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I. INTRODUCTION

World 0i1 demand is being met increasingly from resources located
under the sea. The Gulf of Mexico and the North Sea are the two most
important areas in this regard, although offshore 0il production exists
or is contemplated in many other offshore areas of the world as well.
With the rapidly rising cost of crude oil and the uncertainties of supply
from some traditional sources, it is becoming economically attractive,
if not imperative, to recover the oil from resources located under
greater depths of water and more inhospitable seas than was previously
thought possible. However, safe and economical designs for these con-
ditions require that it be possible to accurately predict the impact of
the environment on the structures being contemplated for use.

The main impact of the environment on the design of most platforms
built to date has been limited to the need for the structure to be
able to withstand the largest wave 1ikely to be encountered during its
lifetime. Recently, though, some platforms have also had to be designed
against fatigue failure. An important reason for the significance of
fatigue in the design of these platforms has to do with the resonant
motion of these platforms in their fundamental flexural modes of vibra-
tion. The natural frequencies of these modes in some recent as well as
contemplated platforms are sufficiently low as to be in the band of
frequencies of the wave spectrum. This fact, coupled with the very
light damping in these modes means that these platforms exhibit signifi-

cant levels of motion even in moderate sea states. Because moderate



seas can be present for much of the life of a platform, low-stress/high-
cycle fatigue can be a problem.

At present, proposed platform designs are checked for susceptibility
to fatigue using dynamic, finite-element programs, as described by Vugts
and Kira 15]. The response of a proposed design to waves is predicted
by subjecting a finite-element mode] of the structure to representations
of a variety of uni-directional, reqular waves of different amplitudes,
frequencies and directions of propagation. The responses of the platform
to these individual waves are then accumulated in some manner in order
to predict the overall, weighted-average response to a random sea.

This type of analysis is very expensive and suffers from other
problems as well, two of which are listed below.

(1) The analysis treats the motion of a platform as a concatenation
of the responses of the platform to a set of discrete, deterministic
waves, rather than as the random response of a system to a random input
process. Because the method of analysis does not try to accurately
model one of the main characteristics of the problem, its randomness,
the validity of the method is open to question.

(2) Another problem is that the analysis is specific to one plat-
form. The prediction of motion for one platform does not give much
physical insight into the general problem or what influence specific
factors have on the motion. As a result, platform design against
fatigue may be less efficient than would be possible if a better under-
standing of the general problem were available.

Against these problems, it must be noted that dynamic, finite-



damage, the emphasis of the research is on predicting platform motion

in moderate seas. In moderate seas, non-linearities are less important
than they are in severe storms. Therefore, it may be possible to obtain
reasonable predictions of platform motion while ignoring most non-linear
effects. Also, because resonance plays a significant part in fatique

of offshore platforms, it is important that the model used reflect the
dynamic characteristics of a platform.

(2) Whereas it may be possible to neglect many of the non-lineari-
ties associated with the wave-structure interaction problem, when pre-
dicting platform motion in moderate seas, it is unlikely that the drag
force associated with the separation of the flow field behind the mem-
bers of the structure can be ignored. For want of a better model, it
is necessary to use the drag term of Morison's equation for the purpose
of predicting this force. Also, in light of the importance of dynamic
amplification in response predictions and the possibility of separated-
fiow, induced damping, it is appropriate to use the relative-velocity
formulation of Morison's equation.

(3) The analysis should account for the fundamentally random nature
of the sea and of the response of a platform to it. This requirement
that the analysis should be & random, or stochastic one restricts the
complexity of the model which can be used to describe the system. For-
tunately, there are some techniques by which non-Tinearities can be in-
cluded in an analysis. In particular, the technique of Gaussian closure,
described by Iyengar and Dash [51, has both intuitive and mathematical

appeal for this problem. Using this method, it is possible to predict,
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approximately, response spectra of a non-linear system.

(4) Most work to date using random vibration techniques to predict
structural response has been limited to very idealized structures, such
as single, vertical cylinders, and idealized wave environments, it being
generally assumed that the sea is unidirectional. Such work is useful
for demonstrating trends but the results cannot be directly used in the
prediction of the motion of a real platform. To be directly useful, the
hydrodynamic and structural models used in this research should be
sufficiently general as to be applicable to any arbitrary jacket platform
in a directionally distributed sea.

Based on the precepts just listed, the specific goal of this research
is to predict the response of an arbitrary, jacket-type, 0il production
platform to a random sea. The model employed to reach this goal is
linear, except for the separated flow drag, which is modelled by the
relative velocity formulation of Morison's equation. The model also
includes the dynamic behaviour of the structure. The method of analysis
is the approximate random vibration technique of Gaussian closure. To
reach this goal, three steps are required in the research.

(1) The components of the motion prediction problem must be
modelied in a consistent mathematical framework; the two components being
the fluid and structural dynamics. After formuTating each component
independently, they must be combined to form a unified set of equations
describing the problem.

(2) Once the problem is well described by a set of equations, these

equations must be manipulated, using the Gaussian closure technique,
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term in the relative velocity formulation of Morison's equation. Be-
sides setting this drag term in the appropriate mathematical framework,
the relationship between the relative velocity formulation and the
original, fixed-structure formulation of Morison's equation will be
discussed.

For small waves, the behaviour of water beneath a free surface can be
described by linear, potential-flow, hydrodynamic theory. This theory,
being linear, allows the researcher to describe the solution of any par-
ticular problem as a superposition of the solutions for any number of
different wave components, each of which propagates independently of all
the others. In particular, the forces on a structure immersed in water
can be divided into those which would be exerted on the structure due to
the incident wave field if the structure were motionless and those which
would be exerted on the structure due to its own motion in an otherwise
calm sea. The two problems defined by this division are commonly referred
to as the diffraction problem and the radiation problem respectively.

The forces associated with the radiation problem do not depend on the
incident wave field, but only on the motion of the structure. Therefore,
it will be convenient to group these forces with the stiffness, damping
and inertial forces of the structural-dynamic model, which also depend
only on the motion of the structure. For any given frequency and gener-
alized mode of motion of the structure, the hydrodynamic force on that
generalized mode can be regarded as due to added mass and radiation damp-
ing terms in the equation of motion of that mode., Similarly, the hydro-

dynamic force on any other mode due to motion of the first mode can be
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associated with added-mass and radiation-damping, cross-coupled terms.

A generalized mode is any particular vector displacement function of
the structure from its equilibrium configuration. For example, pitch

is a generalized mode used to describe the motion of a ship. A unit of
pitch displacement corresponds to an angular rotation of the ship about
the appropriate axis of one radian. Similarly, the natural modes of vi-
bration of a structure form a set of generalized modes with special
properties.

The hydrodynamic forces associated with the radiation problem are
not completely analogous to additional inertial and damping forces,
because the added mass and radiation damping coefficients in the equations
of motion are frequency dependent. As is common in the prediction of plat-
form motion, we will assume that the added-mass and radiation-damping co-
efficients are constants, their values being based on some mean, response
frequency. For the added-mass coefficients, this assumption is justifi-
able because the effect of the free surface, which induces the frequency
dependence, is Timited to a thin Tayer of water adjacent to the surface.
Therefore, the frequency-dependent part of the added-mass is only a small
portion of the total added mass. The radiation damping has been estimated
by Vandiver [13] to account for only 10% of the total damping on typical
steel jacket structures, so that ignoring the frequency dependence should
have 1ittle effect on the final predictions. A more accurate prediction
of platform motion spectra could be performed using the Gaussian closure
technique and incorporating the frequency dependence of the added-mass

and radiation-damping coefficients. Although such an analysis is possible,
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Unlike the inertial force term, the separated flow drag term of
Morison's equation must be accounted for separately of the potential
flow forces. According to Morison's equation, the separated flow drag
per unit length is proportional to the square of the component of the
fluid velocity perpendicular to the axis of the cylinder. The fluid
velocity used in the equation is the velocity which would exist at that
point in space due to the incident wave field in the absence of the
cylinder. Equation (II-1) expresses the separated-flow drag term of

Morison's equation using indicial notation and implied summation.

—

d; = 7 CyeDv, |v] (11-1)

In equation (I1-1), the valocity upon which the drag depends, v, is
the component of the incident flow velocity, u, which is perpendicular
to the axis of the cylinder. If the orientation of the cylinder is
described by a unit vector parallel to the axis of the cylinder, A,

then the relationship between v and u can be expressed by equation (I1I-2).

v = (6ij - AiAj)uj (11-2)

The prediction of separated flow drag by equations {II-1)and(II-2)
has been confirmed by experiments involving oscillating flows past a sta-
tionary cylinder. For an offshore platform, the structural members do
move slightly, so that the question arises as to how the drag term should
be modified to account for the structural motion and indeed whether the
motion of the cylinder has any significant influence on the force.

Typically, the relative velocity formulation of Morison's equation has
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been used to account for motion of the cylinder. In this formulation,
the fluid velocity, u, is replaced by the difference between the fluid .
velocity and the structural velocity. As noted in the introduction,
Burke and Tighe found that inclusion of the relative velocity formulation
of Morison's equation led to a significant increase in effective, modal
damping in a finite element model of an offshore platform.

If the relative velocity formulation of Morison's equation is
reasonable, then it is important that the model of hydrodynamic force
use that formulation because damping plays a critical role in the pre-
diction of the motion of a platform for the purpose of fatigue damage
estimation. It can be shown that the relative-velocity formulation of
Morison's equation would correctly predict the force on a segment of a
moving cytinder in a fluid flow, if the original formulation of Morison's
equation were an exact predictor of the hydrodynamic force on a fixed
cylinder. The argument is based on the application of a coordinate
transformation to the Navier-Stokes equation. However, the argument is
restricted in that the boundary conditions on the fluid must be kinematic,
the boundaries being the cylinder and the far-field of the fluid. For
an offshore platform vibrating principally in its fundamental modes,
the motion of the platform is almost independent of the instantaneous
fluid pressure acting on any portion of it. Therefore, the cylinder can
be considered to supply a kinematic boundary condition to the fluid. The
far-field of the fluid is all of the volume beyond a few diameters of
the cylinder. 1In this region, the fluid velocity is also nearly inde-

pendent of the flow in the immediate vicinity of the cylinder. Thus
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the far-field fiow also constitutes a kinematic boundary condition.

The one instance where a dynamic boundary condition is important is

for the portions of the platform within a few cylinder diameters of the

surface. In this narrow region, the argument based on the Navier-Stokes
equation breaks down and the relative-velocity formulation of Morison's

equation may not be reasonable.

