
 
 
 
 
 
 
 
 
 

RISK ASSESSMENT OF SURFACE VS. 
SUBSURFACE BOP’S ON MOBILE  

OFFSHORE DRILLING UNITS

by 
 

Jorge Melendez, Texas A&M University 
Graduate Assistant Research 

Jerome J. Schubert, Ph.D. PE, Texas A&M University 
Assistant Professor 

Mahmood Amani, Ph.D., Texas A&M University Qatar 
Visiting Assistant Professor 

 
 
 
 
 
 
 
 
 

Final Project Report  
 Prepared for the Minerals Management Service 

Under the MMS/OTRC Cooperative Research Agreement 
1435-01-04-CA-35515 

Task Order 39226 
MMS Project Number 540 

 
 
 

August 2006

  



 
OTRC Library Number:  8/16A172 
 
 
 
 
 

 
 
 
 
 
 
 
 

“The views and conclusions contained in this document are those of the authors and 
should not be interpreted as representing the opinions or policies of the U.S. 
Government. Mention of trade names or commercial products does not constitute 
their endorsement by the U. S. Government”. 
 

 
 
 
 
 
 
 
 
 

For more information contact: 
 

Offshore Technology Research Center 
Texas A&M University 

1200 Mariner Drive 
College Station, Texas 77845-3400 

(979) 845-6000 
 

or 
 

Offshore Technology Research Center 
The University of Texas at Austin 

1 University Station C3700 
Austin, Texas 78712-0318 

(512) 471-6989 
 
 

A National Science Foundation Graduated Engineering Research Center 
 

  



 

Risk Assessment of Surface vs. Subsurface BOP’s on Mobile Offshore Drilling 
Units 
Jorge Melendez, Jerome J. Schubert, and Mahmood Amani, Texas A&M University 
 
Executive Summary 
Introduction 
In an attempt to mitigate many of the problems associated with deepwater drilling, some 
operators such as Woodside Energy Ltd., Shell, TOTAL, and Unocal have either considered 
using or have used surface Blowout Preventers, BOP, with small diameter, high pressure risers in 
floating drilling operations.  The myriad of problems associated with drilling in deep water have 
been extensively covered in the literature.  Some of the problems that this technology can help to 
alleviate are directly associated with the large diameter marine risers currently being utilized.   
 
As water depth increases, the weight of conventional risers increases to a point that only a very 
few fifth generation floating rigs have the capability to drill in ultra-deep water.  The deck loads 
increase tremendously, the volume of mud required to fill the riser increases, and the choke line 
friction increases to a point to where successfully circulating a kick from the well becomes 
almost impossible.  The small diameter, high pressure riser can alleviate the deck load 
requirements, reduce the volume of mud required, and eliminate the high choke line friction 
pressure experienced with conventional marine risers.  This will also, minimize the problems 
associated with riser gas. 
 
However, this is relatively new technology, and there is inherent risk in applying any new 
practices.  Even though this technology is relatively new, it has been successfully applied in a 
number of international locations, mostly in calm waters, where currents are low, and storms are 
not common.  Now, some operators would like to apply this technology to waters that are 
susceptible to high currents, and storms.   
 
The Harold Vance Department of Petroleum Engineering at Texas A&M University was 
contracted by the U.S. Minerals Management Service through the Offshore Technology 
Research Center to conduct a comparative risk assessment of the use of Surface Blowout 
Preventer Systems and High Pressure Risers vs. conventional Subsea Blowout Preventer Systems 
and drilling risers in the Gulf of Mexico Environment. 
 
Tasks 
The tasks that we agreed to perform are as follows: 
Phase I (Year 1) 

1. A literature review to assess the state of the art in the use of surface BOPs on Mobile 
Offshore Drilling Units, MODUs.  We will study the equipment that is currently being 
utilized by these operators and drilling contractors; where this technology is being 
applied; as well as sea conditions (e.g. current, wave height, and storm frequency and 
severity).  We will compare the sea conditions where surface BOPs are utilized on 
MODUs to those in the Gulf of Mexico. 

2. We will perform an analysis of the frequency of riser failures for both conventional large 
diameter risers as well as the smaller diameter high pressure risers.  We will also review 
the causes of the failures.  However, we do not intend to perform the failure analysis 
ourselves, just review the analysis performed by others. 



3. Based on this failure analysis, we will determine the proper risk evaluation tools that are 
available today and analyze the risk of utilizing a surface BOP system in deep water on a 
MODU. 

Phase II (year 2) 
4. Based on the above risk analysis, we will determine the value and/or need for subsea 

shear rams (shut-in device, SID) to be used with high pressure risers and surface BOP 
systems.  We will finish this task with a shorter analysis of the risk involved with 
utilizing the subsea shear rams. 

5. We will document the results of this work in a final report that will be provided to the 
OTRC and the MMS.  The final report will include all M.S. thesis written on the project. 

 
We have completed tasks 1-4 and this executive summary and attached thesis entitled “Risk 
Assessment of Surface vs. Subsea Blowout Preventers (BOPS) on Mobile Offshore Drilling 
Units Focusing on Riser Failure and the Use of Subsea Shear Rams” constitutes the completion 
of task 5 the writing of the final report. 
 
Results and Conclusions 
In our study, we have identified 13 elements that affect the reliability and risk of failure of the 
riser system and seven elements that affect the reliability and risk of failure of the Subsea BOP 
system.   
 
In our study we defined risk as the product of frequency of occurrence and the consequence.  The 
risk assigned to each element for a conventional marine riser system can be found in Table 4.1 
and Table 4.2 for the High Pressure Riser system.  Of these thirteen elements in the riser system, 
there were five elements where the risk of failure was significantly lower for the High Pressure 
Riser than the conventional marine riser.  Since there are no boost lines or choke and kill lines in 
the High Pressure Riser, they cannot fail as they can with the conventional system.  Failure of the 
riser due to Drillstring Induced Vibration, DIV, Riser Wear, and Vortex Induced Vibration, VIV, 
is considerably lower for the High Pressure Riser simply due to the fact that the High Pressure 
Riser is used on only one well as a drilling riser.  On the next well, this riser is cemented in the 
wellbore as an intermediate casing string. 
 
Tables 4.1 and 4.2 show no difference in the risk of Burst/Collapse between the two systems 
simply because of the very low frequency.  However, this comparison ignores two vital facts.  
One, the conventional marine riser is not designed as a pressure containment vessel, and, two, 
the rig crews are trained to never allow gas to enter the riser during well control operations, or to 
let the riser become emptied.  Since the high pressure riser is designed to withstand much higher 
burst and collapse pressures than the conventional marine riser, the probability of failure due to 
burst and collapse should be much lower. 
 
The reliability of the Surface BOP system as compared to the Subsea BOP system was 
determined to be nearly equal in our comparison, even though the Subsea BOP system utilized 
more redundant elements than the Surface BOP system.  This is simply done because of the 
extreme difficulty in repairing the BOP stack when it is located on the seafloor. 
 
Based on the data that we were able to acquire on BOP and Riser Failures and our subsequent 
risk analysis, we have determined the following: 
 



• The qualitative analysis in determining the risk of SBOP operations when comparing these 
operations to the conventional system with the specific metocean conditions encountered in 
the GOM, showed acceptable values.  

• Addition of the Shut-In Device, SID, improved the system reliability and maintained a failure 
rate within the acceptance risk envelope independently from the type of dataset used; thus it 
should be considered for deepwater operations in the GOM.  

• This evaluation was done with a generic description of the drilling riser components and the 
pressure control equipment, thus it serves as a starting point for operators and contractors 
when planning the use of SBOPs in the GOM.  

 
From the work presented in this study we can conclude the following:  
 

 1. Preliminary analysis of the simulations suggests that the risk of failure of the entire 
system can be acceptable and operations can be carried out safely.  

 
 2. A risk assessment can aid one to understand the high-pressure riser system through the 

identification of the critical components and their interaction with the overall pressure 
control equipment.  

 
 3. Specific location and equipment planned to be used can drastically change the outcome 

of the overall risk analysis, since some areas are more susceptible than others to be hit by 
harsh metocean conditions.  

 
 4. Results from the quantitative interpretation have a degree of uncertainty on their 

reliability, because of the nature of the dataset used. However, the work done allows the 
setting of upper and lower boundaries to understand the system behavior.  

 
 
Data Utilized 
Our study utilized information on riser and BOP failures from four separate data sets.  These data 
sets are: 

1. Reports of incidents made to the U.S. Minerals Management Service. 
2. The Corrosion and Damage Database (CODAM) maintained by the Norwegian 

Petroleum Safety Authority 
3. The Pipeline and Riser Loss of Containment database maintained by the U.K. Health and 

Safety Executive 
4. A study conducted by SINTEF. 

 
There is some uncertainty in the data due to potential and probably non-reporting of minor 
failures or problems with equipment.  Also, the four datasets did not categorize failures 
consistently, which could effect the uncertainty of our results. 
 
Limitation to Our Study and Recommendations for future work 
Only primary failures from each component were taken into consideration for this study, because 
the purpose was to have a preliminary assessment of whether it would be positive or not to 
implement a high-pressure riser. Future work should include secondary and tertiary failures to 
take into account chain events and their consequences.  
 



The riser system and pressure control equipment models were simplified into their main 
components; a more detailed analysis can be performed during the evaluation of a particular 
arrangement to determine the specific risk of the system.  
 
A similar study could be performed to evaluate the risk of installing a high-pressure riser and an 
SBOP in fixed deepwater production units like spars and tension leg platforms as an alternative 
for well control measurements.  
 
Awareness should be brought to the MMS regarding data quality to better assess risk analyses, 
since reported failures do not include a consequence level.  
 
