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The purpose of this research is to understand language acquisitiom.
There has been a great deal of research on first language acquisition in
children, second language learning by adults, and learning of artificial
languages by laboratory subjecté. The principle goal of this research is
not gecting more experimental evidence. Rather it is td develop a working
computrer simulation model that can learn natural languages. The model
would attempt to explain the already available set of experimental facts.

It is also hoped that such a model would be a contribution to tHe artificial
intelligence goal of developing language understanding systems.

Some of the detailed plans of the research are described in the
accompanying grant proposal that was awarded by NIMd (grant number 1 RO 1
MH26383~01). The period of this award is May 1, 1975 to May 1, 1977. That
proposal states an intention to use Augmented Transition Networks as the
basic grammatical formalism. I have already completed some initial learning
programs using the augmented transition network formalism. The very earliest
of this work is describéd in the NIMH proposal. More recently I have decided
to try to develop a production system formalism asAan alternate to the

augmented transition network. There are three main reasons for this switch
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in representational formalism. First, I think it is easier to represent
the grammatical knowledge contained in highly inflected languages (eg.,
Finniéh, Latin) by production systems rather than augmented transition
networks. Second, T think it is easier to represent human information
processing limitations in terms of production systems, Third, I think
production systems serve as a ﬁeans‘of representing non-linguistic proced-
ures such as inference-making. Thefefore, a theory of ipduction of pro-
duction systems for language has the promise of generalizing to the induc;
tion of other human cognitive skills.

I have been using the SUMEX facility in a pilot project this
summer. 1 have been bringing up a2 version of my production system called
ACT on this facility. It is hoped that in a few months this program will

be in a sufficiently developed form that other SUMEX users may use that

t—

production systen. t uses an associative network representation as its
basic datz base, This is a variant of the HAM propositional network that

I developed earlier and is described in the accomﬁanying proposal (p. 23 -
27). 1In the ACT system various portions of the network are active at any
point.of time. The productions look for patterns of activation in the net-
work, If these patterns exist, the productions are executed causing exter-
nal actions to be taken, building network structure, and possibly changing
the state of activation of the network, Activation spreads associatively
through the network and thefé is also a dampening process which deactivates
network structure. A preliminary description of the ACT system is given

in the accompanying document "An Overview of ACT.” It is a chapter from a

forthcoming book. The most relevant section in that chapter is from pages

11 to 25.
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It was originally projected that this simulation work would

o
L

performed on the Michigan Computer System. However, there are a number
advantages of the SUMEX-ALM facility. All the programming will occur
in LISP. The INTERLISP system in SUMEX, as surmised from my own experi-
entation, permits programming and debugging t© progress at least twice
as fast as with Michigan LISP. Also programs in INTERLIS? Qould be more
available to other A.L. users than programs in Michigan LISP. The Michigan
computer is isolated from the national A.I. community whereas I can take
advantage of the connections SOMEX-AIM has through the TYMNET and the
ARPANET. Finally, the éUMEX—AIM facility provides free éomputing resources
and so will relieve some of the-strain fron my tight resesarch budget.

1t is intended that there will be continued development and
testing of this prqduction system formalism as a model of human information
processing. There are plans to build substantial ACT production system

models for language generation and understanding.and for inference making.



C.3.

C.4.

C.5.

Responsas to SUMEX-ATIM Questionnaire

Read the accompanying proposal.

The research is currently supported by a grant from NIMH (grant
number 1 RO 1L MH 26383-01) for the period May 1, 1975 to May 1,
1977. The amount of the award for the first year is $20,000,
This is to pay for a programmer, computer time, and rental of a
terminal.

Read the accomparmying proposal.

It 1s expacted that this research will have some general contribution

to make to development of language understanding systems, modeling
human cognitive processes, and development of production systems.

None

There should be no difficulty in making my programs generalfy/
available to users of SUMEX-ATM. '

Yes
Yes
Read next to last paragraph in accompanying proposal.

The INTERLISP language on SUMEX is the principle requirement of my
research. I do not anticipate requiring any additional systems
programs not already available at SUMEX.

Estimated requirements per month:

100 connect hours
2 CPU hours e 7
R S
1500 file pages Lw}‘ 1 “? 5
s W
The principle times of use in Ann Arbor would probably be 0600-0900
and 1800-2100

1 intend to cowmunicate with SUMEX via the TYMNET. I would either
use the private node in Ann Arbor or the public node in Detroit.
The toll cost to Detroit could be met from my current grant as
could the cost of terminal rental.

Not really relevant
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Special Note
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I am in the second year of an exchange visitor's visa. I can renew

the visa for another year. My wife, an American citizen, is currently petitioning

to have my status changed to that of a permanent resident. Therefore, 1 )
will be able to be at the University of Michigan for the entire period of the
proposed research.



COPUTIR SDMUULATION OF LANGUAGE ACQUISITION

Most sicply stated, the purpose of this ressarch is to undersiend language
scquisition, There has been a great deal of research on first lenguage acqui-
sition in children, second language learning by adults, and learning of erti.-
ficial longuages by laboratory subjects. Tais research ic not principall:
concernad with getting more experimental evidence., ZRaiher it Is concerned with
developing an infTormation-processing modal thet can be usad to expizain the
already available sebt of experimental f&:ts. One of the orincipal concerns
governing trhe design of this model is just that it be zble to leera a natural
language. I will show that this, in itself, is a very significent goal.

or with. 2 set of 2

tool tc Zfzvelopn on

computer simuiatio gua cguis i =d LAS

(en acreonym for Languags Ac quls¢t101 §ystem) Most of the proposed budget is

concernad with supportin ”mfhe development of this program, Input to LAS con-

sists of sentences of the lenguage pairsd with repressntations of their
meaning. Therefore, it simulates langusge learning in siiuetions where a

learner cen figure out the meening of the sentence from conte"u. The simplest
case of such & situation would be one in which the learner is presented with
simple pictures end sentences describing them. The progranm counsiructs a
gramrar which allows it to go from sentences to representaticns ol their under-
lying meaning. The gramrar can also be used to generate sentences to convey
meanings. It is also heped that this program will meke a contribution to the
evolution of computer language understending systems. Thus, the researc
really has two purposes, onein‘psycnology and one in artificial intelligence,

I became interested in language acquisition as a conseguence of my WOrk
with & computer simulation model of human memory. This progrem is described
in a book by myself and Gordon Bower entitled H 1 The

iz

on-ansvaring. The
£ the nwzen fact-
expericants., A

c
computer progrem was an attempt to simulate sim: le cuesti
principal purpose of that research was to develo op &a 1
retrizvel system {called HAM) and test it in a seri
version of HAM is used within LAS. HAM's systex 1

understander waich was capable. of dealing with a res
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subset of English and which was capable of using memory to disambiguate and
to resolve reference. [Hevertheless, it was relsd inel Prlhlb‘f’ in its capa-
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hilities compared to the work of Schank (1873); Winograd (1972); or Woods {1970).
As o resulld of vy own experiences and sbudying the more sophisticated systens,
I became pessimistic about the value of representing humen languoge understand-
ing in terms of o computer program. To rapreseant the unbounded linguistic coa-
petence of the humen would seem to require alzost unlimited recms of computer
prozran, Rather, I decided that the only compact way to characteriz ne
lvqgulstlc competance of the human was to characterize the language acquisiZLou
era

ed the coapetence.

Outline of Provosal

marily with developing a systen
logically adegquate for language acquisition and only secondarily with e syste
that simuleted actual human performance. I do not think the latter is a real-
istic goal until we have a characterization of the sort of algorithms that are
adequate for natural language acquisition. Tnis emphasis on logical adequacy
is clear in the organization of the proposzl. I will first review the work
that has been done on computer language understanding. This is importent be-
ceuse LAS is a language understander as well as a learner. Then I will review
the formal results on grammar induction. Thnen LAS.1 will be descrited. LASI1
is a first pass rsion of the IAS progrzo adaguate to learn simple languages,
Then I will propose an extensive set of developzments to be added to the program,
eimed both et increasing its linguistic powers and making it a realistic sinu-
lation. In describing LAS.1 and the proposed extensicns, I will review reles-
vant research in the child language litersturs. Finally, I will propose a
series of experiments with artificial languages to check snec1f1c claims LAS
maxes about language learnapilityv.

b

The concern in this proposal will be pr
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V.

2. Computer uaﬂguage Understanding

Computers have been applied to natural language processing for 25 years,
There has been & succession of major reconcentuzlizations of the problem of
language understanding, each of which constitutes a clear advance over the
previous conceptions. However, any realistic assessment would concede that

we are very far from & general language understanding system of human capabdility.
The ergument has been advanced that there are fundamentel obstacles that will
prevent this goal from ever being realized (Dreyfus, 1972). These arguzents
ere shamefully imprecise and lacking in rigor. The best (e.g., Bar-Hillel,

1962) has to do with the extreme open-endednsss of language, that en effectively
unbounded varisty of knowledge is relevant to the understanding process. it is
boldly esserted, without proof, that it is not possible to provide the computer
with the requisite background knowledge.

In reviewing the vork on natural languzge systems, I will constantly
measure them with respect to the goal of general language understanding. I
appreciate that it i1s a legitimate artificizl intelligence goal to develop
a lenguage system for some special purpose application. BSuch atiempts are free
from the Dreyfus end Bar-Hillel criticisms. However, from eny psycnological
point of view these systems are interesting onliy as they advance our under-
standing of how lenguage is understood in general.



