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ABSTRACT

Lateral-torsional instability (tripping) of stiffeners is often considered in design of
marine structures to be only a secondary mode of failure. However, analytical studies and
some tests have demonstrated that this mode has a serious potential of being the primary
mode. Some design-oriented equations for axial and lateral loads have been proposed for

both symmetrical and asymmetrical stiffeners.

For symmetrical cross sections (tees), torsional failure is characterized by the twisting
of the stiffener about its line of attachment to the plating; for asymmetrical cross sections

(angles) -- by the twisting coupled with flexural deformation.

This report presents a review of the general analytical methods and of the more
prominent current design recommendations. A comparison of the theories with the few
available test results indicated an acceptably reasonable agreement. The following

parameters were taken into account in developing the solutions:

Rotational restraint provided by the plate.

Effective area of the attached plate.

Deformation of the cross section, specifically, the bending of the stiffener web plate.
An approximation of the nonlinear material and structural behavior.

R

A sample comparison of the torsional strengths of an angle and of a tee stiffener with
the flanges of the same size was made according to the proposed design methods. The
results showed that an angle stiffener with a lower slenderness ratio (L/r) is stronger than
a tee but is weaker for a higher slenderness ratio. However, when the effect of web defor-
mations was included, the overall axial strength of angle stiffeners tended to fall below that

of tee stiffeners.

A short computer program (in BASIC) is included in the report for performing the

otherwise tedious iterative procedure of analyzing angle stiffeners with web deformations.
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1. INTRODUCTION

1.1 General Remarks

Stiffened plates are commonly used in marine structures, such as ships, superstructures
of offshore platforms, as well as, in aircraft, bridges, etc. In these applications, stiffened
plates are often loaded in compression and therefore the avoidance of buckling is an impor-

tant consideration in design.

This report deals with the torsional buckling (tripping) of stiffeners under axial com-
pression and end moments. The purpose was to improve the accuracy of the present
design rules for this failure mode. Particular emphasis was put on asymmetrical stiffeners

(angle, zee).

A stiffened plate can fail by instability in the following modes:

1. Overall buckling: the stiffener buckles together with the plate.

2. Torsional buckling (tripping) of stiffeners, often forming more than one half waves be-
tween the transverses.

3. Plate buckling between stiffeners.

4. A concurrent or sequential combination of all or some of the first three modes.

Although initial buckling may take place in the plate at a relatively low stress level,
a significant amount of post-buckling strength may remain in the stiffened plate if the

structure is carefully designed and fabricated.

Some recent publications have pointed out the significance of lateral-torsional
(tripping) instability as a primary failure mode for stiffened plate structures
12,3, 4,56, 7, 89,10, 11 The potential for such failure has important ramifications on the
weight, fabrication costs, and structural reliability. Thus, the ability to predict tripping

failure in the early stages of design can haveimportant consequences on the final design.

Review of literature and of available test results shows that relatively little material
is available on the subject of tripping of stiffeners, especially, on the analysis and design of
asymmetrical stiffeners under axial and bending loads. Also, there are some differences and

contradictions in the available studies.
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Critical appraisal is made here of the available theoretical solutions and design recom-
mendations and a comparison is made with the available test results in order to find dis-
crepancies among the assumptions, formulations and results and to suggest the more ac-

curate and practical method(s).

1.2 Basic Concept of Torsional Buckling (Tripping) of Stiffeners

For the purpose of design and analysis, a wide stiffened plate may be treated as an
assembly of connected flat plate strips, each with one stiffener in the middle (see Fig. 1).
When a stiffened plate is subjected to compression, bending, shear or a combinaton of these
stresses, its theoretical buckling load can be evaluated by analyzing one plate-stiffener com-
bination as an individual member. However, it is also possible that a plate may buckle lo-
cally before the whole member becomes unstable or before the yield stress of the material
is reached. The development of local buckles may result in an appreciable loss of strength,

(See Fig. 2), and sometimes will initiate the failure of the entire structure.

Torsional buckling (tripping) is defined as the twisting of the stiffener about its line
of attachment to the plate. This kind of lateral-torsional instability has often been ignored
or considered as a ”secondary” mode of failure in structural desi_gnz. There are two defor-
mation modes possible during the failure of a stiffened plate. In the first, the consecutive
stiffeners deform in the transverse direction by approximately equal but opposite amounts.
This mode is called the ANTISYMMETRICAL mode. In the second mode, the stiffeners
deform in the same direction, and this is called the SYMMETRICAL mode'?. (See Fig. 4)

For the purpose of design, it is desirable to simplify the analytical procedure and to

make the formulation as compact as possible.

The following factors can affect the strength of a stiffener:

Shape of cross section (Tee, Angle, Flat bar, Bulb-flat)
Properties of material (yield stress, modulus of elasticity)
Slenderness ratio

Intial imperfections

Residual stresses

A S S A

Boundary conditions

Some of the factors, such as the boundary conditions, are not exactly known or cannot be
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measured quantitatively, and appropriate assumptions have to be made to obtain the best

approximate results.

To minimize the weight of a stiffener for the sake of economy, the effective slender-
ness must be kept as small as possible in order that the material could be used at the
greatest possible permissible stress. This design consideration is especially important for

higher strength metals.

In the inelastic range, the tangent modulus approach has been used in the same man-
ner as for columns. This is, generally, a conservative approximation to the solution of a
complex problem. Although tangent modulus reflects only the effect of nonlinearity of the
stress-strain properties, it has been widely used to take into account residual stresses,
geometrical imperfections and edge restraint by lumping all these into an approximately
equivalent tangent modulus E,. Most commonly, this has been accomplished by introducing

a transition curve between the yield and elastic buckling strengths.

The most common types of longitudinal stiffeners are: Flat-bar, Tee, Angle and Bulb-
flat.  Of these the flat-bar and tee are symmetrical about the web, and the angle and
bulb-flat are asymmetrical. In the classical formulation of the differential equations in
which the cross section is assumed not to deform, the only difference in the solution for
the two groups is that for symmetrical stiffeners, only the torsional mode is needed since it
is uncoupled from the other buckling modes, whereas for asymmetrical stiffeners, the cou-

pling of the torsional and lateral modes must be considered.

Distortion of the cross section complicates the problem considerably, and the effect be-

comes quite significant, particularly for asymmetrical stiffeners.!®
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2. SYMMETRICAL STIFFENERS

2.1 Tripping Under Axial Load

Torsional buckling (tripping) usually involves both sideways and vertical flexural
deformations (u and v), as well as rotation R of the stiffener. If the cross section is as-
sumed not to distort, then, for small deformations, the displacements are coupled as shown
in Fig. 8.4 131 25 The buckling state can be formulated by applying the Principle of
Minimum Total Potential which results in the condition that for all possible deformations,
the total strain energy U is greater than or equal to the work done by the externally ap-

4, 13, 14

plied forces The strain energy stored in the structure in the buckled state is given

by the following expression:

a
U= 1/2[ [E(15°+1,)R"? + GIR® + CR?dz (2.1)
0

where u and R refer to the translation of the flange and the rotation about the toe
of the stiffener. The total strain energy U is made up of the contributions from sideways
bending, longitudinal warping, torsion, and rotation of the supporting plate modelled as an
elastic spring. In this expression: a is the length of the stiffener between transverse sup-
ports; E and G are the Young and shear moduli of the material, respectively; C is the
rotational spring constant (per unit length) of the plate. Terms Iy, s, I, and J are

defined in Fig. 5 from the geometry of the stiffener.

When the axial thrusts and/or moments are applied at the stiffener ends, it is con-
venient to compute the external work by integrating over the cross section the product of

the axial stress arising from these forces and the axial shortening 6(x,y) of the stiffener
fiber.

W= f / F §(z,y)dzdy (2.2)

This integration is carried out over the area of the stiffener end. The relative displacement

of the two ends of the stiffener due to its curvature for a fiber at location (x,y) is

a

[u'2+v;2]dz ' (2.3)

b(z,y) = 1/2/0
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If the stiffener is restrained against twisting but allowed to warp at its ends, and the
restraint from the plating is not zero, and the cross section is assumed not to distort, it is

logical to select a buckled shape which corresponds to simply supported end conditions be-

cause of the repeatability and continuity of typical plated structures.® ® % 3. The simplest
choice is to assume a sinusoidal shape.
R= R sin (mnz/a) | (2.4)

where m i1s the number of half waves.
Substituting this mode shape into Eqgs. (2.1) and (2.2) and performing the necessary
operations, the elastic tripping stress is obtained after equating U and W.

