION COEFFICIENT) (logK _{ow})	Henry Law Constant (Pa m ³ /mol)
PCB 066	292	6.2	40
PCB 077	292	6.36	1.72
PCB 105	326.5	6.65	20
PCB 118	326.5	6.74	20
PCB 126	326.5	6.89	19
PCB 156	361	7.18	20

Table F-1. Chemical properties of PCB congeners

High resolution congener-specific PCB concentrations were measured in sediment samples collected from the Sheboygan River for the 1997 ERA. Since bioaccumulation in fish represents time-weighted exposure to a range of sediments, input to the model was based on mean concentrations of all the sediment composites (numbering three to five) in each sampling segment (Table F-2).

C:\SHEBOYGAN PDF\F-FDWEB\APPEND-F.DOC November 1998

SAMPLING SEGMENT	PCB 066 (⊒g/kg)	PCB 077 (⊟ g/kg)	PCB 105 (⊟ g/kg)	PCB 118 (⊟g/kg)	PCB 126 (⊒ g/kg)	PCB 156 (⊒ g/kg)
Segment 1	0.19	0.0163	0.26	0.593	0.0027	0.0572
Segment 2	310	28.1	146.7	295	0.693	16.3
Segment 3	89.7	9.05	40.7	83	0.249	9.01
Segment 5	50	5.95	23.8	43	0.176	4.35

Table F-2. PCB congener concentrationsin sediment collected for the 1997 ERA

PHYSICAL ATTRIBUTES OF ENVIRONMENTAL MEDIA

Total organic carbon (TOC) content in sediment was estimated by averaging the organic carbon content in all samples throughout the river. The TOC results from the WDNR food chain study and the 1997 ERA sampling program were averaged, yielding a mean value of 4%. While separate TOC levels for each segment could be used in the model, the sampling results exhibited very little variability; therefore the mean was used.

Values for air temperature, water temperature, total suspended solids, and organic carbon content of particulates were available on a monthly basis, and were therefore incorporated into the model in a time-dependent fashion (Table F-3; WDNR 1996). Since the model uses a bioenergetics equation which is dependent on water temperature, it accounts explicitly for the reduced feeding of fish during the winter months.

TROPHIC INTERACTIONS

To develop the food-web bioaccumulation model for smallmouth bass, estimates of feeding behavior are required for each trophic level. Ideally, prey preferences are determined using site-specific stomach contents analyses. In the WDNR food chain study, stomachs from each fish type were preserved at each sampling location. Unfortunately, most of the contents were unrecognizable, and detailed identification of contents has not been attempted. However, some small crayfish were observed in adult smallmouth bass stomachs.

C:\SHEBOYGAN PDF\F-FDWEB\APPEND-F.DOC November 1998

Молтн	Air Temperature (°C)	Water Temperature (°C)	Total Suspended Solids (kg/L)	Particulate Organic Carbon (%)
January	-7	2	5.31e-06	11.25
February	-2	4	1.00e-05	8.08
March	2	7	2.65e-05	7.03
April	6	10	2.83e-05	7.79
May	10	15	4.40e-05	5.94
June	15	20	3.44e-05	10.27
July	21	24	1.72e-05	11.03
August	17	20	2.69e-05	10.58
September	13	15	2.41e-05	8.62
October	8	10	1.67e-05	11.08
November	3	7	1.81e-05	8.60
December	-2	4	6.65e-06	9.08

Table F-3. Physical attributes of environmental media

Source: WDNR (1996)

Since the smallmouth bass is an upper-trophic-level consumer, the food web is fairly complex. In order to simplify the food web for modeling purposes, biota occupying similar ecological niches were grouped together. For example, benthic fish, represented in the Sheboygan River by white sucker, redhorse, and carp, were considered together since they have similar dietary composition and sizes. The estimated lipid contents of primary producers and benthos are presented in Table F-4. The dietary composition for each type of predator considered in the food web model is summarized in the following section and Table F-5.

Organism	Estimated Lipid Content (%)	Source
Phytoplankton	1.2	Morrison et al. 1996 (Western Lake Erie phytoplankton)
Microcrustacea	1.0	Morrison et al. 1997 (Western Lake Erie zooplankton)
Bivalves	1.3	Morrison et al. 1997 (Western Lake Erie zebra mussels)
Aquatic insect larvae	4.5	WDNR 1996 (food chain data; Sheboygan River larval invertebrates, including Tricoptera, Diptera, Ephemeroptera, and Chironomid larvae; mean of segments used)

C:\SHEBOYGAN PDF\F-FDWEB\APPEND-F.DOC November 1998

Organism	Age Class (year)	Mean Weight (grams)	Whole Organism Lipid (%)	Plant Matter ^j (%)	Micro- Crustaceans (%)	Sediment (%)	Bivalves (%)	Aquatic Insects (%)	Centrarchid Fish (%)	Benthic Fish (%)	Crayfish (%)	Young-of- Year Fish (%)	Cypriniform Minnows (%)
Smallmouth Bass	0+	0.85 ^a	3.9 ^e	-	10	-	-	50	-	-	-	40 (0+)	-
	1+	28.4 ^a	2.9 ^f	-	-	-	-	10	-	-	45 (0+)	20 (0+)	25 (0+)
	2+	54.0 ^a	2.9 ^f	-	-	-	-	10	-	-	50 (0+)	20 (0+)	20 (0+)
	3+	95.1 ^ª	2.9 ^f	-	-	-	-	10	-	-	55 (0+)	20 (0+)	25 (1+)
	4+	255.6ª	3.1 ^g	-	-	-	-	10	5 (1+)	20 (1+)	55 (1+)	-	10 (1+)
	5+	505.5 ^a	3.1 ^g	-	-	-	-	10	5 (1+)	20 (1+)	55 (1+)	-	10 (1+)
	6+	640.4 ^a	3.1 ^g	-	-	-	-	10	5 (1+)	20 (1+)	55 (1+)	-	10 (1+)
	7+	773.9 ^a	3.1 ^g	-	-	-	-	10	5 (2+)	20 (2+)	55 (2+)	-	10 (2+)
	8+	945.7ª	3.1 ^g	-	-	-	-	10	5 (2+)	20 (2+)	55 (2+)	-	10 (2+)
Benthic Fish	0+	4.0 ^b	2.8 ^e	-	40	-	-	60	-	-	-	-	-
	1+	13 ^b	3.6 ^g	15	10	5	20	50	-	-	-	-	-
	2+	81 ^b	3.6 ^g	15	10	5	20	50	-	-	-	-	-
	3+	208 ^b	3.6 ^g	15	10	5	20	50	-	-	-	-	-
	4+	413 ^b	3.6 ^g	15	10	5	20	50	-	-	-	-	-
	5+	644 ^b	3.6 ^g	15	10	5	20	50	-	-	-	-	-
Crayfish	0+	0.5 ^c	1.3 ^g	60	-	15	10	15	-	-	-	-	-
	1+	2.0 ^c	1.3 ⁹	60	-	15	10	15	-	-	-	-	-
	2+	20 ^c	1.3 ^g	60	-	15	10	15	-	-	-	-	-
Young-of-Year Fish	0+	8.5 ^d	0.034 ^e	-	40	-	-	60	-	-	-	-	-
Cypriniform Minnow	0+	8.5 ^d	4.7 ^h	20	30	-	-	50	-	-	-	-	-
	1+	28.0 ^d	4.7 ^h	20	30	-	-	50	-	-	-	-	-
	2+	33.6 ^d	4.7 ^h	20	30	-	-	50	-	-	-	-	-

Diet compositionⁱ as percent of volume (age class of prey in parentheses)

Table F-5. Physiological data and dietary assignments used to parameterize the food chain bioaccumulation model

^a Smallmouth bass growth rates based on mean of Lake Erie and Lake Huron studies (Scott and Crossman 1973).

^b Benthic fish growth rates based on study of silver redhorse (Moxostoma anisurum; Meyer 1962; cited in Scott and Crossman 1973).

^c Best professional judgment.

^d Growth rates based on Lake Simcoe, Ontario growth of young-of-the-year shiner (Notropis atherinoides; McCrimmon 1954; cited in Scott and Crossman 1973).

^e Mean lipid content (young-of-year fish) from four sampling segments from the WDNR food chain study. Species collected included smallmouth bass and white sucker.

^f Mean lipid content (juvenile smallmouth bass) from four sampling segments from the 1997 ERA.

⁹ Mean lipid content (adults) from four sampling segments from the WDNR food chain study. Species collected included smallmouth bass, longnose dace and white sucker (benthic), and crayfish.

^h Lipid content of emerald shiner (Notropis atherinoides) collected in Western Lake Erie (Morrison et al. 1997).

¹ Dietry composition estimated using Scott and Crossman (1973), Morrison et al. (1997), and Lyons pers. comm. (1997).

ⁱ Includes phytoplankton, algae, plant detritus, etc.

Smallmouth Bass

The smallmouth bass (*Micropterus dolomieui*) is a piscivorous predator that feeds on insects, crayfish, and various fish (Scott and Crossman 1973). As young bass grow, their diet progresses from plankton, to immature aquatic insects, to crayfish and fishes (Scott and Crossman 1973). Smallmouth bass are very opportunistic feeders; therefore no single species may be identified as preferred fish prey. In the Sheboygan River, both centrarchids (sunfish and rock bass) and cypriniformes (white sucker, minnow, and other species) have been noted as smallmouth bass prey items.

Smallmouth bass actively feed during only about half of the year; during the winter they feed very little and are relatively inactive below a water temperature of approximately 15° C. Below 10° C, the smallmouth bass will scarcely feed at all (Lyons pers. comm. 1997). For adult smallmouth bass in most habitats, crayfish make up the majority of the diet, followed in order of importance by fish and aquatic and terrestrial insects (Scott and Crossman 1973). However, since the smallmouth bass sampled for the 1997 ERA represent juveniles in the size range of 11-20 cm, it is important to assess the age- and size-specific prey composition for this species. Lyons (pers. comm. 1997), indicates that smallmouth bass in this size range will still feed preferentially on crayfish, provided that the appropriate size range of crayfish is available. Dense populations of crayfish would likely support a range of size-classes, from which appropriate prey may be selected. For smallmouth bass in the 11-20 cm size range, the crayfish selected would be about 1 cm long or smaller (Lyons pers. comm. 1997).

Fish are also a significant dietary component for juvenile smallmouth bass. Because smallmouth bass are non-specialized piscivores, a major determinant of dietary composition is the abundance of fish of a suitable size. Because juvenile smallmouth bass are relatively small, they would consume suitably sized young-of-year fish such as suckers, sunfish, and small minnows (Lyons pers. comm. 1997). Because minnows are small throughout their life-cycle, they would likely be consumed more over the course of the year than other species, which would grow to sizes too large to be consumed by juvenile smallmouth bass. Representative minnow species include common shiner (*Notropis cornutus*), sand shiner (*Notropis stramineus*), blackside darter (*Percina maculata*), and hornyhead chub (*Nacomis biguttatus*).

During brief periods, insects (e.g., mayfly larvae) may be a significant component of the smallmouth bass diet, but overall they would amount to only about 5–10% of the dietary intake (Lyons pers. comm. 1997). Insect prey is likely most important in the months of April and May, when young-of-year fish are not yet available. Small fish would compose a larger proportion of the juvenile smallmouth bass diet in June and July. As these fish grow beyond the size preferred by smallmouth bass, crayfish tend to dominate the diet.

C:\SHEBOYGAN PDF\F-FDWEB\APPEND-F.DOC November 1998

Benthic Fish

Benthic fish are bottom feeding fish that live and feed in direct contact with the sediments. Redhorses (*Moxostoma* sp.) feed exclusively on invertebrates, particularly immature insects and small molluscs and crustaceans, that they suck out of the bottom sediments. White suckers (*Catostomus commersoni*) also consume primarily invertebrate prey such as chironomids, cladocerans, and molluscs. Carp (*Cyprinus carpio*) are omnivorous and consume a variety of plant and animal tissues including aquatic insects, crustaceans, annelids and molluscs as well as seeds, aquatic plants, and algae (Scott and Crossman 1973).

Cypriniform Minnows

Cypriniform minnows are short-lived, small fish which may be consumed by centrarchids because of their suitable size range. In general, minnows are omnivorous, with a preference toward consumption of animal food. The common shiner *Notropis cornutus*), which is a known prey item of smallmouth bass, consumes aquatic insects (adults and larvae), as well as algae, aquatic plants, and other microorganisms. The sand shiner *(Notropis stramineus)* consumes aquatic and terrestrial insects and bottom ooze diatoms. Blackside darters *(Percina maculata)* consume mayfly and midge larvae, corixid nymphs, copepods, and, occasionally, small fish. Hornyhead chub *Nacomis biguttatus)* consume both plant and animal tissues, with herbivorous material more important in the diet of young fish, which also consume microcrustaceans (e.g., cladocerans) and aquatic insect larvae, annelids, crayfish, and small fish (Scott and Crossman 1973).

Young-of-Year Fish

In their early life stages, many fish species in the Sheboygan river have not yet developed specialized feeding preferences, and therefore may be represented as a single broad class of fish with similar diets. Young-of-year fish feed mainly on zooplankton and benthic invertebrates (e.g., insect larvae and microcrustaceans).

Crayfish

Crayfish are macrocrustaceans that are omnivorous, with a tendency to consume more plant than animal material. Crayfish ingest mainly the primary resources at the bottom of the food web, such as detritus and sediment, algae, and aquatic macrophytes. While plant matter and filamentous algae are consumed by all age classes of crayfish, predation of crayfish on a diversity of animal prey including caddisfly larvae, small bivalves, small crayfish, and occasionally small fish, has been well documented (Zaranko et al. 1997).

