Reducing Hawaii's Oil Dependence and Greenhouse Gas Emissions

U.S. Department of Energy State of Hawaii

Discussion document for HCEI working groups

June 17-20, 2008

This report is solely for the use of client personnel. No part of it may be circulated, quoted, or reproduced for distribution outside the client organization without prior written approval from McKinsey & Company. This material was used by McKinsey & Company during an oral presentation; it is not a complete record of the discussion.

PROJECT OBJECTIVE AND APPROACH

Objective: Develop a comprehensive, objective, consistent fact base to inform economically sensible approaches for reducing Hawaii's crude oil dependence and greenhouse gas (GHG) emissions

We **did** look at:

- All energy uses (i.e., stationary, mobile, etc.)
- Man-made emissions within the state of Hawaii excluding international aviation and marine transportation
- Opportunities available under \$50/ton of CO₂e
- Technologies and approaches with predictable costs and development paths
- Resource costs i.e., net capital, operating and maintenance impacts

We did not look at:

- "Imported" carbon
- Policy implementation or transaction costs
- Dynamic impact of a carbon price (e.g., carbon tax or cap)
- Changes in consumer lifestyles or behavior (e.g., drive less, consume less)
- Broader societal costs or benefits (e.g., impact of mitigating climate change, welfare, improved energy security)

Executive Summary

Business as usual

Greenhouse Gas Abatement

Oil Abatement

Appendix

EXECUTIVE SUMMARY

- Hawaii has the opportunity to provide national leadership in reducing oil dependence and greenhouse gas emissions.
- In 2005 Hawaii imported 42 million barrels (MMB) of crude oil and refined products and emitted 22 million tons (MMT) of greenhouse gases (GHG) – on a per capita basis this equates to 33 bbls of oil and 17.4T of GHG per capita. By 2030 under "business as usual", Hawaii's economic growth will drive oil imports up to 62 MMB and GHG emissions will rise to 31 MMT
- By 2030, Hawaii could reduce oil imports by 17 MMB and GHG emissions by 7.8 MMT (mid-range) and by 30 MMB of oil and 13.0 MMT GHG (high-range).
- All included GHG/crude oil demand abatement opportunities are economic at \$60/bbl crude and \$50/ton GHG. In 2030, taken together these measures would result in a ~5% savings in Hawaii's aggregate energy expense at \$60bbl. The savings opportunity rises to ~27% at \$120/bbl*
- If captured, these measures will allow Hawaii to derive between 28% (mid-range) and 48% (high-range) of its energy requirements from renewable sources*
- Economically, these reductions could occur in three phases
 - 1. Driving energy efficiency, developing geothermal/wind, and converting existing sugarcane into fuel
 - 2. Developing combined heat-AC-power, central station solar, firm-wind, and expanding ethanol
 - 3. Adopting next generation efficiency, distributed solar, wind-powered plug-in hybrids, and cellulosic biofuel
- Hawaii's natural endowments and economic structure make these opportunities more concentrated and less technology-dependent than elsewhere -- permitting, land-use, water, and infrastructure represent the biggest challenges
- In this context, Hawaii has the potential to move further and faster than the rest of the US, demonstrating the economic growth and job creation opportunity from reducing oil dependence and GHG emissions

^{*} Excluding international aviation and marine

POTENTIAL ABATEMENT ROADMAP

ILLUSTRATIVE

	Phase 1	Phase 2	Phase 3
Biofuels	 Ethanol 1st wave Convert existing sugarcane to ethanol production Biomass 1st wave Build dedicated co-firing and bagasse plants 	 Ethanol 2nd wave Expand ethanol production to 1969 sugarcane peak Biomass 2nd wave Expand biomass capacity with ethanol production 	 Ethanol 3rd wave Develop cellulosic production facilities on the Big Island Biomass 3rd wave Build cellulosic firing plants
Renewable electricity	 Baseload geothermal Expand reliable geothermal production on the Big Island Intermittent wind Deploy wind capacity on top of existing grid infrastructure 	 Solar CSP Develop utility scale solar Firm wind Connect Maui county and Oahu via cable Develop pumped storage 	 Wind and geo for PHEVs Deploy PHEV fleet and power with renewable resources Distributed solar Encourage residential / commercial adoption of PV
Efficiency	 Efficient lighting Encourage adoption of high efficiency lighting (e.g., CFLs) 	 Sea water AC and CHP Create distributed generation and cooling capacity 	 Efficient electronics and LEDs Expand penetration of LEDs, efficient electronics
Incremental annual impact in 2030*	3.6 MMt CO2e 7.4 MMB oil	6.4 MMt CO2e 12.7 MMB	5.4 MMt CO2e 10.4 MMB