Separated flow forces have been studied extensively for a fixed
cylinder in sinusoidally-oscillating flow. Predictions based on Morison's
equation have been found to agree well with measured forces for suitable
values of the parameters Cm and Cd. Therefore, the relative velocity
formulation should also give good results for the case where flow and
cylinder are both oscillating sinusoidally, in-line and at the same fre-
quency with possibly different amplitudes and phases, because the rela-
tive velocity is a simple sinusoid. Similarly, the relative velocity
formulation should give good results for suitable choices of Cm and Cd
when the velocities of the cylinder and the fluid are narrow-band random
processes instead of pure sine waves. It is not so ciear whether Mor-
ison's equation, or the relative velocity formulation of it, will give
reasonable results for wide band random processes. An indication that
the equations may still give reasonable results for wide band processes
js found in the work of Moe and Verley, mentioned previously. They
found reasonable agreement between experimental results and predictions
based on the relative velocity formulation of Morison's equation for a
cylinder oscillating in a steady current. The spectrum of the relative

velocity consisted of an impulse at zero frequency and a narrow peak
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at the cylinder's natural frequency. In terms of spectra, this exper-
iment was far from the pure sinusoidal oscillations normally studied.
Based on the theoretical relationship between Morison's equation
and the relative velocity formulation of it, and on experimental results
published in the literature, the relative velocity formulation of
Morison's equation was selected for use in the hydrodynamic force model.
The inertial term of the equation is already included implicitly in
the Tinear, potential flow force, so that only the separated flow drag
term appears explicitly. For the relative velocity formulation, the
fluid velocity, u, in equation (II-2)must be replaced by the difference

between u and w, where w is the local structural velocity.

Vi = (aij - AiAj)(uj - wj) (11-3)

It should be noted that although equations (II-1) and (II-3)are stated
for a general three-dimensional fluid flow, most experimental work has
been done for separated flow drag on a cylinder in two-dimensional flow
conditions. Therefore, caution should be exercised in applying the
results of this work, although the equations should still give reasonable
results for sufficiently high Keulegan-Carpenter Number.

One final modification of the separated-flow drag term of Morison's
equation is necessary because of the mathematical difficulty in dealing
with the magnitude of the velocity in equation(II-1). As shown in Appen-
dix A, the term v|v| can be replaced over a range of v by a term of the
form av + bv|v|2 by a suitable choice of the constants a and b. This

latter term is much more suitable for mathematical manipulations. Thus,
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the equation to be used to model the separated flow drag contribution
to the hydrodynamic force model is equation(ll—@l where v is given by

equation (I11-3).

C,plo
d; = e AR 'Y (11-4)
/2r 3¢
v

In equation GI—4L o, the root-mean-square relative velocity component
is a function of the incident wave spectrum, the depth below the surface
and the structural velocity. The structural velocity is not known, a
priori, so that an iterative solution of the motion prediction problem
is necessary.

In summary. the hydrodynamic force model has been formulated on
the basis of linear, potential flow theory, with an additional contri-
bution to the hydrodynamic force caused by the separation of the flow
behind the bluff members of the structure. The potential flow forces
can be divided into forces associated with the radiation problem and
with the diffraction problem. The forces associated with the radiation
problem can be related, with some approximation, to added mass and
radiation damping coefficients in the structural equations of motion.
The instantaneous force, on any generalized mode of the structure,
associated with the diffraction problem has been denoted by pu(t).

This force is a function of the incident wave field, the geometry of
the structure and the shape of the mode a, although the functional re-

lationship was not discussed. The hydrodynamic force was modified to
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account for separation by inclusion of the relative velocity formulation
of Morison's equation. The inertial term of that equation is implicit
in the potential flow forces, but the drag term was added separately
as a distributed force over the submerged part of the structure.

In the next chapter, this hydrodynamic force model will be com-
bined with a structural dynamic model based on a natural mode descrip-
tion of platform motion. Also, a consistent method by which to define

the submerged geometry of an arbitrary jacket platform will be described.
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III. STRUCTURAL RESPONSE MODEL

The second component required for the motion prediction model is
a structural response model. Before discussing the specific model used,
it is necessary to lay down a consistent framework for describing the
submerged geometry of an arbitrary platform. This framework is necess-
ary so that integrals over the submerged portion of a platform can be
conveniently expressed.

The submerged portion of a jacket platform consists of a number
of segments of pipe of various diameters welded together to form an
overall framework. Thus, the structure can be described in terms of
the diameters of the pipe segments and the positions and orientations
of the centerlines of the segments. To facilitate the description of
the submerged portion of a platform for the purpose of computing hydro-
dynamic loads, it is very useful to have a single parameter by which
to identify any point along the centerline of any of the pipe segments.
The measure employed in this thesis is the accumulated length of sub-
merged pipe, L. To define the measure, L, for any platform requires
that each submerged pipe segment be numbered and that one end of each
segment be designated as the beginning of that segment. The accumulated
length corresponding to any point on the structure is defined as the
sum of the lengths of all the segments numbered less than the segment
on which the point rests, plus the length from the beginnning of that
segment to the point. For example, if segments 1 through 5 are each

100 feet long, a point 40 feet from the beginning of segment 5 would
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would be assigned an accumulated length of 440 feet. By this definition,
there exists a one-to-one relationship between accumulated length, L,
and points along the centerlines of the pipe segments which form the
submerged structure of the platform. Because the motion-prediction
model is linear, except for the separated flow drag, the submerged
structure is taken to be all of the structure below the mean waterline,
rather than the instantaneous waterltine. The only exceptions to the
one-to-one relationship are at intersections of two or more pipe seg-
ments, where the points of intersection may correspond to more than one
value of L. Such exceptions do not constitute a problem in this work.
Once the accumulated Tength is defined for any platform, the submerged
geometry of that platform can be defined by the functions, P{L), the
position in Cartesian coordinates of the point L, A{L), a unit vector
directed along the centerline of the pipe at that point, and D{L), the
diameter of the pipe at that point.

The purpose of the structural response model is to predict the
motion of the structure resulting from the external forces acting on
it. For the purpose of this thesis, it is assumed that the only forces
acting on the platform are the hydrodynamic forces outlined in the
previous chapter. The response of a structure to applied forces can
be expressed in a number of different ways. For a lightly damped
structure whose response is a linear function of the applied forces,

a convenient method is to decompose the motion of the structure inte
the motions of the set of natural modes of the structure. In computing

the natural mode shapes and the set of modal differential equations to
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describe the response of the structure, it is usual to include the

forces associated with the hydrodynamic radiation problem with the

stiffness, damping and inertial forces associated with the structure,

as all of these forces are not functions of the incident wave field

but only of the structural motion. Strictly speaking, the modal

differential equations so generated are not exact as the added-mass

and radiation damping coefficients used are frequency dependent;

however, no problem is anticipated as was discussed in the last chapter.
Assuming that the eigenvalue problem has been solved, the form of

the modal differential equations are shown in equation (III-1).

6a8y8 + CGByB + wuByB =9, (111-1)

In this equation, B(t) is the modal displacement of mode B and a(t)
is the externally applied force, less the component of the force

associated with the radiation problem. 638 is the Kronecker delta

function, indicating that the mode shapes used are ortho-normai. caB

and wa are the damping and stiffness matrices respectively. Implicitly

B
included in CaB is the radiation-damping term of the hydrodynamic force.
NaB is a diagonal matrix but is written in this form for consistency.
As in the previous chapter, implied summation is used in this equation
A convention employed throughout this thesis is that Greek letter sub-
scripts imply summation over all modes, while the English alphabet is
reserved for summation over the three Cartesian coordinates,

The modal, hydrodynamic force, g,(t), is made up of two components:

the potential flow force associated with the diffraction problem, p,(t),
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and the distributed, non-iinear, separated flow drag, di(t). If the
mode shape vector of thé o mode is given by Mia(L)’ then the o modal,
separated flow drag force is given by the integral of the separated
flow drag over the accumulated Tength of the structure, weighted by
the mode shape vector. Thus, the a modal differential equation of
motion can be rewritten in terms of the potential flow and separated

flow modal forces.

Sag¥s * Cag¥s t Wup¥p T by + S Migdy AL (111-2)
L

In this equation, the distributed, separated-flow drag, di’ is given

by equation(II-Q} The structural velocity at any point, L, can be
expressed as a weighted sum of the individual modal velocities, so that
equation (II-3) for the relative velocity, v, can be rewritten in terms

of the incident wave field, fluid velocity and the modal velocities.

vy = (uy - Mja;'-a)(ﬁij - AA,) (111-3)

Equations (II1-2), (1I-4), and (III-3) form the mathematical model by
which the instantaneous response of an arbitrary platform to incident
waves can be predicted. In the next chapter, these three equations will
be manipulated with the approximate random vibration technique of
Gaussian closure in order to arrive at predictions of the spectra of
the platform motion. Because this model can be made to represent an
arbitrary jacket platform, the predictions made can also be applied to

any platform.
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IV. GAUSSIAN CLOSURE TECHNIQUE

Over the last two chapters, a mathematical model has been developed
to predict the instantaneous response of an arbitrary, jacket platform
to an incident wave field. The purpose of this chapter is to develop
a predictor of the second-moment statistics of the motion of this plat-
form, given the model. Because the statistical characteristics of
the incident wave field change slowly compared with the response time
of a platform, it is appropriate to assume that the wave field is a
stationary, random process. If the input is stationary, then the re-
sponse is also a stationary random process and the second-moment statis-
tics of the response can be expressed in the form of auto- and cross-
spectra. A prediction of these response spectra is the desired product
of the following analysis.

The model developed is non-linear, and ?herefore normal spectral
analysis techniques cannot be used. Instead, the approximate technique
of Gaussian closure has been employed. The approximation in this tech-
nique involves the evaluation of higher, statistical moments in terms
of second moments. Ordinarily, higher moments of a random process can-
not be readily evaluated; however, for a Gaussian process, all higher
moments can be expressed as sums and products of first and second
moments. For instance, for the joint Gaussian, zero-mean, random vari-
abies a, b, ¢, and d, the fourth moment involving these variables can

be decomposed as shown in equation(IV—D.

E[abcd] = E[ab]E[cd] + E[ac]E[bd] + E[ad]E[bc] (Iv-1)
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In the following analysis, higher moments will be evaluated using
equation GV—D, even though the joint processes are not strictly Gaussian.
The incident wave field is reasonably well modelled as a Gaussian process,
but the platform response is not necessarily Gaussian because the re-
sponse is related to the incident wave field by a non-linear model.
We should expect, though, that the platform response would be nearlty
Gaussian, because a significant portion of the force on the platform
is due to the potential flow term in the forcing function, which is a
Tinear function of the incident wave field. Also, the platform response
is a spatial and temporal average over the applied force and therefore,
by central 1imit theorem arguments, should be more nearly Gaussian than
the applied force. Therefore, it would seem to be a very good approxi-
mation for this work to evaluate higher statistical moments using
equation (Iv-1).

