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Abstract

e

A simple "engineering” method was formulated for computing the axial load vs.
axial shortening relationship of pin-ended tubular members damaged by a dent and/or
out-of-straightness. The method predicts the pre- and post-ultimate load-shortening
response, and can be used in analyzing the strength and behavior of offshore platform
frames containing damaged members. The method was developed from a parametric
study and regression analysis of a database containing load-shortening data from
published tests results on damaged columns and data generated from a finite element

analysis.

The effects of geometric nonlinearity and elasto-plastic material properties were
included in the finite element analysis of the pre- and post-ultimate response of
damaged tubular columns. Prior to generating data for the parametric study and
regression analysis, the finite element model was verified by comparing calculated

(finite element) load-shortening responses with experimental data.

The regression model used as a basis for the simplified engineering method, was
developed by considering the geometry of the load vs. axial shortening curves fora

wide range of colurmn geometries and yield strengths. A parametric study was

1




conducted to determine the influence of each independent variable on the axial
behavior of damaged members. The object of the study was to select the shortest
suitable approximating function for each independent variable. The variables
considered were: column slenderness, D/t ratio, dent-depth to diameter ratio,
out-of-straightness, yield stress, and axial shortening. The regression analysis of the
load-shortening relationships in the database resulted in a set of 80 constants which is
reduced to a five-term approximating function for the load-shortening response, once
specific values are given for the member geometry, material and damage. The
procedure is illustrated with an example and comparisons with test results.
Implementation of the method only requires computational resources for matrix
multiplication and basic function evaluation typically within the capability of a
handheld calculator. The method is valid for member geometries and material

properties typically found in fixed offshore platforms.



1 Introduction

The design of offshore structures must include considerations of strength, stability,
and serviceability while providing for safe and reliable resistance 10 applied loads over
the life of the structure. From monitoring and inspection of in-service platforms, it has
become increasingly apparent that these basic requirements must be met for the
structure in a deteriorated or damaged condition. The circular tubular members that
typically are used for framing of steel offshore structures are susceptible to damage
from accidental impact with supply vessels or falling objects. Overload of a structure
can also result in damage in the form of member out-of-straightness or local buckling.
Consequently, these structures must be designed with some degree of damage
tolerance. "Damage-tolerance may especially be crucial for deep-water fixed
platforms, where inspection and maintenance of the deeply submerged parts of the
structure may be difficult, if not impossible."[1] Minimum requirements for damage
tolerance are derived from consideration of the consequences of structural failure: loss
of human life, of the structure, and/or environmental pollution. These dictate that
operational and environmental loads must not result in collapse or progressive failure

of the structure, particularly as a result of slight or undetected damage. Furthermore,
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the economy of operation/maintenance of a platform requires that a structure should

have the capacity to withstand some minimal damage without the need for costly
repairs.

Although some degree of damage tolerance is implicit in any redundant structure,
quantification of the residual strength of a damaged member(s) and of the whole
structure is needed for a rational approach to efficient, cost-effective design and
maintenance. Consequently, the research described herein was directed at the
assessment of the effect of accidental damage on member behavior. It is applicable for
the analysis of a hypothetical case of damage that is anticipated in the design process
or a real consequence of an accidental overload or impact on an actual platform

in-service.
1.1 Problem Definition

The scope of this research was to develop a simplified engineering method for
estimating the axial load vs. axial shortening of an accidentally damaged round tubular
steel column, For the purpose of this report, accidental damage is defined as dents
and/or out-of-straightness. Cumulative fatigue damage, tearing or fracture of members
are not considered. Common causes of accidental damage are impacts from supply or
work boats servicing the platform or from dropped or mishandled crane loads.
Overloads from severe storms or operational loads may also cause accidental damage.

The problem is schematically illustrated in Fig. 1.1.
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Figure 1.1. Schematic illustration of damaged tubular column behavior
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Typically the effect of dents and/or out-of-straightness of a tubular column results
in a reduction of the stiffness and/or capacity of the member which may significantly
affect the strength and/or serviceability of the structure. The behavior and residual
strength of the structure is dependent on the pre- and post-ultimate behavior of the
damaged member since it is possible that service loads will lead to non-linear response
of the damaged member as illustrated in the hypothetical load-shortening plot in
Fig- 1.1. When the damaged member response is non-linear, the reduction of stiffness
and non-linear behavior will result in a redistribution of forces in the structure.
Consequently, the response of the damaged member must be known or estimated in

order to assess the effect of damage on the structure.

In general, prediction of the pre- and post-ultimate load-shortening response of a
damaged tubular column requires an analysis of the member that includes the effects of
large deformations and material nonlinearity. This includes considering the tube wall
as a shell, as opposed to a beam-column analysis. While it is possible to predict, with
reasonable accuracy, the response of a damaged member by a finite element analysis
using shell elements and including material non-linearity and large deformations, such
an analysis is impractical in terms of cost, compuler resources needed, and, perhaps
most importantly, the time required to formulate a reliable model. Furthermore,
analysis of an entire platform or even a sub-frame containing a damaged member with
such a model would be even more impractical. Even if a non-linear finite element

analysis could be performed efficiently, the results should, in some fashion, be



independently verified. Consequently, there is a need for a simplified yet reasonably

accurate "engineering method" for predicting the behavior of damaged members.

1.2 Previous Research

Since 1979, there has been much research devoted to developing approximate
methods for estimating the ultimate load and Joad-shortening response of damaged

tubular columns. Some of the major efforts are listed here.

In one of the first reported efforts to quantify the effects of damage in tubular
members, Smith conducted a parametric study of data from finite element analyses of
initially crooked tubular columns and experiments on small-scale specimens to develop
a simplified analysis procedure.[2] This procedure was based on a beam-column
analysis and good correlation was obtained for columns with out-of-straightness
damage. In a later attempt to include the effect of dent damage, it was suggested that
the effect of dents may be included in the analysis, not by modeling the geometry of
the dent, but by retaining the circular cross section of the member and modifying the
stress-strain relationship for the material in the dent-affected area.[3] A reduction or
"knock-down" factor applied to the modulus of elasticity and yield stress was
suggested based on empirical data from small-scale tests. The same reduction factor
was determined from a least squares fit to experimental data of a four term function
which was linear in diameter-to-thickness ratio, relative dent-depth and the inverse of

the yield strain.




In a series of papers, Taby presented an analytical method which estimates the
load-deformation response of dented and/or initially crooked, simply supported
columns.[4,5,6,7,8] This approach is based on a simplified physical model of the dent
in a damaged column. The equilibrium formulated on the simplified dent geometry and
an amplification factor based on Euler buckling loads for the lateral displacement of
the column are used for calculation of the column response up to first yield. Empirical
data from 109 small-scale tests were used to determine correction factors for the effect
of geometric assumptions on which the model is based, the effects of local buckling at
high diameter-to-thickness ratios and plastification at the dent. After first yield, the
lateral deflection of the column is incremented until the ultimate load is reached. In the
post-ultimate range, the response is calculated based on a plastic hinge analysis.
Effects of local buckling and ovalisation (a flattening of the originally circular cross
section resulting from axial stress) are incorporated with parameters derived from
regression analysis of experimental data from small-scale tests. The computer program
DENTA, developed by Taby, is based on this method and provides the load-
shortening response of pin-ended tubular columns with dents and/or out-of-
straightness.[9] The program DENTA II incorporates the ability to analyze fixed-

ended and elastically restrained columns and lateral loading.[10]

An analysis procedure for damaged tubulars that could be readily incorporated into
a finite element program for analyzing frames was proposed by van Aanhold and

Taby.[11] The undamaged portions of the member are modeled with beam-column



elements. The dented portion of the member is also modeled with a beam-column
element, but with a reduced diameter and thickness and is connected to the adjacent
elements (modeling the undamaged portion of the tube) with some eccentricty. The
reduced equivalent diameter and thickness and the element eccentricity for modeling
the damaged section of the tube are determined from an analysis based on the
simplified model of a dent suggested by Taby (See, for example, Refs. 5,6,8.). The
principal advantage of this method is that it can be readily incorporated into a non-

lincar frame analysis using existing finite element programs.

Ellinas quantified the effect of dent-damage with a lower bound prediction of the
ultimate strength of a damaged tubular based on a simplified beam-column model.[12}
The effect of dent damage was modeled by assuming that once plastification resulting
from bending at the dent occurs, the axial load is carried primarily by the undamaged
portion of the circumference. Overali bending damage was considered by the use of an
amplification factor. The ultimate load is then calculated based on a first yield criterion

resulting in a lower bound estimate for ultimate strength.

In their experimental work Taby and Smith carried out a number of tests on
damaged (dented and crooked) small-scale specimens made from drawn tubing or
cold-rolled piaie.{2,3,4,’?,8} From the tests of two large-scale members removed from
an offshore platform retired from service and of two comparable small-scale
specimens, Smith concluded that small-scale tests were adequate to predict the

behavior of full-size damaged members. [ 3] However, the results of these tests
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showed that the smali-scale specimens underestimated the ultimate strength by as
much as 15% and the post-ultimate strength by as much as 30%. Smith attributed the
discrepancy in the post-ultimate range to the effect of different load vs. displacement

control in the tests for the farge- and small-scale specimens.

Another method for estimating the load-shortening response for damaged columns
was presented by Richurds and Andronicou [14] The basic method is an iterative
numerical integration procedure in which the column is subdivided into a number of
elements along its fength, The initial slope of an end element and axial load are
assumed and the moment-thrust-curvature refationship for each element is used to
determine the displacements along the fength, This is a displacement control
procedure in that the applied axial load is varied during the iterations until the
numerical integration resulls il'; displacements that satisfy the boundary conditions.
The moment-thrust-curvature-axial strain relationship for the dented section of the
tube 1s derived from the assumption of linear variation of axial strain across the cross-
section, elastic perfectly plastic material behavior, and a reduction of the modulus of
elasticity and yield strength for the material at the dent. These reductions in material
stiffness and strength are the same as proposed by Smith.[3] The method includes the
ability to analyze columns with dents anywhere along its length and accommodate

various column boundary conditions.

in a more recent effort, Kim developed a method for predicting the load-shortening

behavior (including post-ultimate response) of accidentally damaged tubular columns

1



based on a numerical integration procedure.[15] This numerical integration procedure
is similar to that used by Richards and Andronicou[ 14] and can incorporate the effect
of column end restraint. The column is divided into a number of clements along its
fength and the moment-thrust-curvature relationship for each segment is used in the
integration to determine the displacements along the length of the column. This is an
iterative procedure where the axial load of the member is varied for each iteration until
the displacement boundary conditions are satisfied. The moment-thrust-curvature-
axial strain relationship for the dented segment was determined from a regression i
analysis of data generated by finite element analysis of dented tube segments. The

finite element analysis included the effects of large deformations and elastic-plastic

material behavior. Kim also developed a regression model for estimating the ultimate
strength of a damaged tubular column based on data generated from his method for 3

predicting the Joad-shortening response.[15]

A number of tests on damaged tubular columns were conducted by Ricles, et al, to

investigate the effectiveness of a repair scheme.[16, 17] Column load-shortening

isaiddis

behavior was provided for both unrepaired and grout-repaired near-full-scale test

specimens.
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As with any simplified approximate method, each of the approaches discussed
above incorporates cerlain assumptions or ignores complexities that affect the behavior
of the column. For example, Ellinas’ method for predicting ultimate strength{12] tends

to be fairly conservative as a lower bound because of the assumption that the dented

il
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portion of the tube wall is ineffective due to the bending stress in the tube wall causing

yielding at fairly low levels of axial load.

The method proposed by van Aanhold and Taby{11] is based on modeling the
behavior of the dented segment of the column with an equivalent undamaged beam-
column element with reduced section properties. Obviously this approach will not be
able to capture the effects of increased deformation of the cross section, particularly
amplification or growth of the dent under axial load, which can significantly affect the
post-ultimate response of the column.[8] The same criticism would apply to the
numerical integration procedure used by Richards and Andronicou[14] since the
moment-thrust-curvature-axial strain relationship for the dented segment is based on a

¢ross section with constant geometry.

Smith's model also neglects the effect of additional distortion of the cross section,
and the proposed reduction in modulus of elasticity and yield stress is based on a

limited number of tests on small scale tubes.

Taby’s method (DENTA and DENTA2) includes the effect of cross-sectional
distortion and estimates the load-shortening response in the pre- and post-ultimate
ranges. However, these are based on a simplified beam-column model that was tuned

to experimental results from small-scale tests on manufactured tubes.

Kim's method also takes into account the deformation of the cross section under

axial load since the axial load-moment-curvature-axial shortening relationships for the

12



dented segment are based on results from finite element analyses which included large

deformations.

Of all the proposed methods, only Taby's and Kim's take into account the growth
of the dent under axial load. None of the methods addresses the effects of residual
stresses from cold rolling and welding. However, the behavior of an accidentally
damaged column is likely to be dominated by the effects of the dent and out-of-

straightness.

1.3 Objective and Methodology

The objective of this research was to produce a relatively simple yet reasonably
accurate engineering method for predicting axial load as a function of axial shortening
of damaged, pin-ended, tubular steel columns in the pre- and post-ultimate ranges.
The procedure outlined here is straightforward to implement and requires no special
computational software other than the ability to perform matrix multiplications and

computation of some simple functions.

The simplified method presented here is based on a regression model formulated
from a parametric study of column load-shortening data. This approach has been used
successfully in the past to predict the pre- and post-ultimate response to in-plane
loading of plates and stiffened plates, the load-indentation response of circular tubes,

and the axial load-moment-rotation relationship for a damaged tubular column

segment.[15, 18, 19, 20]

13
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The development of the proposed simplified method consisted of two major tasks;
the development of a database including experimental and analytical {finite clement)
load-shortening data, and the development of a regression model. The application of
the resulting engineering method is demonstrated in an example. The accuracy of the
method is illustrated by comparison of the load-shortening relationships generated by

the method and test data.
The basic approach to the problem consisted of the following steps:

1. Collection and generation of experimental and analytical data on the
load-shortening behavior of damaged columns.

a. Literature search and collection of published experimental data.
b. Finite element analysis to generate additional data.
i, Development of a model and verification with experimental results.
ii. Generation of analytical data.
2. Development of a model for the simplified method.

a. Parametric study of the data and selection of suitable approximation
functions for the regression model.

b. Regression analysis and refinement of the model (an iterative procedure).