Summary of Thesis 
The following is a brief summary of the contents of the attached thesis. 
 
Chapter 1 – Introduction, provides a concise description of the BOP systems currently in use in 
floating drilling operations.  This description not only describes the BOP equipment but also the 
conventional Marine Risers in use today.  This chapter provides a brief summary of the history 
of the use of Surface BOP equipment on floating operations to date. 
 
Chapter 2 – Background, describes the objective of the study, expected contribution to the 
industry and a description of the High Pressure Riser and Pressure Control System. 
 
Chapter 3 – Risk Models, describe the risk analysis process, fault tree analysis and it’s required 
input parameters. 
 
Chapter 4 – Failure Rates, describes the failure rates that were used in this study, the source of 
the data, and how these failure rates were utilized in our study. 
 
Chapters 5 and 6 describe the results and conclusions of our study while Appendix B contains 
the fault tree models that were built for our study.  Appendix C is an Excel spreadsheet 
containing the assembly of the incidents reported to the MMS from 1999 to 2005. Appendix D is 
another Excel spreadsheet where the failure rates used in our risk analysis were calculated.  This 
spreadsheet also contains the results from all the simulation runs for the qualitative analyses 
performed on each dataset 
 
Acknowledgement 
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Technology Research Center for providing  funding and data to complete this project. 
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ABSTRACT 

 

Risk Assessment of Surface vs. Subsea Blowout Preventers (BOPs) on Mobile Offshore 

Drilling Units Focusing on Riser Failure and the Use of Subsea Shear Rams. 

(May 2006) 

Jorge Luis Meléndez, B.S., University of Zulia, Vemezuela 

Chair of Advisory Committee: Dr. Jerome J. Schubert 

 

The use of a slim, high-pressure drilling riser for surface blowout preventer operations in 

the deepwater Gulf of Mexico was assessed as an alternative to conventional drilling 

procedures from floating units. Comparison of the low- and high-pressure system was 

accomplished through a detailed qualitative (assigned frequency) and quantitative 

(reported incidents) risk analysis using generic fault tree models to statistically 

determine the reliability of the system based on metocean conditions from the Gulf of 

Mexico. 

 

It is hoped that this investigation will serve as a starting point for drilling companies and 

regulatory agencies to understand the risk of implementing a high-pressure riser for 

surface blowout preventer applications in the Gulf of Mexico, because specific failure 

events and conditions of the area were considered. Despite the generic description of the 

drilling riser and pressure control system, the models are flexible enough to be modified 

and adapted to a specific rig configuration and location.  

 

Results from the qualitative comparison suggest an acceptable risk and high reliability 

for high-pressure riser systems and surface preventers. The quantitative portion of the 

study is influenced by the data quality of the high-pressure system, however it provides a 

range of possible reliability values with an acceptable overall risk. 
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1. INTRODUCTION 
 

 

Deepwater drilling operations (> 1,000 ft) call for blowout preventers (BOPs) to be 

installed at the seabed, and then connected to a large-diameter drilling riser to control the 

well and transport fluids. Placing the BOP stack at the surface would reduce the 

requirements in pipe diameter of the riser, allowing the use of a slim high-pressure 

system capable of handling well pressures and controlling kick inflows. Surface BOPs 

(SBOPs) eliminate the downtime spent on lowering the large-diameter drilling riser and 

installing the BOP stack at the seabed, optimizing rig time. SBOPs also reduce the 

length of the kill and choke lines, and the pumping power required to overcome 

frictional pressure losses through the lines.1

 

The increase of top-tension loads and high-angle doglegs created by the large diameter 

riser creates additional problems for deepwater operations resulting in a permanent bend 

or collapse of the pipe.  Harsh metheorological and oceanic (metocean) conditions create 

fatigue stresses in the tubing through the interaction of winds and currents, contributing 

to the vortex-induced vibration2 phenomenon. A great advantage of the SBOP system is 

that the high-pressure string is used once as a riser, and then is set below the mudline on 

the following well, reducing long-term fatigue design requirements.  

 

The objective of this study is to determine the feasibility of installing a slim, high-

pressure drilling riser for SBOP operations in deepwater Gulf of Mexico (GOM), by 

comparing the reliability of the riser and overall well control system to the conventional 

subsea BOP configuration. The comparison follows current guidelines3 and incorporates 

specific metocean conditions of the GOM, serving as a reference for regulatory agencies 

and drilling contractors for approval and planning of future wells.  

 

This thesis follows the style and format of SPE Drilling and Completion. 
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Reliability studies have been conducted with the use of fault-tree analysis to model 

failure events from other industries4 for some years in order to reduce incident 

occurrences by determining critical elements and their importance to the system. Fault-

tree models represent each system configuration and allow comparisons based on similar 

situations to determine risk and reliability5 of the drilling riser and BOPs. The models in 

this study use a numerical integration and a stochastic simulation to estimate the 

operability of each system with assigned frequency values and specific element failure 

rates from historical behavior in deepwater GOM. 

 

The first section of the report introduces the blowout preventer and drilling riser 

concepts, along with a brief history of SBOP operations and the metocean conditions 

observed in the locations that have implemented this technology, focusing on the GOM. 

 

The second section describes the objective and the contribution of this research; it also 

sets the background terminology of the elements mentioned in the assessment.   

 

Section three explains the overall risk process. The methodology is introduced first, then 

the fault-tree analysis models and finally, the basis of the calculations and methods.  

 

Section four illustrates the failure rate calculations for both the quantitative and 

qualitative analyses, with the various datasets used and the changes made to incorporate 

them into the risk models.  

 

Results are presented in section five, along with a discussion on the findings from the 

assessment.  

 

Section six contains additional discussion of the results, the conclusions and 

recommended future work.  
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1.1 BOP Systems 

 

Blowout preventers act as a safety barrier in emergencies or undesired events by 

controlling reservoir pressures and fluids in the well. In the absence of BOPs well 

control is achieved solely by the water column imposed by the sea, allowing the 

possibility for shallow underground blowouts to occur without any possibility of 

controlling them. 

 

The number of components and the capacity a BOP has varies widely within the industry 

depending on its application and requirements of the well. 6 However, deepwater drilling 

usually has the highest rated equipment due to the conditions at which they operate. The 

BOP system stack is made up of a series of pipe rams and annular preventers in charge 

of sealing and shearing the drillpipe. Normally, subsea stacks are larger and have more 

components than a surface stack, because there repairs and maintenance are more 

complicated.  

 

A common subsea stack is shown in Fig. 1.1.  It consists on two sets of annular 

preventers, three pipe rams, a single shear ram, and two sets of kill and choke lines. The 

redundancy in the system allows for the BOP to be very reliable. The size of the stack 

requires the rig to handle significant deck loads, limiting operations to fourth- or fifth-

generation rigs. A typical SBOP arrangement consists of a single annular preventer, two 

pipe rams, a shear ram, and a single set of kill and choke lines. 7 The SBOP system is a 

simplified version of the subsea stack, in which the different components are easy to 

access, thus eliminating the redundancy required for minimal reliability and availability. 

An example of an SBOP array is shown in Fig. 1.2. 

 

The top BOP manufacturers and their products are presented in Appendix A, which 

includes the description and advantages of each competitor.  
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Fig. 1.1 - Typical subsea BOP stack. 8
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Fig. 1.2 - Typical surface BOP stack. 8
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1.2 Drilling Riser 

 

The drilling riser is a large-diameter steel pipe used in offshore operations as a means of 

communication between the rig and the seafloor, as a guide to the drillpipe, and as a 

pathway for the mud and cuttings to be brought back to the surface. The riser also has 

attached to its body kill and choke lines used for BOP operations, and any additional 

boost lines required, increasing the complexity of the system. 

 

The design requirements for the riser are aimed at maintaining its integrity, by 

considering the top tension necessities, external pressures imposed by the water, and its 

long term life as it will be used multiple times during its lifetime.  

 

Deepwater drilling risers interact with the passing of currents, which create turbulence 

vortices (Fig. 1.3) causing the riser to vibrate; this phenomenon is called vortex induced 

vibration (VIV). The effect can be devastating if the excitation reaches the natural 

frequency of the system; but most importantly it shortens the life of the riser by the 

constant vibration. Studies9-11 have shown that this effect can be minimized by the 

addition of VIV suppressors, which orient the path of the fluid as it crosses the riser; 

however such an alternative increases operational costs.  

 

Other studies12 and operators have found that the effect becomes less of a problem when 

the diameter is reduced and the surface is smoothed. 

 

 

 

 

 

 

Fig. 1.3 – Turbulence created by the passing of a current resulting into VIVs. 10
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Recent technology has pushed the development of a composite riser, 13 in which fiber-

composite joints are alternated between the metal ones. This arrangement greatly 

reduces the overall weight of the riser and allows it to withstand higher pressures, 

because of the specialized metal-to-composite connections. However, this configuration 

has only been applied to prototypes and production risers. 

 

Other elements of the riser system are the diverter, telescopic joint, and the marine riser 

package. These will not be described because they are beyond the scope of this study. 

 

 

1.3 SBOP History 

 

Placing the BOPs below the moonpool or near the surface (below the splash zone) is not 

a new concept. In the early 1960’s the technique was used in shallow waters (≈100 ft) in 

Southeast Asia. 14 Similar developments were made in West Africa in greater depths. In 

addition, fixed drilling units such as Jack-Ups and compliant towers have implemented 

SBOPs in water depths of up to 400 ft, 15 due to their stability by being in direct contact 

with the seabed. 

