Accurate Calculation and Maximization of
Log-Likelihood for Mixed Logistic Regression

Eric V. Slud, Mathematics Dept.
University of Maryland, College, Park

May 2, 2000

Abstract. For the mixed-effect logistic regression model with
a single vector of random effects per stratum, log-likelihood can
be effectively and accurately calculated either by the well-known
Laplace steepest-descent approach (Breslow and Lin 1995) to
calculating likelihood integrals or by a series approximation of
Crouch and Spiegelman (1990) based on residue integral expan-
sions. The best accuracy available from such approximations
is obtained by the Laplace method for large strata (of size in
the hundreds or larger) and the Crouch-Spiegelman method for
smaller strata. The Crouch-Spiegelman method is also particu-
larly effective for numerical log-likelihood maximization because
it simultaneously provides accurate derivatives of the log-likelihood
with respect to parameters.
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1 Introduction

In recent years, several authors have attempted to extend the highly de-
veloped methodology for estimation and testing within mixed-effect linear
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models to generalized linear models (GLM’s) and in particular to logistic
regression with random effects (Wong & Mason 1985, Zeger & Karim 1991,
Breslow & Clayton 1993, Wolfinger & O’Connell 1993, Natarajan & Ghosh
1998, Booth & Hobert 1998). Several approximate computational strate-
gies for estimation have been developed, notably those of Goldstein (1991,
1995, and related MLn software), Breslow & Clayton (1993), Wolfinger &
O’Connell (1993, with a close relation to SAS Proc Mized and macro glm-
miz, for which see Littell et al. 1996), and Breslow & Lin (1995). Although
the algorithms and software development of these authors were designed to
accommodate multi-level hierarchical models and general link functions, the
most important application is to parameter estimation in two-level mixed-
effect logistic regression models. In particular, the extension of small-area
estimation methodology to GLM’s is of interest primarily in this setting
(Booth & Hobert 1998).

One drawback of the commercially available software for estimation in
mixed-effect GLM’s — not addressed in the otherwise very useful overview
by Zhou et al. (1999) — is the limitation of the sizes (numbers of strata,
dimension of covariates) of problems which they can handle. Specifically,
since the algorithms they rely on (essentially those reviewed by Breslow &
Clayton 1993 and Wolfinger & McConnell 1994) treat regression coefficients
and stratum random effects iteratively as parameter elements of a large linear
model, these software products cannot reliably handle even two-level models
with several regressors and hundreds of strata. Yet such applications are of
great interest in large national datasets, from which small-domain estimates
must often be generated (Ghosh & Rao 1994). One such setting, involving
decennial census data, was treated in Slud (1998).

Related strategies for mixed-effects nonlinear regression have been de-
veloped by Lindstrom & Bates (1990), and Pinheiro & Bates (1995b), and
the Splus function nlme of Pinheiro & Bates (1995a) has been advocated
for estimation within mixed-effect logistic regression with large cells, via a
variance-stabilizing transformation, by Slud (1998).

The only direct numerical approximations generally studied for likeli-
hood in mixed nonlinear models are based on Laplace’s asymptotic method
of steepest descents for integrals with sharply peaked integrands (Pinheiro
& Bates 1995, Breslow & Lin 1995). Specifically for the case of random-
intercept mixed logistic models, Breslow & Clayton (1993) also refer to a



series approximation of Crouch & Spiegelman (1990). The latter approxima-
tion does in fact apply very usefully to mixed logistic regression, as we shall
demonstrate below, and potentially to other mixed GLM’s as well.

The present paper first compares the best approximations available for
direct computation of log-likelihood in two-level mixed logistic models —
those arising from the Laplace method, the higher-order correction by Bres-
low & Lin (1995) of the Laplace method, and the application of the Crouch-
Spiegelman (1990) series — with the computationally burdensome (but fea-
sible) exact numerical integration. The main objective of the paper is then
to show that in tandem the Breslow-Lin and Crouch-Spiegelman approxima-
tions enable extremely accurate and quick maximume-likelihood estimation of
regression and variance-component parameters.

2 The Model and the Algorithms

Consider the following data structure, which is common in unit-level mod-
els for large survey and census databases. The response variables Y =

(yij, 1 =1,...,N, j =1,...,J;) consist of counts of positive responses
from the individuals within N strata of respective (positive) sampled sizes
(nij, @ = 1,...,m, j =1,...,J;), but we are interested in cases where

many of the cell-counts n;; may be small, although the overall sample size
) E;;l n;; is large. In addition, there isan N x p matrix X of covari-
ates, the rows x;; of which describe, but are constant within and are often
used to define, the various strata. The n;; individuals within the (7, )
stratum are modelled as independent of each other and of all individuals in
other strata, given the full complement of relevant covariates, but some of the
covariates (other than the p columns of X relevant either to the individual
or the stratum) might be unobservable. Thus individuals sharing the same
index ¢ whose responses would be conditionally independent given the full
set, of covariates will be dependent through shared but unobservable random
effects given only the observed covariates X. The index-variable 7 is called
the cluster inder, and the shared random effects are assumed to enter as
coefficients of observed sub-vectors 2z; of dimension ¢ < p common to
all z;;, j=1,...,J; for i =1,...,m. Mathematically, the mixed-effect



logistic-regression model which we consider has the form:

Dij

yij ~ Bz’nom(nij,pij) with 10g(1 p) = inj,B + ZiU; (1)
ij

and the v;; are conditionally independent given the random effects wu;,

where the i.i.d. cluster random effects wu; are assumed N(0,2), and

the p-dimensional coefficients ( and the ¢ X ¢ covariance matrix {2

parameterize the model. For simplicity in what follows, we denote

Nij = xijﬂ . h(il?) = 61/(1+€z) (2)
so that in our model, p;; = h(n;; + zu;).