IN HIGH CASE, SIGNIFICANT BUILDOUT OF RENEWABLES WILL OCCUR ON ALL ISLANDS

Executive Summary

Business as usual

Greenhouse Gas Abatement

Oil Abatement

Appendix

HAWAII IS MORE CO₂- EFFICIENT THAN THE U.S., BUT IS MORE OIL DEPENDENT

* Based on 2005 data; 2005 levels do not include international aviation and marine

Source: EIA, US DOT, Population Division, U.S. Census Bureau; EPA (sources of U.S. Greenhouse Gas Emissions and Sinks, 1990-2006); State of Hawaii Department of Business, Economic Development, and Tourism (DBEDT)

FUTURE ECONOMIC GROWTH WILL INCREASE BUSINESS AS USUAL GHG EMISSIONS AND CRUDE OIL IMPORTS

* Less international transport and cement manufacturing. BAU adjusted from RMI forecast

** Hawaii's CO₂e productivity decreased from 1990 to 2005 due to sluggish economic growth and shift toward coal power Source: Moody's; State of Hawaii DBEDT; RMI; team analysis

BASED ON FORECAST GROWTH, HAWAII FACES A SIGNIFICANT CHALLENGE TO MEET ENERGY AND EMISSIONS TARGETS

Target

GHG emissions forecast Mt CO₂e -41% -53% +40%31.0 30.0 10 7.9 22.1 12.6 18.4 14.7 2005 baseline 2005-2025 2025 RMI Adjustments to 2030 Abatement 2020 target 20% below RMI forecast emissions required to (1990 levels) 1990 growth forecast and growth to under BAU reach 1990 emissions 2030 levels* levels **Oil demand forecast** MMB -70% -40% 22% 61.9 50.9 20.0

41.9 9.0 43.4 37.2 18.6 2005 baseline Less int'l Adjusted 2005 Growth to Abatement 2030 Target 1990 Levels 2030 BAU 2030 required to (70% from aviation and reach 70% marine renewables) renewables

*Proposed Lieberman-Warner legislation

Source: State of Hawaii DBEDT; BEA Economics (2007); team analysis

Introduction and context

Business as usual

Greenhouse gas abatement

Oil Abatement

Appendix

WE ESTIMATE THE MID-RANGE GHG ABATEMENT OPPORTUNITY AT 7.8 Mt CO2e LESS THAN \$50/TON

Hawaii GHG Abatement Curve (Abatement Opportunity : 7.8 MtCO₂ and 17.2 MMB)

ANALYSIS BASED ON \$60/BBL OIL

Abatement cost <\$50/ton

MEDIUM AND HIGH CASES DIFFER IN DEGREE OF COMMITMENT FROM SOCIETY

	Initiative	2005	Medium case*	High case*
	• Wind (intermittent / firm)	0 MW / 0 MW	140 MW / 0 MW	490 MW / 480 MW
Renewables	 Solar CSP 	0 MW	170 MW	565 MW
	 Solar PV 	1 MW	207 MW	420 MW
	 Geothermal 	30 MW	140 MW	200 MW
	 Biomass 	0 MW	105 MW	113 MW
	 Hydro 	20 MW	43 MW	43 MW
	 Renewables for PHEVs 	0 MW	0 MW	260 MW
	Sugarcane acreage	42,000 acres	242,000 acres	360,000 acres
Biofuels	 Sugarcane ethanol 	0 gge	193M gge	287M gge
	Cellulosic acreage	0 acres	0 acres	135,000 acres (Big Island)
	Cellulosic ethanol	0 gge	0 gge	170M gge
	• Cars**	23 mpg	34 mpg	42 mpg
Light duty vehicles	 Light trucks 	16 mpg	24 mpg	29 mpg
5 .	HEVs/PHEVs/EVs	<1% / 0% / 0%	16% / 0% / 0%	26% / 16% / 0%
Commercial	Commercial CHP	1 MW	40 MW	40 MW
industrial	 Refining abatement 	0 Mbbl/day	0 Mbbl/day	80 Mbbl/day
	Efficient lighting	8%	70%	75%
Buildings energy efficiency	Central AC	SEER 10	SEER 15	SEER 18
Mt CO ₂ e abated	-		7.8	13.0