Details of these tasks are described in the following chapters.

14



2 Database of Column Behavior

The development of the simplified method for predicting the load-shortening
response of damaged tubular columns was based on a regression model of analytical
and experimental load-shortening relationships. Experimental data collected from
available literature and analytical data generated from finite element analyses were

incorporated into a database. (The finite element analysis is described in Chapter 3.)

21 Database Management and Structure

In order to develop the regression model a database of load-shortening data was
required. The SAS' software system was used because it provided a relational
database with capabilities for graphical representation of data. SAS also includes
extensive statistical analysis capabilities which were used for the regression analysis.
Initially, the SAS software was used on a Digital Equiprment Corporation VAX 8530.
Later in the course of the work, the database was moved to a personal computer based

version of SAS.

1IGAS Institute, Cary, N.C.

15




For each experiment or finite element analysis, the database included the basic data
on column geometry (diameter, thickness, length, dent-depth, initial
out-of-straightness), material yield stress, and pairs of load vs. shortening coordinates.
For the experimental data, the database also contained information on the location and
shape of the dent when it was available. The database was separated into two datasets
(separate files containing different data), one containing the column geometry and
material data and the other with the load vs. shortening data. The two files were

related through a tag or name assigned to each column and contained in both datasets.

The load-shortening responses of 130 columns comprised of 3077 pairs of axial
load and axial shortening coordinates were included in the database. Thirty-seven of
the column responses were from published experimental data and 93 were from finite
element analyses. An average of 31 and 21 points per curve defined the column

response for the experimental and analytical data, respectively.

2.2 Included Data

Published experimental load-shortening relationships were available from the
empirical work done in this area by other researchers, Data was taken from Smith
[2,13,3], Taby [5,6,7,8] and Ostapenko{30]. Although, in Taby's research, over 100
tubes had been tested with a variety of end conditions, only a representative sampling
of load-shortening curves was published, all of which (pin-ended tests) were included

in the database.

16



Analytical data generated by finite element analysis (S
incorporated into the database to expand it ove
and damage. The number of ioad-short

source and the range of geometrica

in Table 2.1.

Table 2.1 Source and description of columns included in database
[ o e

ee Ch. 3) were also
r a broader range of column geometry
ening curves included in the database from each

I parameters, yicld strength and damage are shown

T T ST

Data on each of the 13

Source Quantity A Dt an &1 a,
(x10%) (MPa) I
Ref. {2] B 0.66-1,00 29-86 0-8% 0.0-5.5 198-477 l
Ref. [13] 4 0.67-0.84 3041 0-13% 3.2-5.0 274-293 l
Ref. [3] 12 0.45-1.10 26-40 9-18% | 0.5-3.7 334-479 ‘
Ref. [5] 3 0.62-0.82 41-60 2-10% | 0.7-1.8 204-465 j
Ref. [6] 1 (.66 78 5% 0.7 383 4%

r Ref. [7] 1 0.65 91 14% 2.4 295
Ref. [8] 2 0.65-0.72 88-99 8-12% | 0.8-0.9 295-312 !
Ref. [30] 6 0.68-1.1 29-95 5-16% | 0.0-2.6 303-409 J
“S;E. Analysis _2_3 0.4_;1;2 20-100 5-30% O’Q;&-_m 250-500 l

0 columns included in the database is given in Appendix A.
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3 Finite Element Analysis

In order to effectively study the behavior of damaged tubular columns, additional
data were needed to supplement the limited number of published experimental
load-shortening curves. Due to the complexity of the behavior of a damaged tubular
member and the need to generate data on the pre- and post-ultimate response including
large deformations and material nonlinearity, 2 finite element analysis was used. The
finite element software ADINA! was selected because of its capabilities for nonlinear
analysis and automatic load incrementation and its availability. The analyses were
performed on a Control Data Corporation Cyber 850 Model 180 running the

NOS/VE operating systerm.

3.1 Damaged Column Model

The basic concepts employed in the finite element modeling of a damaged tubular

column are illustrated in Fig. 3.1. A damaged tubular member with initial crookedness

TADINA R & D Inc., Watertown, MA
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Finite Element
Model

Damaged
Column

Figure 3.1 Basic concept of finite element model
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and a dent at mid-length has two planes of symmetry, one longitudinal and one at the
dent perpendicular to the longitudinal axis, assuming that the dented cross section is
symmetrical about the longitudinal plane of symmetry. This is a reasonable assumption
if the dent and out-of-straightness were caused by the same accident. (The idealized
dent geometry and out-of-straightness used in the model are discussed in the following
section.) Due to the double symmetry of the problem, it was necessary to model only
one-quarter of the tube as indicated in Fig. 3.1. In addition to the symmetry of the
problem, further simplifying assumptions were made based on the behavior of the
column. For pin-ended boundary conditions, a portion of the column some distance
away from the dent behaves as an elastic beam-column with no distortion of the cross
section. The region near the dent is subjected to bending of the tube wall leading to
distortion of the cross section and plastic deformations. These considerations are
reflected in the model where the region near and including the dent is modeled with

shell elements while the remainder of the column with beam-column (line) elements.

The length of the portion of the column modeled with shell elements was taken to
be one-half the length of the dent, I, as determined from Eq. 3.4 plus twice the column
diameter. Considering the well known solution for axisymmetric edge loading of a
cylindrical shell,[21] the effect of an applied axisymmetric edge moment, the
exponential decay of the loading effect for a steel cylinder ( Poisson’s ratio, v =0.3)

at a distance of two diameters from the edge is given by
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where v is Poisson's ratio, x is the Jongitudinal distance from the edge, and D and 1 are
the diameter and thickness of the cylinder. For a cylinder with a diameter to thickness
ratio (D/t) of 20 (the smallest considered in this study and most critical in this
consideration), the edge loading effect is reduced by 7 orders of magnitude at a
distance of 2 diameters. Although the bending of the tube wall at the dent in a tubular

column is not axisymmetric and is not elastic, this provides some indication that the

=
i
’
H

segment length of two diameters beyond the dented region should be sufficient to

model the effects of deformation of the cross section.

An elastic-plastic material model was used for the shell elements and a linear elastic i
model was used for the beam-column elements. The elastic-plastic model was based |
on the von Mises yield criterion. A large displacement (geometrically nonlinear)
formulation was used for all elements. A rectangular cross section was used for the
beam elements with the area and moment of inertia equal to those of the undamaged

(circular) cross section.

3.2 l|dealized Dent Geometry

In the development of the finite element model, certain assumptions were made

about the location and geometry of the dent damage and the initial out-of-straightness.
The assumption of transverse and longitudinal planes of symmetry dictates that the
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dent is located at midlength, the out-of-straightness is symmctric about the midlength
of the column and the dented cross section is symmetric about the longitudinal plane of
symmetry. In addition, the idealized geometry used in the model contained
assumptions pertaining to the shape of the dent and out-of-straightness. These
assumptions permitted description of the damage in terms o f only two parameters:

dent depth d, and the magnitude of the initial out-of-straightness .

Although dent damage and initial crookedness may occur with arhitrary geometries
in damaged columns, the longitudinal location of the dent and variations in the shape
of the dent and out-of-straightness have been found by other researchers to have little
effect on the behavior. For example, Smith concluded that “Comparison of test results
. indicates radical variations in the position of a dent and associated bending damage
do not substantially change the damage effect"{3], and "Test results also support
previous theoretical findings that loss of strength is insensitive to the shape and
location of dents and to the shape of bending deformation.”[3] Further verification
comes from Taby, who concluded "The sensitivily to dent shape and location is,
however, insignificant ...".[6] Consequently, a single damage model based on an
assumed dent geometry and location and shape of initial crookedness was used in the

analysis.

As shown in Fig. 3.2, the longitudinal axis defining the initial crookedness of the
damaged member was assumed to be of sinusoidal shape. With the origin at

midlength, the initial crookedness is given by
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where, as shown in Fig. 3.2, x is the longitudinal distance from mid-length of the
column, & is the magnitude of maximum initial lateral out-of-straightness (occurs at
midlength), and z is the lateral deflection of the longitudinal axis of the tube. Thus, the

initial crookedness is defined by a single parameter, 0.

Figure 3.2. Damaged column geometry

The dent was assumed to be a sharp "vee" as if produced by a “knife-edge” loading
perpendicular to the longitudinal axis. The geometry of the dent was defined in terms
of the dent depth, d, as shown in Fig. 3.3. The longitudinal profile of the dent is
defined by {, the deviation of the top fiber in the longitudinal plane of symmetry (see

Fig. 3.3) from the sinusoidal shape given by Eq. 3.2.
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Figure 3.3. Dent geometry

The bottom fiber {opposite the dent) is assumed to be paralle! to the sinusoid defined
by Eq. 3.2. The dent profile, {, as a function of the distance x from the center of the

dent at the midlength of the column ( { = {(x) ) is given by

2x)? I
{=d|1-2% O<x<— 3.3)
I 2

and the length of the dent, [, is given by
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where D is the diameter (measured to mid thickness of the tube wall), d is the dent

depth, and t is the tube wall thickness.

The expressions for { and 1, were taken from an analytically derived relationship
for a tube supported along its length with no end restraint and subjected to a
"knife-edge" lateral loading.[22] The expression for [, (Eq. 3.4 ) is in good

agreement with dent profiles published by Smith.[3]

The cross-sectional geometry of the dent is based on empirical observations and is
composed of a flattened and a curved segment. As shown in Fig. 3.3, the curved
segment is defined by the radius which varies linearly as a function of the angle ¢. The
radius increases from R (the radius to midthickness of the undamaged tube) to R, at
the intersection of the curved and flattened segments. R, is determined from the
requirement that the circumferential length of the dented and circular cross sections

must be equal.

R+R
TR = — £ + R, sind (3.5)
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R+R -
TR = ; “'cos"(dR R) + VR; - (R-d} (3.6)

which gives R, although not explicitly, in terms of R and d. The discontinucus slope
at the intersection of the flattened and curved segments, as shown in Fig. 3.3,

corresponds to the plastic hinge formed during indentation.

3.3 Finite Element Discretization

Prior to using the finite element model (Fig. 3.1) to generate data, the accuracy of
the model was verified by analyzing test specimens for which published experimental
data were available and comparing the calculated and empirical responses. In the-
course of this process three different models were developed. The models differed
primarily in the pattern of discretization and the type and number of shell elements
used in modeling the portion of the column near the dent. The finite element model

ultimately used to generate load-shortening data included in the database was the last

of the three models developed.

The first model, Model 1, was found to be inadequate for predicting the response
of columns with diameter to thickness (D/t) ratios greater than 60 and had limited
flexibility for modeling different magnitudes of dent depth. Model 2 (the second in the

series) was much more accurate but was extremely costly in terms of CPU time,
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Model 3 exhibited good correlation with experimental data and was much more
economical than Model 2 and therefore was selected for generating data included in

the database.

The discretization of the portion of the tube modeled with shell elements for
Model 1 is shown in Fig. 3.4. Eighteen 16-node quadrilateral and four 9-node
triangular isoparametric shell elements were used. Reasonable results were obtained
with this model when compared to experimental data for tubes with a D/t ratio less

than 60.

Figure 3.4. Shell element discretization of Model 1
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For D/t greater than 60, the model significantly overestimated the strength with the
difference between the calculated and empirical responses increasing approximately
linearly with the D/t ratio. This was due to the inability of the model to simulate the
growth of the dent that coincides with attainment of the ultimate load for tubes with
larger D/t ratios. The relatively coarse mesh overestimated the flexural stiffness of the
tube wall and could not capture the complex deformation at the dent resulting in
overestimation of the ultimate and post-ultimate strength for columns with larger D/t

ratio.

Figure 3.5. Shell element discretization of Model 2




In order to improve the predictions of Model 1, a finer discretization of the dented
area was used for Model 2, and 16-node elements were incorporated as shown in
Fig. 3.5. Model 2 resulted in much improved agreement with experimental data for
columns with larger D/t. However, the model was extremely expensive in terms of

CPU time. This led to the development of Model 3.

The discretization of Model 3 is shown in Fig. 3.6 and it resulted in a much more
economical computer usage than Model 2 while producing reasonable agreement with
experimental data. Consequently, Model 3 was selected for generating data for the

database.

Figure 3.6. Shell element discretization of Model 3
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Model 3 is composed of 32 shell elements, 4 beam elements, 268 nodes, and has
1162 degrees of freedom. The shell elements were either 16-node elements ora
variation of these with 4 or 6 nodes needed for transition from the finer mesh at the

dent to a coarser mesh outside the dent.

The appropriate boundary conditions were imposed on the nodes at the edges of
the shell elements lying in the two planes of symmetry. Nodes lying in a plane of
symmetry are allowed to displace and rotate only within the plane. All other degrees
of freedom for nodes in the planes of symmetry are inhibited. In the cross-sectional
plane at the interface of the beam and shell elements, the displacements of the shell
element nodes were constrained to the beam element node so that a section through
the model remained plane. The rotations and the transverse displacements of the shell
element nodes were constrained to be equal to the rotation and displacement of the
beam element node. The longitudinal displacements were constrained to be the sum of
the displacement of the beam element node and the rotation of the beam node

multiplied by the distance to the shell node from the axis of rotation.

The loading was applied to the model by imposing a displacement in the
longitudinal direction to the end node of the beam element at the opposite end of the
model from the shell elements. The automatic load incrementation procedure available
in ADINA was used. This capability was extremely effective since the response of the
model is not known before the analysis and, consequently, appropriate displacement

increments could not always be determined in advance.
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3.4 Verification of the Model

A comparison of the predicted responses from the three finite element models and
experimental data from one column test, is shown in Fig, 3.7. {Comparisons are
shown for several other columns in reference 25.) The column analyzed (test specimen
1CDC from reference 7) had D/t=91, A=0.65 d/D=0,141 and 6/L=0.0024. The
predicted response from Model 1 overestimated the ultimate and post-ultimate force in
the column. The coarse mesh at the dent was unable to accurately simulate the bending
of the tube wall at the dent for large D/t ratio columns. (Model 1 had produced better
agreement with experimental data for columns with lower D/t ratio.) The calculated
response for Model 2 and Model 3 are essentially identical and agree reasonably well
with the experimental data. This indicates that the discretization of Model 2 is likely to
be sufficiently fine since further refinement of the mesh does not produce different
results. The D/t ratio for this column is at the upper extreme of the range of interest in
this study and a finer mesh is not needed. In general, the finite element analysis
(Model 3) accurately predicted the ultimate load of the test specimen. With a few
exceptions, the calculated responses in the post-ultimate range generally
underestimated the load compared to the experimental data (See Fig. 3.7 and

reference 25).
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Figure 3.7 Comparison of experimental response with Models 1,2 and 3
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4 Approximation with Linear
Regression Models

The simplified method for predicting the load-shortening behavior of damaged
tubuiar columns developed here is based on a regression analysis. A brief overview of
linear regression, the product formulation used, and specifics with respect to the
analysis of the load-shortening behavior are given in this chapter. Ultimately a

nonlinear regression model was used as described in Chapter 5.