The model (1) arises in unit-level models for small-area estimation within
large-scale surveys (cf. Ghosh & Rao 1994, where (1) is called the nested
error regression model). It is essentially the same model considered by Zeger
& Karim (1991) and Wong & Mason (1985). It is slightly more general than
the ‘single component of dispersion’ models treated by Breslow & Lin (1995),
although the results of that paper are applicable to it too, and fails being a
fully general multilevel model because the variance-component covariates z;
are assumed to be constant over all strata (4,j) with the same cluster-index
i. However, strata (i,j) within the same cluster i do share a common
unobserved random effect, so within the hierarchy of multilevel models of
Goldstein (1995), (1) is a fully general two-level model.

2.1 Laplace’s Method for Loglikelihood

The log-likelihood at parameters (8,€2) for the model (1) is

Z 10%/ 1:[1 {h(ﬂij + 2iu3)* (1 — h(mij + Ziui))nijiyij} fului) du;
= 2 log/ 1:[1 {hlms + ow)¥5 (1 = h(my; + o3w))"5 75 } $(w) dw (3)

where ¢ denotes the standard normal density and

ol = 02(Q) = \Jz Q2



is assumed strictly positive, for all i. The idea of Laplace’s Method of
approximating the 7' integral in this expression is that almost all of the
contribution to the integral occurs for values of w close (especially when
all of the y;; and n;; —y,;; are large) to the maximizer w;; of the last
integrand. The method consists of Taylor-expanding the logarithm of the
integrand in w about wj;. Following the usage of Breslow & Lin (1995)
and previous authors, we will call Laplace’s method the approximation based
on Taylor expansion up to quadratic terms, and will refer to the method
involving expansion to fourth order the Breslow-Lin approximation. These
approximations can be summarized as follows (See Breslow & Lin 1995, where
the development only seems to be less general because wu; is scalar and
z; = 1.). In what follows, since we give single-stratum formulas, for simplicity

we drop the subscripts ¢. First, if w; is the unique solution of

Y > (s = nyhlny + oup) (4)

g

then the Laplace and Breslow-Lin approximations to the single-stratum like-
lihood

L(y,n / H (nj + ow)¥ (1 — h(n; + aw))"j*yj} d(w)dw (5)

are respectively (Breslow & Lin 1995, p. 83)

.1 ey Y5
Ligy = €xp (—Z I; — 3 log(1+0>)_ n;pj(1—pj)) — 2—;2> (Laplace)
J J

4 ot (1 = ) (1 — 6p* (1 — p*
LLap - eXp <_ 0_ : Z] m p](2 p])( . p]( " f]))> (Bres—Lin)
8 (14 0% ¥; njp; (1 —pj))
where
p; = h(n; + ow;f) , I; = y;logp; + (nj —y;) log(1 —p])

Alternatives to Laplace’s method exist, in which only the logarithm of the
integrand divided by a fixed density factor is Taylor-expanded. Although
such variant approximations may be comparably accurate to the standard
Laplace method when the quantities y;, n; are large, they can also be dra-
matically less accurate when 3°;n; is less than 10, and we do not consider
them here.



2.2 Series Expansions of Crouch & Spiegelman

In Crouch & Spiegelman (1990), integrals such as the one defining the mixed
logistic-normal likelihood L(y,n,n,0) in (5) are approximated to high ac-
curacy by series defined via residue calculus. (The reasoning leading to the
series dates back to a 1943 paper of Alan Turing.) Several parameters can
be chosen to modify the accuracy and types of terms, but in the notation of
this paper, the most accurate approximation — and the one most amenable
to numerical maximization — is the particular series defined by

% k_i exp (—(wo + kA)2) 1:[1 { (h( n; + oV2(wy + kA) ))y]

(1= R +0vV2(wo +kA))) (6)

where wy is a constant intercept which can be chosen arbitrarily (and will
be chosen for convenience equal to 0). In actual evaluations, the summations
are truncated where the exponential terms fall below e.

Unlike the Laplace-method approximations, the series (6) is guaranteed
(Crouch & Spiegelman 1990, Sec. 3, p. 466) to yield absolute error at most
€ whenever the step-size A is chosen, in terms of the constant

a = /2 log(1/e)
to satisfy:

A = { /e i 2/Za<t/o

(ov2m?)/(7?/4+ 20%a?)  otherwise

This formula for step-size results in A < 7/a which is a decreasing function
of o for 0% > 72/(802).

