
1

MEMBER OF THE IHC CALAND GROUP

ATLANTIA OFFSHORE LIMITED

VIV Application to 
Deepwater Risers

Steve Leverette
Atlantia Offshore Limited
December 2-3, 2003

MEMBER OF THE IHC CALAND GROUP

ATLANTIA OFFSHORE LIMITED

Agenda
•Introduction
•Environment
•Riser Response to Currents
•Fatigue
•Tendons
•The FIX
•Analysis Methods and Programs
•Model Tests and Data Sets
•Other Issues
•Areas of R&D
•Industry Experience
•Conclusion



2

MEMBER OF THE IHC CALAND GROUP

ATLANTIA OFFSHORE LIMITED

Thanks to:
• Thanos Moros, BP
• Owen Oakley, Jim Stear, Hugh Thompson, Chevron 
• Kim Vandiver, MIT
• Guy Mansour, Atlantia
• T. Sarpkaya, Naval Postgraduate School
• Don Allen/Li Lee, Shell Global Solutions
• Rodney Masters, AIMS

MEMBER OF THE IHC CALAND GROUP

ATLANTIA OFFSHORE LIMITED

Introduction
Risers and tendons

–Steel Catenary Riser:  SCR
–Top Tensioned Riser: TTR
–Flexible Riser
–Free Standing Riser: FSR
–Highly Compliant Riser: HCR
–Tendons
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Perspective from the industry:

The offshore industry has been made painfully aware of 
what may go wrong, how VIV may affect operations.  
The industry is having to be conservative because of 
uncertainties in environment and in engineering 
prediction tools.  
For water depths to 5000’, we can proceed with 
reasonable solutions.  For 10,000’, we cannot afford 
high levels of conservatism and still afford to make 
money producing oil.
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VIV is a resonant feedback 
phenomena

Engineering in uncertainty:

Risks not generally in getting 
design numbers wrong, 

but in not designing for new 
phenomena.
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Risks and Cost Impacts

• Risers and Tendons represent critical structural and oil 
containment systems

• Uncertain environment – “new” phenomena being discovered

• Uncertain response – highly non-linear, stochastic in nature

• Failure has high cost
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Environment

• Geography
• Mode experiment
• Types of Ocean Currents
• Typical and extreme magnitudes
• Durations
• Uncertainties, unknowns
• Combination with other events

– Ratio of environmental forces, shallow to deep
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MODE Experiment

• WHOI - 1970’s
• Weather in the Oceans
• Fronts, temporal variation
• Large scale turbulence
• Vertical Structure
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Ocean Currents

• Tidal Currents (how they exist in deep water)
• Loop
• Eddy
• Storm (wind stress model)
• Inertial
• Slope
• Bottom Boundary Current (Sigsby Escarpment)
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Ocean Currents
loop current / eddy current
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Cold Core Current Profile
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Inertial and Slope currents

• Morpeth
– Hurricane Earl

• Neptune
– Hurricane  Georges
– 1.8 – 2.2 kts in 2000’
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Sigsbee Escarpment

Currents 
identified from 
bottom 
furrows
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Current profiles

Allegheny 
Current Profiles
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Environment

Insert DW Currents presentation
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Riser Response to Currents

Types of Risers:  
• TTR - top tensioned riser 
• SCR - steel catenary riser
• Flexible riser
• HCR - highly compliant
• FSR - free standing riser
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Riser Response to Currents

• Typical dimensions
– 4” flowline SCR
– 4” flowline SCR with 9” buoyancy
– 21” drilling riser
– 48” drilling riser with buoyancy
– 18” export SCR
– 120” aircans
– 8” tieback risers
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Effects of End Conditions

• Taper Joint
• Flexjoint
• Keel joint
• Tensioner/Gimbal
• Guide frames
• Cantilever wellhead
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PRT at Full Extend, Null, Full Retract
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Riser Response to Currents

• Buoyancy, cladding, strakes, etc
• Touchdown point
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KingKong riser with Buoyancy
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Riser Response to Currents

Static response
• Vessel Offset
• Increased drag due to VIV
• Interference analysis
• Touchdown trench effects
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Riser Response to Currents

Dynamic response
– Modal analysis (string, beam models)
– Bending vs axial modes
– Finite versus infinite transmission models
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TLP production Riser 
Modes 1-2,11-12,22-23