4.1 Regression Analysis

Due to the dependence of column behavior on geometrical and material properties,
a multiple regression model was required to approximate the load-shortening response
from the data in the database. In this context, the term multiple refers to a single
independent variable as a function of more than one independent variable. As an
introduction, a brief overview of multiple regression analysis and the concept of the
direct product in forming the regression model is provided since this explains much of

the basis for the regression model.
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4.1.1 Multiple Linear Regression

In a linear regression analysis, the known values of the dependent variable are
approximated by a continuous function that is linear in terms of a set of regression
coefficients. These coefficients are determined by the method of least squares. The
known values of the dependent variables (for [ data points) are arranged in a column

matrix, F.

F = fi (4-1)

For each value, £, of the dependent variable there is a set, (X;, ..s X» oo Xg)» Of
corresponding values of the n independent variables. The approximation, f (a

continuous function), to the data, F, is taken to be in the form of a linear series.

m

fm Eajqjm

p= a g . taqt . taq, 4.2)
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where a; are the regression coefficients and q are the regressors. Each regressor gq; is
a function of one or more of the independent variable(s). In matrix notation, Eq. 4.2

can also be expressed by the product

f=0A4A (4.3)

where Q is a Ixm row matrix of regressors g; and A is a mx/ column matrix of the
coefficients, a;.
The approximation f, to an individual data point f, is given by evaluating Eq. 4.3

with the corresponding values of the independent variables. The data can then be

represented as an approximation plus some (unknown) residual, €

f.=f+te = 0A +¢ (4.4)
where @, is the row matrix Q evaluated at the i* value of each of the independent
variables. Analogous to Eq. 4.4, the vector of known values of the dependent

variable, F, is given by

F=BA+E (4.5)
where each i® row of the {xm matrix B is the row matrix Q,, and E is a column matrix

of the corresponding values of €.
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The coefficients A are determined by enforcing the least squares criterion, which

minimizes the sum of the squares of the residuals. Defining the error function, e, as

e=Y € (4.6)

the Jeast squares criterion (minimization of the sum of the squares of the residuals) is

given by setting the derivatives of the error function with respect to the coefficients, a,

equal to zero.

— = {0} 4.7)

This results in the following well-known set of simultaneous equations for the m

regression coefficients A.

B'B A =B'F (4.8)
B is a Ixm matrix and the product B *B is a mxm matrix, sometimes referred to as the
crossproduct matrix. The approximation is given by solving Eq. 4.8 for the
coefficients, A. Although ill-conditioning can be a problem in solving least squares
equations, the greater challenge in performing a linear regression analysis is not in

determining the coefficients, but in selecting appropriate regressors.
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4.1.2 Product Formulation for Multiple Regression Models

In multiple regression analysis it is often convenient to examine the relationships

between the dependent variable and each independent variable individually.

Approximating functions can then be selected for each independent variable. Each of

these approximating or “coordinate” functions is simply a function of a single

independent variable chosen to approximate the relationship between that independent

variable and the dependent variable for constant values of all other independent

variables. The regression model can be formed as the product of the individual

coordinate functions.

For clarity, the definition of the subscripts used in describing this formulation are

provided in Table 4.1.

Table 4.1 Subscript definitions

Data Points | Regressors | Independent | Terms of the Coordinate
Variables Function for the k™
Independent Variable
Total 1 m n m,
Number
Index i i k Je
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For each independent variable, a coordinate function can be formulated as a linear
combination of terms, each of which is a function of the independent variable.
Analogous to the row matrix Q in Eq. 4.3, a coordinate function, G, for the k®

independent variable, x, , can be expressed as

Gy = [0  84,(5) - B, (50| “9)

where each element of G, is a function of x, and m, is the number of elements or terms

in the coordinate function for the &* independent variable.

The regressors Q for the model can then be formed as the product of the individual
coordinate functions. Forming the regression model as a product allows the effect of
each independent variable to be examined separately and facilitates the process of

selecting suitable coordinate functions for the individual independent variables.

For a model with n independent variables and with each k" independent variable

having a coordinate function with m, terms (or elements), the total number of

regressors in the model, m, is given by
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m = Hm, (4.10)
k=1
In order to express the product as a matrix operation, the "direct product” is
adopted. The direct product, sometimes referred to as the Kronecker product or
Zehfuss product, is a matrix product of two matrices that includes all possible products

of the elements of each matrix. For an mxn matrix A and a pxq matrix B, the direct

product, indicated by the symbol &, is defined by i
a,B .. a,B ;
ARB =] : : (4.11)
a, B .. a,B

where a; is the i* row and j® column element of A.[23] The right hand side of

Eq. 4.11 is an (mp)x(n-q) matrix.

In the matrix formulation the regression model, the regressors, Q, can be

expressed as the direct product of the regressors of the individual coordinate functions

0-68.8G®.®G, 4.12)

(Note that the direct product operation is associative, but not commutative.) The
elements, q;, of the row matrix Q resulting from the direct product formulation are

given by
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g, =1IT 2,60 “.13)

k=1

where the j, is given by,

mod[jw}, II mh)
ok

(4.14)
H m,

k=k

j, = int

m

- The function int is defined as the integer portion of the argument and mod is defined

as

(4.15)

mod (x,y) = x - int(-i—) -y

The matrix product QA defines the regression model as indicated in Eq. 4.3. This

process facilitates selection of an appropriate regression model when there are several

independent variables.

4.1.3 Selection of Coordinate Functions
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In developing a regression model as deseribed above, the effects of cach
independent variable can be studied independently. This is accomplished by observing
the relationship between the dependent variable and an independent variable while all
other independent variables are kept constant. By observing the nature of the
relationship for various values of the other independent variables an appropriate

coordinate function can be chosen to approximate the relationship.

After coordinate functions are sclected for cach independent variable, it is assumed
that regressors g, which define the approximation, fas a function of all the independent
variables in Eq. 4.2 are formed as a product of the coordinate functions for the
individual independent variables. The s coefficients A are then determined by

solving Eq. 4.8 and the approximation function for the given data is given by Eq. 4.3.

4.1.4 Consolidation of Independent Variables

One advantage of this formulation by the direct product procedure is that, after the
coefficients A are determined, the dependent variable expressed as a function of the m
regressors and cocefficients can be systematically reduced to a function with fewer (or a
single} independent variables by setting selected variables to constant values and thus
consolidating them into the coeflicients of the remaining regressors in the regression
model. Often the ultimate goal of a multiple regression analysis is to express the

dependent variable as a function of a single independent variable. For example in this
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4.1.4 Consolidation of Independent Variables

One advantage of this formulation by the direct product procedure is tha.ii after the
coefficients A are determined, the dependent variable expressed as a tunction of the m
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g = Il &,&) (4.13)

k=i

where the j, is given by,

j, = int
£ n (4.14)

The function int is defined as the integer portion of the argument and mod is defined

as

mod (x,y) = x - im(i;-) ‘y (4.15)

The matrix product QA defines the regression model as indicated in Eq. 4.3. This

process facilitates selection of an appmpriate regression model when there are several

independent variables.

4.1.3 Selection of Coordinate F&?{sﬁ'&ns
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The rearrangement of the elements of A to form A® is based on the direct product
formulation of Q and Q.. Each element, a°,, of A" is based on the product of the r*
element of Qg, gy, , and the s® element of Qc, G, The product of any q,, and g, is
equivalent to one of the regressors, g;, since both (qg, gc, and q;) consist of the
product of one element from each of the coordinate functions for the n independent
variables (See Eq. 4.13.). Defining the regressor that corresponds to the product, qg,-
Qes» 8S Gy the element, a°,, of A%, is then the coefficient, A » Of the regressor

Gy - FOT example,

ars = aj(r_;) (4.18}

where

E ]

-1 " )
jrs) = E[(fk -1) 11 mpJ +J, (4.19)
k

F=k+]

E

and each j, in Eq. 4.19 is the counter of the coordinate function for the k* independent

variable in the product, qg, * G, -

With the coefficients, A, known and the elements of Q. also being constants by
virtue of each independent variable being set to a constant value, Eq. 4.17 canbe
simplified to

=0 A (4.20)
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study, the load versus displacement relationship for a given column is desired but in

general the load is also a function of material and geometrical parameters.

By separating the independent variables into two groups, those that are to be
retained as variables in the model and those that are to be consolidated into
coefficients of the remaining regressors, two row matrices can be defined consisting of
the direct product of the coordinate functions for the independent variables in each
group. The direct product of the coordinate functions for the variables to be retained
is defined as Qy and consists of m, elements. Typically this will be the coordinate
function for a single independent variable. Likewise, Q is defined as the direct
product of the coordinate functions of the variables to be consolidated and consists of
m, elements. Obviously, the relationship between the total number of regressors in the

model, m, and m, and m, is given by

m = mpmg (4.16)

Then the approximation, f, as given in Eq. 4.3 may be rewritten as

f=0sA" Q0 | (4.17)

where A" is a m,xm, rectangular matrix that consists of a rearrangement of the

coefficients, A.
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where

Ap = A® O, 4.21)

Thus the approximation, f, is reduced to a linear combination of m, terms,

4.2 A Linear Model for Column Load-Shortening

As expected in developing a predictive regression model, many models were tried,
analyzed and assessed for accuracy and effectiveness. The final model presented here
evolved out of first attempting to develop a conventional linear regression model. The
development of a linear model is described in the following section to illustrate the
formulation and to provide background for the development of the nonlinear model
described in the subsequent section. This particular model is described in more detail

in Reference 24 and is also presented in Reference 25.

4.2.1 Parametric Study

The complete load-shortening relationship, including the post-ultimate behavior, of
a damaged tubular column is obviously non-linear and dependent on the geometry of

the column and the amount of damage (dent depth and out-of-straightness).
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Obviously, the regressors would be nonlinear functions of the independent variables,
X, . One of the first steps in developing a regression model is to conduct a parametric
study to determine the appropriate predictor or dependent variables and the response
or independent variable, The parametric study is discussed here, as it is applicable to
hoth the lincar regression model presented in References 24 and 25, as well as the

nonlinear regression model.

In conducting a parametric study, the data should be examined to determine
appropriate predictor and response variables for the regression model. 1t is often
advantageous to formulate the predictor and response variables as nondimensional

parameters.,

In addition, the response and predictor variables should be selected so as to
minimize the amount of scatter in the data, thus providing an improved basis for the
regression model. To illustrate, consider a simple example where the object is to
predict the response of steel stub column from data on a number of specimens with
differing cross-sectional areas and yield stresses. Plots of the raw data in the form of
the load versus axial deformation would exhibit considerable scatter. Obviously, more
appropriate variables for a regression model would be obtained by
nondimensionalizing the foad and axial deformation with respect to the squash load
{cross-sectional area multiplied by the yield stress) and length, respectively. In more
complex problems appropriate nondimensionalized parameters are not obvious and

must be determined from a study of the data.
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In this study, the axial load, P, was assumed to be a function of diameter,

thickness, length, yield strain, dent depth, out-of-straightness and axial shortening as

indicated in Eq. 4.22

P=PD .t Le.db A) (4.22)

Since only steel columns were considered in this study, the modulus of elasticity was

not included as a variable.

In previous work (references 24 and 25), the parametric study resulted in a lincar

regression model of the form

Pm—ﬁ;zp(?,l,%,%,s) (4.23)
where
A= (4.249)
nr
and
S = Z%’ (4.25)
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For the regression model presented in the following chapter, variations of the five
nondimensionalized parameters shown on the right hand side of Equation 4.23 were
used. These parameters were selected to minirmize the error of the least squares

regression and are described in the following chapter.
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5 Piecewise Approximation of the Load
- Shortening Behavior

——

The preceding chapter described some fundamental concepts pertaining to multiple
linear regression, and the direct product formulation of a linear regression. This
chapter presents the application of a regression analysis to the load-shortening

_ 5 behavior of damaged tubular columns,

Linear regression models, as indicated by Eq. 4.3, can represent or approximate a
wide variety of relationships and present a mathematically tractable problem of
determining the regression coefficients. However, there are cases where a nonlinear
model may be more appropriate. .For example, the form of the actual relationship

between the dependent and independent variables may be known and may not be able

to be expressed in the form of Eq. 4.3. Or, the nature of the relationship between
dependent and independent variables and the benefit of a concise approximation

function with as few terms as practical may be more readily realized with a model that

is nonlinear,

48




In developing a regression model to pred ict the axial load as a function of axial
shortening, it was difficult to obtain accurate approximations over the reasonably wide
range of geometrical and damage parameters considered in this study. This was due to
the variations in the characteristics of the load-shortening relationship as a function of

geometry and damage.

References 24 and 25 describe a linear regression model that was developed for a
limited range of column geometrics, out-of-straightness and dent depth.  Many
attempts were made Lo Improve and broaden the scope of this model and to develop a
more general model. However, these efforts were generally unsuccessful. During this
work, it was realized that it was not practical to expect that a linear combination of a
small number of coordinate functions for the axial displacement parameter could

approximate the wide range of shapes of the load - shortening curves.

5.1 The Load-Shortening Relationship

Over the range of column geometries, material properties, dent depth and out-of-
straightness considered in this study, there is considerable variation in the
characteristics of the load versus shortening relationships. In general, the range of
load-shortening behavior is illustrated by the three curves depicted in Fig. 5.1. For
columns with a relatively small amount of damage {(dent damage and initial

crookedness) and large D/t ratios, the behavior was characterized by an essentially
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linear response up to the ultimate load followed by very rapid decrease in load as
illustrated by curve A in Fig 5.1. This response was also observed to be a function of
the slenderness A of the column. For columns with greater damage, the
load-shortening response was smoother, with a more gradual approach to the ultimate
load and a more gradual reduction in foad in the post-ultimate range as illustrated by
curve B in Fig 5.1. The curve labeled C has a short initial linear range followed by

" gradual reduction in stiffness up to the ultimate load and then a relatively flat

unloading curve, typical of a column with a relatively large amount of damage.