Although the integrand of (5) is slightly more complicated than the in-
tegrands f to which Crouch & Spiegelman (1990) apply their method,
their results do apply without alteration to it. Crouch & Spiegelman (1990)
also show that series involving additional residue-integral terms, with larger
step-sizes, can be theoretically just as accurate. However, although the ad-
ditional terms can be evaluated explicitly and exactly, they involve large
magnitudes with alternating signs so that, after roundoff errors in double
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precision computer arithmetic are taken into account, it becomes computa-
tionally burdensome, if not actually impossible, to maintain accuracies better
than about 10~7. Since we shall also see, in Section 4 below, that the series
approximations (6) are particularly well suited to efficient computation of
Newton-Raphson maximization iterations, we do not here consider any of
the Crouch-Spiegelman series other than (6).

2.3 Exact Numerical Integrals for Likelihood

There are two obstacles to exact evaluation of the likelihood terms (5): the
computational burden of numerically evaluating the required integrals, and
the fact that multi-stratum problems will typically involve likelihood con-
tributions which differ by many orders of magnitude, so that a uniformly
high accuracy for all terms in a log-likelihood is not attainable if numerical
integrations are done directly. However, as we shall see below, even when the
likelihood terms Lp,, given by the Laplace and other approximations to (5)
are not very accurate, they always give an answer correct within a factor a 2,
so that numerical integration of the expression (5) with integrand divided by
L4y can always be obtained to high accuracy. For example, using this idea
with the relative tolerance setting of 107% of the Splus integrate function
usually gives (relative) accuracy at least 1077, and it is in this sense that
the ‘exact’ numerically integrated (log-) likelihoods are given for comparison
in the following Section.

2.4 General Characteristics of the Approximations

One clear distinction can be drawn between the log-likelihood methods de-
scribed above. The Crouch-Spiegelman approximation (6) and the compu-
tationally expensive method of direct numerical integration both give very
accurate calculations of the likelihood integral (5), but the relative accuracy,
which is the relevant measure for the resulting log-likelihood, is much less,
becoming progressively less as the sample-size gets larger and the likelihood
itself gets smaller. Relative accuracies of 107% can readily be maintained
up to sample sizes of 80 or 90 with a single default setting of € = 10715,
In problems with larger strata, successively smaller € must be specified to
ensure high relative accuracy of the approximation of Crouch and Spiegel-
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man. We illustrate this in connection with Tables 5 and 7 below. By
contrast, while the accuracies of the Laplace and Breslow-Lin approximate
log-likelihoods are somewhat smaller (3 or 4 decimal places is typical, as illus-
trated in the following Section), they do have the virtue of applying without
change to give high, but not increasing, relative or absolute accuracy when
stratum sizes get large.

3 Performance of the Approximations

The key finding in applying the approximations to logistic mixed-effect log-
likelihoods with typical combinations of fixed and random effect parameters is
that the straightforward Laplace and Breslow-Lin approximations typically
give relative accuracies respectively of order 1072 to 1073, while the
Crouch-Spiegelman series give accuracy no worse than 107% on strata of size
n < 50 . On the other hand, on very large strata (n from 100 to 200
and above, in our illustrations below), the Crouch-Spiegelman approximation
gives relative accuracy for likelihood (or equivalently, absolute accuracy for
log-likelihood) no better than the Breslow-Lin approximation.

Consider first the behavior of the approximations for a typical array of
strata with sample sizes from 1 to 100. We first simulated data (X,U,Y)
independently for 500 strata, five strata with each of the sample sizes
n=1...,100, following the model

Y ~ Binom(n, h(X - B+0U)) , X ~N(0,1) (7)

for the parameter-set o? = (0.75)? = 0.5625, 3’ = (—1.5,0.6). Then we
calculated, for each stratum, all of the approximations described above for the
log-likelihood, along with the logarithm of the ‘exact’ numerically integrated
log-likelihood (defined to achieve relative error no worse than 107°). The
result of the approximations at the true parameter values are displayed, for
every fifth stratum, in Table 1, and in summary form (for absolute errors,
averaged over groups of similarly sized strata) in Table 2. These Tables,
and other similar ones not shown, demonstrate clearly that the Breslow-
Lin approximations to log-likelihood have a slight negative bias for small-to-
moderate strata and are often no better than the Laplace approximations
when the random-effect variance is large (e.g., > 0.5); that both of these
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approximations have errors in the range 0.001 to 0.01 for small-to-moderate
strata and correct fixed-effect parameter values; and that in this setting for a
wide range of variance-component values the Laplace approximation is often
closer to the correct log-likelihood than is the Breslow-Lin approximation.

TABLE 1. Display of errors in log-likelihood for correct fixed-effect param-
eters and over-large o2 = 0.75 with stratum-sizes 1-20 using Laplace,
Breslow-Lin, or Crouch-Spiegelman approximations versus ‘exact’ integrated
log-likelihood. Entry in ‘Exact’ column is the conservatively estimated ab-
solute error from Splus function integrate with relative-error setting 1.e-6.

eta rspct cellct logLik Laplace Bres-Lin Cr-Sp Exact
-2.460 0 1 -0.1071  0.00200 -0.00057 6.94e-17 1.13e-08