TLP Production Riser Lateral Motion Mode Shape
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Typhoon TLP Tendon Lateral Motion Natural Frequency
(Pretension = 1917 kips) 
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2 0.180
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4 0.363
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9 0.853

10 0.959
11 1.069
12 1.183
13 1.301
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15 1.549
16 1.680
17 1.816
18 1.957
19 2.103
20 2.255
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Illustration of SCR Inplane Modes
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Illustration of Axial Modes Influence
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Finite Length Excitation
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Matterhorn Production 
Risers
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Matterhorn production riser from 
main deck
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Jolliet Single Piece Tendon

Provided by
Steve Leverette

Atlantia Offshore Limited

Steel tendons 24” in 
diameter.
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Riser Response to Currents

• VIV response characterization
– Strouhal number, Reduced velocity
– Cl (AOD, Re, Vr)
– Pre-lockin, Lock-in, lock-out
– Power in, versus damping and radiation
– Effects of damping on response
– Power balance solution
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VIV Characteristics
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Pre-lock-in, Lock-in, Lock-out
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Dynamic 
Response

Power Balance
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Power Balance
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Riser Response to Currents
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Riser Response to Currents

In-line vs 
transverse

Single-mode vs 
Multi-mode
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Riser Response to Currents

• Bending and increased drag effects
• Spectral approach to response
• Uncertainties in response
• Typical hot spots
• Types of currents that are problematic
• Effect of increased tension (decrease mode, 

reduce bending)
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Fatigue caused by VIV
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Fatigue

log N = log a – m log σ
log N = log a – m log [ σ (t/tref)k]

API, AWS
DOE, DnV

1
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i i
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= ∑ Miner’s rule

MEMBER OF THE IHC CALAND GROUP

ATLANTIA OFFSHORE LIMITED Fatigue



34

MEMBER OF THE IHC CALAND GROUP

ATLANTIA OFFSHORE LIMITED Fatigue

MEMBER OF THE IHC CALAND GROUP

ATLANTIA OFFSHORE LIMITED

(Kips)2/Hz

0.01  

0.1   

1     

10    

100   

1000  

10000 

100000

fr
eq

ue
nc

y 
(H

z)

Allegheny

01/01/01
00:00

02/26
12:00

04/24 06/19
12:00

08/15 10/10
12:00

12/06 01/31
12:00

Date

Tendon 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

orr 03/25/02 17:13:52Confidential − Property of Atlantia

One Year of Tension Spectra



35

MEMBER OF THE IHC CALAND GROUP

ATLANTIA OFFSHORE LIMITED

Safety Factors

• Depends on application

• Typically 3 for structures
• Typically 10-20 for risers
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Fatigue

• Fracture Mechanics

• Frequency Sensitivity: mode, curvature, no. cycles
• Ways to combine response modes

– Rainflow
– Spectral approach to fatigue (Wirsching, Dirlik)

• Sensitivity to assumptions
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Tendons in VIV

• OTC Paper 
– Leverette, Rijken, Thompson, Dooley
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The FIX
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Sh e ll G lo b a l So lu tio n s

Fairings for drilling riser
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Fairings for TLP tendon
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Fairings in moonpool
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Half strakes for pipelines
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Analysis Methods and Programs

• Engineering tools, not simulators
• Summary of how they work
• Comparisons
• Why they vary so much
• CFD
• Wake models and other approaches
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Flow diagram of
Shear 7 Analysis
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Riser Response to Currents
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Figure 8: Shear7 4.3 defines a smoothed lift coefficient curve by fitting two parabolas to 
three points defined by four user-specified values.  
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RMS and Damage
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ATLANTIA OFFSHORE LIMITED VIV Program Comparison 2 
(Stride JIP - 2H)

RMS and Damage
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Example Shear7 Analysis
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Analysis Methods and Programs