The method by which the response spectra predictor can be developed
involves repeated application of the following three steps.

1. Derive a relationship involving second and higher moment sta-
tistics in the variables of the model. The relationship can be derived
by multiplying all terms of one equation of the model, expressed at time
t, by one of the variables, expressed at some other time t + T, and
taking expected values of all the products.

2. Decompose all fourth moments using equation(IV-T)and all sixth
moments using a similar equation. Express all the resulting second
moments as auto- and cross-correlation functions.

3. Apply the Fourier transform operator to all terms of the
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equation in order to replace the auto- and cross-correlation functions
with auto- and cross-spectra. Relate the spectra involving derivatives
of the modal displacements to the corresponding spectra involving the
modal displacements.

Finally, all of the equations relating auto- and cross-spectra
can be combined, rearranged and simplified.

Before beginning, note that because there is assumed to be no
current acting, all of the random processes have zero mean. This factor
greatly simplifies the analysis over that which would be required if a
current were present. Also note that, although many of the variables
used are functions of position as well as time, this functional dependence
will not be explicitly included for convenience.

To start, multiply all terms of equation (I1II-2) by y.(t + T), take
expected values of all terms and express the statistical moments as

cross-correlation functions.

E[(8,aa(t) + Coa¥alt) + Wogvg(t))y (t+1)] =
E[(p,(t) + {deidL)ye(tﬂ)] (1V-2)
SopR¥Ye(T) + C oRYY (1) + W gRygy. (7)

Rpye(T) + J MiaRdiyE(T)dL (Iv-3)
L

Equation (IV-B)may be simplified by Fourier transforming all terms and

relating the cross-spectra involving derivatives of y to cross-spectra
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invo]ving' Yg-
2 .
{-w 5.8 ~ 1wCOIB + waB)SyByE(w) = Spays(m) + MiuSdiye(w)dL (1v-4)

The second spectrum on the right side of equation(IV-4)can be expanded
by multiplying equation(I11-4)by ye(t+T) and taking expected values.
C oD v.(t)v.(t)

. -d
E[d, (t)y_(t+7)] = JEEV E vi(t) 1+ -lggérl_-— ye(t+t)  (1V-5)

On the right side of equation(IV-5), there is a fourth, statistical
moment involving v and y. Neither of these variables is strictly
Gaussian, but using the technique of Gaussian closure, the fourth moment

will be evaluated using equation(IV-1).

E[d;{t)y (t+T}] =
C ,oDo Efv.(t t E[v.(t)v.(t)] +
" ELv, (t)y (t+D)] + { ileleltm Ly (e, (1v-6)
V2w 3 + 2E[vi(t)vj(t)]E[vj(t)yE(t+T)
Rd.ye(t) =
“a"y R P )6 2 + 2Rv.v.(0) (T (1v-7)
s viYe(t) 5%?' Rvsy (T)o, ViV (0Rv v (1)} -
2C ,pDo Rv.v.(0)
d
Rd;y (1) = {“?;ZEE_! 2513 + —‘iiikq—i} Rvij(T) (1v-8)
v



-31-

Again, equation (IV-8) may be Fourier transformed to put it in terms
of cross-spectra.
2CdpDU

- v
SdiyE(w) = —_— {ZGij +

Rviv.(O)}
3727w £

Sv.ye(w) (1v-9)
OV J

Continuing along in the same vein, the cross-spectrum between v

and y can be expanded by multiplying equation (III-3) by ys(t+t) and

taking expected values.

ELv;()y (t+0)] = (85, - AAIED(u, () - Meyp(t)) y (t+)]  (1V-10)

RV, ye() = (85 - AA D (Ruy (T} - M RYGY (7)) (1v-11)

Svjye(w) (ﬁjk - AjAk)(SukyE(w) - inkBSyBye(w)) (1V-12)

Equations (IV-4), {IV-9), and (IV-12) can be combined, rearranged and
simplified. Definition of two auxiliary constants allows for a more

compact expression of the final equation.

(-wzémB - im(caB + EaB) + waB)SyByE(w) = Spuye(w) +J[‘Bak5ukys(w)dL (Iv-13)

L
2M,,C4pD0, RV, V. (0)
Bog = (251- >(6 (IV-14)
3/2n
g = [ By Myadl (IV-15)

L
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The constént Bak contains statistics on the relative velocity, v. As
such, Bak cannot be known exactly until after the motion prediction
problem has been solved, as the relative velocity is a function of the
local, structural velocity as well as the incident fluid velocity. How-
ever, it is possible to evaluate Bak assuming that the structural vel-
ocity is zero, solve the problem and thus iteratively improve Bak'
Note in the previous equations that B> Mia’ Cys Ds gy Rvivj(U) and
Aj are all functions of position, L, although the dependence is not
explicitly written in these equations. Note also that the only approx-
imation involved in deriving equation(iV-]é)from the mathematical model
was that a fourth, statistical moment was decomposed using equation
(IV-1) even though the random processes involved were not strictly
Gaussian.

Included in equation (IV-14) are references to éecond moment sta-
tistics of the relative velocity, v. Using the same method as has

already been employed, a relationship can be derived between the relative

velocity spectra and the fluid velocity and modal displacement spectra.
Svivj(w) =
(851 = AAI (552 = AgA) TSuu,(w) + WM M_Sy y, () +
+ M Syau, (w) - M Supy, (0)} (IV-16)
(0%8g - 10(Cg + Epg) + W) Syguy(w) =

Sp_uy(w) + f B, Su, U, ()L (1V-17)
L
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Once the relative velocity spectra have been computed, calculation of

the required statistics is simple.

Rvivj(T) = EFJ(Svivj(m)) (Iv-18)
o2 = Ry.v.(0) (1V-19)
v i

The next part of the analysis requires the multiplication of
equation (III-2), not by a single term expressed at time t + T, but
by itself at time t + T. Thus, the left side of equation (III-2) is
multiplied by the left side of the same equation at a different time,
and similarly with the right side of the equation. Different sub-
scripts are used for the time-lagged version of the equation than for

the original equation to keep clear over which terms summation is

jmplied.

E[(Gaejis (6) + Cog¥gl) + U gy (£))(8 T (t47) + . (t4T) + wyeystm))] -

= E[( pa(t) +IM‘iudi(t)dL1>(py(t+T) +~/|‘_ Mijj(t+‘r)dL2>} (Iv-20)}

L 2

This equation can be expanded and the expectation operator applied to

each term individually.

(see next page)
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g el g (1T (841)1 + 6,00, BT ()5 (£41)] + 8,gM. ELT(t)y, (t4r)] +
* CogyefLig (017 (4+0)] + C gl BV (£)7 (t+0)] + C g EDTg(t)y (t4)] 4
* WogSy ELYg(£)7, (6+0)] + gl Elyg(6)y (+r)] + Mg Ely (t)y (t+)] =

= Elp,(tip, (t1)] +fL MioEld; (£)p, (t+r)]dLy +
1

+.jr MJYE[pa(t)dj(tH)]dL2 + Jr MmMjYE[di(t)dJ.(t+1:)]dL]dL2 (Iv-21)
L L
2 1

Equation (IV-21) may be expressed in terms of correlation functions and
then Fourier transformed, with spectra involving derivatives of modal

displacement related to spectra involving modal displacements.

’
4 1w36 C - w2

w 6&86Y€ - aB“ye ¥

6anY€

. 3 2 . =
4+ jw CaBGYE + w CaBCYE - 1wca8wys +> SyBye(w) =

2 .
) wudee + 1wNaBCYE + waBNYe )

= SpapY(m) + J{ Mianipy(w)dL + j[ MjYSpadj(w)dL +
+ J[] 'j:2 MianYSdidj(m)dL1dL2 (Iv-22)

Equation (IV-22) contains two spectral quantities which mix input

and output variables, Sdidj(w) and Sdipy(w)' In order to express
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SdipY(w) in terms of separate input and output spectra, multiply

equation (II-4) by pY(t+T) and take expected values.

C pDo At)v.(t)
N L (R e LVCU) EES
v

The right side of equation (IV-23) may be expanded, approximately, by
replacing the fourth statistical moment by second moments, using
equation (IV-1). As before, the substitution is not exact as one of the

processes is not strictly Gaussian.
ELd;(t)p, (t+7)] =

C 4000, E[vi(t)pY(t+T)]E[Vj(t)Vj(t)] +

1
Elv.(t t —5
— el (e (0] + Ly

3, [+ 2E[vi(t)vj(t)]E[vj(t)pY(t+t)] (1v-24)

As before, equation (IV-24) may be simplified and Fourier transformed

so as to relate cross-spectral functions.

2€ 4000, Rv.v.(0)
SdipY(m) = “‘;,‘5—;"(251';1* —0—5—>Svjp¥(w) {1v-25)
v

The spectral quantity on the right side of equation (IV-25), Svij(m),
is still a mixture of input and output variables. However, this cross-
spectrum can be spiit by multiplying equation (III-3) by py(t+r) and

taking expected values.

E[vj(t)pY(t+T)] = (ﬁjk-AjAk)E[(uk(t) - Mk898(t))py(t+r)] (1v-26)
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Svjpy(w) = (ij - AjAk)(Suka(w) + 1kaBSprY(w)) (1v-27)

Equations (IV-25) and (IV-27) can be combined and simplified by re-
calling the constants defined in equations (IV-14) and (1V-15).

J[ Mianipy(m)dL = J[ BakSukpy(w)dL + 1mE&BSprY(m) (1v-28)

The term in equation (IV-22) involving Spadj(w) can also be
simplified by noting that this cross-spectrum is the complex conjugate
of SdipY(w) with different letters used as subscripts. Thus the sim-
plified form of this term in equation {IV-22) can be written down by

inspection of equation (IV-28).