Fpy=|B(13* + 1 )(mn/a)* + C(a/mn)’ + GJ)/1, ' (2.5)
where 1= f A[z2+ y*|dzdy is the polar moment of inertia about the stiffener toe.

Denoting the warping constant about the toe by Iwn=1y52+ I, the minimum tripping
stress is found by minimizing Eq. (2.5) with respect to m, that is, by setting oFy,/0m=0.
Then,

Min(Fp,) = [GJ +2VCEIL, /I, (2.6)

and the critical wave number is

m = (a/m){C/EI_}"/* (2.7)

This minimum value is valid only if m is treated as a continuous function. It is ac-
curate enough for m>3. If m<3, Eq. (2.5) should be used to determine F, with m being

the lower adjoining integer of m from Eq. (2.7). The minimum value of m is 1.

A plot of Eq. (2.5) is shown in Fig. 6. As can be seen for span lengths less than
L

to be a continuous instead of a discrete function. For this case, Eq. (2.5) with C = 0

e EG. (2.6) can underestimate F.p, because it assumes the number of buckled half-waves

may give a better estimate.

When the restraint against rotation is taken to be zero (C=0), the lowest buckling

stress can be seen to occur for one half wave, m=1.1!
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Fr,=[GJ+ Elwn(vr/a)Z]/Ip (2.8)

Equation (2.6) can be simplified to

Fpy=(E/1)[J/2.6 +2VCI_ JE| (2.9)

and an estimate of the rotational restraint C can be made from the dimensions of the plate
and stiffener web by
3
E (tptw)

C= - (2.10)
3(1—-v 3 3
(bt + 2dwtp)

where v is Poisson’s Ratio, and b, and t, are the thickness of the plate and the stiffener
web, respectively; b is the spacing between two adjacent stiffeners and d, is the depth of

the stiffener web.

Because the second term 2V CI /E of Eq. (2.9) is usually much larger than the first

term J/2.6, one can conservatively simplify Fp, to

Fpy=(E/1)2VCI,,[E (2.11)

Substitution of I and C in terms of the plate and stiffener dimensions results in

Fpy=(035E/L)V(Ap7d0)/(b/t: +2d, /t3) (2.12)

When m is a noninteger less than 3, a better estimate of Fr, can be made by using

Eq. (2.5) with C = 0 and m equal to the lower adjoining integer of Eq. (2.7). This gives

Fp,= (084, E/1)(bAd,/a)? (2.13)

2.2 Rotational Restraint by Plate

The only term in Eq. (2.5) which is not a property of the stiffener cross section and
which requires further attention is C, the rotational restraint by plate. As one can see
from Egs. (2.6) and (2.7), m and the tripping stress F 1, increase as C increases. When C
has a high value, the stiffener web may start bending, a condition which violates the as-
sumption that the cross section is to remain undistorted. To bypass consideration of the
effects of serious distortion, Faulkner set an arbitrary upper limit for C of 38EJ/a®' 2.

However, Adamchak showed that this value is overly optimistic®.
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An approximation of the rotational restraint can be computed by considering the plate

to be made up of unit-wdth beam strips. Then, C becomes

Ei

p
C,=—=
0 3
where C is the value of C when the plate is not subjected to axial compression. Since
the bending of the web is likely to occur for higher values of C, this analysis would seem

to be too optimistic.

The difficulty of estimating the correct value of C is in establishing the effect of axial
stresses on the response of the plate. Buckling of the plate may cause the wave length to
be closer to the a/m value and thus reduce the C value. A suggestion was made by
Faulkner and Adamchak to evaluate C with respect to the buckled wave length of the

plate by linear interpolation® %

Co(1-Fpp/Fpg) for Fpu < Fpg
C = (2.15)

where F,. is the elastic buckling stress of the plate assuming simple support along the

edges. Then, F., becomes
- Fpy=[El,, (mn/a)?+ GJ + Cola/mm)?)/I + Cyf Fppla/mn)?] (2.16)
and the initial unloaded restraint C,

C, = *D/2b[1+(mb/a)?? (2.17)

After plate buckling, the C value would no longer be uniform along the line of rota-

tion. Sometimes it would even generate moments which would encourage tripping.

The General Dynamics Design Guidelines take into account the bending of the stif-
fener web by including its stiffness in the calculation of C, as shown in Fig. 7.5 This
simplified approach should give a relatively good approximation for the plate restraint (Eq.
(2.10)) because the beam strip analysis gives an exaggerated value of C while the inclusion

of the web stiffness should provide some correction to the C value.

When the cross section of the stiffener is sturdy or when the plate slenderness ratio is
large, the stiffener would form fewer half-waves than the buckled plate and, thus, the plate

would provide greater restraint against tripping.

9
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A common approach is to ignore web deformations and to set the restraint equal to
zero ("piano hinge connection”). This seems to be the most popular approach in
"classical” solutions used for formulating many design formulas, particularly, for axial com-

pression® 11,

Another conservative alternative suggested by Adamchak is to use the minimum value

of C, for all mode numbers, i.e., let m=1 in Eq. (2.17).%

2.3 Effective Width of Plate

Under the effective width concept, only a portion of the plate width is considered to
be effective in carrying axial loads after the local buckling stress of the plate has been ex-
ceeded. The effective plate regions are adjacent to the plate edges at the stiffeners. For
an ideally flat plate, the effective width b, is equal to the total width b up to the point of
buckling, then, the axial stress is redistributed in the plate, and the additional loading is
carried by the post-buckling strength with b, becoming smaller and smaller. It is com-
monly assumed that the capacity of the plate increases until the edge stress reaches the
yield stress level. Modifications of this behavior due to initial imperfections and residual
stresses have been introduced by many researchers. A compilation of these studies is given
by Ostapenko and Surahman in the form of an analytical model of the complete (pre- and

post-ultimate ranges) load vs. shortening axial behavior of wide and long plates!® 6,

A typical stress distribution and the idealized effective width b, in a stiffened plate
are shown in Fig. 10.}7 A simple, yet reasonable, prediction for the effective width at ul-

timate strength of plates typical for marine structures is given below for the range 1<BZ:

b, 2 1 -

b B - 32 ( . )
or by a somewhat more conservative formula based on a statistical study!®

bo 182 093 21

b B  p? (2.19)
where B is the plate slenderness ratio parameter

B = (/1) VFy/E (2.20)

These equations, Eqgs. (2.18) and (2.19), represent a lower mean ultimate strength for

10
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plates having realistic initial distortions and residual stresses of the magnitude induced by

welding.

Since the tripping stress at the stiffener toe may be less than the yield stress, the ef-
fective width equation, Eq. (2.18), can be modified by replacing Fy with Fp, in Eq. (2.20).

be 2 1
== - (2.21)
BVF Fp, BF/Fp)
or in Eq. (2.19),
b 1.82 0.93
_ - (2.22)

b BVFJF,, BUF/Fp)
2.4 Buckling Under End Moments

Since a stiffened plate may be subjected to lateral loading and/or end moments, the

torsional strength of the stifffeners (tripping) must be also considered for this case.

For a stiffener subjected to axial compression P, bending moment M and transverse

loading q, the potential energy function for lateral-torsional buckling about an enforced axis

of rotation is!3:

U* = 1/2/[E1yu”2 +BI_R*+GJR* - Pu'?+ 2Muv" R - (2.23)

— P(I /A+ez/I)R'?-35qR? + CRYdz
4 z

To analyze a full plate-stiffener combination, one can take advantage of this equation
in the following manner. When lateral loading is zero, q=0, and the structure is subjected
only to end moments, a relationship between the axial load and the moment acting on the
stiffener alone can be derived from the recognition that the stress at the stiffener toe due
to the total end moments should be essentially zero. This should be so since the centroid

of the total plate-stiffener section is approximately at the plate surface. Then,

F =Me,/I ~P/A, =0 (2.24)

This gives the required axial force on the stiffener to be

P=Me,A /I, (2.25)

11



MA-RD-760-85013 (FEL 492.3)

where I and A_ are the moment of inertia and the area of the stiffener, ¢, is the distance

between the stiffener centroid and the toe and Fn is the stress at the toe.