• Shear7, Viva, Vivana, Vivarray
• Engineering tools, not simulators
• Summary of how they work
• Comparisons / Example
• Why they vary so much
• CFD
• Wake models and other approaches
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Review Papers
• Parkinson (1974, 1989)
• Sarpkaya (1979, 1995)
• Griffin and Ramberg (1982)
• Bearman (1984)
• Pantazopoulos (1994)
Books
• Blevin 1990
• Chen 1987
• Naudascher and Rockwell 1994
• Sumer and Fredsoe 1997
• Au-Yang 2001
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Recent Model Tests and Data Sets
• Deepstar – St Johns, CFD, Lake Seneca
• Stride (2H Allegheny and model tests)
• VIVA
• PMB HCR Lake Pend Oreille
• BP
• Exxon
• Shell
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Other Issues

• Wake effects, riser arrays
• High Re performance of fairings/strakes
• Issue of low mass systems, frequency 

independence
• Directionality of currents, resulting stress 

hot spots
• Directionality of response amplitude
• Trenching
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Trenching
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Areas of Research and 
Development

• Empirical
• CFD
• Fairings
• JIP’s

– MIT - VIVA
– MIT - Vandiver JIP and Shear7
– Deepstar (ARA CFD, Principia CFD, Lake Seneca, St. 

Johns)
– Several CFD proposals out
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Slides from Chevron (O. Oakley)
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riser undergoing hydro-elastic response; mesh and vorticity
contours in the wake are shown; note the difference in the shed 
wake pattern between the nodes and the anti-nodes of the structure 
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Vortex Dislocations Visualizations

Remax=1000 ΝεΚΤαR-DNS Simulations

Remax=100 ΝεΚΤαR-DNS SimulationsRe=100 Experiments C.H.K. Williamson (1989)
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Re=100k
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Re=600k
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Re=4MM
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Grid for cylinder
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Strip theory approach to riser 
modeling (J. Kallinderis)
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Numerical Modeling

SMC, 
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DNS – direct numerical solver

LES turbulence model – spatial 
filter representation of turbulence 

fluctuations
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CFD – Spars
2dof Modeling – Straked Cylinder

• No chains, pipes or anodes
• S-A turbulence model
• Re = 34MM
• Navier-Stokes Solution:
• URANS - time averaging
• LES – space averaging
• DES – RANS in boundary 

layer & LES outside

RANS Grid

DES Grid
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Genesis spar, strakes only
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Lock-in Slope

Locked in

Lock-out Slope



62

MEMBER OF THE IHC CALAND GROUP

ATLANTIA OFFSHORE LIMITED

Objectives and Challenges for High 
Mode Number, Flow-Induced Vibration 

Model Tests in Sheared Flow

Prof. J. Kim Vandiver
MIT

June 3, 2003
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Principal Issues for High Mode Number VIV 
Response Prediction

• Does lock-in occur at high mode number in 
uniform and sheared flow?

• What are the statistics of single versus 
multi-frequency response in sheared flow?

• What are the statistics of in-line and cross-
flow response? 
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Principal Issues for High Mode Number VIV 
Response Prediction

• Do hydrodynamic damping models need 
improvement?

• What fairing or strake coverage is required 
• What is the effect of Reynolds number on St, CL

damping and suppression effectiveness.
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Important dimensionless groups

4.  What about 
correlation length?
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How is lock-in affected by mass ratio 
versus reduced velocity bandwidth?

• Is the response different if the wake adjusts its 
frequency to match the cylinder or the natural 
frequency adjusts to match the wake.
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ATLANTIA OFFSHORE LIMITEDCastine field experiment in 
uniform flow(1981)

•Uniform flow on short lengths(75 feet)
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Site layout



66

MEMBER OF THE IHC CALAND GROUP

ATLANTIA OFFSHORE LIMITED

Cable, pipe and wire rope properties

• Cable was PVC plastic tubing with accelerometers, 
wires, strength members and potting compound, 
D=1.25 inches., s.g.=1.4

• Pipe was 1.631 inch steel tube with the cable pulled 
inside as the measuring instrument. S.g.=2.4

• Wire rope was polyethylene coated oceanographic 
wire, 3x19 construction. D=.28 inches,  s.g.=2.5

MEMBER OF THE IHC CALAND GROUP

ATLANTIA OFFSHORE LIMITEDCastine pipe response, L=75 ft, D=1.63 
inches, specific gravity = 2.4
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Pipe lock-in and non-lock-in response
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ATLANTIA OFFSHORE LIMITEDCastine cable cross-flow VIV, D=1.25 inches
specific gravity = 1.4
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natural frequencies with no overlap.

