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Presentation Notes:  This page is a series of questions that introduce the 
audience to the subject of VIV in a uniform and comprehensive manner.  
Discussion of these questions and their answers assures that everyone has the 
same comprehensive understanding of what VIV is and why and when it occurs. 
 

Questions 
 

� What is VIV? 
 
� What are the details of a steady approach flow past a 

stationary cylinder? 
 

 
o To understand VIV, you must first understand the 

physics of a steady approach flow past a nonvibrating 
circular cylinder. 

 
� How and why does VIV occur? 

 
� What kind of body shapes experience VIV? 

 
� What kinds of VIV are there? 

 
o Self-excited oscillations - this type of VIV is what occurs 

naturally, i.e., when the vortex-shedding frequency and 
the natural frequency are approximately the same. 
(This is the real VIV – this is vortex-induced vibration) 

o Forced oscillations – occurs at velocities and amplitudes 
which are preset and can be controlled independently of 
fluid velocity.  (This is not the real VIV – this is 
vibration-induced vortices). 

 
� How do you eliminate VIV? 
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o This is the ultimate question!  It may be best to design 
around VIV.  In other words, let’s learn how to predict VIV 
and then avoid the situations that will produce VIV.  The 
circular cylinder will always be the preferred shape and the 
fluctuating lift will always be there, VIV or no VIV.  Since 
we can’t avoid the shedding of vortices, let’s try to learn to 
avoid the situations that produce VIV. 



Presentation Notes:  These next two pages contain a detailed Nomenclature 
for the VIV problem.  This Nomenclature is suggested by Sarpkaya in an attempt 
to provide uniformity to the VIV literature. 
 

NOMENCLATURE 
 

fvac – the natural frequency of a system as found in a vacuum. 
 
fex – the frequency of oscillation of a vibrating body (either forced or  
 Self-excited) regardless of whether lock-in is present. 
 
fSt – the vortex shedding frequency (Strouhal frequency) of a body at  
 Rest. 
 
fvs – the vortex shedding frequency of a body in motion (forced or self 
 excited).  In the lock-in range, fvs becomes increasingly smaller 
 than fSt until lock-out. 
 
Re – the Reynolds number (= Ud/v), the ratio of inertia forces to  
 viscous forces. 
 
St – the Strouhal number (=fStd/U), the dimensionless vortex  
 Shedding frequency. 
 
KC – Keulegan-Carpenter number (=UmaxT/d = Umax/fexd) 
 
Vr – the reduced velocity (=U/fexd), the approach velocity normalized 
 The the excitation frequency and the diameter. 
 
StVr - the product of the Strouhal number and the reduced velocity 
 (=(fStd/U)(U/fexd) = fSt/fex) 
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1/(StVr) – equals fex/fSt



 
 
 
fair – the natural frequency of a system in air. 
 
fwtr – the natural frequency of a system in water. 
 
ζ − material damping (not fluid damping). 
 
m* - reduced mass, = ((mb/l)/ ρf πd2/4) or m*= ρm/ρb with 
 ρm =(mb/l)/(πd2/4) . 

 

VIV body – a geometric shape, not necessarily a cylinder or even a 
 circular cylinder, which will produce VIV. 
 
m*ζ − the mass-damping term. 
 
A/d – the amplitude to diameter ratio. 
 
CD – Drag Coefficient, CD = D/ρf Ap lU2/2 
 
CL – Lift Coefficient, CL = L/ρf Ap lU2/2 
 
CM – Inertia Coefficient, CM = FI/(ρfVol dU/dt) 
 
 
Added Mass – the increase in effective mass that occurs when the  
 
acceleration of a body is nonzero.  This is also called the hydrodynamic 
 
mass.  The inference is that the effective mass is the sum of the mass  
 
of the body and the added mass.  The added mass doesn’t influence 
 
the situation until there is acceleration. 
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Presentation Notes:  Figure 1 is a plot of the drag coefficient (Cd) versus 
Reynolds number (Re) for a steady approach flow past a circular cylinder.  Figure 
2 is a schematic diagram which shows the various regimes of the flow past a 
circular cylinder.  These two figures are discussed simultaneously so that the 
meaning of the various aspects of the drag-coefficient/Reynolds-number plot can 
be fully understood. 
 