-1.481 0 2 -0.4570  0.00060 -0.00224  5.55e-17 4.77e-09
-0.823 0 3 -1.0322  -0.00299 -0.00284 1.1le-15 1.75e-08
-1.496 0 4 -0.8146  0.00097 -0.00465 8.88e-16 1.06e-08
-1.260 1 5 -2.7452  -0.00461 -0.00450 4.44e-16 1.14e-08
-1.933 0 6 -0.8204  0.00327 -0.00618 1.1le-15 1.22e-08
-1.503 1 7 -3.1622 -0.00312 -0.00706 -4.44e-16 7.45e-09
-1.892 1 8 -3.2710 -0.00104 -0.00842  8.88e-16 1.32e-08
-1.604 1 9 -3.4986 -0.00253 -0.00887 -8.88e-16 1.47e-08
-0.514 3 10 -6.6323 -0.00942 -0.00234 3.51le-13 1.54e-07
-1.546 2 11 -5.6076 -0.00564 -0.00839 -2.66e-15 6.64e-08
-1.440 3 12 -7.2620 -0.00755 -0.00641  2.04e-14 2.64e-07
-1.030 9 13 -9.3800 -0.00912 -0.00196 -2.13e-14 7.66e-07
-1.798 4 14 -9.2415 -0.00773 -0.00641 -3.91e-14 8.33e-07
-1.784 4 15 -9.4988 -0.00756 -0.00690 -1.85e-13 4.75e-07
-1.616 4 16 -9.6721 -0.00756 -0.00692  5.33e-14 6.27e-07
-1.547 3 17 -8.4391 -0.00659 -0.00935 8.88e-14 7.09e-08
-2.417 6 18 -13.5349 -0.00773 -0.00593 4.09e-14 3.25e-08
-1.767 2 19 -6.9036 -0.00449 -0.01265 -2.66e-15 3.95e-08
-0.852 3 20 -9.3939 -0.00704 -0.00856  1.78e-15 1.43e-07

Consider next the case of log-likelihood approximations for the same data
as in the previous Tables, but evaluated for a smaller value of o2. Here
again the Breslow-Lin approximation is biased slightly downward, especially
in small strata, but one can see more clearly — a pattern that is repeated
consistently — that the initial advantage for the former in small strata turns
steadily with increasing stratum-size in favor of the latter in larger strata.



Again in this setting, for strata of sizes up to 100, the Crouch-Spiegelman
approximation is virtually perfect — at least as good as the highly accurate
numerical integrations.

TABLE 2. Summary of average absolute errors in log-likelihood for indicated
stratum-size groups, for correct fixed-effect parameters and o2 = 0.75, for
stratum-sizes 1-100 using Laplace, Breslow-Lin, or Crouch-Spiegelman ap-
proximations with respect to ‘exact’ integrated log-likelihood.

Stratum-size # strata Laplace Bres-Lin Cr-Sp Exact logLik

1to4 20 0.00301  0.00202 5.16e-16 1.29e-08  -0.8340

5 to 10 30 0.00501  0.00544 6.50e-14 7.76e-08  -3.5143
11 to 20 50 0.00620  0.00754 2.28e-13 2.58e-07  -7.6597
21 to 50 150 0.00547  0.00776 9.94e-11 2.45e-07 -17.7451
51 to 80 150 0.00451  0.00746 6.79e-08 2.27e-07 -30.1949
81 to 100 100 0.00385  0.00545 1.84e-06 2.14e-07 -44.0192

TABLE 3. Summary of average absolute errors in log-likelihood for indi-
cated stratum-size groups, for correct fixed-effect parameters and o2 = 0.25,
for stratum-sizes 1-100 using Laplace, Breslow-Lin, or Crouch-Spiegelman
approximations with respect to ‘exact’ integrated log-likelihood. Average
log-likelihood values over stratum-size groups is given in final column.

Stratum-size # strata Laplace Bres-Lin Cr-Sp Exact logLik

1to4 20 0.00056  0.00014 4.79e-16 1.04e-08  -0.8266

5 to 10 30 0.00108  0.00064 4.04e-12 4.77e-08  -3.4598
11 to0 20 50 0.00157  0.00138 2.93e-15 8.00e-08  -7.7522
21 to 50 150 0.00202  0.00229 6.25e-11 2.21e-07 -17.8458
51 to 80 150 0.00196  0.00292 4.58e-08 3.07e-07 -30.2583
81 to 100 100 0.00205  0.00272 7.34e-07 3.33e-07 -44.0694

To make the comparison among approximations still clearer, we evaluate
and approximate the log-likelihoods once more, for the same data again, but
at the still smaller value o2 = 0.09. Now the Breslow-Lin approximation is
improves over the standard Laplace method for strata of size up to 50 or so,
but is clearly not better for larger strata.
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TABLE 4. Summary of average absolute errors in log-likelihood for indi-
cated stratum-size groups, for correct fixed-effect parameters and o2 = 0.09,
for stratum-sizes 1-100 using Laplace, Breslow-Lin, or Crouch-Spiegelman
approximations with respect to ‘exact’ integrated log-likelihood. Entry in
‘Exact’ column is the estimated absolute error in numerically integrated log-
likelihood.