Pipe, s.g.=2.4

Tension

Fr
eq

ue
nc

y 
H

z

Cable, s.g.=1.4

Ca= 0 and 1.0
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Peak frequencies versus time.  What is 

going on?

From Robit Helland Hansen Report
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Wire rope:  L=75 ft, D=0.25 inches, specific gravity = 2.6
Steady beating around 6th mode, components 0.6 Hz apart

Reduced velocity bandwidth of +-20%=+-2.6Hz
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Does lock-in occur at High Mode Number ?

Increasing Overlap with Mode Number
+/- 20 % Bandwidth
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Increase in Uniform flow speed Increasing overlap of competing 
modes

Reduced velocity bandwidth of +-20% would include many modes. 
Can just one respond in a uniform flow?  What happens in shear?
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Wire rope:  L=900 ft, D=0.280 inches, 
specific gravity = 2.5

• Nearly uniform flow on a 900 foot long sample.  
• +- 10% flow variation along the length
• Lock-in at 50th mode

Conclusions:
• High mass ratio provides stable sharp resonances.
• VR bandwidth allows for some spatial tolerance to 

flow variations.  Single frequency dominance is 
possible in nearly uniform flows, even at high 
mode number. 
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The role of damping in uniform flow?  The role of damping in uniform flow?  The reduced The reduced 
damping is a statement of dynamic equilibriumdamping is a statement of dynamic equilibrium..
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A useful property is that:
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A  flexible cylinder in  a non-uniform  flow  
w ith a pow er-in  region of length L  has a resonant 
m odal response given by:
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Consider a simple slab flow problem 
first to illustrate the example of limited 

power-in length.
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Shroud covers this 
length, creates still 
water around the 
cylinder

Uniform flow 
power-in region

U

L
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Example Experimental Data for a Slab 
Flow

• Tsahalis, D. T., Experimental Study of the 
Vortex Induced Vibrations of a Long Model 
Riser Exposed to Uniform and Nonuniform
Steady Flow, Houston, Texas, Westhollow
Research Center, 1985.

• Thank you to Shell Global Solutions for 
allowing me to publish these results.
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Experiment Details
• Steel pipe, O.D. = 1.5in(3.81cm)                  

I.D. = 1.334in(3.39cm)

• U= 0.33 to 6ft/s(0.1 to 1.83 m/s) in steps of 
0.33ft/s(0.1m/s),  modes 1 thru 3.

• Biaxial accelerometers at 5 points:  L/8, L/4, 
L/2, 5L/8, AND 5L/6.
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Shrouds used to simulate slab 
flow cases.

Exposed length of cylinder in 7 steps
– 100%
– 87.5%
– 75.0%
– 62.5%
– 50.0%
– 37.5%
– 25.0%
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Reduced Velocity versus Mode 2, peak A/D
for various fractions of exposure length 
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Jump to DS 6402 presentation
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Agenda
•Introduction
•Environment
•Riser Response to Currents
•Fatigue
•Tendons
•The FIX
•Analysis Methods and Programs
•Model Tests and Data Sets
•Other Issues
•Areas of R&D

•Industry Experience
•Conclusion
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(interesting bits of history)

• BNOC West of Shetlands
• BP Scheihellion experiences
• Exxon Brazil
• Andaman Sea
• West Seno Risers and Tendons
• Auger Top Tensioned Sales Riser
• Allegheny SCR clashing
• Allegheny trenching
• Matterhorn (effects of cantilevered wellhead, strakes help installation, 

cold core re-fit)
• Typhoon SCR design and cold core issue
• Discovery of cold core/submerged current events
• Atlantis (and Thunder Horse) Sigsby Escarpment, high bottom 

currents, full straked riser – 7200’ WD, 12 deg top, ~10,000’ for 2 
export, 6 production
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Agenda
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•Environment
•Riser Response to Currents
•Fatigue
•Tendons
•The FIX
•Analysis Methods and Programs
•Model Tests and Data Sets
•Other Issues
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Summary and Conclusions

• VIV is significant design issue in deep water
• Highly non-linear in excitation and in damage
• Instability of wake, not easy to predict
• Industry addressing problem through many studies 

and investigations
• We can confidently design for it using high safety 

factors
• As go to ultra deep, cost of high safety factors is 

prohibitive, additional progress needed.