Figure 1:  Flow around a circular cylinder 
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Drag and Curve for a cylinder.  Data is from Delany and Sorenson (1953), Finn 
(1953), Roshko (1961), Tritton (1959) and Wieselsberger (1921) 



Figure 2:  Regimes of fluid flow across smooth circular 
cylinders (Lienhard, 1966) 
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Presentation Notes:  This figure is a plot showing the Strouhal number (St, 
St=Dfvs/U) versus the Reynolds number (Re, Re=UD/ν).  The variation of St with 
Re is discussed so that the audience has an understanding of what flow features 
influence St, i.e., the vortex shedding frequency, and why they do so. 
 
Figure 3:  Strouhal number – Reynolds number relationship for 
circular cylinders 
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(Lienhard, 1966; Achenbach and Heinecke, 1981).  S ≅ 0.21 (1-21/Re) for 
40<Re<200 (Roshko, 1955). 



Presentation notes:  This is a plot which shows how the rms lift coefficient 
(CL) is influenced by the length-to-diameter ratio (L/D) of the cylinder at different 
values of the Reynolds number (Re).  From this plot it is clear that the cylinder 
must have an L/D value of at least 6.7 for end effects to lose their influence on 
the flow field and, hence, the drag acting on the cylinder. 
 
Figure 4:  The fluctuating lift coefficient vs. Reynolds number 
for different aspect ratios. 
 

 
 

(a) L/D =1, (b) L/D = 6.7 
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From Szepessy & Bearman (1992) 



Presentation Notes:  This is a plot which shows the vortex structure and the 
circumferential pressure distribution (actually the pressure coefficient) over about 
one-third of a vortex-shedding cycle.  This figure illustrates quite clearly how and 
why the vortex structures change with time.  Also shown is the circumferential 
pressure coefficient variation.  From these plots, it becomes quite clear that the 
lift coefficient fluctuates about a zero mean value and the instantaneous drag 
coefficient fluctuates about the mean value of the drag coefficient, although at a 
much smaller oscillatory amplitude than the lift coefficient. 
 
Figure 5:  A sequence of simultaneous surface pressure fields 
and wake forms at Re=112000 for approximately 1/3 of one 
cycle of vortex shedding. (Drescher, 1956) 
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Presentation Notes:  This is a plot of the time-dependent pressure coefficient 
(Cp) versus the angular position (Θ).  The time-dependent nature of Cp (mostly) 
in the cylinder wake (50°<θ<310°) shows how the wake pressure varies with 
time which explains how and why the time-dependent lift force occurs.  The 
usual time-mean pressure coefficient has an average lift-coefficient of zero. 
 

 
 
Figure 6: Time-dependent pressure coefficient (Cp) vs. angular 
position (0) 
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Presentation Notes:  This is a plot which shows how the location of the 
separation angle (θsep) depends on the Reynolds number (Re).  Note that θsep is 
decreasing toward a value of about 80° as Re approaches a value of about 2 x 
105 at which point θsep begins to increase.  The reason for the increase is that 
the boundary layer on the cylinder experiences a transition to turbulence at this 
Reynolds number and the separation point increases from about 80° to about 
110° to 120° when the boundary layer becomes turbulent 
 
Figure 7:  Separation Angle 
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Presentation Notes:  This is a schematic showing the fluid-structure 
interaction relationship when VIV occurs.  When the cylinder isn’t vibrating, there 
is still a time-dependent force acting on the cylinder.  This is represented in the 
top and left segments of the figure.  When the cylinder vibrates, all four 
segments of the schematic are involved in the relationship describing the cylinder 
response. 
 
Figure 8:  Feedback between fluid and structure. 
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Presentation Notes:  Figure 9 is a plot showing the map of the different 
wake structures that occur in a forced oscillation, i.e., one occurring when the 
cylinder is forced by an external forcing function to oscillate at a prescribed 
amplitude and frequency.  The wake structure that would be present in a forced 
oscillation depends on the amplitude-to-diameter ratio (A/D) and the ratio of the 
excitation period to vortex-shedding period (Te/Tv).  It is not expected that these 
same patterns will occur when the cylinder motion is self-excited  
(at a sufficiently high Reynolds number, i.e., Re≥~5000) which infers the 
oscillation is neither at constant amplitude nor constant period.  Figure 10 shows 
a more detailed representation of each of the vortex-wake patterns. 
 