* Includes abatement opportunities above \$50/ton

** Average for 2030 fleet; average across gasoline internal combustion, diesel, hybrid electric, and plug-in hybrid electric vehicles;

WITH AGGRESSIVE ACTION, HAWAII CAN LIMIT GHG EMISSIONS TO 1990 LEVELS IN 2030

ASSESSMENT OF \$60/BBL ABATEMENT CASE

- The medium abatement case falls 4.8Mt short of 1990 levels
- The high abatement case uses high penetrations of renewables and energy efficiency measures, but Hawaii remains slightly short of 1990 emissions levels
- If higher cost options (>\$50/ton) were included, Hawaii would be well below 1990 GHG levels

Executive Summary

Business as usual

Greenhouse gas abatement

Oil abatement

Appendix

GHG ABATEMENT ACTIONS ALSO RESULT IN A SUBSTANTIAL REDUCTION IN CRUDE OIL IMPORTS

- 15% of total oil demand economically displaced by renewables
- 12% of total oil demand economically abated from efficiency measures
- renewables
 18% of total oil demand economically abated from efficiency measures

ECONOMICAL ABATEMENT INITIATIVES COULD REDUCE ENERGY SPEND BY 5-27% IN 2030

BASED ON HIGH GHG ABATEMENT CASE

Source: Team analysis

75% OF GHG ABATEMENT POTENTIAL (AND NEARLY 90% OF OIL ABATEMENT) CAN BE ACHIEVED FROM TOP TEN INITIATIVES

- Top 10 initiatives account for 5.9 MMt abatement and 15.0 MMB
- Hawaii has benefit of being able to focus on fewer, higher-impact initiatives than the U.S.
- Ensuring progress against these initiatives is critical to capturing full abatement potential

CONCLUSIONS

Hawaii has the potential to move further and faster than the rest of the US, providing national leadership to demonstrate the opportunities in reducing oil dependence and GHG emissions

- Energy efficiency opportunities represent the most economically attractive initiatives an expedited package of policy and economic action to ensure adoption will pay dividends
- Hawaii is blessed with broad, economic, renewable energy potential--developing the local ethanol, geothermal, solar, and wind resources relatively quickly will provide a solid foundation
- Both energy efficiency and renewables depend on upgrading the island's power transmission and distribution infrastructure
- Longer-term there are opportunities to take a leadership role in renewable powered electric/hybrid vehicles and cellulosic biofuels as well as to lead research efforts on algae-based biofuels, ocean thermal, wave technology, and other opportunities unique to Hawaii
- All of these opportunities will require a clear, consistent policy framework for measuring, monitoring, and exchanging the benefits from these investments as well as the siting, permitting, and interconnection regulatory approval processes to make these opportunities financeable
- At a minimum, these initiatives should provide relatively low cost insurance against the risk of major oil price spikes, but more broadly, these should provide a platform for economic growth and job creation early action provides the opportunity for differentiation

APPENDIX

Methodology

BAU assumptions

Additional analysis

Sector-by-sector assumptions

DOE AND THE STATE OF HAWAII SEEK A CONSISTENT VIEW OF OIL REDUCTION AND GREENHOUSE GAS ABATEMENT OPPORTUNITIES

Context

- DoE and the State of Hawaii have launched the Hawaii Clean Energy Initiative to determine the feasibility of reaching 70% of Hawaii's energy needs from renewable sources
 - GHG abatement
 - Energy security
- McKinsey has developed a rigorous methodology to estimate the volume and cost of GHG abatement opportunities and applied it at multiple levels
 - Global
 - U.S. (and other countries)
 - U.S. states
- As a "closed system" with apparently abundant renewable energy resources, Hawaii is ideal to test the limits of what's possible in GHG abatement and renewable energy usage

Objectives

- Develop an inventory of quantified (volume, cost/ton) GHG abatement opportunities for the State of Hawaii
 - Scale U.S.-wide opportunities to Hawaii based on appropriate metrics (e.g., GDP, vehicle miles traveled, AC penetration, etc.)
 - Develop Hawaii-specific analyses on unique abatement opportunities (e.g., sea water air conditioning, sugar cane, geothermal, etc.)
- Assess GHG abatement opportunities' impact on total crude oil imports

Deliverables

- Hawaii greenhouse gas cost curve based on the U.S. methodology
- Medium and high abatement cases based on the level of commitment from society (e.g., willingness to convert existing cropland to biofuel production)
- Description of implications of GHG abatement options on oil demand in Hawaii