Hachine Traansletion
The first intensive applicat conce
with traanslation. Comzared to th , this
effort turn2d out to ba & dismal 1965
19866}, Today, it is fashionable then-c
impoverished conception of languags g 7 , 1973).
early attemphts took the form of subs u o 1 S across
This was augmented by use of surface structure and word zsscciaticns bvut ab no
point was the word abzndonad as the principal unit of m=zning. Rece=nt work
on lanzuage understanding (e.g., Schank, 1972; Winograd, 1973) has ebandon=d
the word s taz unit of meaning. It remains to be seen Whether curreni attempls
(e.g., Wilks, 1973) =t machine trenslation have better success.
Interactive Systens
The now popular task domain for applications of compuler§to languags is
in constructing systems that can interact with the usesr in nis oWn language,
Question- smaﬂing svsters are the most common; the user can ianterrogate the
dz its d owledge, Such systenms
v elr design--their
{ ce system. 1ne task
ranslate it into a
input is something
o zan internal repre
stion. iv will b
n

1

e on of the data base for the answer. Tne ipference
s critical in swering of gquesticns sincs many ansver will not
ectly stored but 111 have to be 1n&erre’ rom wnat is 1

parsing and inferencing rua into time problemns.
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The central time problem in parsing hes to do with the exirerme syntactic
end lexical ambiguity of natural language. Each word in 2 sentencs adnits of

n syntactic and sexantic interpretations where m on the average wey be as high
eas 10. If there ars n words, mi interpretations nust be considered elthough

only one is intended. Tha fect that langurage is so amplguous was surprising

Oy 9 S

discovery of the early machine attempis at parsing (e.z., Xuno, 1G¢ 5}). Taus,
there is exponential growth in processing time with sentence len ngtn. %o date,
no heuristics have been demonstrated tnat change in general this exponentia
Tunction of sentence length %o something closer to e linear function The

[rap

T
huzen can use general context to reduce ambiguity to something apa*oxl_at ing

the linear relation.

There is elso an exponential growth factor in the task of inference maXing.
Suppose there are r facts in the data base and the desired daduction 15 n steps
long. Then, there is something like mh possible combinations of Izcts to achieve
the desired decduction. This suggests that very deep inferencing (i.e., high n)
is @ifficult to acnieve and this is certainly true of our every-day reasoning.
However, it elso sug;ests that inference making should pecoms more difficult as
we know mora facts {i.e., high E) which is cleerly not the case. The provlen
fecing inference systems is to select only thoses fects that are relevant.

10



Regolution tnesren-proving (Robinson 1965} is +the most studied of the mechzni-
cal inference systems. It is also here that the mosi careful work has bean done
on heuristics for selecting fects frowm the data base. These methods include
semantic resolution (Slagle, 1965), lock resolution (Boyer, 1971), and linear
resolution {(Loveland, 1970; and Luckhan, 1670). In prazctical applications these
heuristics have served to considerably reduce the growth in computatiocn time.
However, ths dzmonstrations of the optimality of these heuristics ars tash~
speciilc. There are no gensral theorems sbout thelr ophimaiity. I suspect that
they do not in general deal effectively with the problems of exponential growth.

Althouzgn there are potentially sericus time problems both in parsing and
inferencing, thess problems have not surfaced in the past progrems as one might
have expectei. This is becauss these prograrms have all been rather narrowly
constrained, Thnesir language systems only neead to deal with & srall portion of
possible syntactic constructions znd possible word meanings. Also, because of

£

cbi
restrictions in the dozmain of discourse, only a restricted set o

are needead.

Sono o’ the interactive systems (ELIZA - Weizenbaum, 1966; PERRY - Colby &
s Y
o} riocus effort to édo a complete job of sentzance analysis.

Only s :icie;, analysiz was performed $0 permit sucecess in narrowly circum-
scribed tzsk domains, Sentences were generated by filling in pre-prograczed
frames with variable words. The awbition in programs like Colby's or Weisen-
baun's was o creats the anpearance of unde r-uandvng Weisanbaun's program
ci ST = n psycnotnerapist and Colby's & paranola patient.
VWh = errors of language understanding it was difficult
fo e possibility that these might Just be manifeste-

i ties of the simulations.

Other attempts made more serious efforts at language understanding. They
avoided tha time oroolens inherent in parsing and inferencing by dealing with
restricted task domains. Slagle's DEDUCOM (1965) deelt with simple set inclu-
sion problens; Green, Wolr, Chomsky & Lauonery (1963) with baseball questions;
Lindszy (1963) with kinship terms; KelLO%g (1968) with data management systems;
Woods (1963) with airlins schedules; Woods (1973) with lunar geology; Bobrow
{(156%) ana Charniak (19569 ) with word arithmetic problems; Fikes, Hart & liilsson
{1972) with a2 robot world:; Winograd (1973) with a blocks world. Other systems

like Green and Raphael (lj68), Coles (1949), Schank (1972), Schwarcz, Berger,
and Sirzmons {1969), fnderson and Bower (1973), Rumelhart, Lindsey end Norman
(1972), and Guillian (1969) have not been especially designed for specific task
domains but nonetheless succeed only because they worked with sericusly limited
dets bases and restricted classes of English input. Because the parser deals
with only certain word senses and certain syntactic structures lingulstic am-
biguity is much reduced. Those programs that use general inference procedures
like resolution thecrem proving are notably inefficient even with restricted
ata bases. Winograd made extensive use of the fazcilities in PLANIER for
directing inferencing with specific heuristic infocrmation. The validity of
these heuristics depended criticelly on the constraints in the task domain.

11
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;inonqu (1973) has combinad

% b‘w good task analyses, programming ski
powars of ranced progremming languzges to creaste the bdest exhant la:
standing sybten I have heerd it seriously claizsd that the Winograd
could we extended to beccze a general model of languszze understonding
is need=d would be to program in all the knowladge of =n adult 2nd ex
parsing rules to the point where they handied all Engliish senteaces.
ly, thiz would be a big task requiring hundreds of man-years ol wWorx,
is argued, no greater than the work that goes into writing big oparat
systems, Clearly, this eargument is faulty if only because it doszs no
the time problems in general infersacing and general tarsing. IlHoweve
21lso unclear whether human languegze understanding can o2 capturad in

rogran. Further, it is dublous vhether it is manageadle to do the b
hat is necessary to assure that all the specific plecess of knowledge
properly integrated and interact in the intendad ways. Our linguisti
tence is not a fixed object. This is clear over itne period of years
learn new grammatlcal styles, new words, and nev Ways or thinking. I
is also true over short spans of time. That is, the way humans deal wi
tine problems therent in parsing and inferencing is to adjust the pa
nfe

reacing according to context.

Language Acguisition as the Road to General Languege Understanding

The preceding remarks were meant to suggest how an adaplive language
system mignt orovide ths solution to the fundamental troblems 1n general
lanzuage understanding., Rather than defining and hand-programaing 211 the
reguisite xnowledge, wny not let the languags understanding systex discover
thot lnovlelss end wrugrad ibseill  clne Lar"uage acgquisition system is a

acnenized bookkeeping system for integrating =11 the knowledge required for
language understanding. 3By its very nature it treats linguistic knowledge es

s
& constantly chonging object. So we know it would change with a changing
linguistic cozmmunity. We might hope that it could adapt over short periods
(1ike hours) to its current context.

Learning systems are frequently regarded as the universal panacea for
all thet ails aritificial intelligence. Therefore, one should be rightfully
suspicious whether LAS will provide e viable route to the creation of a
general language understanding system. Certainly, the initial version of
LAS falls far short of the dessired goal. However, with our current state of
knowledge it is just not possible to evaluate LAS's pretensions as an eventuzl
language understanding system., It is only by systematic exploration and
developnent of LAS that we ever will be able to determine the visbility of
the learning approach,

Whatever the potential of the learning approach in artificizal intelligence,
clearly it is the only viable psychological means of characterizing human lin-
guistic knowledge. It would be senseless to provide z cetzlog of all the knov-
ledge used in language wnderstanding. A catalog of everything is a science of
nothing {a quote from T. Eever). Rather, we nust characterize the mechonism
that creates that knowledge and how that mechanism interacts with experience.

12
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elgorithm for inducing grammar. That is to say, some descriptions of gramn
inowledge are computationally easier to induce than others, even thougn tha
two formalisms may be equivalent with respect to the lznguage they describe.
Third, we want the forma lis; to be clossd with r zct to thc aaadeulO it

raXes about the interpretative system thai uses

understanding. This is because that interpretative ystem is uakan as innaue.
Thus, it is not possible to induce new programs for interpre '
rules, it is only possible to induce new gramszatical rules.