J[ ijSpadj(w)dL = J[ BYRSpauz(w)dL - 1mEYESpay€(w) (1v-29)
Equations (IV-23) and (IV-29) will be substituted into equation
(IV-22) shortly. However, first it is necessary to deal with the re-
maining mixed input and output cross-spectrum in equation (IV-22),
Sdidj(w). For this purpose, multiply the left side of equation (I1-4)
by a time-lagged version of itself and similarly for the right side,

and take expected values.

fla (014 (w0)] = Sov , ol (1+ "k‘t)"k‘t)> :
i j\trTil = V.
i J T Jom y S [ i _‘_7;;2____

v

vz(t+r)v£(t+f)
. vj(t+1)<1+ 5 >] (1V-30)

3°v
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Equation (IV-30) contains not only two, fourth statistical moments,

but also one, sixth moment. As before, equation (IV-1) may be used,

approximately, to evaluate the fourth moments and an equivalent relation-

ship may be used to evaluate the sixth moment.

el (t)d ()] = SPPy  CgPloy o

/

2 2

E[vi(t)vj(t+r)] +

E[vi(t)vj(t+r)]E[vk(t)vk(t)] +

L ]

302
v |+ 2E[v1(t)vk(t)]E[vk(t)vj(t+T)]
: E[vi(t)vj(t+r)]E[v£(t+T)vE(t+r)] +
e
v + 2E[vi(t)vg(t+T)]E[vj(t+r)vg(t+r)]
( E[vi(t)vj(t+T)]E[vk(t)vk(t)]E[vl(t+T)v2(t+t)] +
+ 2E[vi(t)vg(t+r)]E[vk(t)vk(t)]E[vj(t+T)v2(t+T)] +
] + ZE[vi(t)vk(t)]E[Vk(t)vj(t+T)JE[V£(t+T)V2(t+T)] +
' QGJEUVZ + 4E[V1(t)Vk(t)]E[Vk(t)Vl(t+T)]E[Vj(t+T)Vz(t+T)] +
+ ZE[Vi(t)Vj(t+T)]E[Vk(t)V£(t+T)]E[Vk(t)vz(t+T)] +
\ + 4E[vi(t)vz(t+r)]E[vk(t)vj(t+r)]E[vk(t)v£(t+r)] J

(Iv-31)

/



The expected values in equation {IV-31) can be replaced by correlation

functions and various terms can be grouped together.

C pDo C,0o0c
Rdid-(T) - d” v d" v .,
J V2 VZr
(16 Rv,v,(0)

Rv.v, (0) Rv.v, (0)y Rv.v {0) Rv, v (T}
16 8 85 ik 4 ik % k's
3 iyt Pk 2t 9 * )

J
it 2 9 2 2
Orv " % %

"

2Rvivj(T)Rvkvg(T)Rvkvg(r) + 4RV1V£(T)RVij(T)RVkVQ(T)

+
2 2
\ 9cv oy
(1v-32)
The above equation can be Fourier transformed and further simplified.
2C 0D Rv.v, {0)\ 2C,o0o + Rv.v,(0)
sd.d, (w) = —9 ¥ (o5 4+ 1K V(s 32 Neyy (o) +
i 3/2% ko 52 Wz Nt KA
v
+ S, (w) (1V-33)
1J
C.oD C oD
s, (w) = -9 d :
ij 18ﬂ0v0v
. :31{2Rvivj(T)Rvkvg(T)Rvkvg(T) + 4RViVL(T)RVij(T)Rvkvz(Tl} (Iv-34)

The spectral function, Sz..(“)’ as defined by equation (IV-34), is
a mixture of input and output ;ﬂantities which cannot be further sim-
plified. However, it shouid be noted that for a typical offshore plat-
form, the relative velocity is dominated by the water velocity, so

that a good first guess at Sz (w) can be made by assuming that the
1J
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structural velocity is zero. The estimate of the spectrum can be im-
proved iteratively. Also, the level of the spectrum, Szij(M)’\is only
on the order of one-sixth of the level of the other term in equation
(Iv-33).

The spectral function, Svkvg(m), can be decomposed by multiplying
equation (III-3) by a time-lagged version of itself, as was done pre-

viously for Sd_dj(w).
i

E[vk(t)v (t+1)] = (ka - AkAm)(GQn - AlAn) .

 EL(up(t) - My (£)) (uy (t41) - My (t+1))] (1v-35)

Ry kY (T) = (ka - AkAm)(Gﬂ,n - AR.An) {Rumun(r - M Rumy (1) +

mBRyBu () + ans"nst’sf’e(T)} (IV-36)

Sv v (w) N (ka " AkAm)(azn, - AzAn) {S”mun(w) - innesumye(w) *

o 2
+ 1meBSyBun(m) + W

MmB nESyBy (w)} (1v-37)
Equations (IV-33) and (IV-37) may now be combined, written in a form
suitable for substitution in equation (IV-22) and simplified by recalling
the constants defined by equations (IV-14) and (IV-15).

f f M; M5, Sd;d;(w)dLydL, ff BBy SUnln(@)dLydLy +

jo Jyo i

- jwE .jr B Sumye(w)dL + ,[; SyBu (w)dl + w EaBEyesyBye(w) +

Ye B87L
Jr.]” M. M S

-38
jo jY zij (1v )

(w)dL,dL,
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Equations (IV-28), (IV-29) and (IV-38) may now be used to replace the
appropriate terms on the right side of equation (IV-22).

2 . 2 . B,
(-u8yg = TuCyg + Wyp) (-u"8, . + uC  + Woe)SYpye(w) =

SpyP, (©) +fL g SPyuy (w)dL - TwE, Spyy (w) +

+

J[BakSukpy(m)dL + 1mEaBSprY(w) + L7 L, BamBYnsu u (w)dleL2 +

wae.j; BamSumyE(w)dL + imEa&szYnSyBun(m)dL +

EaBEys

Sygye(w) + L7ty MioMyy S,q5(w)dL,dL, (1v-39)

Equation (IV-39) may be rearranged and some terms combined.

2 . 2 . )
(-w 6aB - ‘“Cas + NGB)(-w GYE + uuCYE + NYS)SyByE(m) =

Spapy(m) + -/L BYQSpaul(w)dL + _}[ BakSukpy(w)dL +

+ _J;} L2 BamBynsu u (w)dL dL - iwE {Sp Ye (w) +_j£ BumSumyE(m)dL} +

+ inaB {SprY(w) + Jz BYnSyBun(w)dL} + ijlz M. MJYSZ1J(w)dL sz

(Iv-40)
Equation (IV-40) may be further simplified by recalling the relationship
expressed in equation (IV-13) and noting that it holds equally for its

complex conjugate.
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2 . 2 .
(~w GGB - .“uCGB + NGB)(—w 6Y€ + 1wC_YE + N’Y€)Sy8‘ye(w) =
Spapy(w) + J: BYRSpauz(m)dL + J[ BakSuka(m)dL +

. 2
+ L B B Su Uy (m)dL dL - 1wEY€(-w $

[_.I am - yn - iw(CaB + EQ'-B) + W

af )

. . 2 .
SyBye(m) _+ 1mEaB(-w GYE + 1m(CYe + Eye) + wye) SyByE(w) +

+ L'[L M. M. S (w)dL dL

7L ia jy~zij (1v-41)

2
Finally, after rearranging and grouping terms, equation {IV-41) can be

expressed in a rather simple form.
(~wZ6 o = 0(Cp + E ) + W )(-ws. +dw(C._ +E )} +W ) Sy.y (w) =
af B aB aB YE YE YE YE y8y€
Sp,, Py (w) + Jﬂ BYzSpauz(“)dL + ‘j; BakSuka(m)dL_ +

f,( BanPynStn(W)dlydly + Sy Mgy Spijlwldiydl,  (1v-42)

Using equation (IV-42), we can predict, approximately, the modal
response spectra of an offshore platform, given the spectra for the in-
cident flow field. In equation (IV-42), the spectra involving the
platform motion have been separated from the spectra involving the in-

cident flow, except for S_..(w) which involves both through the

zij

relative velocity. Ignoring S_..(w) for the moment, equation (IV-42)

zij
also describes the relationship between input and response spectra for
a much simpler model of the wave-structure interaction than was assumed

in the derivation of equation (IV-42).
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8,a%g(t) + (Cg * Eyg)Vglt) + Wogyp(t) = py(t) + jL' B, ¥, (t)dL  (1V-43)

Therefore, as far as the response spectra are concerned, inclusion
of a separated flow drag term in the response model has the same effect
as the inclusion of a drag force proportional to the local fluid
velocity, an effective "hydrodynamic damping", Eas' and some additional
excitation not accounted for by the linear drag term.

The goal of this research has been to predict the response of an
arbitrary jacket platform to incident waves, with particular emphasis
on the role of separated flow drag. To that end, a model by which to
predict platform response was developed, using commonly employed equa-
tions to relate fluid kinematics, hydrodynamic forces and structural
motions. This model included a non-linear, mixed input and output vari-
ables force to account for the separation of the flow from the structural
members. The model was then analysed using the approximate technique
of Gaussian closure, in order to predict the second-moment statistics
of the platform motion.

The final relationship, as expressed in equation (IV-42), showed
that the spectra of the platform motion, as predicted using the model
developed in chapters II and III, are very similar to the spectra pre-
dicted by a much simpler, linear model. If the model used in this anal-
ysis is a reasonable reflection of nature over some range of sea states,
then examination of the response spectra of a platform should indicate
an additional excitation force over that predicted by potential-flow

theory and significantly, an additional hydrodynamic damping term which
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is sea state dependent. It should be noted that whereas equations
(IV-42) and (IV-43) imply an additional hydrodynamic force linearly
related to fluid velocity, no linearization of the drag term from
Morison's equation has been performed.

As important to the research as the predictions of response spectra
themselves, is an understanding of the conditions under which the pre-
dictions can be expected to be accurate. Therefore, the next two
chapters are devoted to testing the predictions against data generated

by numerical simultaneous and small scale experiments in a wave tank.
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V. NUMERICAL SUMULATIONS

The derivation over the last three chapters of a predictor for dis-
placement spectra of an offshore platform required that a number of
assumptions and idealizations be made. The main assumptions and ideal-
izations were: the manner by which the hydrodynamic force was modified
from potential-flow theory to account for separation; the disregard of
all other non-linear effects; the replacement of the Morison's equation
drag term v|v| by a term of the form av + bv|v[2 ; and the assumption
that the motion of the platform is a Gaussian process. Before consider-
ing an experiment to test the validity of all of these assumptions, it
is worthwhile to examine the validity of the latter two assumptions
separately. A good way to concentrate on these two assumptions is to
compare the predicted response spectra of a simple hypothetical system
to spectra estimated from sample time histories generated on a computer.
The dynamic characteristics of such a hypothetical system can be made
to exactly match the model assumed originally.

To perform the numerical simulations, data analysis and comparison
with predictions, the following steps are necessary:

1. Describe the system, in this case a simple, spring-mounted,
rigid cylinder. Set up the governing differential equations
and perform a dimensional analysis to identify the important parameters.

2. Generate sample time histories of the random incident fluid
particle velocities and accelerations.

3. Compute time histories of the cylinder's deflections due to
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the incident fluid motion.

4. Estimate deflection spectra and half-power bandwidth damping
estimates from the cylinder time histories.

5. Use the equations derived in the previous chapter to predict
the same quantities and compare.

The hypothetical system to be considered in shown in Figure V-1.
The structure consists of a circular cylinder of unit length, diameter
D, and mass M. The cylinder's motion is restrained by a spring of
stiffness K and a dashpot of resistance R. The one-dimensional, inci-
dent fluid velocity is a random process characterized by a root-mean-
square velocity, 0, and a mean frequency, W, As assumed in Chapter
11, the hydrodynamic force acting on the cylinder consists of a potential
flow term and a separated-flow drag term. With no free surface, the
potential flow force is given by the inertial term in the relative-
motion formulation of Morison's equation. Applying conservation of
momentum to the structure and the hydrodynamic forces acting on it

yields the governing differential equation.