Figure 9:  Map of vortex synchronization patterns near the 
fundamental lock-in region. 
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The critical curve marks the transition from one mode of vortex formation to another.  I, II are 
the curves where the forces on the body show a sharp “jump”; from Bishop and Hassan {3}.  I is 
for wavelength decreasing and II is for wavelength increasing. 



Figure 10:  Sketches of the vortex shedding patterns found in figure 
9 (previous) 
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“P” means a vortex pair and “S” means a single vortex, and each pattern is defined 
by the number of pairs and single vortices formed per cycle; ------ encircles the 
vortices shed in one complete cycle. 



Presentation notes:  This figure is the classical self-excited oscillation plot 
showing the lock-on nature of the cylinder oscillation in self-excited conditions.  
The two features of the plot show the reduced velocity (Vr=U/fairD) plotted 
against both the amplitude-to-diameter ration (A/D) and the ratio of vortex-
shedding frequency to natural frequency (fs/f).  The plot shows the sudden 
increase in oscillation amplitude at Vr ≅ 5.  This lock-on continues to Vr≅7. 
 
Figure 11:  Vortex-induced vibration of spring-supported, 
damped circular cylinder. 
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f  is the natural frequency of the cylinder (Feng, 1968) 



Presentation Notes:  This figure shows the lock-on phenomenon also.  It has 
an additional feature for self-excited oscillation.  The phase angle, which is the 
angle by which the force leads the displacement, is also shown.  The phase 
angle is noted to have values that range from about -10° to about 100°.  The 
A/D plot shows what is known as the upper and lower branches of oscillations 
which are due to a hysteresis effect when the reduced velocity is either increased 
or decreased. 
 
Figure 12:  Response and wakes characteristics of a spring-
mounted cylinder freely oscillating in air. 
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m*=248, ζ =0.00103,  m*ζ =0.255,  and Re (varying with Vr=U/fairD) from 104 to 5x104 (Feng, 
1968) 



Presentation Notes:  This plot also shows the lock-on behavior.  However, this 
plot contrasts the forced oscillation results of Khalak & Williamson with the self-
excited results of Feng. The difference between the two sets of results is quite 
distinct. 
 
Figure 13:  Comparison of Feng’s vs. Khalak & Williamson data 
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A comparison of Feng’s maximum A/D vs. fex/fair data with those obtained by Khalak and 
Williamson (1999) in water with a single-degree-of-freedom flexible cylinder (m*=10.1, 
ζ =0.0013, m*ζ=0.013).  Feng’s data has only two branches (initial and lower).  The 
Khalak and Williamson data (A/D vs. U/fwtrD) have three branches (initial, upper, 
and lower), much larger peak amplitude, and broader synchronization range. 



Presentation Notes:  This figure shows the effect of changing the excitation 
frequency at two different values A/D at Re = 1500 in a forced oscillation. 
 
Figure 14:  Variation of the shedding frequency with the driving 
frequency of a single cylinder in uniform flow. 
 

 
(a) A/D=0.05, Re=1500; and (b) A/D=0.235, Re=1500 
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(Cheng and Moretti, 1991) 



Presentation Notes:  This plot shows essentially the comparison of the vortex 
shedding frequency fvs vs. the excitation frequency fex in a forced oscillation case.  
The lock-on behavior is shown more prominently for the case of fvs/ fex=1. 
 
Figure 15:  The normalized wake frequencies as a function of 
the normalized oscillation frequency, vortex shedding 
frequency, and remaining wake frequencies for A/D=0.22 and 
Re=1500. (Krishnamoorthy, Price, and Paidoussis, 2001). 
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Presentation Notes:  This series of plots shows the Griffin response parameter 
SG versus A/D with the shape factor λ included for several different 
representations.  The term λ takes on different values for different cylinder 
shapes. 

 
Figure 16:  Experimental measurements of a modally 
normalized maximum amplitude vs. the response parameter SG 

and the proposed curve-fit (Eq. 4) 
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The data is tabulated in Skop and Balasubramanian (1997).  The above figures 
show: (a) a Log-Log plot, (b) a linear-Log plot, (c) a Log-linear plot, and (d) a linear-
linear plot.  In each case, Eq. (4) represents the data reasonably well and makes an 
unrigorous but plausible suggestion that Ln (A/D/y) may be a linear function of SG. 