A zuiding consideration in this ressarch is that these dis

grazmatical formulation are satisfied by a finite-state transition network
representation. The provlem is that natural languages are fundementally wmore
comvlex than finite state languages. However, Woods has shown & way to keep
scne of the zdvantages of the finite stete representation, bubt achieve the
rower of o troncfarmetional orammar, Unnds! snomented transition n=bvorks
are similar to and were suggested by the network grammors of Thorne, Eratley
and Dewar (1968) end Bobrow end Fraser (1970). Transition networks are like
finite state grammuars except that one permitis as labels on arcs not only termin-
al symbols but also nzmes of other networks. Determination of whether the
erc should be tzkxen is evaluated by a subroubtine call to another network. This
sub-network will anslyze a sub-phrase of the linguistic string being analyzed
by the network that called it. The recursive, context-free aspect of lanzuage
is captured by one network's ability to csll another. Figure 1 provides an
exauple network taken from Woods' (1970} paper. The first network in Figure 1
provides the "mainline" network for analyz bg simple sentences. From this

r2inline network it is possible to call recursively the second network for
analysis of noun phrases or the third network for the analysis of prepositional
phrases., Wood (1970) describes how the networ& would recognize an illustrative
s

To recognize the sentence '"Did the red bam collepse?" the network is
started in state S. The first transition is the aux transition to
state qp permitted by the auxiliary "did." From state qp we see that
we can get to state g3 if the next hirg"” in the input string is an
NP.. To ascertain if this is the ca

+
|9
se, we call the state NP, Fron
state NP we can follow the arc labeled det to state gg because of the
From nere, the adje
u

determiner "the." ctive "red" causes a loop which
returns. to stete gg, and the subseguent noun "barn” causes a transi-
tion to state q7. Since state gy is 2 final state, it 1s possible

to "pop up" from the NP computation and continue the computation of
the top level S beginning in state qq which is at the end ol the P
arc. From q3'the verdb “collapse' ¢ fnlts a transition to the state

a
e
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FIG. i. A sample transition network, § is the start state. G4r Qs
. G,,Gy,G,.30d q, 4 are the final states. (From Woods, 1970.)
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q),, and sinca this state is final and "ogllzpse' is the last

word in the string, the siring is accepted as 2 sencence

{po. 521-592).

T have illustrated in Figure 1 what is known as & recursive transition
natquﬁ‘whlch is equivalesnt to a context-free phrase-structure granrar,
Woods' networks are in fact of much stronger compucgl‘O"" power — essenbizlily
that of a Turing Machins. This is becauss Woods parmits arvitrar 'y actions,
This gives the networxs the abllity of transformational grammars to peramute,
copy, and delete fragments of a sentence, Thus, with his network formalisms
Woods can darive ths desp st ' of a sentence, The problem with this
gremmatical representa®ioa is that it is too powerful and permits computation
of many things that are not part of a speaker's grazmatical compeiencs in
the LAS system all condit 2

s
ions and a2ctions on networkx arcs are teken from

i
small repertoire of operaticuns possible in the HAM memory gystem {see Ander-
YV m s
} L% a

son & Bowzr; 19?3 . Tris way some context-sensitive features can be intro-

duced into the languages without introducing psychologically unrea¢istic powers.,
In many ways the network formalisms of Woods are isomorphic in tneir

power and behzvi he program gramzars of Winograd. Howeve there is

one critical 4if The flow of coatrol is contalined in Wlko;r i's pro-

o

granm grammirs. particular oprogran is committed to a certain beha«

vior. This is se in the network formalism, The flow of control is
containec in en er which uses the grammatical kKnowledge contained in
the netwcris, Zting different interpretative systems the same net-
vork orar—ar snecificatisn can be used in different ways. Tris is eritical

to LAS's success vwhere threa different interpreters use the same grammaticael

formalisms to guide understanding, genervation, and leanguage inducticn.

3. Research on Grammar Induction

Apparently the modern work on the problem of grammar induction began with
the collzboration of M. Chomsky and G. Miller in 1959 (see Miller, 1967) There
have been significant formal results obtained in this {ield and it is essential
that we raview this research before considering [AS. The approach teken in this
field is well characterized by the opening remarks of a recent highly-articulate
review chepter by Biermann and Feldman (1972):
The grammatical inference problem can be described as follows: a
finite set of ymbol strings from some language E_and possibly a finite
set of strings from the complement of L are known, and & grammar for
the language 1s to be discovered . . . .
Consider a class C of grammars and 2 machine M. Suppose some
G € C 2nd some 1 (an information sequence) in I(L(G)) are chosen for pre-
sentation to the Hachine Mg, ...
Intuitively, M, identifies G if it eventually guesses only
one grammar and that grammar generates exactly L{G),

(pp. 31-33)

The sigrif'cant point to note sbout thls statement is that it is completely
abstracted away from the problem of a child irying to learn nis lenguage.
There hss been virtually no concern for algorithms that will efficiently

induce the subset of grammars that generate natural languages. The problea
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is posed in general terms. The characterizatic

witn inducing z characterization of the well—f

Howaver, tois is not the task wiich the child

manping between conceptualizations and strings

mist understand what 15 spoken te him and lear

If a characterization of tho well-formed strin

product of the mappling between seatences and m

in thz formal work on lenguaga induction, ther

about the contribubtion that semantics might have

The grammaticel inference problem as characterized by Biermenn and Feld-

man is without any practical solutions. Workedle solutions Qo not exist bacause

the set of possible lan&h»uas iz too unrestrictad. Worrxeble solutions are pos—
sible to practical problems only when it is possidle to greatly restirict the

candidate languazes or because important clues exist wnhich elimipate many a
priori possible lenguages. Chomsky (1965} argued essentially for tiais view

with respect to the problem of a child learning his first language. iHe suggested
that the child could take advantage of linguistic universals which greatly
restricted the possible languasges. I will argue trat such universals exist

in the form of strong constraints vetwean the structure of e sentence and the

senantic structure of the referent. These constraints provide cr
or the induction problem.

H

Gold's Work

Prahebly the mozt influential vaver in the field is by Cola {1957). He
provided an explicit criterion for success in a languége inducticn prodlem and
proceaded to Fformally determine which learner-teacher interacitiascould achleve
that criteriocn for which languaves Gold considers a languags to 2e identiflied

n

in the limit if aftier some finite time the learner discov
gensrates the strings of tne lenguage. He considers two in e
in the first the learner is presented with all the sentences of the lan;
and in the second the learner is presented with all stirings, sa
identified as sentence or non-sentence. Then Gold asXs this questio.: Suppose
the learner can assume the language comes from some formally cheracterized class
f languages; can he identify in the limit which language 1t is? Gold considers

he classical nesting of langusge classes ~ finite ¢ "i a
finite state}, context- f*ee context-sensitive, and or
clessic result is that if the learner is cnly given o
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The proof that the finite state class 1s not identifieble with onl
itive information is deceptively simple. Among the Tinite state languag
ere all languages of finitecardinelity (i.e., with only fi
At every finite point in the information seguence the learn
if the language is generated by one of the infinl e
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Algorithms Induction

One of the ezriy atitempts to provide a constructive algorithm was proposed by
Solomonoff (1964). That is, he attempted to define an algorithn which would con-
struct bit by bit the correct grammar rather than enumerating rossiole grammars.

LAS is a coastructive algorithm. His ideas were never programzed end nad thelr
logical flaws exposed by Shamir and Bar-Hillel (1962) and by Eorning (1969). In
part Solomonoff has served as a straw man that served to justify the enumsvative
approzch over the constructive (e.g., Horning, 1969).

Feldran aud his StLQ have carried the Gold analyses farther. Feldman (19707
provided some further def ions of la 1guages identifiability and proved Gold-liks
resulis for these, TFeldman con51dered not only the task of inferring a gremmar that
generacted the semple, E;: 2lso the tesk of inducing the most simdle gracmar., Grem- -
zar complexity was meazsured in terms of number of rules and thes conplexity of sen-
tence derivations. Horning (1969) provided procedures for inducing grammars whose
rules have different probebilities. Blermann (1972) provided e nuzber of efficient
constructive algorithms for inducing finite stiate grammars when the number of states
is known. This is o relatively tractable problem first formulsted in 1956 by Moore,"
however, Moore's elgorithms are nmuch less efficient than Biermann's.

[ L’)

}-J.

Pao (1969) formalized an elgorithm for finite state grammar irduction that
did not reauire the nusber of states to be known in advance. A sazple sat of
sentences was provided which utilized 211 the rules in the gramser. A ninimal
finite state network was constructed that generated exactly the sazmple set of
sentences. Then an attempt was made to generalize by merging nodes in the net~
work. The algorithm checked the consequences of potential genevalizations by

17
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Crespi~Reghizzi (1970} also obtained encouraging results whea his induction
progran was given informasion ahoubt sentence surface structure. He was interested
in the induction of oparator-precedence lenguages walch are a subset ol contedi-
free languzzes. For a special subset of operator precedence langiazes ha was
2ble to define an algorithm that worked with only positive inforraiicon. Dxcept
for finite cardinality languagzes, this is the only available result of success

with Just positive informetion.

I think the work of Pao and of Crespi-Regaizzi have promising aspects. They
have shown relatively efficient, constructive algoritnms are possible faor inter-
t lﬁn«;aqo classes if the algoritnms have access to informetion about the
n 's surface structure. Tne problem with thelr work is that this informa-

prOVLded in en ad hoc manner. It has the flavor of cnesating and cer--
is not the way things happen with respect to natural languaze in i

mtare bimes Lo A lnm mddasinbaren A bl mambaman may ho Infarrad har mnml

[ D L TR Ut A S T - = aLal - o

paring the sentence to its scmantic referent. Crespi-Reghizzil nhas also shown

how the properties of o restricted subclass of languages can be us2d to reducs
the relience on negative information. While natural languages Cartainly have
espects that can be best captured with context-sensitive grammaticael forralisms,
most context-sensitive languages are ridiculous candidates for & natural ldaguﬂge.
An efficient induction algorithm should not become bogged down =25 does CGold's
enumeration techanigque considering these absurd languages.

