introduction to DNV-RP-F105 Free Spanning Pipelines

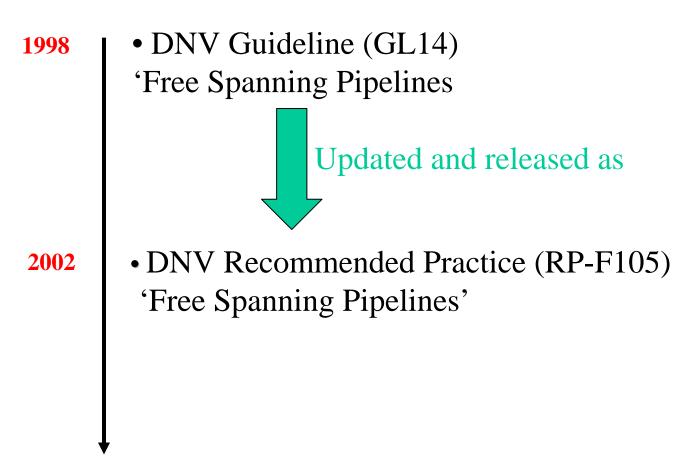
Introduction

presented by

Olav Fyrileiv Principal Engineer Det Norske Veritas

MANAGING RISK

DNV RP-F105 Free Spanning Pipelines


2/9/2005

Slide 1

Historical Perspective - VIV

	Implicitly assu	owable span length umes natural frequency f ₀ controlled b nt for free span scenario, loading phen		
70ties	• Fatigue Criter	ia for In-line		
		counting for stress amplitude and numbers and SN-curves applied. Effect of v		.1)
80ties	• Onset criteria	for Cross-flow		
outes		IV not allowed. OK for "short" spans and for stress ranges and time to failure		ions
1998	Fatigue Criter	ia for Cross-flow		
		ounting for stress amplitude and numb	per of cycles	
	Provides robu	st decision criteria.		
	Other failure r	modes may be governing (in-line fatig	gue, over-stress)	ĴÅ
Slide 2	2/9/2005	DNV RP-F105 Free Spanning Pipelines	MANAGING RISK	DNV

Historical Perspective - VIV

Slide 3

2/9/2005

DNV RP-F105 Free Spanning Pipelines

MANAGING RISK

Free Span Assessment -Multidiscipline

- Environmental conditions
 - Flow conditions from combined wave and current
 - Local topography
- Loading Mechanism
 - Vortex Induced Vibration (in-line & cross-flow)
 - Direct wave loads & Proximity Effects
- Structural Response
 - Soil-pipe interaction
 - Non-linearities (geometrical, static/dynamic properties)
- Acceptance criteria
 - SN-approach (weld, defects, ...)

Basis for GL14/DNV-RP-F105

VIV Models based on experience from R&D projects & pipeline design

- MULTISPAN Project (1994-1996)
 - Response Model for In-line VIV
 - On-set criteria for cross-flow
 - Reliability based calibration

• GUDESP PROJECT (1989-1994)

- Cross-flow Response model
- Effect of Waves
- Research projects
 - SVS full scale test
 - MASPUS lab test
- DHI/Statoil study

- Allows for state-of-the-art fatigue analyses
- Links in-line VIV and wave loads
- Allows cross-flow vibrations
- Safety philosophy in compliance with DNV-OS-F101
- Introduces consistent link between analysis models and safety factor(s)
- Applied in numerous projects in
 - North Sea
 - Persian Gulf
 - South East Asia
 - GOM

Slide 5

DNV RP-F105 Free Spanning Pipelines

DNV GL 14 \rightarrow DNV-RP-F105 - why update?