 

In 1996, SBOPs were used in shallow waters and normally pressured formations from 

mobile units, 16 achieving remarkable savings ranging from 20% to 70%  of the total cost 

to develop wells compared to the conventional approach of subsea BOPs. 17  

 

Current water depth record for SBOP applications was set in 2003 offshore of Brazil18 at 

9,472 ft in the Campos Basin area, setting  a milestone in the implementation of this 

technology in harsh environments. The well was drilled with the use of a third-

generation rig that was upgraded to drill in 10,000 ft of water and included a seabed 

isolating device. 
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To help understand the SBOPs concept Fig. 1.4 illustrates current deepwater options 

regarding BOP placement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.4 – Deepwater drilling with SBOP, subsea BOP, and SBOP with SID. 19

 

 

1.4 Metocean Conditions 

 

Meteorological and oceanographic (metocean) conditions are a major challenge for 

every offshore activity.  In the case of deepwater drilling operations, these conditions 

become critical in the selection of the rig and the equipment to operate it safely. 

Depending on the location, metocean conditions can vary greatly and change in a 

seasonal mode within the same region. Elements such as ocean currents, winds, 
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significant wave height, and period are the main metocean characteristics one must 

consider when planning an offshore well.  

 

SBOPs started to be implemented in calm metocean conditions, and then progressively 

moved to rougher parts and deeper zones like offshore Brazil. 20 Listed below is a 

summary of the metocean profile from the locations that have successfully applied the 

SBOP concept and the average conditions encountered in the GOM in various return 

periods. 

 

 

1.4.1 West Africa – Angola 

 

The Angola Current forms the eastern section of a large, cyclonic current in the Gulf of 

Guinea; where typical deepwater speeds are less than 0.6 knots (0.3 m/s). The current 

has been described21 as a fast, narrow, and stable flow that reaches 700 to 900 ft depths 

and covers both the shelf regions and the continental slope.   

 

 

1.4.2 Offshore Brazil – Campos Basin 

 

Currents east of Brazil are influenced by two streams; one affects the surface movement 

and the other the bottom one. 21 The surface currents extend to a depth of 3,300 ft (1,000 

m) and are influenced by the Antarctic Intermediate Water Mass; below this mark, the 

currents are moved by the North Atlantic Deep Water Mass in the opposite direction. 

Although speeds for these currents are low (<1 knot), they still need to be monitored for 

their effect on flow direction. 
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1.4.3 Southeast Asia - Indonesia 

 

Currents offshore Indonesia travel at relatively low speeds (< 1 knot) in an almost 

uniform pattern creating little or no disturbance to the offshore units installed in shallow 

depths. Wind speeds only reach highs during typhoon season, when speeds can be up to 

60 mph. 

 

 

1.4.4 Gulf of Mexico 

 

Due to its natural flowing currents, hurricane season, and subsurface currents, the Gulf 

of Mexico experiences a series of harsh environmental conditions.   

 

The vertical structure of currents in the Gulf of Mexico shows intense flows at or near 

the surface, decreasing flows with depth to a minimum at approximately 3000 ft., and 

possible bottom-intensified flows near the sea floor (Fig. 1.5). The speed profile varies 

depending on location in the Gulf. The eastern part of the Gulf has greater maximum 

speeds recorded than the central and western part. The central part also has higher 

currents near the bottom, which reflects a stronger bottom intensification possibly 

associated with excitation from the Loop Current System. The sources of energy that 

drive this structure are largely two: the Loop Current System and energetic atmospheric 

events. 

 

The Loop Current of the Gulf of Mexico is a major source of energy that drives the 

current system in the Gulf. 22 At the subsurface level between 3000 and 6000 ft., the 

Loop Current brings in waters from the world's oceans, including two major water 

masses: the Antarctic Intermediate Water and the Upper North Atlantic Deep Water. 

 

 



 10

The Loop Current originates from water that enters the Yucatan Channel (where it is 

called the Yucatan Current) from the Caribbean Sea. It enters as a northward-flowing, 

westward-intensified current.  It then turns eastward in the eastern Gulf and exits 

through the Florida Straits, where it becomes part of the Gulf Stream System.  The Loop 

Current is energetic, with near-surface flows that can exceed 4 knots. 22 It may also 

trigger currents in the waters below 3000 ft. particularly along the continental slope. 

 

 

 

 
Fig. 1.5 – GOM maximum currents profile vs. depth. 22

 

 

 

The northward penetration of the Loop Current into the Gulf of Mexico varies over time. 

When the penetration extends far enough into the Gulf, the Loop Current becomes 

unstable and a Loop Current Eddy (LCE) can separate (Fig. 1.6). The frequency of 
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separation is irregular. LCEs are anticyclonic (clockwise circulating) rings, with surface 

intensified speeds of up to 4 knots. LCE currents extend down to approximately 3000 ft., 

with speeds decreasing from the surface with depth to ~0.2 knot at about 2000 ft. 22 

LCEs also move westward into the western Gulf at average drift speeds of ~10 miles/d. 

The lifetimes of LCEs are up to one year.   

 

Smaller eddies also exist in the Gulf. These include both anticyclonic eddies not from 

the Loop Current and cyclonic (counter-clockwise circulating) eddies. These eddies also 

have surface-intensified currents and can extend to about 3000 ft. depth. But they are 

generally less energetic than LCEs. Current speeds have been reported of up to 1 knot. 22

 

 

 

 
Fig. 1.6 – Loop and Eddie currents in the GOM. 23

 

 

 

High-speed, subsurface-intensified current jets also are present in the Gulf, and may 

possibly be associated with the eddies. 24 These jets have durations of up to one day and 

maximum speeds that can exceed 4 knots, with the core of the high speed current 

occurring at 500-1200 ft. 
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The second major source of energy for the Gulf is atmospheric forcing, particularly 

energetic events such as hurricanes and wintertime extratropical cyclones. 22 Hurricane 

season in the GOM begins in May or June and lasts until October or November. The 

strong winds create high currents that may exceed 3 knots of surface speed. When 

combined with wave orbital velocities, the hurricane-induced currents can travel at 

speeds of as much as 6 knots. 

 

During the colder months (November through April), a continental dry air flow enters 

the Gulf and can form extratropical cyclones. These atmospheric cyclones can generate 

energetic currents over the continental shelf and upper continental slope. On average, ten 

to twelve extratropical cyclones occur per year generating surface currents of 1 knot.  

 

Specific conditions experienced in the GOM are listed in Table 1.1. Interpretation of the 

return periods can be done as follows: 

 

1-year: used for concept study conditions. 

5-year: winter storm conditions. 

10-, 50-, and 100-year: hurricane conditions. 

 

 

Table 1.1 – GOM metocean conditions in various return periods. 25

 
Metocean Conditions 1-year 5-year 10-year 50-year 100-year 

Winds, knots 40 62 70 100 112 

Max Height 30 43 50 75 85 

Sig. Height 16 24 28 42 48 Waves, ft 

Period, s 10.3 11.7 12.3 14.3 14.9 

Surface 0.8 1.2 2.5 3.9 4.5 

Submerged 0.2 0.2 0.2 0.5 0.5 Currents, knots 

Subsea 0.2 0.2 0.2 0.2 0.2 
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Fig. 1.7 shows various sea current profiles from worldwide locations. A summary of the 

values from Fig. 1.7 are listed in Table 1.2 along with other locations. 

  

 

 

 
Fig. 1.7 – GOM, West Africa, and Northern Norway metocean conditions. 13

 

 

Table 1.2 – 100-year return period comparison to the GOM. 13, 26

 
Metocean Conditions GOM W. Africa Norway Brazil Atlantic 

Winds, knots 112 49 87 60 78 

Max Height 85 25 100 40 108 
Waves, ft 

Sig. Height 48 12 53 25 60 

Surface 4.5 3 3 2.5 3.5 

Submerged 0.5 -- -- 1.1 -- Currents, knots 

Subsea 0.2 1.1 0.9 -- 1.1 
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2. BACKGROUND 
 

 

In 2002 the Minerals Management Service (MMS) challenged the drilling industry by 

sponsoring a task force to develop a set of guidelines for SBOPs on mobile units 3 as a 

means to standardize practice and reduce accidents. The group consisted of operators, 

service companies, independent contractors, and regulatory agencies; each one with a 

specific contribution to the development of the project. The final version of the 

guidelines was published in 2004.  

 

The study presented here follows the guidelines mentioned above, specifically bearing in 

mind the recommendations on the assessment process. This section covers the objectives 

and contribution of the research and explains the elements considered for the assessment. 

 

 

2.1 Objective of the Study 

 

The objective of this study is to determine the feasibility of installing a slim, high-

pressure drilling riser for SBOP operations in deepwater Gulf of Mexico, by comparing 

the reliability of the drilling riser and overall well control system against the traditional 

low-pressure system. The assessment is done in two parts: first, a qualitative analysis is 

performed based on engineering judgment to provide an initial sense (preliminary 

diagnosis) on how the system behaves and to validate the risk models. 

 

The second part of the study uses the same risk models previously built, but incorporates 

specific failure data from the GOM related to deepwater riser operations and the weather 

conditions experienced from 1999 to 2005. This quantitative analysis is done by 

screening reports filed by the MMS and other worldwide incident database to estimate 

high-pressure riser failures. 
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 2.2 Expected Contribution  

 

This paper should serve as a starting point for drilling companies and regulatory 

agencies to understand the risk of implementing a high-pressure riser for SBOP 

applications in the GOM, given that  it includes specific failure events and conditions of 

the area.  Despite the fact that the risk models are based on generic systems, they are 

flexible enough to be modified and adapted to a specific rig configuration and location. 