O

Figure 5.1 General characterization of load-shortening behavior.
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Although curves A, B and C illustrate the overall character of the load shortening
relationship, it should be noted that for each type of response there is a broad range in
values determining the actual curve. For example, columns with type A response can

vary widely in the maximum value of the nondimensionalized load, P. Also, the value

of the nondimensionalized axial shortening, S at which the maximum load occurs

varies significantly for each of the three types of column response.

The difficulty in modeling the column beh;vior Qith a linear regression model is
largely due to the variation in the shape of the load - shortening relationships shown in
Fig. 5.1. A linear model has to be of the form of Eq. 4.3 and can be reduced to a
simple linear combination of the individual terms of the coordinate function for a single
variable as discussed in Section 4.1.4. Although the discussion in Section 4.1.4
specifically applies to a model formed as a Kronecker, Zehfuss or direct product of the
coordinate functions, any linear multiple regression model can be so reduced to a
function of a single variable. The model in its reduced form, ie., the load as a function
of the axial shortening, is simply a linear combination of the terms of the coordinate
function for axial shortening. With five independent variables in this study, three to
five terms in the coordinate function for axial shortening was considered reasonable in
order to keep the total number of regressors in the model manageable and to provide a

compact procedure for the simplified method.
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The lack of success from application of traditional linear regression modeling and

an examination of the nature of the load shortening relationship led to the adoption of

a piecewise approximation.

Although markedly different in the structural behavior they represent, the curves in
Fig 5.1 have similar characteristics. As shown for the hypothetical load-shortening
curve in Fig. 5.2, each curve has an initial linear segment. This is followed by the

ultimate load segment that includes the maximum value of load and has nonpositive

2
curvature (nonpositive second derivative, d Iz < 0). The post-ultimate segment of
ds

each curve is always positive, has negative slope (negative first derivative, % < 0)

and nonnegative curvature. The point labeled S, in Fig. 5.2. represents the maximum
value of nondimensionalized axial shortening S of the linear segment and marks the
transition from the linear segment to the ultimate load segment. S is the value of S at
the inflection point between the ultimate load and post-ultimate segments. Thus, these
two points along with the origin define the domain of the “linear segment”, the
“ultimate load segment” and the initial point of the “post-ultimate segment”. Any of
the curves of type A, B, or C can be divided into these three segments. Obviously for

a curve of type A, the difference or distance between S;and S, will be very small.
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Figure 5.2 Piecewise description of the load - shortening response

This piecewise description of the load - shortening curves provides the basis for
the development of the regression model. For each segment a simple function can be
used to describe the curve. These functions along with the values of §; and §; are
used to approximate the load - shortening curve. This is described in detail in the

following sections.
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5.2 General Description of the Piecewise

Approximation

The regression model for approximating the load shortening behavior of tubular

columns is unique in the formulation of the coordinate function for the axial shortening

S. A general description of the approximation of P as a function of S is given here.

The nature of the three segments that comprise the load - shortening relationship
implies that simple functions could be used to approximate each segment. For
example, it is clear that the simple linear relationship in Eq. 5.1 is appropriate for the

linear segment.

P = P(s) = f.s_’.S for 08<8§, (5.1)

Note that ¢, is magnitude of the load when S = §;.

The characteristics of the ultimate load segment of a load shortening curve is that
it is curvilinear and its second derivative is nonpositive.. Continuity between the
segments is also a requirement for the coordinate function. At a minimum, continuity
of the function, sometimes referred to as C° continuity, and of its first derivative or C'
continuity are required. In order to enforce the required continuity, a third order

polynomial was selected to approximate the ultimate load segment.
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The formulation of the coordinate function is based on Hermitian interpolation
where the ordinates and slopes are matched at the end points. For the ultimate load
segment, the coordinate function for S is determined from the third order polynomial

given by

&t S -8t (S-S F +efs -8,y (5.2)

and the values of the ordinate and slope at the ends of the segment. The relationship

between the constants, ¢ and the ordinates and slope at S= S, and S = S, is then given

by
[ Gsp ] [ o 0 0 e
dG(S,)
e S20L7 01 0 0|,
ds 2
= (5'3) H
Gs(Sp) LS, Sli SI:Z c, &
dGy (S, 5
—————— s 2
as | 0 125, 35; ] {e) :
where,
Sy =8 -5, (5.4)




By inverting the matrix in Eq. 5.3, the polynomial in Eq. 5.2 is expressed in terms

of the ordinate and slopes at the endpoints of the ultimate load segment.
1l Gg(S)) 4

0 1 0 0 |[dGs)

ds
3 -2 3 -1
[1 (s-5) (5-57 5-5] = 5 305, (5.5)
i i G,(S))

2L 2 ey
ds§

The slope at § = §; is defined by the value of the function since it must match the

slope of the linear segment given by Eq. 5.1. Imposing the requirement that

dGy(S) _ Gy(Sy)
s s, (5.6)

results in the three term coordinate function for S over the ultimate load segment given

iy
i

in Eq. 5.7.
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. (5-5) 2S1L+3SL(S_.SL)2 . S”'+23$L(S-SL}3

8 =1
. S, 5, S2 5,82
3 2
8s: = —5 (8 -5 - - (§ -5, (5.7
Fi I

t

L (S-80+ 2(s-8,y

853 3
iL n

The subscript, S is used for clarity to indicate the coordinate function for S in lieu of 1

a numerical subscript indicating the k® coordinate function as given in the notation

used in Egs. 4.9 and 7.

Gs = [8s1 852 8s1] (5.8)

The three components of the coordinate function Gy over the ultimate load
segment is shown graphically in Fig. 5.3. The linear segment is also shown to illustrate

the continuity between the linear and ultimate load segments.
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Figure 5.3 Coordinate function G for § < §;

Note that the ordinates of gg; and gg, have valuesof 1 and 0and Oand 1 at S = §; and
S = §,, respectively. The first derivative of gg, has values of -é— atS=§, and O at

S = 8§, Similarly, the first derivative of g, is 0 at both end points of the ultimate load
segment. The third term of the coordinate function, gg,, has slopes of Gand 1 at

S =§; and § = §,, respectively. Thus, a linear combination of these terms of the
coordinate function provides the approximation for the ultimate load segment where
the coefficients of each term of the coordinate function represent the values of the
functionatS=S§_ and S=S§, and the slope at S = §,.
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The post-ultimate segment has the following characteristics that are important in
selecting an approximating function. As listed previously, these are 1} positive value
of the function, 2) negative first derivative and 3) positive second derivative over the
domainof § > §,. It can be advantageous if the desired characteristics are inherent in
the approximating function. This will preclude the possibility of the resulting
regression model producing spurious results such as negative values or positive slopes

for the post-ultimate segment of the load shortening curves.

The characteristics of the post-ultimate segment listed above proved to be
unamenable to approximation by a linear combination of functions of 8. Ina
regression analysis, the coefficients are independent variables and as such, do not g
preclude the violation of the above characteristics of the post-ultimate segment. For
example, a linear combination of functions, each having positive curvature, would not

necessarily have positive curvature or be a positive valued function,

These considerations led to the use of a nonlinear regression function for ]

approximating the post-ultimate segment. The approximating function is given by

b Csr _ P(S)
Cor P'(S) (5.9
1--2(s-5) 1-=—L(s-s

This function maintains C° and C' continuity between the ultimate and post- ;

ultimate segments and, assuming that ¢, and cg, representing the ordinate and slope

59




at § = §, are positive and negative, respectively, exhibits the desired characteristics of
the approximating function as described above. The approximating function for the

post-ultimate segment, with the above assumptions, is illustrated in Fig. 5.4.
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Figure 5.4 Coordinate function for the post-ultimate segment.

From Egs. 5.1, 5.7, 5.8 and 5.9, the complete approximating function for the load

1 as a function of the axial shortening is given by Eq. 5.10.
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for 0s85¢<S§,

<
PiS = 3
(9 - &

for  §,<85¢<§,

S-5 285, +3S8 S, +28
( L) . iL L(S__SL)Z + iL - L(S”“SL)S

P(S) = ¢, J1 + 5 -
L $, 8y S Si
(3 o e 2 o o
" Cs2 ‘E‘;“ (587" - = (-5, (5.10)
S i
;

,—1 | ]
¥ Cs3 5 (§-8,)% + -~ (S-5,)
IL I

for §28,
P(s) = 2 g
1-—=(s-5)
Cs2

5.3 Segmentation of the Load-Shortening Response

From Eq. 5.10, it is obvious that in addition to the three coefficients, ¢, ¢s, and
Cs3, the points §; and S; are required to describe the piecewise approximation. Since

predictive capability was the primary reason for developing the regression model, it
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was necessary to be able to predict §; and S, for a damaged column. The basis for
predicting or estimating 8§, and §; was, not surprisingly, a regression model. In order
to develop the regression model, it was necessary to determine the values of §; and §,
for each load-shortening relationship in the database. Because of the method by which
these points were determined, the inflection point between the ultimate load segment

and the post-ultimate segment, S, was determined prior to S, and is presented first.

5.3.1 Determination of S,

S, is an inflection point and was determined by estimating the point where the
second derivative of the load-shortening relationship is equal to zero. Since the load-
shortening relationships in the database are defined by discrete points, the second
derivative at a point was estimated by the finite difference calculation given in Eq. 5.11

dp _ 2(APyAS, - AP, AS,)

~

ds?  ASAS (A, + AS))

(5.11)

and illustrated conceptually in Fig. 5.5.

62



4P, :
'
e i st i gl 3 e o A e S ?......
£
AR, L
P P /RN, LA S
e f '
et '
I '
I
et i
S
S
I H
IR
I i
!
Y :
A " (BN
45, 4S5, S

Figure 5.5 Illustration of quantities for finite difference calculation of 2* derivative

For each load-shortening relationship in the database, a search for the two points
where the second derivative changes sign from negative to positive was performed by
calculating the second derivative at successive points until the change of sign was
found as illustrated in Fig. 5.6. The abscissa and the ordinate of the inflection point, S,
and P(S,) were then determined by linear interpolation between the positive and

negative values of the second derivative,
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Figure 5.6 Sequential search for inflection point

After §; and P(S)) were determined for each load-shortening relationship, the
results were incorporated into the database. As discussed above, the values of S,
formed the basis for the regression model to predict S;. The values of P(S,) were used
to facilitate the selection of coordinate functions but were not directly used in the

regression analysis of the load-shortening data as discussed in Section 5.5.

5.3.2 Determination of S,

In the context of a series of discrete points that represent a load-shortening
relationship in the database, the value of S, is not as readily determined as an inflection

point. Attempts to develop an automated numerical procedure to locate the end of the
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linear segment were not completely successful. Procedures based on numerical
calculation of the second derivative were used but generally met with inconsistent
results. Selecting a small “trigger” value of curvature to indicate the end of the linear
segment produced varying results that did not appear to be consistently valid when
graphically observed. Also, small amounts of “noise” in the data would produce

inaccurate results.

The difficulties in determining S, from a numerical calculation of curvature led to
the use of another regression procedure. For each load-shortening relationship in the
database, S, was determined from an individual regression analysis of each curve with i

S, as one of the regression coefficients. The approximating function for load as a

function of shortening used in the regression analyses for S; was the same as described
above in Eq. 5.10 and used in the complete model for the load as a function of coluron
geometry, dent damage, out-of-straightness and axial shortening. Consequently, a
nonlinear regression analysis was required to determine the values of §; . The
regression model is defined by Eq. 5.10 where cg, Cs, , Cs; and S are the regression
coefficients. For each load-shortening relationship, S, is known from the procedure

described in Section 5.3.1.

A modified Gauss-Newton technique included in the SAS software was used to
perform the nonlinear regression analysis. This method requires initial approximate
values for each of the regression coefficients and derivatives of the approximating

function with respect to the regression coefficients. The initial values of the regression

65




coefficients for each of the load-shortening curves were determined graphically by

visual examination of the curves. The derivatives of the approximating function

(Eq. 5.10) are given in Eq. 5.12.

for 0s8<S§,

éP 5 aP“G 3P~e aP _ S
dc, 8,  deq 0 B Ut a5 T Ttw
Csy L Cs2 Cg3 L S,

for 5,858,

oP oP oP

—— ————— —
s 52
deg, Cso Oty

ap _ _Cu
aSL SLzS,z

(2525 - 45752) + (45,57 + 75257 + 85725, - 5')s

v (25 - 85,57 - 8525, - 452) 5% + (57 + 45,8, + 352) 89

for §28,
P o BB . e-2(5-S)
3CSI acsz [CSZ' - €s3 (S Sl)]
aP 5~ P _,
dcg, e AT
1-2(s-8
[ "sz( I)]
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The values of S, determined from the regression analysis were verified graphically
and added to the database. The values of P(S,) were then determined for each
column in the database from linear interpolation of the load-shortening data. At this
point, the database includes the geometry, material yield strength, dent-depth and out-
of-straightness, the values of S, , P(S,), S, and P(§,). and load-shortening data for

each column.

5.4 Approximation of S_ and S,

In addition to values for cg, , Cg; » and g, , the piecewise approximation described
above requires values of S; and §; to define a load-shortening relationship. Two linear
regression models, one each for S, and §;, were developed to predict their values as

functions of the column geometry and damage.

5.4.1 Regression Model for S,

As with all of the regression models, the madel for §; as a function of column
geometry and damage was based on the physical phenomenon and the goodness of fit
to the data. The coordinate functions for S, as a function of column slenderness A, D/t
ratio, relative dent depth /D, and out-of-straightness 8/L are given in Egs. 5.13, 5.14,
5.15 and 5.16 where the superscript S, is used to indicate that the coordinate function
approximates S, and not the nondimensionalized load, P. (By default the coordinate

functions for P do not have superscripts.)

