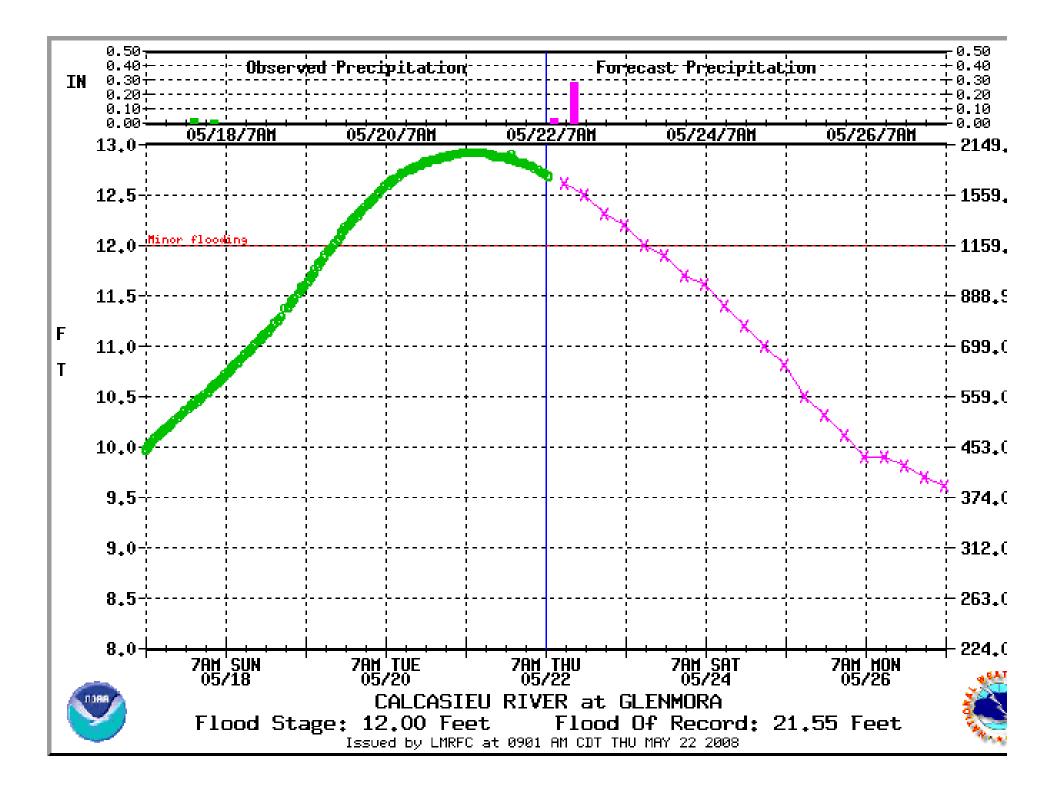
Operations, and Operational Modeling of Bayou Vermilion

Bayou Vermilion Conference Lafayette, LA May. 28, 2008

David Welch David Ramirez, P.E. Senior Hydrologist Senior Hydrologist

Lower Mississippi River Forecast Center Slidell, LA

Area of Responsibility



- •~220,000 mi²
- 479 Watersheds modeled
- 222 Daily/flood only forecast locations (5 day forecasts)
- 16 28-day forecast locations on Mississippi/Ohio Rivers (issued weekly)
- River/rainfall network of 2900 gages