REFERENCES

- Gobas, F.A.P.C. 1993. A model for predicting the bioaccumulation of hydrophobic organic chemicals in aquatic food webs: application to Lake Ontario. Ecological modeling.69:1-17.
- Gobas, F.A.P.C. 1998. Personal communication (electronic mail and telephone discussion Gary Lawrence in January 1998 concerning chemical properties of PCB congeners). School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia, Canada.
- Gobas, F.A.P.C., M.N. Z'Graggen, and X. Zhang. 1995. Time response of the Lake Ontario ecosystem to virtual elimination of PCBs. Environ. Sci. Technol. 29(8):2038-2046.
- Lyons, J. 1997. Personal communication (telephone conversation with Jim Starkes in December 1997, regarding dietary composition of smallmouth bass in the Sheboygan River). Fisheries Biologist, Wisconsin Department of Natural Resources, Monona, WI.
- McCrimmon, H.R., and O.E. Devitt. 1954. Winter studies on the burbot, *Lota lota lacustris*, of Lake Simcoe, Ontario. Can. Fish Cult. 16:34-41.
- Meyer, W.H. 1962. Life history of three species of redhorse *Moxostoma*) in the Des Moines River, Iowa. Trans. Amer. Fish. Soc. 91(4):412-419.
- Morrison, H.A., F.A.P.C. Gobas, R. Lazar, and G.D. Haffner. 1996. Development and verification of a bioaccumulation model for organic contaminants in benthic invertebrates. Environ. Sci. Technol. 30:3377-3384.
- Morrison, H.A., F.A.P.C. Gobas, R. Lazar, D.M. Whittle, and G.D. Haffner. 1997. Development and verification of a benthic/pelagic food web bioaccumulation model for PCB congeners in Western Lake Erie. Environ. Sci. Technol. 31:3267-3273.
- Scott, W.B. and E.J. Crossman. 1973. Freshwater fishes of Canada. Department of Fisheries and Oceans, Fisheries Research Board of Canada, Ottawa. Bulletin 184. 966 pp.
- WDNR. 1996. Data collected for the Sheboygan River food chain and contaminant assessment. Wisconsin Department of Natural Resources, Southeast District Water Resources Management Section.
- Zaranko, D.T., R.W. Griffiths, and N.K. Kaushik. 1997. Biomagnification of polychlorinated biphenyls through a river food web. Environ. Toxicol. Chem. 16(7):1463-1471.

C:\SHEBOYGAN PDF\F-FDWEB\APPEND-F.DOC November 1998

APPENDIX G

Impacts on Lake Michigan Salmonids

The Sheboygan River has annual runs of chinook salmon, coho salmon, and steelhead trout; the juveniles of these species also rear in the river before outmigrating to Lake Michigan. Although salmonids are not permanent residents of the Sheboygan River, the river is a significant contributor of polychlorinated biphenyls (PCBs) to Lake Michigan and hence provides a level of exposure that may impact the salmonid runs. This section presents an evaluation of the potential impacts to Lake Michigan salmonids. It includes an examination of the pertinent literature regarding bioaccumulation of PCBs in salmonids, biological effects in salmonids observed in the field, and PCB loading to Lake Michigan,

PCBs in Lake Michigan Salmonids

Over the past 25 years, several species of salmonids in Lake Michigan have been susceptible to accumulating high concentrations of PCBs and other organochlorine substances in their tissues. The indigenous lake trout and the introduced Pacific salmonids (coho and chinook salmon and steelhead trout) have been studied the most. Since the implementation of PCB restrictions in the1970s, Lake Michigan salmonids have demonstrated marked decreases in concentrations of total PCBs. Concentrations appear to have peaked in the early to mid-1970s, generally followed by declines to about the mid-1980s. Concentrations since the mid-1980s appear to have leveled off, with what may be slight increases in coho and chinook salmon (DeVault et al.1996; Stow et al. 1994) (Table G-1). The highest concentrations have been observed in lake trout in which mean tissue burdens as high as 22.9 mg/kg were observed in1974. Concentrations have since leveled off to between 2 and 3mg/kg (DeVault et al. 1996). Chinook salmon appear to have the next highest burdens with concentrations leveling off around 1 to 2 mg/kg followed by coho salmon where concentrations have been below 1 mg/kg since 1984 (Stow et al. 1994). Although mean concentrations were not presented, Stow et al. (1995) reported that tissue burdens and trends in steelhead and brown trout were similar to those in coho salmon.

The level of PCB accumulation observed in Lake Michigan salmonids is also consistent with the life history, behavior, and ecology of each species. As reported, the highest tissue burdens of PCBs have been observed in adult lake trout followed by chinook salmon and coho salmon. Tissue burdens in steelhead trout have been similar to coho salmon. On the basis of exposure periods, this would be expected because the lake trout is a long-lived species living in excess of 10 years in Lake Michigan. The species is not

C:\SHEBOYGAN PDF\G-SALMON\APPEND-G.DOC November 1998

YEAR	LAKE TROUT ^a	Соно Salmon ^b	CHINOOK SALMON ^D
1972	12.9	na	na
1973	18.9	na	na
1974	22.9	5.3	11.7
1975	22.3	3.5	na
1976	18.7	14.3	7.4
1977	11.6	na	na
1978	8.2	5.8	8.8
1979	8.8	3.1	6.1
1980	9.9	1.7	4.5
1981	6.5	1.3	3.1
1982	5.6	1.9	4.8
1983	na	1.5	2.1
1984	4.5	0.7	2.2
1985	na	0.9	1.3
1986	2.6	0.9	2.3
1987	na	na	1.6
1988	3.2	0.7	2.1
1989	na	0.8	1.2
1990	2.7	na	na
1991	na	na	na
1992	3.5	na	na

Table G-1. Mean tissue concentrations (mg/kg ww) of total PCBsin Lake Michigan salmonids

NOTE: na - not available

a DeVault et al. 1996

^b Stow et al. 1994

anadromous, rather it spawns and rears in the lake. The chinook salmon has the next longest life-span, spending 3 to 4 years in Lake Michigan, while the coho salmon and steelhead trout spend 2 or 3 years in the lake before their spawning migrations to natal streams. None of the anadromous species feed substantially during their spawning runs and therefore would not be expected to accumulate substantial PCB burdens as adults in the river. In addition to lake residence, chinook and coho salmon and steelhead trout rear in natal streams as juveniles for up to one year before outmigrating to the lake.

Studies have also examined tissue burdens in forage species such as alewife, which are considered the preferred prey of adult salmon and steelhead trout in Lake Michigan. Stow et al. (1995) evaluated the trends in PCB tissue burdens in alewife and bloater chub, another forage species, from the1970s to early 1990s and found similar decreases in total

C:\SHEBOYGAN PDF\G-SALMON\APPEND-G.DOC November 1998

PCBs in both species over the period. Rapid decreases from the early1970s to mid-1980s occurred, followed by stabilizing levels after1985. The similarity between alewife and predator PCB concentration trends is consistent with the concept that the food web is the primary route of PCBs into the upper trophic levels. Several other studies (Rasmussen et al. 1990; Oliver and Niimi 1988) have illustrated the importance of the food web in determining PCB concentrations in lake trout in Lake Ontario and other large lake systems.

Stow et al. (1995) surmised that the observed trends in PCB tissue burdens are consistent with ecological changes in the forage base that have occurred in Lake Michigan. During the 1980s, alewife underwent a large decrease in number and biomass in Lake Michigan largely in response to predation by rapidly growing chinook and coho salmon populations (chinook and coho salmon were first introduced to Lake Michigan in the mid-1960s). During the same period, the bloater chub population increased substantially. This decrease in the primary forage base for salmonids coincided with decreases in the growth of chinook and coho salmon. A decrease in growth as a consequence of lower prey availability could result in a decreased-growth dilution effect and be responsible for the slight increases recently observed in adult salmonid tissue burdens. Similarly, a shift in consumption from alewife to bloater chub, which may have occurred as a result of changing prey availability, should not result in a marked change in predator PCB concentrations because of the similar concentrations found in alewife and bloater chub. However, the energetics of forage and consumption are probably different for the two prey species because alewife tend to occupy warmer surface waters while bloater chub are usually found in deeper, cooler waters. A shift in prey may increase the energy requirements of salmonids as they forage in cooler, deeper water and hence they may experience reduced growth.

BIOLOGICAL EFFECTS

As reported, several studies have examined the potential biological effects of high tissue burdens of PCBs in salmonids of the Great Lakes. Leatherland (1993) reviewed the available evidence of reproductive and developmental problems that have been identified in populations and stocks of Great Lake salmonids. Biological effects that have been observed include thyroid enlargement, lowered egg thyroid hormone content, high prevalence of premature sexual maturation in males, loss of secondary sexual characteristics, reduced plasma gonadotropin, change in gonadal steroid hormone content, low egg fertility, and high embryo mortality and deformity. The evidence for an etiology based on the presence of toxic compounds is not as clear as that for fish-eating birds and mammals; however, when taken together, there is strong evidence for environmentallyrelated impairment of endocrine and reproductive function in salmonids of the Great Lakes.

C:\SHEBOYGAN PDF\G-SALMON\APPEND-G.DOC November 1998

The strongest correlations between PCBs and biological effects have been found in lake trout. Mac et al. (1993) measured total PCBs and individual PCB congeners in eggs from lake trout captured from Lakes Michigan, Huron, Ontario, and Superior and evaluated several biological endpoints including hatching success, swim-up mortality, fry survival, and fry abnormalities. Results of correlation analysis between the biological endpoints and concentrations of PCBs in the eggs demonstrated a significant relationship between hatching success and a number of indices of PCB contamination. The strongest correlation was between total egg mortality and total PCB concentrations in the eggs (r=0.701, p=0.0002). Nearly all of the individual PCB congeners showed strong correlation with total egg mortality as well, but not as strong as total PCBs. Total PCB concentrations in eggs were negatively correlated with the percent of normal fry hatching (r=-0.686, p=0.0002). Total PCBs in eggs also correlated significantly with age and length of adult females, early egg mortality, and the incidence of the biological abnormality of fry called blue sac. In addition, there was a significant negative correlation between PCB concentrations in adult tissues and the percent normal fry hatcht = -0.76, p=-0.01). The study did not report any threshold tissue concentrations at which reproductive impacts were significantly higher. No correlation was found between PCB concentrations and fry mortality.

Similar results were obtained by Ankley et al. (1991) who compared hatching success and fry survival of eggs of Lake Michigan chinook salmon to total PCBs and dioxin equivalents. In 10 groups of eggs, a significant correlation between the percent hatch of eggs and the total PCB concentrations in the eggs was found, but no significant relation was found to dioxin equivalents (calculated using mammalian TEFs) or between fry survival and any measure of PCB contamination.

Contrasting results were found by Williams and Giesy (1992) who examined the relation between measures of reproductive success of Lake Michigan chinook salmon eggs and PCB residues. In 20 groups of eggs, no significant correlation was found between PCB contamination and any of six measures of reproductive success. This study measured PCB contamination in eggs as a concentration or as dioxin equivalents calculated using several different sets of potency factors (Safe 1990; Tillitt et al. 1991; Newsted 1991); the Newsted (1991) TEFs were derived based on Ah-mediated responses in fish.

Although data were not sufficient to determine threshold concentrations where reproductive effects would be expected, the studies imply that lake trout are more sensitive than chinook salmon. The average concentration of total PCBs in salmon eggs was higher ($7.02 \mu g/g$, standard deviation 2.34) than that in lake trout eggs ($1.32 \mu g/g$, standard deviation 1.53) (Mac et al. 1993). The range of biological responses found in chinook salmon was also much lower than for lake trout; only 3 of 20 groups of chinook

C:\SHEBOYGAN PDF\G-SALMON\APPEND-G.DOC November 1998

salmon eggs suffered hatching mortality greater than 10% compared with 14 of 23 groups of lake trout eggs (Mac et al. 1993; Williams and Giesy 1992).

PCB LOADING TO LAKE MICHIGAN

Robertson (1996) used frequency-volume analyses to estimate the PCB loads of major tributaries to Lake Michigan and found that a small number of rivers contribute the great majority of PCBs to the lake. Eighty percent of the load of total PCBs to Lake Michigan was calculated to come from two basins, the Fox and Kalamazoo rivers. Six additional basins, including the Sheboygan River, were calculated to contribute an additional 18.5% of the load. Robertson (1996) estimated that the Sheboygan River contributed an average of 1.92% of the total PCB load to Lake Michigan for the 16year period from 1975 to 1990. Using data from 1980 to 1983 presented in Marti and Armstrong (1990), PCB loading from the Sheboygan River during that period would have been approximately 21 kg/year. Hall (pers. comm. 1998) estimated that the Sheboygan River contributed 4.4% of the total PCB load to Lake Michigan in 1994 (24 kg/year). The mean water concentration for the Sheboygan River was 83 ng/L (55–105 ng/L), which was higher than any of the other tributaries including the Fox, 65 ng/L, and Kalamazoo, 31 ng/L (Hall pers. comm. 1998).

CONTRIBUTION OF PCBs FROM THE SHEBOYGAN RIVER TO LAKE MICHIGAN SALMONIDS

A study by Eggold et al. (1996) found that juvenile salmon planted in the Sheboygan River accumulate significant levels of PCBs in their tissues before outmigrating to Lake Michigan. To determine the relative contribution of PCB contamination in the Sheboygan River to the tissue burdens of salmonids the study evaluated juvenile salmonids during their residence in the Sheboygan River and again when the fish returned as adults. The study released juvenile steelhead trout and coho salmon in the river and analyzed tissue samples for PCBs on a monthly basis until outmigration. Upon returning after one to three years of residence in Lake Michigan, adult tissues were analyzed for PCBs. Juvenile steelhead trout residing in the river were found to accumulate a mean of over $\ln g/kg$ (whole body, wet weight) after one month and 6.1 mg/kg after 8 months just prior to outmigration. Juvenile coho salmon showed similar trends with a mean of 0.84mg/kg after 1 month and up to 4.1 mg/kg prior to outmigration. Returning steelhead trout and coho salmon adults that had spent two or three years residing in Lake Michigan had mean tissue burdens of 0.62 and 0.73 mg/kg (skin-on fillets), respectively. No significant differences were observed between Sheboygan River adults and fish tissues from reference rivers (Root and Pigeon Rivers). Considering PCB loading data previously discussed, PCBs from the Sheboygan River would have been accumulated in the fish from the reference rivers during their residence in Lake Michigan.

C:\SHEBOYGAN PDF\G-SALMON\APPEND-G.DOC November 1998

The results of Eggold et al. (1996) indicated that juveniles stocked in the Sheboygan River during the fall months of 1980, 1991, and 1992 accumulated PCBs rapidly over the winter before outmigration in the spring. While PCB accumulation during stream residence did not contribute substantially to PCB concentrations in adults, the total body burdens of PCBs from juvenile steelhead trout prior to outmigration averaged 70.5 μ g per whole fish (6.1 mg/kg). An adult steelhead, which weighed 5.2kg after three years residence in Lake Michigan, contained 6,216 μ g of PCBs and a concentration of 1.2 mg/kg (skin-on fillet sample). This suggests that the contribution of PCB uptake during the smolt stream residence stage was 1.1% of the total PCBs body burden in the adult skin-on fillet, while the remainder of the PCB burden was accumulated in Lake Michigan. Analysis of coho salmon data yields similar results. The concentration of PCBs found in adult steelhead trout and salmon in the Sheboygan River are consistent with the tissue burdens reported in studies by DeVault et al. (1996) and Stow et al. (1994), which evaluated PCB concentrations in coho and chinook salmon in Lake Michigan.