Grammar as a Mapping Between Sentence and Canception

There 1s one sens

e ch 211 the preceding work is irrelevant to the
tesx of inducing a naturs 2
o ~

wai e
a language.. They have as their goa1 the induction of
correct syntactic characterization of a ITarget languag But thiz is not
what naturel language learning is sbout. In learning a n&tural language the
oal is to learan a map that allows us to go Irom sentences to their corresponding
onceptual structures or vice versa. I argue that this task is easier than
1ing the syntactic structure of a natural langucge. This is not baczuse
re is any magic power in sexantics per se, but bzcause natural languzze
so structured that they incorporate in a very non-—-arbitrary manner the siruc-
ture of their semantic referemt, The importance of semantics has e
Torcefully brouzat home to psychologists by e pair of experizents
end Bregran (1972, 1973\ on the induction of artificiel langungas. They con-
pzrad languags learning in the situation where thelr sub; 1 11
forde strings of the languuge versus the situaticn winare

e they sav Wwell-7Tormed
strings plus pictures of the semaniic referent of these si
le t

rinzs. In eitner
2.
o

5
ect wnich sbrings

case, the criterion test was for the subject to be ab

18
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of the languzge were well-formad —— wthOdt aid of any refersnt pictures After
3300 training trials subjects in the no-referent condition were &b chance In
the criterion test whereas subjects in the referent condition were essentially
verfech.
The Role of Semantics

Results likxe those of Mossser and Bregman have left some believing that
there is some magic power in having a semantic referent. However, 1 will show
that there 1s no necessary advantage to having a sexantic referent. The re-
letionship betwaen a senbencs and its semantic referent could, in principle,
be an erviirery recursive relation. Inducing this relation is 2t least as
difficult as inducing an arbitrary recursive languags. This last statement is
in need of a proof which I have provided (Andersom, 19T75). It is too involved
to reproduce here, but basically it shows that an algorithm to induce an ar-
bitrary semantic relation beaiween refereunts and sentences, could s used to
identify an arbditrary languzge. Thus, we know from Gold's work that en induc~
tion algorithm for the semantic relation could not be more effective than tne
impossible enumeration algorithm for identifying an arbitrary langusss. Thus,
for it to b2 possibvle to induce the semaniic relation, there must be sirong
constraints on the possitle form of that semantic relaticn.

How dczs this semantic reflferent fac
at least three ways:  First, rules of n
with respect to single words but with r
traansitive verb which have & common S2uk c
determine the word classes. This is mu o]
syntzectic rules for each word separa tely. Se
aid in gensralizing rules. A general heurist
two syntacti 23

erged into s single rule. Third,

coxresponaeuce petwsen the
ni

of the sentenca
ture information.

Siklossy 's Vork

The only attempt to incorporate semantics as
was by Siklossy {(1971).
to learn languages from the language-through-picture
et al., 1981). The books in this series attempt to
senting pictures paired with sentences that describ
Siklossy 's progran, Zbie, used general pattern-mat
correspondences ootWAen the pictures (actually hand-
end the se The program does use informatio
to help induce the surface structure of the sentenc
of’ LAS. However, it remz2ins unclear exactly what
or wnhat kinds of lenguages the program can learn.
the program's behavior
Tions. As we will see,
it is to learn e langua
lows: Suppese Zble see

are very sparse wilth exanple
& program must have strong
ge. The few examples of gen
s the following three senten

19

a
ife attempted to write a pr

guide to grammar induction
ogram that would be able
es books {e.z., Richards
teach & language by pre-
e tha depicted situations.
caing technigues to find
encoded picture descriptions)
n in the picuoure encodings
e, somevwhat in the m manier
use Zole mzkes of semantics
Tne displayed examples of
es of it making generaliza-
powers of generalizetion if
eralization all work as fol-
1ces:

there is a non-arbitrary
strueture of the semantic relerent and the structure

3 cond, semanti
iz ic employed b
11y similar rules function to create the san
be m

= O

-
S

cnsidera
hat, if

semantic structure,

cn permits one to punciuate the sentence with surfac
The nature of this correspondence will be explain=d later.

ce
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Anderson

) Johq walls
2) Mary walks
3 John talXxs

Tt will generalize and assume Mary talks is an acceptable sentence, It dces potb

seem thabt semantics plays an important role in guiding these genaralizations,
Siklossy also provides no discussion of now his program's bv“a"10“ relates

to that of a huran learning a language., The cn2 examdle of an atienpt to simulate

child language lezrning is Kelley (1967). His program attempted to simulate the

initial grovwth of child utterances from on= werd, to two words, to three words.

Kelley claims to b2 making use of semantic information, but he never specifies

its role in the program's performance. In genaral the QEC&llS»OL the vrograem are

nct explaLned In ni 1

the program raver gets to the point of producing
unclear whether it could.

Y, Ratinnzle

A central assumphion in the LAS project is that a language learner can sowme-

times identify the nmeaning of sentences and that languaze learning takes oplece

in these circumsiazcas. The specific goal is to explain how the palring of the
sentence with its semantic referent permits langusge learning. Yhe form of this
explenation is to develop a2 computer program which cen learn & language given an
inout of seontences valred with -semantic intercretations. The ccomputer program
buiilds up & graozor that permits it to qu:r:tand and generate santences. Be-
cause of the inherent complexity, it is essential that this vheory of language
eccuisition take the form of a compute program. I will argue Turther for the
nead of a computer model after descrLblﬂg the current version of LAS.

This project does have as an ultimate gozl to provide a faithiful simulation

of child lunguage acauisition. One might question whether a systen constructed

Just to succeed at language learning will ha"e rnueh in common with the child's

I ro r-'ZLy suspact it will, provided we insist that the

ion pr ocessirv llmlcatlon" as a child an rovided
in

acguisition systen.
qysten have the sanme in

~

of the chlld. The co nolderablon unde* j*ng this OUtlﬂle c

that orecast 1is

that learning o natural language imposes very severe and highly unigque informa-

tion —Drocesgln~ ue*ﬂpds on any induction system and, consequently, there are
very severe limitations on the possible structures for a successiu systen.

A similar arbu.e:‘ has been . forcefully =dvanced Dy Simon (1909) ith respect

to the informaition-processing demands of various problem-solving tasks.

The curreat version of the program LAS. 1 worbs in an overly simplif
domain and mokes unreasonable assurpbtions sbout intormation-procsssing c
lNonetheless, i1t predicts many of the gross © atures o1 generalization and over-
generalization in child lﬂng’“"e le=zrnin: S in other espects.

a

is terribly "of{
It turns ous that many of its faillures of similatlon can be traced to the un-—
t sk do

realistic assumpiions it is making about task domain and inforzaiticn processing
abilities, Many of the propesed develovzments of the program have as thelr goal
the elimination of these unrealistic assuczticns. The assuxpbtions vere made to
nake the problem more tractable in a first-pass attempt.

20



And=crson

lsed P P Ras Iy
5. The Program LAZ 1

s small progrem that was put together

Tols section describes LAG 1, a relatively
in eizht montns. It has achieved success in 2 non-trivicl nztural language in-
duetion situation. Tais proposal will be principally concerned with extending
the power of LAS.1 and of producing a simulation waich is scmewhal more rezlistic
psycholozically. However, LAS.1 is e significant flrst step wnich 1s already

more successful than any of its predecessors. This sectlon will contain
descrivtions of the various aspects of the LaS. L sysbem. First, I will describe
the HAML 2 memory system which vprovides LAS with its semantic powers. Following -
this will be an e\positlon of LAS's network gramoar formalisms. With this as

ackground, the working parts of the LAS program will be described. These include

SPoAK wnich uses the network formalisms to genserate seatences, UNDZRSTALD which
uses the seme networks for sentence understanding, BRACIET which punctuates
sentences with thelr surfece structure by comparing them to theilr perceptuzl
referents, and SPZAL ES” which builds an initizl neitwork grammar to parse a
sentence, snd GENZRALIZE which generalizes the initial grezmar,
Overview of LAS

LAS is an interactive program written in Michigan LISP (Hafner & Wilcox,
197Lk). The program accects as input lists  vwords, which it treats as sentences,
and scene descriptions encoded in a variant of the HAM propositional languaogze

(see Anderson & Bower, 1973). It obeys commands to speak, understand, and learn.
The logical siructure of LAS is illustrated in Figure 2. Central to LAS is an
augmented trensition network grammar similer to that of Woods (1970). In response
to the ccmmand, LISTSN,. LAD EVORES Lis wLugtod UnDInCTaND. Thz Input to IiDER-
STAND is a sentence. LAS uses the information in the n=twork grammar to parse
the sentence and obtain a representation of the seﬂuence s meaning. In response
to the command, Speak, LAS evokes the progrzn SPEAK. PEAX receives a plcture
encoding and uses the 1nfor aulOﬂ in the nstwork grammar to generate a sentence
to describe the encoding. te that LAS is usiré the sane netwovk formalism
toth to speak and understvnd The principle rpose of SPEAK and UHDzZRSTAND

T

in LAS is to provide a test of the grammars induced by LEARNMORE.

-

te
st
iz

)

Tre philosphy behind the LEARNMORE prozram is to provide LAS with the

same information that a child has when he is lesrning a language through osten-
sion. It is sssumed that in this learning zmode the adult can both direct the
child's attention to what is being described and focus the child on that

spect of the situation which is being described. Thus, LEARNVORE 1s provided
with & sentence,a HAM description of the scene and an indicaticn of the main

roposition in the sentence. It is to »roduce zs output the network grammar
that will be used by SPEAK and UNDERSTAID. It is possible that the picture
description provides more information then is in the sentence. This provides
more informetion than is in the sentence. This provides no obstacles to LAS's
heuristics. In this particular version of LAS, it is assumed that it already
knows the meaning of the content words in the sentence. With this information
BRACKET will assign a2 surface structure to the sentence. SPEAKIEST will deter-
mine whether the sentence is handled by the current grammer. If not, additions
sre made to handle this case. These additions genergllvﬂ to other cases so
+hat LAS can understend meny more sentences than the ones it was explicitly
trained with.
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of the major subcownonenus of LAS-LEARNIORZ,SPZAK, and
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The SPAKTLST program wouwld pera a parsing network
adequate to handle all the seantences . Also it would
rmezke meny low-level generalizations ab 3 and Word classas,
This would permit LAS to succassiully many novel senbtences.
i er, many essenbial grammaltical ge ft to bz mado by the
progron GEIERALIZE. Princisally, GENE —ust recognize that nstworks and
wvords occurring ab various points in the e identical. Re=cognition
of idantical grammars is essenbial to identifyizng the recursive structure of
the language. GENERALIZE is a prograzm which is only callied afver falirly stable
networks =nd word classas have been dbuilt us. It is oanly at this point that *
it is safe 1o make these criticel generalizations.