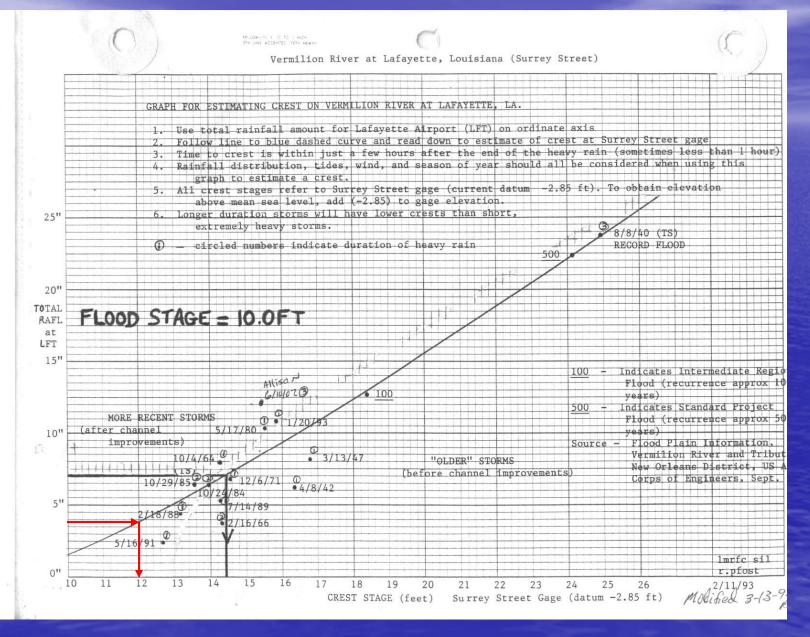
Hydrologic Operations

- Prepare and disseminate river/flood forecasts and other hydrometeorological guidance
- Maintain a close 16-hour hydromet watch and a full 24-hour watch when necessary
- Coordinate/service Weather Forecast Offices, intra/inter agencies (COE, USGS, FEMA), state EMAs (LOEP, MEMA, TEMA) and state river authorities (TVA).
- Maintain expand enhance RFC hydrologic models

<u>Approximate Workload</u> 60% operations 40% development

LMRFC Bayou Vermilion Forecast Tools

Manual Methods


MAP Crest Curve/Headwater Tables

NWS Site Specific Model

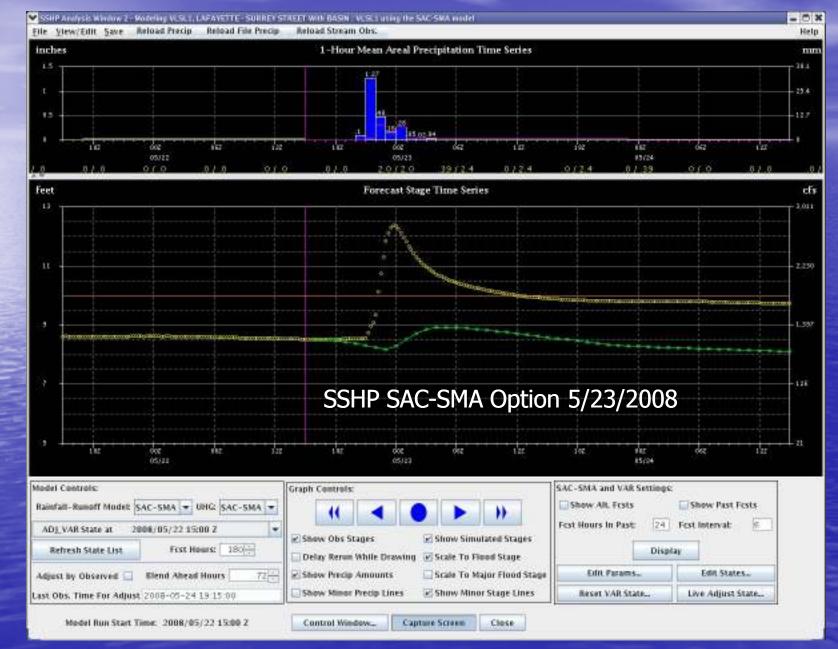
SAC-SMA/Kansas City API

NWSRFS Hydrologic Model
NWS FLDWAV
USACE HEC-RAS

Manual Methods – MAP Crest Curve

Manual Methods – Headwater Table

Keys off NWS Flash Flood Guidance (FFG)
Use FFG with Precipitation to estimate crest Lower_Mlasissippi_River_Forecast_Center Station Name VERMILION River Name SURREY STREET, LA


Flood stage= 10.0 ft. Use Flash Flood Guidance from Zone 1A2044 Sage height in feet above gage zero

CACE PERC = -2.74 FT. MSL TIME TO PEAK = 6.0 HRS Threshold runoff 0.50 inches Unit hydrograph peak- 1500, cfs