67




Gt =1 2] (5.13)

(The slenderness, A is defined in Eq. 4.24 as-—Ii- ‘/ €, where ris the radius of
Tr

gyration.)

s 1 D
Gpy = [1 }57} (5.14)
s I
Gup = |1
4P L. 4 (5.15)
D

|

f I

1 ’ 5 } (5.16)
L

The factor of 10 in Eq. 5.14 was included to force each of the regressors to be of the

same order of magnitude and various powers of 10 are used in other coordinate

functions for the same purpose.
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To illustrate the rationale for selecting the coordinate functions and a comparison
between the data and the approximation for S, the coordinate function for §; as a
function of A is shown in Fig. 5.7. The data and coordinate function in Fig. 5.7
represent constant values of D/t = 40, d/D = 0.10 and 6/L = 0. A curvilinear
relationship is indicated by the data and a good fit is provided by the two term
parabolic coordinate function given in Eq. 5.13. Note that the coordinate function
shown in Fig. 5.7 is not the result of a least squares fit to the nine data points shown,

but is the result of the fit to all 130 values of §; in the database.

The process of selecting coordinate functions is a two step process. First the data
are examined as a function of an individual parameter, e.g. A as in Fig. 5.7, and a
coordinate function is selected based on the trend exhibited by the data. The
evaluation of the fit of individual coordinate functions is performed after the regression
coefficients have been determined and the reduced coefficients for the coordinate

function are determined for various values of the other remaining variables (in this case

Djt, d/D and &/L).
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Figure 5.7 Example data and coordinate function for S, as a function of A.

The row matrix of regressors Q that defines the regression model for §, is given

by the direct product of the coordinate functions as shown in Eq. 5.17.

s s 5 s
Os, = Gy © Gyp @ Gp; © Gy* (5.17)
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5.4.2 Regression Model for Sy

The segmentation of the load-shortening relationship was defined by the points S,
and S, However, it was observed that the length of the ultimate load segment, Sy
(defined in Eq. 5.3), was more directly related to the column geometry and damage
parameters. Considering the load-shortening relationships in Fig. 5.1, it is apparent
that the nature of the relationship is defined by the length of the ultimate load segment
S, and not directly by the value of S;. For example, two columns with significantly
different geometries and damage would be expected to have differing load-shortening
responses, but could have the same value of S, as shown in Fig. 5.8. The differences
between these two columns in geometry, damage and their consequent behavior is
reflected in Sy (Sg = S; - S, Eq. 5.3) rather than §;. Consequently, Sy was the
dependent variable in the regression analysis to determine the location of the inflection

point between the ultimate load and post-ultimate segments.
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Figure 5.8 Two characteristically different column responses with equal §;

The coordinate functions used in the regression analysis for S, are given in

Eqgs. 5.18, 5.19, 5.20 and 5.21.

G =[1 10/ 3-] (5.18)

(5.19)
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Gl = [i 100% } (5.21)

The row matrix Q that defines the regression model for Sy is then given by the direct

product of the coordinate functions as shown in Eq. 5.22.

M s
05, = Gyt ® Gas ® Goie ® Gy (522)
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5.5 Formulation of the Complete Regression Model

The complete regression model consists of two components. First the abscissa S,

and the projected length along the S axis of the ultimate load segment S, are given by

{SL } ] e (5.23)
S’*{* QSILASIL .

where, analogous to Eq. 4.3, the subscripted Q's and A’s are the regressors and

Eq. 5.23

regression coefficients for the regression models for S, and Sy, respectively. Then the
load-shortening relationship is calculated from regression model for P based on

Eq. 5.10 and further developed in this section.

The initial development of the regression model for the axial load was based on a
linear model and the final model presented in this section is largely based on the direct
product formulation described in Chapter 4. The coordinate functions for load as a
funiction of the nondimensional geometrical variables, D/t and A, and the damage
variables, &/D and 8/L, are linear functions with respect to the regression variables.
The nonlinearity of the regression model is represented by the coordinate function for
axial shortening as described by Eg. 5.10. The description of the model is facilitated

by introducing the following notation for the linear portion of the model,

0 =Gy ® Gyp ® Gpy © G, (5.24)
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where the subscripted Gs are the coordinate functions for axial load as a function of A,

D/t, d/D and 8/L. The coordinate function for S given by Eq. 5.10 is combined

with

Eq. 5.24 to complete the model as shown in Eq. 5.25 where the suberipted As are

column vectors of regression coefficients.

For § <§;
P=0A g,
For §, < § <5,
P=0-A gy 0 A g, ~ 0 A g

For § :§,

From Eq. 5.10, the terms of the coordinate functicn G in Bqg. 5.25 are given by
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for §<§;

S
331:”3,"‘ 8 = 0 8 = 0
L
for §,<8<§,
(5.26)
S-5 25 35 §, +28
331=1+( L II_+2 L(s-8,%+ 2L 3L(S"SL)
St S, S Sy Su
3 2
sy 7 — (S"SL}z = (S““SL)3
iL 1L
~1 2 | 3
3332”'—(S'SL) ‘*""-Z'(S”SL)

S
i i

The final regression model included one additional refinement to the model given
in Eq. 5.25. It was noted that the coefficients Cq1» Csp and ¢y in Eq. 5.10 are
succinctly represented by the product of the row and column matrices, Q and A where
the subscript of A corresponds to the second subscript of ¢. Consequently, these
coefficients, which represent the ordinate at S, and the ordinate and slope at S, differ
only by the regression coefficients A,, A, and A,. From Eq. 5.25, it was evident that
some additional accuracy could be gained by allowing the use of unigue coordinate

functions in the direct product formulations for each Q corresponding to ¢, , ¢y, and
css -
The final formulation for the regression model is given in Eq. 5.27
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For § <§;

P = QI'AI 831
For §, < S <§,
P =0 A gy QA A (5.27)
For § 25,
P = Qerz
i - W.B—-——-B-(S - S})
g, 4,

where each Q is defined by Eq. 5.28.

0, - 66 66 GiSY 6 Gyt

Dit S/L

0,=66 G cF6) o Pt (5.28)

dit

0,676 o6 i e Gyt

D D

Since the products Q; - A, Q,* A, and Q, A,, are coefficients of g, o and g,,

(from Eq. 5.27) and represent the ordinate of the nondimensionalized load-shortening

relationship at S, and the ordinate and slope at S;, respectively, the Superscripts,
P(S,), P(S,) and P'(S,) are used to differentiate between the coordinate functions G
that comprise the row matrices, Q,, Q, and Q,. The regression model is now
completed with the definitions of the coordinate functions for A, D/t, d/D and &/L as

given in the following sections.
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Coordinate functions were selected based on the trends suggested from the
relationships between the values of P(S)), P(S,) and P'(8,) as functions of A, D/t,
&/D and 8/I.. While the coordinate functions G that comprise Q, , Q,, and Q, and the
regression coeflicients, A, , A, and A, represent the least squares approximation to the
entire database of load-shortening relationships, it is sometimes convenient to observe
the coordinate functions in relation to the actual values of P(S,), P(S,) and P(S;)

included in the database. This approach was useful in selecting coordinate functions as

described in the following sections.

5.5.1 Coordinate Functions for A

The coordinate function selected to represent P(S, ) as a function of A is given by

Eq. 5.29.

P(S) I A2
= . 5.29
G, { T such[ ] ] (5.29)

The general shape of each term of the coordinate function is shown in Fig. 5.9 for
values of A ranging from 0.4 to 1.2. This serves to illustrate the characteristics of the

selected coordinate function as it pertains to the relationship indicated by the data as

described in the next paragraph.
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Figure 5.9 Two term coordinate function representing P(S, ) as a function of A.

The general basis for selecting this coordinate function is illustrated by observing
values of P(S,) as a function of A for constant values of D/t, d/D and &/L.. For
example, the discrete data points shown in Fig. 5.10 are values of P(S) for D/t=40,
d/D=0.10 and 6/L.=0.0. By observing this relationship and the relationships for other
values of D/t, d/D and &/L, the desired characteristics of the coordinate function
representing P(S, ) as function of A were determined. One of these characteristics was
a generally decreasing function asymptotically approaching zero for large values of A.
Also, for decreasingly small values of A the observed slope of the data varied
considerably from zero to some finite (negative) value. These observations followed

by an iterative procedure of “tweaking” the coordinate functions to minimize the least
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squares residual led to the selection of the coordinate function given by Eq. 5.29 and

shown in Fig. 5.9.

The continuous function shown in Fig. 5.10 is a linear combination of the two
terms of the coordinate function for A given by Eq. 5.29 and was calculated from the
actual regression coefficients given in Chapter 6 and the specific values of D/t, d/D
and 8/L. by the procedure described in Section 4.1.4. This specific relationship
illustrates the nature of the coordinate function with an example of the data used in

selection process. Good correlation between the coordinate function and the values of

P(S, ) is observed.
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Figure 5.10 P(5,) as a function of A.
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The values of P(S,) as a function of A exhibited characteristic shape similar to that

for P(S ). The coordinate function selected for P(S,) as a function of A is given by

Eq. 5.30.

PGSy

G, =

e

sech(2 lz)]

(5.30)

The general shape of each term of the coordinate function is shown in Fig. 5.11 for

values of A ranging from 0.4 to 1.2. Selection of these two terms is based on the

characteristics suggested by the data.

P(Sy

A

Figure 5.11 Two term coordinate function representing P(S,) as a function of A.
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For example, the data for specific values of the remaining parameters (Dft=40,
d/D=0.10 and 8/L.=0.0) and the linear combination of the two terms of the coordinate
function determined from the actual regression coefficients are shown in Fig. 5.12.
Again, good correlation is observed between the values of P(S,) from the database

and the coordinate function.

1.04 D...
P(S1) 5,1 =4
0.8 i:g,m
- D
v S
'5: '}:":0.0

Lo} [ ] © 0 [ [ =] o] Lo
-
i

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.

Figure 5.12 P(S,) as a function of 4.

The coordinate function selected for P'(S;) is given by Eq. 5.31

Gl < aer arev] 5.31)
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Each term of the coordinate function is graphically illustrated in Fig. 5.13 for values of

A ranging from 0.4 to 1.2 .

P'(Sp

P8
Bar '

Pes)

84

A

Figure 5,13 Two term coordinate function representing P'(S,) as a function of A,

The nature of the relationship between the slope of the load-shortening curve at S;,
P’(S,), as a function of A had significantly different characteristic shapes compared to
the monotonically decreasing relationships for P(S, ) and P(S;). Asshownin

Fig. 5.14, the data indicate a function whose value decreases from a maximum value
for increasing and decreasing values of A. This behavior was observed for columns
with slight to moderate damage (dent depth and out-of-straightness). This may be
explained by considering the behavior of a column as its slenderness approaches small
and large extremes. As a column becomes less slender its response will tend toward

that of a stub column where the behavior reflects the material properties (and residual
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stress effects). Thus for mild structural steel the response would tend toward a flat
post-ultimate curve. Conversely, as A increases beyond a certain value, the column
will tend toward elastic post-buckling behavior and the column will have some
capacity to resist the applied load effects resulting in a “flatter” load-shortening
response in the post-ultimate range. For colurnns with greater damage, the absolute
value of P’(S,) tends to be relatively small and does not vary significantly as a
function of A. This occurs because the effects of bending (both localized in the vicinity
of the dent and overall member bending from the effects of the initial out-of-

straightness) tend to dominate the member response.

~-1.6+4 " D
tan™ P'(SI) i “("“ﬁ 40

~1. 4 d

b w510
-1.2- ! D

7 ‘“5‘”"99
~1.0+ L
~0. 8- /——*\
-0.6+ t

] J
“0.‘- t % ¥
-0.2+
0.0 T Y T T T T Y T

6.0 6.2 0.4 0.6 0.8 .0 1.2 1.4 1.6

A

Figure 5,14 Inverse tangent of P'(S;) as a function of 4.
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The relationship between P'(S;) and A is shown in Fig. 5.14 as the inverse tangent
of P'(S,) as a function of A. The inverse tangent of P'(S,) is the angle from the
horizontal of the tangent to the load-shortening curve at P(S;) and was convenient for
plotting because of the finite range of the inverse tangent function (0 to -n/2 for non-

positive arguments) compared to the infinite range of the slope P(S)).

The agreement, or lack of, between the data and the values predicted by the

regression model shown in Fig. 5.14 deserve comment considering the very good

agreement between the regression model and-the data for P(S. ) and P(S;) shown in
Figs. 5.10 and 5.12. Obviously, the coordinate function shown in Fig. 5.14 is the

result of the least squares fit of the complete model to the load-shortening data in the

database and not the result of fitting the coordinate function G f_'(s‘} to the data in the

figure. For load shortening curves with steep unloading curves, the hyperbola that
constitutes G for $>8; given in Eq. 5.27 tends to provide good fit in the post-ultimate
range for smaller values of the slope at S = S; than those depicted by the data in Fig.
5.14. This is illustrated by comparing the predicted and actual load-shortening
relationships for the column represented by the data point (A = 1.2, tan! = -1.56).

This column represents a large discrepancy between the actual and predicted values of
P’(S,) yet, there is good agreement between the actual and predicted load-shortening
curve as shown in Fig. 6.5 (Comparisons between predicted and actual load-shortening

curves are shown in Chapter 6). This is explained in part by the fact that the
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regression procedure minimizes the least squares error between the data and the
approximating function and agreement between the slope of the data and the slope of

the approximating function should not be expected to be as good.

5.5.2 Coordinate Functions for D/t

Over the range considered in this study, the effect of D/t on the column response
as quantified by P(S, ) and P(S;) was not as significant as the slenderness. A slight to
moderate monotonically decreasing trend for P(S, ) and P(S;) with increasing D/t
ratio was observed. The coordinate functions representing P(S, ) and P(§;) as a

function of D/t are given in the following equations.

PSH
Gt =[1 logm-—?} (5.32)

PSH
G :[{ Eogmw?»] (5.33)

Note that a monotonically decreasing function is realized if the coefficient for the
logarithmic term in these coordinate functions is negative. The general shape of each

term of the coordinate function is illustrated in Fig. 5.15.
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Figure 5.15 Two term coordinate function representing P(S, ) or P(S,) as a function
of Dft.

Examples of the relationship between P(S, ) and P(S,) as a function of D/t are
given by the discrete data points plotted in Figs. 5.16 and 5.17 for the indicated values
of A, d/D and 8/L. The continuous functions shown are the actual coordinate
functions given by the products Q, -A, and Q,-A,, respectively. Very good agreement
is observed between the coordinate functions derived from the complete model and the

data.
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Figure 5.16 P(S, ) as a function of D/t.
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Figure 5.17 P(S,) as a function of D/t.