By substituting Eq. (2.25) into Eq. (2.23) and setting q=0, the differential equation
becomes a function of M only. The critical moment M, on the stiffener can be found by

assuming a sinusoidal function for rotation R
R= Rsin (mrz/a) - (2.26)

and applying the Principle of Minimum Total Potential (Rayleigh-Ritz method), that is, by
setting OU* /3R =0.

I‘J'Ium(m‘n'/a)2 +GJ + Cla/mn)?

M _ = : 2.27
er 25 +c (A5 + Ip)/I, (227)

This moment and the axial force P from Eq. (2.25) produce flange stress Frps

Frp=M,c,/I,— P/A, (2.28)

er

where c, is the distance from the centroid of the stiffener to the outer fiber of the flange.

The substitution of Eq. (2.25) into Eq. (2.28) gives F.p as a function of M_ only.
Frp=M_c,/I,+ M ¢ /T,= M_d/I, (2.29)

where d is the depth of the tee stiffener. (See Fig. 8)

The full plate-stiffener combination is expected to buckle under the total moment M,

which would produce the stress in the flange approximately equal to Forg:
Fpp=Mype,/ L, (2.30)

where c, is the distance from the outer fiber of the flange to the plate-stiffener centroid

and Ips is the moment of inertia of the plate-stiffener section. Then,

M= FTBIpa/°3=M I d/(Ic,) (2.31)

er’ ps

Since ¢, is approximately equal to d (Fig. 8), the critical moment for the total plate-

stiffener section can be given by

I
My=M_—+ (2.32)

87‘1
3

where M__ is from Eq. (2.27) and is based on the properties of the stiffener alone.

12
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Again, the minimum value with respect to the half-wave length can be found by ap-
plying the procedure used in the previous section. The equation for the critical wave num-

ber is identical to Eq. (2.7) and the minimum tripping stress due to end moments becomes

Ed(J/2.6 +2VCI__/E)

251, + ¢, (A3 + 1)

Min(Fypp) = (2.33)

Design guidelines of Reference® suggest the tripping stress due to bending to be given
by

017E / 55 4 3
Frg=——+ \/Ajb],dw/(b/tp +2d /t) (2.34)
w
and, for m less than 3, by

0.44
FT =‘—R—'(bfdw/a)2 | (2.35)

These two equatons incorporate a number of simplifications, for the most part, conservative.

2.5 Torsional Buckling Under Combined Forces

Torsional buckling (tripping) under combined forces, that is, concurrent compression,
end moments and lateral loading, is a very complex phenomenon. However, this type of
loading is encountered in many practical cases. An approximate approach to compute the

tripping stress in this case is to apply the interaction formula, such as,
(F/Fp)*+ (M/M,)° + (q/g,)7 =1 (2.36)

where F.,, M and q_ are the critical values when each loading is applied individually
under the same boundary conditions, and each computed with the same mode number even
though minimum buckling conditions for the individual cases may occur with different
modes. Powers a, 8 and v can be established empirically on the basis of experimental and

analytical results?.

It has been suggested by Adamchak that a linear interaction relationship, as shown in
Fig. 9, although conservative, can be used for design purposes until further evidence, either

analytical or experimental, indicates a more realistic choice?.

Since at present there is no solution for the critical lateral loading, q_,, an approxima-
tion can be used by replacing this loading with end moments having the same value as the

maximum moment caused by the loading.

13
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2.6 Inelastic Range

In the inelastic range, the nonlinear behavior of stiffened plates makes the analysis
much more complicated. It has been proposed to modify the elastic tripping stress of the
previous sections to the inelastic range by substitutin‘g the tangent modulus for Young’s
modulus when the calculated tripping stress is above the proportional limit. This approach
requires a trial and error solution because the calculated tripping stress must correspond to
the assumed tripping stress used to select the tangent modulus. The popular approach for

avoiding this iterative procedure is to use a parabolic approximaton.® 2 18. 5, 8

Flg=F - (Fy—Fp)—?i (2.37)

E
where

F’p = Buckling stress in the inelastic range

F,= Yield stress

Fe, o= Proportional limit of material

Fo= Reduced proportional limit = F - Fp

Fp =  Euler column buckling stress

Fp = Representative residual stress due to fabrication and welding

Many tests on column buckling have shown that the effective stress-strain curve
departs from linearity below the proportional limit. This is mainly due to the residual
stresses Fp, especially in the flange plates. For hot-rolled steel shapes this is typically
equal to O.3Fy, but no definite value or pattern of residual stresses has been established for

19, 20, 21, 22

plate stiffeners. A conservative approximation of the compressive residual stress

of Fpo= 0.5Fy is usually made. Then, the following tripping stréngth expressions result:

Fra for Fr, < 0.5F,
Fra = | (2.38)
F (1-F,/4F;,)  for Fp, > 0.5F,

Although the non-uniform stress distribution over the cross section due to constant

moment - or uniform lateral pressure renders the analysis less reliable, the above simplifica-

tion has been recommended for these cases also.® 2 5
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3. ASYMMETRICAL STIFFENERS

3.1 General Comments on Asymmetrical Stiffeners

Since asymmetrical stiffeners, such as angles, lack an axis of symmetry perpendicular
to the plate (See Fig. 11), the three differential equations are interdependent. Thus, the
sideways flexure and twisting coupled through the enforced axis of rotation interact with

the overall flexure normal to the plane of the plate.

The coupled flexural-torsional buckling stress may either be associated with the local
instability or may follow as a secondary mode with an increasing load on a panel buckled

initially in a local mode.?

The suggested methods for estimating the tripping stress are based on the idea of
modelling the plate-stiffener combination as a column.?® % 3 % & Such a column is assumed
to be restrained against twisting by the torsional spring provided by the attached plate
(See Fig. 12). This analysis assumes that all distortions and local deformations of the
cross section are negligible and, thus, admits only the flexural and torsional displacements.
Assuming that the panel contains many identical and equidistant stiffeners, the following

two possible buckling modes may develop as shown in Fig. 12:

1. Symmetrical mode in which the twisting and flexural deformations of all the stiffeners
are identical in magnitude and direction.
2. Antisymmetrical mode in which the twisting and flexural deformations of adjacent stif-

feners are equal but opposite.

In general, symmetrical mode is more usual for flexural buckling because in antisym-
metrical mode, the resistance of the plate to its distortion acts as an elastic foundation on
the stiffener and hence makes it more difficult for the buckling to occur. But antisym-
metrical mode is more common with torsional buckling (tripping) since antisymmetrical
mode requires less bending energy of the plate. Tripping buckling of the stiffeners is more
sensitive to plate buckling because the restraint, C, provided by the plate then varies along
the line of attachment. It is important to realize that none of the above modes can occur

independently as they are coupled at buckling.

16
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3.2 Buckling Under Axial Load

For the tripping of asymmetrical stiffeners under axial load, flexure and torsion are
coupled and therefore the coupled axial tripping stress F.,, which is always smaller than
either the individual axial buckling or the tripping stress, can be calculated by substituting
the corresponding terms into the equilibrium equations; “this will provide two homogeneous
simultaneous equations, and the vanishing of the determinant formed by their coefficients

results in the following buckling condition:2® % % 8

(1— Fg/F)(1 = Fp,/F) = (y,/r,)* (3.1)

where r_ is the radius of gyration of the stiffener about the enforced axis of rotation (the
toe of the stiffener), and ¥, is the vertical coordinate of this axis relative to the principal
axes through the plate-stiffener centroid (See Fig. 13). Fp and F, are the Euler buckling
stress of the plate-stiffener gross section and the axial compression tripping stress, respec-

tively. Solving these two equations, one obtains the critical buckling-tripping stress

. 2

FE+ FTA 4FEFTA(1"(SIG/'O) )

Foy=——{1-V1- —} (3.2)
2(1—(93/"0) ) (FE+FTA)
where
Feou Coupled axial buckling-tripping stress
Fp Euler buckling stress of the plate-stiffener gross section
Fr, Tripping stress due to axial compression (Eq. (2.5))
r, Polar radius of gyration about the toe = VIp/Aps
v, Vertical coordinate from plate-stiffener centroid to the axis of rotation
(stiffener toe)

I Polar moment of inertia of stiffener about toe
A, Area of plate-stiffener cross section

The difference between Fp, values for symmetrical and asymmetrical stiffeners is due
to the difference in their twisting properties and modes of deformation. One may expect a
transverse warping effect, Ixxz, to appear in asymmetrical stiffeners due to the eccentricity
of the shear center to the y axis. This consideration requires special attention when adopt-
ing this equation.