My + Ry + Ky =

2 g,  CyeD .,
(1 +c12)pnn g_g_ Cmogw + dz {u-y)|u-y|  (v-1)

Equation (V-1) can be put in a non-dimensional form by making the

following substitutes:

2
C puD
m o= (v-2a)
4
- K _
w, = (V-2b)
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_ R

Lg 2;;Tﬁfrjﬁy (V-2¢)

- m
¥ M+m (v-2d)
T o= ot (v-2e)
z = & (v-2f)

u
W = (v-2q)

Pw,

2 (1+C_ )y 2C .y
d“z dz _ m' ' dw d dz _dz -
;;ﬁ' to2gg dt T % ° Cm dar T 'nqn <% T dt | w dT] (V-3)

If the non-dimensional parameters CS, Cm and Cd are assigned reasonable
values for an offshore platform: 1%, 1.0 and 0.7 respectively, then

the motion of this cylinder is governed by the mass ratio, y, and the
characteristics of the incident flow.

The non-dimensional incident flow velocity, w, and acceleration,

g
g¥-, are characterized by an rms velocity, ﬁji , and a mean frequency,
n
fg Any number of different random processes could be constructed
W
n

which have these two characteristics, so that it is necessary to
choose a particular random process for the numerical simulations. The
class of random processes which are the responses of single degree of
freedom resonators to Gaussian white noise is a good choice for this

application because realizations of a joint random process of both the
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response function and its derivative can be simply generated on a com-
puter. For this reason, the incident flow velocity was modelled as the
response of an SDOF resonator to white noise, the fluid velocity cor-
responding to the displacement response of the resonator and the fluid
acceleration corresponding to the derivative of the displacement response.
A1l fluid velocity/acceleration realizations were generated with a
resonator damping of 90% of critical damping as that value of damping
yielded smooth, broad, force spectra. No attempt was made to match in-
cident flow spectra to flow spectra associated with Pierson-Moskowitz
or any other wave elevation spectra. Further, all realizations were
generated with a non-dimensional mean frequency of 1.0, as it was felt
that varying the frequency would not add appreciably to the understanding
of the validity of the two assumptions being tested. The value, 1.0,
was chosen so that both inertial and drag components of force would be
appreciable for all tests.

Actual generation of velocity/acceleration time series were per-

formed by successive application of equation (V-4).

W W
&

dw = F< dw + H (v-4)

dt/ dt) 1

61 and G2 were independent, zero-mean, unit-variance, Gaussian random
variables. The matrices F and H were chosen so that the auto- and

cross-correlation functions of the time series generated matched those

of an SDOF resonator excited by white noise at lags 1 = 0.0 and T = At,
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where At was the time increment between successive elements of the
time series. Because the joint responses of a SDOF resonator excited
by white noise and the time series generated by equation (V-4) both
form Markov processes, matching auto- and cross-correlation functions
at the two lags mentioned ensures that the correlation functions match
at t = mAt, where m is any integer. Also, both processes are Gaussian
because they were generated by 1inear operations on Gaussian inputs.
Therefore, the generated, velocity/acceleration, time series are indis-
tinguishable from the joint response of a SDOF resonator excited by
white noise and sampled at time increments of At.

Rather than generate a number of joint velocity/acceleration time
series for different values of the non-dimensional rms velocity, G,
one time series was generated with unity rms velocity. To estimate the
response of the cylinder to an incident flow with some other rms velocity
required only that the one time series be scaled appropriately. It
should be noted that % is closely related to the Keulegan-Carpenter
number for this problem, based on the rms incident flow velocity and the

cylinder natural frequency.

NK-C = 21r0m (v-5)

To estimate the response of the cylinder to the incident flow time
series, for any values of the rms velocity, G, and the mass ratio, v,
the Runge-Kutta method was applied to equation (V-3). The Runge-Kutta
method requires that the governing differential equation be evaluated

at half-interval points as well as at the ends of the intervals. There-
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fore, the time intervals at which the cylinder displacements are calcu-
tated must be twice the interval, At, used in the incident flow generation.

Once a time series of the cylinder displacement has been computed,
estimates of the underlying spectrum can be computed using one of a
number of techniques. Since it is expected that the displacement spec-
trum should be sharply peaked at the cylinder's natural frequency, a
good spectral estimation technique to use is the maximum entropy method.
Besides being better at resolving peaks than either the Blackman-Tukey
or averaged periodograms methods, Campbell [ 3] has developed a statis-
tically efficient, damping estimator using the maximum entropy method.
The damping estimator, which is based on the estimation of the half-
power bandwidth from ambient motion records, not only provides an esti-
mate of the damping, but also an approximate variance of the estimate.

0f course, the purpose of performing the numerical simulations and
estimating the cylinder displacement spectra was to compare the estimates
against the spectra predicted by the technique developed in the previous
chapter. The significant equations from that chapter are equations
(IV-14) to (IV-19), (1v-34) and (1V-42}. The following prediction is
based on the application of these equations to equation (V-3), the non-
dimensional form of the governing differential equation for the motion

of the cylinder.

2 : 2
|~~~ 21m(cs + Ch) + 1] Sz(w) =

C
1+¢C 2 16 d 3
m 2 2 —3 5 (— 5 F{R } (v-6a)
( C, {) w Sw(m) + B (w) + 3’ Ca Y V(T)
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3/2 C
2" o
o= 3 (v-6c)
S00) = S,(0) + WS () + 2uRels, (u)} (v-62)

2 : AL Cm)
(-u” - 2iw(gg + ) + 1) S (w) = {-1ur-—1;r—*'y + E} Sylw) (V-6e)

R = FTNs, () (V-6f)

G

v R, (0) (v-6g)

‘Numerical simulations were performed for three values of the mass
ration, y, and five values of the rms fluid velocity, Gw' In each
test, the cylinder deflection was computed over approximately 2000
oscillations of the cylinder, with eight values of the displacement
computed for each cycle. The results of the simulation tests are
summarized over the next seven figures. Figures V-2, V-3, and V-4 are
for the test with v = 0.079 and Oy = 1.0. Figure V-2 is a normalized
histogram of the cylinder's deflections, with a Gaussian distribution
of the same mean and variance overlaid. There appears to be no signi-
ficant departure of the displacement histogram from a Gaussian distribu-
tion. Although this argument does not guarantee that the fluid and
cylinder velocities form a joint, Gaussian process, it does indicate
that the Gaussian closure assumption is reasonable. Figure V-3 shows

estimated and predicted deflection spectra. The agreement between the
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two spectra is excellent, with the discrepancy at low frequency probably
due to the characteristics of the spectral estimator rather than a fault
of the predictor. Figure V-4 shows the predicted relative contributions
to the force spectrum on the right side of equation V-6a. The inertial
force dominates the total force spectrum in this test, with the non-
linear contribution, defined by equation (IV-34), being barely signifi-
cant.

Figures V-5, V-6, and V-7 are for the most severe case tested,
vy= 0.079 and Oy = 2.5. Again, the normalized histogram appears to
be Gaussian and the predicted and estimated spectra are in good agreement.
However, in this test the predicted force spectrum is dominated by the
separated-flow drag, although the non-linear component of the drag
spectrum is still small.

Figure V-8 shows the comparison between predicted and estimated
effective damping for all fifteen tests. The lines are the predicted
effective damping ratio for the three different values of v, as a func-
tion of rms velocity. The crosses represent the damping ratios esti-
mated from the numerical simulation time histories, with 95% confidence
intervals superimposed. Again, all predicted and estimated results
agree within the statistical uncertainty of the estimator.

The range of Keulegan-Carpenter numbers and damping ratios covered
by these tests was chosen to encompass the values of interest when pre-
dicting motions of offshore platforms for the purpose of fatigue damage
calculations. Over this range, it would appear that the Gaussian closure

assumption and the replacement of the term v|v| by a term of the form
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av + bv]vl2 are valid approximations when predicting displacement

spectra. Therefore, these tests are a good indication that the pre-
dictor developed is useful. The other main assumptions made during
the course of developing the motion predictor concerned the form of
hydrodynamic force model chosen. The purpose of the next chapter is

to describe the results of a test designed to examine that area.
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VI. A SMALL SCALE TEST

In chapters II and IIl, a model was developed to describe the
instantaneous response of an offshore platform to the incident wave
field. Using that model and the Gaussian closure technique, a relation-
ship was derived for predicting the motion spectra of a platform given
the incident flow field spectra. In the last chapter, predictions of
deflection spectra were compared with spectra estimated from sample time
histories for a simple, hypothetical system simulated on a computer.

The agreement between predicted and estimated spectra demonstrated the
suitability of the Gaussian closure technique and the replacement of the
"v|v|" term in Morison's equation by a term of the form "av + bv3",

To test the overall ability to predict deflection spectra of a
structure excited by random waves, a small scale test of a simple struc-
ture mounted in a wave tank was devised. Since the numerical simulations
verified the applicability of the Gaussian closure technique, this ex-
periment was mainly a test of the model for the instantaneous response,
particularly the validity of employing the relative velocity form of the
drag term of Morison's equation. For the experiment, a vertical, 0.025 m
in diameter, surface-piercing cylinder with a wetted length of 0.52 m was
suspended in a wave tank. The cylinder was free to oscillate in the di-
rection of wave propagation, with a natural frequency within the band of
the wave spectrum. The object of the test was to estimate displacement
spectra from records of the motion of the cylinder in unidirectional
random waves and compare those spectra to predicted spectra. For fatigue

damage estimation, the most important aspect of the theory developed is
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the prediction of an effective hydrodynamic damping which is sea-state
depdendent. Therefore, particular emphasis was placed on the comparison
of estimated and predicted damping.

The experimental apparatus is shown in Figure VI-1. The apparatus
was designed specifically to minimize structural damping, so that any
hydrodynamic damping could be accurately measured. The shaft, which
supported the surface-piercing cylinder, rode on air bearings. The leaf
springs, made from pairs of hacksaw blades bolted together at the ends,
not only acted as the system springs, but also provided torsional re-
straint to prevent rotation of the support shaft without introducing
any rubbing contact. The displacement sensor, not shown in Figure VI-1.
was a linear, variable, differential transformer (LVDT). The sensor was
mounted so that the core, which moved with the cylinder, did not contact
the coils, which were fixed to the support structure. As a result of
these features, the structural damping was only from viscosity in the
air bearings and hysterisis in the hacksaw blades.