INCHES OF RAINFALL IN A 1 HOUR FERIOD

					0.0 25		-	1008	2422.62		7202113
	1.0	1.5	2.0	2 . >	3.0	3.5	4.0	5.0	6.0	8.2	10.
1.0	9.0	10.1	11.0	11.9	12.8	13.7	14.6	15.5	18.3	22.2	26.
1.1	8.7	9.9	-0.8	17.8	12.6	13.5	11.1	15.3	18.1	22.3	26.
1.2	8.5	9.7	10.6	16	12.5	1.3.3	14.2	15.1	17.9	21.8	25.
1.3	8.2	9.4	0.5	11.4	12.3	13.1	14.0	15.9	17.7	21.6	25.
1.4	7.8	9.2	20.3	11.2	12.1	13.0	13.0	15.7	17.5	21.4	25.
1.5	7.1	S.Ú	10.1	10	11.9	12.8	13.7	15.5	17.4	21.2	25.
1.6	1.5	8.7	9.9	10.8	11.8	12.6	13.5	15.3	17.2	21.0	25.
: 1.7	*****	8.5	9.7	10.6	11.6	12.5	13.3	15.2	17.0	20.8	24.
11.8	*****	8.2	3.4	10.5	11.4	12.3	13.1	13.4	16.8	23.6	24.
1,9	(x,y,y,y,z,y)	7.8	9.2	10.3	11.2	12.1	13.0	14.9	16.7		1.24.
2.0	*****	7.1	9.0	10,1	11.0	12.0	12.8	14.8	16.5	23.2	.24.
2.1	*****	4.8	3.7	9.9	10.8	11.8	12.6	14.4	16.3	20.0	24.
2.2	- * * * * * *	* * * * *	3.5	9.7	10.5	11.6	12.5	14.2	16.1	19.6	24.
2.3	******	****	8.2	9.4	10.5	15.24	12.3	14.0	1€,0	19.7	23.
1 2.4	******	****	7.8	9.2	10.3	11.2	12.1	13.8	15.8	19.5	23.
2.5	******	* * * * *	7.1	9.0	10.1	1	12.0	13.7	15.6	19.3	23.
i 2.6	******	****	4.8	8.7	2.2	10.8	11.8	13.5	15.4	19.1	23.
1 2.7	******			8.5	8.7	10.6	11.6	13.3	15.2	18.9	23.
2.8	******	*****	****	8,2	9.4	0.5	11.4	13.2	15.0	18.7	22.
2.9	******			7.8	5.2	20.3	11.2	13.0	14.8	18.6	22.
3.0	******	*****	*****	1.1	Ś.O	10.1	11.0	12.8	14.6	18.4	22.
13.5	* * * * * * *			4.8	8.7	9.9	10.8	22.6	14.4	18.2	22.
3.2	******			****	8.5	9.7	10.6	2.5	14.2	18.0	22.
13.3	******			*****	8.2	9.4	16.5	- 2.3	14.0	17.8	21.
4.4	* * * * * * *			4 7 4 6 4	7.8	9.2	10.4	12.1	13.9	17.7	21.
3.9					7.1	3.0	10.1	12.0	13.7	17.5	21.
3.0	******				4.8	8.7	9.9	11.8	13.5	17.3	21.
3,8				*****		8.2	9.4	11.4	13.2	16.9	20.
14.0				*****	*****	7.1	9.0	11.0	12.3	16.6	20.
4.2	******			*****			8.5	10.6	12.5	16.2	20.
1.4				*****			7.8	10.3	12.1	15.8	19.
4.6							4.8	9.9	11.8	15.5	15,
4.8								9.4	1.4	15.1	18.
5.0	******	******	(1) (1) (A)	* * * * * *	*****	*****	***	9.0	11.0	14.7	18.