POTENTIAL FOR PCBs FROM THE SHEBOYGAN RIVER TO IMPACT LAKE MICHIGAN SALMONIDS

The results of studies that have evaluated PCB loading, tissue burdens, and biological effects in salmonids of Lake Michigan indicate the following conclusions can be drawn:

- The Sheboygan River contributes approximately 2 to 4% of the load of PCBs to Lake Michigan, or 21 to 24 kg/year (Marti and Armstrong 1990; Robertson 1996; Hall pers. comm. 1998).
- PCBs accumulate in the tissues of adult salmonids residing in Lake Michigan. Concentrations have steadily declined from a peak in the 970s to a leveling off in the 1980s. The leveling off may be a new equilibrium; similar trends have also been observed in forage species that are salmonid prey.
- PCBs bioaccumulate to the highest concentrations in lake trout, followed by chinook salmon and coho salmon. The concentration of PCBs in steelhead trout appears to be similar to coho salmon.
- A strong correlation has been found between PCB concentrations in eggs of lake trout and chinook salmon and egg hatchability.
- No correlation was found between PCB concentrations and fry mortality.
- Lake trout appear to be more sensitive than chinook salmon.

C:\SHEBOYGAN PDF\G-SALMON\APPEND-G.DOC November 1998 Coho salmon and steelhead trout smolts planted in the Sheboygan River could accumulate substantial PCB concentrations before outmigration. The resultant high PCB body burden could pose a significant risk to piscivores. Between 96 and 99% of coho salmon and steelhead trout adult body burden is accumulated during their residence in Lake Michigan, although Lake Michigan fish residing in the vicinity of the river mouth may accumulate higher body burdens of PCBs.

Eggold et al. (1996) found that because of the short residence time that smolts spend in the river compared with Lake Michigan, and the growth dilution that occurs in the lake as the fish grow to adults, the tissue burdens accumulated in the river made up only 1 to 4% of the total PCB burden in adult steelhead trout and coho salmon. Further, adult coho salmon and steelhead trout that were originally planted in the Sheboygan River had no higher tissue burdens as adults than in Lake Michigan populations as a whole (Eggold et al. 1996).

In summary, the purpose of this appendix discussion is to evaluate whether salmonids within Lake Michigan are at risk from PCBs originating from the Sheboygan River, whether the PCBs are accumulated in the river prior to outmigration or in the lake as a result of loading from the river. Three issues are of concern:

- 1) Are these body burdens sufficient to cause effects in the outmigrating smolts?
- 2) Are smolts suffering reproductive impacts as adults?
- 3) Are these body burdens sufficient to cause impacts on pisciorous fish or wildlife that may consume them?

Based on the studies summarized in Table 4-15 of the risk assessment, smolts are unlikely to be impacted directly at these concentrations. Since these smolts or their parents were not reared in the Sheboygan (they were reared in hatcheries), most of their exposure to PCBs took place after the smolts were past their most sensitive life stage. Effects in fingerlings are not observed until body burdens are much higher. For example, Mauck et al. (1978) reported mortality in fry containing 125 mg/kg ww Aroclor 1254.

As discussed in the previous section, returning steelhead trout and coho salmon that have resided two to three years in Lake Michigan have lower PCB body burdens (maximum of 0.73 mg/kg ww). These concentrations are greater than some of the lowest effects concentrations (as low as 0.12 mg/kg ww in flounder ovaries; see Table 4-15 in the risk assessment) so reproductive effects cannot be ruled out, although they are somewhat unlikely (see Section 4.6). While PCBs from the Sheboygan River contribute

C:\SHEBOYGAN PDF\G-SALMON\APPEND-G.DOC November 1998

approximately 1 to 4% of the returning salmonid tissue burden, this does not present high enough PCB concentrations to alone drive risk to Lake Michigan salmonids. Returning adults are not likely to experience adverse reproductive effects solely as a result of exposure to concentrations of PCBs originating from the Sheboygan River.

Piscivorous wildlife and fish may consume these smolts or other young fish, which may contain relatively high concentrations of PCBs, in the Sheboygan River or soon after they outmigrate to Lake Michigan. As described in Section 5.0 of the risk assessment, evaluating risks to these species is dependent on many factors, including the overall percentage of diet that is made up of smolts.

REFERENCES

- Ankley, G.T., D.E Tillitt, J.P. Giesy, P.D. Jones, D.A. Berbrugge. 1991. Bioassay derived 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents in PCB-containing extracts from flesh and eggs of Lake Michigan chinook salmon(*Oncorhynchus tshawytscha*) and possible implications for reproduction. Can. J. Fish. Aquat. Sci. 48:1685-1690.
- DeVault, D.S., R. Hesselberg, P.W. Rodgers, and T.J. Feist. 1996. Contaminant trends in lake trout and walleye from the Laurentian Great Lakes. J. Great Lakes Res. 22(4):884-895.
- Eggold, B.T., J.F. Amrhein, and M.A. Cosbun. 1996. PCB accumulation by salmonine smolts and adults in Lake Michigan and its tributaries and its effect on stocking policies. J. Great Lakes Res. 22(2):403-413.
- Hall, D. Personal communication (telephone conversation with Todd Goeks, National Oceanic and Atmospheric Administration, on November 10, 1998 regarding PCB load from Sheboygan River to Lake Michigan). U.S. Geological Survey, Middleton, WI.
- Leatherland, J.F. 1993. Field observations on reproductive and developmental dysfunction in introduced and native salmonids from the Great Lakes. J. Great Lakes Res. 19(4):737-751.
- Mac, M.J., T.R. Schwartz, C.C. Edsall, and A.M. Frank. 1993. Polychlorinated biphenyls in Great Lakes trout and their eggs: Relations to survival and congener composition, 1979-1988. J. Great Lakes Res. 19(4):752-765.
- Marti, E.A. and E.E. Armstrong. 1990. Polychlorinated biphenyls in Lake Michigan tributaries. J. Great Lakes Res. 16:396-405.

C:\SHEBOYGAN PDF\G-SALMON\APPEND-G.DOC November 1998

- Mauck, W.L., P.M. Mehrle, and R.L. Mayer. 1978. Effects of the polychlorinated biphenyl Aroclor 1254 on growth, survival, and bone development in brook trout (*Salvelinus fontinalis*). J. Fish. Res. Board Can. 35:1084-1088.
- Newsted, J.L. 1991. Biochemical effects of planar halogenated hydrocarbons on rainbow trout (*Oncorhynchus mykiss*). Ph.D. dissertation, Michigan State University, East Lansing, Michigan.
- Oliver, B.G. and A.J. Niimi. 1988. Trophodynamic analysis of polychlorinated biphenyl congeners and other chlorinated hydrocarbons in the Lake Ontario ecosystem. Environ. Sci. Technol. 22(4):388-397.
- Rasmussen, J.B., D.J. Rowan, D.R.S. Lean, and J.H. Carey. 1990. Food chain structure in Ontario lakes determines PCB levels in lake trout (*Salvelinus namaycush*) and other pelagic fish. Can. J. Fish. Aquat. Sci. 47:2030-2038.
- Robertson, D.M. 1996. Use of frequency-volume analyses to estimate regionalized yields and loads of sediment, phosphorus, and polychlorinated biphenyls to Lakes Michigan and Superior. U.S. Geological Survey, Water Resources Investigations Report 96-4092. Madison, WI.
- Safe, S. 1990. Polychlorinated biphenyls (PCBs), dibenzop-dioxins (PCDDs), and dibenzofurans (PCDFs) and related compounds: Environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). Crit. Rev. Toxicol. 21:51-88.
- Stow, C.A., S.R. Carpenter, and J.F. Amrhein. 1994. PCB concentration trends in Lake Michigan coho (*Oncorhynchus kisutch*) and chinook salmon (*O. tshawytscha*). Can. J. Fish. Aquat. Sci. 51:1384-1390.
- Stow, C.A., S.R. Carpenter, L.A. Eby, J.F. Amrhein, and R.J. Hesselberg. 1995. Evidence that PCBs are approaching stable concentrations in Lake Michigan fishes. Ecological Applications. 5(1):248-260.
- Tillitt, D.E., J.P. Giesy, and G.T. Ankley. 1991. Characterization of the H4IIE rat hepatoma cell bioassay as a tool for assessing toxic potency of planar halogenated hydrocarbons in environmental samples. Environ. Sci. Technol. 25:87-92.
- Williams, L.L., and J.P. Giesy. 1992. Relationships among concentrations of individual polychlorinated biphenyl (PCB) congeners, 2,3,7,8-tetrachlorodibenzep-dioxin equivalents (TCDD-EQ), and rearing mortality of chinook salmon(*Oncorhynchus tshawytscha*) eggs from Lake Michigan. J. Great Lakes Res. 18:108-124.

C:\SHEBOYGAN PDF\G-SALMON\APPEND-G.DOC November 1998

APPENDIX H

Recommendations for Long-Term Monitoring

APPENDIX H RECOMMENDATIONS FOR LONG-TERM MONITORING

This appendix provides an outline of recommendations for a long-term monitoring program in the Sheboygan River and Harbor that can be used to evaluate the effectiveness of the selected remedial alternative in reducing risk to fish and wildlife from exposure to polychlorinated biphenyls (PCBs). This monitoring program should be developed in coordination with the U.S. Environmental Protection Agency (USEPA), the Wisconsin Department of Natural Resources (WDNR), and the natural resource trustee agencies. Recommendations are made in this appendix to serve as a starting point for developing the program. The proposed monitoring program focuses on PCB concentrations in fish and sediment, because the greatest risks identified in the *Sheboygan River and Harbor Aquatic Ecological Risk Assessment* (ERA) were associated with PCB exposure to fish and wildlife. There are two basic objectives of the monitoring program:

- Provide the basis for evaluating the effectiveness of remedial actions by supplementing existing site data to establish a comprehensive pre-remediation baseline
- Generate data for periodic re-evaluation of potential fish, piscivorous wildlife, and human exposure to residual PCBs and associated risks

The primary recommendations for the monitoring program include three main components:

- 1) Resident fish monitoring of adult and young-of-year or juvenile fish
- Caged fish studies using fathead minnows; these studies would be used to gather the data necessary to assess the contribution of PCBs in the water column to the observed PCB body burdens in resident fish
- 3) Sediment sampling

These recommendations were based in part on the availability of existing data from the Interim Monitoring Program (BBL 1996), the WDNR food chain study, and the ERA. Biological monitoring of floodplain areas, based on recommendations of the forthcoming floodplain ecological risk assessment, should also be incorporated in the monitoring program. The plan for conducting the baseline monitoring event should be developed and implemented, at a minimum, one year prior to remedial action, recognizing that detailed monitoring programs for all components of the monitoring program may not be developed prior to the completion of the remedial design. The preliminary recommended

1

C:\Sheboygan PDF\H-monit\Append-h.doc November 1998

approach described below is compared to past monitoring and study efforts in Table H-1. Note that these details may change during discussions with other agencies.

Resident fish would be collected in late summer from the four river segments sampled in the ERA and other sampling efforts, Segments 1, 2, 3, and 5. Adult (> 9 in.) fish would be collected from each of the four sampling segments and analyzed for low resolution PCB congeners, moisture content, and lipids. Some of the fish would also be analyzed for high resolution PCB congeners. Adult fish would be collected twice during the baseline sampling event to look for a seasonal influence. Composite samples of young-of-year or juvenile (2–6 in.) fish would also be collected in each of the four segments and analyzed for low resolution PCB congeners. Some of the young-of-year or juvenile fish composite samples would also be analyzed for high resolution PCB congeners. The collection schedule would be determined in cooperation with other agencies and would need to be consistent from year to year.

Caged fathead minnows (0.3–1 g each) would be deployed in the same period each year (e.g., July or August) at each of the same 5 sites used in the Interim Monitoring Program (BBL 1996), unless remedy selection and feasibility study results indicate other areas of concern. Three vessels would be deployed at each site with 150 fish in each; only two vessels would be sampled. The third vessel would be for contingencies. Three composite samples would be collected from each of two vessels after three weeks of exposure and analyzed for low resolution PCB congeners, moisture content, and lipids. A three week exposure period appears to be sufficient based on the results of Rice and White (1987) and Jones and Sloan (1989) and is less likely to stress the fish.

For the sediment component, baseline sediment sampling would be accomplished during the predesign sampling event. The sampling and analysis plan for this event would be reviewed to ensure method compatibility. Long-term monitoring would begin with the verification sampling event following remedy implementation. A plan for continued sediment monitoring would be completed at that time.

Comments were received from other agencies during their review of this document in draft format. Suggested monitoring program elements included water column monitoring, snapping turtle monitoring, sediment traps, and analysis of fish eggs. The final program should be developed in consultation with all involved agencies, and a baseline sampling event should be conducted before any response actions are taken at the site.