A COST CURVE ILLUSTRATES THE RELATIVE ECONOMICS AND IMPACT OF ABATEMENT OPPORTUNITIES

WE HAVE SIZED ABATEMENT OPPORTUNITIES IN HAWAII

METHODOLOGY

	Approach	Example opportunities	Description
1 Not applical to Hawa	• Do not include	 Nuclear Coal mining Offshore wind CCS 	 State law prohibits nuclear facilities, not enough scale for nuclear No coal mines on islands Sea floor too deep for offshore wind No CCS reservoirs available, undersea CCS not proven
2 Scaled from U.S curve	 Scale based on HI usage factors (e.g., population) 	 Cars fuel economy packages Residential electronics Residential lighting 	 Scaled based on vehicle miles traveled (assumes comparable fleet profiles) Scaled based on number of households (assumes comparable penetration and type of consumer electronics) Scaled based on number of households (assumes comparable penetration of CFLs and LEDs)
3 Unique Hawaii	to • Develop Hawaii-specific approach	 Biofuels CHP HVAC efficiency Sea water air conditioning Oil refining 	 Modeled production of sugar ethanol based on acreage and productivity studies Used detailed estimates of commercial CHP opportunity Lower AC penetration requires different approach than U.S. curve Have firm-cost estimates from existing projects. Not included in U.S. curve Reducing demand for oil through efficiency and renewables may reduce need for refining capacity
		• PHEVs	 Fleet dynamics (e.g., rental cars) make it more likely that PHEVs can achieve high penetration rates

2 WE HAVE ASSESSED HAWAII ABATEMENT OPPORTUNITIES BY SCALING THE U.S. ABATEMENT CURVE, OPPORTUNITY-BY-OPPORTUNITY

Example: Residential electronics abatement opportunity (medium penetration)

* HI uses mostly fuel oil for power generation – slightly lower carbon intensity than in rest of U.S. (dominated by coal) Source: Team analysis

OVERVIEW OF US AND HAWAII GHG ABATEMENT MODEL

Our model:

- Builds on government business as usual forecast, proprietary McKinsey expertise as well as knowledge and expertise of sponsors of the effort
- Provides an understanding of the relative magnitude and cost of greenhouse gas abatement opportunities to society across sectors and timeframes
- Evaluates abatement costs and potential relative to the "business-as-usual" case from the DBEDT Hawaii Greenhouse Gas Emissions Inventory and other government reports
- Evaluates the supply potential of available abatement opportunities
- Considers dynamic interactions within sectors and important cross-sectoral linkages, avoiding double-counting of abatement opportunities

Our model does not:

- Estimate today's cost of abatement options
- Forecast the "price" of CO2 costs inherent to the cost curve do not translate directly to carbon taxes required to accomplish specific public policy objectives or carbon price that may emerge through the cap-andtrade system
- Evaluate the sequence in which abatement should be accomplished – no attempt to identify the optimal sequence of abatement undertaken
- Function as a general equilibrium macroeconomic model with respect to commodity price movements
- Simulate every cross-sectoral dynamic interaction

CRITERIA FOR SCREENING ABATEMENT OPPORTUNITIES BASED ON TECHNOLOGICAL MATURITY

Criteria

- Technology is at least in the pilot stage
- Widely shared point of view among professionals on technical and commercial viability in the medium-term (10-15 years)
- Well-understood technological and economical challenges that can be dimensionalized
- Compelling forces at work supporting technology (e.g. policy and / or industry support, tangible benefits such as energy security, expected attractive economics)

Examples of excluded technologies

- Biodiesel from algae
- Biokerosene
- CCS with Enhanced Gas Recovery
- Biomass gasification in power generation
- Electric vehicles (Plug-in Hybrid EVs are included)
- OTEC

KEY ASSUMPTIONS FOR THE MCKINSEY GLOBAL, US, AND HAWAII GHG ABATEMENT MODELS

Rationale

Approach

Abatement costs	 Understand factors contributing to cost and attempt to eliminate margins, particularly those due to near-term market conditions As much as possible we remove pricing distortions to create an internally consistent cost structure, however some residual margins can remain 	 Focusing on costs allows for direct comparisons of different options To develop a long-term perspective it is necessary to eliminate price run-ups, as high margins are not maintainable in the long run Profit is not a cost to society, but a transfer of wealth
Capital costs	 Use a 7% cost of capital for calculating the levelized cost of capital 	 Abatement of carbon dioxide is a social imperative and thus the cost of capital should be set to a minimum level
Taxes, incentives, tariffs, etc.	 Do not consider in calculations 	 These represent transfers of wealth They are difficult to project They are set via policy and do not represent costs associated with a particular technology