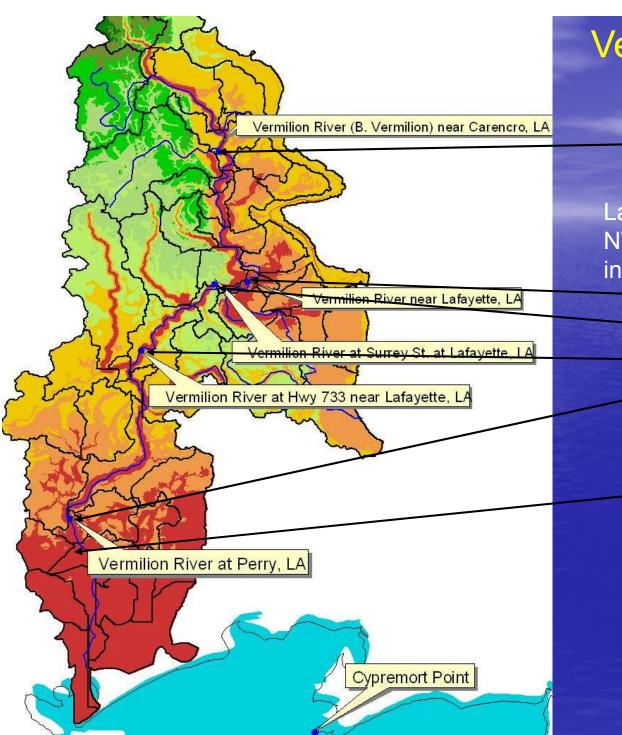
NWS Site Specific Model

NWSRFS — Hydrologic Model National Weather Service River Forecast System

 Set of hydrologic techniques and models used to perform hydrologic forecasting.

- Vermilion system uses:
 - Lag-K routing
 - SAC-SMA rainfall-runoff model
 - Routinely use 12hr forecast rainfall (up to 72hr)

Does not handle backwater/storage/tides.


All rating curves are "dummy ratings".