Stratum-size # strata Laplace Bres-Lin Cr-Sp Exact logLik

1to4 20 0.00009  0.00001 4.68e-16 1.03e-08  -0.8257

5 to 10 30 0.00020 0.00005 5.37e-16 1.24e-08  -3.4494
11 to 20 50 0.00032  0.00015 1.69e-12 7.05e-08  -7.8935
21 to 50 150 0.00054  0.00041 2.65e-11 1.43e-07 -18.1443
51 to 80 150 0.00065  0.00071 5.47e-09 1.60e-07 -30.6223
81 to 100 100 0.00073  0.00086 7.29e-08 2.11e-07 -44.5575

Finally, let us consider the approximation accuracies when the strata are
large and the parameter values are only roughly correct. Now we simulate
the model (7) with parameter values 3 = (—1.3,0.9), 0% = 0.25 with sample
sizes from 120 to 960 (10 times each, in increments of 60, for a total of 150
strata) and repeat the calculations of log integrated likelihoods and their
approximations at o2 = 0.15, first at correct fixed-effect values (in Table 5),
and then with fixed-effect values 1 randomly simulated (independently of the
data) in the range [—1.5,—0.5] (in Table 6). The results are displayed, in the
same format as before, in the following two Tables. All Crouch-Spiegelman
calculations in the next two Tables are based on the same fixed value € =
10715, Adjustment of € with larger stratum size will be discussed in
connection with Table 7 below.
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TABLE 5. Summary of average absolute errors in log-likelihood for indicated
stratum-size groups, for incorrect fixed and random-effect parameters, for
stratum-sizes 120—960 using Laplace, Breslow-Lin, or Crouch-Spiegelman
approximations with respect to ‘exact’ integrated log-likelihood. All evalu-
ations were done at the correct fixed-effect values with o2 = 0.15 (instead
of the correct value 0.25).

Stratum-size # strata Laplace Bres-Lin  Cr-Sp Exact  log-Lik

120 to 240 30 0.00114  0.00115 0.00053 2.66e-07  -97.442
300 to 420 30 0.00082  0.00115 0.00852 1.20e-07 -178.773
480 to 600 30 0.00068  0.00096 0.02565 1.88e-07 -262.607
660 to 780 30 0.00056  0.00073 0.06514 2.49e-07 -361.094
840 to 960 30 0.00045  0.00059 0.14040 2.54e-07 -474.394

TABLE 6. Summary of average absolute errors in log-likelihood for indicated
stratum-size groups, for incorrect fixed and random-effect parameters, for
stratum-sizes 120—960 using Laplace, Breslow-Lin, or Crouch-Spiegelman
approximations with respect to ‘exact’ integrated log-likelihood. All log-
likelihoods and approximations were evaluated at 02 = 0.15 and at incorrect
randomly re-simulated fixed-effect values.

Stratum-size # strata Laplace Bres-Lin Cr-Sp Exact  log-Lik

dard Laplace method approximation.

120 to 240 30 0.00118  0.00103 0.00056 3.99e-07  -99.663
300 to 420 30 0.00084  0.00101 0.00968 1.76e-07 -181.605
480 to 600 30 0.00067  0.00086 0.02502 2.12e-07 -265.993
660 to 780 30 0.00054  0.00068 0.05060 3.10e-07 -363.539
840 to 960 30 0.00044  0.00055 0.12375 2.44e-07 -476.007

The message of Tables 5 and 6 is clear. For fixed absolute-accuracy

parameter €, the relative accuracy of the Crouch-Spiegelman series approx-
imation to likelihood deteriorates sufficiently, when the stratum likelihood-

contribution is very small (i.e., log-likelihood is 100 or more) that its corre-

sponding log-likelihood approximation is much less reliable than the stan-

The Breslow-Lin approximation is

roughly comparable to the Laplace in these Tables because the random-effect
variance-parameter at which evaluations are made is small, but in large strata
(say, with count of 75 or more) there appears to be no reason ever to prefer
Breslow-Lin to Laplace.
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Next we address the issue of modifiying the absolute-accuracy parameter
e with larger stratum sizes in calculating the Crouch-Spiegelman approxima-
tion. We have seen in the previous few Tables that strata in the range of sizes
100 to 1000 result in very poor series aproximations for log-likelihood when
the error parameter ¢ is fixed at the default value 10!5. In Table 7, we now
exhibit in the setting of Table 5 the increase in accuracy and computational
work arising by specifing successively smaller values for e. In the Table, the
‘exponent’ referred to in the row indexing is the negative logarithm to base
10 of the € chosen. For the given range of exponents, the computational ef-
fort increased somewhat faster than linearly with the exponent, as measured
by the number of terms in the series, shown in the final column. The Splus
code for the function implementing the Crouch-Spiegelman approximation
for log-likelihood is given in Appendix 7 below. So far, this code applies only
to the case J; = 1 of model (1) where random-effect covariates Z; are
constant over each stratum.

TABLE 7. Summary of average absolute errors in Crouch-Spiegelman approx-
imated log-likelihood for indicated stratum-size groups, for the same data
and evaluation-point as for Table 5. Each row corresponds to re-calculated
approximation with different e = 10¥, and the final column shows the
number of summands in the resulting series approximating log-likelihood for
each stratum.

