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1 Introduction

This paper develops models for sampling error co-

variance matrices of estimates of age group poverty

rates, median income, and per capita income from

the Current Population Survey's (CPS) March Sup-

plement. (Not part of the normal CPS estimation

procedures, the covariances for 1989 to 1993 were

estimated by Bob Fay using vplex, a variance esti-

mation program (Fay 1989).) The ultimate objec-

tive is to use the sampling error models developed

here, in combination with models for the time series

of poverty rates and income measures, to improve

estimates of the \true" (unobserved) state poverty

rates and income measures.

Our models account for three features of the CPS

sampling error covariance structure: (1) di�erences

in the variances by state (through random state ef-

fects); (2) dependence of variances on sample size

and on the level of the estimates (through a general-

ized variance function, GVF); and (3) sampling error

correlations over time (through an autoregressive-

moving-average (ARMA) time series model). Sec-

tion 2 describes our general modelling approach.

Then, in Section 3, we discuss details of the model

development for the CPS application.

2 General Approach

A general model used in both time series and small

area applications starts by writing yi = Yi+ei where

the yi's are direct survey estimators, the Yi's are

the population characteristics (\truth") being esti-

mated, and the ei's are the sampling errors in the
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yi's. In our application the single index i would in-

dex both states and years. In matrix-vector notation

and assuming normality, the general model for the

observed data, y = (y1; : : : ; yn)
0

, is

y = Y + e Y = (Y1; : : : ; Yn)
0

, etc.

Y = X� + u u � N(0;�( )) (2:1)

e � N(0;V(�)) independent of u:

The data assumed available are both y and C,

the latter being a direct estimate of the variance-

covariance matrix of the sampling errors e. The pa-

rameters of the model (2.1) are the p � 1 vector of

regression parameters �, and the r � 1 and m � 1

vectors of parameters  and � that determine the

n � n covariance matrices �( ) and V(�). Hav-

ing postulated a model of form (2.1), the task is to

use the data y and C to make inferences about the

parameters (�;  ; �) and, ultimately, about the true

population quantities Y.

In this paper we focus on the use of C to make

inferences about �, which we shall call sampling error

modelling. It has been fairly standard in small area

estimation to simply assume V = C is known (so

� corresponds to all distinct elements of V). This

is not really a \model" and has the disadvantage

that it fails to acknowledge any uncertainty about

V. We shall use an approach suggested by Bell and

Otto (1993), which is based on assuming a Wishart

distribution (DeGroot 1970, Section 5.5) for C as a

working model:

�C �Wishart

�
�;V(�)

�
: (2:2)

This model allows us to recognize uncertainty about

V by recognizing uncertainty about the parameters

� that determine V = V(�). Generally, the degrees

of freedom parameter � will also be unknown. In

some cases � can be set to an estimated value (see

Bell and Otto 1993). Alternatively, we could let �

depend on model parameters in � (expanding the

de�nition of �, and writing �(�)). In either case, we

shall assume � de�nes the unknown parameters of

the model (2.2)
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Though estimates of sampling error variances and

covariances are rarely of the simple form that would

lead exactly to a Wishart distribution, the model

(2.2) may still prove useful since it provides an ob-

jective means of using the data C in making infer-

ences about �, and hence about V. Under a classical

(non-Bayesian) approach, the model (2.2) can be es-

timated by maximizing the Wishart likelihood,

L(�jC) = g(�)jV(�)j��=2
(2:3)

�exp
�
�1=2 tr

�
V(�)

�1C
��
;

where g(�) includes those terms in the Wishart den-

sity not explicitly present in (2.3)|these involve �

but not V(�). Under a Bayesian approach, (2.3) can

be multiplied by a (possibly noninformative) prior

distribution, p(�), which yields something propor-

tional to the posterior p(�jC):

The CPS sample design is such that, since 1985,

samples for di�erent states are drawn independently.

By ordering the observations y so that all the yi

for each state occur in succession, V(�), and cor-

respondingly C, will be block diagonal. Thus, the

diagonal blocks Cs of C will be assumed to have in-

dependent Wishart distributions analogous to (2.2).

The next section develops this model using general-

ized variance functions (GVFs) and time series mod-

els to de�ne V(�).

3 Modelling the CPS Sam-

pling Errors

In this section we develop models for the sampling
errors in the state CPS estimates of age group
poverty rates, median income, and per capita in-
come. Section 3.1 analyzes variation of the sampling
error variances over states and years. Section 3.2 ex-
amines the relation of the variances to the estimates
using generalized variance functions (GVFs). Sec-
tion 3.3 analyzes the correlations of the sampling
errors over time. These are all preliminary analyses
to Sections 3.4 and 3.5, which put the results to-
gether into a full model for the state sampling error
covariance matrices Cs.