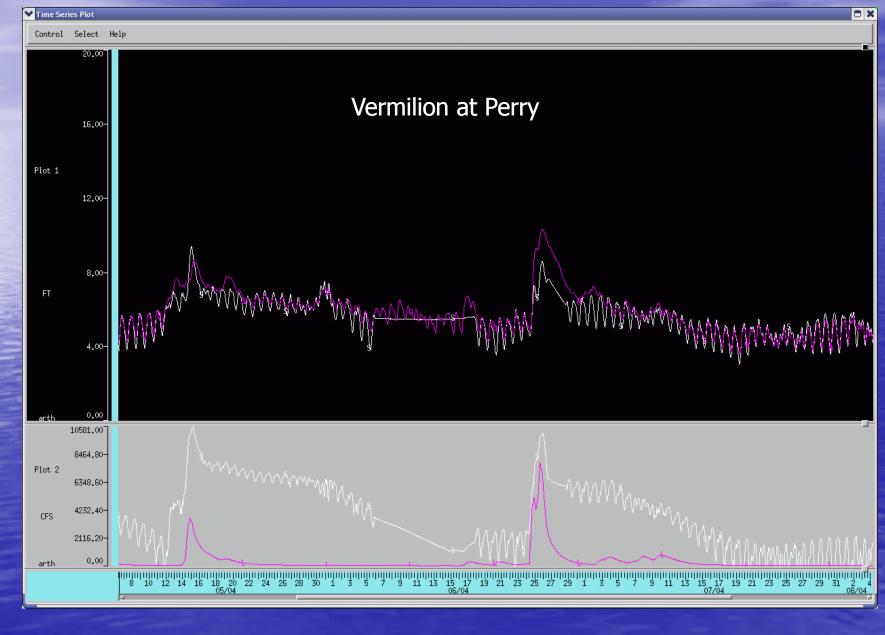
NWSRFS Forecast

NWS FLDWAV – Hydraulic Model

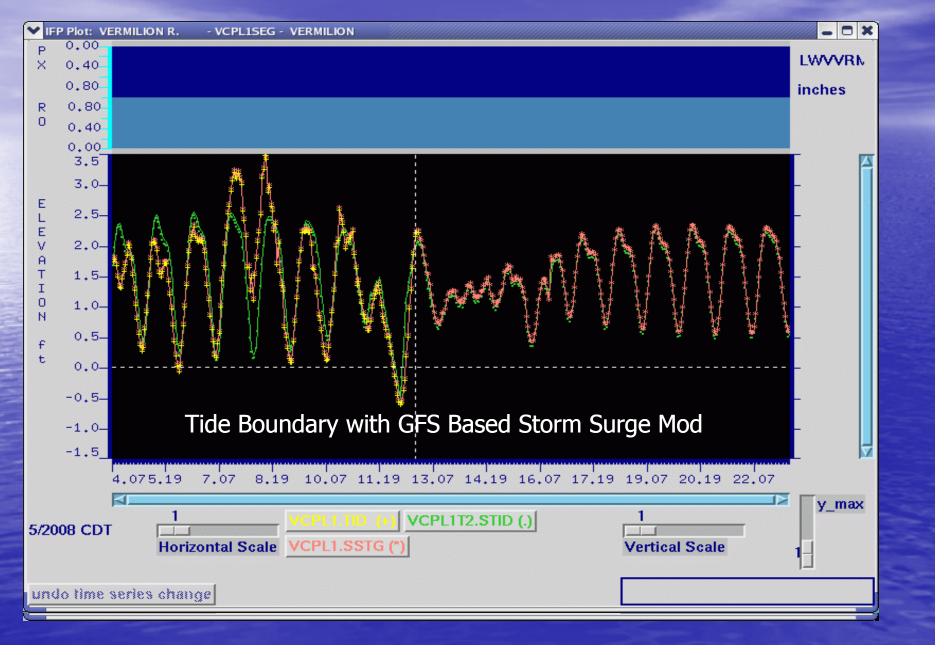
Developed by NWS One-dimensional, unsteady flow model Conservation of mass and energy Initial conditions (stage and flow) Boundary conditions (stage and flow) Movement of waves upstream and downstream Lateral inflows/outflows Calibration – Manning's roughness coefficient Based on observed stages/discharges