17
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Because the torsional and flexural effects are coupled, the associated critical stress is
smaller than for either of the component modes taken separately. The coupling between
the modes may be neglected if the critical stress corresponding to one component mode is

much smaller than the stress corresponding to the other mode.

Another approach is to treat the coupling of torsion and flexure as pure torsion about
an axis which is parallel to the toe line and lies in the plane of the plate. Small displace-
ments of this axis from the middle plane of the plate are then considered to be of a secon-

dary effect and are usually ignored.

The effective plate area to form the cross section of an idealized column is considered
to be the same as the effective plate area for symmetrical stiffeners discussed in the pre-
vious section. Before plate buckling, the effective area is equal to the actual plate area.
After the plate buckles, the membrane stress is redistributed and the effective area is

reduced.

When the stiffeners deform in the symmetrical mode, the determination of flexural
buckling stress Fp is straightforward and involves only the cross-sectional properties. But
the stress for torsional buckling F, can only be estimated reliably if the stiffness of the
restraining spring is known. This stiffness is estimated by considering the plate as a series
of transverse beams under bending and hence depends on the end load and the wave
length. Formulations of this type have been obtained, for example, by Bijlaard and

General Dynamics.® °

3.3 Torsional Buckling Under Bending

Torsional buckling of asymmetrical stiffeners due to end moments is analogous to the
behavior of an eccentrically loaded column. When the end moments are applied, the stif-
fener immediately begins to twist (trip) due to the eccentricity of the shear center with
respect to the stiffener web. At first, the twist increases gradually; when the bending
stress F; approaches the lateral-torsional tripping stress Fops the twisting increases at a
faster rate until at Fp = F.p the twisting increases without limit. The larger the ec-
centricity of the shear center to the centroid of the cross section, the sooner the infinite

twisting is approached. This description is valid for elastic conditions.

An analytical method has not yet been developed for calculating the coupled tripping

18
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stress F.y for an asymmetrical stiffener under end moments. But one can use the beam-
column approach to approximate this critical stress. The differential equations are derived
in Appendix I. The critical stress can be obtained by solving the two homogeneous equa-
tions, Egs. (A.31) and (A.32), whose coefficient determinant gives an expression for the

solution of the critical moment.(Eqgs. (A.34) and (A.35))

Since there are no test data to verify the accuracy of this solution and there is no
simplified solution available for this load case, we must wait until more sophisticated for-
mulations are derived or until more tests for this loading case are conducted before accept-

ing the above solution as a valid one.

3.4 Torsional Buckling Considering Distortion of Cross Section

Inclination of the principal axes of an asymmetrical stiffener, such as an angle or zee,
with respect to the plate surface leads to an immediate sideways bending of the stiffener
flange as soon as the stiffener-plate column starts deflecting under an axial load. The
lateral forces developing in the flange tend to bend the web and, by distorting the cross
section, reduce the capacity of the stiffener. The immediate consequence of this effect is
that for many cases, the ‘angle stiffeners become weaker than the tee stiffeners, and this is

contrary to the conclusions reached from the classical buckling solutions described above.

A method for considering these second-order deformations of the cross section of asym-

metrical stiffeners in the elastic range was provided by van der Neut!?,

The stiffener web is treated as a plate subjected to longitudinal compression and
undergoing large deflections. A simplification was made of the differential equation of the
web plate, however, without affecting the accuracy. The top edge is attached to the flange
which provides rotational and flexible lateral support. The bottom edge is rotationally

restrained by the plate.

Presented next is a streamlined procedure of the method proposed by van der Neut.l?

This procedure is suitable for calculator or microcomputer operations.

First of all, some definitions:

F

ca
=7 the ratio of the tripping to the column buckling stress (3.3)
E
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m = a/ (Length of half-wave) (3.4)

(Here, m may have a value which is non-integer and
different from 1.0.)

and parameters f, A and Q;

f=1-pm? (3.5)
A= [12(1-12)p]0%® (%d)\/ r/mt, (3.6)
Q= (btp + Aw/2)/Apa (3.7)

With p and m set to some specific values, the following two simultaneous equations

are to be solved for constants C1 and CZ.

C,[Xcos A — (1-Y)sin A] + C,[X cosh 4 + (1-Y) sinh A] (3.8)
=cos A+ cosh A + X{sin A + sinh A4) + Y(cos A — cosh A)

[((Y—1)cos A + Zsin A|C, + [(Y+1) cosh A + sinh 4]C, ' (3.9)
= (Y+1) sinh A + (Y-1)sin A + Z{ cosh 4 — cos A)

where
43 JG Q3
=1, - (/0
T A,
A’Q1Q
Y=
flpsAw

rZ 2
g A1 [f +(Qd)

2
Aw {r2(1~—f) flps Qf - Iy] i Af}

Then, the rotational restraint by the plate, C, needed to maintain equilibrium, is

computed from Eq. (3.10).

24

C,+C,

C=-

(3.10)

To find a solution for a specific value of restraint by plate, C, several sets of p and

m are tried out and the desired value of p is interpolated.
Application of the method requires an iterative procedure, and a computer program
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(in BASIC) is given in Appendix B. The program extends the van der Neut method out-

lined above to incorporate consideration of the effective width of the plate and of a

parabolic transition for the inelastic range.
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4. COMPARISON WITH TEST RESULTS

Apparently because the tripping of stiffeners is often considered to be a side check in
structural design, the experimental data on tripping failure are very limited. The only test
that could be found for the tee stiffener failure is the grillage test 1A reported by Smith.
The ultimate failure of this specimen may have been caused primarily by the stiffener

tripping.®

Horne conducted several tests on angle stiffeners in which he mainly emphasized the
effect of imperfections and residual stresses on the strength of the stiffened plates. The
only two tests known to have failed by tripping of angle stiffeners are specimens AS2 and
AF2.24"  The width of the flange of specimen AF2 was double that of specimen AS2;
otherwise both specimens had the same dimensions. From the test results, it appears that

AF2 specimen having stiffeners with wider flanges exhibited only marginally higher strength.

Table 1 shows the pertinent scantlings (nominal values) of these three test specimens.
The tripping stress for these specimens was computed by using the methods described in

this report. The results are listed in Table 2.

For specimen 1A, all three methods give values which are quite close to the test load.
The Adamchak method gives a better estimate of the tripping stress because it considers
the effect of the plate restraint varying along the member due to the axial load and due to

the effect of web deformations as well as due to the effective width of the attached plate.?

The General Dynamics Design Guidelines also give realistic values, and it is suggested
that this method be used for design purposes to get a fast and simple prediction on the

tripping stress.’

The Faulkner interim solution using the lower and upper bounds in predicting the
tripping stress also contains the effect of plate restraint and gives a fairly good prediction,
but the arbitrarily assigned upper limit for the torsional restraint has been demonstrated by

Adamchak to be unconservative.l’ ¢

*
The tripping type failure was also observed in the tests described by Scheer, but these dealt only with

predeformed bulb-flat stiffeners and, thus, are not included in the current comparison.25
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For angle stiffener tests, the Guidelines suggest that when Fz > Fp,, ie, Euler
buckling stress F does not govern, and one may conservatively take 75 percent of Fr, as
the coupled tripping stress Foa- This approach does not consider the length of the stif-
fener a and is valid only when the slenderness ratio of the column is low because, when

the slenderness ratio is high, Fy will become the controlling stress.