Size Size Size Size Size Number

Exponent 120240 300420 480-600 660-780 840-960 of terms
15 9.953e-06 6.646e-04 3.656e-03 1.629¢-02 0.03940 31
20 9.953e-06 6.646e-04 3.656e-03 1.629¢-02 0.03940 43
25 1.327e-07 2.372e-05 3.092e-04 3.189¢-03 0.01077 59

30 5.770e-10 1.244e-06 3.527e-05 4.646e-04 0.00195 75
35 2.426e-12  2.290e-08 1.854e-06 5.635e-05 0.00022 91

4 Accurate Maximum Likelihood Estimation

The paper of Breslow & Lin (1995) makes clear that in some problems the
(higher-order) Laplace approximation to the log-likelihood of mixed logistic
models is sufficiently accurate and well-behaved that it can be used to find
approximate maximum likelihood estimators including estimators of variance
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components, even in settings where the usual Laplace method cannot be
guaranteed to have a local maximum in o2 near the true value. Although
that paper primarily considered small strata (matched pairs binary-outcome
logistic regression), it seems natural to try to obtain approximate maximum
likelihood (ML) parameter estimators within the mixed-effect logistic model
(1) by maximizing the Breslow-Lin approximate log-likelihood. The simplest
way do that is to code the approximate log-likelihood as a function which is
to be optimized using some standard numerical function maximizer, such as
nlminb in Splus. This approach works fairly well (i.e. converges to roughly
correct values) in several mixed logistic problems where we have tried it, but
it can produce seriously biased estimators, as Breslow & Lin (1995) point
out.

The Crouch-Spiegelman series (6) not only provides accurate approxi-
mations to the log-likelihood, but conveniently and simultaneously provides
first and second derivatives which can be used in Newton-Raphson itera-
tions to find the maximum-log-likelihood parameter estimates. To see clearly
why this is so, restrict attention to the case where J =1 in (5). (Anal-
ogous but messier calculations can be made in the more general case of
(5) where J > 1.) In that case, with y replaced by k&, we denote
L(k,n) = L(k,n,n,0) = L(k,n,z(,0). It is easy to check that (again
with 7 = o?)

Vs L(k,n,zf3,0) =

8

Lk L(k,n+1)—, L(k+1,n+1)}

V. L(k,n,2B,0) = - {k*L(k,n) — @k+1)nLk+1,n+1) +

DN | =

n(n+1)L(k+2,n+ 2)}
Higher derivatives can easily be found by iterating these formulas.

Using the last displayed formulas, derivatives of log-likelihood with re-
spect to parameters can be obtained from Crouch-Spiegelman-type series,
evaluated at the same points as the series (6). The integrals against the
normal density to which the Crouch-Spiegelman approximations apply in
this way can be alternatively displayed in terms of the integrand h(u) =
h(zB+uo) (where z isarow vector) and parameter 7 = o2, in the form

Vi Llk,n, B-1,0) = @ [ (k=nh) b (1= h)"* g(u) du
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ngg L(k,n, z6,0) = 22"z %L(k,n, B-n, o) =

2 / {(k —nh)> = nh(1 — k)} ¥ (1 — h)"* ¢ (u) du

v, % L(k,n, 2B, o) = %ﬂ [ {(k = nh)* — 3nh(1 — B)(k — nh)

—nh(1 — h)(1 — 2h) } b (1 — B)"* ¢ (u) du

;—;L(k,n,xﬂ,a) = % / {(k=nh)*—6nh(1—h)(k—nh)?—4nh(1—h)(1—2h) (k—nh)

+3(nh(1 — h))? + nh(1 — h)(6h(1 — h) — 1)} ¥ (1 = h)"* $(u) du

These formulas have been used to implement in Splus (so far, only for the
case J = 1) a Newton-Raphson iteration which very rapidly and efficiently
calculates the maximum-likelihood estimators, even for problems with very
many (eg, hundreds) of strata of sizes ranging from 1 into the hundreds. This
is in stark contrast with the performance of commercial software based on
iteration ideas involving linearized log-likelihoods and algorithms for mixed
linear models. As an illustration of how well this Newton-Raphson algorithm
(Splus code for which is given in Appendix 7) works, it was applied to the
dataset of 500 strata described just after model-equation (7), which was used
in generating Tables 1 and 2. Recall that the correct parameter values for
that simulated dataset were 8 = c¢(—1.5,0.6), o = 0.5625. Starting from
the not-very-good initial values § = (—1,0) and o? = 0.1, the Newton-
Raphson iteration took 8 seconds on a Sun Sparc V workstation, arriving
in 9 steps at the MLE (—1.4878,0.5796) for # and 0.5399 for o2

A more difficult example of approximate Maximum Likelihood estimation
is given by the dataset of very large strata simulated in connection with
Table 5. When the starting values 3 = (1,0) and o2 = 0.1 were used, with
the accuracy parameter e for Crouch-Spiegelman set at 107!5, ten Newton-
Raphson steps produced the following sequence of log-likelihood values:

-41754 .33 -41289.38 -41273.55 -41266.35 -41323.88 -41384.16
-41297.40 -41290.09 -41292.56 -41295.34

Thus no convergence was to be expected with that coarse level of accuracy.
(Recall that the per-stratum errors shown in Table 7 with —log,,(¢) = 15
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were unacceptably large.) With the same initial values and —log;,(€) = 35,
the sequence of log-likelihood values upon 20 successive Newton-Raphson
iterations was