Figure VI-2 is a logarithmic plot of the freely decaying oscillations
of the cylinder in air. Approximately 150 cycles of motion are included
in the graph, with the damping estimated at 0.10% of critical damping
at an amplitude of motion of 5 mm. The natural frequency of oscillation
in air was 9.525 rad/sec. The distinctive pattern observed in the plot
resuited from the sampling frequency being almost exactly eight times the
natural frequency of the cylinder. As a result, every eighth sample is
taken at nearly the same phase in the cycle.

In addition to the oscillating cylinder, a second cylinder and a
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Fig VI- 1: Experimental Apparatus
tfor Oscillating Cylind.
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wave probe were also mounted in the wave tank. The three pieces of
equipment were mounted in a 1ine parallel to the wave crests, so that
they all experienced the same water at the same time. The second cylin-
der had the same diameter and submerged length as the oscillating cylin-
der, but was held above the waver by a force transducer rather'than
being free to move. The second cylinder was included in the experiment
as a test of the validity of Morison's equation.

Each run of the experiment involved generating random waves corres-
ponding to a given sea state and recording the outputs of the three
transducers on a four-channel, FM tape recorder. Based on a length ratio
of 100:1 and Froude scaling, the waves generated corresponded approxi-
mately to Pierson-Moskowitz sea states for wind speeds of 20, 30, 40,
and 50 knots. For each run, 25 minutes of data were recorded, or over
2,000 oscillations of the cylinder. Inraddition, free vibrations of the
cylinder in air and in calm water were also recorded.

Data analysis began with digitization of the recorded data. Analog
to digital conversion, as well as all subsequent analysis, was performed
using a GenRad, four-channel, spectral analysis system built around a
POP-11/34 minicomputer. Once digitized, all data was stored on a disk
for later processing.

The objective of the processing was to compare the observed force on
the fixed cylinder and deflection of the oscillating cylinder to the pre-
dicted behaviour for the same incident wave spectra. As a preliminary
step to that processing, histograms were computed for each channel of

each run. The histograms indicated whether any clipping of the signals
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had occurred during the A/D conversion as well as indicating any depar-
tures from a Gaussian probability distribution for each process. In
preparation for comparing estimated with predicted response spectra,
autocorrelation functions were estimated out to 20 seconds lag for all
processes. In addition, cross-correlation functions between wave ele-
vation and force on the fixed cylinder were estimated out to the same
lag.

Before comparing the observed behaviour in the experiment with the
predicted behaviour, it is necessary to discuss the choice of values for
Cm and Cd used in the prediction of the hydrodynamic forces. Unfortun-
ately, 1little work has been done on hydrodynamic force measurements
in random seas, so it is necessary to infer appropriate values for Cm
and Cd from experiments performed with uniform, harmonically oscillating
flows. As is commonly assumed, the variation in flow conditions along
the length of the cylinder was treated by a strip theory approach. To
relate values of C and Cd from harmonic flows to values for random flows,
a rational method was proposed. The method, described in Appendix B, re-
quired computing weighted averages of Cm and cd, for harmonic flows,
over the range of cycle amplitudes tikely to be encountered in a parti-
cular random process. The end result is that functional relationships

were developed between Cm and Cd and the non-dimensional parameters N*K_c

and R*.
2ﬁ0u (VI-1)
N* = -
K-C )
o D
R* = u (VI-2)
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In these equations, 9, is the RMS fluid velocity and w is the mean fre-
quency of the random process.

As mentioned previously, the fixed cylinder was included in the
experiment as a test of the applicability of Morison's equation. To
determine whether the values of C and Cd from harmonic flow tests could
predict the forces on a fixed cylinder in waves, estimated and predicted
spectra were compared. The Gaussian closure technique was applied to
the problem to determine the predicted relationship between wave elevation
spectra and wave-elevation to force cross-spectra. Using the hydrody-
namic force model described in Chapter II, with the potential flow com-
ponent of the force given by the inertial term of Morison's equation, and
assuming that the incident wave kinematics are adequately described by

linear, potential flow theory, the following relationship was derived.

Snf(w) = Hnf(w) Snn{w) (VI-3)
o C,oDo 2
Re{Hnf(w)} = J[l d” u wexp [—@~1J dy (VI-4a)
h o YeT °
0 2
{1+ C )pmD _ 2
Im{Hnf(w)} = f m w2 exp [MJ dy (VI-4b)
-h 4 9
2 Y -2%y
9, (y) = w" exp g Snn{w) dw (VI-5a)
0

) 2
) = cuzty)/f exp [—"’—‘g—l] Snn(y) dy (V1-5b)
0
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Even though the relationship between fluid particle kinematics
and hydrodynamic force was taken to be non-linear, a transfer function
could be identified, relating the wave spectrum, Snn(w), to the cross-
spectrum, Snf(w). Using the wave elevation autocorrelation function
and the wave elevation to force cross-correlation function estimated
from the data, the same transfer function could be estimated for each
run of the experiment. Comparison of the predicted and estimated trans-
fer functions was particularly useful because the influences of the co-
efficients Cd and Cm could be separately examined in the real and ima-
ginary components of the transfer function. However, "correct" values
of Cm and Cd could not be derived from an examination of the transfer
functions because both C. and Cd were strong functions of position along
the cylinder due to their dependence on N* . and R*. Rather, the trans-
fer functions yielded weighted averages of the coefficients over the
length of the cylinder.

For each run, graphs were plotted of the ratio between the two com-
ponents of the transfer function estimated from the data and the transfer
function predicted using the Gaussian closure technique. To aid in the
interpretation of this graph, the wave-elevation spectrum, the wave-force
spectrum and the square of the coherence between the wave elevation and
the wave force were also plotted. The spectra and cross-spectra were
estimated from the auto- and cross-correlation functions by the Blackman-
Tukey method. A Bartlett window was used with a maximum lag length of
20 seconds.

To complete the processing of the data, the estimated and predicted
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deflection spectra for the oscillating cylinder were compared. The
maximum entropy method (MEM) was used to estimate deflection spectra
from the observed motion, as it had the spectra from the numerical sim-
ulations. The number of poles to be used in estimating each spectrum
were selected according to the criterion outlined by Campbell [3].

The predicted motion spectra were computed using equations (IV-14)
through (IV-19), (IV-34) and (IV-42). Evaluation of the equations was
relatively simple as the structure responded in only one mode and the
submerged geometry was simple. The structural-dynamic parameters of
natural frequency, orthonormal mode shape and modal damping were required
as input to the predictions. The modal damping, estimated at 0.13% of
critical, included the hydrodynamic radiation damping as well as the
system damping measured in air. The natural frequency and amplitude of
the mode shape varied between runs because the hydrodynamic added mass

depended on the severity of the sea state through N*¢_¢- For each run,

the natural frequency was estimated from the data and, based on the

natural frequency measured in air and the weights of the components,

the virtual mass of the system was estimated. The orthonormal mode shape
could then be computed, given the virtual mass. As an example, the
natural frequencies in air and in calm water were 9.526 rad/sec and 9.348
rad/sec respectively. Since the mass of the structure in air was 5.21 kg,
the virtual mass in calm water was 5.41 kg. Therefore, the amplitude

of the orthonormal mode shape, My, was 0.430 kg']/2 in calm water. The

amplitude of the mode shape is in keeping with the orthonormal require-



ment that the modal mass, equal to the Qirtuai mass muitiplied by the
square of the mode shape, must be unity.

Values of Cm and Cd required in the prediction were selected as
described previously, except that the relative velocity was used in the
calculation of N*K_C, rather than the fluid velocity alone. The co-
efficients were then adjusted, based on the ratios of estimated to pre-
dicted transfer functions of the wave elevation to the hydrodynamic
force on the fixed cylinder. Also required as input to the predictions
were the spectra for the incident fluid kinematics. These were computed
from the estimated, wave elevation spectra and linear, potential flow
theory.

Prediction of the motion spectra of the cylinder had to be performed
iteratively, although only two iterations were required for each predic-
tion. To simplify the computation, the double integral of szij(w) in
equation (IV-42) was evaluated approximately. The integral is difficult
to evaluate but the influence of the integral is minor compared with the
other terms in the equation.

Figures VI-3 through VI-42 are plots showing for each run the results
of the processing described. Ten plots for each run are presented. Of
each group of ten, the first three are normalized histograms of the wave
elevation, wave force and cylinder deflection with a Gaussian distribution
overlaid on each. The next three plots are the wave-elevation spectrum,
the wave-force spectrum and the square of the coherence between the two.
The next two plots show respectively the ratios between the estimated and

predicted components of the transfer function corresponding to the inertial
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and drag forces. The ninth plot shows the damping estimated as a func-
tion of the number of poles in the MEM model. The last plot of each
group shows, superimposed, the estimated deflection spectrum and the
predicted deflection spectrum. The estimated spectrum is plotted as a
dashed line while the predicted spectrum is plotted as a solid line.

Concerning the plotted results, a number of comments can be made.

1. The wave-force histograms are much more non-Gaussian than the
wave-elevation histograms. Therefore, the relationship between the fluid
kinematics and the hydrodynamic force must be non-linear.

2. Although the wave-force histograms are non-Gaussian, all of the
cylinder-deflection histograms appear to be Gaussian. This observation
indicates that the Gaussian closure technique should yield reasonable pre-
dictions of the deflection spectra for this problem.

3. A1l coherence functions between wave elevation and wave force
are close to unity at least over the range of frequencies around the peaks
of the wave-elevation and wave-force spectra. The high coherence implies
that the wave-elevation and wave-force spectra can be related to each
other through a transfer function. There is an apparent paradox between
the conclusion based on the histograms, that the relationship between wave
elevation and wave force must be non-Tinear and the conclusion based on
the coherence, that the wave-elevation and wave-force spectra can be re-
lated through a transfer function. Normally transfer functions are associ-
ated with Tinear systems. However, one of the consequences of applying
the Gaussian closure technique is that a transfer function can be identi-

fied between the spectra of two random processes which are non-linearly
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related.

4. The ratios of the estimated to the observed, real and imaginary
components of the transfer functions were generally flat over a signi-
ficant frequency band, indicating that Morison's equation is providing
a reasonable prediction of hydrodynamic force for a cylinder excited by
random waves. However, the ratios are not exactly equal to one. Some
of the plots do show departures from a constant ratio. In particular,
both the inertial and drag component ratios show significant departures
for the 50 kt. sea state. However, it is not possible to draw any con-
clusions about the cause of the departure without further experiments.

5. Typical behaviour of the damping estimates as a function of the
number of poles in the MEM model show large swings at Tow numbers of
poles but converging to a reliable estimate as the number of poles in-
creases, in accordance with the guidelines established by Campbell.

6. Generally good agreement was found between the estimated and
predicted deflection spectra although the predictions tended to under-
predict the response.