The effect of D/t on the slope at S = §,;, that is P'(S;), was more slightly more
pronounced for columns with relatively small amounts of damage. For columns with
greater damage the effect of D/t was not as great. In all cases, the general trend was a
monotonically decreasing function with positive curvature. A reciprocal function of
D/t and a constant term were selected as the coordinate function for P/(S;) as a ‘

function of D/t as given in Eq. 5.34 and shown in Fig. 5.18.

4 -1
G P = [1 (..’i..) (5.39)
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P(S)) !

D/t

Figure 5.18 Two term coordinate function representing P(8,) as a function of D/t.

An example of the relationship between P/(S,) and D/t is given by the discrete
data points plotted in Fig. 5.19 for the indicated values of A, d/D and /L. For
consistency of scale in the plots the inverse tangent of P'(S,) is plotted as a function
of D/t. The continuous function shown is the actual coordinate functions given by the
product Q,-A,. The coordinate function calculated from the regression on the
complete model and matches the decreasing trend indicated by the data although the
predicted values of the slope at S = §, are smaller than the actual values. Again, this is

due to the nature of the hyperbola used to approximate the post-ultimate range of the

load-shortening relationship.
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Figure 5.19 Inverse tangent of P'(S) as a function of D/t.

5.5.3 Coordinate Functions for d/D

The relationships between P(S,) or P(S;) and d/D would be expected to be a
monotonically decreasing function. It was also observed from the data that PSS
and P(S,) asymptotically approached zero with increasing dent depth. Given that
/D has a maximum value of 1.0 and the reasonable assumption that P(S, ) and
P(S,) would equal zero at that point, the coordinate functions for &/D could be so
constrained. A cubic parabola with its slope and magnitude constrained to zero at

d/D=1.0 was selected for P(S, ) and P(S;) as a function of &/D. The coordinate
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functions are given by the following two equations and illustrated in Fig. 5.20 for

0<d/D<0.35.

Py 1 d d)? {d)? d\? d\?
= J s = 2} —_— 1 -3} = 2] — 53
Gan [D (D) (D) (D) ' [D) } &3

(5.36)

2 3 2 3
R RCRCRECEE

P(S1) P(3)
or , 84,
P@S) ’

P(§)
b

L3

Figure 5.20 Two term coordinate function representing P(S, ) or P(§;) as a function
of d/D.
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An example of the relationships between P(S ), P(8,) and d/D as provided by
the data are shown in Figs. 5.21 and 5.22. Very good agreement between the data and
the coordinate function calculated from Eq. 5.28 and the regression coefficients given

in Chapter 6 validate the selected coordinate functions.

P(S,)

0.8+
.74
0.6+
0.5+
04

0.34

0.2+

0.1+

0.0 Y T T 1 L L T T Y
0.00 .05 0.1G .15 020 0.25 0.3¢ 0.35 0.40

4
D

Figure 5.21 P(S,) as a function of d/D.

93




P(S)

0.0 n 1 1 ¥ 1 r L 1
000 005 010 QlS 020 025 030 035 040

g
D

Figure 5,22 P(8,) as a function of d/D.

The coordinate function selected for P’(S,) as a function of d/D is given by

Eq. 5.37 and illustrated in Fig. 5.18. The relationship described by each term of the

function is, again, a monotonically decreasing function.

-4
P'sp D

d
G =]]-—= N
i D (5.37)

0.1+-é-
D
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P(s;)

Figure 5.23 Two term coordinate function for P'(S,) as a function of d/D.

An example of the relationship between P*(S ) and d/D as provided by the data is
shown in Fig. 5.24. There is correlation with the decreasing trend observed from the
data and the coordinate function calculated from the product Q,-A,. Again, for large
values of P'(S,), the coordinate function underestimates the data and, as previously
discussed, this does not necessarily reflect on the goodness of fit to the load-

shortening curves.
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Figure 5.24 P’'(S,) as a function of d/D

5.5.4 Coordinate Functions for &/L

The coordinate function selected for P(S ) as a function of 0/L is given by
Eq. 5.38. The individual terms of the coordinate function are shown in Fig. 5.25 over
a range of &/L from 0.0 to 0.02. Again as suggested by the data, the objective was a

monotonically decreasing function.
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Ge =€ % (5.38)

An example of the nature of the relationship between P(S, ) and &/L is shown in
Fig. 5.26. Very good agreement is observed between the data and the coordinate

function calculated from the regression coefficients.

RSL)

Figure 5.25 Two term coordinate function representing P(S ) as a function of 6/L.
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Figure 5.26 P(S, ) as a function of 8/L
The coordinate function selected to represent the relationship between P(S ;) and
8/L is given in Eq. 5.39 and illustrated in Fig. 5.27.

G:f,) _ e"""% 1
= —
& (5.39)
1+15—~
L
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Figure 5.27 Two term coordinate function representing P(S;)asa function of &/L.

An example of the relationship between P(S,) and /L. defined by the data is

shown in Fig. 5.28. Good agreement is observed between the data and the reuslts of

the regression model.
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Figure 5.28 P(S,) as a function of 8/L.

The coordinate function selected for P'(S) as a function of 8/L is given by
Eq. 5.40 and is illustrated in Fig. 5.29. The two terms of the coordinate function both
asymptotically approach zero for increasing out-of-straightness. The first term
provides for a very rapid decrease in P’'(S,) as 6/L increases from zero. This term
was selected to reflect the sensitivity of the column response to small amounts of out-

of-straightness compared (o a straight column.

Gy~ =
3+ §O‘-§-— 1+10 é— (5.40)
L L
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Figure 5.29 Two term coordinate function representing P‘(S;) as a function of 8/L.

An example of the relationship between P’(S;) and &/L as depicted by the data is
shown in Fig. 5.30. Again, the correlation between the coordinate function for this
example and the trend suggested by the data is good with the coordinate function

underestimating the data for large values of P'(S)).
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Figure 530 P’(S,) as a function of 6/L.
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6 Results and Application

6.1 The Regression Analysis

The regression analysis was conducted in two parts. First, a linear regression
analysis was performed to determine the regression coefficients for the model for 5,
and S; . Then a nonlinear regression analysis was performed to determine the

regression coefficients for the load-shortening response.

6.1.1 Solution of the Least Squares Equations

Solution of the regression equations was performed with the SAS/STAT'
software. Solution of the linear regression equations was performed by a sweep
algorithm with a singularity check applied to the normalized equations (See Refs. 26
or 27) . The nonlinear regression equations were solved by a Gaus-Newton procedure

(See Ref. 26).

1 SAS Institute, Inc.
SAS Campus Drive
Cary, NC 27513
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The solution of the nonlinear regression equations requires initial values for each
of the regression coefficients. These initial values were calculated from a separate
linear regression analysis employing the same coordinate functions for A, D/t, /D and
6/L. as were used in the nonlinear regression model. Unlike the complete regression
model given by Eq. 5.27, the coordinate function for P as a function of S used in the
linear model for the initial values was a linear combination of three terms. (The

difference between the models is the nonlinearity introduced by the portion of the
coordinate function for $>5, as given by Eq. 5.27 or 5.10.) The coordinate function

for S used in the linear model for the initial guesses is given in Eq. 6.1.

5
fonik
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Gs“[&s'f 852 353]
where,

for §<8§;

8s; % 8 = 0 853 = 0

S
SL

for §,585x8,

S S, +28
L(SWSL)z + iL - L(S“‘SL)3

bsr = s 2
L SiSu S8 6.1 3
3 2
s 7 T(S”SL)Z - *?(S"SL)S !
I i ;
o -1 2 1 3
8 = — (8§85, + —(5-5))
Si. 2
iv
for 8§28,
= § = .-—..-.‘S..‘—t-l—.— - S
8s1 Es2 52 &s3 52
el S | — ]
2 2

The linear regression model for the initial “guesses™ of the regression coefficients

is then given by Eq 6.2

P=[0¢8y 8 i8] (A} (6.2)
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where the Q’s are defined by Eq. 5.28 and the g’s are given in Eq. 6.1. The vector A

is the regression coefficients used as initial values in the nonlinear regression model for

the load-shortening behavior.

6.1.2 The Regression Coefficients

The regression coefficients for the model for S, are given in Eq. 6.3. The

predicted values of §; are given by premultipling this column vector by the row vector

g Q s, BivenbyEq. 5.17.

[ -4.341821 |
3.27389
0.24228
-0.403522
5727217
-3.859998
~0.297595
; . 0.462575 63
¢ | 1.698626
~0.703155
~0.179246
™ 0.138208
? -2.23634
0.857564
0.210483
| -0.163478 |
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The regression coefficients for the model for Sy are given in Eq. 6.4. The predicted

values of S, are given by premultipling this column vector by the row vector Q Sy

given by Eq. 5.22.

[ 0.30344
~0.382705
~0.419944
0.682584
-0.10702 g
0.461972
0.003252
0.267599
Ag = (6.4)
v | 0928297
~0.215226
~0.581171
~0.110085
~0.669913
0.055298
1.046916
| 0.077329 |

The three column vectors containing the regression coefficients for the load
shortening response are given in Eq. 6.5. The value of the ordinate at S=5, and the

ordinate and slope at $=S; of the nondimensionalized load-shortening curve are given

107




by Eq. 6.6 where each zero represents a 16x1 column vector. These values along with

the coordinate function for 8 define the load-shortening relationship predicted by the
model

[ -06.7576688 2.6393317  6.5093733
33.8346044 -4.6858309

5.0144435
86.8395019 -0.7619274 -152.1642763
-35.8610248 0.8418515 -60.3457011
-10.1952749 3.0951957  -0.4259591

7.1381952 -1.0635194 -4.1204615
-0.0031403 -1.1854643 -51.6311469
-0.927396  0.4652409 125.8307582
[An A, Aa] =

-32.7420774 -8.7484492 -3.9447826 ©5)
28.8206911  1.2345277  3.6585499
-47.0706471 4.0064554  198.6267578
13.4244783  -0.9345943 -230.5340144
44.2367395 0.8111947  0.5816586
-22.4094697 0.5335845  -0.6080795

-13.784678 -0.0555643 -37.2667741
| 7.6543422  -0.2568981 40.4228052 |

[Pesy P6s) P =[e 0 0,]]0

0

A, 0 (6.6)
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by Eq. 6.6 where each zero represents a 16x1 column vector. These values along with

the coordinate function for S define the load-shortening relationship predicted by the

model

[A: A, A3]=

[PGp PS) Psp] =g 0, ]

[ -96.7576688

33.8346044
86.8395019
~35.8610248
-10.1952749
7.1381952
-0.0031403
-0.92739%6
-32.7420774
28.8206511
-47.0706471
13.4244783
442367395
-22.4094697
~13.784678

| 7.6543422

2.6393317
~4.6858309
-0.7619274
0.8418515
3.0951957
-1.0635194
~1.1854643
0.4652409
-8.7484492
1.2345277
4.0064554
-0.9345943
0.8111947
0.5335845
-0.0555643
-0.2568981
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6.5093733
5.0144435

-152.1642763

-60.3457011
-0.4259591
-4.1204615

~51.6311469
125.8307582

-3.9447826
3.6585499

198.6267578
-230.5340144

(.5816586
~0.6080795

~37.2667741
40.4228052 |

A,

(6.5)

(6.6)



6.1.3 Analysis of Accuracy

The agreement between the approximated load-shortening relationships and the
data included in the database was very good. As a measure of the goodness of fit to

the data, basic statistics for analysis of variance were calculated.
The residual sum of squares or sum of squares of the error, is defined by Eq. 6.7
SSE = 3 (v, - 9.) (6.7)
where y, represents an observed value of the dependent variable (in this case P), ¥,is a

value of the dependent variable predicted by the regression model for values of the
independent variables equal to those corresponding to y;. The summation is over all

points in the database. The residual sum of squares is equal to 9.92012.

The total sum of squares, SST is defined by Eq. 6.8, where y; is as defined above.

SST = Y 3} (6.8)
The sum of squares due to regression, SSR is defined by Eq. 6.9 and is a measure

of the portion of SST that is attributable to the model.

SSR = Y .7, 6.9)
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The mean sum of square statistics are also included in Table 6.2 and are based on
3318 data points from the 130 load-shortening curves in the database and 80 degrees
of freedom for the regression model. (Degrees of freedom in this context refers to the

number of regressors in the model.)

Table 6.2 Analysis of variance

Degrees "~ " Sum Mean
of of Square
Freedom Squares
Regression 80 451.68704 5.646
Residual 3278 9.92012 0.003026
Total 3318 461.60716

The statistic R is defined as the ratio of SSR to SSE and is a measure of the
“proportion of total variation about the mean explained by the regression.”[28] Itis
often expressed as a percentage and is sometimes referred to as the multiple
correlation coefficient. From the data in Table 6.2, R? is equal to 0.9785, indicating

that the regression model captures almost 98% of the variation in the independent

variable.
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Another indication of the goodness of fit of the regression model is the relative

error. The average of the absolute value of the relative error was calculated by

yi“ﬁi
é,*«;t»Z! — | (6.10)

The resulting value from Eq. 6.10 is 0.1297 indicating that, on average, the regression

model has an error of 12.97% relative to the observed values in the database.

The fit or agreement of the model may be better, in practical terms, than indicated
by the above metrics. Generally, the greatest deviation between the predicted values
and the observed data occurs in the post-ultimate range of the load-shortening curve.
In practice, the most important portions of the predicted load shortening curves are
the slope and the extent of the initial linear portion and the portion up to the ultimate

load.

6.2 Application of the method

To illustrate the application of the simplified numerical procedure, an overview of

the process is given and an example calculation is presented.
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6.2.1 Procedure for Calculating the Load-Shortening Response

The basic procedure for the calculation of the damaged column response is given

by the following steps.
1. Determine the nondimensionalized parameters A, D/t, &/D, 8/L and o,/E.
2. Calculate the terms of the coordinate functions, G.

3. Calculate the regressors, Qss Qan» Qy, Q; and Q, from the direct product of

the coordinate functions.

4. Determine the values of S, , Sy, P(S), P(8;) and P'(S,) from the products of

the corresponding regressors Q and regression coefficients A.

5. Determine the load-shortening relationship by substituting the values from

step 4 above into the coordinate function for S.