 

The assessment also defines critical elements which might fail in the system allowing 

understanding of how each element interacts with one another and what can be modified 

or substituted to lower the overall risk. A relative ranking of the critical elements and 

their potential impact upon the overall system is provided.  

 

 

2.3 System Description 

 

The functional description of the system highlights individual elements to determine the 

reliability of the system. Fig. 2.1 illustrates most of the equipment or parts of deepwater 

operations associated with the riser and pressure control systems used in this study. 

 

The system description is divided into two parts; the first part lists the elements related 

with the drilling riser.  Part two describes the elements associated with the overall 

pressure control system. 
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Fig. 2.1 – Overall deepwater drilling system. 
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2.3.1 Riser System 

 

The description of the drilling riser led to the identification of thirteen general elements 

that affect the reliability of the system.  

 

Boost Lines 

 

Auxiliary lines attached to the riser to increase mud volume and sweep efficiency. 

 

Burst/Collapse 

 

Failure of the structure body of the riser due to internal or external forces applied to it. 

 

Collision 

 

Direct impact on the structure of the riser by an external factor (i.e. work boat, ships, 

another rig) that can interrupt drilling activities.  

 

Connection Leakage 

 

Leaks in the riser connections that can cause failure of the system. 

 

Control System 

 

Failures related to the automated control system that oversees riser operations. 

 

Drillstring Induced Vibration, DIV 

 

Riser wear caused by the rotation of the drillstring in the annulus. 
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Extreme Weather 

 

Metocean conditions that cause the drilling riser to fail, such as winds, currents, waves, 

and hurricanes. 

 

Human Error 

 

Mistakes allocated to the operator when all systems are working properly but a wrong 

decision is made that compromises the drilling activity. 

 

Kill and Choke Lines 

 

Attached lines to the low-pressure riser used to circulate a kick and mud in well control 

operations. 

 

Loss of Position 

 

Refers to the failures in the positioning system attributed to a single or several mooring 

lines or, if the system is dynamically positioned to the servo motors that maintain the rig 

in place.  

 

Loss of Support 

 

Support system in charge of maintaining proper riser load and tension. This failure can 

be attributed to the heave compensator or the top tensioning system. 
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Riser Wear 

 

Failures of the drilling riser due to cumulative long-term problems like corrosion and 

fatigue.  

 

Vortex Induced Vibration, VIV 

 

Vibrations that can cause fatigue stress in the riser attributable to the passage of sea 

currents. 

 

 

2.3.2 Pressure Control System 

 

The pressure control equipment and its main elements are described below. Note that the 

seabed isolating device (SID) shares the same elements as a BOP, but only operates in 

case of an emergency disconnection. 

 

Annular Preventer 

 

BOP stack upper element in charge of sealing the annular space to start well control 

operations. 

 

Control System (BOP and SID) 

 

Failures related to the automated control system that oversees BOP or SID operations. 
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Flex/Ball Joint 

 

Top and bottom connections of the riser that permit its relative movement compared to 

the rig. Since each drilling unit can have a flex or a ball joint, no distinction of failure 

cause was made in this study.  

 

Human Error (BOP and SID) 

 

Mistakes allocated to the operator when all systems are working properly but a wrong 

decision is made that compromises the BOP or SID response. 

 

Hydraulic Connector 

 

Connectors attached to the ends of the riser to join the overall pressure control system; 

such as the lower and upper marine riser packages, the universal connection to the 

wellhead, and any transition joint. 

 

Kill and Choke Control Valves (BOP and SID) 

 

Valves that activate the BOP or SID functions; failures referred to these valves are local. 

 

Pipe Ram (BOP) 

 

BOP elements that can shear, hold, and close the borehole or drillpipe.  

 

Pipe Ram (SID) 

 

SID elements that can shear, hold, and close the borehole or drillpipe. 
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3. RISK MODELS 
 

 

Using the correct tool ensures adequate approach when comparing systems; this section 

outlines the risk assessment process by describing the risk models, fault-tree analysis and 

risk calculations.  

 

 

3.1 Risk Procedure 

 

In order to properly assess the risk in a system, simple but important steps should be 

followed to ensure reliability of the analysis. Fig. 3.1 outlines the general process to 

analyze risks. 27 Detailed information, such as the assumptions and considerations from 

each of the steps followed in the assessment are discussed ahead.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 – Risk assessment process. 
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To evaluate risk in this study, three fault tree models were built to represent each 

configuration (subsea BOP, SBOP, and SBOP with seabed isolating device) based on a 

functional description of the elements in relationship with the overall system. 

 

 

3.2 Fault Tree Analysis 

 

Fault tree analysis (FTA) is a statistical tool that can be used to determine the probability 

of an outcome of a single event based on logical element interaction through a graphical 

representation. The structure of the tree is based on a top event that would be the 

undesired outcome traced back to a series of basic events that can influence the outcome 

of the tree; these basic events are connected to a gate symbol which determines their 

relation to the failure. 28 The most common elements are shown in Fig. 3.2. The event 

symbols describe each element based on their nature and relation to the top event. A 

more detailed description of each element is presented in Appendix B. 

 

 

 

 
Fig. 3.2 – Common FTA elements. 29 
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The cut set of the fault tr  all these basic events 

 

.2.1 Fault Tree Models 

he risk models can be used for either the quantitative or qualitative analysis, given that 

t 

ee is the array of basic event such that if

occur then the top event will happen; becoming a critical set if the path has the minimum

number of elements to occur. 

 

 

3

 

T

their functional structure is the same. An illustration of the trees is shown in Fig. 3.3. 

The complete fault tree models evaluated are shown in Appendix B, which are differen

from the models in this section due to limitations on the number of pages that could be 

used, which forced  to accommodate a large number of basic events in a single page. 

 

 

 

Fig. 3.3 – Simplified overall system fault tree. 
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The top event for the m connected to 

     

ig. 3.4 describes the interaction of the general elements associated with the BOP 

ill 

 

 fault tree was the failure of the overall riser syste

the pressure control equipment. Only important or relevant elements were considered.  

Fig. 3.3 is supported by Figs. 3.4 to 3.8.  

 

F

failures, the SBOP model has all the elements as the subsea system except for the k

and choke lines.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4 – BOP related failures. 
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Fig. 3.5 describes the interaction of the riser elements related to the overall failure of the 

drilling riser. The model is based on failures related to external parameters (Fig. 3.6) and 

failures associated with internal conditions (Fig. 3.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5 – Drilling riser overall related failures. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6 – Drilling riser external elements. 
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Fig. 3.7 – Drilling riser failure. 

 

 

 

Fig. 3.8 describes the internal elements in the riser failure model. The SBOP array does 

not include the boost line element. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8 – Drilling riser internal elements. 
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3.3 Risk  

 

For this study, the term probability will be used to express the chance of an event to 

occur over a period of time; and reliability as “the ability of an item to perform a 

required function under given environmental and operational conditions for a stated 

period of time”. 5

 

A general risk definition can be expressed as “a term which combines the chance that a 

specific hazardous event will occur and the severity of the consequences of the event” 30 

(ISO 13702). Mathematically speaking it can be represented as: 

 

R = f(p,C)……………………………………………3.1 

 

p = probability 

C = Consequence 

 

A graphical interpretation of risk is shown in Fig. 3.9. 

 

 

 

 
Fig. 3.9 – Example of a normal risk distribution. 3
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3.4 CARA Fault Tree  

 

The software used for the risk assessment was the academic version of Cara Fault Tree 

Ver. 4.1. 28 This program is capable of determining the statistical parameters required for 

a detailed evaluation of the reliability of the system. A summary of the theory behind the 

calculations is presented below.  

 

The type of data used for this study is considered to be non-repairable, which is used for 

elements that are not repaired when a failure occurs.  

 

 

3.4.1 Input 

 

The input used for the fault-tree model analysis is the conditional failure intensity (λ(t)), 

which states that “the probability that the element fails per unit of time at time t, given 

that it is in the normal state at time zero and is normal at time t.” 31  

 

The failure intensity and the failure rate are the same when elements are non-repairable. 

 

 

3.4.2 Parameters Calculated 

 

Q0(t) 

 

Q0(t ) is the probability that the overall top event occurs at time t. If the state of each 

element is known at time t, then the state of the top event can also be determined 

regardless of what has happened up to time t.  
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R0(t) 

 

R0(t) is the probability that the top event has not occurred in the time period from 0 to t., 

depending on what has happened in the time interval. When all elements have failure 

data of non-repairable unit category, we have: 

 

)(1)( tQotRo −= ………………………….…………3.2 

 

Mean Time to Failure (MTTF)  

 

MTTF is the mean time to the first occurrence of the top event, by assuming that all 

elements are functioning at time t. The MTTF can be represented by Eq. 3.3, where Ti is 

the time of the first top event to occur.  

 

event  toponeleast at  with runs of o.N

T
MTTF

i
i
∑

= …..3.3 

 

The MTTF can also be expressed as the inverse of the failure rate (Eq. 3.4), when all 

elements have non-repairable data. 