Presentation Notes:  These two plots show a comparison of the results for 
forced and free vibrations, both for the same reduced velocity.  The phase angle 
difference between the two cases is quite distinct. 
 
Figure 17: Forced and free vibrations 
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Sample data show that perfect synchronization is not “perfect” and 10% variation in 
peak amplitudes of force (in both forced and self-excited oscillations) is quite 
common; (a) self-excited, in-line spring-supported, Vr=5.93; (b) forced, in-line 
spring-supported, Vr=5.93 (from Moe and Wu, 1990). 



Presentation Notes:  This plot shows the variation of the added mass 
coefficient (Ca), the drag coefficient (Cd) and the phase angle vs. fex/ fst.  Note 
the very sharp decrease in phase angle at fex/ fst ≅ 0.85 and the increase in Ca at 
the same frequency ratio value.   
 
Figure 18:  Inertia and drag coefficients (or the in-phase and 
out-of-phase components of the lift force) and the phase angle 
as a function of fex/fSt 
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(A/D=0.50, Re=42,500, L/D=7, smooth cylinder) (from author’s experiments).  
Perfect synchronization is seen to occur at fex/fSt ≅ 0.85, accompanied by abrupt 
changes in phase and force-transfer coefficients. 



Presentation Notes:  This is essentially the same plot as in Figure 18, except 
that the abscissa is the reduced velocity Vr(=U/fexD).  The effect here is 
essentially the opposite of that shown in Figure 19. The phase angle shows a 
very sharp increase at Vr ≅ 5.8 with increasing Vr while Ca shows a sharp 
decrease at Vr ≅ 5.8.  
 
Figure 19:  Inertia and drag coefficients (or the in-phase and 
out-of-phase components of the lift force) and the phase angle 
as a Function of Vr=U/fexD 
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(A/D=0.50, Re=42,500, L/D=7, smooth cylinder)(from author’s experiments).  
Perfect synchronization is seen to occur at Vr=5.80-5.85, accompanied by abrupt 
changes in phase and force-transfer coefficients (same as figure 18 except that the 
horizontal axis is changed to Vr). 



Presentation Notes:  The results shown in this figure are indicative of a sharp 
change in phase angle.  Given a change in frequency ratio, the wake has the 
capability to switch from 0° to 180°.  This is seen in this figure where it is clear 
that vortex switching has occurred between fe/fo = 0.9 to fe/fo – 1.0. 
 
Figure 20:  Instantaneous streamlines (left) and vorticity 
contours (right) for various fex/fSt. 
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A/D=0.4, Re=1000.  In all cases, the location of the cylinder is at its extreme upper 
position.  At fex/fSt=0.95, a new vortex is being shed from the upper surface.  
However, at fex/fSt=1.0, the shedding of a new vortex has switched to the lower 
surface. (Lu and Dalton, 1966) 



Presentation Notes:  This is a figure that shows the wake structure for several 
oscillations for a forced vibration case.  Even though the oscillation is regular, the 
wake structure does not seem to follow an expected pattern. 
 
Figure 21:  Wake vortex structure over several oscillations for 
fexD/U=0.109, fex/fw=1/2 and A/D=0.237 (Rodriguez and 
Pruvost, 2000). 
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Presentation Notes:  This figure shows both the in-line and transverse 
oscillations in a two degree-of-freedom oscillation.  The influence of the reduced 
velocity (Vr) is quite clear.  The lowest plot in the figure shows the trace of the 
oscillation that indicates quite clearly that the maximums of the in-line and 
transverse displacements do not occur simultaneously. 
 
Figure 22: 
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(a) One degree of freedom rigid cylinder (Re=30,000, L/D=26, m*=3.0, 
 ζ=0.035, m* ζ=0.105).  The amplitude A/D (1/10th highest average) reaches a maximum 
just a little over 1.0 at Vr ≅ 5.6.  There is no upper branch, but only a smooth 
increase in A/D; (b) a flexible cylinder (a pinned beam with 2-DOF) exhibits 
essentially the same overall behavior.  However, the position of the maximum A/D is 
shifted to larger Vr (about 7) to larger A/D (about 1.5); (c) the maximums of the in-
line and transverse motion trajectories do not occur simultaneously, the former 
precedes the latter, see also the forces in 22 (b). (from Triantafyllou, Techet, Hover, 
and Yue, 2003). 