6.2.2 Calculation of Ultimate Load

The estimated ultimate load for a given column can be directly calculated from the

predicted values of S, , Sy , P(S, ), P(S,) and P(S;). The value of S at which the

-

ultimate load accurs, S,,, is found by simply setting the first derivative of the

coordinate function for S equal to zero. Solving for the roots of this equation results

in the following equation for S,
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i 3“;*5;1.(“2*2)*@“% +6a,8,(a,+1) +Sp(og+e,+1) s +§, (6.11)
wh 6a, +35,(e,+1) ot

where, o, and o, are defined in Eq. 6.12.

_ PG -PE) Q4 - A,

o, =
TR 0.4,
SL QSLASL*
(6.12)
LB 0
2TTRG) QA
Sy Os,As,

The ultimate load, P, is then given by substituting the appropriate value of S, into

Eq. 5,25

6.2.3 Example Calculation

The geometry and damage (A, Dit, /D and /L) of the column used in the
example correspond to 2 finite element generated load-shortening relationship in the

database. The predicted load-shortening response is then compared with the data from

the database.
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The example column has a slenderness ratio A of 0.8,a D/t ratio of 40, a relative
dent depth d/D of 0.10 and no initial out-of-straightness. The first step in the

application of the method is to calculate the values of S; and S, . From Eq.5.23

{ SL } QSL ASL
Suf Os,, As,

this requires formulation of regressors Q give:r; by Eqs 5.17 and 5.22 and the

repeated here,

regression coefficients A given by Eqs. 6.3 and 6.4. The coordinate functions used in

the direct product formulation of Qg are given in Eq. 6.14

Gr=[t 2]=[1 o08]=[1 o064]

10 10
Gt =1 L 1|1 -1-—:1-6—1-}={1 0.9091 ] ©.14)
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These coordinate functions are used in the direct product formulation given by

Eq. 5.17 and shown here after substitution of numerical values.

g, =[1 0]efl 09091] e[t 4]e[l 064]

L
1
0.64
4
2.56
0.9091
0.58182
3.63636

. 232727
o, ="

#

o o o o o o ©

(6.15)

From Egq. 5.23, S is given by the product of Qg and Ay . For the values given in

Eqs. 6.3 and 6.15, the predicted value of S, is 0.645.

Similarly, the calculation of g, is made from the coordinate functions in Eq. 6.16
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G = |1 %wga éﬂ:hﬁﬁm
(6.16)
2 2
il LAl 2|1 02s28]
D 0055
€, 0.00125

G&z& 1%%]411mwkh 0]

The direct product formulation for Qg is given by
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o, =1 0]e[1 02828]e[1 06325]e[1 0442]

1

0.442
0.6325
0.2795
0.2828

0.125
0.1789
0.0791 6.17)

H]

QS 1w

oo oo o o O

From Eq. 5.23, Sy_is given by the product of Qgy and Ag . For the values given in

Egs. 6.4 and 6.17, the predicted value of Sy is 0.109.

With the predicted values of S, and Sy determined, the next step is to calculate

Tm——

the predicted values of P(S, ), P(Sy ) and P'(Sy ) from Eq. 6.6. The coordinate
functions used in the direct product formulation for Q,, Q, and Q, are given in Eqgs.

5.29 through 5.40. The coordinate functions used in the direct product formulation of
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Q, are given in Eq. 6.18 incorporating the values of the example column geometry and

damage.

2 2
Gy W= | sech| Ao | L ecn] 28
1.5+4 2 1.5 +0.8 2

= [0.4348 0.9509]

~ . 3
Sl ) A A e

= [0.10-2(0.10)? + (0.10 1 -3(0.10)* +2(0.10)*]
=[0.081 0972]

&
) L | .
2 +1008 2+10000)
L
=[1 05]

From Eq. 5.28 the regressors Q, are given by the direct product formulation as

illustrated in Eq. 6.19.
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0, =[1 05]e[0081 0972] & [1 1.6021] © [0.4348 0.9509]

[0.035217 ]
0.077023
0.056420
0.12339
0.42261
0.92427
0.67704
1.48074
0.017609
0.038511
0.028210
0.061697
0.21130
0.46214
0.33852
| 074037

0 =

(6.19)

From Eq. 6.6, P(S, ) is given by the product Q,-A,. For the values given in Egs. 6.19

and 6.5, the calculated value of P(S, ) is 0.612.

Similarly, the value of P(S;) is calculated from the direct product of the

coordinate functions and the regression coefficients. As defined by Egs. 5.30, 5.33,

5.36 and 5.39 , the coordinate functions for this example column are given by Eq. 6.20
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G:(s’) =[e*  sech(2 Az)] = [em sech (2 (0'8)2)]

= [0.4493 0.5162]

Py D
Gp, " = {i logm-t-} = [i logwfi()}

={1  1Le6021]

) 3 2 3
RSOt

= [0.10-2(0.102 + (0.10)° 1 -3(0.100 +2(0.10) ]
[o.081  0972] S

(6.20)

"

1002

Gﬁ*’z’:)m e L 1 = | o100 1

158 [+15(0)
L

1 1]

As defined by Eq. 5.28, the direct product formulation of Q, for the example column

is given by Eq. 6.21.
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g, =1 1]ef008 0972] o [t 1.6021] @ [0.4493 0.5162]

[0.036396 ]
0.041810
0.058308
0.066982
0.43675
0.50172
0.69970
0.80378 (6.21)
0.036396
0.041810
0.058308
0.066982
0.43675
0.50172
0.69970
| 0.80378 |

it

0;

From Eq. 6.6, P(S,) is given by the product Q,-A,. For the values given in Egs. 6.21

and 6.5, the predicted value of P(S,) is 0.5557.

Similarly, the value of P'(S;) is calculated from the direct product of the
coordinate functions and the regression coefficients. As defined by Egs. 5.31, 5.34,

537 and 5.40 , the coordinate functions for the example column are given in Eq. 6.22
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G, P - {A e }.3e‘12] = {().85""8 0.83e‘°“1}

H

[0.3595 0.2700]

P{S i i
GD!? ! [1 mé- = [1 .26}

1l

¥
=[1 0.025]
[ L d
P(s)
G " =|1- 4 D ©6.22)
D d
0.1 + e
D
={1-010 _1-0I0
_ 0.1 + 0.10
=[090 4.50]
Ps) 1 1 1 1
Con ™ = 5 5 1+10(0)
3+2100  1+102] |3+@10
L L
=[0.3333 1]
As defined by Eq. 5.28, the direct product formulation of Q, for the example column

is given by Eq. 6.23.
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0, =[03333 1]e[090 450]e [1 0025] e[03595 0.2700]

[ 0.10784 |
0.080992
0.0026960
0.0020248
0.53919
0.40496
0.013480
0.010124 (6.23)
0.32352
0.24298
0.0080879
0.0060744
1.61758
1.21488
0.040440
| 0.030372 |

"

0y

From Eq. 6.6, P’(S,) is given by the product Q,'A,. For the values given in

Eqgs. 6.23 and 6.5, the predicied value of P'(S,) is -1.003.

With the predicted values of Sy , Sy, P(S.), P(Sy.) and P'(Sy) and the coordinate
function for S as given in Eq. 5.25., the final step is to calculate the load-shortening
relationship. The result is given by Eq. 6.24, where the computed values are

incorporated into the coordinate function for S.
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for 0<§<S8, = 05550645

P(s
P(S) = ( L) S = 0.612
5, 0.645

§
= 0949 §

for 5, <8<8, =~ 0.645<5<0.754

S-S5, 25, +3S S, + 28
P($) = P(s) |1 + . - L(S-5,)% + --f-li-w;-i(S««SLP
St ARy LS
+PE) [ (5 -5, - L (s-5,0
St Sk :
PSR (552 + Ls-s,p
i S Sit (6.24)
P(s) = 0.612[1 . %%165&.5. - 281 (S - 0.645)2 + 1675 (S—0.645)3}

+0.556 [252 (5 - 0.645)% - 1544 (5 - 0.645)7]
~1.00[9.17 (S - 0.645)% + 84.2 (S - 0.645 »

for S§28, = §:0754

1 P($) = b 0D
- 290 (5 5)
P(S)) !
P(S) - {.556

1+ 180(s-s,)
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Finally, the load-shortening relationship resulting from Eq. 6.24 can be plotted.
Figure 6.1. illustrates the predicted load-shortening relationship from the regression

analysis and the analytical relationship from the finite element model that was included

104 : -
ﬁ {
09
., ] L=0%
0.8
’ d
—={10
5 i}
§
o= 0.0
¢, =0.00125
F. E Model
______________ Predicted
s 30 15 40

Figare 6.1 Predicted and analytical (from database) load-shortening curves.

The ordinate of the ultimate load S, calculated from Eq.6.11, is 0.67.

Substituting this value into Eq. 5.25 gives the ultimate load P, = 0.612.
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6.2.4 Range of Applicability

The simplified method is valid over the range of values of column parameters
covered by the data included in the database. These include the range of values
typically found in fixed offshore structures. Generally the method is applicable over
the range of the parameters given in Eq. 6.25.

20 < 2 w5
1

04 <A <i2

d
0.0 < — < 0.30
D (6.25)

0.0 < ~§- < 0.02
L

0.00125 <« € < 0.00250

6.3 Predicted Load-Shortening Relationships

To illustrate the validity of the regression model, predicted results are compared

with some analytical and experimental load-shortening relationships from the database.
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6.3.1 Comparison with Analytical Data from the Database

In Figs. 6.2 through 6.7, predicted load-shortening relationships are compared with
curves generated from the finite element model and included in the database. The
comparisons shown are for a range of column geometries, dent depth and out-of-
straightness and are representative of the “goodness” of fit to the analytically
generated curves in the database. Comparisons are shown for columns with D/t ratios
of 25, 40, 60 and 80 and slenderness ratios A of 0.4, 0.8 and 1.2. The examples witha
D/t ratio of 25 (Figs. 6.2 and 6.3) include a “slgort” (}m0.4) column with moderate
damage (d/D=0.10 and 8/L.=0.002) and a more slender column (A=1.2) with heavy

damage (d/D=0.05 and 8/L=0.02) largely in the form of initial out-of-straightness

which might be expected in long columns with low D/t ratio. Figures 6.4 and 6.5
show examples with a D/t ratio of 40, slenderness ratios A of 0.8 and 1.2, moderate ;
dent depth and moderate and no out-of-straightness. The predicted and analytical ;
relationships are shown for a column with D/t ratio of 60 in Fig. 6.6. Finally, in

Fig. 6.7,. a comparison is given for a relatively short (A=0.4) column with high D/t ‘]
ratio (D/t=80) and having damage in the form of a significant dent {d/D=0.20) as

might be expected to occur in a short column with high D/t ratio.

In general, these comparisons indicate reasonably good agreement with the

analytical data over a fairly broad range of column geometries and damage.
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Figure 6.3 Comparison of predicted and calculated (F.E.) load-shortening responses.
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Figure 6.4 Comparison of predicted and analytical (F.E.) load-shortening responses.
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Figure 6.5 Comparison of predicted and analytical (F.E.) load-shortening responses.
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Figure 6.7 Comparison of predicted and analytical (F.E,) load-shortening responses.
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The example comparisons illustrate reasonably good agreement between the

predicted load-shortening relationships and those generated from the finite element

analysis. In the worst case, the relative error between the predicted and analytical
ultimate load is approximately 12%. The agreement in the post-ultimate range is not
as good on average. Typically, as shown in Fig. 6.2, when there is deviation at the
ultimate load it is maintained through the post-ultimate range resulting in larger

relative error (due to the decreasing value of load).

6.3.2 Comparison with Experimental Data from the Database

In addition to the analytical results, comparisons are provided between predicted
load-shortening relationships and experimental results included in the database. The
test data in the database were taken from published reports from Smith([2,3,13],
Taby[5,6,7,8) and Ostapenko[30}. From each series of tests published by these
researchers, an example comparison between the empirical and predicted load-
shortening relationships is given in Figs. 6.8 through 6.13. Additional comparisons
with experimental data from the database are provided in Figs. 6.14 through 6.18.

These comparisons are representative of the “goodness” of fit to the data.

Because the published results from Ref. 30 included comparison with results by
others, comparisons for these specimens are provided in the following section. This

permits comparison between the method presented here and those by others.
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Figure 6.8 Predicted and experimental load-shortening response (B4 Ref. 2).
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Figure 6.9 Predicted and experimental load-shortening response (E2 Ref.13).
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Figure 6.11 Predicted and experimental load
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Figure 6.12 Predicted and experimental load-shortening response (IAI Ref. 5).
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Figure 6.13 Predicted and experimental load-shortening response (JIAS Ref. 6).
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Figure 6.14 Predicted and experimental load-shortening relationships (D3 Ref. 30).

Figure 6.15 Predicted and experimental load-shortening relationships (P2P Ref. 30)
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Figure 6.17 Predicted and experimental load-shortenin g relationships (P3PB Ref, 30)
136




Figure 6.18 Predicted and experimental load-shortening relationships (P4P Ref. 30).
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6.3.3 Comparison with Results by Others

The experimental load-shortening curves from the work by Ostapenko, et al,
(Ref. 30) include comparisons with finite element analysis, the analytical method
(program WBK) developed by Kim (Ref. 15), and results from the programs DENTA
[10] and BCDENT [29]. (The finite element model used in the analysis presented in
Ref. 30 is virtually the same as presented in Chapter 3.) The figures from Ref. 30
illustrated the load-shortening relationship as the nondimensionalized load as a
function of the axial shortening in inches. The predicted and experimental load-
shortening relationship for the five specimens are repeated in Figs. 6.19, 6.22, 6.25,
6.28 and 6.31 with the nondimensionalized load plotted as a function of axial

shortening to permit comparison with plots from Ref. 30 which are also included here.

Comparison of the results for specimen D3 shown in Figs. 6.19, 6.20 and 6.21
show that all the analyses except for BCDENT underestimate the ultimate load.
However, the results from the current procedure provide reasonable agreement with
the ultimate load and perhaps the best agreement among the methods in the post-

ultimate range.

The results for specimen P2P are shown in Figs. 6.22, 6.23 and 6.24. The results

from the current procedure arguably provide the best approximation of the test data.

The results for specimen P3PA are shown in Figs.6.25, 6.26 and 6.27. The
program DENTA and the current procedure provide similar and reasonably good
agreement with the test data,
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The results for specimen P3PB are shown in Figs. 6.28, 6.29 and 6.30. Again the
current procedure provides very good agreement with the test data which is only
better approximated by the finite element results. Program DENTA also provides

reasonably good results for this specimen.