C:\Sheboygan PDF\H-monit\Append-h.doc November 1998

2

Table H-1. Recommended monitoring approach compared to the ERA,
the WDNR food chain study, and the Interim Monitoring Program

	Adult Fish (e.g., smallmouth bass)	Young-of-year/Juvenile Fish (e.g., smallmouth bass or white sucker)	Young-of-year/Juvenile Fish (e.g., white sucker)	Caged Fish
Sampling Location Recommendation	Segments 1, 2, 3, 5 (only Segments 2, 3, and 5 were sampled in IMP 1994, 1995)	Segments 1, 2, 3, 5	Segments 1, 2, 3, 5	5 stations (see Figure H-1)
Size Range				
ERA WDNR food chain study IMP Work Plan IMP 1994, 1995	na 8-12 inches > 9 inches 9-15 inches	5-8 inches 2-4 inches na na	na 2-5 inches 3-8 inches 3-6 inches	na na Not specified 0.3-1.0 g, average weight per fish
Recommendation	>9 inches (WDNR suggestion; average weight 250 g)	2-6 inches (target 2-4 inches)	2-6 inches (target 2-4 inches)	0.3-1 g to be consistent with IMP 1994, 1995
Sampling Schedule				
ERA	na	Mid August	na	na
WDNR food chain study	October 13-24, 1994	October 13-24, 1994	October 13-24, 1994	na
IMP Work Plan	Not specified	na	Not specified	Not specified
IMP 1994, 1995	Late September	na	Late September	Deployed mid to late September
Recommendation	To be determined in consultation with agencies involved	To be determined in consultation with agencies involved	To be determined in consultation with agencies involved	Deploy in July or August (check for seasonal influence in baseline)

Table H-1. Recommended monitoring approach compared to the ERA,
the WDNR food chain study, and the Interim Monitoring Program

	Adult Fish (e.g., smallmouth bass)	Young-of-year/Juvenile Fish (e.g., smallmouth bass or white sucker)	Young-of-year/Juvenile Fish (e.g., white sucker)	Caged Fish
Number of Fish and Comp ERA	osites per Location na	11-14 fish total; 3-5 fish per composite; 3 composites	na	
WDNR food chain study	9-12 fish total; 3-4 fish per composite; 3 composite;	18-24 fish total; 6-8 fish per composite; 3 composites	18-27 fish total; 6-9 fish per composite; 3 composites	
IMP Work Plan	12 fish analyzed individually (per compromise with WDNR)	na	Unclear if 25 individual fish or composites	2 vessels with 250 fish in each; duplicate 10-g composites of 20-25 fish collected from each vessel on 21st and 42nd days
IMP 1994, 1995	12 fish analyzed individually	na	50 fish total; 2 fish per composite; 25 composites (not enough fish collected for 25 composites in 1995 at 2 stations); not analyzed to date	200 fish in each of 2 vessels; duplicate composite samples collected from each vessel at 3 and 6 wks (insufficient sample volume in 1995)
Recommendation	To be determined in consultation with agencies involved	To be determined in consultation with agencies involved	To be determined in consultation with agencies involved	150 fish in each of 2 vessels (deploy an additional vessel with 150 fish for backup); 3 composites of 20-25 fish collected from each vessel at 3 wks (may need more fish to obtain sufficient sample for analysis)

Table H-1. Recommended monitoring approach compared to the ERA,the WDNR food chain study, and the Interim Monitoring Program

PCB Analysis	Adult Fish (e.g., smallmouth bass)	Young-of-year/Juvenile Fish (e.g., smallmouth bass or white sucker)	Young-of-year/Juvenile Fish (e.g., white sucker)	Caged Fish
ERA (congeners)	na	Axys (1997) method/USEPA method 1668	na	na
WDNR food chain study (congeners)	Wisconsin State Laboratory of Hygiene (SLOH) Method 1410	SLOH Method 1410	SLOH Method 1410	na
IMP Work Plan (Aroclors)	WDNR procedure 1400 (Ribick et al. 1982)	na	WDNR procedure 1400 (Ribick et al. 1982)	WDNR procedure 1400 (modified extraction [HES 1990])
IMP 1994, 1995 (Aroclors)	Information not available (method should be presented in BBL 1996a)	na	Information not available (method should be presented in BBL 1996a)	Information not available (method should be presented in BBL 1996a)
Recommendation	Axys (1997) method/USEPA method 1668 (low resolution congener analysis of all samples; high resolution analysis on 3 samples)	Axys (1997) method/USEPA method 1668 (low resolution congener analysis of all samples; high resolution analysis on 3 samples)	Axys (1997) methods (low resolution congener analysis on all samples)	Axys (1997) methods (low resolution congener analysis on all samples)

Need to also analyze a standard reference material and perform a cross check between different laboratories and methods.

Table H-1. Recommended monitoring approach compared to the ERA,the WDNR food chain study, and the Interim Monitoring Program

	Adult Fish (e.g., smallmouth bass)	Young-of-year/Juvenile Fish (e.g., smallmouth bass or white sucker)	Young-of-year/Juvenile Fish (e.g., white sucker)	Caged Fish
Lipid Analysis				
ERA	na	Modified Bligh and Dyer 1959 (methylene chloride)	na	na
WDNR food chain study	Not presented in QAPP (WDNR 1995)	Not presented in QAPP (WDNR 1995)	Not presented in QAPP (WDNR 1995)	na
IMP Work Plan	WDNR procedure 1400 (Ribick et al. 1982)	na	WDNR procedure 1400 (Ribick et al. 1982)	WDNR procedure 1400 (Ribick et al. 1982)
IMP 1994, 1995	Information not available (method should be presented in BBL 1996a)	na	Information not available (method should be presented in BBL 1996a)	Information not available (method should be presented in BBL 1996a)
Recommendation	Modified Bligh and Dyer 1959	Modified Bligh and Dyer 1959	Modified Bligh and Dyer 1959	Modified Bligh and Dyer 1959
Grams of tissue required for recommendation	aliquot from PCB extract			
Exposure Period				
IMP Work Plan	na	na	na	3 and 6 week collection (analyze at 6 weeks)
IMP 1994, 1995	na	na	na	3 and 6 week collections and analysis; 3 vs 6 week concentrations varied (equal in 1994 and 2x in 1995)
Recommendation	na	na	na	3 week collection and analysis
			NOTE	

SOURCE:

ERA - Sheboygan River and Harbor Aquatic Ecological Risk Assessment WDNR food chain study - WDNR (1996) IMP Work Plan - BBL (1996a) IMP 1994 - BBL (1995) IMP 1995 - BBL (1996b)

NOTE:

IMP - Interim Monitoring Program na - not applicable QAPP - quality assurance project plan WDNR - Wisconsin Department of Natural Resources

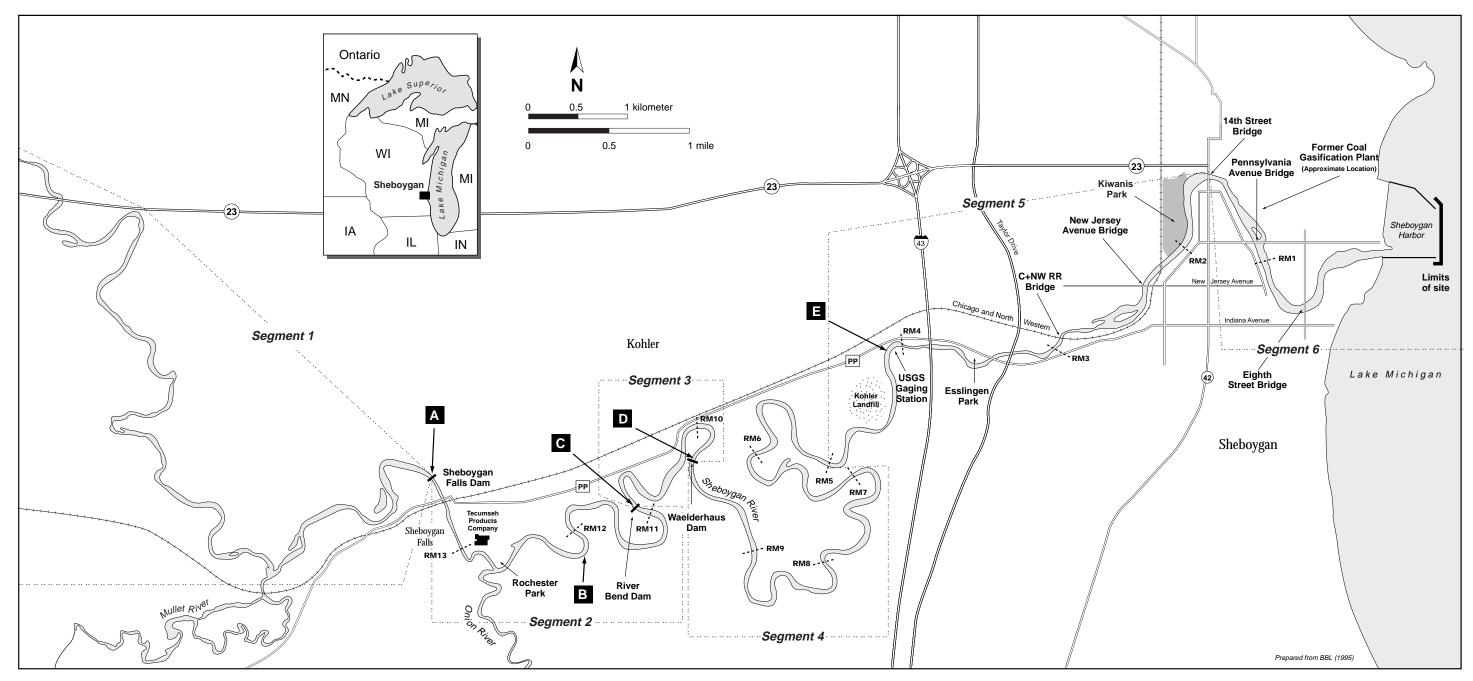


Figure H-1. Location of previous caged fish samples for the Interim Monitoring Program

REFERENCES

- Axys. 1997. Analytical methods manual, current routine methods: Aroclors, total PCBs, chlorinated pesticides, PCB congeners, coplanar PCBs (non-ortho-substituted), toxaphene, chlorobenzenes. Axys Analytical Services Ltd. Sidney, BC, Canada.
- BBL. 1995. 1994 annual interim monitoring report. Blasland, Bouck & Lee, Inc., Syracuse NY.
- BBL. 1996a. Work plan/QAPP, interim monitoring program, Sheboygan River and Harbor. Blasland, Bouck & Lee, Inc., Syracuse NY.
- BBL. 1996b. 1995 annual interim monitoring report. Blasland, Bouck & Lee, Inc., Syracuse NY.
- Bligh, E.G. and W.J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911-917.
- HES. 1990. Extraction method MP-BPCB-MA. Hazleton Environmental Services, Inc., Madison, WI.
- Jones, P.A. and R.J. Sloan. 1989. An *in situ* river exposure vessel for bioaccumulation studies with juvenile fish. Environ. Toxicol. Chem. 8:151-155.
- Ribick, M., Petty, and Stalling. 1982. Toxaphene residues in fish: Identification, quantification and confirmation at part per billion levels. Environ. Sci. Technol. 16:310-318.
- Rice, C.P. and D.S. White. 1987. PCB availability assessment of river dredging using caged clams and fish. Environ. Toxicol. Chem. 6:259-274.
- WDNR. 1995. Sheboygan River food chain and sediment contaminant assessment quality assurance project plan. Wisconsin Department of Natural Resources, Madison, WI.
- WDNR. 1996. Data collected for the Sheboygan River food chain and contaminant assessment. Wisconsin Department of Natural Resources, Southeast District Water Resources Management Section.

C:\Sheboygan PDF\H-monit\Append-h.doc November 1998

8

APPENDIX

Analytical Methods

APPENDIX I ANALYTICAL METHODS

Methods used for the analysis of sediment and tissue collected in August 1997 as part of the *Sheboygan River and Harbor Aquatic Ecological Risk Assessment* are presented in this Appendix. A summary of the data quality objectives, including the specific analytical methods used, is presented in Table I-1 and the targeted detection limits are presented in Table I-2.

All methods are readily accessible in common procedural literature (e.g., U.S. Environmental Protection Agency methods) except the method used by Axys Analytical Services Ltd. for the low resolution analysis of PCB congeners. This method is provided in Attachment I-1.

PARAMETER	UNITS	METHOD DETECTION LIMIT	SAMPLE SIZE	PRECISION	ACCURACY	COMPLETENESS	METHOD	REFERENCE	LAB
Sediment									
Total Metals	mg/kg (dry weight)	0.15–95	50 g	±35%	±35%	95%	GFAA/ ICP	USEPA 6010/700	ARI
Mercury	mg/kg (dry weight)	0.05	Aliquot from total metals	±35%	±35%	95%	CVAA	USEPA Method 7471	ARI
Pesticides/ PCBs	<i>µ</i> g/kg (dry weight)	0.6–7	150 g	±50%	±50%	95%	GC/ECD	USEPA 8081	ARI
PCB Congeners	pg/g (dry weight)	0.1	30 g	±50%	70-120%	95%	GC/MS	Axys CL-S-01 /Ver.2	Axys
Toxic PCB Congeners	pg/g (dry weight)	0.2–1.5	30 g	±50%	70-120%	95 %	HRGC/HRMS	USEPA Method 1668	Axys
Dioxins and Furans	pg/g (dry weight)	0.05–0.8	30 g	±50%	70-120%	95%	HRGC/HRMS	USEPA Method 1613B	Axys
PAHs	<i>µ</i> g/kg (dry weight)	10	150 g	±50%	±50%	95%	GC/MS-SIM	Modified USEPA 8270	ARI
Total organic carbon	% (dry weight)	0.1	25 g	±20%	±20%	95%	Combustion	PSEP 1986; Standard Method 5310B	ARI
Acid-volatile sulfides	µmole/g	0.9	10 g	±30%	±25%	95%	Distillation, titration	Allen et al. 1991	ARI
Simultaneously extracted metals	µmole/g	0.02–0.5	From AVS extract	±35%	±35%	95%	ICP/GFAA	Modified CLP after extraction	ARI
Moisture Content	%	0.1	50 g	±10%	±20%	95%	Combustion	USEPA Method 160.3	ARI
Grain size	0.0001 (dry weight)	na	500 g	±30%	na	95%	Sieve	ASTM D422	Soil Tech.

Table I-1. Summary of data quality objectives

PARAMETER	UNITS	METHOD DETECTION LIMIT	SAMPLE SIZE	PRECISION	ACCURACY	COMPLETENESS	Метнор	REFERENCE	LAB
Tissue									
Total Metals	mg/kg (as received)	0.025–20	10 g	±35%	±35%	95%	GFAA/ ICP	USEPA 6010/700	ARI
Mercury	mg/kg (as received)	0.005	Aliquot from total metals	±35%	±35%	95%	CVAA	USEPA Method 7471	ARI
Pesticides/ PCBs	<i>µ</i> g/kg (as received)	17–100	30 g	±50%	±50%	95%	GC/ECD	Modified USEPA 8081	ARI
PCB	pg/g	0.1	30 g	±50%	70-120%	95%	GC/MS	Axys	Axys
Congeners	(as received)							CL-T-02 /Vers. 2	
Toxic PCB Congeners	ng/g (as received)	0.1	30 g	±50%	70-120%	95%	HRGC/HRMS	USEPA Method 1668	Axys
PAHs	<i>µ</i> g/kg (as received)	7	20 g	±50%	±50%	95%	GC/MS-SIM	PSEP 1997	ARI
Dioxins and Furans	pg/g (as received)	0.05–0.8	30 g	±50%	70-120%	95%	HRGC/HRMS	USEPA Method 1613B	Axys
Moisture Content	%	0.1	20 g	±10%	±20%	95%	Combustion	USEPA Method 160.3	ARI
Percent lipids	%	na	Aliquot from PAH	±30%	na	95%	Gravimetric	Bligh and Dyer 1959	ARI

Table I-1, continued

 NOTE:
 ARI - Analytical Resources, Inc.