3.1 Preliminary Analyses of the Vari-

ances

To check whether the sampling error variances vary
by state and by year, we did an analysis of vari-
ance (ANOVA) with the weighted log variances for
each statistic. The variances, vst, were weighted by
the state sample sizes, nst, de�ned as the number

of households in sample for state s and year t. The
log transformation was used to make the data more
normal.

log (nstvst)) = log(Y 2
st) + States +Yeart + zst;

s = 1; : : : ; 51 and t = 1989; : : : ; 1993: (3:1)

Since we do not have the true values, Yst, we substi-
tute the corresponding direct estimates yst in (3.1).
The usual ANOVA F-statistics are suspect for

(3.1) because the zst's may not be independent over
time, so we concentrated on simply examining the
mean squares (MS). The MSs for Years are an order
of magnitude smaller than those for States for the
age 0 to 4 poverty rate and both income statistics,
but only marginally smaller for the other poverty
rates. We suspect that some of the variation over
years and states can be captured by a generalized
variance function (GVF) that permits a more gen-
eral dependence of the variances on the level of the
data than is accounted for by log(Y 2

st) only. This
may lessen the need for a State e�ect and even elim-
inate the need for a Year e�ect.

3.2 Generalized Variance Functions

We modelled the relation of the variances to their
estimates using GVF models (Wolter, 1985, p. 203)
that extend (3.1) as follows:

log (nsvst)) = log(GVF(Yst)) + States + Yeart

+ zst; (3:2)

s = 1; : : : ; 51 and

t = 1989; : : : ; 1993:

The GVFs take on one of the forms in Table 1. (We
show the GVFs in terms of the variance, whereas
Wolter gives them in terms of the relative variance.)
Note that for the poverty rates, which are propor-
tions, the usual binomial distribution theory sug-
gests a model of the form �+ �Y + 
Y 2 with � = 0
and 
 = ��. We use a bias corrected version of
Akaike's AIC (Hurvich and Tsai, 1991) to discrimi-
nate between our models (the model with minimum
AIC being favored). The AIC results in Table 1 show
that for median income, the AICs are not very dif-
ferent (within 2 of each other) except that for (v),
which is signi�cantly worse. For per capita income,
however, models (iii) and (v) are preferred over the
others.
For Poverty Rates, the AIC results in Table 1 show

that all the GVFs tried are a major improvement
over the constant relative variance model, (i), with
models (iv) and (vi) consistently being the two best
models. AICs for models (ii), (iii), and (v) are not



that much higher, however, so that our general con-
clusion is that while use of a GVF more general than
the constant relative variance model is important,
the particular choice among (ii) to (vi) may not be
essential.

Table 1: AICs OF GVF MODELS

INCOME STATISTICS

AIC

GVF Med P.C.

(i) 
Y 2 (
 = e� in (3.1)) 197.5 224.4
(ii) �+ �Y 196.8 227.4
(iii) �+ �Y + 
Y 2 195.5 211.2
(iv) (�+ �=Y )�1 196.9 223.3
(v) (�+ �=Y + 
=Y 2)�1 204.1 214.6
(vi) �Y � 197.1 227.6

POVERTY RATES

AIC for Age

GVF 0{4 5{17 18{64 65+

(i) 315.9 314.8 231.1 406.2
(ii) 217.43 254.2 217.3 361.2
(iii) 220.6 255.6 218.6 363.0
(iv) 217.42 250.42 215.11 359.81

(v) 220.6 253.4 218.4 363.2
(vi) 217.31 250.21 215.82 360.42

The superscripts 1, 2, and 3 show the �rst, second, and third
best �tting models. The third model is shown only when its
AIC is close to those of the �rst two.