The HAM, 2 Memory System

LAS. 1 uses a version of the HAM memory systen (ses Andﬁ*”on % Bower, 1973)
celled HAM, 2. HAM. 2 provides LAS with two essential features. First, it
provides a representational formalism for propositional Anowledge, This is

used for representing the comprehension output of UNDERSTAND, the to-be-spoken
input to SPEAX, the semantic information in long-term memory, 2nd synvactic in-
formation about word cl HAM: 2 elso contains a menory searching slgo
conditions. For in-

i

238
ritha MATCHY which is used
stance, the UNDERSTAID pro
ord for z parsing rule to anply. These che v the MATCIHL vrocess.

Tre same MATCHY process is used by the SPZiX prosr to determine whether the
sction essocianted with a parsing rule creates part of the to be ~-spoken struc-
ture. This MATCHL process is a variant cof the one descrived in Anderson and
Bower (1973; Ch. 9 & 12) and its details will not be discussed pere.

eatures pe true of a

(
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D‘H:m
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However, it would be useful to describe here the represente tional for-
malisms used by HAM. 2. Pigure 3 illustraies how the inTormation in the
sentence A red square is above the cir~?e ~ould be represented with the HAM, 2
network formalisms. There are four distinst pro“ositions predicated eboul the

wo nodes X and Y: X is red, X is a sauare, X is ebove Y, and ¥ is a circle.
Each prouovition is represented by a distinct Treg structure. Each tres struc-—
ture consists of a root proposition nods connected by an S link to a subject
node end by & P link to & predicate node. The prealcaue nodes cen be decom-

sed into a R link pointing to & relation nods end into a O link pointing to

en object node. The semantics of these represeatations are to be interpreted
in terms of simple set~theoretic noticas. The subject is a subset of the
predicate. Thus, the individual X is z subset of the red things, the square
things, and the things avove Y. The individuzl Y is a subset of the circular
things.

Jee

One other p irt eeds emphasizing ebout this representation. There is
a1 distinétion pmade bebween words and the concepts wnich they reference. The
words are con 1ected to their corresponding ideas by links labellad W. Figure
3 jllustrates all the network notetlon neszded in the curreit implementation
of LAS. Thnere are a number of respecis in which this represeatation is sim-
pler than the old HAM representation. Thers are not the means for represent—
ing the situation {time + vlace) in which such a faet is true or for exnbedding

L
one proposition within znother. Thus, we cannot e
tences as Yester day in my bedroom :
believes tnat e red sgp@Lu is avove the
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Pigure 3

RED SQUARE ABOVE

An example of 2 propositional network repre
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sentation in HAM.Z
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There are e number of motivations for the
tion. Anderson and Bower (3973) have cox ad
ber of assumptions about the psychological Tro
tions derived from the Anderson and Bower o
of human cognitive performances. However,

HAM's representation have not been empirically te
that recommends associati network rep

il
i
it
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[
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Fad
X
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ve res
has to do with the facility with which th
of this representaticn is particularly r
to do with the modulerity of the represe
as a network structure that can be acessed snd used,
structures

I have shown how the HAM, 2 reoresentation

input to SPEAK and the ouiput of UNDER
he semantic and syntectic information v
.
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o
and squar e are both sha nes red and blue are both color c
1.

ircle and red

ire
and plue belong bo the word class ¥CB.
\%

a2y
,uote the word class 1nfor nation is predic ted of the words while the categor-
ical information is predicated of the concepis ati achad to these words. Tne
categorical informetion would be used if s e only applied to

e O

m2 syntactic rul

shavnes or only to colors. The word class inforzation might be evoked if a
language arbltrarl*y applied one syntactic rule to one word class and grnother
rule to a different word class. Inflections are a common exsuple of syntactic
rules which apply to arbitrarily defined word clas

BAM. 2 has a small . = language of comzands which cause various memory
1inks to be built. The following four are 211l that are currently used:
1. (Ideate X Y} - create a W link from word X to idea Y.
2. {(Out-of X Y) - create a p*opoolbvon node Z. From this root node create
' a S link to X and a E_llnk to Y.
3. (Relatify X Y) - create en R link from X .
4. (Objectify X Y) - create an "0 link 7

These commands will appear in LAS's parsing networks to create memory
structures required in the conditions and actions. Often rather than mewmory
nodes, variables (denoted X1, X2, etc) will appear in these commands. If the
variable hes as its value a memory node that node is used in the structure
building. If the variable has no value, a memory node is created and assigned
to it and that node is used in the mencry opsvration.

To illustrate the use of these cocmands, the following is a listing of
the commands that would cresbe the siructure in Figure 3:

o
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*SIAPE - | *COLOR éﬁ.)

W

W

CIRCLE LA RED 5 URRE (R | BLUE

Figure 4. An example of a HAM structure encyding both categorical inforxratwq
and word class information .
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(Ideats red 1)
(Ideste square 2)
(Ideate above 3)
{(Ideate circle L)
{(Out-of ¥ 1)
(Out~cf X 2)

{Relatify 8'3)
(Out~of Y 4

M, T - v
The lNetwork Gramzmars

Here the formalisms of LAS's network gramzar will be descr
formalisms are intended to apply to any natural lenguage, In 1
the grammars for two b@&t lanzuages will be vpresented., These t
will also be used to ustrate the SPEAX and UNDERSTAND pr
erived shortly. The first, GRAMARL, is a simple artificia
second, GRAMMARZ, is & more complex gramzar Tor a suo:at of
de;*ned by the rew*iue rules in Table 1. GRAMMARL was desl
mally different from English word order. The sentences of GRAMMARL are to
be reed as asserting the first noun-phrazse has the relation specified by the
last word to the second noun phrase. For purposes of readavility, the words
of these lanzuages are English but they nced not oe CRAMMARL 1s a finite
language without recursicn. In contrast, in GQAHMAP2 the NP element has an

Pk T AT ATIOT 2slimh anm wmansweionds Anll WD mamaradine o pobontiod 3 Fiea

EOPO LR A I R T e e e b s it O il S IEE I e b et aden et e

ite embedding of constructions.

"

es as are right-of and left-of. Tae wor ~ds aiffer in the assigment of their
arguments to subject and object TOlyD- Thus the difference betvween the

word pairs is syntactic. Thils is indica%ed by naving the words beloag to

two word classes RA and RB. Thus, UNDERSTAID with GRAMMARZ would derive the

same HAM representation in F igure 3 for the sentences The red squere is above

the circle and The circle below the red scguare, It would have been DO5~

sible to generate distinct rep”esenuaulons for these two sentences. I taink

C’!

this would have Dbeen less psychols Y””lj teresting. Basicelly, the network
a >
gremnar makes the inferences that A be B is equivalent to B above A and en-

codes the latter.

TABLE 1

The Two Test Grammars

GRAMMARL GRAMMARZ

] + NP NP RA S - ~ NP is ADJY

NP NP RB P is RA KNP
NP > SHAPE (COLOR) (SIZE) NP is RB NP
SEAPE + square, circle, et. NP + (the,a) P* CLAUGE.
COLOR - red, blue, etc. . NP¥ - SHAPE
SIZE -+ large, small, ete. . -+ ADJ ©SHAPE
RA- -+ above, right-of CLAUSE - ‘that is £DJ

that is RA KNP

27

rommors. it 1s assumed that above and below are connected to the same
b PR, [N



R -+  below, left-of ' CLAUSE - thet is 23 472
SHEAPE - =guars, cirele, =to,
ADJ + red, blg, blue, etco.
RA + akove, rigni-of
BB > pelow, lelt-of

3 :
oy e L1 2t D

in n START network. Tae first is for those sentences with HA relations
and the second for thoze sentences with 2B relations. If 2 sentencs inzut

to UIMDERSTALD has a B3 relation, UNDERSTAND will Tirst attexdt to parss it by
the first branch. The two noun phrase branckhes Will succezd but the relation
branch wiil fail, MVDIRITAND will have to back-up and try the second braznch
that leads to BB, This costly back-up is not really n=cessary. It wonld have
been possible to have consiructed the START networx in the follicwiang form:

ses

i -the reovvesentations of the senteace's rmeaning.
nosen vecause we wanted a more demandiag test of
PoaX and UNDERSTAND.

rmal specificetion of the information storad in LAS's
ither has a number of arcs proceading out of it
5 ). 1In speaking snd understanding LAS will try to
find scome path through the network ending with a stop nocde. Xach arc consists
of some condition that must be true of the sentence Tor that arc To be used
in parsing (unde rstanding) the sentence. The second element is an action to
be taken if the condition is met. Thi i T A

A L
ction will creats a Diece of HAM
conceptual structure to correspond to 2 e
that point. Finally, an arc *ncluaec specifi
5 e

control should transfer after performing th on. An action coensi
zero or more HAM memory comnm andq (rule 3). A ndition cen consist of zZero
2¢ify properiies that must

r more memory comzmands also (rule La). These sp

e true of the incoming word. Alternatively e

ush to an emtedded network (rule bb). For instance, supproses the s

n Figure 3 were to be spoken using GRAIMARL. The START nelworx would
d 2

“*
o

called to realize the X is above Y proposition. The exbeddsd NP network would
be called to realize the X is red and X is sousre propositicns. In pushing
to & network two things must be spacified--{i0ODZ, which is the emdedded nel-
work and VAR, which is the memory node al wnich the main end empedded propo-
sitions i“ueT’eCt. The element t is rule Yo is o place-holder Tor intormation
that is needed by the contrel mechanisms of the UNDIRSTALD prograz, The
three rules 6a, 6b, and 6c specify three types of arguments thal memory _
commands can h»" . They caen either directly refer to mexory ncdes, or refer
to the current word in the sentence, or refer to varisbles which are bound to
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Netwaorka for CGRAMNMAR?