 Axys - Axys Analytical Services, Ltd.
 CVAA - cold vapor atomic absorption

 GC/ECD - gas chromatography/electron captured detector
 GC/MS - gas chromatography/mass spectrometry

 GFAA - graphite furnace atomic absorption
 High resolution gas chromatography/high resolution mass spectrometry

 ICP - inductively coupled plasma atomic emission spectrometry
 na - not applicable

 PAH - polycyclic aromatic hydrocarbon
 PCB - polychlorinated biphenyl

 PSEP - Puget Sound Estuary Program
 SIM - selected ion monitoring

 Soil Tech. - Soil Technology, Inc.
 USEPA - U.S. Environmental Protection Agency

Acenaphthylene 7 na Acenaphthene 7 na Fluorene 7 na Phenanthrene 7 na Anthracene 7 na Pyrene 7 na Benz(a)anthracene 7 na Benz(a)anthracene 7 na Benzo(b)fluoranthene 7 na Benzo(k)fluoranthene 7 na Deldinin 2.0 na <t< th=""><th>ANALYTE</th><th>SEDIMENT</th><th>FISH TISSUE</th></t<>	ANALYTE	SEDIMENT	FISH TISSUE
Acenaphthene 7 na Fluorene 7 na Phenanthrene 7 na Anthracene 7 na Fluoranthene 7 na Pyrene 7 na Benz(a)anthracene 7 na Benzo(b)fluoranthene 7 na Benzo(b)fluoranthene 7 na Benzo(a)pyrene 7 na Benzo(a)pyrene 7 na Indeno(1,2,3-cd,)pyrene 7 na Resticides/PCBs ^b (µg/kg) Gamma-BHC Lindane 1.0 na Pesticides/PCBs ^b (µg/kg) Gamma-BHC Lindane 1.0 na Dieldrin 2.0 na P,p'-DDE 2.0 na Endrin 2.0 na P,p'-DDT 2.0 na Chordane 1.0 na PCBS (each Aroclor) 20 na Pp' DDT 2.0 na Copper 12 na Lead 17 na	PAHs ^a (µg/kg)		
Fluorene 7 na Phenanthrene 7 na Anthracene 7 na Fluoranthene 7 na Pyrene 7 na Benz(a)anthracene 7 na Benz(b)fluoranthene 7 na Benzo(a)pyrene 7 na Benzo(a)pyrene 7 na Indeno(1,2,3-cd,)pyrene 7 na Naphthalene 7 na Pesticides/PCBs ^b (µg/kg) 7 na Gamma-BHC Lindane 1.0 na Heptachlor epoxide 1.0 na Dieldrin 2.0 na P,p'-DDE 2.0 na P,p'-DDD 2.0 na Chordrane 1.0 na Total DDT 1.0 na PCBS (each Aroclor) 20 na Aroclor 1221 40 na Metcals* (mg/kg) 1 na Cadmium 0.25	Acenaphthylene	7	na
Phenanthrene 7 na Anthracene 7 na Fluoranthene 7 na Pyrene 7 na Pyrene 7 na Benz(a)anthracene 7 na Benzo(b)fluoranthene 7 na Benzo(a)pyrene 7 na Indeno(1,2,3-cd,)pyrene 7 na Naphthalene 7 na Pesticides/PCBs ^b (µg/kg) 7 na Gamma-BHC Lindane 1.0 na Heptachlor epoxide 1.0 na Dieldrin 2.0 na Py ¹ -DDE 2.0 na Py ¹ -DDD 2.0 na Chlordane 1.0 na Cholordane 1.0 na Cholordane 1.0 na Cadmium 0.25 na Cadmium 0.25 na Chromium 17 na Copper 12 na <td>Acenaphthene</td> <td>7</td> <td>na</td>	Acenaphthene	7	na
Anthracene 7 na Fluoranthene 7 na Pyrene 7 na Benz(a)anthracene 7 na Benzo(b)fluoranthene 7 na Benzo(b)fluoranthene 7 na Benzo(b)fluoranthene 7 na Benzo(a)pyrene 7 na Indeno(1,2,3-cd.)pyrene 7 na Naphthalene 7 na Pesticides/PCBs ^b (µg/kg) Gamma-BHC Lindane 1.0 na Heptachlor epoxide 1.0 na Endrin 2.0 na P,p'-DDE 2.0 na Endrin 2.0 na P,p'-DDT 2.0 na Aroclor 12.0 na Chlordane 1.0 na Total DDT 1.0 na Cadmium 0.25 na Cadmium 0.25 na Chordane 1 1.0 na Ead 17 na Metals ⁶ (mg/kg) 1.2	Fluorene	7	na
Fluoranthene 7 na Pyrene 7 na Benz(a)anthracene 7 na Benzo(b)fluoranthene 7 na Benzo(k)fluoranthene 7 na Naphthalene 7 na Pacticides/PCBs ^b (µg/kg) 1.0 na Gamma-BHC Lindane 1.0 na Dieldrin 2.0 na P.p'-DDE 2.0 na Chlordane 1.0 na Total DDT 1.0 na PCBS (each Aroclor) 20 na Cadmium 0.25 na Choromium	Phenanthrene	7	na
Pyrene 7 na Benz(a)anthracene 7 na Benz(a)anthracene 7 na Benzo(b)fluoranthene 7 na Benzo(a)pyrene 7 na Indeno(1,2,3-cd,)pyrene 7 na Naphthalene 7 na Pesticides/PCBs ^b (µg/kg) 7 na Gamma-BHC Lindane 1.0 na Heptachlor epoxide 1.0 na Dieldrin 2.0 na P,p'-DDE 2.0 na Endrin 2.0 na P,p'-DDD 2.0 na P,p'-DDD 2.0 na Chordane 1.0 na Total DDT 1.0 na Cadmium 0.25 na Chordane 17 na Copper 12 na Lead 17 na Mercury 0.075 na Nickel 7 na <	Anthracene	7	na
Benz(a) anthracene 7 na Chrysene 7 na Benzo(b)/fluoranthene 7 na Benzo(a)pyrene 7 na Benzo(a)pyrene 7 na Indeno(1,2,3-cd,)pyrene 7 na Naphthalene 7 na Pesticides/PCBs ^b (µg/kg) 7 na Gamma-BHC Lindane 1.0 na Heptachlor epoxide 1.0 na Dieldrin 2.0 na P,p'-DDE 2.0 na P,p'-DDD 2.0 na P,p'-DDT 2.0 na Chlordane 1.0 na Total DDT 1.0 na PCBS (each Aroclor) 20 na Arsenic 5 na Cadmium 0.25 na Chromium 17 na Mercury 0.075 na Nickel 7 na Silver 0.5 na <td>Fluoranthene</td> <td>7</td> <td>na</td>	Fluoranthene	7	na
Chrysene 7 na Benzo(b)/fluoranthene 7 na Benzo(k)/fluoranthene 7 na Naphthalene 7 na Naphthalene 7 na Pesticides/PCBs ^b (µg/kg) Gamma-BHC Lindane 1.0 na Dieldrin 2.0 na P,p'-DDE 2.0 na P,p'-DDE 2.0 na P,p'-DDT 2.0 na Chlordane 1.0 na PCBS (each Aroclor) 20 na Arcolor 1221 40 na Metals ^c (mg/kg) na Arsenic 5 na Cadmium 0.25 na Chordinum 17 na Copper 12 na Silver 0.5	Pyrene	7	na
Benzo(b)fluoranthene 7 na Benzo(k)fluoranthene 7 na Benzo(a)pyrene 7 na Indeno(1,2,3-cd,)pyrene 7 na Naphthalene 7 na Pesticides/PCBs ^b (µg/kg) 7 na Gamma-BHC Lindane 1.0 na Heptachlor epoxide 1.0 na Dieldrin 2.0 na P,p'-DDE 2.0 na Endrin 2.0 na P,p'-DDD 2.0 na P,p'-DDT 2.0 na Chordane 1.0 na Total DDT 1.0 na PCBs (each Aroclor) 20 na Aroclor 1221 40 na Metals ^c (mg/kg) 17 na Cadmium 0.25 na Chromium 17 na Cadmium 0.55 na Cadmium 0.5 na Zinc 7 <td< td=""><td>Benz(a)anthracene</td><td>7</td><td>na</td></td<>	Benz(a)anthracene	7	na
Benzo(k)fluoranthene 7 na Benzo(a)pyrene 7 na Indeno(1,2,3-cd,)pyrene 7 na Naphthalene 7 na Pesticides/PCBs ^b (µg/kg) Gamma-BHC Lindane 1.0 na Heptachlor epoxide 1.0 na Dieldrin 2.0 na P,p'-DDE 2.0 na P,p'-DDD 2.0 na P,p'-DDD 2.0 na P,p'-DDT 2.0 na Chlordane 1.0 na Total DDT 1.0 na PCBS (each Aroclor) 20 na Arsenic 5 na Cadmium 0.255 na Chordium 17 na Copper 12 na Lead 17 na Nickel 7 na Silver 0.5 na Zinc 47 na	Chrysene	7	na
Benzo(a)pyrene 7 na Indeno(1,2,3-cd,)pyrene 7 na Naphthalene 7 na Pesticides/PCBs ^b (µg/kg) 7 na Gamma-BHC Lindane 1.0 na Heptachlor epoxide 1.0 na Dieldrin 2.0 na P.p'-DDE 2.0 na P.p'-DDD 2.0 na P.p'-DDD 2.0 na P.p'-DDT 2.0 na Chlordane 1.0 na Total DDT 1.0 na PCBS (each Aroclor) 20 na Arsenic 5 na Cadmium 0.255 na Copper 12 na Lead 17 na Nickel 7 na Silver 0.5 na Zinc 47 na PCB Congeners (BZ no.) ^d (ng/g wet weight) 0.1 0.1 2.2',3/2.4', (5/8) 0.1	Benzo(b)fluoranthene	7	na
Indeno(1,2,3-cd,)pyrene 7 na Naphthalene 7 na Pesticides/PCBs ^b (µg/kg) na Gamma-BHC Lindane 1.0 na Heptachlor epoxide 1.0 na Dieldrin 2.0 na P,p'-DDE 2.0 na Endrin 2.0 na P,p'-DDD 2.0 na P,p'-DDD 2.0 na P,p'-DDT 2.0 na Chlordane 1.0 na Total DDT 1.0 na PCBs (each Aroclor) 20 na Aroclor 1221 40 na Metals ^c (mg/kg) 17 na Copper 12 na Lead 17 na Mercury 0.075 na Nickel 7 na Zopper 0.1 0.1 1.1 2,3/2,4' (5/8) 0.1 0.1 1.1 2,2',3/2,4',6 (16/32) <td>Benzo(k)fluoranthene</td> <td>7</td> <td>na</td>	Benzo(k)fluoranthene	7	na
Naphthalene 7 na Pesticides/PCBs ^b (µg/kg) 7 na Gamma-BHC Lindane 1.0 na Heptachlor epoxide 1.0 na Dieldrin 2.0 na P,p'-DDE 2.0 na Endrin 2.0 na P,p'-DDD 2.0 na P,p'-DDT 2.0 na Chlordane 1.0 na Total DDT 1.0 na PCBS (each Aroclor) 20 na Aroclor 1221 40 na Metals ^c (mg/kg) 17 na Cadmium 0.25 na Chromium 17 na Copper 12 na Lead 17 na Mercury 0.075 na Nickel 7 na Zinc 47 na PCB Congeners (BZ no.) ^d (ng/g wet weight) 0.1 0.1 2,2,2,4' (5/8) 0.1 0.	Benzo(a)pyrene	7	na
Pesticides/PCBs ^b (µg/kg) Gamma-BHC Lindane 1.0 na Heptachlor epoxide 1.0 na Dieldrin 2.0 na P,p'-DDE 2.0 na Endrin 2.0 na P,p'-DDD 2.0 na P,p'-DDD 2.0 na P,p'-DDT 2.0 na Chlordane 1.0 na Total DDT 1.0 na PCBS (each Aroclor) 20 na Aroclor 1221 40 na Metals ^c (mg/kg) Arsenic 5 na Cadmium 0.25 na Copper 12 na Lead 17 na Mercury 0.075 na Nickel 7 na Silver 0.5 na Zinc 47 na PCB Congeners (BZ no.) ^d (ng/g wet weight) 0.1 0.1 0.1 2,2/2,4' (5/8) 0.1 0.1 0.1 0.1 0.1 0.1 2,2/2,4' (17) 0.1 0.1 0.1 0.	Indeno(1,2,3-cd,)pyrene	7	na
Gamma-BHC Lindane 1.0 na Heptachlor epoxide 1.0 na Dieldrin 2.0 na P,p'-DDE 2.0 na Endrin 2.0 na P,p'-DDD 2.0 na P,p'-DDT 2.0 na Chlordane 1.0 na Total DDT 1.0 na PCBs (each Aroclor) 20 na Aroclor 1221 40 na Metals ^c (mg/kg) 17 na Cadmium 0.25 na Choromium 17 na Copper 12 na Lead 17 na Nickel 7 na Silver 0.5 na Zinc 47 na PCB Congeners (BZ no.) ^d (ng/g wet weight) 0.1 0.1 2,2',3/2,4' (5/8) 0.1 0.1 0.1 2,2',4 (17) 0.1 0.1 0.1 2,2',5 (18) 0.1 0.1 0.1 2,2',6 (19) 0.1 <	Naphthalene	7	na
Gamma-BHC Lindane 1.0 na Heptachlor epoxide 1.0 na Dieldrin 2.0 na P,p'-DDE 2.0 na Endrin 2.0 na P,p'-DDD 2.0 na P,p'-DDT 2.0 na Chlordane 1.0 na Total DDT 1.0 na PCBs (each Aroclor) 20 na Aroclor 1221 40 na Metals ^c (mg/kg) 17 na Cadmium 0.25 na Choromium 17 na Copper 12 na Lead 17 na Nickel 7 na Silver 0.5 na Zinc 47 na PCB Congeners (BZ no.) ^d (ng/g wet weight) 0.1 0.1 2,2',3/2,4' (5/8) 0.1 0.1 0.1 2,2',4 (17) 0.1 0.1 0.1 2,2',5 (18) 0.1 0.1 0.1 2,2',6 (19) 0.1 <	•		