The Argyris method provides quite accurate predictions for specimens AF2 and AS2,
but this method requires the use of a computer for iterative solution of the minimum criti-

cal load. Therefore, it is not really a suitable method for design purposes.

In order to find the difference between the strengths of the tee and angle stiffeners
when they have flanges of the same size, a trial angle stiffener section with the same
dimensions as specimen 1A was analyzed by the Argyris method to find the coupled trip-
ping stress F,,. As shown in Table 3, the tripping stress F., of the angle stiffener comes
out to be greater than the tribping stress of the tee stiffener. A similar analysis was con-
ducted on specimens AS2 and AF2. Two trial tee stiffener sections with the same dimen-
sions as specimens AS2 and AF2 were analyzed by the Adamchak method to evaluate the

tripping stress F..,. The results are also shown in Table 3.

As can be seen in Table 3, specimen 1A becomes stronger when it is treated as if it
had an angle stiffener rather than a tee stiffener with the same-sized flange. But for test
specimens AF2 and AS2, the tee stiffener gives a greater strength than the angle stiffener.
In order to get a better understanding of this apparent inconsistency, two other specimens,
AS1 and AF1, were analyzed. These two specimens were of the same cross-sectional
dimensions as AS2 and AF2, but the span was only one third. Again, the results show

that the angle stiffener is stronger than the tee stiffener by up to 10 percent.

Figure 15 is plotted to show the relationship between Fes and Fp, for angle and tee
stiffeners with respect to the half-wave length. The tee stiffener is stronger than the angle
stiffener for larger slenderness ratio values L/r_, but weaker for smaller L/r,. The critical
value of L/r is approximately 20. This transition can be explained as follows. The warp-
ing rigidity of the angle is significantly larger than of the tee. Also, for shorter stiffeners
(low slenderness), the coupling effect for the eccentricity of the shear center of the angle
stiffener does not significantly reduce the column strength with respect to the effect of

warping rigidity. When the slenderness ratio increases, the effect of coupling becomes more
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significant, and this reduces the tripping strength of the angle stiffeners with respect to the

tee stiffeners.
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5. SUMMARY, CONCLUSIONS AND
RECOMMENDATIONS

5.1 Summary

The principal methods proposed in literature for predicting the tripping instability of
longitudinal stiffeners in marine structures were reviewed, and they were shown to be suf-
ficiently accurate for design purposes. The solutions were compared with the few available

test results and were found to be in relatively good agreement.

Comparative solutions for angle and tee stiffeners illustrated the difference in the trip-

ping strength for these sections.

The effect of including web deformations in the evaluation of the tripping strength of
symmetrical stiffeners (tees) was shown to be important unless the rotational restraint
along the stiffener line of attachment to the plate was very small. For a larger degree of

rotational restraint, the corresponding error was appreciably higher.

The major handicap encountered in this study was the lack of experimental data to

use for validating the analytical methods.

5.2 Conclusions

The following conclusions can be drawn from the study in this report:

1. Torsional strength (tripping) of stiffeners should be an important consideration in the
design of marine structures.

2. The Design Guidelines prepared by General Dynamics®

for evaluating the torsional
strength of stiffeners may be used as a simple and realistic check. However, this
method becomes less reliable for angle stiffeners with higher slenderness ratio values,

L/r

3. A comparison according to the classical buckling theory of the tee and angle stiffeners

°°

with flanges of the same size showed that an angle stiffener resists tripping due to
axial compression better than a tee when the slenderness ratio L/r  is in a lower
range. The situation reverses when the slenderness ratio becomes higher. However,
when web deformations are included in the analysis, the overall axial strength of angle

stiffeners tends to fall below that of the tee stifféners.
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4. Although lateral loading is unlikely to cause significant effect on the tripping strength
for symmetrical (tee) stiffeners, it has a serious reducing influence for the angle stif-

feners since it introduces bi-axial bending in them.

5.3 Recommendations

Until more satisfactory general solutions are developed, semi-empirical methods based
on classical theories or numerical techniques will have to be used in order to obtain more

accurate design rules.

The areas for which further study is required are considered to be the following:

1. Tests on symmetrical and asymmetrical stiffeners, especially under concurrent action of
axial and lateral loading.

2. An improved definition of the influence of the plate behavior in the buckling and
post-buckling ranges on the rotational restraint by the plate.

3. Consideration of residual stresses and large deformations. It appears, this would be

realistically possible only in numerical solutions (Finite Element, etc.).
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Appendix A. DERIVATION OF
DIFFERENTIAL EQUATIONS

A.1 General Differential Equations

The classical differential equations of torsional buckling (tripping) of longitudinals are
derived here for use in the main body of the report. The principal assumptions are that
the cross section does not deform, that there are no initial imperfections, and that the elas-
tic range is not exceeded. The consequences of not satisfying these assumptions are dis-

cussed in the report where appropriate.

Under the assumptions stated above, the stiffener, being attached to the plate, has
the following modes of buckling deformation: overall lateral buckling perpendicularly to the
plate surface and without twisting, torsional buckling without lateral motion, and a com-
bined mode of lateral and torsional motions. Torsional motion of the stiffener is restrained
by the plate, but this effect is often neglected or taken into account in a simplified man-
ner. Typically, a stiffener is taken with its tributary width of the plate and treated as a

separate column without interaction with other stiffeners.

As shown in Figs. 16, 17, 18, the centroidal axes x and y of a stiffener are taken
parallel and perpendicular to the plate, and they are not necessarily the principal axes
when the cross section is asymmetrical. Bending moments of the stiffener column about

these axes are given by

M, = ELv'+EL v’
T (A1)
M = ElLu"+EL v
Yy y xy

In these expressions, Ixy is the product of inertia of the stiffener cross section. Further-
more,
q,= dzMy/dz2
(A.2)
q,= dZMx/dz2

where q_ and q, are positive in the positive direction of the x and y axes. Substitution of

Egs. (A.1) into Eq. (A.2) results in the following differential equations:

q,= ELu"+EI_v" (A.3)
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q,= Evai"—+~I§JIxyuiv (A.4)

Consider a column with an arbitrary open cross section as shown in Fig. 16, and assume
that a longitudinal fiber N with coordinates (hx;,hy) is prevented from deflecting in the x
direction. Denoting the deflections of the shear center O (x,¥,) by u and v, we find the
deflections of N to be

u,= ut+(y,- h) =0 (A.5)
v = v-(x- h) (A.6)

Assume that the column is subjected to the equal end moments M _ and My and the axial
thrust P as shown in Fig. 17. Then, the normal stress F_ at any point in the column is
independent of z and is given by the following equation if x and y axes are the principal

axes:
F = P/A+Mxy/I)(-%—Myx/ly . (A.T)
or by

F,= P/A+(M,I-MI_)x/(L1-I_?)

X Xy X'y "Xy
2
HMI-MI)y/(LI-12)

Xy Xxy

when x and y are not the principal axes.

The intensities of the lateral forces and distributed torque induced by the axial com-

pressive force in the longitudinal fibers are:
q,= - (F,tds)d?/dz*[u+(y -y)R]
q,= - A(F,tds)d?/dz?([v-(x -x)R] (A.9)
m,= - ,(F tds)(y,-y)d?/dz*[u+(y -y)R]
+ A(F,tds)(x -x)d?/dz?[v-(x -x)R]
Because of the restraint at axis N, there will be reactions of intensity q, distributed
continuously along this axis and acting in the direction parallel to the x axis. Assuming x

and y axes to be the principal axes of the plate-stiffener and substituting expression (A.7)

for F, in Egs. (A.9) and then integrating, we obtain the following differential equations
which include the effect of q_:
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qx: _Pu”_(Pyo_Mx)R"+qo (A-].O)
y: _,Pv”_{,_(Pxo_My)R” (Anll)
m,= ‘(Pyo‘Mx)u”+(Pxo'My)v”+qo(yo'hy)
(A.12)
_(MXBX+MyBy+IOP /A)R"-CR

where I is the polar moment of inertia with respect to the shear center O, and B, and By

are the bi-moments defined by
B, = (/'Ay(:z:2 + yz)dA)/Iz -2y, (A.13)

B, = (/A:r:(:i:2 + y2)dA)/Iy— 2z

Combination of Egs. (A.11) and (A.4) and the elimination of u by solving for u from Eq.
(A.5) gives the first differential equation for the independent variables v and R:

ELvY-EL_(y,h, )R™-(Px -M )R"+Pv'= 0 (A.14)

Another differential equation for v and R is obtained by considering torsion of the

column
EI R¥-GJR'= m, (A.15)
Substitution of Eq. (A.12) into Eq. (A.15) results in

EI R™-GJR -+(Py -M_)u"-(Px -M.)v"+(M_B_+M.B
w o x o 'y XX Yy
(A.186)
—}-IOP/A)R”—}—qo(yo-hy)-CR =0

Again, using u from Eq. (A.5) and substituting it into Eq. (A.16), we obtain the
second differential equation for the problem at hand:
2o
E(Iw+Iy(y°-hy) ]R“’—[GJ-2Mx(y°-hy)-MxBx-M B-1P/A

e (A.17)

+Py°2—Phyz] R”+CR-(y°-hy) EIxyvi"-(Pxo-My)———O

Equations (A.14) and (A.17) can be used to find the lateral torsional buckling load
for any member restrained to move in a prescribed plane and rotate about a line and sub-

jected to an axial load and equal end moments.
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A.2 Symmetrical Stiffeners

For a tee stiffener, x and y axes are the principal axes because the stiffener has an
axis of symmetry which is perpendicular to the attached plate as shown in Fig. 18. We

know that for such a stiffener

where § is the distance from the shear center of the stiffener to the toe of the stiffener (the
axis of rotation). When the stiffener is subjected to axial load P only, i.e., M = Myz 0,

Egs. (A.14) and (A.17) become:

Evai" + Pv'=0

El RY - (GJ-IpP/A)R" + CR =0 ' (A.18)
where Ip is the polar moment 6f inertia of the stiffener about the toe and I, is the warp-

ing constant with respect to the axis of rotation N; and

I, =1 - Ay? + Abh/? (A.19)

L =1, + L&

wn

These two differential equations are independent of each other. Assuming the stiffener ends
to be simply supported and prevented from twisting but free to warp, one can assume the

flexural and torsional displacement shapes to be sinusoidal:
v = A,Sin(mnz/a)
R = A,Sin(mnz/a)

Substituting them into Eq. (A.18) and solving, one obtains from the second equation of

Egs. (A.18) the tripping stress under uniaxial compression

Fry = [Elwn(mw/a)2+GJ+C(a/m7r)2]/Ip | (A.20)

When the column is subjected to bending moment M, and no axial load,
My = P = 0, the differential equations become:
EIXViV+Pv" =0
EI, RY - (GJ - 2M5- M B)R" + CR = 0
where (A.21)
33



... MA-RD-760-85013 (FEL 492.3)

B = (_/Ay(a:2 + yz)dA)/Ip -2y, (A.22)

= {Ih*— (5, + /2t /4 + A (.7 + b 2/12)} ~ 29,

Again, assuming R = A Sin(mwz/a) and substituting it into Eq. (A.21), we obtain the

critical moment for the stiffener alone:
M,, = [EL,,(mn/a)*+GJ+Cla/mn)?]/(25+B,) (4.23)

To modify this critical moment to include the effect of the plate, one can introduce an
axial load P at the centroid of the stiffener section so that the stress distribution would be
similar to the stress distribution of the plate-stiffener combination. Following the procedure
described in Section 2.4, the critical moment M for the tee stiffener with stress at the toe

equal to zero is obtained
M, = [EL, (mn/a)*+GI+C(a/mn)?]/(25+B,+¢,L /1) (A.24)

Thus, the tripping stress in the flange under constant moment can be obtained by applying
Eq. (2.28):

Frg= d[EL,, (mr/a)?+GI+Cla/man)?]/ (24 +B I +¢,1 ) | (A.25)

Then, the total moment for the plate-stiffener combination can be obtained by apply-
ing Eq. (2.32) with Ips being the moment of inertia of the gross section and I being the

moment of inertia of the stiffener alone.

A.3 Asymmetrical Stiffeners

In asymmetrical cross sections, the x and y axes are not the principal axes, and
therefore the effect of biaxial bending must be taken into account. Substitution of

Eq. (A.8) into Eq. (A.9) gives:
q,= -Pu”-[Pyo-MIIX-lexy] +q,
,= PV +[Px -ML M, (A.26)
= -(Pyo-MIIX-MZIxy)u"+(Px°-MIIxy-ley)v”
-(M,B,+M,B,+1 P/A)R’

where
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2
M=(MI-M]1 )/(II~1,7 (A.27)
My=(M 1 ~M,I )/(IzIy—Izyz)

z 2y

and
B = //y(a:2+y2)dA - 2(yo]z+zolzy) (A.28)

B2=f[z(z2+y2)dA—2(zOIy+onzy)

Following the same procedure of derivation as before, the differential equations for

asymmetrical cross sections are obtained.
ELv™-Pv™-EL_(y -h )R™-(Px -M,L_-M,[ )R"= 0 (A.29)
E[Iw-i-(yo-hy)zly}R"’-[GJ-Z(yo-hy)(Mllx—i-MzIxy)
-(M;B,+M,B,+I P/A-Py *+Ph *|R"+CR (A.30)

- (yo-hy) EIxyViv- (Pxo'Mllxy-MZIy)v” =0

For the special case of angle stiffeners, (see Fig. 19), we can conservatively assume
the column to be simply supported at both ends. When there is only an axial load ap-

plied on the stiffener, M,=M,=0, and the differential equations become:

ELv™-Pv’-EL_(y,-h JR™-Px,R'= 0
. . (A.31)
EI, R"-[GJ+] P/AJR™+CR-(y,h )EL_v*-Px v'= 0 (A-32)

. . - » _ 2 -
where Ip is the polar moment of inertia about the stiffener toe and I = Iw+Iy(yo-hy) is

the warping constant about the toe (axis of rotation).
Assuming v = A,Sin(msz/a) and R = A,Sin(mnz/a) and then substituting them into
the differential equations (Egs. (A.31) and (A.32)), we obtain the following two equations:
[EIx(mfr/a.)z-P]A2+[—Elxy(yo-hy)(mfr/a)2+Px°]A3: 0
[-]illxy(yo-hy)(m1r/a)2—+~Pxo]A2—{—{Elwn(mﬂ-/a)2 (A.33)

+GJ-IPP/A+C(a/m1r)2}A3: 0
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The vanishing of the determinant of the coefficients of these equations gives an expression

for computing the critical stress for lateral-torsional buckling of angle stiffeners. Because

the analytical solution for the minimum value of the critical stress is quite difficult, a com-

puter program was used to solve for the critical stress.

When the angle stiffener is subjected only to equal end moments, then P

= M=20In
¥

the differential equations. Again, using the same procedure, we come to the following two

homogeneous equations. By setting the coefficient determinant equal to zero, an expression

for solving for the critical moment is derived.
[EIx(mw/a)z]A2+[Elxy(hy-yo)(mfr/a)z]A3 =
[Elxy(hy-yo)(rmr/a)2]A2+[EIwn(mw/a)2—|—GJ-2(y0-hy)Mx
(MnyBl-}-M IxyB2)/(Ix v xy2)+1 P/A)+C(a/mnr)%A 3 =0
where '

B, = / z?+y?)dA-2(y I +z 1)

o' zy

B,= / 2yP)dA-2(z L +y 1, )

o 1y

In the above derivation, the cross section is assumed not to deform.

considering deformation of the cross section is described in Section 3.4.1°
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Appendix B. COMPUTER PROGRAM FOR
ANGLE STIFFENERS

mining the elastic buckling load of asymmetrical stiffeners.
beyond the method are the considration of the effective width of plate (according to Eq.
(2.19)), parabolic transition for the inelastic range and an automation of the iterative
process by introducing an exponential extrapolation.

a number of options through prompting.

The computer program is based on the method proposed by van der Neut for deter-

10

ANGDAT.DO a sample of which is listed after the program.