-41754 .02 -41406.87 -41286.39 -41249.87 -41231.52 -41225.01
-41224 .97 -41224 .93 -41224 .89 -41224.85 -41224 .81 -41224.76
-41224 .70 -41224 .48 -41224 .49 -41224 .50 -41224 .52 -41224 .55
-41224 .69 -41224.65

and the final MLE’s were (—1.2502, 0.9454) for (3, when the the correct
values were (—1.3,0.9), and 0.275 for o2, which should be compared
with the correct value of 0.25. Here also there was no ultimate convergence
via Newton-Raphson, but restarting the iteration using the Splus function
niminb evaluated at the Laplace log-likelihood approximation resulted in
rapid convergence with log-likelihood — 41222.6 (which was evaluated as
— 41222.72 using the Laplace method approximation) at the values ,@ =
(—1.2432, 0.9439), 62 = 0.2119.

For strata of sizes larger than 1000, it seems idle to pursue maximum
log-likelihood calculations based upon either the Breslow-Lin or Crouch-
Spiegelman approximations. Based upon Tables 5 through 7, the standard
Laplace method appears quite serviceable and accurate for large strata. For
parameter estimation based upon extremely large strata (n > 1000), an ef-
fective method justified and explored in Slud (1998) is based upon a variance-
stabilizing transformation to yield a mixed-effect nonlinear regression model,
within which parameter-estimates and analysis of deviance can be performed
using existing software such as the Splus function nime.

5 Summary & Discussion

The approximations and numerical computations of this paper establish that
log-likelihoods for the mixed-effect logistic model (1) with a single vector of
random effects per stratum can be effectively and accurately calculated either
by the well-known Laplace steepest-descent approach (Breslow & Lin 1995)
to calculating likelihood integrals or by a series approximation of Crouch &
Spiegelman (1990) based on complex residue integrals. For most applications,
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involving strata of size at most a few hundred, the most accurate and still
easily computed approximations will be those of Crouch-Spiegelman, which
are also ideally suited to Newton-Raphson maximum likelihood estimation.
However, the Laplace-method approximation to log-likelihood (or the modi-
fied approximation of Breslow & Lin, for strata of size no bigger than 50) will
also be adequate (accurate to two or three decimal place accuracy) for many
purposes involving single evaluations of mixed logistic likelihood terms. One
such purpose is the calculation of small-area estimators based on mixed-effect
logistic models, as in Booth & Hobert (1998). There the quantity of interest
is the conditional expected response probability given the response data for
(a random sample taken from) the stratum. In the notation of this paper,
restricted to the case J; =1 of (1), based on data from the entire stratum
this conditional expectation is given by

y) _ L(y2+1a nz+1a miﬁa U)
' L(yza n;, miﬁa U)
and the numerator and denominator of the displayed fraction can each be

effectively calculated by either a Crouch-Spiegelman or Laplace method ap-
proximation.

E(h(wzﬂ + zu;)

For analysis of mixed logistic models with very large strata (say of size
1000 or more), the Crouch-Spiegelman approximate log-likelihoods are no
longer reliable, but the standard Laplace method calculates log-likelihood
satisfactorily, with relative error at worst one part per million, and numerical
log-likelihood maximization based upon either the standard Laplace approx-
imation or its Breslow-Lin refinement yields usable parameter estimators.

The recommended method of computing log-likelihoods within the class
(1) of mixed logistic regression models is to use the Crouch-Spiegelman series
(6) for strata of size up to several hundreds, and the Laplace approximation
Ly for larger strata. The recommended method to maximize log-likelihood
numerically is either to use a general numerical optimizer (such as niminb
in Splus) on this hybrid log-likelihood approximation, or, if no strata are
larger than 1000, to apply a Newton-Raphson iteration based on Crouch-
Spiegelman approximation of log-likelihood and its derivatives up to order
two in the parameters. For parameter estimation when all strata are very
large, a good alternative is provided by the mixed nonlinear-regression pa-
rameter estimates using nlme based on transformed data as in Slud (1998).
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7 Appendix: Splus Code

The function ResAppr reproduced here calculates (for the case J = 1) both
the Crouch-Spiegelman approximation to (log-) likelihood and (optionally
and simultaneously) the gradients and Hessian with respect to parameters
B and ¢% in (1).

ResAppr

function(eta, sigsq, rspct, cellct, GrdHess = F, tolexp = 15)

{

# Required input parameters are:

# vector of fixed-effects eta (= x beta), 1 per stratum)
variance-component which may either be scalar or vector
vector of response counts, by stratum; and
vector of stratum-sizes.