 

λ
1

=MTTF …………………………………………3.4 
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3.4.3 Type of Statistical Analysis 

 

R0(t) Survival Probability 

 

The survival probability is a function of the non-occurrence of the top event, by always 

having that R0(t) < 1 - Q0(t), unless all the inputs from elements are non-repairable in 

which case they are the same. The simulation is performed by a numerical integration 

since in most cases The Monte Carlo Simulation gives inaccurate values for very reliable 

systems. 28

 

The numerical integration model is based on the kinetic tree theory 4 to establish an 

upper bound approximation for Q0(t). By denoting the minimal cut sets k1, k2,...,kk, the 

probability of occurrence for the cut set kj is: 
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Now introduce: 

wi(t) = failure frequency of the i'th element 

wkj(t) = failure frequency of cut set kj

w0(t) = unconditional failure frequency 

 

The system unconditional failure frequency, which expresses the probability that the top 

event occurs per unit of time at time t can now be obtained by: 
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Where the sensitivity of the probability of failure to the probability of failure of the j’th 

element can be approximated to: 
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The system failure rate is defined by: 
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Assuming that the failure rate remains constant through time, we can obtain by 

numerical integration: 
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The above formulas (Eq. 3.5 to 3.11) only apply to very reliable systems, which in most 

cases describe the ideal system conditions or work with generic models. For unreliable 

or real systems, the formulas are inaccurate; therefore the assumptions are not valid and 

stochastic simulation must be considered. 
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Frequency of the top event 

 

The frequency of the top event is the expected number of occurrences the top event has 

over a time period, determined by the probabilities P(X=0), P(X=1), P(X=2) etc., the 

expected value of X is given by: 
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If the times between consecutive occurrences of the top event are exponentially 

distributed (constant failure rate), then the number of failures X, in a unit period of time 

will be a Poisson distribution 5, 28 with parameter χ = 1/E(X) and the distribution of X is 

given by: 
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Probability of the top event  

 

Q0(t) = P………………………………………....…3.14 

 

The probability that the top event occur follows an upper bound approximation, by 

assuming the independence of each input event. The probability that all input events in 

the minimal cut set Kj occur, is: 
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If the cut sets were separate, then they would be stochastically independent and we 

would have: 
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In general, however, the minimal cut sets are not disjointed. In this case it may be shown 

that we always have: 
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Uncertainty Analysis 

 

The uncertainty analysis is used to model uncertainties of the input parameters by a log-

normal distribution (Fig. 3.10). The input for each parameter is their mean value or the 

median m, and an error factor k to express confidence over the value m. If the failure 

rates are estimated from available failure data, then m may be set to the value of some 

point for the true failure rate, and a confidence interval for the failure rate may be used 

to compute k. 
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Fig. 3.10 – Example of log-normal distribution. 
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The uncertainty of Q0(t) is represented by the probability distribution of Q0(t) using a 

Monte Carlo Simulation to approximate the distribution of Q0(t). The simulation 

calculates the event probability Q0(t) by the upper bound approximation, giving a 

random set of values for Q0(t), from which the mean value, the variance and the standard 

deviation of Q0(t) are estimated. To save computational time, the ten input parameters to 

have the largest impact on Q0(t) are taken from the log-normal distribution of the system, 

and the remaining parameters use their mean/median values. The results are then 

presented in a histogram of the frequency distribution (Fig. 3.11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.11 – Example of frequency distribution. 
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4. FAILURE RATES 
 

 

In order to evaluate the risk models, failure rates of each element must be determined to 

be input in the fault tree arrays. Both the qualitative and the quantitative analyses require 

a set of individual values to estimate the overall risk associated. The failure rates for the 

qualitative analysis were estimated using engineering judgment to test the fault trees and 

to understand the interaction of each element with the system. The qualitative failure 

rates were obtained by compiling incidents reported to the MMS in the GOM and other 

worldwide incidents in deepwater to create a generic dataset for this study. The 

development of the database is the most critical task when performing the risk 

assessment, in view of the fact that it determines the credibility of the results.  

 

 

4.1 Qualitative Failure Rates 

 

The failure rate and consequence level of each element was assigned based on 

experiences reported in the literature, and an educated guess to estimate the overall risk 

through     Eq. 3.1. 

 

The use of a risk matrix allows graphical interpretation of what the risk is and its 

location in relationship with the acceptance level. For this study an acceptable risk is 

considered an event that either has a low chance of occurring and high consequence, or 

an event that has a high chance of occurring and a low consequence, as seen in Fig. 3.9. 

Events with a mixed combination are described in the caution zone, and events with high 

probability and high consequence are considered unacceptable. Fig 4.1 shows the risk 

matrix for the qualitative analysis and the acceptance limits for this study. Tables 4.1 

and 4.2 list the failure rate estimates and the calculated risk. 
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Fig. 4.1 – Risk matrix criteria. 

 

 

 

Table 4.1 – Low-pressure riser and subsea BOP qualitative failure frequency. 

 

Riser Element Frequency Consequence Risk 
Boost Lines 1.0E-04 2 2.0E-04 
Burst/Collapse 1.0E-06 4 4.0E-06 
Collision 1.0E-05 2 2.0E-05 
Connection Leakage  1.0E-05 2 2.0E-05 
Control System (riser) 1.0E-05 3 3.0E-05 
DIV 1.0E-04 3 3.0E-04 
Extreme Weather 1.0E-03 3 3.0E-03 
Human Error (riser) 1.0E-03 4 4.0E-03 
Kill & Choke Lines  1.0E-04 2 2.0E-04 
Loss of Position 1.0E-05 3 3.0E-05 
Loss of Support 1.0E-05 3 3.0E-05 
Riser Wear 1.0E-04 4 4.0E-04 
VIV 1.0E-04 3 3.0E-04 
BOP Element    
Annular Preventer 1.0E-05 2 2.0E-05 
Control System (BOP) 1.0E-05 3 3.0E-05 
Flex/Ball Joint 1.0E-06 4 4.0E-06 
Human Error (BOP) 1.0E-03 4 4.0E-03 
Hydraulic Connector  1.0E-05 4 4.0E-05 
Kill & Choke Control Valves 1.0E-05 3 3.0E-05 
Pipe Ram 1.0E-04 2 2.0E-04 
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Table 4.2 – High-pressure riser, SBOP, and SID qualitative failure frequency. 

 

Riser Element Frequency Consequence Risk 
Boost Lines --- --- --- 
Burst/Collapse 1.0E-06 4 4.0E-06 
Collision 1.0E-05 2 2.0E-05 
Connection Leakage 1.0E-05 2 2.0E-05 
Control System (riser) 1.0E-05 3 3.0E-05 
DIV 1.0E-05 3 3.0E-05 
Extreme Weather 1.0E-03 3 3.0E-03 
Human Error (riser) 1.0E-03 4 4.0E-03 
Kill & Choke Lines  --- --- --- 
Loss of Position 1.0E-05 3 3.0E-05 
Loss of Support 1.0E-05 3 3.0E-05 
Riser Wear 1.0E-05 4 4.0E-05 
VIV 1.0E-05 3 3.0E-05 
BOP Element    
Annular Preventer 1.0E-04 2 2.0E-04 
Control System (BOP) 1.0E-05 3 3.0E-05 
Flex/Ball Joint 1.0E-06 4 4.0E-06 
Human Error (BOP) 1.0E-03 4 4.0E-03 
Hydraulic Connector  1.0E-05 4 4.0E-05 
Kill & Choke Control Valves 1.0E-05 2 2.0E-05 
Pipe Ram 1.0E-04 2 2.0E-04 
SID Element    
Control System (SID) 1.00E-05 3 3.0E-05 
Human Error (SID) 1.00E-03 4 4.0E-03 
Kill & Choke Control Valves (SID) 1.00E-05 2 2.0E-05 
Pipe Ram (SID) 1.00E-04 2 2.0E-04 

 

 

4.2 Quantitative Failure Rates 

 

Failure rate calculations for the quantitative analysis were based on the development of a 

specific dataset from incidents related to deepwater riser systems. The complete failure 

set can be found in Appendix C. 

 

In order to determine the failure rate of each element, it is necessary to establish the 

reference base time. For this study the time frame considered is operational MODUs 
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drilling days in deepwater GOM. A summary of the total time all units worked in the 

past years is listed in Table 4.3. 

 

 

Table 4.3 – MODUs drilling days in the GOM. 32

 

Year Drillships Semisubmersibles
1999 18 697 
2000 1666 6654 
2001 2448 8339 
2002 2310 6223 
2003 2276 6206 
2004 2257 4887 

2005* (Aug.) 1025 3686 
   

Total 48,692 
 

 

The element day in service is the product of the MODUs time and the number of times 

each element is run, or used in relationship with the reference time, Eq. 4.1. 

 

MODUelem N x tt = ……………………………………4.1 

 

N = number of times an element is used in relationship with a reference time. 

tMODU = operational MODU time. 

 

Incidents reported to the MMS were used to build a failure database to accommodate for 

the specific conditions and situations that had occurred in the GOM in the past five years 

to estimate the element failure rates. Even though the dataset from the MMS is very 

reliable, there still might be some minor incidents that have not been reported or not 

published to date, thus there is some uncertainty in its reliability. A summary of the 

screening of the incidents reported to the MMS is presented in Table 4.4. In Table 4.5 is 

a list of the main causes of riser related incidents in deepwater GOM. 
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Table 4.4 – Incidents reported to the MMS 1999-2005. 33

 

MMS Database Num. 
Total Incidents 1,254 

Deepwater  139 
DW-Riser Related 15 

 

Table 4.5 – Deepwater GOM riser related incidents. 33

 

Main Cause Num. 
Equipment 7 

Human Error 5 
Weather 3 

 

 

Since SBOP operations have not been yet implemented in the GOM deepwater region, it 

is impossible to estimate the failure rate of the high-pressure riser elements with MMS 

reports. Therefore, other databases were consulted to estimate more precisely the failure 

of slim risers in harsh metocean conditions. The Petroleum Safety Authority Norway 

(PETROLEUMSTILSYNET) keeps track of offshore incidents in its Corrosion and 

Damage Database (CODAM), which is available to the public, and dates from 1975. A 

summary of the riser incidents that CODAM has is listed in Table 4.6. In order to 

incorporate the CODAM failure rates into the models, the riser failure tree had to be 

modified to accommodate for the details of the data. See Fig. 4.2. 