Téb]e VI-1 contains a listing of the significant numbers associated
with each run of the experiment. Of particular interest are the esti-
mated and predicted RMS deflection of the cylinder and the estimated and
predicted damping. As noted previously, the predictions of response were
less than the observed responses. At least partially explaining the un-
derprediction of response, the predicted damping tended to be higher than
the damping estimated from the observed behaviour.' A number of explana-

tions of the overprediction are possible. One possibility is that the
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relative velocity formulation of Morison's equation does not accurately
predict the hydrodynamic force very close to the free surface. Certainly
the argument presented in Chapter II as justification of the relative
veiocity formulations breaks down near the free surface. Another possi-
bility is that Morison;s equation does not accurately predict the fre-
quency components of the force on the fringes of the frequency band of
significant velocity. Although there are differences between the esti-
mated and predicted damping and response, the qualitative agreement is
good. The prediction of a sea-state dependent hydrodynamic damping is
dramatically demonstrated in the experimental results, as shown in Figure

VI-43.
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Nominal Sea State

Sig Wave Height (m)

Meén Frequency (rad/sec)

RMS Particle Velocity (m/sec)
Reynold's Number
Keulegan-Carpenter Number
RMS Force on Cylinder (N)

Cm Adjustment

Dc ‘Adjustment

Predicted RMS Deflection (m)
RMS Deflection of Cylinder {m)

MEM Estimate of Nat. Freq.
(rad/sec)

Std. of Estimate
Predicted Damping (% of Crit.)

MEM Estimate of Damping
(% of Crit.)}

Std. of Estimate
# of Poles Used

Table VI-1:
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20 kt.

0.050
8.55
0.121
3100
3.5
0.136
0.95
1.20
.0029
.0035

9.356
0.001
0.84

0.55
0.07
46

30 kt.

0.072
7.18
0.130
3300
4.5
0.151
0.95
0.85
.0022
.0026

9.387
0.001
0.82

0.60
0.08
44

Summary of Results

40 kt.

0.118
5.92
0.174
4400
7.3
0.228

0.80
L0017
.0021

9.43]
0.002
1.42

1.10
0.12
a4

50 kt.
0.132
5.19
0.172
4400
8.2
0.249
1.20
0.80
.001
.0018

9.456
0.002
1.64

1.30
0.12
64
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VII. CONCLUSIONS

The purpose of this research has been to develop a method for pre-
dicting the motion spectra of an offshore platform in moderate seas.
Particular emphasis was placed on the effect of the separated flow drag.
To that end, a model of the behaviour of an offshore platform was de-
veloped which included separated flow drag through the relative velocity
formulation of Morison's equation. Because the model was non-linear,
and therefore could not be manipulated using standard random vibration
techniques, predictions of the motion spectra were obtained using the
approximate technique of Gaussian closure. Examination of the final re-
lationship revealed that the non-linear, separated flow drag had approx-
imately the same effect on the predicted spectra as an additional force
on the structure, linearly related to the incident fluid velocity and
an additional sea-state dependent hydrodynamic damping.

Two tests of the spectral predictor were performed. Spectra pre-
dicted using the derived relationship were compared to spectra estimated
from sample time histories for a simple, hypothetical system modelled on
a computer. Additional damping in excess of the specified system damping
was observed in the sample time histories, in complete agreement with
the hydrodynamic damping predicted. Similar results were obtained for a
test of a small, spring-mounted cylinder excited by waves. Additional,
sea-state dependent damping observed in the time histories agreed quali-
tatively with predicted hydrodynamic damping although the predicted

values of damping always exceeded the observed values.
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In conclusion, this research has demonstrated that separated flow
drag Teads to an effective hydrodynamic damping which is sea-state de-
pendent. This additional damping was observed experimentally and pre-
dicted theoretically. The experimental results confirmed the suitability
of the Gaussian closure technique in the solution of non-linear, random
vibration problems of this type. It was also found that the relative-
motion formulation of Morison's equation gave reasonable predictions of
the hydrodynamic force on a cylinder in random waves, for judicious
choices of the coefficients Cm and Cd.

The next logical step in this research is to apply the prediction
equation to a real platform. One of the very large platforms, such as
Cognac or Hondo, would be a good choice to study as these are the plat-
forms most susceptible to fatigue damage through resonant response in
moderate seas. The main effort required in order to predict response
spectra or even modal damping for one of these platforms would be to
transform the equations derived in this thesis into an efficient compu-
tational scheme. If it is found that hydrodynamic damping is significant,
then estimates of modal damping from observed motion in a variety of
sea states should be made to test the predictions. As an indication of
the order of magnitude of hydrodynamic damping, hydrodynamic damping of
the fundamental modes of Shell's South Pass 62C was predicted to be
about 0.5% to 1.0% in a 40 kt. sea state, which compares to a total measured
damping around 2.0%.

The model used for the hydrodynamic force, the reiative-motion form-

utation of Morison's equation, introduced most of the uncertainty in the
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accuracy of the predictions. Although a great deal of effort has been
expended on measurement of hydrodynamic force in uniform, harmonic flow,
very 1ittle has been directed to relating Cm and Cd so estimated, to
appropriate values for use in random waves. The arguments presented in
this thesis for choosing appropriate values of Cm and Cd are no substi-
tute for an extensive program of measurements of forces in random waves.
The near-surface region, where the relative-motion argument for including
the motion of the structure fails, needs special attention. It is very
important that forces in the near-surface region be accurately modelled
since the fluid motion and hence the force per unit length is greatest
in this region. Also, in view of the difficulty in manipulating a term

3u and with-

of the form "v|v|" as compared to a term of the form “av + bv
out justification that "v|v|" is any better representation of nature in
oscillating flows, it is proposed that future experimental work on sepa-
rated-flow drag be directed at estimating values of a and b. Not only

is this proposed form of the drag term easier to use, but it may be possi-
ble to more closely match predicted to observed forces because the num-
ber of parameters which can be adjusted has been increased by one.

In addition to the directions for future research noted, this re-
search has a direct implication on the use of dynamic, finite element
programs in the design of offshore platforms. The hydrodynamic component
of the damping may be counted twice in the analysis. The modal damping
input into one of these programs is normally based on measurements of

modal damping estimated from ovserved moticn of similar platforms. The

estimated modal damping includes any effective hydrodynamic damping of
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the existing platform. Many programs compute hydrodynamic forces using
the relative motion formulation of Morison's equation. Therefore, the
effective modal damping of the computer model of the platform equals

the modal damping specified as input plus the hydrodynamic damping pre-
dicted in this thesis. Thus, the hydrodynamic damping is counted

twice, once from the observed motion of similar platforms and once by
the use of the relative motion formulation of Morison's equation. A
more reasonable approach would be to subtract the predicted hydrodynamic
damping from the estimate based on the observed motion before using it

as input to a program.
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APPENDIX A: A Change in the Form of the Drag Term in Morison's Equation

Morison's equation is rather difficult to manipulate mathematically
because of the presence of the magnitude of the velocity in the drag
term. In performing a non-linear stochastic analysis, some way must be
found to get around this difficult problem. As has been pointed out by
Dalzell [4], a term of the form'v|v|"can be approximated with good
results by one of the form "av + bv3", with an appropriate choice of a
and b. As demonstrated in Chapter IV, this Tatter form can be handled
quite readily in a stochastic analysis.

The vector version of Morison's equation is shown in equation (A-1)

and the proposed modified version in equation (A-2).

c, D

. 2
B pmD” - do_ -
1 (1 + Cm) 7 Vi + 5 Vi|vi| (A-1)
df 2. C 4D
L = (.[ + Cm) '&——4 V,i + 3 V_i(a + vaVj) (A-Z)

In the above equations, v, is the incident flow velocity, which is

i
assumed to be in a plane perpendicular to the axis of the cylinder.

Before deciding whether equation (A-2) is an acceptable substitute
for equation (A-1), it is necessary to make a good choice of the two
constants, a and b. A rational method by which to choose the constants
is to minimize the "error" caused by using equation (A-2) instead of

equation {A-1) in a particular problem. One formulation of the "error®

js the integral of the magnitude squared of the difference in forces,
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over all values of Vs weighted by the probability density function of
Vs Equation (A-3) expresses this “error”.

2
p(v; }dv,dv,dv, (A-3)

'*I—

Equation (A-3) can be expanded by substituting in equations (A-1) and
(A-2).

C DD 2
e - H (lvgl = a - bugv)?ivi1? p(v,)dvdvgdv,  (Acd)

To proceed from here, we will assume that only one velocity com-
ponent is significant. This situation arises commonly in practice,
such as for the vertical members of a structure subjected to a long-
crested sea. In fact, the choice of values for a and b are not strongly
affected by this assumption but the computational difficulty is greatly
reduced. Equation (A-5) reflects the above assumption. Note also that

the subscripts have been dropped as only one velocity component remains.

2
C.rD
E (—dz-—> fv2(|v| - a - bv®)2 p(v) dv (A-5)

The type of problem for which it is desirable to use equation (A-2)
is one in which an offshore structure is excited by waves of a random
sea of low to moderate intensity. In such sea states, the probability
distributions of the water velocity components fit the Gaussian distri-
bution quite well. Equation (A-5) can thus be rewritten, substituting
in a Gaussian probability density function.

2
C,D e 2
E = ( dz ) ] i f v2(|v| - a - bv?)? exp l:- ——V—f]dv (A-6)
VEwUV - 20

v
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In equation (A-6}, cvz

is the mean square water velocity incident on
the cylinder.

The procedure for choosing a and b is straightforward from this
point. The integral can be split into positive and negative halves
in order to eliminate the magnitude operator. The polynomials inside
each integral can be expanded and the integrals evaluated using tables
of definite integrals. Choosing a and b to minimize E then reduces
to setting the partial derivatives of E with respect to a and b to

zero. The resulting pair of linear equations can be solved for the two

coefficients.

SETN

(A-7a)

(A7b)

Q

o
"
wl_‘

Equation (A-2) can now be completed with the inclusion of equations
(A-7a) and (A-7b).

df. 2 C Do V.V,
oo () e

T BGV

In figure A-1 are plotted the magnitudes of the drag terms of
Morison's equation and the modified equation, both as a function of the
magnitude of the velocity. As can be seen, the modified equation is a
good approximation of the original equation over the range 0.5 I,
to 3.5 a,- Thus for a random vibrations problem involving separated
fiow, the only timeswhen the force is not well modelled are when the

velocity is Tow and during the infrequent times when the velocity is
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high. If the purpose of this thesis were to predict extreme responses,
then equation (A-2) would not be so useful, but since the goal is pre-
dicting motion for the purpose of fatigue estimates, the rare, extreme
responses are not very important.