Translating curve to individual actors' perspectives requires adjustments to several factors including, cost of capital, profit margins and current and future costs

COSTS OF RENEWABLES VARY IN MEDIUM AND HIGH CASES

Challenges to increasing penetration of renewables... ...lead to different cost regimes

Appropriate sites	 On most islands, there are limited sites where high-quality resources are available and are close to existing transmission infrastructure 	 Expanding renewables footprint requires development of higher cost sites (i.e., those with lower solar insulation or less constant wind profiles)
Firming	 Adding large intermittent capacity to grid creates challenges in matching generation to demand 	 Pumped storage, molten salt, and passive PHEVs provide ability to convert "as- available" resources into "on-demand" resources, but add significant costs Internal combustion backup and fast cycling/peaking burns more fossil fuels
Inter-island connections	 To fully develop renewable resources on neighboring islands, cables must be deployed to connect supply to demand on Oahu and Maui 	 Cost of laying cable, terminal stations and additional transmission capability must be assigned to resources developed on Lanai and Molokai
Infrastructure investment	 Expanding distributed generation capacity (Solar PV) and use of intermittent resources will require smart grid/net metering capabilities 	 Distribution costs will increase to pay for infrastructure upgrades
Learning and adoption curves	 Many technologies (especially solar CSP & PV) depend on a steep learning curve to reduce costs, which will be driven by forces <i>outside</i> Hawaii 	 Estimates of cost reductions are based on anticipated adoption of technologies in the United States

Challenge

APPENDIX

Methodology

BAU assumptions

Additional analysis

Sector-by-sector assumptions

WE MODIFIED THE RMI BUSINESS-AS-USUAL FORECAST

PRELIMINARY

Mt CO ₂ e		
2025 RMI BAU forecast		30.0
Adjustment for RPS	0	.9
Vehicle efficiency add-back	().5 ¶
Transport growth		1.6
Res/comm/industrial growth		2.1
International aviation		7.0
Adjusted 2025 BAU	2	8.1
2025-30 growth	2.	9
Forecast 2030 BAU		31.0

Г

Comparison of business-as-usual (BAU) forecasts $Mt\ CO_2 e$

- Description
- Baseline BAU from IRP
- RMI emissions estimates include anticipated reductions from reaching 20% renewables
- Forecast assumed 11% efficiency increase in transportation fleet
- Forecast assumes reduction in demand, adjusted to reflect U.S. efficiency
- Scaled to reflect GDP growth
- Less international transport, scaled for GDP growth
- Scaled to reflect GDP growth

REFERENCE PLANT DETERMINES EMISSIONS OF EACH MARGINAL MWH ABATED

Average emissions, 2007

Tons per megawatt-hour

- We have assumed that incremental peak load would be provided by a combined-cycle fuel oil generator
- Does not include renewables or coal as part of dispatchable peak load

* Includes all Islands Source: Energy Velocity, EIA; team analysis

BASED ON RMI FORECASTS, WE DEVELOPED A BAU FOR OIL

COMPARISON OF ELECTRICITY SCENARIOS

MW of capacity

Source: HCEI, Booz Allen Hamilton, RMI

Methodology

BAU assumptions

Additional analysis

Sector-by-sector assumptions

HAWAII HAS TAKEN A NUMBER OF STEPS TO PROMOTE ENERGY INDEPENDENCE AND REDUCE ITS ENVIRONMENTAL IMPACT

Alternative Fuel Standard (Act 240)

Goal of providing 10% of highway fuel demand from alternative fuels by 2010; 15% by 2015; and 20% by 2020

Hawaii Renewable Portfolio Standard (Act 95)

Requires that utilities purchase or generate 10% of their net electricity sales from renewable sources by 2010; 15% by 2015; and 20% by 2020

Hawaii Clean Energy Initiative

Memorandum of Understanding between State of Hawaii and U.S. Department of Energy to drive adoption of renewable energy in the state, with a goal of reaching 70% of energy from renewables

Greenhouse Gas Emissions to 1990 Levels (Act 234)

Limits greenhouse gas emissions to 1990 levels by 2020, not including airplanes. Charters a GHG emissions reduction taskforce and requires an updated inventory of GHG emissions

ELECTRICITY: IN OUR HIGH CASE, 59% OF PROJECTED DEMAND COULD BE FULFILLED BY NON-FOSSIL FUEL GENERATION BY 2030

* BAU based on utility IRPs

** The High (all) case is shown, which includes all measures, including those costing more than \$50/tCO2. Does not include 0.894 TWh of as-available generation to be used for PHEV charging. All numbers Include renewables that were already installed by 2005.