NP £0oP . £ ADT
START s e S 2 Sl 72 STOP
< RA
NP NP
: 7 TENS6 e STOP
A el Z RB ' NP :
*\».53 £ COr Zom S e . e 58 4 ==5TOoP
C & nEn MDY
NP —— s N1 e STOP
€ “*SHAPE CLAUSE
NP1 2o AL " =STOP
NP1
A2 . 2GS TOP
& REL Scor

CLAUSE 01,

Pigurs 5. The nelwork gramnars used by LAS
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Formal Specification of the Network Cramzmar

NODZ - ARCH® {1a)

> stop (1v)

ARC - COYDTTION ACTION NODE (2)
AL ION - COMMAZD® (33
COSDITION - {(CCmpiasn®) (La)
-+ push VAR 4 NODE (ko)

COMMAND -  FUNCTIOY ARG ARG (5
ARG - memory node (62)
-+ word (6v)

+ X1, X3, Z4, X5 {62}
FUNCTION + out-of, obisctify, relatify, ideate  (7)

Table 3 provides the encoding of the network Jor GRAMMARL.

nds to be & 1-1 correspondsice between HAM
o ,

]m
L
o

i
each network expresses just on2 proposition and
to express any other propositicns. This correspon-
in GEAMthl or 2AR2, b w the

These grammar networks have a number of features to commzad them. SPEAX
and UNDERSTAND use the sanme network for sentence comprehensicn and gensratior
Thus, LAS is the Tirst extant system to have a uniform gremmatical notation for
its parsing and generation systems. In this way, LAS has only to induce cne
set of gremmatical rules to do both tasks. Such netwerks are modular in TwWo
senses., First, they are relatively indepencdeant of each other. Szcond, thsy
are independsnt of the SPEAX end UJDERSTAND rrograms that use thex. This
rodularity greatly simplifies LAS's task of induction. IAS only inducs

)
EJI
D

the network gr rs; the interpretative SPZAK and ULDERSTAND prograss repre-
sent innate linguistic competences. Finally, the netvorks thamsel

very simple with. limited conditions and action Trus, LAS nee
only 2 small range of possibilities in 1ndhcln5 a network. Tae nziworx for-
malism gains its expressive power by the embedding of networks. Because of
network modularity, the induction task does not increase With
of enbedding. "

o+
[y
I
0
0
i1
sl
-0
)
"
H-
(2}' [

representation for the gr 1mmat1cal knowledga both for undarst Zhe
duction. It is a coxzmon odbservation that children's ability to understand
sentences precedes their ability to generate sentences. LAS would nobt seem
+o be able to simulate this basic fact of language learning. Howvever, there
may be reasons wny child production does not mirror comprenension othar than
T 1d z=y nat

a
that different gremmatical compatences underlie the two. Toe chi
yet have acquired the physical mastery to produce cert i

is the case, for instance, with Lenneberg's {1962) snarthric child who under-

30
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1Q
11
1.2
13
L%
15
17
1d
15
29
21
22
23
24

25

26
L
24
24
39
31
32
33
34
35
36
37
38
39

407

41
43
b4
45
&0

Tha contruction of GRAWMARL

(PUT TDERPRUD INSUBKR (GET #PUT PSUBRI)D

{PRCLN
FOCT PRI START PATH
{{IPUSH X1 T NPY {{0OUT--UF X1 X%X531) S52 )
({PUSH X1 T HP) {{OBJECTLIFY X5 X11) S4 1)
{hrFPROP S2 PATH
[L{PUSH X2 T NP)Y {{DUJETTIFY
{OEFPROP 53 PATH

5 X2} §3 )}

34

{DLFPrOP S4 PATH
(L{PUSH X2 T HP) L{OUT-DF X2 X5)) 55 }))
(DEFPRUP S5 PATH

{{{{IOFATE WORD X&) {(0OUT-0F WURD #RBJ) {(RELATIFY X5 X4})

{NDEFPROP NP PATH

0 LCCUIOFATE WORD X4) (OUT-OF WORD #RA}} ((RELATIFY X5 X4)) ST0P

STQP

},

{C{(TOEATE WORD X&) (GUT-0F X4 =SHAPE)) {{OUT-OF X1 X%43) NP2 }:

{NTFPROP NP2 PATH
{{{pPUSH X1 T COLOR)Y NIL NP3 )
{ NIL NIL NP3))I
{NFFPRCP NP3 PATH
{({{PUSH X1 T SIZE) NIL S7TQP
{NIL NIL 570P)))
(DEFPRAOP COLOR PATH

{{{{IDEATE VWGRD X4) {QUT-UF X4 =CUOLGRI) ({QUT~-QOF X1 X4)) STQP

{DEFPROP STZE PATH

(CU{IDEATE WORD X&) {OUT-UF X4 #SIZE)) (IDUT-DF X1 X&4)) STop )

{ ALK} .
{{IDCATE SQUARE X1)Y{IDEATE CIRCLE X213}
{{OUT=0UF X1 =SHAPEI{OGUT-0F X2 *SHAPE))
{(IDEATC RED X3M({IDCATE GREEN X4))
{({OUT-0F X3 #=COLORI{QUT-0F X4 =*=COLGR1YI
{LISP SETOD X1 NIL)

{ (TOEATCE SHMALL XSHI{IDEATE LARGE X111}
({UUT-CF X5 #SIZEJ{UUT-UOF X1 =*SIZE&}}
NIL

{TALK]
({IDEATC TRIANGLF X1M{IDEATF BLUR X2J{INDFATE MEDIUM X31))

({UT—-0F X1 *SHAPLE){CUT—-OF K2 *COLGRI{OUT-0OF X3 *S1ZE})
(LISP SETQ X1 NTL) ' - :
(LISP SETQ X2 NIL)

((IUEATE RIGHT-0OF XLJI(IODEATE ABUVE X211}

({QUT—-CF RIGHT—0F *RAYL{OUT-QF ABOVE *RA}}

{(OUT—~0F LEFT-0OF *RBI(CUT-~0OF BELCW *RB}I

({IDEATE LEFT-0F XLI{IDEATE BELUYW X21)

NiL
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stood but was not sble to
use 2 cerbain € tical
of production. The final possibility is thatb
non-linguiciic strategies in- lznguage understa
evidence thait younz children donot undorstand
nassives when they ara not raversionle. t se
of 1 1 censtraints betwesn subject
£ % only appears when asked
5i 197%) has shown that young
te and wndsr by resoriing to ne 2 z
th is tre zbhility to understand spesech withoubt Fnowing the syntax.
For instance, wren Tarzon utters food toy =sab we kaow wnat he nmust m2an.  This
is because w= can beke advaniage of conceptuzl consiraints smong the wordls.
) hes also argued that the general belizsf that comprehsnsion
ion in a child is a mispercepticn on tha vart of thz aduli ob-
serve &y of Fraser, Bellugi, and Brown (1963} is often cited os
sho nsica pracedes production. They found children had a higher
yGerstaniing a sentence (as maznifested by pointing to an appro-
Ti than of spantareously producing the sentence. However, there
wersa of eguating the measures of production and comprenension.
sing dirferant scoring procedures, found no differsnce. Inter—
did find a strong correlation between waleh sentencs
s71d vhich could be producei. Tazt is, sentence
v easy to understand were reletively easy to produce.
this correlation except in terms of e comnon base for

SPREAY starts with a HAM network of propositions taggad a5 to-dDe-spoken and
a topic of the sentence. The topic of the sentencs will correspond to the
first meaning-bearing element in the START netwerk. BSPEAX searches through its
TART network looking for some path tbgt will express a to-~be-spoxzn proposition
attached to the topic end wiaich expresses the topic es the Tirst element. It
atermines wnether a patg @cﬂompllshes this by eveluating thes actions associated
with 2 path and deternining if they created a structure that appropriately
matches the to-De-spoken structure. When it finds such & pein it uses it for
generation.
Generation is accomplished by evaluating the conditions along the path.
If & condition involves a push to an eubedded neiwork SPZAX 1s recursively
called to speak some sub-pirase expressing a propos;tl n 2tizched to th2 main
proposition. The arguments for a recursive call of rUSHE zare the exbedlad pet-
work and tha node that connects the main proposition and the exmbedded proco-
sition. I the coandition dozs not dnvelve a FUSH it will contein a s2t of
memory coxmzands specifying that some features Dz trus ol & word. t will use
these features to determine what the word is. Tae word so cdetermined wWill

be spoXxen.