Presentation Notes:  This figure contrasts the drag coefficient (Cd) vs. 
Reynolds Number (Re) and reduced velocity (Vr) for the stationary cylinder and 
the cylinder in VIV.  The effect of shear in the approach flow is also present.  
Note that the Cd peak decreases as the shear increases. 
 
Figure 23: 
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(a)  The nature of the variation of Cd is like that of a smooth cylinder entering the 
critical transition, with Cd dropping sharply.  The VIV (with 2-DOF) first arrests the 
drop in Cd and then increases it sharply, proving that VIV occurred within the zone of 
critical transition.  The drag for the uniform flow (Umax/Umin=1:1) is dramatically 
amplified with respect to the rigid cylinder (at rest).  As to the effects of shear, the 
maximums of Cd decrease with increasing shear and occur at smaller Uref/fwtrD 
(Humphries and Walker, 1988). 



Presentation Notes:  This figure shows the A/D variation for different values of 
reduced velocity and different values of shear.  Note that the A/D peak 
decreases as the shear increases. 
 
Figure 24:   
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The maximum A/D for the no-shear case (about 1.5 a Vref/VwtrD≅6.2) corresponds 
quite well with the in Fig. 22 (about 1.5 at Uref/fwtrD≅7).  With shear, the maximums 
of A/D occur with reduced peaks at smaller Uref/fwtrD and decrease towards unity.  It 
appears that shear extends the range of lock-in region.  Even in the critical Re 
region, the occurrence of maximum Cd (at about Uref/fwtrD≅5.6) precedes the 
occurrence of maximum A/D (at Uref/fwtrD≅6.2), as in figures 22 (a) and (b) for the 
sub-critical flow (Humphries and Walker, 1988). 



Presentation Notes:  This figure shows eight of various devices used to 
influence vortex shedding and, thus, decrease VIV.  The one most commonly 
used, for a flow which has the capability of changing directions, is depicted in 
(a).  This configuration is called a spiral strake and it decreases considerably the 
longitudinal coherence of wake vortices that, in turn, diminishes VIV.  Recently, a 
very promising version of (d) has been developed.  This configuration is called a 
short fairing and the recent innovation is a mechanism that allows the chord 
length of the fairing to align itself with a possible change in the direction of the 
flow.  This shape has the capability of decreasing drag as well as eliminating VIV.  
This short fairing is presently in limited use and seems to be working quite well. 
 
Figure 25:  Add-on devices for suppression of vortex-induced 
vibration of cylinders 
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(a) helical strake; (b) shroud; (c) axial slats; (d) streamlined fairing; (e) splitter; (f) 
ribboned cable; (g) pivoted guiding vane; (h) spoiler plates. 



Presentation Notes:  This figure is a flow visualization picture (at Re = 100) of 
flow past a bare fixed cylinder and flow past a fixed (primary) cylinder with a 
small diameter control cylinder in the shear layer on the upper side of the near 
wake.  The presence of the control cylinder stabilizes the near wake and causes 
the near wake to be essentially time-independent.  The result is a decrease in 
drag and a virtual elimination of the fluctuating lift.  This configuration has two 
difficulties.  The first is that the flow must be unidirectional and the second is 
that the control cylinder location depends on the Reynolds number. 
 
Figure 26:  Flow visualization comparison at Re=100, x=30, 
and R D=1.4 
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Presentation Notes:  This figure shows essentially the same thing as shown 
in Figure 29 except that Re = 3000 in this figure.  The near wake for the control-
cylinder case is smaller and the time dependence in the wake vortices is 
suppressed until these vortices are further downstream.  The result of the 
control-cylinder inclusion again is that the drag is decreased and the lift is 
essentially eliminated.  The location of the control cylinder for this higher 
Reynolds number case is slightly different, making the application Re-dependent. 
 
Figure 27: 
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Reynolds number =3000 


	Figure Citations.doc
	Session 1 Fundamentals of VIV- Dalton.pdf
	University of Houston
	Questions
	NOMENCLATURE
	Figure 1:  Flow around a circular cylinder
	Figure 7:  Separation Angle
	Figure 13:  Comparison of Feng’s vs. Khalak & Williamson dat
	Figure 17: Forced and free vibrations