- Include experience feed-back from projects
- Include recent R&D effort:
 - Pipe in trench
 - VIV response model updates
 - Hydrodynamical coefficients
 - Structural response estimates
 - Soil stiffness
 - Force model (frequency domain)
 - Recommended SN curves
- Make it more user-friendly:
 - screening (on-set) criterion
 - make criteria and calculation methods more complete
 - restructure document

Slide 6

DNV RP-F105 Free Spanning Pipelines

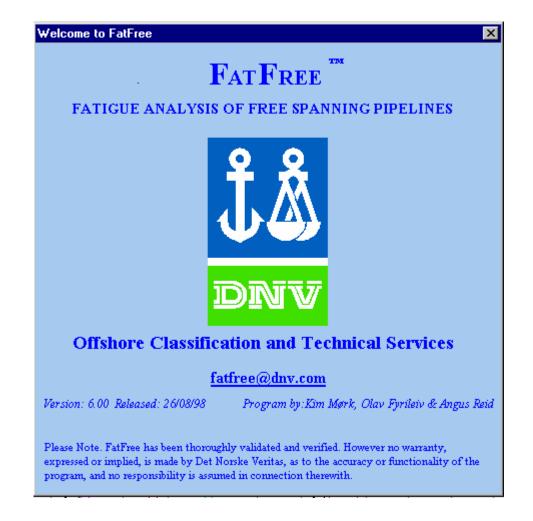
Failure Modes

Fatigue Limit State

- .. accumulated damage from stress cycles caused by:
- Vortex Induced Vibrations (in-line & cross-flow) (RP-F105)
- Direct Wave Loads (RP-F105)

Ultimate Limit State

- .. over-stress (local buckling) due to:
- Static Bending (weight & current) (DNV OS-F101)
- VIV & Wave Loads (RP-F105)
- Pressure Effects (DNV OS-F101)
- Axial Force (DNV OS-F101)
- Trawl interference (GL 13)



2/9/2005

Calculation Tool

- Free span assessment complex
- Require detailed knowledge in several disciplines:
 - hydrodynamics, VIV and load models
 - environmental conditions, long-term statistics
 - fatigue calculations
 - structural response incl. geotechnical aspects
- DNV-RP-F105 still complex (and difficult?) to use
- Need for a calculation tool to:
 - make it easier to apply the RP
 - enable a cost-efficient span assessment