Lo
Mo
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As an examnle, consider how SPUAK would generate a sentence correspoading
to the HAM structu“e in Figure 6 using GRAMMASZ, the English-like grammar In
"Pigure 5. Fipure 5 contains a set of propositions aboubl three cbjects denoted
by the nodes G2k 6 G195, and G182. OFfF node Czib it is asserted that it is a
triangle, snd *11+ G195 is right of it. OF GIS5 it is asserted that it is e
square and that it is abowve G182. 0OF G182 it is ascerted that it 1s sguars,
r2ll, and red. Figure 7 illustrates the genzration of this sentznce freno
RAMMAR2 . LAS enbters the START network intent cn producing some u tterance
cbout G195. Thus, the topic is G195 (it could have been GeL6 or ?2) ha
first path through the network involves predi i n jective of G195, but
thez 2 . The Second path -

‘e is nothing in the adjective class
through the START neitworz corresponds to
it is above G182. Therefors, LAS plans to say i

First, it must f;nd some noun phrase to express G135. The substructure under
G195 in Figure 8 reflects the construction of this subnetvwork The NP ashtwork
is called which prints the and calls NP1 which retrieves square and calls
CLAUSE which prints that, é§ﬁ and right-of end which recursively calls 1P

to print the sguare. Slmllarly, racursive calls are made on the NPl network
to express G182 as the small red sguare.

say about G195 -~ .
itz main proposition.

The actual sentence generated 1s dependent on choice of t
START neSwork. Given the same to-be-spoken HAM network, but t 4
SPEAX generated A triangle is left-of a sguare t is above a s
Given the {tople 6189 it generated A red s is below a scuare that 1s
right-of a trianale Tle is small. Note how the cnoice of the relelion words 1L

i csove vs. below is depandent on choice of topic.

of wvs, right-of and o

4]

Fiy

It is interesting to inguire what is the linguistic pover of IAS as o

S S
speaker. Clearly it can generate eny consext-frae language since 1ts transiti
networks correspond, in structure, to a con ext-free grammar. Howsver, it turns

t
out that LAS nhas certain context-sensitive aspeacts because its productions are
constrained by the requirement that tnej express some well-Tormzd HAM conceptual
structure. Consider two provlems that Chomsky (1957) regarded as not handled
well by context-free grammars: The fl”ot is agreemsnt of number between a sub-
Ject NP and verb. This is hard to arrange in a context~free grammar because
the NP is already built by the time the choice of verb number must be made
The solubtion is trivial in LAS-—when both the IF and verb are spoken thelr nun-
ber is determinsd by inspection of whatever concept in the to-be-spoken structurs

underlies the subject. The other Chomsky example involves the identity of
solutiOﬂ restrictions for active and passive sentences. This is also achieved
sutomatically in LAS, since the Trestrictiicns in both cases are regarded simply
as re*leCulons of restflctTO ns in the serantic structure from wnich both sen-

tences are spoken.
While LAS can hendle those features of natural language suggestive of

contexs-sensitive rules, it cannot handle examples like languages of the form

alpleh which require context-sensitive gramzars. It is intere sting, however,

that it is hzard to find natural languzge seny this struciure. The best

T cen come up with are respactively-type sent Bill hit and
an

kiss=d Jene and Mary, respectively. This s ? questionavle acceptabil

|
8]
[y
=
)
3
U
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a5 1s ABOVE G182

i
. ////ép
N ‘ ,
Tfis ;gg; THE 1
S \ ’ / \ :r
SQUARE  CUAUSE SWIL €182

_”\\\‘\» | | 1

15 NP1

So
| 7N
S | RED cﬂsz

THE NP1 NP1

o4

TRIANCGLE SQUARE

Figure 7. A free structure showing the neitwork rallSand word cuotout,
These networks were called in generating a sentence about
G195 which exoressed the informaiion contained in Figure 6.
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to seerch
wnen a path was found wnich would express Darc ol
Bacause segarch is limited to a single parsing « roL s 3
simply reauired to execute & depth-rirst sszarch through a finite networx. In the
UNDERSTAND progrzm it 1s necessary, when o T a © fail £
sider t i h the Tailure may o
on that t is possible to k
timg to parsing. For
the UNDERSIT z ora complicated,
trol strucgu:e were writtez by Carol Haine

Perhaps an English mple would be useful a ne or a co
coatrol siructure. Compare the two sentences The Domocratic party hones to win
in '76 with The Damocrati arty hopes are high for '75. A mz2in parsinz network
would call a noun paAras work to identify the Tirst nounl phrase. Supdose
UNDERSTALND 1denvified T emocratic wparty. Later elements in the second sent=nce
would indicate that thi oice was Tnarefore, the m=2in network would have
to re-entsr The noun oo network npt a2 diffzrent parsing to retrieve
The Demgorsuic varty LoZes Wnen Un re-zptered the nown-phrase natwork
to retrieve this parsin must ren nich pzrsings it triad the first time
so that it does not ret the sam rsing. ‘ine complexities of this
control siructure are 4 ibed in mplets report (Anderson, 1975).

Nere I <135 Just ovorvisor the :QFD*Q1 st ure o the The program tries
to find some path through the START network whleh will z complete
parsing of the sentence. It evaluates the geceptadill réticular path by
eveluating the conditions associeted with that path. A cond 'Qn may require
that certain Features b2 true of words in the sentence. Tnis is determined by
checking memory. Alternatively, a condition caa require a push to an embedded
network. This network must parse some subphrase of the sentencs. VWhen LAS finds
an acceptable path throuzh a network it will collect the actions along that path
to create a temporary mezmory structure to represant the rmeaning of the phrase
that LAS has parsed. This, for instance, givan ihe sseantence, The scquare that is
rizht-of the trisngle 1s above the small red sgusre, TAS would parse it in tne
form illustrated for rigure 7, retrieving the Hal structure in Figure 6. Tnat is,
in LAS. 1, understanding really is simply generation put in reverse. This Is the
first displayed example of z reversible augmented transition network. Simmons
(1973) comes closest witn two different networks, one for generation snd one for
analysis.

It is also of interest to consider the powesr of LAS as a&n acceptor of lzn-
guages. It is clear that LAS as presently consti tuted can acceph exactly the
context-free languages. This is because, ualiks YWoods' {(1970) system, cchtions
on arcs cannot influence the results of conditions on arcs, and therefore, play
no role in determining whether a string is accepted or not. iows at is

interesting is that L.1S's behavior as en languege undars
little affected by its limitations on grammaticzl powers Consi
exemple of where 1t might seem that LAS would need n ne

a e
In Fnglish noun vhrases, it ssems we can have an arbitrary numbe

»
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Fowaver, in practice this does nob lead LA& Into eny difficulties becouse it
would never be presented with such a senvence due 10 the constrainis on wanit &
sp2aker may properly say to LAS.

Having now reviewed how LAS, 1 understands and produces sentences, I will ~
prasent the thrae aspects of the induction prorran . BRACIKET, u?n:HLJQT, and
CHEERALIZI, Beforz doing so, it is wise to briefly state the condiiions under
waich LAS learns a language, It is assuzmed that LAS, 1 already nas concepts
attachaed to the words of the language. That is, lexicelization is coamplete.

The task of LAS. 1 is to learn the grazmar of the language--~that is, hovw to go
from a string of words to a representation of their ccmbined meaning. Sacaguse
LAS. 1 is not conﬁer“aﬂ with learning meanings, it cannot ove a wvery resalistic
model Tor second lanzusge learning wisre many concepis  can transier from the
first to ths second ;:iguage. I will propose extensions of LAS. 1 concerned
with learning word meznings,

Another Teaturs of LAS. 1 is that it works in a particularly resiricted
serantic domain. It is presented wiih pictures indicating relations and proper-
tiss £° two-3imensional gecmetric objects. These pictures are actually encoded
into © : al network representation. Along with thase pictures
LA T s describinz the picture end an indication of that
as L2 2 picst snich corresponds to the wmain Proposition oI the suuvsacs.
From this inforzmation i pdu, a network gremmar is constructed. The sexantic
a , but the goa l is to be eble to learn any natural or

ot
omain may be very simple
natural-like language whic h may describe that domain.

The BRACKET Program

=T program. Tais is an algori:
a EAM conceptual structure «“d
es its surface siructure.
netwerks required to parse the
must be satisTied by the infor

A major aspect of the LAS project is the BRAC
for taking g sentence of an arbitrary languags and
a
T
S

This surface structure prescribes the hierarchy

producing e bracketing of the sentence that indi
sentence. For BRACKET to succeed, four conditio

rmztion input to it:

Condition 1. All content words in the sentence correspond to elements in the co:

ceptual structure. This amounts to the claip that the teacher Is able to dlrscr

the learner to conceptualize the information in his sentence. It does not. ;2

to the BRACKET algorithm whether there is more information in the con ceptual

structure than in the sentence

Condition 2. The content words in the sentence are comnected to the elements

in the conceptual structure. Psychologically, this amounts to the claim that
evicalization is complete. That is, the learner knows the meanings of the worrs

Condition 3. The surfece structure interconnecting the content words is isozor
phic in 1its connectivity to a language-fres prototype structure.
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Coniition 4. The main proposition in coacepbu
Conditicns 3 end L reguire considerabls

wiil first assume thalt the ULoiﬁth~ sor

ture, L I ] ain why something

Cc Pane] } of Figure 8§ which illustra structure for the
series positi 1] English sentence The is 2bove tha owall
circle. Parel {b) illustrates a graph deformabtic: ructura giving the
surface structure of the sentence. Note how elena the saze noon phrasé
ara appropriately assign2d o the same sudbrze. I that the protoiype struc—~
turae 1s not specific with respect to which 1links = wnicn others and
which are right of which others. Althouza the EAN e in Papel {(a) is
set forth in a partivular spatial array, the choic bitrary. In contrast,
the surface structure of a sentence does spec;fy £ 5 1 relation of links.
It scens reasonable that all natural languages naves as ir semantics the sane
order~Ireé protoiype nsztwork, They differ from ons another in {z2) the spatial
ordering their suriace structurs assigns to the natworz and (b) the insertion
of non-usaning-bearing morphemes into the seatence, However, the surface
structure of a2ll natural languages is derived {rom the same gravh patterns.