It is anticipated that the main influence of the separated flow
drag term on the response of an offshore structure to Tow and moderate
sea states will be to increase the apparent damping of the structure.
It would therefore be useful to compare the two equations in a problem
involving computation of apparent added damping. Most problems of this
type are too difficult to solve using Morison's equation, hence the
need for the modified version. However, there is one problem which can
be solved using either equation, while still bearing a strong resemb-
lance to the type of problem studied in the body of this thesis.

Consider the following simple problem. A cylinder is randomly
oscillating with instantaneous velocity w(t). The surrounding water
is also randomly oscillating with an instantaneous velocity u(t). The
velocities u(t) and w(t) are independent, stationary, zero-mean, Gaus-
sian, random processes with standard deviations o, and Oy respectively.
For simplicity, we will restrict u and w to motion along one axis. This
problem is similar to the real problem of a segment of a member on a
platform in a long-crested random sea. The main difference between the
two problems is that u and w would not necessarily be independent in
the real problem.

The object of the analysis of this problem is to compare the effec-

tive added damping predicted using Morison's equation versus that pre-
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dicted using the modified version of the equation. The effect of adding
a damper to the cylinder would be to cause a net flow of power away from
the cylinder. Therefore, if the separated flow drag acts to effectively
increase damping, there should be a net power flow away from the cylin-
der due to the separated flow drag. The course which will be followed
is to predict the expected value of the power flow from the cylinder
in this problem. The power flow will be calculated using Morison's
equation as well as the modified form proposed in equation (A-8).

The instantaneous power flow per unit length from the cylinder to
the water is equal to the negative of the hydrodynamic force acting on

the cylinder multiplied by the cylinder's velocity.

o

hls df

1. w3 (A-9)

As mentioned in Chapter II, the relative velocity form of Morison's
equation, and by the same reasoning the modified equation, should be
used for the hydrodynamic force in the power flow calculation since
the cylinder moves. The two power flows to be compared are found by
substituting relative-velocity extensions to equation (A-1) and (A-8)
into equation (A-9).

2 .

Z o C pTrD W C pD
_gJ[T. = -w{('l + Cm) .QT_TED___U . m 1 + dz v|v] } (A-10a)
gll S ('l +C ) DTTDZ l:l _ CmpTrDZ V.\‘ + CdpDOV 1+V2 1
dL { m 4 4 V.3 v ? (A- Ob)
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The following two equations relate the relative velocity to the velo-

cities of the cylinder and water.
V = U -w (A-11)
o = o + g (A-12)

The instantaneous power flow is not so important as the expected value

of the power flow.

2 . C_prD . C,oD
E[%_H: _(1+cm)i% Efwi] + T7— E[wi] - —dg— Elwv]v|] (A-13a)

2

' 2 . C p . C,pDg 1+y
gide | = -(1+cm)9}[—D— E(wd] + —p— E[wa] - - E[WV<3G 2)} (A-13b)
vZm v

dL

Note that u and w were defined to be independent so that the first
term on the right side of each equation is zero. Also, the expected
value of a stationary random process multiplied by its derivative is

zero, so that the second term of each equation is also zero.

C,pD
E[gﬂ = - —92—— E[wv|v|] (A-14a)
- [d.r‘-l] CdpDOV c [ (] . V2 >:| (A '|4b)
@ 1= SV Elwy -
d T 307

The two expectations can be evaluated without much difficulty. It turns

out that the two power flows are identical.

ar 1~ Jar | _ A2 2
E[a%] = E[a{—-} = FCdpDovcrw (A-15)
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In conclusion, a modification to Morison's equation was proposed
which eliminated the difficult mathematical problem of dealing with the
magnitude of the velocity. The modified equation contained two para-
meters which could be adjusted so that the modified equation would best
fit Morison's equation over some range of velocities. A method was
described for choosing the two parameters which led to equation (A-8).
A plot of Morison's equation and the modified equation showed that a
good fit was made of Morison's equation by the modified version over
the important range of velocities for any particular problem jnvolving
random flows.

To test how well the modified equation could predict effective,
added damping, a simple problem was studied. The effective damping in
this problem was predicted using Morison's equation and using the modi-
fied version. The two effective damping predictions were identical.
Therefore, not only is the modified equation a good fit to Morison's
equation over the important velocities for any random flow problem, but
the modified equation also predicts the same effective hydrodynamic
damping. Therefore, no problem is anticipated in using the modified

equation in this research.
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APPENDIX B: Selection of the Coefficients Cm and Cd for a Randomly
Oscillating Flow.

When computing the hydrodynamic forces on a member of an offshore
structure using Morison's equation, a question arises as to the values
of Cm and Cd which should be used. Invariably, the flow around the
member is a random process, whereas the majority of experiments performed
to date to measure forces have employed harmonic flows. The purpose of
the following discussion is to present a rational approach for the
selection of Cm and Cd to use in a particular, random-flow problem
based on the published values of Cm and Cd for harmonic flows.

Consider that the displacement of the water particles around a
fixed cylinder is a very narrow band, stationary, zero-mean, Gaussian
random process. If a random process has a very narrow bandwidth, indi-
vidual cycles can be identified in sample time histories of the process,
with the amplitudes of successive cycles being a slowly varying function
of time. Over a few cycles, the hydrodynamic force is approximately
equal to the force measured on a similar cylinder in an harmonic flow
with the same frequency and amplitude of motion. Therefore, for a narrow-
band, random process, it is possible to relate the hydfodynamic forces
to the forces measured on cylinders in harmonic flows.

For cylinders in harmonic flows, the hydrodynamic force is normally
related to the instantaneous fluid velocity, u, and acceleration, u,
through Morison's equation with the coefficients Cm and Cd dependent on
the frequency of osciilation and the amplitude of the cycle. Therefore,

the hydrodynamic force in random flows can also be related to the fluid
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velocity and acceleration through Morison's equation, with the coeffi-
cients Cm and Cd varying from cycle to cycle. However, it is necessary
for this and other work to be able to predict hydrodynamic forces in
random flows from Morison's equation using constant coefficients C;

d
of Cm and Cd appropriate for harmonic flows over the range of amplitudes

and C*. The values of C; and C*d must in some sense reflect the values

encountered in a particular random process. When comparing the narrow-
band random flow with harmonic flows, the same frequency of oscillation
will be assumed in both cases.

A rational method for selecting appropriate values for C$ and Cg
would be to minimize a measure of the difference between the predicted
hydrodynamic force based on constant coefficients and based on coeffi-
cients which depend on the amplitude of the cycle. The particular
measure which will be minimized is the expected value of the square of

the difference in predicted forces, AF.

AF = EL(f-f*)%] (B-1)
2 .
foe (e (a) MUy coa) 82y (8-2)
2
fro (1ecn) 00 4 g Dy (8-3)

In equation (B-2), Cm(A) and Cd(A) are the values of the added mass and
drag coefficients appropriate for an harmonic flow with displacement
amplitude A.

As a first step in evaluating equation (B-1), introduce the follow-

ing change of variables:
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Awsin ¢ (B-4a)

[ =y
1

-AEEZ cos ¢ (B-4b)

e
H]

The random variable ¢ corresponds to the phase of the displacement
cycle for a narrow-band random process. Introduction of the phase is
useful, because A and ¢ are independent of each other. The amplitude,
A, has a Rayleigh distribution with parameter o/, where 94 is the RMS
water particle displacement. The phase has a uniform distribution over
the range -w to w. The parameter i is the mean frequency of the
random process.

Equation (B-1) may be expanded by substituting in equations (B-2)
through {B-4b) and grouping terms. The expectation of the cross-terms

between the inertial and drag components of the force is zero.
o2
e [ (e (a) - cn)? (Pﬂ”—) A2 5t cosPy 4
| m m 4
+ (Cd(A) - C} (92—0->A4 LSA sin4¢} (B-5)

Because A and ¢ are independent, equation (B-5) can be further simpli-

AF

fied.

2
2
AF (-99—) ot E[A2(C (A) - ¢4)2] Elcos®y]  +

)
2
+ (%B) 3 eatc (a) - ¢?1 Elsinty)  (B-6)

In order to minimize AF, take the partial derivatives of AF with respect
to C; and C; and set them to zero. The values of C; and CE for which
the partial derivatives are zero are the optimum selections according

to this method.
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* = 2 2
Cx = E[A Cm(A)] / ETA°] (B-7)
¢y = ElR'cy(m)] /7 £(a%] (8-8)
® A -2
where: Efg(A)] = jg(A)U— exp —5 dA (B-9)
4 d 20d

The method of selection described reduces to taking a weighted
average of the values of Cm and Cd appropriate for harmonic flows.
The weighting function and hence the values of C; and C*d depend on
the particular random flow conditions through the probability density
function of the amplitude. For a Rayleigh distribution, the probability
density function is specified completely by the RMS displacement, Oy
Therefore, C; and CE are functions of Oy~

Just as Cm and Cd are related to the amplitude of the cyclie for
harmonic flows through the Keulegan-Carpenter and Reynolds number, C*m
and Cﬁ are related to the RMS displacement, Oq> through equivalent non-
dimensional parameters. The particular forms of the parameters used in
this thesis are defined by equations (VI-1) and (VI-2). To parallel
standard practise in the definition of Keulegan-Carpenter number, the
random fiow non-dimensional parameters are expressed in terms of 9,
the RMS velocity rather than 94 % being equal to 9y multiplied by w.
In figures B-1 and B-2, CE and Cé are plotted as functions of the random

flow Keulegan-Carpenter number. The curves are plotted for a fixed

value of p*, 800, where R* is defined by equation {B-10).

2
_ R* _  wb
S A (B-10)
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The curves were computed from equations (B-8)} through (B-10).

The functions Cm(A) and Cd(A) were taken from curves published by
Sarpkaya [12]. A correction was applied to Cd(A) at the Tower Keulegan-
Carpenter numbers in accordance with the work of Verley [14]. This
correction was important because of the Tow Reynolds numbers in the ex-
perimental work in this thesis. For comparison, a second curve was
plotted in each figure. These curves show the values of C; and CE which
would be used if the selection were based on taking the values of Cm

and Cd appropriate for an harmonic flow with the same RMS velocity as

the random flow. The large differences point out the importance of
carefully considering the method of selection of CX and Cﬁ. However,

no method of selection based on experiments in harmonic flow is a proper
substitute for experimental measurements of hydrodynamic forces in

random flows.

The derivation of the relationship between the hydrodynamic force
coefficients for harmonic flows and random flows was performed in the
context of a very narrow-band, random process and a fixed cylinder.

For lack of suitable alternatives, the relationship will be used inde-
pendent of the bandwidth of the random process, on the understanding

that the accuracy of the results probably degrades with increasing band-
width. On the basis of the Navier-Stokes equation argument, the relation-
ship can also be applied to problems in which both fluid and cylinder
move by replacing the statistics of the incident flow, Sy and w, by

the equivalent statistics of the relative motion between the fluid and

the cylinder.
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