Finally, the results for specimen P4P are shown in Figs. 6.31, 6.32 and 6.33. Allof
the methods underestimate, in varying degrees, the ultimate load and the load over
most if not all of the post-ultimate range. However, the current procedure provides
reasonably good agreement with the test dataAand is _grguably the best approximation

of the five methods shown.

In general, these examples have demonstrated reasonably good approximation to
test data. Comparisons to the other approximate methods (finite element, WBK,
DENTA and BCDENT) indicate that the current procedure provides results that are
comparable, or better, to the best results provided by any of the other procedures. It
should be noted in this context that the proposed method involves only matrix
multiplication and calculation of simple functions that can be readily performed in a

spreadsheet or programmable calculator whereas the other methods all require a copy

of the specific computer program.
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Figure 6.19 Predicted and observed load vs. axial shortening (D3 Ref. 30).
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Figure 6.27 Comparison of specimen P3PA, finite element and WBK (Ref. 30)
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Figure 6.28 Predicted and observed load vs. axial shortening (P3PB Ref. 30)
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Figure 6.30 Comparison of specimen P3FB, finite element and WBK (Ref. 30).
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6.4 Application to the Study of Damage Effects

Ultimately, the regression model can be used to predict the load shortening
behavior of damaged tubular columns. Because of its formulation and simplicity in
use, the procedure can be easily used to examine the influence of the column geometry
and damage parameters. Obviously the influence of damage on a given column is of

interest.

To illustrate the capability of the procedure and to further illustrate its results, the
load-shortening relationships are provided for varying amounts of damage. These are
shown for four column geometries based on the four combinations of D/t=30, D/t=60,
A=0.6 and A=1.2. In Figs.6.34 through 6.37, the influence of dent-depth is illustrated
for the four column geometries and an initial out-of-straightness, 8/L=0.005. The
primary effect of increasing dent damage is a reduction in the ultimate strength of the
column and a gradual reduction in load for a given amount of shortening in the post-

ultimate range.

Figures 6.38 through 6.41 illustrate the influence of out-of-straightness on the
load-shortening behavior. These examples consist of the four combinations of column
geometries listed in the previous paragraph with a dent-depth, d/D=0.15. As shown in
these figures, the primary effects of increasing initial out-of-straightness are a

reduction in ultimate strength and a reduction in initial stiffness of the colurnn.
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7 Summary and Conclusions

7.1 Summary

A simplified engineering method was developed to predict the load-shortening
response of damaged (dented and crooked), pin-ended, tubular columns. The method
is based on a parametric study of column behavior and a regression analysis of data
from a finite element analysis and published experimental results. The resulting
procedure is a simple numerical relationship describing the load as a function of

column geometry, material and damage.

7.1.1 Finite Element Analysis

In order to conduct the parametric study and develop the relationship for axial load
as a function of column geometry and damage, 93 column load-shortening curves were

generated in addition to the data available in the literature.

The finite element program ADINA was used to generate the load-shortening data
since it has capabilities for nonlinear material behavior and suitable shell elements for

large-displacement analysis. After considerable experimentation, a discretization
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mode! that took advantage of the double symmetry of the problem was developed. The
model had 32 shell elements, 4 beam elements and 268 nodal points (1162 degrees of
freedom) and gave reasonably good correlation with the experimental data. The
program was then used to generate load-shortening relationships to be included in the
database to supplement the curves available from previous experimental research. A

total of 93 load-shortening curves were generated from the finite element analysis.

7.1.2 Database of Damaged Column Behavior

All experimental data available in published literature on the axial behavior of
dented and crooked tubular members under concentrically applied axial load was
collected and put into a database (Total of 37 curves). Information for each specimen
covers the following items: Source, identification, data on material, geometry, location
and amount of damage, and the load vs. axial shortening relationship described by a
series of discrete coordinate pairs. Computer generated results were used to fill in and
supplement the experimental data mainly to cover sparsely populated ranges of
parameters, The data can be readily retrieved, manipulated and analyzed with the SAS

software selected for this purpose.

7.1.3 Parametric Study

The axial load, nondimensionalized with respect to the yield or squash load, was
defined as a function of five parameters; D/t, A (slenderness), d/D (relative dent-

depth), 8/L. (out-of-straightness), and S (average axial strain divided by yield strain).
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The relationships between the axial load and each of these parameters were studied to

find a simple yet accurate expression to approximate the relationship.

7.1.4 Development and Application of the Procedure

The procedure was based on a nonlinear piecewise regression analysis. This
approach consists of segmentation of the characteristic shape of load-shortening
relationships observed for tubular columns. Once the load-shortening relationship was
described by three segments, the effect of column geometry and damage were
established. The numerical procedure is then based on a regression model

incorporating column geometry and damage parameters.

The procedure developed here allows a rapid computation of the load-shortening
relationship for a given column geometry and damage. The method employs a set of
80 constants and can be easily programmed requiring only minimal computational
resources such as a programmable calculator or a spreadsheet program. The resultant
relationship which covers the elastic pre-ultimate, ultimate and post-ultimate ranges,

can be used for practical application within the ranges of parameters specified..

Obviously, the procedure can be used to predict damaged column behavior and to
observe the effects of varying amounts of damage or variations of other column
parameters. Because the procedure provides a complete load-shortening response, it
can be used as a subroutine/subprogram in a structural analysis of framed structures

containing damaged members.
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7.2 Conclusions

The method presented here provides a simple procedure that reasonably predicts
the complete load-shortening response of pin-ended damaged tubular columns. The
accuracy of the model based on comparison to experimental data is comparable or
better than other more complex, approximate methods. This procedure has the

advantage of not requiring any specialized program or computer. It can be readily

incorporated into a portable/handheld or other type of computer.

The primary limitation of the method is its restriction to pin-ended columns. This

limitation is not shared by some other methods {15, 10]. With additional work, the

current procedure could be expanded to include end effects.

7.3 Recommendations for Future Work

The solution to the problem of damaged and deteriorated member behavior as it
L relates to offshore structures is far from complete. Additional work related to the

proposed method should include incorporation of end effects, a study of the influence

"

of dents significant distance away from mid-length of the column. Further work is
needed to quantify the effects of other types of damage including corrosion and fatigue
cracking. Ultimately, there is a need for procedures to account for damaged member
behavior including dent-damage, out-of-straightness, corrosion and fatigue considering

the complete three dimensional beam-column,
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Nomenclature

A Column matrix of regression coefficients

B Matrix of regressors evaluated for each data point
D Diameter of tubular member

d Dent-depth

E Modulus of elasticity

e Error function for regression, sum of squares of the error
F Column matrix of values of dependent variable
f Individual values of dependent variable (an element of F)

f Approximating function

G Coordinate function matrix

g Individual term of coordinate function (an element of G)
i Index for number of data points
j Index for number of regressors
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Qc

Qx

Index for aumber of independent variables

Length of column

Length of dent

Total number of data points

Total number of regressors

Total number of independent variables

Axial load nondimensionalized with respect to the yield load
Ultimate nondimensionalized axial load

Row matrix of regressors

Row matrix of regressors consolidated into coefficients of the set of retained

IEgressors

Row matrix of regressors retained as variables in the consolidation of the

model

Individual regressor (an element of Q)
Radius of tubular member

Radius of gyration of cross section

Axial shortening nondimensionalized with respect to €L
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Abscissa of inflection point in the load-shortening curve
Distance between S, and S,

Abscissa of the point defining the end of the linear portion of the load-

shortening curve

Value of nondimensionalized axial shortening at which the ultimate load occurs
Thickness of tube wall

Parameter used in calculating S, , defined in Eq. 6.12

Parameter used in calculating S, , defined in Eq. 6.12

Coordinate function expressed as a linear combination of the elements of G
Axial shortening

Initial out-of-straightness

Residual or error in approximation to a data point

Material yield strain

L
Column slenderness defined by ;{;, / €,

Material yield stress
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Appendix A. Column Geometry,
Material and Damage Parameters

The nondimensional geometry, material and damage parameters from the columns

included in the database are shown in Table A.1.

Table A.I Geometry, material and damage parameters for columns in the database

D#it d/D 8/L A €,
20 0.100 0.0000 0.80 0.00125
20 0.200 0.0000 0.80 0.00125
25 0.050 0.0020 0.80 0.00125
25 0.150 0.0020 0.80 0.00125
25 0.250 0.0020 0.80 0.00125
25 0.050 0.0030 0.80 0.00125
25 0.050 0.0040 0.80 0.00125
25 0.050 0.0060 0.80 0.00125 _
25 0.050 0.0200 0.40 0.00250
25 0.250 0.0200 0.40 0.00250
25 0.050 0.0200 0.40 0.00125
25 0.300 0.0200 0.40 0.00125
25 0.050 0.0200 0.80 0.00250
25 0.200 0.0200 0.40 0.00250
25 0.050 0.0200 1.19 0.00250
25 0.050 0.0200 0.80 0.00125
25 0.200 0.0200 0.80 0.00125
25 0.050 0.0200 1.19 0.00125
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25 0. 10 00020 (.40 0.00125
25 0.100 0.0020 1.19 0.00250
26 0.142 0.0009 0.92 0.00240
26 0.147 0.0028 0.92 0.00240
26 0.138 0.0014 0.92 0.00240
27 0.107 0.0011 110 0.00238
27 (3.143 (.0021 0,92 (L.00238
29 (.154 (0.0027 1.H) 0.00187
29 (.00 (.6050 1.04 0.00109
29 0.048 0.0055 1.06 0.00113
30 (3.000 0.0032 0.83 (1.00140
30 0.050 (.0100 (.94 0.00175
30 0.100 0.0100 0.94 0.00175
30 0.000 0.0034 0.84 0.00142
31 0.156 0.0008 0.87 0.00152
40 0.050 0.0000 (.80 0.00125
40 0.100 0.0000 (.80 0.00125
40 0.200 0.0000 0.80 0.00125
40 (.300 (.0000 0.80 0.00125
40 0.150 0.0000 (.80 0.00125
40 0. 100 0.0000 0.40 0.00125
40 0.200 0.0000 0.40 0.00125
40 0.100 0.0000 0.80 0.00125
40 0.200 0.0000 {.80 0.00125
40 0.050 0.0000 1.19 0.00125
40 0.100 0.0000 1,19 0.00125
40 0.200 0.0000 [.19 0.00125
40 0.100 0.0000 0.80 0.00125
40 0.200 0.0000 0.80 0.00125
40 0.100 0.0000 0.80 0.00125
40 (.200 0.0000 0.80 0.00125
40 (. 100 0.0000 0.40 0.00125
40 0.200 0.0000 0.40 0.00125
40 0100 0.0000 1.59 0.00125
40 0.200 (.0000 1,59 0.00125
40 0,100 0.0000 0.53 (0.00225
40 0.200 0.0000 .53 0.00225
40 G.100 0.0000 047 0.00175
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40 0.050 0.0200 1.19 0.00125
40 0.050 0.0100 0.80 0.00125
40 0.100 0.0100 0.80 0.00125
40 0.050 0.0100 0.40 0.00125
40 0.200 0.0100 0.40 0.00125
40 0.050 0.0200 1.19 0.00250
40 0.200 0.0200 1.19 0.00250
40 0.100 0.0100 0.80 0.00250
40 0.050 0.0100 0.40 0.00250
40 0.200 0.0100 0.40 0.00250
40 0.128 0.0018 0.67 (.00146
40 0.128 0.0018 0.67 0.00146
41 0.102 0.6018 0.62 0.00232
41 0.127 0.0050 0.68 0.00137
42 0.100 0.0025 0.80 0.00250
45 0.082 0.0050 0.87 0.60122
45 0.082 0.0050 0.78 0.00099
45 0.096 0.0019 0.93 0.00175
45 0.139 0.0016 0.98 0.00197
45 0.096 0.0019 0.94 0.00177
45 0.181 0.0010 0.91 0.00167
45 0.094 0.0013 0.45 0.00167
45 0.122 0.6020 0.45 0.00167
46 0.094 0.0010 0.47 0.00175
46 0.011 0.0050 0.79 0.00100
46 0.092 0.0019 0.94 0.00177
46 0.094 0.0005 0.91 0.00167
46 0.181 0.0037 0.94 0.60177
51 0.020 0.0005 0.72 0.00129
58 0.016 0.0005 0.69 0.00126
58 0.034 0.0004 0.66 0.00116
60 0.100 0.0000 0.80 0.00125
60 0.200 0.0000 0.80 0.00125
60 0.051 0.0007 0.90 0.00125
60 0.100 0.0025 0.80 0.00125
60 0.100 0.0050 0.80 0.00125
60 0.100 0.0025 0.80 0.00250
60 0.051 0.0007 0.90 0.00125
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60 0.051 0.0007 0.82 0.00102
76 0.051 0.0000 0.68 0.00204
76 (.149 0.0007 0.68 0.00204
78 0.048 0.0007 0.64 0.00175
78 0.150 0.0007 0.64 0.00175
78 0.048 0.0007 0.67 0.00192
80 0.050 0.0000 0.80 0.00125
80 0.100 0.0000 0.80 0.00125
80 0.150 0.0000 (.80 0.00125
80 0.200 0.0000 0.80 0.00125
80 0.300 0.0000 0.80 0.00125
80 0.100 0.0000 1.19 0.00125
80 (.200 0.0000 1.19 0.00125
80 0.160 0.0000 0.40 0.00125
80 (3.200 0.0000 0.40 0.00125
80 0.200 0.0600 0.94 0.00175
30 0.200 0.0000 1.13 0.00250
80 0.050 0.0200 1.19 0.00250
80 0.200 0.0200 1.19 0.00256
80 0.050 0.0200 0.80 0.00250
80 0.200 0.0200 0.80 0.00250
80 0.050 0.0200 0.40 0.00250
80 0.200 0.0200 0.40 0.00250
g0 0.050 0.0200 0.40 0.00125
80 0.200 0.0200 0.40 0.00125
85 0.022 0.0010 1.06 0.00238
86 0.037 0.0003 1.05 0.00234
88 0.077 0.0008 0.65 0.00148
91 0.141 0.0024 0.65 0.00148
95 0.138 0.0026 0.79 0.00191
99 0.115 0.0009 0.72 0.00156
100 0.115 0.0010 0.76 0.00175
100 0.100 0.0000 (.40 0.00125
100 0.100 0.0000 0.80 0.00125
100 0.100 0.0000 1.19 0.00125
121 0.005 0.0010 (.63 0.00175
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