 

 

Table 4.6 – CODAM riser related incidents 1975-2005. 34

 

 Diameter Size 
Type of Failure < 16" > 16" 
Major 30 29 
Minor 88 128 
Insignificant 200 418 
   

Total 893 
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Fig. 4.2 – Modified riser fault tree for CODAM dataset. 

 

 

 

Another database consulted to estimate slim riser failures is the one kept by the United 

Kingdom Health and Safety Executive (HSE) called Pipeline and Riser Loss of 

Containment (PARLOC), which keeps track of pipeline incidents reported in offshore 

areas of the North Sea. A summary of the riser related incidents reported in the 2001 

report is listed in Table 4.7.  Note that this is the latest version available to the public at 

the time of this study. 

 

 

Table 4.7 – PARLOC riser related incidents 2001 report. 35

 

Riser Diameter Time, days Num. Failures 
9 to 16 – in 1,882,670 30 
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To include the PARLOC riser failure rate, the riser fault tree had to be simplified, see 

Fig 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 – Modified riser fault tree for PARLOC dataset. 

 

 

 

To estimate the failure frequency of the SBOP elements, generic values from a study in 

the GOM by SINTEF 8 were used as reference. Despite the fact that the work was done 

in subsea BOPs, the values can be used as a starting point to analyze SBOP behavior 

since there is no change in the elements themselves; only in the number each stack has. 

A summary of the values obtained from the study is listed in Table 4.8.  
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Table 4.8 – SINTEF BOP failure rates. 8

 

BOP Element 
BOP 
Days 

Service 
Days 

Num. 
Failures 

Failure 
Rate 

Annular Preventer  4,009 7,449 12 1.61E-03 
Hydraulic Connector  4,009 8,018 10 1.25E-03 
Flex/Ball Joint  4,009 4,009 1 2.49E-04 
Pipe Ram (Generic) 4,009 16,193 11 6.79E-04 
Kill & Choke Control Valves 4,009 35,419 21 5.93E-04 
Control System (BOP)  4,009 4,009 60 1.50E-02 

 

 

Since the riser failure rates were estimated from locations different from the GOM 

region, it is necessary to combine the data with reports from the MMS to obtain a 

generic dataset valid for the GOM.  The same procedure is used for the SINTEF BOP 

estimates. The combination of data is based on Bayes’ weighed estimation, 30 Eq. 4.2. 

 

genericspecific

genericspecific
weighed tt

NN
+
+

=λ  ………………………...4.2 

 

N = number of occurrences. 

t = observation time. 

 

This estimation is possible by assuming that the failures follow a Poisson distribution 

and the failure rate remains constant, which is the case for non-repairable events. 

 

A summary of the calculated failure rates for both the low-pressure subsea BOP system 

and the high-pressure SBOP is listed in Tables 4.9 to 4.13, including the generic dataset 

created to estimate riser failures. 
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Table 4.9 – Low-pressure riser and BOP quantitative failure rates: MMS. 

 

Riser Element 
MODUs 

Days 
Service 

Days 
Num. 

Failures 
Failure 

Rate 
Boost Line 48,692 97,384 2 2.05E-05 
Burst/Collapse 48,692 48,692 1 2.05E-05 
Collision 48,692 48,692 0 0 
Connection Leakage 48,692 146,076 0 0 
Control System (riser) 48,692 48,692 0 0 
DIV 48,692 48,692 0 0 
Extreme Weather 48,692 48,692 5 1.03E-04 
Human Error (riser) 48,692 48,692 4 8.21E-05 
Kill & Choke Lines  48,692 97,384 0 0 
Loss of Position 48,682 48,682 2 4.11E-05 
Loss of Support 48,692 48,692 0 0 
Riser Wear 48,692 48,692 0 0 
VIV 48,692 48,692 1 2.05E-05 
BOP Element     
Annular Preventer 48,692 97,384 1 1.03E-05 
Control System (BOP) 48,692 48,692 2 4.11E-05 
Flex/Ball Joint 48,692 48,692 0 0 
Human Error (BOP) 48,692 48,692 2 4.11E-05 
Hydraulic Connector  48,692 97,384 0 0 
Kill & Choke Control Valves 48,692 146,076 1 6.85E-06 
Pipe Ram 48,692 194,768 0 0 

 

 

Table 4.10 – High-pressure riser, SBOP, and SID quantitative failure rates: MMS. 

 

Riser Element 
MODUs 

Days 
Service 

Days 
Num. 

Failures 
Failure 
Rate 

Boost Line 48,692 --- --- --- 
Burst/Collapse 48,692 48,692 0 0 
Collision 48,692 48,692 0 0 
Connection Leakage 48,692 146,076 0 0 
Control System (riser) 48,692 48,692 0 0 
DIV 48,692 48,692 0 0 
Extreme Weather 48,692 48,692 5 1.03E-04 
Human Error (riser) 48,692 48,692 0 0 
Kill & Choke lines  48,692 --- --- --- 
Loss of Position 48,682 48,682 0 0 
Loss of Support 48,692 48,692 0 0 
Riser Wear 48,692 48,692 0 0 
VIV 48,692 48,692 0 0 
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Table 4.10 – Continued. 

 
 

BOP Element 
MODUs 

Days 
Service 

Days 
Num. 

Failures 
Failure 

Rate 
Annular Preventer 48,692 48,692 0 0 
Control System (BOP) 48,692 48,692 0 0 
Flex/Ball Joint 48,692 48,692 0 0 
Human Error (BOP) 48,692 48,692 0 0 
Hydraulic Connector  48,692 97,384 0 0 
Kill & Choke Control Valves 48,692 97,384 0 0 
Pipe Ram 48,692 146,076 0 0 
SID Element     
Control System (SID) 48,692 48,692 0 0 
Human Error (SID) 48,692 48,692 0 0 
Kill & Choke Control Valves (SID) 48,692 48,692 0 0 
Pipe Ram (SID) 48,692 97,384 0 0 

 

 

Table 4.11 – Combined CODAM riser failure rates. 

 
Diameter    

< 16" 
Num. 

Failures
Failure 
Rate 

Major 30 7.86E-04 
Minor 88 3.46E-04 
Insignificant 200 1.18E-04 

 

 

Table 4.12 – Combined PARLOC riser failure rates. 

 
Riser 

Diameter 
MODUs 

Days 
CODAM 

Days 
Num. 

Failures
Failure 
Rate 

9 to 16 - in 48,692 1,882,670 30 1.55E-05 
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Table 4.13 – Combined SINTEF BOP failure rates. 

 

BOP Element 
BOP 
Days 

Service 
Days 

Num. 
Failures 

Failure 
Rate 

Annular Preventer  4,009 56,141 12 2.14E-04 
Hydraulic Connector  4,009 105,402 10 9.49E-05 
Flex/Ball Joint  4,009 52,701 1 1.90E-05 
Pipe Ram  4,009 162,269 11 6.78E-05 
Pipe Ram (SID)  --- 113,577 11 9.69E-05 
Kill & Choke Control Valves 4,009 132,803 21 1.58E-04 
Kill & Choke Control Valves (SID) 4,009 132,803 21 1.58E-04 
Control System (BOP)  4,009 52,701 60 1.14E-03 

 

 

4.3 Confidence Limits 

 

In order to set the reliability of the dataset it was necessary to test different confidence 

limits that would serve as boundaries to the range of possible values when performing 

the random sampling of the values (stochastic) because specific values for the region 

were not found for the high-pressure system.  

 

The approximation of the upper and lower confidence limits is based on the use of a Chi-

square distribution, 30 which can estimate values even when there is no recorded failure 

of a particular event, as shown in Eq 4.3 and 4.4. 

 

 

H
N

2
2limit %Lower 

2/αχ
= ………………..………4.3 

 

 

 

H
N

2
22limit %Upper 

2/1 +
=

−αχ
…………………...4.4 
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Where: 

 

N = Number of Fatalities 

H=Total Time 

 

Failure rates estimated from the MMS reports were given a 90% confidence interval; and 

rates calculated from the CODAM and PARLOC datasets were given values of 70%, 

80%, and 90% to perform a sensitivity analysis of their impact on the results. The 

complete dataset with the confidence limits can be found in Appendix D. As a example 

of the graphical representation of the confidence interval Figs. 4.4 and 4.5 show the 

values from Table 4.10 with an 80% confidence limits. 
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5. RESULTS 
 

 

Results from the most significant runs are presented in this section; the rest can be found 

in Appendix D. In both analyses: qualitative and quantitative, the riser system response 

was compared first, and then the entire pressure control array. Every model was tested 

with the same statistical tool and time interval. The testing time was set to guarantee 

complete drilling activity in a single well under any condition. 

 

Two criteria were used to compare the systems:  Ro(t) (probability that the top event 

does not occur) and  failure rate (λ); which estimates the number of failures that will 

occur over a specific time,  and identifies the level of the risk calculated and the MTTF 

through Eq. 3.4.  

 

 

5.1 Qualitative Analysis Results 

 

The qualitative analysis was tested in two time intervals: 1-year (8,760 hours) and 0.5-

year (4,380 hours) of continuous work to observe the risk models behavior through time. 

The results are listed in Tables 5.1 and 5.2. 

 

 

Table 5.1 – Qualitative riser comparison: Monte Carlo simulation.  

 

 
Riser Type 

Ro(t), 
8,760 h 

λ             
# fail/time 

Ro(t), 
4,380 h 

λ             
# fail/time 

Low-pressure 84 % 3.42 x 10-05 87 % 2.74 x 10-05

High-pressure 90 % 2.05 x 10-05 88 % 2.97 x 10-05
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Table 5.2 – Qualitative overall system comparison: Monte Carlo simulation. 