3.3 Analysis of the Correlations

As noted earlier, in recent years CPS samples for
di�erent states have been drawn independently, so
that sampling error correlations between states are
approximately zero. Correlations over time between
sampling errors in CPS estimates for any given state
are generated by correlations in individual responses
over time and by the nature of the CPS sample de-
sign. The 4{8{4 CPS rotation pattern leads to au-
tocorrelation in monthly sampling errors that has
been investigated for labor force characteristics by
Train, Cahoon, and Makens (1978), Dempster and
Hwang (1993), and Adam and Fuller (1992). Time
series models for sampling errors in monthly CPS
estimates have been developed by Tiller (1992) and
Bell and Hillmer (1994). (Sampling error autocor-
relation in monthly CPS estimates is also a�ected
by composite estimation, which is not done for the
annual March supplement estimates.)
Sampling error autocorrelation in the annual CPS

estimates that we analyze here should follow a
simpler pattern, since the 4{8{4 monthly rotation

scheme produces a 50% sample overlap one year
apart, and no overlap two or more years apart. If
samples comprising di�erent rotation groups were
selected independently, this would mean that sam-
pling errors more than one year apart would be ap-
proximately uncorrelated, which would correspond
to a moving average model of order one (MA(1)).
However, two aspects of the CPS design can lead to
sampling error autocorrelation extending beyond the
sample overlap. The �rst is the practice of replacing
households that rotate out of the sample by neigh-
boring households, since neighbors probably exhibit
correlation in economic characteristics such as in-
come. The second aspect is the fact that primary
sampling units (PSUs) are redrawn only for CPS re-
designs that occur about every 10 years, so that the
between PSU component of sampling error proba-
bly contributes autocorrelation for many years due
to PSU overlap. Train, Cahoon, and Makens (1978)
estimated nonzero sampling error correlations be-
tween monthly CPS estimates at time points with
no sample overlap. We thus want to examine esti-
mated sampling error autocorrelations for evidence
that they are nonzero at lags beyond one year. We
postulated an autoregressive-moving average model
of order 1,1 (ARMA(1,1)) as a more general struc-
ture to allow for this. If the autoregressive parame-
ter is zero, this model reduces to the MA(1) model
that corresponds to sampling error autocorrelation
only at the one year lag where sample overlap occurs.

Before determining an appropriate time series
model to account for sampling error autocorrelation,
two other questions should be addressed. First, does
the sampling error autocorrelation appear station-
ary, that is, does Corr(est; es;t�l) depend only on
the lag l separating the two estimates, and not on
the year t? Second, do the autocorrelations show es-
sentially the same pattern for all the states? Notice
that building a separate time series model for each
state is impractical, given that we have estimated
sampling error autocorrelations only for �ve years
for each state.

ANOVA models for each measure were �t to inves-
tigate the contributions of state, lag, and year within
lag e�ects to the variation in the (transformed) cor-
relation estimates. The lag e�ects were estimated
to be the most important, followed by the state ef-
fects. The mean squares of the year e�ects nested
within the lags were at most 8 percent of the lag ef-
fect mean squares. This suggested stationarity may
be a reasonable assumption, and that any true vari-
ation over states in autocorrelation is secondary to
the lag e�ect.

Lastly, we estimated the means by lag over states



and years of the transformed autocorrelations for
each statistic and backtransformed them. These are
shown in the following table:

Table 2: CPS CORRELATIONS

BY LAG

Lag

Statistic 1 2 3 4

Per Capita Income 0.53 0.31 0.27 0.23
Median Income 0.52 0.30 0.27 0.20

Poor 0{4 0.37 0.14 0.12 0.09
Poor 5{17 0.36 0.19 0.17 0.12
Poor 18{64 0.40 0.22 0.19 0.15
Poor 65 and over 0.30 0.09 0.06 0.07

These results show, as expected, the highest corre-
lation at lag 1, but with evidence of additional cor-
relation at lags 2 through 4. The patterns are rea-
sonably consistent with the postulated ARMA(1,1)
model, although the �t would be better if the corre-
lations at lags 3 and 4 showed faster decay towards
zero. An ARMA(1,2) model could be used to cap-
ture this pattern.

3.4 A Model for the State Sampling

Error Covariance Matrices Cs

The analyses of sections 3.1 to 3.3 established that
the sampling errors in the CPS estimates of an-
nual state income and poverty characteristics (i)
are autocorrelated, with autocorrelation extending
beyond lag 1, and (ii) are heteroscedastic, with
variances depending on sample size, level (of esti-
mates), and state. The model we shall use for the
Cs accounts for autocorrelation with a time series
model (e.g., ARMA(1,1)), and for heteroscedasticity
through scaling by sample size, use of a GVF, and
use of state e�ects on variances. It is also possible
that variances depend on time, apart from their de-
pendence on level, and that autocorrelation varies by
state. But these e�ects appear secondary to those we
shall account for in our model, and they also would
be di�cult to include in the model. Thus, we shall
ignore these possible e�ects in the remainder of the
analysis.
As noted in Section 2, our model for the Cs will be

based on the Wishart distribution, with a parametric
representation of E(Cs) = Vs(�). To account for
the e�ects noted above,Vs(�) can take the following
form:

Vs(�) = !sDs(�; �; 
)R(�; �)Ds(�; �; 
) (3:3)

where !s is the e�ect of state s on the covari-
ances, Ds(�; �; 
) is a diagonal matrix with entries

corresponding to square roots of GVFs divided by
sample sizes nst (e.g,

p
(�+ �yst + 
y2st)=nst, with

estimates yst replacing the true values Yst), and
R(�; �) is a 5 � 5 correlation matrix corresponding
to a time series model such as ARMA(1,1) (est =
�es;t�1+ "st � �"s;t�1). The full model can then be
de�ned by assuming �Cs has a Wishart(�;Vs(�))
distribution, withVs(�) given by (3.3) and � the de-
grees of freedom (assumed the same for each state).
A problem with the model (3.2) is the number of

state e�ect parameters !s (51) for the amount of
data available (e�ectively 255 estimated variances,
since the 510 estimated autocorrelations don't con-
tribute information about the !s). In fact, some
convergence problems were experienced when �tting
the models (3.2) (requiring tinkering with initial val-
ues to resolve these), and it was suspected that these
problems were due to the high ratio of parameters
to data. As an alternative to reduce the number of
model parameters while still allowing for di�ering
state e�ects !s, the !s are assumed to be random
e�ects, with �s = 1=!s coming from a Gamma distri-
bution constrained so that E(!s) = 1. This implies
a Gamma(a + 1; a�1) distribution for �s de�ned by
the one parameter a. Thus, the model is

�Cs = Ws=�s (3:4)

Ws � independent Wishart(�; eVs(�))

�s � i:i:d:Gamma(a+ 1; a�1)

with eVs(�) given by dropping !s from (3.3). The de-
grees of freedom parameter, �, is assumed common
across states s. The density of Cs can be shown to
be

p(Cs) = g(�; a)
h
a+

�

2
tr( eVs(�)

�1Cs)
i
�(a+1+ �k

2
)

� j eVs(�)j
��=2

jCsj
(��k�1)=2

where

g(�; a) =

2
4�k(k�1)=4

kY
j=1

�(
� � j + 1

2
)

3
5
�1

�
aa

�(a)
�(a+ 1 + �k=2)(

�

2
)�k=2:

The density p(Cs) is the likelihood function for �

that can be maximized in classical inference or used
to develop the posterior of � for Bayesian inference.
Note that as a ! 0 the Gamma(a + 1; a�1) dis-

tribution becomes di�use, essentially letting the !s

be �xed (unrelated) state e�ects. As a ! 1 the
Gamma(a+1; a�1) distribution becomes degenerate
at 1, implying no state e�ects (!s = 1 for all s).



As another way to understand the model (3.4),
note that the Gamma(a+ 1; a�1) distribution for �s
in (3.4) is the same as a+1

a
Gamma(a+ 1; (a+ 1)�1)

(note DeGroot 1970, p. 39), and Gamma(a+1; (a+
1)�1) is the same as the �2

2(a+1)
=2(a+1) distribution.

Also, in the univariate (k = 1) case, the Wishart dis-

tribution forWs in (3.4) becomes that of eVs(�) (now
a scalar) times a �2� random variable. It is thus easy
to see that the distribution for Cs in the univari-
ate case is that of a

a+1
eVs(�) times an F (�; 2(a+1))

random variable. For k > 1 then, apart from the
a

a+1
factor, the distribution of Cs implied by (3.4) is

something like a multivariate generalization of the

F -distribution. (Though the label multivariate F
has been used for distributions related to the joint
distribution of only the diagonal elements of Cs; see
Johnson and Kotz (1972, pp. 240{243).) Unless a is
\large," the model (3.4) implies a longer tail in the
distribution of Cs than the Wishart (or �2). This is
needed to accomodate the variation across states.
A related random e�ect variance model was pro-

posed by Kle�e and Rao (1992), and studied further
by Arora and Lahiri (1995). The model used was
simpler than (3.4), being for the univariate case and
assuming independent sampling errors for di�erent
small area estimators. It also di�ered from (3.4)
in that a distribution was assumed directly for the
small area variances, rather than allowing random
small area e�ects on the variances (as was done in
assuming !s random to get from (3.3) to (3.4)). The
random variance distribution was left unspeci�ed by
Kle�e and Rao, while Arora and Lahiri assumed a
gamma distribution for the precisions (reciprocals of
the variances).