TRANSPORTATION: IMPROVED VEHICLE EFFICIENCY AND LOCALLY SOURCED ETHANOL WOULD ABATE ~40-80% OF GASOLINE DEMAND

76% of gasoline demand is produced locally

* Assumes no adoption of biodiesel or electric-only vehicles Source: RMI; DBEDT; McKinsey analysis

BAU transportation demand

284

Growth

to 2030

• 0% of gasoline demand is produced locally

738

2030

BAU

Millions gge

454

2005

demand

38

AGGRESSIVE ACTION CAN RETURN EMISSIONS TO 1990 LEVELS DESPITE CONTINUED GROWTH IN AVIATION AND MARINE

Greenhouse gas emissions MtCO₂

Greenhouse gas emissions Percent of total

- Reductions in electricity and transport leave aviation & marine proportionately larger (18% in 2030 BAU, 36% in 2030 Highest case)
- Remaining emissions due to electricity generation almost exclusively from Oahu (57% of electricity still produced by fuel oil and coal in the High (all) case)

options)

options)

Efficiency

ACHIEVING THIS LEVEL OF ABATEMENT REQUIRES CHANGES ACROSS SECTORS

Renewables

BIOFUELS, WIND, AND GEOTHERMAL ARE MORE ATTRACTIVE OPPORTUNITIES IN HAWAII

Hawaii abatement categories > 0.19Mt/yr

Difference in cost

Dollars

- Biofuels is a much larger opportunity than broader U.S. due to sugarcane productivity
- Hawaii has many unique resources (e.g., geothermal, intermittent wind, excess renewables to power PHEVs) that can be harnessed at lower cost than in the rest of the U.S.
- Due to high energy prices, efficiency measures (e.g., commercial electronics, fuel economy packages) are less expensive than in the U.S.
- However, Hawaii unique costs to connect isolated grids and manage intermittency, which causes wind and solar to be more expensive than the U.S.

Percent

ABATEMENT OPPORTUNITIES ARE MUCH MORE CONCENTRATED FOR HAWAII THAN THE U.S.

Hawaii requires 6 initiatives to achieve half of abatement potential *

of initiatives required to reach 50% of abatement*

Top 6 GHG Abatement Initiatives for Hawaii Percent of total abatement, medium case

- Hawaii has benefit of being able to focus on fewer, higher-impact initiatives than the U.S.
- Ensuring progress against these initiatives is critical to capturing full abatement potential

* Hawaii had 70 initiatives in total, while U.S. had 85. For HI, 80% of abatement from largest 19 initiatives, U.S. required 38 initiatives to reach 80% of abatement

KEY DIFFERENCES IN ABATEMENT OPPORTUNITIES BETWEEN HAWAII AND U.S.

Source: Team analysis

INCREMENTAL INSTALLATION OF TECHNOLOGIES VARIES BY ISLAND

Source: Team analysis

MOST OPTIONS BECOME COST EFFECTIVE AGAINST COST OF OIL AT \$120/bbl **BASED ON HIGH GHG**

ABATEMENT CASE

APPENDIX

Methodology

BAU assumptions

Additional analysis

Sector-by-sector assumptions

TRANSPORTATION SECTOR ABATEMENT – MEDIUM CASE

TRANSPORTATION SECTOR ABATEMENT – HIGH CASE

Source: Team Analysis

AWF SECTOR ABATEMENT – MEDIUM CASE

AWF SECTOR ABATEMENT – HIGH CASE

INDUSTRIAL SECTOR – MEDIUM CASE

INDUSTRIAL SECTOR – HIGH CASE

BUILDING SECTOR – MEDIUM CASE (1/2)

BUILDING SECTOR – MEDIUM CASE (2/2)

BUILDING SECTOR – HIGH CASE (1/2)

BUILDING SECTOR – HIGH CASE (2/2)

POWER SECTOR – MEDIUM CASE

POWER SECTOR – HIGH CASE