Vermilion FLDWAV Model

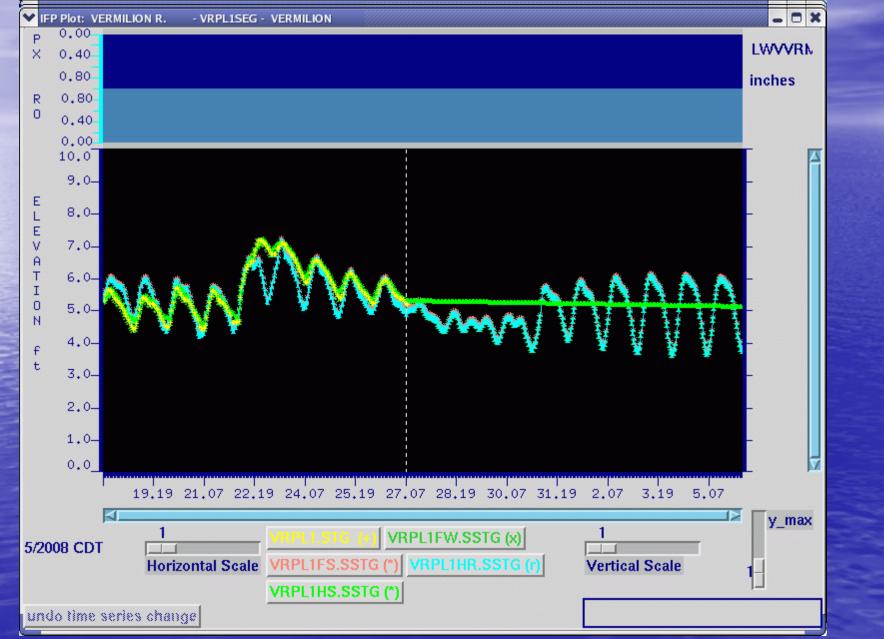
Stage Upstream Boundary

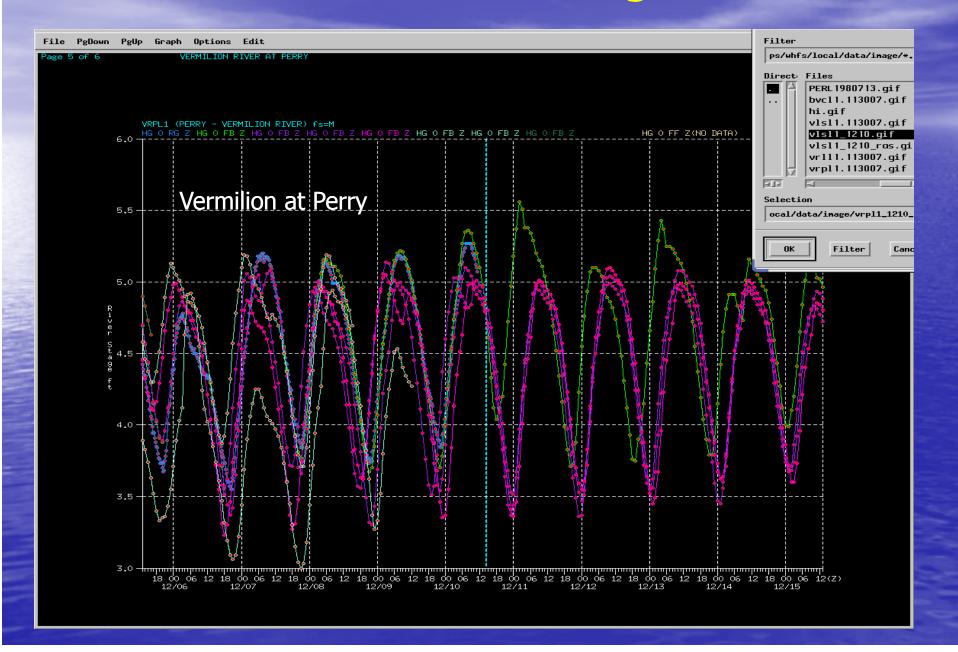

Lateral inflows derived from NWSRFS hydrologic model inserted into the Vermilion at:

Lafayette
Surrey St
Hwy 733
Perry


Downstream Bound: VCPL1 NOS Tide blended with GFS Storm Surge. Inserted 5 miles below Perry (VRPL1).

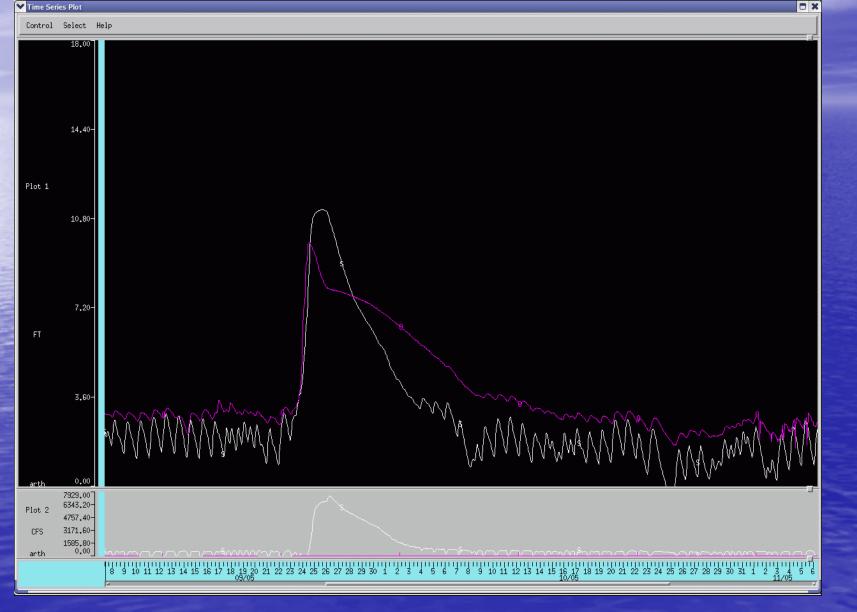
Geometry derived from HEC-RAS deck provided to LMRFC by USACE