Heptachlor epoxide 1.0 na Dieldrin 2.0 na P,p'-DDE 2.0 na Endrin 2.0 na P,p'-DDD 2.0 na P,p'-DDT 2.0 na Chlordane 1.0 na Total DDT 1.0 na PCBs (each Aroclor) 20 na Aroclor 1221 40 na Metals ^c (mg/kg) 40 na Cadmium 0.25 na Chromium 17 na Copper 12 na Lead 17 na Mercury 0.075 na Nickel 7 na Zinc 47 na PCB Congeners (BZ no.) ^d (ng/g wet weight) 11 0.1 2,3/2,4' (5/8) 0.1 0.1 0.1 2,3/2,4' (5/8) 0.1 0.1 0.1 2,2',5 (18) 0.1 0.1 0.1 2,2',5 (18) 0.1 0.1 0.1 2,3/4 (22) 0.		10	
Dieldrin 2.0 na P,p'-DDE 2.0 na Endrin 2.0 na P,p'-DDD 2.0 na P,p'-DDT 2.0 na Chlordane 1.0 na Total DDT 1.0 na PCBs (each Aroclor) 20 na Aroclor 1221 40 na Metals ^c (mg/kg) 40 na Arsenic 5 na Cadmium 0.25 na Chromium 17 na Copper 12 na Lead 17 na Nickel 7 na Silver 0.5 na Zinc 47 na PCB Congeners (BZ no.) ^d (ng/g wet weight) 0.1 0.1 2,3/2,4' (5/8) 0.1 0.1 0.1 2,2',5 (18) 0.1 0.1 0.1 2,2',5 (18) 0.1 0.1 0.1 2,3/4' (22)			
P,p'-DDE 2.0 na Endrin 2.0 na P,p'-DDD 2.0 na P,p'-DDT 2.0 na Chlordane 1.0 na Total DDT 1.0 na PCBs (each Aroclor) 20 na Aroclor 1221 40 na Metals ^c (mg/kg) 40 na Arsenic 5 na Cadmium 0.25 na Choromium 17 na Copper 12 na Lead 17 na Mercury 0.075 na Nickel 7 na Zinc 47 na PCB Congeners (BZ no.) ^d (ng/g wet weight) 0.1 0.1 2,3/2,4' (5/8) 0.1 0.1 0.1 2,2',4 (17) 0.1 0.1 0.1 2,2',5 (18) 0.1 0.1 0.1 2,2',6 (19) 0.1 0.1 0.1 2,3/4' (22) 0.1 0.1 0.1			
Endrin 2.0 na P,p'-DDD 2.0 na P,p'-DDT 2.0 na Chlordane 1.0 na Total DDT 1.0 na PCBs (each Aroclor) 20 na Aroclor 1221 40 na Metals ^c (mg/kg) 40 na Arsenic 5 na Cadmium 0.25 na Chromium 17 na Copper 12 na Lead 17 na Mercury 0.075 na Nickel 7 na Zinc 47 na PCB Congeners (BZ no.) ^d (ng/g wet weight) 0.1 0.1 2,3/2,4' (5/8) 0.1 0.1 0.1 4,4' (15) 0.1 0.1 0.1 2,2',5 (18) 0.1 0.1 0.1 2,2',6 (19) 0.1 0.1 0.1 2,2',6 (19) 0.1 0.1 0.1			
P,p'-DDD 2.0 na P,p'-DDT 2.0 na Chlordane 1.0 na Total DDT 1.0 na PCBs (each Aroclor) 20 na Aroclor 1221 40 na Metals ^c (mg/kg) 40 na Metals ^c (mg/kg) 7 na Cadmium 0.25 na Copper 12 na Copper 12 na Lead 17 na Mercury 0.075 na Nickel 7 na Zinc 47 na PCB Congeners (BZ no.) ^d (ng/g wet weight) 0.1 0.1 2,3/2,4' (5/8) 0.1 0.1 0.1 2,3/2,4',6 (16/32) 0.1 0.1 0.1 2,2',5 (18) 0.1 0.1 0.1 2,2',6 (19) 0.1 0.1 0.1 2,3,4' (22) 0.1 0.1 0.1			
P,p'-DDT 2.0 na Chlordane 1.0 na Total DDT 1.0 na PCBs (each Aroclor) 20 na Aroclor 1221 40 na Metals ^c (mg/kg) 40 na Metals ^c (mg/kg) 5 na Cadmium 0.25 na Chromium 17 na Copper 12 na Lead 17 na Mercury 0.075 na Nickel 7 na Zinc 47 na PCB Congeners (BZ no.) ^d (ng/g wet weight) 0.1 0.1 2,3/2,4' (5/8) 0.1 0.1 0.1 2,2',4 (17) 0.1 0.1 0.1 2,2',5 (18) 0.1 0.1 0.1 2,2',6 (19) 0.1 0.1 0.1 2,3/4' (22) 0.1 0.1 0.1			
Chlordane 1.0 na Total DDT 1.0 na PCBs (each Aroclor) 20 na Aroclor 1221 40 na Metals ^c (mg/kg) 40 na Metals ^c (mg/kg) 5 na Cadmium 0.25 na Chromium 17 na Copper 12 na Lead 17 na Mercury 0.075 na Nickel 7 na Zinc 47 na PCB Congeners (BZ no.) ^d (ng/g wet weight) 0.1 0.1 2,3/2,4' (5/8) 0.1 0.1 0.1 2,2',3/2,4',6 (16/32) 0.1 0.1 0.1 2,2',5 (18) 0.1 0.1 0.1 2,2',6 (19) 0.1 0.1 0.1 2,3,4' (22) 0.1 0.1 0.1			
Total DDT 1.0 na PCBs (each Aroclor) 20 na Aroclor 1221 40 na Metals ^c (mg/kg) 40 na Metals ^c (mg/kg) 5 na Cadmium 0.25 na Cadmium 0.25 na Chromium 17 na Copper 12 na Lead 17 na Mercury 0.075 na Nickel 7 na Silver 0.5 na Zinc 47 na PCB Congeners (BZ no.) ^d (ng/g wet weight) 0.1 0.1 2,3/2,4' (5/8) 0.1 0.1 0.1 2,2',3/2,4',6 (16/32) 0.1 0.1 0.1 2,2',5 (18) 0.1 0.1 0.1 2,2',6 (19) 0.1 0.1 0.1 2,3,4' (22) 0.1 0.1 0.1			
PCBs (each Aroclor) 20 na Aroclor 1221 40 na Metals ^c (mg/kg) Arsenic 5 na Cadmium 0.25 na Chromium 17 na Copper 12 na Lead 17 na Mercury 0.075 na Nickel 7 na Zinc 47 na PCB Congeners (BZ no.) ^d (ng/g wet weight) 0.1 0.1 2,3/2,4' (5/8) 0.1 0.1 0.1 4,4' (15) 0.1 0.1 0.1 2,2',3/2,4',6 (16/32) 0.1 0.1 0.1 2,2',5 (18) 0.1 0.1 0.1 2,2',6 (19) 0.1 0.1 0.1 2,3,4' (22) 0.1 0.1 0.1			na
Aroclor 1221 40 na Metals ^c (mg/kg) 5 na Arsenic 5 na Cadmium 0.25 na Chromium 17 na Copper 12 na Lead 17 na Mercury 0.075 na Nickel 7 na Zinc 47 na PCB Congeners (BZ no.) ^d (ng/g wet weight) 0.1 0.1 2,3/2,4' (5/8) 0.1 0.1 0.1 4,4' (15) 0.1 0.1 0.1 2,2',3/2,4',6 (16/32) 0.1 0.1 0.1 2,2',5 (18) 0.1 0.1 0.1 2,2',6 (19) 0.1 0.1 0.1 2,3,4' (22) 0.1 0.1 0.1			
Metals ^c (mg/kg) Arsenic 5 na Cadmium 0.25 na Chromium 17 na Copper 12 na Lead 17 na Mercury 0.075 na Nickel 7 na Silver 0.5 na Zinc 47 na PCB Congeners (BZ no.) ^d (ng/g wet weight) 2,3/2,4' (5/8) 0.1 0.1 2,3/2,4' (5/8) 0.1 0.1 0.1 2,2',3/2,4',6 (16/32) 0.1 0.1 0.1 2,2',5 (18) 0.1 0.1 0.1 2,2',6 (19) 0.1 0.1 0.1 2,3,4' (22) 0.1 0.1 0.1			na
Arsenic 5 na Cadmium 0.25 na Chromium 17 na Copper 12 na Lead 17 na Mercury 0.075 na Nickel 7 na Silver 0.5 na Zinc 47 na PCB Congeners (BZ no.) ^d (ng/g wet weight) 0.1 0.1 2,3/2,4' (5/8) 0.1 0.1 0.1 2,2',3/2,4',6 (16/32) 0.1 0.1 0.1 2,2',5 (18) 0.1 0.1 0.1 2,2',6 (19) 0.1 0.1 0.1 2,3,4' (22) 0.1 0.1 0.1	Aroclor 1221	40	na
Cadmium 0.25 naChromium17naCopper12naLead17naMercury 0.075 naNickel7naSilver 0.5 naZinc47na PCB Congeners (BZ no.)^d (ng/g wet weight) 2,3/2,4' (5/8) 0.1 0.1 2,3/2,4' (5/8) 0.1 0.1 2,2',3/2,4',6 (16/32) 0.1 0.1 2,2',5 (18) 0.1 0.1 2,2',6 (19) 0.1 0.1 2,3,4' (22) 0.1 0.1	Metals ^c (mg/kg)		
Chromium17naCopper12naLead17naMercury0.075naNickel7naSilver0.5naZinc47na PCB Congeners (BZ no.) ^d (ng/g wet weight)0.10.12,3/2,4' (5/8)0.10.10.12,2',3/2,4',6 (16/32)0.10.10.12,2',5 (18)0.10.10.12,2',6 (19)0.10.10.12,3,4' (22)0.10.10.1	Arsenic	5	na
Copper12naLead17naMercury 0.075 naNickel7naSilver 0.5 naZinc47na PCB Congeners (BZ no.) ^d (ng/g wet weight) 47 2,3/2,4' (5/8) 0.1 0.1 2,3/2,4' (5/8) 0.1 0.1 2,2',3/2,4',6 (16/32) 0.1 0.1 2,2',4 (17) 0.1 0.1 2,2',5 (18) 0.1 0.1 2,2',6 (19) 0.1 0.1 2,3,4' (22) 0.1 0.1	Cadmium	0.25	na
Lead 17 na Mercury 0.075 na Nickel 7 na Silver 0.5 na Zinc 47 na PCB Congeners (BZ no.) ^d (ng/g wet weight) 10.1 0.1 2,3/2,4' (5/8) 0.1 0.1 0.1 2,3/2,4',6 (16/32) 0.1 0.1 0.1 2,2',3/2,4',6 (16/32) 0.1 0.1 0.1 2,2',5 (18) 0.1 0.1 0.1 2,2',6 (19) 0.1 0.1 0.1 2,3,4' (22) 0.1 0.1 0.1	Chromium	17	na
Lead 17 na Mercury 0.075 na Nickel 7 na Silver 0.5 na Zinc 47 na PCB Congeners (BZ no.)^d (ng/g wet weight) 10.1 0.1 2,3/2,4' (5/8) 0.1 0.1 0.1 4,4' (15) 0.1 0.1 0.1 2,2',3/2,4',6 (16/32) 0.1 0.1 0.1 2,2',5 (18) 0.1 0.1 0.1 2,2',6 (19) 0.1 0.1 0.1 2,3,4' (22) 0.1 0.1 0.1	Copper	12	na
Mercury 0.075 na Nickel 7 na Silver 0.5 na Zinc 47 na PCB Congeners (BZ no.) ^d (ng/g wet weight) 0.1 0.1 2,3/2,4' (5/8) 0.1 0.1 0.1 4,4' (15) 0.1 0.1 0.1 2,2',3/2,4',6 (16/32) 0.1 0.1 0.1 2,2',5 (18) 0.1 0.1 0.1 2,2',6 (19) 0.1 0.1 0.1 2,3,4' (22) 0.1 0.1 0.1		17	na
Nickel 7 na Silver 0.5 na Zinc 47 na PCB Congeners (BZ no.) ^d (ng/g wet weight) 1 0.1 2,3/2,4' (5/8) 0.1 0.1 4,4' (15) 0.1 0.1 2,2',3/2,4',6 (16/32) 0.1 0.1 2,2',5 (18) 0.1 0.1 2,2',6 (19) 0.1 0.1 2,3,4' (22) 0.1 0.1		0.075	na
Silver0.5naZinc47naPCB Congeners (BZ no.) ^d (ng/g wet weight)2,3/2,4' (5/8)0.10.14,4' (15)0.10.12,2',3/2,4',6 (16/32)0.10.12,2',4 (17)0.10.12,2',5 (18)0.10.12,2',6 (19)0.10.12,3,4' (22)0.10.1	-		na
Zinc 47 na PCB Congeners (BZ no.) ^d (ng/g wet weight) 0.1 0.1 2,3/2,4' (5/8) 0.1 0.1 0.1 4,4' (15) 0.1 0.1 0.1 2,2',3/2,4',6 (16/32) 0.1 0.1 0.1 2,2',5 (18) 0.1 0.1 0.1 2,2',6 (19) 0.1 0.1 0.1 2,3,4' (22) 0.1 0.1 0.1			
PCB Congeners (BZ no.) ^d (ng/g wet weight) 2,3/2,4' (5/8) 0.1 0.1 4,4' (15) 0.1 0.1 2,2',3/2,4',6 (16/32) 0.1 0.1 2,2',4 (17) 0.1 0.1 2,2',5 (18) 0.1 0.1 2,2',6 (19) 0.1 0.1 2,3,4' (22) 0.1 0.1			
$\begin{array}{cccc} 2,3/2,4' \left(5/8\right) & 0.1 & 0.1 \\ 4,4' \left(15\right) & 0.1 & 0.1 \\ 2,2',3/2,4',6 \left(16/32\right) & 0.1 & 0.1 \\ 2,2',4 \left(17\right) & 0.1 & 0.1 \\ 2,2',5 \left(18\right) & 0.1 & 0.1 \\ 2,2',6 \left(19\right) & 0.1 & 0.1 \\ 2,3,4' \left(22\right) & 0.1 & 0.1 \end{array}$			
4,4' (15) 0.1 0.1 $2,2',3/2,4',6$ (16/32) 0.1 0.1 $2,2',4$ (17) 0.1 0.1 $2,2',5$ (18) 0.1 0.1 $2,2',6$ (19) 0.1 0.1 $2,3,4'$ (22) 0.1 0.1			
2,2',3/2,4',6 (16/32)0.10.12,2',4 (17)0.10.12,2',5 (18)0.10.12,2',6 (19)0.10.12,3,4' (22)0.10.1			
2,2',4 (17)0.10.12,2',5 (18)0.10.12,2',6 (19)0.10.12,3,4' (22)0.10.1			
2,2',5 (18) 0.1 0.1 2,2',6 (19) 0.1 0.1 2,3,4' (22) 0.1 0.1	. ,		
2,2',6 (19) 0.1 0.1 2,3,4' (22) 0.1 0.1	2,2′,4 (17)	0.1	0.1
2,2',6 (19)0.10.12,3,4' (22)0.10.1	2,2′,5 (18)	0.1	0.1
2,3,4' (22) 0.1 0.1	2,2′,6 (19)	0.1	0.1
			0.1
Z-3-D/Z-3-D (Z4/Z7) U.1 U.1 U.1	2,3,6/2,3',6 (24/27)	0.1	0.1