3.5 Sampling Error Model Estima-

tion

We estimated by maximum likelihood 24 di�erent
variants of the model (3.4) for the sampling error
covariance matrices, Cs, for each statistic. The vari-
ants corresponded to all combinations of 8 GVFs and
3 ARMA models. The GVFs included those in Ta-
ble 1, plus a constant variance GVF, and the CPS
GVF, �Y + 
Y 2, which is (iii) with � = 0. The
ARMA models tried were the AR(1), ARMA(1,1),
and ARMA(1,2). Table 3 summarizes some of the
results.

Consistent with the preliminary results of section
3.2, for the poverty rates the constant relative vari-
ance model �t poorly. Its AICs were higher than
those of the best �tting GVF by about 90 to 180,
depending on the age group. The constant variance
model also �t poorly, its AICs being about 140 or

150 higher than the best. Among the other GVF
models, the AIC di�erences were at most 5. The re-
sults for three candidate GVFs are shown in Table 3.
The (�+ �=Y + 
=Y 2)�1 GVF had the lowest AIC
for each age group except 0{4, for which the CPS
variance formula, �Y + 
Y 2, was best. However, as
the AIC di�erences are not great, for the poverty
rates any GVF other than constant variance or con-
stant relative variance might be used. In particular,
the CPS variance formula might be picked for its rel-
atively good �t, familiarity, and theoretical appeal.

Table 3: AIC DIFFERENCES AND

a AND � PARAMETER ESTIMATES

Poverty Rates

Age GVF rAIC a �

0{4 �+ �Y + 
Y 2 -0.4 47.2 20.2
0{4 �Y + 
Y 2 -2.0 46.8 20.2
0{4 (�+ �=Y + 
=Y 2)�1 0.0 46.6 20.2

5{17 �+ �Y + 
Y 2 0.8 28.5 18.7
5{17 �Y + 
Y 2 2.6 27.9 18.7
5{17 (�+ �=Y + 
=Y 2)�1 0.0 27.8 18.8

18{64 �+ �Y + 
Y 2 1.9 130.8 20.1
18{64 �Y + 
Y 2 4.6 113.3 20.0
18{64 (�+ �=Y + 
=Y 2)�1 0.0 146.1 20.1

65+ �+ �Y + 
Y 2 0.2 16.6 14.7
65+ �Y + 
Y 2 0.3 16.3 14.7
65+ (�+ �=Y + 
=Y 2)�1 0.0 16.6 14.7

Income

Statistic GVF rAIC a �

P.C. 
Y 2 22.3 17.4 22.3
P.C. �+ �Y + 
Y 2 1.7 16.2 23.0
P.C. (�+ �=Y + 
=Y 2)�1 0.0 17.6 23.0

Med 
Y 2 8.7 22.3 24.0
Med �+ �Y + 
Y 2 1.5 24.8 24.2
Med (�+ �=Y + 
=Y 2)�1 0.0 25.5 24.2

rAIC is the di�erence between the AIC of the given model

and the (� + �=Y + 
=Y 2)�1 model for that statistic. a is

the random e�ect parameter, and � is the degrees of freedom.

For the income statistics, the (�+�=Y +
=Y 2)�1

GVF again provided the best �t, though the AICs
for the �+ �Y + 
Y 2 and (�+ �=Y )�1 GVFs were
very close. Any of these three GVFs might be used.
(Results for the �rst two of these GVFs are given
in Table 3.) The other GVFs tried did not �t very
well. However, the �t of the constant relative vari-
ance model, (
Y 2, see Table 3) was not terrible, so if
strong weight were given to simplicity of the model,
this GVF might be used.



Of the time series models, our preliminary anal-
ysis in Section 3.3 was borne out. The slow decay
of the autocorrelations (Table 2.) was �t best by
the ARMA(1,2) model. This model had the lowest
AIC for all the statistics. (For the 65+ poverty rates
the AR(1) model achieved approximately the same
AIC.) On average over the other models, the AICs
were 15 higher for the ARMA(1,1) and 27 higher for
the AR(1). This makes the ARMA(1,2) the clear
choice.
Estimates of the random e�ects parameter, a, and

the degrees of freedom parameter, �, showed signi�-
cant variation between statistics (a more so than �),
but little variation between alternative (reasonably
�tting) models for a given statistic. This result is
encouraging; we would not like to see dependence of
a or � on the GVF or ARMA model chosen. Future
research will look more closely at the nature of the
random e�ects, and will explore methods of allowing
for uncertainty about them when using the model
(2.1) to make inferences about the true population
quantitities, Yst.
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