Lis

ting of xx*

vdntal2.bas

ke ok ; 03-31-1986, 15:11:18 Page 1

e dhe X Sje e e S e e sk e sk A e 3 M de die e e de o Sk Sl o e 3¢ 3k 3l e ke Sie S dle Sle e i S e e e s sje e ke ot dle e Al sk sk e e i i Sk e e e v e ok e ke

10
12
14
16
18

20

30

48

50

’VDNTA12 Direct Comp or Automated convergence,
by exponent. interpolat; y=A+B(l-exp(-x)),printing,
’ A. Ostapenko,9/8/85,1/15/88

PI=3.14159268536899

INPUT"Results to store for printg<Y/N>";Q1%
IF Q18="Y" GR Q18="y" THEN INPUT"File to store results in";F$
OPEN F$ FOR APPEND AS 2

Q1=1
: ELSE §1=0

OPEN"angdat.do" FOR INPUT AS 1 .
INPUT#1,S88,D8,N,E,FY,L,B,TP,D,TW, BF,TF

To bypass data not to be used.
45 PRINT S8$;D8;N;E;FY;L;B;TP;D;TW; BF;TF

IF Qi=1 THEN PRINT#2,S8;D8;N;E;FY;L;B;TP;D;TW; BF;TF

IF S$="’" THEN 30

: PRINT#2,

?

Compute sect properties

80 BE=TP*SQR (E/FY) = (2-TP/Bx*xSQR(E/FY)) ’Modif for B-effective acc to AD
70 AF=BFx=TF

80

80

100
110
120
130
140
150

160
170
180
1856
180

192

: AW=D»TW

s AS=AF+AW

: AT=AS+B=*TP
: AE=AS+BE*TP

Y= (AF+D+AW+D/2) /AE

I=(AW/3+AF) *D*xD-AB+«Y*Y
R=SQR (I/AE)
Q2= (AF«BF/2) "2
JF=AF*BF+«BF /3
R=(BE=TP+AW/2) /AE
FE=PI«PI*«E/((L/R)"2)
T=ExAF*TF*TF /7.8

: P2=.15
: GOTO 220

INPUT"New pel,pe2%;P1,P2

: GOTO 220

b

H

2

I total effective

r (rad of gyr)

Qf~2

If abt web
Q-parameter

Column Euler stress

’ T=GJ of flge

INPUT"Direct comput or Extrapolat <D/E>";QQS$
IF QQ%$="D" OR QQ3="d" THEN 180

INPUT"To use default p (.05,.18)<Y/N>";Q8

IF Q8="Y" OR @3="y"™ THEN P1=.05

Direct computation of C for p,lines 190-200

INPUT"p value (For extrapocl, type E)";P

ON ERROR GOTO 210
GOSUB 400
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200

210
220

280
270

340
350

360
370

380

385
390

39856

400
410

460
470

480
490
500
520

MA:=RD-760-85013 (FEL 492.3)

: FA=P=FE
IF FA>FY/2 THEN PY=1-FY/4/FA ELSE PY=FA/FY
IF Qi=1 THEN PRINT#2,"Soln:"D8", 1/m=n="N", p="P",C=CE="CE",FA="FA",FS
="FA/FY" ,Py="PY" ,FC="PY+*FY;" Feff—"PY*FY*AE/AT
: PRINT#2, ,
PRINT"Soln:"D8", 1/m=n="N", p="P",C=CE="CE",FA="FA",FS="FA/FY",Py="PY"
SFC="PY=*FY;" ,Feff="PY+FY+AE/AT
: PRINT"Next ";
GOTO 190
RESUME 150
INPUT"Reqd plate restraint CR";XR
: TL=.001
P=P1
:+ GDOSUB 400
: X1=CE
: Yi=P1
: P=P2
GOSUB 400
X2=CE
Y2=P2
’ Exponentlal Approx; Y=A+Bexp (-X)
N1=1-EXP (-X1)
: N2=1-EXP (-X2)
: DT=N2-N1
: AA=(Y1+N2-Y2«N1) /DT.
: BB=(Y2-Y1) /DT
: Y4=AA+BB=* (1-EXP (-XR))
: P=ABS (Y4)
: GOSUB 400
: X4=CE
: PRINT"X1,X2,X4;Y1,Y2,Y4,p=/Y4/="X1;X2;X4;Y1;Y2;Y4;P
Check tolerance
IF ABS (X4-XR)<=TL THEN FA=Y4*FE
: ELSE GOSUB 850
GOTO 280
IF FA>FY/2 THEN PY=1-FY/4/FA ELSE PY=FA/FY ' compute Py due to yldg
IF @1=1 THEN PRINT#2, "Meth:VDNTA8- Spec:"D$,"1l/m=n=";N;",p=";Y4
: PRINT#2," (Req CE,C)=",XR;X4;" ,FA="FA" ,FS="FA/FY" ,Py="PY" ,FC="PY*FY
3", Feff="PYxFY*AE/AT
: PRINT#2,
PRINT"Soln: "D8,"1/m=n=";N;",p=";Y4F
tPRINT" (Req CE,C)=",XR;X4;" ,FA="FA" ,FS="FA/FY" ,Py="PY" ,FC="PY*FY;",F
ef f="PY=xFY*xAE/AT
INPUT"DONE. Another C <Y/N>";Q%
IF Q8="Y" OR Q8="y" THEN 150 ELSE INPUT"Another Specim <Y/N>";Q18
IF Q18="Y"OR Q18$="y" THEN 30

LYY

CLOSE
SYSTEM
'’ Constants=f(n,p)
F=1-P/N/N
: A=(10.92%P) " .25xSQR (N*R/TW) »PI*D/L
: X=AxAxA/ (AW«D=*D) » (T/P/FE-JF-Q2* (1 /F-1) /AT)
: Y=A+xAxQ2+Q/ (F+I+AW)
: Z=A/AWs (1/ (R*R* (1-F) ) *= ((Q*Q*DxD+F*R=R) *Q2/ (F*=I) ~-JF) +AF)
? Coeffs for simult eqgs
CS=C0S (A)
CH=(EXP (A) +EXP (-A)) /2
SN=SIN(A)
SH= (EXP (A) -EXP (-A)) /2
Al1=X+CS-(1+Y) *SN ‘all
A2=X+CH+ (1-Y) =SH ‘al2
A3=CS+CH+X* (SN+SH) +Y* (CS-CH) ’c=al3
A4=(Y-1)*CS+Z=SN ‘a2l
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530 AB=(Y+1)=*CH+Z=SH ’a22
540 AB=(Y+1)*SH+(Y-1)*SN+Z=* (CH-CS) ’a23
550 ’ Solve egqs for C1,C2
560 DT=A1+A5-A2xA4
Cl=(A3+AB-A6%A2) /DT
C2=(A1+xAB8-A4xA3) /DT
680 ’ Solve for RE=rotat restr
800 CE=-2xA/ (C1+C2)
810 RETURN
880 ’ Select closest 2 ocut of 3;X1,X2,X4
880 D1=ABS (X1-XR)
: D2=ABS (X2-XR)
: D4=ABS (X4-XR)
: IF Di1i>D2 THEN IF Di1i>D4 THEN Xi1=X4
: Yi=Y4
: GOTO 890
880 IF D2>D4 THEN X2=X4
: Y2=Y4
: GOTD 890
885 P=ABS(Y2+Y4) /2
GOSUB 400
: X2=CE
: Y2=P
880 RETURN
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ANGDAT.DO, input data file for the BASIC Program VDNTA12.BAS

The lines starting with an apostrophy (’) are by-passed.
To use a data line for input, some character is to be inserted
in front of the apostrophy ("@" is used in the sample file below).

s " DATA needed: S,Problem label" ,m,E,SY,L,B,TP,D,TW,BF,TF

* ,"AS2(Angl)",1,29500,59.42,118.11,7.874, .407,5.512,.26,1.518, .472
"AS2(Angl)", .8,29500,59.42,118.11,7.874,.407,5.512,.26,1.518, .472
"AS2(Angl)", .8,20500,59.42,118.11,7.874,.407,5.512,.26,1.518, .472
, "AF2 (Angl)",1,29500,59.50,118.11,7.874, .406,5.598, .256,2.992, . 386
"AF2(Angl)", .9,29500,59.50,118.11,7.874,.406,5.598, .256,2.992, . 386
"AF2 (Angl)", .7,29500,59.50,118.11,7.874,.406,5.598,.256,2.992, .386
,"AS1(Angl)", 1,29500,80.21,47.244,7.874,.398,5.526,.26,1.508, .495
"AS1(Angl)", .9,29500,80.21,47.244,7.874,.398,5.526,.26,1.506, .495
"AF1 (Angl)",1,20500,80.21,47.244,7.874, .398,5.587, .26,2.992, .398
"AF1(Angl)",.8,29500,60:21,47.244,7.874, .398,5.587, .26,2.992, . 398