Table I-2. Targeted detection limits

Table I-2. continued

ANALYTE	SEDIMENT	FISH TISSU
2,3′,4 (25)	0.1	0.1
2,3′,5 (26)	0.1	0.1
2,4,4′/2,4′,5 (28/31)	0.1	0.1
2′,3,4 (33)	0.1	0.1
2,2′,3,3′ (40)	0.1	0.1
2,2',3,4/2,3,4',6/2,3',4',6 (41/64/71)	0.1	0.1
2,2',3,4' (42)	0.1	0.1
2,2',3,5' (44)	0.1	0.1
2,2′,3,6 (45)	0.1	0.1
2,2′,3,6′ (46)	0.1	0.1
2,2',4,4'/2,2'4,5 (47/48)	0.1	0.1
2,2′,4,5′ (49)	0.1	0.1
2,2',5,5' (52)	0.1	0.1
2,3,3',4'/2,3,4,4' (56/60)	0.1	0.1
2,3′,4,5′ (68)	0.1	0.1
2,3',4',5/2',3,4,5 (70/76)	0.1	0.1
2,4,4′,5 (74)	0.1	0.1
2,2',3,3',5 (83)	0.1	0.1
2,2',3,3',6/2,2',3,4,6' (84/89)	0.1	0.1
2,2',3,4,4' (85)	0.1	0.1
2,2',3,4,5' (87)	0.1	0.1
2,2',3,4',5/2,2',4,5,5' (90/101)	0.1	0.1
2,2′,3,4′,6 (91)	0.1	0.1
2,2′,3,5′,6 (95)	0.1	0.1
2,2′,3′,4,5 (97)	0.1	0.1
2,2′,4,4′,5 (99)	0.1	0.1
2,3,3',4',5 (107)	0.1	0.1
2,3,3',4',6 (110)	0.1	0.1
2,3,3,4,4′ (128)	0.1	0.1
2,2′,3,3′,4,5 (129)	0.1	0.1
	0.1	0.1
2,2′,3,3′,4,5′ (130) 2,2′,3,3′,4,6 (131)	0.1	0.1
	0.1	0.1
2,2',3,3',5,6 (134)	0.1	0.1
2,2',3,3',5,6'/2,2',3,4,5',6 (135/144)		
2,2′,3,3′,6,6′ (136)	0.1	0.1
2,2′,3,4,4′,5 (137)	0.1	0.1
2,2',3,4,4',5'/2,3,3',4',5,6/2,3,3',4',5',6 (138/163/164)	0.1	0.1
2,2′,3,4,5,5′ (141)	0.1	0.1
2,2′,3,4,5′,6 (144)	0.1	0.1
2,2′,3,4′,5,5′ (146)	0.1	0.1
2,2′,3,4′,5′,6 (149)	0.1	0.1
2,2′,3,5,5′,6 (151)	0.1	0.1
2,2',4,4',5,5' (153)	0.1	0.1
2,3,3′,4,4′,5′ (157)	0.1	0.1
2,3,3′,4,4′,6 (158)	0.1	0.1
2,2′,3,3′,4,4′,5/2,3,3′,4,4′,5,6 (170/190)	0.1	0.1
2,2′,3,3′,4,4′,6 (171)	0.1	0.1

Table I-2. continued

ANALYTE	SEDIMENT	FISH TISSUE
2,2',3,3',4,5,5' (172)	0.1	0.1
2,2′,3,3′,4,5,6′ (174)	0.1	0.1
2,2',3,3',4,5',6 (175)	0.1	0.1
2,2',3,3',4,6,6' (176)	0.1	0.1
2,2',3,3',4',5,6 (177)	0.1	0.1
2,2′,3,3′,5,5′,6 (178)	0.1	0.1
2,2′,3,3′,5,6,6′ (179)	0.1	0.1
2,2′,3,4,4′,5,6′/2,2′,3,4′,5,5′,6 (182/187)	0.1	0.1
2,2′,3,4,4′,5′,6 (183)	0.1	0.1
2,2′,3,4,5,5′,6 (185)	0.1	0.1
2,3,3',4,4',5',6 (191)	0.1	0.1
2,3,3',4',5,5',6 (193)	0.1	0.1
2,2′,3,3′,4,4′,5,5′ (194)	0.1	0.1
2,2',3,3',4,4',5,6 (195)	0.1	0.1
2,2',3,3',4,4',5,6' (196)	0.1	0.1
2,2',3,3',4,4',6,6' (197)	0.1	0.1
	0.1	0.1
2,2',3,3',4,5,5',6 (198)	0.1	0.1
2,2′,3,3′,4,5,6,6′ (199)		
2,2′,3,3′,4,5,5′,6′ (201)	0.1	0.1
2,2′,3,4,4′,5,5′,6 (203)	0.1	0.1
2,3,3',4,4',5,5',6 (205)	0.1	0.1
2,2′,3,3′,4,4′,5,5′,6 (206)	0.1	0.1
2,2',3,3',4,4',5,6,6' (207)	0.1	0.1
2,2′,3,3′,4,5,5′,6,6′ (208)	0.1	0.1
2,2',3,3',4,4',5,5',6,6' (209)	0.1	0.1
Toxic PCB Congeners (BZ no.) ^{d,e} (pg/g wet weight)		
3,3′,4,4′ (77)	0.23	0.23
2′,3,4,4′,5 (123)	0.50	0.50
2,3′,4,4′,5 (118)	0.50	0.50
2,3,4,4′,5 (114)	0.50	0.50
2,3,3',4,4' (105)	0.50	0.50
3,3',4,4',5 (126)	0.50	0.50
2,3',4,4',5,5' (169)	1.00	1.00
2,3,3′,4,4′,5 (156)	1.00	1.00
2,3′,4,4′,5,5′ (167)	1.00	1.00
2,2',3,4,4',5,5' (180)	1.00	1.00
2,2',3,3',4,4',5 (170)	1.00	1.00
	1.00	1.00
2,3,3′,4,4′,5,5′ (189)		1.00
Dioxins/furans ^e (pg/g wet weight)	0.2–1.5	0.2–1.5
2,3,7,8-TCDD	0.02	0.02
1,2,3,7,8-PeCDD	0.04	0.04
1,2,3,4,7,8-HxCDD	0.06	0.06
1,2,3,6,7,8-HxCDD	0.06	0.06
1,2,3,7,8,9-HxCDD	0.06	0.06
1,2,3,4,6,7,8-HpCDD	0.15	0.15
OCDD	0.25	0.25

Table I-2. continue	d
---------------------	---

ANALYTE	SEDIMENT	FISH TISSUE
2,3,7,8-TCDF	0.02	0.02
1,2,3,7,8-PeCDF	0.04	0.04
2,3,4,7,8-PeCDF	0.06	0.06
1,2,3,4,7,8-HxCDF	0.06	0.06
1,2,3,6,7,8-HxCDF	0.06	0.06
1,2,3,7,8,9-HxCDF	0.06	0.06
2,3,4,6,7,8-HxCDF	0.06	0.06
1,2,3,4,6,7,8-HpCDF	0.15	0.15
1,2,3,4,7,8,9-HpCDF	0.15	0.15
OCDF	0.25	0.25
Total Tetra-dioxins	0.02	0.02
Total Penta-dioxins	0.04	0.04
Total Hexa-dioxins	0.06	0.06
Total Hepta-dioxins	0.15	0.15
Total Tetra-furans	0.02	0.02
Total Penta-furans	0.04	0.04
Total Hexa-furans	0.06	0.06
Total Hepta-furans	0.15	0.15
Acid Volatile Sulfides (µmole/g)	0.9	na
Simultaneously Extracted Metals (µmole/g)	0.02-0.5	na
Total Organic Carbon (%)	0.1	
Moisture Content (%)	0.1	na
Percent Lipids	na	na
Grain Size	0.0001	na

NOTE: na - not applicable

PAH - polycyclic aromatic hydrocarbon PCB - polychlorinated biphenyl

- ^a PAHs in sediment and tissue are based on detection limits in the WDNR food chain study. This detection limit for sediment is lower than threshold effects levels (TELs) for individual PAHs. The detection limit for tissues is slightly higher than in the food chain study (7 ⊒g/kg). The laboratory (Analytical Resources, Inc. [ARI]) may be able to obtain a detection limit of 5 ⊒g/kg barring any matrix interferences.
- ^b Pesticides/PCBs target detection limits in sediment are equal to the TEL (Smith et al. 1996; USEPA 1996). Pesticides/PCBs in mussel tissue are equal to the laboratory (ARI) detection limits.
- ^c Metals in sediment are equal to the TEL, except for silver which is equal to the effects range low (ERL). Metals in mussels are the lowest concentrations that were detected in crayfish or insects during the WDNR food chain study for arsenic and copper. For other metals, the target detection limits are equal to the laboratory (ARI) detection limit, because the lowest concentrations in the food chain study could not be obtained (cadmium, chromium, lead, mercury, and silver), or previous data were not available (nickel, zinc).
- ^d Ballschmiter-Zell (BZ) number is in parentheses.
- ^a Laboratory (Axys Analytical Services, Inc.) detection limits. These are lower than the concentrations associated with TCDD risk to fish in tissue (50 pg/g) and sediment (60 pg/g) (USEPA 1993).

REFERENCES

- Allen, H.E., F. Gongmin, W. Boothman, D. Ditoro, and J.D. Mahony. 1991. Determination of acid volatile sulfides and simultaneously extracted metals in sediments. U.S. Environmental Protection Agency, Office of Science and Technology, Washington, DC. 17 pp.
- Bligh, E.G., and W.J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37(8):911-917.
- PSEP. 1986. Recommended protocols for measuring conventional sediment variables in Puget Sound. Prepared for the U.S. Environmental Protection Agency, Region 10, Seattle, WA. Puget Sound Water Quality Authority, Olympia, WA.
- PSEP. 1997. Recommended guidelines for measuring organic compounds in Puget Sound water, sediment and tissue samples. Prepared for the U.S. Environmental Protection Agency, Region 10, Seattle, WA. Puget Sound Water Quality Action Team, Olympia, WA.
- Smith, S.L., D.D. MacDonald, K.A. Keenleyside, C.G. Ingersoll, and L.J. Field. 1996. A preliminary evaluation of sediment quality assessment values for freshwater ecosystems. J. Great Lakes Res. 22(3):624-638.
- USEPA. 1996. Assessment and Remediation of Contaminated Sediments (ARCS) Program: calculation and evaluation of sediment effect concentrations for the amphipod *Hyalella azteca* and the midge *Chironomus riparius*. EPA 905-R96-008. U.S. Environmental Protection Agency, Great Lakes National Program Office, Chicago, IL.
- USEPA. 1993. Interim report on data and methods for assessment of 2,3,7,8tetrachlorodibenzo-*p*-dioxin risks to aquatic life and associated wildlife. EPA/600/R-93/055. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC.

ATTACHMENT I-1

Axys Analytical Services Ltd.

Analysis of PCB congeners in tissue and sediment/soil samples

ANALYSIS OF PCB CONGENERS IN TISSUE AND SEDIMENT/SOIL SAMPLES

All samples were spiked with an aliquot of surrogate standard solution containing ¹³C-labelled surrogates (see Table 1). Tissue samples were extracted by column elution and sediment/soil samples were extracted by shaking with solvent. The raw extract was fractionated and cleaned up on a Florisil column. The first fraction (F1) was analyzed by high resolution gas chromatography with low resolution (quadrupole) mass spectrometric detection (HRGC/LRMS) for PCBs as individual congeners.

1. Extraction

<u>Tissue</u>: A subsample of homogenized wet tissue (approximately 10 g wet for initial analyses and 1 g wet for repeat analyses) was mixed with powdered anhydrous sodium sulphate, spiked with an aliquot of the surrogate standard solution and loaded into a chromatographic column. The sample was extracted by eluting the column with 100 mL dichloromethane (DCM) at a rate of 3-5 mL per minute. One mL hexane was added to the DCM and the extract was concentrated to about 5 mL. At this point the raw extract was subsampled for gravimetric lipid determination.

The extract was loaded onto a calibrated Biobeads SX-3 column and eluted with 1:1 dichloromethane:hexane. The Biobeads column is calibrated for the separation of the organochlorines of interest from lipids and other biogenic compounds. The extract was concentrated prior to column cleanup and fractionation.

A separate subsample of tissue was used for gravimetric moisture determination.

<u>Sediment/Soil</u>: A subsample of wet sediment (approximately 10 to 15 g) was weighed into a round bottom flask, spiked with an aliquot of the surrogate standard solution and extracted by shaking with 1:1 methanol:dichloromethane (20 min., decanted) and dichloromethane (20 min., decanted). The extracts were combined and the solvent backextracted with extracted, distilled water (twice). The extract was dried over anhydrous sodium sulphate, reduced in volume and allowed to react with activated copper to remove sulphur.

A separate subsample of sediment was used for gravimetric moisture determination.

2. Column Chromatography For PCB Congeners

The extract was applied to a Florisil column for which cutpoints had been previously determined. The column was eluted with hexane. The F1 fraction contained the majority of the PCB congeners, (only a few coplanar PCBs not measured by this method elute into F2). F1 was concentrated to a small volume and sediment/soil extracts were again treated with activated copper. All extracts were spiked with an aliquot of recovery standard solution (¹³C-labelled PCB 153) prior to instrumental analysis.