2/9/2005

Slide 9

DNV RP-F105 Free Spanning Pipelines

MANAGING RISK

I	LEVEL <u>1</u> : LEVEL <u>2</u> : LEVEL <u>3</u> :	SPANS SPANS	<u>O</u> PTIC USER <u>H</u> <u>P</u> RINT RE	ELP	DNV version	UE ANAL		REE SPAN	I	LINES Release Note		Olav Fyrile Dee	Program by: k (Kim.Mork@a iv (Olav.Fyrileiv p Water Technol	v@dnv.com)
		FATFREE C No Wave Cas	OMPLETED		Project: References:				Date:	2002-06-10	Calculations Verified by	by		
C	Calculation Options Current Modelling				nco Doto	Data Damping		SN-Curves		Safety Factors				
		Uc Histogra		Flat sea-bed		Response Data User Defined -		User Defined -		F2 (CN 30.4)				
	Co	de	Wave M	lodelling	h [m]	200	f _o (in-line)	0.722	ζ_{struc}	0.000	m ₁	3	η	0.50
RP-J	F105	uu ▼	trate in	louching	L [m]	50	f _o (cr-flow)	2.000	ζ_{soil} (in-line)	0.000		3	γ _k	1.30
Ret	turn Per	iod Values	Directi	ionality	e [m]	3.00	A _{in} (in-line)	186	ζ_{soil} (cr-flow)	0.000	$Log(C_1)$	11.630	γ _f	1.20
		enerated -	Discrete - C		d [m]	0	A _{cr} (cr-flow)	186	ζ _{h,RM}	0.000	Log(C2)	11.630	γs	1.05
1	UPDATE	SHEET	Environm	ental Data	θ _{pipe}	0.0	λ _{max}	484			logN _{sw}	8.00	Yon	1.10
	_			varua D'atu	D [m]	0.500	δ/D	1.52	K _s (in-line)	0.00	S_0 [MPa]	0.00	. 014	
<u> </u>	CALCU	LATE	Cur	rent	L/D	100	S _{eff} /P _E	0.13	K _s (cr-flow)	0.00	SCF	1.00		
							L _{eff,vs} /L		Soil sti		-		Ψ _R	1.00
							L _{eff,v} /L		Sand - Mediu					
							611,v —		K _v	1.907E+07			🗖 Well Defin	ned Span
									K _L	1.430E+07				
									K _{V,S}	5.300E+05				
		FATIGI	UE LIFE		cross-flow	direction	DYNAMI	STRESS	MPa] in-li r	ne direction	EX	XTREME	CONDITIO	NS
	e (Force	onse Model) e Model) oined)		yrs	σ _x (1 year)	<u>k Stress</u> <u>V.</u> 0.0	<u>. Mises Stress</u> 319.8	$\sigma_{\rm x}(1 \text{ year})$	<u>k Stress</u> <u>V.</u> 22.0	Mises Stress 113.7	U _C (1 year)	<u>rent</u> 0.76	U _s (1 year)	<u>ives</u> 0.00
Cross	s-Flow	Jineu)	8.33E+05	yrs yrs	$\sigma_x(10 \text{ year})$ $\sigma_x(100 \text{ year})$	0.0 0.0	319.8 319.8	$\sigma_x(10 \text{ year}) \\ \sigma_x(100 \text{ year})$	22.0 22.0		U _C (10 year) U _C (100 year)	0.76 0.76	U _S (10 year) U _S (100 year)	0.00 0.00
Cross		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		yrs	Damage dist	0.0 ribution vs dire - RM (In-Line) - FM (In-Line) - Cross-Flow - Comb.(In-Line)	319.8	σ _x (100 year)		113.7 ctional current RM(cross-flow, RM(inline)*10	U _C (100 year)			
Cross				yrs	σ _x (100 year)	0.0 ribution vs direc RM (In-Line) FM (In-Line) Cross-Flow Comb (In-Line) Group (In-Line) Gro	319.8	σ _x (100 year)	22.0	113.7 ctional current RM(cross-flow RM(inline)*10	U _C (100 year)			
	s-Flow	ess [MPa]	8.33E+05	yrs	σ _x (100 year)	0.0 FRI (In-Line) FM (In-Line) • Cross-Flow • Comb (In-Line) • do	319.8 ection 	σ _x (100 year)	22.0	113.7 ctional current RM(cross-flow RM(inline)*10 ve 0.60 0.80	U _C (100 year)			0.00
SI	s-Flow		8.33E+05	yrs	Damage dist	0.0 FRI (In-Line) FM (In-Line) • Cross-Flow • Comb (In-Line) • do	319.8 ection 	σ _x (100 year)	22.0 pdf for omnidire 20 0.40 JING	113.7 ctional current RM(cross-flow RM(inline)*10 ve 0.60 0.80	U _C (100 year)	0.76	U _S (100 year)	0.00
St	tatic Stre	ess [MPa]	8.33E+05	yrs yrs	G _x (100 year)	0.0 ribution vs dire RM (In-Line) FM (In-Line) Comb.(In-Line) Comb.(In-Line) Good Good STR s [m ²]	319.8 ection 	σ _x (100 year)	22.0 pdf for omnidire 20 0.40 ING Pipe Dime	113.7 ctional current RM(cross-flow RM(inline)*10 0.60 0.80 nsions [m]	U _C (100 year))*4 locity 1.00 V α [°C ⁻¹]	0.76 stants	U _s (100 year)	0.00 s [kg/m ³]
St	tatic Stro σ_h σ_N M_{cr}	ess [MPa] 48.0	8.33E+05 Transfe EI _{steel}	yrs yrs 	G _x (100 year)	0.0 ribution vs dire - RM (In-Line) - FM (In-Line) - Cross-Flow - Comb.(In-Line) - Cross-flow - Comb.(In-Line)	319.8 ection 	G _x (100 year)	22.0 pdf for omnidire 20 0.40 20 0.4	113.7 ctional current RM(cross-flow RM(inline)*10 0.60 0.80 nsions [m] 0.5000	U _C (100 year)	0.76 stants 0.30	U _s (100 year)	0.00 s [kg/m ³] 7850
St	tatic Stre σ _h σ _N	ess [MPa] 48.0 6.8	8.33E+05 Transfe EI _{steel} m _e	yrs yrs	G _x (100 year)	0.0 ribution vs dire - RM (In-Line) - FM (In-Line) - Cross-Flow - Comb.(In-Line) - Cross-flow - Comb.(In-Line)	319.8 action 	G _x (100 year)	22.0 pdf for omnidire 20 0.40 20 0.40 JING Pipe Dime D _s t _{steel}	113.7 ctional current RM(cross-flow RM(inline)*10 0.60 0.60 0.80 nsions [m] 0.5000 0.0200	U _C (100 year))*4 locity 1.00 V α [°C ⁻¹]	0.76 stants 0.30 1.17E-05	U _s (100 year)	0.00 s [kg/m ³] 7850 0
St	tatic Stro σ_h σ_N M_{cr}	ess [MPa] 48.0 6.8 299.9	8.33E+05 Transfe EI _{steel} m _e q	yrs yrs	ox_x(100 year) Damage dist	0.0 ribution vs dire - RM (In-Line) - FM (In-Line) - Cross-Flow - Comb.(In-Line) - Cross-flow - Comb.(In-Line)	319.8 action 	G _x (100 year)	22.0 pdf for omnidire 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	113.7 ctional current RM(cross-flow RM(inline)*10 	$\frac{U_{C}(100 \text{ year})}{V_{C}(100 \text{ year})}$	0.76 stants 0.30 1.17E-05 2.07E+11	U _s (100 year)	0.00 s [kg/m ³] 7850 0 0
St o	tatic Stro σ_h σ_N M_{cr}	ess [MPa] 48.0 6.8 299.9	8.33E+05	yrs yrs	Gx(100 year) Damage dist	0.0 Fribution vs dire RM (In-Line) FM (In-Line) Cross-Flow Comb (In-Line) Comb (319.8 action 	G _x (100 year)	22.0 pdf for omnidire 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	113.7 ctional current RM(cross-flow RM(inline)*10 	$\frac{U_{C}(100 \text{ year})}{V_{C}(100 \text{ year})}$	0.76 stants 0.30 1.17E-05 2.07E+11	U _s (100 year)	0.00 s [kg/m ³] 7850 0 0 200