[PRETER

o

?
]
9

3
a
3
3
e
?
?
e
3
e,
e’,
’,"Exanples from other publications",N,E,SY,L,B,TP,D,TW,BF,TF

, "VDN-83Exm, thkn mdf",1,70000,250,540,70,3.14,38.08,1.92,18.08,2.667
»"GenDyn-81,Ex.2, Angle", 1,29500,38,48,24,.3,5.87,.28,3,.58

,"GenDyn—-81,Ex.2,Angl w/ Tw=0.18",1,29500,38,48,24,.3,5.87,.18,3, .68
, "GenDyn-81,Ex.2,Angl, w/ L=1.B5L",1,29500,38,72,24,.3,5.87,.28,3, .56
»"GenDyn-81 Ex.2,Angl w/Lngth=2L",1,29500,38,96,24,.3,5.87,.28,3, .56
,"GnDyn-81 Ex.3 mdfd to Angl",1,28500,36,48,40,.25,11.94,.25,3, .375
,"GnDyn-81, Ex.3,Angle,L=2L", 1,29500,36,96,40,.256,11.94,.25,3,.375

3
’
’
’
’
H)
)
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NOTATION

A A parameter

a Length of stiffener between transverse supports

A, Area of stiffener flange

Aps Area of plate-stiffener section

A, Area of stiffener

A, Area of stiffener web

B Plate slenderness ratio

b Spacing between stiffeners

b, Effective width of the plate between stiffeners

b, Flange width

C Rotational spring constant provided by supporting plate

C, Rotational spring constant of unloaded supporting plate

c, Distance between stiffener toe and its centroid

c, Distance between stiffener centroid and the outer fiber of the flange

Cy Distance between the plate-stiffener centroid and the outer fiber of the
ﬂange

d Stiffener height

d, Depth of stiffener from plate to mid-thickness of flange

d, Depth of stiffener web

D Flexual rigidity of plate
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Young’s modulus of material

Tangent modulus of material

A parameter

Coupled tripping stress of asymmetrical stiffener
Euler plate-stiffener buckling stress

Buckling stress in inelastic range

Edge stress of plate-stiffener

Axial stress at stiffener toe

Buckling stress of elastic plate

Axial tripping stress of symmetrical stiffener
Lateral bending tripping stress
Modified proportional limit = F;— Fgo
Material proportional limit

Residual stress due to fabrication and welding

Yield stress of material

Shear modulus of material

Effective vertical moment of inertia of plate-stiffener section
Polar moment of inertia about the shear center of the stiffener
Polar moment of inertia about the toe of the stiffener
Moment of inertia of a stiffener about its centroidal axis

Warping constant of stiffener
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Warping constant of stiffener about axis of rotation (toe)
Moment of inertia of stiffener about web plane

St. Venant torsional constant of stiffener

St. Venant torsional constant of stiffener flange

Vertical bending moment

Elastic buckling moment

Total moment of the plate-stiffener section at tripping

Number of half waves in panel length

Axial end load

= FCA/ Fg

A parameter

First area moment of flange about web
Uniform lateral loading

Uniform lateral loading at elastic tripping
Rotation of stiffener shear center

Radius of gyration = @A—ps

Polar radius of gyration of plate-stiffener with respect to stiffener toe
Minimum plate-stiffener section modulus
Distance from shear center of stiffener to toe

Flange thickness

Plate thickness
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Stiffener web thickness

Total potential energy of structure

Total strain energy of structure

Horizontal displacement of point (x,y) on stiffener cross section
Vertical displacement of point (x,y) on stiffener cross section
Parameters

Total external potential of applied forces

Vertical coordinate from plate-stiffener centroid to axis of rotation
(stiffener toe)

Axial shortening of longitudinal fiber at location (x,y) of a stiffener

Poisson’s ratio
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TABLES

Table 1: Properties of Stiffener Sections in Test Specimens

Reference (8] [7] [7] (7] [7]
Specimen 1A AS2 AF2 AS1 AF1
tf 0.560 0.472 0.386 0.496 0.398
tw 0.284 0.280 0.268 0.260 0.280
tp 0.3156 0.407 0.408 0.398 0.398
bf 3.110 1.518 2.992 1.5086 2.992
dw 8.0860 5.612 5.598 5.b628 5.5687
b 24 .000 7.874 7.874 7.874 7.874
a 48.000 118.110 118.110 47 .244 47 .244
Sys 36.740 659.420 £59.49856 680.208 60.510
SYP 38.080 53.171 51.271 568.217 56.493
Type Tee Angle Angle Angle Angle
P 27 .280 45.280 49.081 58 .4658 80.235
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Table 2: Comparison of Predicted Values and Test Results

Ref. Test Type Faulkner Guidelines Adamchak Argyris Test

[8] 1A Tee 24.700 24.275 28.890 - 27.280
(7] AS2 Angle - 48.830 - 45.6838 45.250
[7] AF2 Angle - 52.962 - 45.745 49.081
[7]  AS1 Angle - 49.539 - 57.319 58.485
(7] AF1 Angle - 54.884 - 58.572 60.235

Table 3: Comparison of Tripping Strength Between Angle and
Tee with Same Size of Flange

Test Type Faulkner Guidelines Adamchak Argyris

1A-MA Angle - 26.881 - 25.318
AS2-MT Tee 51.888 44 .293 56.381 : -
AF2-MT Tee 51.923 50.744 67.313 -
AS1-MT Tee 51.0186 45.1156 48.528 -
AF1-MT Tee 52.9456 51.9656 50.948 -

MA: Modified from original tee to angle with same dimensions
MT: Modified from original angle to tee with same dimensions
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FIGURES

Flat Bar (F) Angle (A)
.1 _TTT
Bar-Flat (8) Tee (T)

Figure 1: Plate with Different Stiffener Cross Sections

R

Figure 2: Local Deformations of Stiffened Plate
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Figure 3: Definitions for Tee Stiffener
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C = 12EI/L = Eti/d(l-uz)
A. ANTISYMMETRICAL TRIPPING OF STIFFENERS

C = 4EI/L = Et3/3b(1-/%)
B. SYMMETRICAL TRIPPING OF STIFFENERS

Figure 4: Modes of Deformation
(From Reference®)
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I = (85} + d,t3)/12
L= (t34% + t3b3/4)/36
J = (d,t3 + btd)/3

L=1+1

Figure 5: Geometrical Tripping Parameters for Tee Stiffener
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P MINTMU M

EQ.25FOR C=0

Figure 6: Tripping Stress Curve with Integer m

C. = /b = Et3/(3b)

P plate

C

I

. = 2EL . /d = Et3/6

1/C = 1/C, + 1/C,

Figure 7: Evaluation of Rotational Restraint Ixicludmg the Effect
of Bending Stiffness of Stiffener Web

(From Reference®)
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. Figure 8: Stresses in Tee Stiffener under Bending
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LINEAR

P _4 .,
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Figure 9: Interaction Curve for Combined Loads

Figure 10:  Stress Distribution and Effective Width of Plate
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Figure 11:  Coupled Displacements of Angle Section
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Figure 12: Angle Column with Idealized Support Conditions
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Figure 13: Modes of Instability of Plate with Angle Stiffeners
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Figure 14: Definitions for Angle Stiffener
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SPECIMEN 1A L

SPECIMEN AF2 L.

Figure 15: Comparison of Foa and Fp, with Respect to Length
for Specimens 1A, AS2 and AF2% %¢
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Figure 16:  Arbitrary Cross Section of Compression Member

Figure 17:  External Applied Bending Moments and Axial Forces
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Figure 18: Idealized Cross Section of Tee Stiffener
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Figure 19: Idealized Cross Section of Angle Stiffener
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