 

 
System Type 

Ro(t), 
8,760 h 

λ             
# fail/time 

Ro(t), 
4,380 h 

λ             
# fail/time 

Subsea BOP 96 % 1.14 x 10-05 96 % 1.26 x 10-05

SBOP 90 % 2.63 x 10-05 88 % 3.08 x 10-05

SBOP + SID 92 % 2.97 x 10-05 98 % 9.13 x 10-06

 

 

The results from this analysis show that the high-pressure riser has a reliability very 

close to that of the conventional system; and its failure rate is located within the 

acceptable risk zone determined from the risk matrix in both time intervals.  

 

When comparing the overall systems, we notice that the addition of the seabed isolating 

device (ISD) increases the reliability of the system; however, it gives the highest failure 

rate, because of the lack of redundancy of the pressure control elements.  

 

The reliability of the surface array without the SID decreases at a lower time interval, 

inferring an error on the assigned frequency or consequence of the elements. For a better 

understanding of the system, a relative critical ranking is listed in Table 5.3, showing 

what elements are more likely to fail in relationship with the influence they have upon 

the overall system reliability (subsea BOP, SBOP, and SBOP with SID).  

 

 

Table 5.3 – Relative critical ranking of elements in qualitative comparison. 

 

Subsea BOP SBOP SBOP + SID 
Rank Element Rank Element Rank Element 
0.87 Human Error (riser) 0.86 Human Error (riser) 0.66 SID Human Error 
0.87 Riser Control 0.75 Flex/Ball Joint 0.66 SID Control 
0.41 Flex/Ball Joint 0.70 Riser Control 0.66 SID Ram 
0.41 Hyd. Connector 0.19 Hyd. Connector 0.23 Hyd. Connector 
0.10 Burst 0.07 Burst 0.23 Human Error (riser) 

    0.23 Riser Control 
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Table 5.3 – Continued. 

 

Subsea BOP SBOP SBOP + SID 
Rank Element Rank Element Rank Element 

    0.03 Burst 
    0.02 Flex/Ball Joint 

 

 

5.2 Quantitative Analysis Results 

 

The qualitative analysis was tested in three time intervals: 1-year (8,760 hours), 0.5-year 

(4,380 hours), and 0.25-year (2,190 hours) of continuous work, to see the influence of 

the different datasets used. The simulations showed no significant difference from the 

confidence interval chosen for the stochastic simulations. Below is the result of the 

intermediate level (80 %). Tables 5.4 to 5.7 summarize the results of the simulations 

with the various datasets (MMS, CODAM, and PARLOC) and the methods used. 

 

 

Table 5.4 – Quantitative dataset effect on riser: Monte Carlo simulation. 

 

 
Riser Type 

Ro(t), 
8,760 h 

λ          
# fail/time 

Ro(t), 
4,380 h 

λ           
# fail/time 

Ro(t), 
2,190 h 

λ           
# fail/time 

LP (MMS) 90 % 2.05 x 10-05 95 % 2.28 x 10-05 99 % 9.13 x 10-05

HP (CODAM) 30 % 1.14 x 10-04 48 % 1.99 x 10-04 71 % 2.79 x 10-04

HP (PARLOC) 91 % 1.87 x 10-05 98 % 1.14 x 10-05 98 % 1.37 x 10-05

 

 

Table 5.5 – Quantitative dataset effect on riser: Numerical Integration. 

 

 
Riser Type 

Ro(t), 
8,760 h 

λ          
# fail/time 

Ro(t), 
4,380 h 

λ           
# fail/time 

Ro(t), 
2,190 h 

λ           
# fail/time 

LP (MMS) 78 % 7.28 x 10-05 87 % 8.54 x 10-05 93 % 9.33 x 10-05

HP (CODAM) 44 % 1.12 x 10-04 63 % 1.95 x 10-04 81 % 2.58 x 10-04

HP (PARLOC) 95 % 1.45 x 10-05 98 % 1.50 x 10-05 99 % 1.52 x 10-05
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Table 5.6 – Quantitative dataset effect on overall system: Monte Carlo simulation. 

 

 
System Type 

Ro(t), 
8,760 h 

λ           
# fail/time 

Ro(t), 
4,380 h 

λ          
# fail/time 

Ro(t), 
2,190 h 

λ           
# fail/time 

Subsea BOP (MMS) 100 % --- 100 % --- 100 % --- 
SBOP (MMS) --- --- --- --- --- --- 
SBOP (CODAM) 67 % 7.53 x 10-05 89 % 6.39 x 10-05 97 % 5.94 x 10-04

SBOP (PARLOC) 92 % 2.63 x 10-05 98 % 1.60 x 10-05 99 % 4.57 x 10-06

SBOP + SID (SINTEF) 76 % 5.82 x 10-05 92 % 5.02 x 10-05 99 % 2.74 x 10-05

SBOP + SID (CODAM) 60 % 9.42 x 10-05 83 % 9.82 x 10-05 94 % 7.76 x 10-05

SBOP + SID (PARLOC) 79 % 6.39 x 10-05 90 % 5.02 x 10-05 99 % 1.83 x 10-05

 

 

Table 5.7 – Quantitative dataset effect on overall system: Numerical Integration. 

 

 
System Type 

Ro(t), 
8,760 h 

λ           
# fail/time 

Ro(t), 
4,380 h 

λ          
# fail/time 

Ro(t), 
2,190 h 

λ           
# fail/time 

Subsea BOP (MMS) 89 % 3.81 x 10-05 94 % 3.98 x 10-05 97 % 4.07 x 10-05

SBOP (MMS) 77 % 8.11 x 10-05 86 % 9.50 x 10-05 92 % 1.03 x 10-04

SBOP (CODAM) 71 % 9.88 x 10-05 87 % 1.03 x 10-04 97 % 6.87 x 10-05

SBOP (PARLOC) 94 % 3.37 x 10-05 99 % 1.46 x 10-05 99 % 5.27 x 10-06

SBOP + SID (SINTEF) 56 % 3.53 x 10-04 77 % 2.31 x 10-04 89 % 1.82 x 10-04

SBOP + SID (CODAM) 58 % 2.89 x 10-04 80 % 1.92 x 10-04 93 % 1.35 x 10-04

SBOP + SID (PARLOC) 70 % 1.60 x 10-04 88 % 1.20 x 10-04 97 % 7.70 x 10-05

 

 

The results obtained after stochastic and numerical method analysis showed that the type 

of dataset used influences greatly the outcome of the analysis of the SBOP system. It 

must be pointed out that all the surface preventer models used the SINTEF BOP 

reliability data, to evaluate only the behavior related to the drilling riser failures, and stay 

focused on the objective of the study.  

 

The CODAM dataset gave a pessimistic result, unlike the PARLOC dataset, whose 

results were optimistic. Although neither of the results   might be correct, they can 

provide a range for the actual value of reliability. The failure rates from each dataset 

were located within the acceptance or caution zone when estimating the impact from the 
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risk matrix used for the qualitative analysis. An important observation is that both the 

CODAM and PARLOC datasets have recorded failures from areas different from the 

GOM, and not all of the incidents are guaranteed to be from high-pressure systems. 

 

The critical elements for the subsea system were the same as in the qualitative analysis. 

In the case of the SBOPs, they differed depending on the type of dataset used. Table 5.8 

shows the relative ranking of the critical elements for the SBOP system. 

 

 

Table 5.8 – Relative critical ranking of elements in quantitative comparison. 

 

SBOP CODAM SBOP + SID CODAM SBOP + SID PARLOC 
Rank Element Rank Element Rank Element 
0.75 Riser Failure 0.99 Riser Failure 0.55 Hyd. Connector 
0.42 Hyd. Connector 0.76 Hyd. Connector 0.45 Insignificant Riser Failure 
0.20 Annular Preventer 0.11 Flex/Ball Joint 0.45 Minor Riser Failure 
0.20 BOP K&C Valves   0.21 Major Riser Failure 
0.17 Ram Preventer   0.06 Flex/Ball Joint 
0.05 Flex/Ball Joint     

 

 

Variations on the ranking of the elements for the SBOPs configuration are the 

consequence of the modifications made to the riser fault trees to accommodate the 

description of each dataset, making some systems more critical than what they would 

normally be. 
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6. DISCUSSION AND CONCLUSIONS 
 

 

No one can predict how the metocean conditions in the GOM will change in the years 

ahead; like the past 2005 hurricane season, which had an unusual number of storms 

which left severe damages on the oil and gas industries operating in the gulf. This 

unexpected weather pattern has led operators and contractors to question the minimum 

conditions and regulations floating units should comply with.  Current API standards36 

suggest the design conditions to be from 5 to 10-years for MODUS and 100-years for 

fixed platforms. Fig. 6.1 shows the statistics from the past three major hurricanes that hit 

the GOM region and the damages they caused to the units operating in it. 

 

 

 

 

 

 

 

 

 

 

Fig. 6.1 – Past major hurricanes in the GOM. 37

 

 

Currently, the MMS is revising code standards and regulations on MODUS, 38 by 

sponsoring joint projects from operators, contractors, and universities to understand new 

working environments and conditions in the GOM, to reduce incidents and casualties.  
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An important point to mention is that SBOP applications do not solve the entire drilling 

problems encountered in deepwater environments, because the slim high-pressure riser 

system has its own limitations, such as: the number of casing strings that could be set 

after the installation of the drilling riser, the reduction of the operating envelope (Fig. 