3. HRGC/LRMS Analysis Of PCB Congeners

The F1+F2 fraction was analyzed for PCBs as individual PCB congeners using a Finnigan INCOS 50 mass spectrometer equipped with a Varian 3400 GC, a CTC autosampler and a Prolab Envirolink system for MS control and data acquisition. Chromatographic separation was achieved using a J&W DB-5 column (60 m x 0.25 mm i.d., o.25 μ m film thickness). The MS was operated at unit mass resolution in the EI mode using multiple ion detection (MID) to enhanace sensitivity, acquiring at least two characteristic ions for each target analyte and surrogate standard. The ions monitored were as described in Table 2. A split/splitless injection sequence was used. Reported concentrations were corrected for the recovery of the surrogate standards added prior to workup.

4. Quantification

Compounds were identified if the GC/MS data satisfied the following criteria:

i) The retention time of the peak was within three seconds of the predicted time from that authentic compound in the calibration standard.

ii) Peak response of both ions was at least three times the background noise level.

iii) Peak maxima for both characteristic ions coincided within two seconds.

iv) The ratio of characteristic ion peak areas must have been within +/-20% of the value found in the calibration standard.

Quantification was conducted using HP EnviroQuant and Prolab-MS Extend software linked to Excel spreadsheets. The chromatograms supplied and the ProLab quantitation summary sheets are provided to give areas and retention times only; the data values shown are raw (absolute) numbers and final concentrations are to be taken from final data reports only.

A five point calibration curve was used to determine instrument linearity prior to the analysis of samples. The concentration of the identified compounds were calculated against the surrogate standards thereby automatically correcting the data for the recovery of the surrogates. Mean relative response factors, determined from the calibration standard runs made before and after each batch of samples run were used for quantification.

5. Calculations

<u>Concentrations</u>: The internal standard method was used to quantify all target analytes in the samples. All data reported are corrected for the recovery of the surrogate. Conc_i, the concentration of a target analyte was calculated using the following equations:

$$Conc_i = \frac{A_i}{A_{si}} \times \frac{W_{si}}{RRF_{i,si}} \times \frac{1}{W_x}$$

where

area of the analyte peak of interest (compound i) Ai = area of labelled surrogate used to quantify i A_{si} = W_x weight of sample taken for analysis = W_{si} weight of labelled surrogate (compound si) added to sample = mean relative response factor of i to si from the bracketing **RRF**_{i,si} = calibration runs and defined as

$$\frac{A_i}{A_{si}} \quad x \quad \frac{W_{si}}{W_i}$$

<u>Detection Limits</u>: Detection limits (DL_i) were also calculated for each analyte using the concentration equations given above, with the minimum detectable peak area used for A_i as follows:

$$DL_i = \frac{AMIN_I}{A_{si}} \times \frac{W_{si}}{RRF_{i,si}} \times \frac{I}{W_x}$$

where AMIN_i = minimum detectable peak area in the channel of interest

and A_{si} , W_x , W_{si} and $RRF_{i,si}$ as defined above.

 $AMIN_i$ is calculated from N, the maximum noise in the predetermined "window" on the mass chromatogram channel of interest as follows:

$$AMIN_i = N x \frac{A_s}{H_s} x 3$$

where

N was determined by the EnviroQuant/Prolab software; and A_s and H_s are the area and the height of the peak for ¹³C-PCB 101.

The noise for each target analyte was determined from the actual chromatogram of the sample of interest.

<u>Surrogate Standard Recoveries</u>: Recoveries of surrogate standards were calculated using the following equations:

$$\% Recovery = \frac{A_{si}}{A_{rs}} x \frac{W_{rs}}{RRF_{si,rs}} x \frac{1}{W_{si}} x 100$$

where A_{rs} and A_{si} were the peak areas of recovery (internal) standard and labelled surrogate added to the sample, W_{rs} and W_{si} were the weights of recovery standard and labelled surrogate added to the sample, and

 $\mathsf{RRF}_{\mathsf{si},\mathsf{rs}}$ was the mean relative response factor of the labelled surrogate to the recovery standard as determined by daily runs of the quantification solution and defined as

$$\frac{A_{si}}{A_{rs}} \times \frac{W_{rs}}{W_{si}}$$

Surrogate standard recoveries (reported with each sample result) were required to be in the range considered acceptable.

REFERENCES:

1. AXYS ANALYTICAL SERVICES LTD. Analytical Method for the Determination Aroclors, Total PCBs, Chlorinated Pesticides, PCB Congeners, Coplanar PCBs (Non-Ortho-Substituted, NOS), Toxaphene, Chlorbenzenes. AXYS Method Doc. CL/01 Rev 3 May 12, 1997. Includes the tissue method CL-T-02/Ver.2 and the sediment method CL-S-01/Ver.2.

TABLE 1.

SURROGATE AND INTERNAL (RECOVERY) STANDARD USED FOR PCB ANALYSES

SURROGATE STANDARD (Axys ID CL027A-SUR)

 ${}^{13}C_{12}\text{-PCB 101} \\ {}^{13}C_{12}\text{-PCB 105} \\ {}^{13}C_{12}\text{-PCB 118} \\ {}^{13}C_{12}\text{-PCB 180} \\ {}^{13}C_{12}\text{-PCB 209} \\ \end{array}$

INTERNAL (RECOVERY) STANDARD (Axys ID CL0010A-REC)

¹³C₁₂-PCB 153

TABLE 2.

IONS MONITORED BY HRGC/LRMS FOR QUANTIFICATION OF PCBs

PCB CONGENER GROUP	QUANTITATION ION	CONFIRMING ION
Dichlorobiphenyls	222	224
Trichlorobiphenyls	256	258
Tetrachlorobiphenyls	290	292
Pentachlorobiphenyls	326	328, 330
Hexachlorobiphenyls	360	362
Heptachlorobiphenyls	394	396
Octachlorobiphenyls	428	430
Nonachlorobiphenyls	462	464
Decachlorobiphenyl	498	500

APPENDIX J

Taxonomic Methods

LABORATORY TAXONOMIC METHODS

EcoAnalysts, Inc. used the methods described below to process the macroinvertebrate samples from this project. Included are lists of the equipment and some of the taxonomic keys employed.

We received the samples, inventoried them, and compared our findings with the chain-ofcustody forms enclosed with the samples. After assuring we had all the samples, we entered the sample identification information into our computerized tracking system. A technician re-screened the samples to remove the formalin solution in which the samples were originally preserved. The technician returned the samples to their original containers and filled them with 70% ethanol containing 1.5 grams/gallon of Rose Bengal dye. We let the samples stand for three days, agitating each sample twice a day to ensure the stain was well distributed.

After staining was complete, our technicians sorted the samples. The protocol provided by EVS Environment Consultants (EVS) permitted count-based subsampling if necessary, with a target count of 500 organisms and a 95% sorting efficacy. If a sample was subsampled, the following procedures were used. The material from each sample was evenly distributed throughout a gridded (30, 6x6 cm squares) Caton (1991) subsampler. A square was chosen at random and the material removed from the tray and placed in a glass petri dish. Using dissecting stereomicroscopes, technicians removed all the invertebrates from the material. Each square was sorted completely, even if the technician reached the target count "midsquare." The technician returned the sorted material to the original sample container. Another square was selected and the process repeated until the sorter reached the target count or completely sorted the sample. Technicians placed the sorted invertebrates in plastic vials, covered them with 70% ethanol, and inserted appropriate labels. On the sample label and on the associated sorting record sheets, the technician recorded the number of individuals removed.

After the initial sort was complete, the sample material (or sorted portion thereof) was redistributed (by a different technician) in a Caton tray for the quality control (QC) sort. The new technician resorted six squares (20% of the area) using the method described. Any invertebrates removed during this sort were added to the total from the first sort and this grand total was divided into the QC resort total to calculate a percent efficacy. If the QC sort exceeded 5% of the grand total, the technician resorted the entire sample and the QC process was repeated until the sample passed. We recorded all pertinent information on a QC sheet and delivered it to EVS.

Once samples were satisfactorily sorted, they were identified by our staff taxonomists. The macroinvertebrates were removed from the sorting vials, sorted morphologically, enumerated, and identified. EVS specified that Insecta be identified to the lowest practical level (genus and species) including Chironomidae to genus, and Oligochata (aquatic worms) to family. Other non-insect taxa were taken to the lowest practical level. The keys used in making the identifications are listed below. In addition, our taxonomists referred to our specimen reference collection, most of which have been verified by recognized experts. Questionable identifications were examined by all of our taxonomists. Damaged or immature specimens were identified to the lowest possible level and noted, as were any pupae encountered. Our midge specialist identified Chrionomidae specimens under a compound scope using temporary wet mounts. Oligochaetes were mounted on glass slides in CMCP-10, dried, and identified with a compound microscope. We compiled a synoptic collection of the taxa identified in the project, which was reviewed by all of our taxonomists upon completion of the project.

As they were determined, identifications and enumerations were recorded and entered into a desktop computer using our customized entry program. The data were associated with their respective sample identifiers, compiled, formatted, and delivered to EVS.

Equipment/supplies used:

- Zeiss Stemi 2000 dissecting microscope
- Fiber optic light source
- Caton subsamplers
- · Zeiss Axiolab phase contrast compound microscope with turret condenser
- 70% ethanol for preservative
- Tally counters
- Water/alcohol-proof pens
- Label paper
- Miscellaneous forceps, petri dishes, probes, etc.
- Taxonomic keys
- Specimen reference collection, representing over 700 taxa
- Archive-quality laser printed taxa and determination labels
- Desktop computer

Taxonomic Keys:

This list includes specifically those keys used on this particular project. Our library includes more than 700 individual articles, papers, and handbooks we use address taxonomy at the genus and species level.

Bergman, E. A. and W. L. Hilsenhoff, 1978. Baetis (Ephemeroptera: Baetidae) of Wisconsin. The Great Lake Entomologist. Vol. 11(3): 125-135

- Bode, R.W., 1983. Larvae of North American Eukiefferiella and Tvetenia (Diptera:Chironomidae). Bulletin of the N.Y. State Museum
- Brown, Harley P. 1976. Aquatic Dryopoid Beetles (Coleoptera) of the United States. US Environmental Protection Agency, Water Pollution Control Series 18050 ELD04/72
- Burch, J.B., 1972. Freshwater sphaeriacian clams (Mollusca:Pelecypoda) of North America. Biota of Freshwater Ecosystems Identification Manual No.3
- Burch, J.B., 1973. Freshwater unionacean clams (Mollusca:Pelecypoda) of North America. Biota of Freshwater Ecosystems Identification Manual No.11
- Burch, J.B., 1982. Freshwater snails (Mollusca:Gastopoda) of North America. EPA-600/3-82-026.
- Burks, D.B., 1953. The Mayflies, or Ephemeroptera of Illinois. Bull. of the Illinois Natural History Survey
- Epler, J.H., 1987. Revision of the Nearctic Dicrotendipes Keiffer, 1913 (Diptera:Chironomidae). Evolutionary Monographs
- Grodhaus, G., 1987. Endochironomus Keiffer, Tribelos Townes, Synendotendipes, n. gen., and Endotribelos, n. gen. (Diptera:Chironomidae) of the Nearctic region.. Journal of the Kansas Entomological Society
- LeSage, L., A.D. Harrison, 1980. Taxonomy of Cricotopus species (Diptera:Chironomidae) from Salem Creek, Ontario. Proceeds of the Entomological Society of Ontario
- McAlpine, J.R., et. al. 1981. Manual of Nearctic Diptera, Volume I. Research Branch Agriculture Canada. Mongraph No. 27, 674 pp.
- Merritt, R. W. and K.W. Cummins, 1996. An introduction to the Aquatic Insects of North America. 3rd Edition, Kendall/Hunt Publishing Co., Dubuque, Iowa.
- Morihara, D.K. and W.P McCafferty, 1979. The Baetis larvae of North America (Ephemeroptera: Baetidae), Transactions of the American Entomological Society, Vol. 105:139-221.
- Peckarsky, Barbara L. et al, 1990. Freshwater Macroinvertebrates of Northeastern North America. Cornell University Press, Ithaca, New York.

- Pennak, Robert W., 1989. Freshwater Invertebrates of the United States, 3rd Edition. John Wiley & Sons, Inc.
- Roback, S.S., 1971. The subfamily Tanypodinae in North America. Monographs of the Acadamy of Natural Sciences Philadelphia 17:1-140
- Saether, O.A., 1975. Nearctic and Palaearctic Heterotrissocladius (Diptera:Chironomidae). Bulletin of the Fisheries Resource Board of Canada. Bulletin 193.
- Saether, O.A., 1976. Revision of Hydrobaenus, Trissocladius, Zalutschia, Paratrissocladius, and some related genera.. Bulletin of the Fisheries Resource Board of Canada. Bulletin 195.
- Saether, O.A., 1977. Taxonomic studies on Chironomidae: Nanocladius, Pseudochironomus, and the Harnischia complex.. Bulletin of the Fisheries Resource Board of Canada. Bulletin 196.
- Simpson, K.W., and K.W. Bode, 1980. Common larvae of Chironomidae (Diptera) from New York State streams and rivers with particular reference to the fauna of artificial substrates. New York State Museum Bulletin No. 439.
- Stewart, K.W., B.P. Stark, 1993. Nymphs of the North American Stonefly Genera (Plecoptera). University of North Texas Press, Denton, Texas.
- Wang, T.Q., W.P. McCafferty 1996. New diagnostic characters for the mayfly family Baetidae (Ephemeroptera). Entomological News
- Wiederholm, T., 1983. The larvae of Chironomidae (Diptera) of the Holarctic Region. Part 1: Larvae. Ent. Scand. Suppl. No 19.
- Wiederholm, T., 1986. Chironomidae of the Holarctic Region. Part 2: Pupae. Ent. Scand. Suppl. No. 28.
- Wiggins, Glenn B., 1996. Larvae of the North American Caddisfly Genera (Trichoptera), 2nd Edition. University of Toronto Press, Toronto, Canada.

Literature Cited:

Caton, L.W. 1991. Improved Subsampling Methods for the EPA "Rapid Bioassessment" Benthic Protocols. Bulletin the the North American Benthological Society. Vol. 8(3):317-319.

- Merritt, R. W. and K.W. Cummins, 1996. An introduction to the Aquatic Insects of North America. 3rd Edition, Kendall/Hunt Publishing Co., Dubuque, Iowa.
- Waltz, R.D. and W.P. McCafferty, 1990. Revisionary synopsis of the Baetidae (Ephemeroptera) of North and Middle America. Transactions fo the American Entomological Society. 116(4):769-799.
- Waltz, R.D., G.F. Edmonds, Jr. and G. Lester, 1998. Scientific Note; New distributions of Raptoheptagenia cruentata and Ametropus neavei (Ephemeroptera: Heptageniidae, Ametropodidae). Ent. News. 109(3):213-214.