FLDWAV Calibration Efforts


Downstream Tide Boundary

Operational FLDWAV Model

FLDWAV Forecast Progression

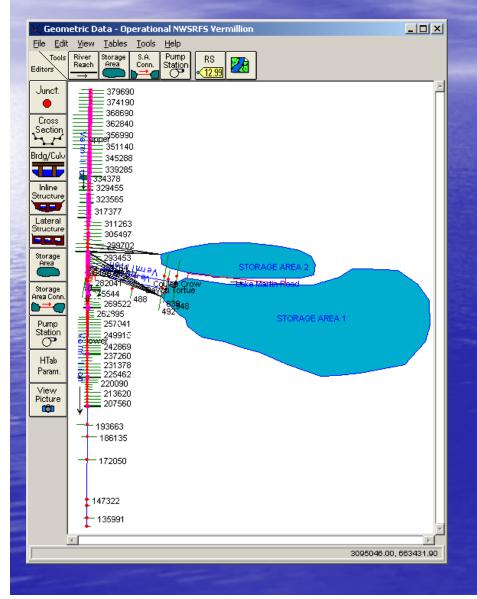

Hurricane Storm Surge

 Model calibrated with data from Hurricane Rita (2005).

 Operational model will use a stage hydrograph from the Sea, Lake, and Overland Surge Heights (SLOSH) model issued within 24 hours of landfall.

 A variety of hurricane storm surge scenarios can also be run for different storm tracks and intensities.

Storm Surge Calibration: Rita

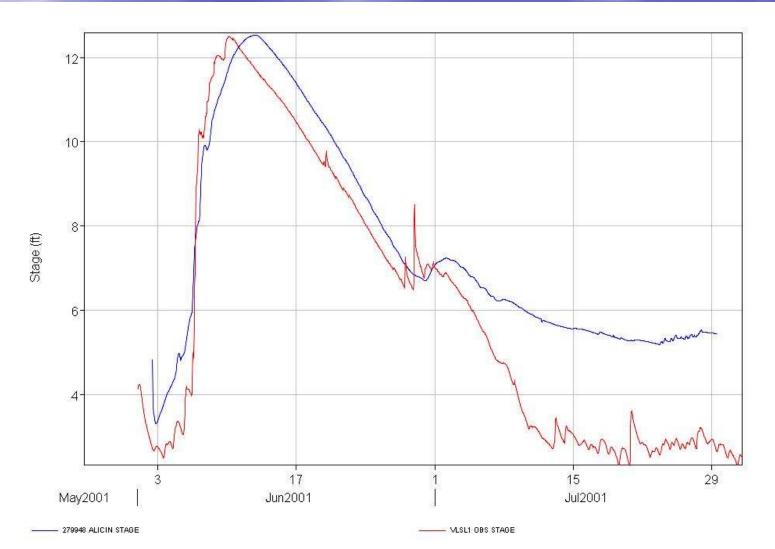


Hydrologic Engineering Center River Analysis System (HEC-RAS)

Developed by the USACE
Steady and unsteady-state one-dimensional model.

- Current capabilities:
 - Pure subcritical flow
 - Pure supercritical flow
 - Mixed regime (transcritical flow)
 - Hydraulic structures, e.g. culverts, bridges, weirs, etc.
 - Sediment transport analysis
 - Water quality analysis

HEC-RAS Geometry Vermilion River Coastal LA



Geometry data provided to LMRFC courtesy of the New Orleans District USACE

HEC-RAS - geometry uses levees with storage areas.

FLDWAV – levee option does not work in OFS, used "cave-in-bank" method to account for storage area represented in HEC geometry.

HEC-RAS Calibration Efforts Tropical Storm Alison, June 2001

Conclusions

- Simple manual methods based on historical events and the NWS site specific model are useful forecast tools for short term rainfall-runoff based flood events.
- We should be able to model low-flow tidal fluctuations with existing LMRFC hydraulic models.
- We may be able to use LMRFC hydraulic models for guidance in hurricane storm surge.
- LMRFC hydraulic models need improvement to be used for flood forecasting.

Questions