6.2), and the initial investment and time spent to bring the rig up to specifications. SBOP 

technology benefits from other applications like the use of expandable tubulars, and 

dual-gradient drilling; whose combination can increase their acceptance in the drilling 

industry. Old generation rigs would be the ones to benefit the most from this technology 

for the expansion of their operating field environment and active life. 

 

 

Fig. 6.2 – Operating envelope example for SBOP applications. 3

 

 

 

A comparison between moored vs. dynamically positioned systems was performed to 

see which station keeping alternative was more reliable and what failures are associated 

with each one. Lack of reported incidents did not allow the evaluation of the system 
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model. Another limitation on this analysis was that the dataset used to calculate 

operational time in the GOM could only distinguish the type of rig used and not its 

positioning system, an important requirement when estimating the failure rate of each 

component. 

 

Out of the fifteen incidents associated with drilling risers in deepwater GOM, eleven rigs 

had a dynamically positioning system and the other four were moored. This comparison 

is not enough to conclude which system is better, since factors like: water depth, 

location, and seasonal time can influence the outcome despite the positioning system 

used.  

 

The following findings may be useful in understanding the results of this study. 

 

• The qualitative analysis was conclusive in determining the risk of SBOP 

operations when comparing these operations to the conventional system with the 

specific metocean conditions encountered in the GOM, which showed acceptable 

values. 

• Addition of the SID improved the system reliability and maintained a failure rate 

within the acceptance risk envelope independently from the type of dataset used; 

thus it should be considered for deepwater operations in the GOM. 

 

• This evaluation was done with a generic description of the drilling riser 

components and the pressure control equipment, thus it serves as a starting point 

for operators and contractors when planning the use of SBOPs in the GOM.  
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6.1 Conclusions 

 

From the work presented in this study we can conclude the following: 

 

1. Preliminary analysis of the simulations suggests that the risk of failure of the 

entire system can be acceptable and operations can be carried out safely. 

 

2. A risk assessment can aid understand the high-pressure riser system through the 

identification of the critical components and their interaction with the overall 

pressure control equipment. 

 

3. Specific location and equipment planned to be used can drastically change the 

outcome of the overall risk analysis, since some areas are more susceptible than 

others to be hit by harsh metocean conditions. 

 

4. Results from the quantitative interpretation have a degree of uncertainty on their 

reliability, because of the nature of the dataset used. However, the work done 

allows the setting of upper and lower boundaries to understand the system 

behavior.  

 

 

6.2 Suggested Future Work 

 

Only primary failures from each component were taken into consideration for this study, 

because the purpose was to have a preliminary assessment on whether it would be 

positive or not to implement a high-pressure riser. Future work should include secondary 

and tertiary failures to take into account chain events and their consequences. 
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The riser system and pressure control equipment models were simplified into their main 

components; a more detailed analysis can be performed during the evaluation of a 

particular arrangement to determine the specific risk of the system. 

 

A similar study could be performed to evaluate the risk of installing a high-pressure riser 

and an SBOP in fixed deepwater production units like spars and tension leg platforms as 

an alternative for well control measurements. 

 

Awareness should be brought to the MMS regarding data quality to better assess risk 

analyses, since reported failures do not include a consequence level. 
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NOMENCLATURE 
 

 

API   American Petroleum Institute 

BOP   Blowout Preventer 

C   Consequence 

CODAM  Corrosion and Damage 

DPS   Dynamically Positioning System 

DW   Deepwater 

FTA   Fault Tree Analysis 

GOM   Gulf of Mexico 

H   Total time 

HP   High Pressure 

HSE   Health and Safety Executive 

LCE   Loop Current Eddies 

MMS   Minerals Management Service 

MTTF   Mean Time to First Failure 

N   Number of failures 

p   Probability  

PARLOC  Pipeline and Riser Loss of Containment 

Qo(t)   Probability that the top event occurs 

R   Risk 

Ro(t)   Probability that the top event does not occur 

SBOP   Surface Blowout Preventer 

SID   Seabed Isolation Device 

SINTEF Foundation for Scientific and Industrial Research at the 

Norwegian Institute of Technology 

t time 

VIV   Vortex Induced Vibration 
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wi(t)   Failure frequency of the i’th component 

wKj(t)    Failure frequency of cut set Kj

wo(t)   System failure frequency 

λ(t)   Failure rate, failures/time 

χ   Chi-square function 
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APPENDIX A 

BOP MANUFACTURERS 
 

 

The main BOP system manufacturers are: Cameron, Hydril, and Shaffer39 (Fig. A.1). 

Because of their individual experience and range of products for every specific need, 

these three companies control a great part of the current worldwide market, SBOPs 

commonly use land or Jack-Up type components, but they can also incorporate parts 

from a subsea stack; thus no specialized designs or parts have been made by the top 

manufacturers.  

 

The stack design varies from application to application and drilling company, depending 

on the available equipment and the specific pressure requirements to safely maintain 

control of a well. Some of the latest models from each company are detailed below. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A.1 – BOP manufacturers worldwide. 39
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A.1 Cameron 

 

Cameron offers a variety of rams for subsea applications which can be adapted to 

SBOPs scenarios. Their high-pressure system (15,000 psi) is available in sizes up to 13 

5/8-in, and the low-pressure system can be up to 26-in size. Some of the products offered 

are U- and UM-type rams (Fig. A.2), the T and TL series which come in a single, 

double, or triple layout (Fig. A.3), and the DL annular preventer. 

 

The U ram is the most used preventer worldwide 40 for both land and offshore 

applications, due to its versatility in size and pressure ratings. This ram is capable of 

withstanding pressures during hydraulic losses by sealing its system. The UM is a 

lightweight version designed for easy maintenance and long life. 

 

 

 
Fig. A.2 –Cameron’s U and UM ram preventers. 40

 

 

The T and TL series allow removal and maintenance through side access, reducing stack 

height and cutting rig time. The stacks come in a modular form for flexible arrangement 

and configuration, in sizes up to 18 3/4-in and working pressures of 15,000 psi. 
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Fig. A.3 – Cameron TL ram preventer. 40

 

 

The DL annular preventer (Fig. A.4) is a high performance compact size preventer 

capable of working at pressures of up to 20,000 psi, and ranges from 7 to 21–in 

diameter. It is designed to operate in sour environments and has the ability to strip pipe, 

and to close and seal almost any size or shape of object located in the wellbore.  

 

 

 
 Fig. A.4 – Cameron DL annular preventer. 40
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A.2 Hydril 

 

Hydril is known for its line of annular preventers, manufactured in the GX and GLseries 

(Fig. A.5). All of them are capable of withstanding working pressures of up to 15,000 

psi and can close on a drillpipe or an open hole. Most of Hydrill’s  preventers can be 

installed in either a subsea or surface stack. The MSP/SVX series combines BOP and 

diverter functions with working pressures ranging from 500 to 2,000 psi, and sizes from 

12 1/4 to 30-in.  

 

 

 
 

Fig. A.5 – Hydril GX and GK annular preventers. 41

 

 

The Hydril dual compact ram series maintains the performance of larger stacks with a 

reduction on height, as illustrated in Fig. A.6. 
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Fig. A.6 – Hydril compact ram preventer series. 41

 

 

A.3 Shaffer 

 

Shaffer currently offers three basic models of ram preventers: the NXT, the SL/SLX, and 

the LWS series, with variations in each series depending on the size and pressure 

requirements. The NXT series (Fig. A.7) is designed for tough and demanding tasks 

making it a great candidate for high-pressure applications. The SL/SLX series is 

designed for critical services, and the LWS series is used for smaller boreholes. Most of 

the rams can be installed in either land or offshore applications. 

 

 

 

 

 

 

 

 

 

Fig. A.7 – Shaffer NXT high-pressure ram series. 42
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APPENDIX B 

FAULT TREES MODELS 
 

 

Common fault tree symbols are described in Fig.B-1. 

 

Fig. B.1 – Fault tree symbol description. 7 

 

The fault trees used in this study are presented as they were input to software. 
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Fig. B.4a– PARLOC SBOP fault tree model. 
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 Fig. B.4b– PARLOC SBOP fault tree model. 

 

 
Fig. B.4c– PARLOC SBOP fault tree model. 
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Fig. A.4c– PARLOC SBOP fault tree model. 

Fi
g.

 B
.5

a–
 C

O
D

A
M

 S
B

O
P 

fa
ul

t t
re

e 



 80

 
Fig. B.5b– CODAM SBOP fault tree model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. B.5c– CODAM SBOP fault tree model.
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Fig. A.5c– CODAM SBOP fault tree model. 
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Fig. B.6b– SBOP + SID fault tree model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. B.6c– SBOP + SID fault tree model. 
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 Fig. B.7b– PARLOC SBOP + SID fault tree model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. B.7c– PARLOC SBOP + SID fault tree model. 
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Fig. B.8b– CODAM SBOP + SID fault tree model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. B.8c– CODAM SBOP + SID fault tree model. 
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Fig. B.8e– CODAM SBOP + SID fault tree model.  
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APPENDIX C 

MMS GOM DEEPWATER INCIDENTS: 1999 TO 2005 
 

 

In the attached files there is an Excel spreadsheet named “Appendix-C.xls”. The file 

contains the dataset assembly made to screen the deepwater incidents reported to the 

MMS from 1999 to 2005, and has sorted the incidents related to the drilling riser. 
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APPENDIX D 

QUALITATIVE FAILURE RATES AND RESULTS 
 

 

In the attached files there is an Excel spreadsheet named “Appendix-D.xls”. The file 

contains the calculations of the failure rate for each component along with the 

confidence level estimates. 

 

Additionally, the results from all the simulation runs for the qualitative analysis are 

included with the different datasets assembled.  
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