Optional parameters are:
boolean indicator GrdHess which if true signals

calculation of 1st & 2nd derivatives with respect

to beta and sigsq intercepts;
tolexp is mnegative base-10 log of epsilon for all strata.
nstrat <- length(eta)
af <- sqrt(2 * sigsq)
afmax <- max(af)
if (length(sigsq) == 1)

af <- rep(af, nstrat)

alpha <- sqrt(log(2 * sqrt(pi)) + tolexp * log(10))
if(afmax * alpha < pi/2) {

H OoH O H H H H H H
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#
#

#
#
#

Kap <- alpha
dstep <- pi/Kap

}
else {
Kap <- pi/(2 * afmax)
dstep <- (2 * pi * Kap)/(Kap~2 + alpha"2)
}
krng <- c(-1, 1) * floor(0.999 + sqrt(tolexp *

log(10))/dstep)
klen <- krng[2] - krng[1] + 1
assign("uaux", outer(rep(l, nstrat), dstep *
(krng[1] :krng[2])), frame = 0)
assign("paux", array(0, dim = c(nstrat, klen)), frame = 0)
assign("Qaux", paux, frame = 0)
assign("Yfr", rspct/cellct, frame = 0)
if (GrdHess)
assign("GrHaux", array(0, dim = c(nstrat, 4)), frame = 0)

The 4 columns of GrHaux respectively concern the derivatives:
(1) 1st deriv with respect to beta coeff’s;
(2) 1st deriv wrt sigma, = 2nd deriv for beta-intercept
(3) mixed beta & sigma derivative, and

(4) second-order sigma derivative
assign("paux", plogis(eta + af * uaux), frame = 0)
assign("Qaux", (dstep/sqrt(pi)) * exp(rspct * log(paux) +
(cellct - rspct) * log(l - paux) - uaux~2), frame = 0)
appl <- c(Qaux %*J rep(l, klen))
if (GrdHess) {
kdev <- Yfr - paux
pgovn <- (paux * (1 - paux))/cellct
pmgon <- (1 - 2 * paux)/cellct
assign("GrHaux", cbind((kdev * Qaux) %*) rep(l, klemn),
((kdev~2 - pqovn) * Qaux) %*% rep(l, klen),
(((kdev~3) - 3 * pqgovn * kdev - pgovn * pmqon) *
Qaux) %*% rep(1l, klen), ((kdev"4 - 6 * pqovn *
(kdev~™2) - 4 * kdev * pgovn * pmgon + 3 * pqovn~2 +
(pqovn * (6 * cellct * pqovn - 1))/cellct™2) *
Qaux) %x*% rep(1l, klen)), frame = 0)
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bestvec <- appl

if (GrdHess) {
gradvec <- cellct * (GrHaux[, 1]/bestvec)
hessvecs <- (outer(cellct, (2:4), function(x, y)
x"y) * GrHaux[, 2:4])/bestvec

}

c(list (Approx = log(appl), krange = krng, Delta = dstep),
if (GrdHess) list(Gradvec = gradvec, Hessvecs = hessvecs)
else NULL)

A key advantage of the Crouch and Spiegelman method of mixed logis-
tic log-likelihood approximation is that the first and second derivatives with
respect to model parameters [, o in the model (1) are readily calculated
in parallel with the log-likelihood itself, enabling easy coding of Newton-
Raphson iterations to find Maximum Likelihood parameter estimates. An
Splus function to be used in tandem with the log-likelihood evaluation func-
tion ResAppr above is reproduced next. See Section 4 above for further
discussion and an example of its use.

NRstpLgs
function(Dmat, beta.start, sigsq.start, rspct, cellct,
minstp = 0.1, maxit = 10, tolexp = 15, toler = 1e-05)
{
np <- length(beta.start)
betasgsq.old <- rep( - Inf, np + 1)
betasgsq <- c(beta.start, sigsq.start)
nobs <- nrow(Dmat)
loopind <- 0
newlLlik <- numeric(maxit)
hessmat <- array(0, dim = rep(np + 1, 2))
while (sum(abs(betasgsq - betasgsq.old)) > toler &
loopind < maxit) {
sigsq <- betasgsql[np + 1]
tmplist <- ResAppr(c(Dmat %x)% betasgsqll:npl), sigsq,
rspct, cellct, GrdHess = T, tolexp = tolexp)
loopind <- loopind + 1
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newLlik[loopind] <- sum(tmplist$Approx)

gradllk <- cbind(tmplist$Gradvec * Dmat, 0.5 *
tmplist$Hessvecs[, 1])

hessmat[1:np, 1:np] <- t(Dmat) %*% (
tmplist$Hessvecs[, 1] * Dmat)

hessmat[1:np, np + 1] <- hessmat[np + 1, 1:np] <-
0.5 * (t(Dmat) %*% tmplist$Hessvecs[, 21)

hessmat[np + 1, np + 1] <- 0.25 *
sum(tmplist$Hessvecs[, 3])

hessmat <- hessmat - t(gradllk) %*% gradllk

gradllk <- c(t(gradllk) %x*J rep(l, nobs))

betasgsq.old <- betasgsq

Delta <- c(solve(hessmat, gradllk))

if (Delta[np + 1] > betasgsq.old[np + 11/2) {
stp <- betasgsq.old[np + 1]/Deltal[np + 1]
minstp <- stp/3

}
else stp <- 2
nextLlik <- - Inf
while(nextLlik < newLlik[loopind] & stp > minstp) {
stp <- stp/2
betasgsq <- betasgsq.old - stp * Delta
nextLlik <- sum(ResAppr(c(Dmat %*% betasgsqll:np]l),
betasgsq[l + npl, rspct, cellct)$
Approx)
}

}

list(neval = loopind, coeff = betasgsq, logLik =
newLlik[1:loopind], lastGrad = gradllk, lastHess =
hessmat, lastDelt = Delta, lastLlik = nextLlik)
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