Experience with DNV-RP-F105

- Slight relaxation compared to Guideline 14.
- Pipe-in-trench effect significant, relevant for free spans due to scouring.
- Effect of thick concrete coating significant.
- Updated boundary condition coefficients provides good estimates for the structural response of single free spans.
- DNV-RP-F105 allows significantly longer spans than older codes.

DNV-RP-F105 represents state-of-art in free span design and minimise the costs related to seabed correction and span intervention work.

API RP 1111 (1999)

4.4.3 Spans

The length of unsupported spans on an offshore pipeline should be controlled to avoid excessive loads or deformations in the pipeline.

4.4.3.1 Span Limitation Due to Weight, Pressure, and Temperature

Refer to 4.1.4 and 4.6.3 for the static loads and limits on combined loads in determining the span limitation due to its own weight, pressures, temperature, and primary longitudinal loading.

4.4.3.2 Span Limitation Due to Vortex Shedding

4.4.3.2.1 Spans exposed to transverse flow of seawater due to currents and waves are subject to a phenomenon commonly referred to as *vortex shedding*. This can cause the pipeline to oscillate as vortices alternately change the pressure above it and the pressure below it as they form and detach. Large amplitude oscillations may occur unless the natural frequency of the span is sufficiently greater than the frequency of vortex shedding.

M = approximate mass of pipe plus mass of water displaced by pipe, in kg/m (slugs/ft).

4.4.3.2.3 Comparison of frequencies obtained from these calculations should indicate the tendency of a span to oscillate because of vortex shedding. As with other stability calculations, determination of may be complex.

4.4.3.2.4 Both tension and axial stiffness affect the natural frequency. The tension and axial stiffness of the pipe may increase the natural frequency above that calculated by using equation 11. Span limitation due to vortex shedding should be based on the increased natural frequency due to the combined effect of tension and axial stiffness. Alternative methods such as finite element analysis can be employed to estimate structural response to the vortex shedding. More discussion on this subject can be found in the MIT thesis⁸ and the DNV Guide-line No. 14.⁵

4.5 FATIGUE ANALYSIS

4.5.1 All pipeline components such as risers, unsupported free spans, welds, J-lay collars, buckle arrestors, and flex-joints, should be assessed for fatigue. Potential cyclic loading that can cause fatigue damage includes vortex-induced-

DNV GL14 \rightarrow Updated and released as DNV-RP-F105

2/9/2005

DNV RP-F105 Free Spanning Pipelines

MANAGING RISK