Panel (c) of Figure 8 shows how the prototype structure of Panel (a) can pro-— .
vide the surface structure for a sentence of the art*~1c1al GRAMARL. All the
sentences of GRAMMARL preserve the connsctivity of the underlying HAM structure.
By this criterioczn, au>lea3t, GRAvaRl could b2 a naturzl language.

However, certain conceivable languages would have surface structures which
Sould sub we Geformations oI The uaderiying structure. Panel {d) illustrates
such a hyvothatical langu¢g with the same syntectie structure as English, bus
witn different rules of semantic interpretetion. In this an@uagn the adjective
phrase precedinzg the object noun mocdifies the subject noun. As Pana2l (d) illus—
trates, there is no deformation of the »rotctype structure in P 1 (a) to
achieve a surface structure for the sentences in the language. L matter how

it is attempted some branches must cross.
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suburees in the surface structure. The d
n Figure 8 (¢) and 9 is the choice of which
which is subordirnate. IT BERACKET is also 512
roposition it can then utnambigiously rebrL

ne assumption that BRACKET is given the
to the claim that the tezcher can direct
asserted in the sentence. Thus,
learner to the picture of a red triangle above
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Mave on the Graoh Deformation Condition

sczething ¢f the stetus
ver, to make this cleim vizbhle it
[ networx will have to be adaphel nsg
ching works well encugh Tor the
sted in sc far, bul it will oot
v take re tha
repres he 5 J _
the doox _wif a to a s s it -
turne Lhe covened. Because of the vinary struc-—
ture C un In particular, John and key are
close oD r together. LIf Figure 1Cx werz the proto
type, LAS ¢ ser alternated words Ifrom tha two sub-
groups. For ins ion of the structurz in (a) that
would orovfde a or John o“““~ﬂ with a key the door. Branches of
;2 to cross. ‘Tunis snglisn sentence znd other Znglish
w2 defoemation condition for Figure 10a have all a
them. However, this is almost certelinly a peculiarity
25 permit free ordering of their noun phrases, VYnat
structure is something like the case reprasentation
srguments ere egquzlly accessible from the main prope-
rosed by the verb copen 1s one pose d by any verdb which
vhrase arguments. HAM's representati Oﬁ rgwﬁs out cer-
=) 3

> ome natural langaage. There are two ways to deal
With this dile-ma. Une 00ULd reSOrT TO 4 memory repieseabablun ihe (L. Howe
ever, thaere ars a number of significant considerations that motivate the HAY
representation in pansl (a). Moreover, representations like (o) finesse one -
of the most interesting guestions in language acquisition--hcw we learn the
case structure of complex verbs., To address tnis question we nesd a represen—
tation that decomposes rmulti-argument verbs into a represent a'lo liks (a)
which exposes the semantic function of the case arguzents. Learning the role

language then involves leerning how to a:s;gn its noun
tructure like (2). I will sketch a system to do this

.

of the verb onsn in the
phrase argumenis 1o a si
in the proposal section.

If we Kee? the H#&M representations then some changes are recuired in BRACKZT-
graph deformation condition. What is che racterlstlc of multi-arzument verds
in HaM is that the arguments are interconnected by causal relations as in (a).
Thus, BRACKET should de made to treat all the terninal argu-ents
structures as defining a single level of nodes in a graph struct
nected to a single roct node. That is, BRACKEZT cen treat a HA
such as {a) if it wero {(b) for purposes of utilizing the grﬂph éeformaticn con-
dition. In fact, BRACKET already does this in the current implementation.

uch causal

Fy pde

The Details of BRACKET's Output

So far, only a description of how one would retrieve the surface struc-—
ture cannectng the content words of the sentence has been given. Suppose
BRACKET were given A triangle is lefi-of a scuare that is above a szall red
square. A,brackgting tructure must pe imposed on this sente

Ly
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JOHN PURN KEY CAUSE. DOOR OPEN
(v)
N
JOMH KEY  OPEN DOOR

Alternative prototype structures for the sentence Jokn
onened the door with 2 “av. The HAM structure in (2)

introduces too many disiinctions.

Figure 10.
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also include the funecticn words., Given this sentence and the concediual struc-
ture in Figure 6, BRACIET returnad (G257 (G2h6 GELT a trisagle) Is left-of (G195
0195 a square (G195 G225 that is above (G182 G183 a small (G182 G185 rea (G182
G184 squar=)))))). The ozin propositicn is G257 which is given as the first
term ia the bracketing. The first bracksted sub-sxpressicon describzs tho sub-
ject noun dhrass. Tae first element in the sub-expression 2§E§_IS the node that
links the embedded proposiiion G2%7 to the main proposition G257. The first
tvo words of thne sentence A triangle are placed in this brocketed sud-sxorassion,
The next two word 2 ; bracketing. There are no smoedded
propositions corresgonding Tto © ; The remainder of the output of BEACKET
corresp01is to a descrzpcion of the element G195, The first embedded proposition
Glﬂo asserts this object is a square and the secoad proposition, 225, asserts
that G135 is above G182, lNote that the G225 propos*tion is emdaddsd as a sub-
expression within the Glcé proposition., The last element in the G225 proposi-
ticn is {G182 G183 a szail (G182 G185 red (G182 G13k square))). Tnis exprassion
has in it three propesitions G183, G185, G184 ebout G182,

The above exsmpls illustrates the output of ERACKET. Avstractly, the out-
put of EIACKET may be szecified by the following three reWrite rules: :

1. S - propo
2. elf—.\wanw <+ W
2. element - (to

[e]

e
¢l C

l)

each bracksisd output is 2 proposition node followed by 2 sequence of

1) “heszs elements ara either rewrititen as words frule 2) or
ions (rule 3). A oracketed subexpression begins with a
toplc node which indicaies the connection between the ermbedded and embedding
propositions. The elements within an exprassion are either non-meaning bear
words or elements corresponding to subject, predicate, relation and odbject
in the proposition. MNote that BRACKET induces a cocrréspondence betwesn a
Jevel of bracketing and a single proposition. ZEach level of bracketing will
also corresoond to a nevw network in LAS's grammar, Because of the modularity
of HAM propositions, e modularity is achieved for the grammatical networks.
When a number of embsddad propositions are attached to the same node, they
are embedded within one another in a right-branching manner.

The insertion of noun~function words into the bracketing is a troublesone
problem because there is no semantic features to indicete where they belong.
Consider the first word z in the example sentence above in Figure 6. It cowld
have besen placed in the top level of bracketing or in the subexpression con-
taining triangle. Currently, all the function words to the right of =2 content
word are placed in the same level as the content word. The bracketing is
closad immediately after this content word. Therefore, is is not placed in
the noun-phrase bracketing. This heuristic seems to work more often than not.
Fowevmr, there clearly are cases where it Wlll not work. Consider the sen-
tence The boy who Jene spoke to was deaf. ' The current BR ACKET program would
return this as ({(Tne LOJﬁ(kno Jape spoxe)) to was deaf). That is, it would
not identify to as in the relative clause. Similarly, non-meaning-bearing
suffixes like bende‘ would not be retrieved &as part of the noun by this
heuristic. However, there is a strong cue to make racketing eppropriate in
these cases. There tends to be a pause after morp;eﬂes like to. Perhaps such

L3



pauss shructures could be called upon to help the BRACKEY progran desides how
to insert the non-neaning-bearing morphemes into the bracketling.

lon-meaning-bearing morphemes pose Turther problons besides
Considar a seqgusnce of such worphemes in a roun phrase. That seqg
have its own grammar that, in principle, might constitu'e an ardit
loazuage. The sentence's semantic referent ~ould Drovide no cuss a
the sitructure of that languzge. Thersfore, we would de back to the
impossible language induction task that we characterized in the int
Hence, it is comforting to cbserve that the structure of these siri
non-meaning-bearing morpnemes tends to de very simple. There arz not many
exumples of these strinxs being longer than o single word. Thus, it secms
thiat Lhe lnnguapges constituted by thesce non-me aning-vearing strings are nothing
more than very simple firlte cardinality lenyuoges which poce, in tnemoolveu,
no serious induction problems. The various stretches of non-mezaninz-bearing
rorphemes in a sentence could also have complex interdependencas thereby posing
serious induction problems. Again it doss not seem to be the cass that these

5

devandencies exist. So once again we find that the structure of natural Janguage
is simple just at those points where it would haves to be for & LAS-1ike induc-
tion program to work.

In concluding this section I should point out one example sentence which
BRACKET cannot currently b a.dl They are respectively sentences li?s John and
Bill danced and laughed T2 JCulVQig. The problem will such a sentence is that
underlying it is the folloJlng prototype structure:

P P
1 2
Jonn dance Bill . laugh

Thus, John and dance are close together and so ere Bill and lzugh. However,
the sentence intersperses these elements just in the way thav nakes brgu\vtlnn
inpossible. There are probably other examples like this, but I cannot think
of them. Fortunately, this is not an utterance that appears early in child
speech nor is a particularly simple one Ffor adults. 0f ail the grammatical
constructions, the respsctively coqstruc*?Oﬂ is the oane that most sugzests the
need to have trensformational rules in the gramear.

The function of SPEAKTEST is to test wnether its grammar is capable of

generating a sentence and, if it is not, appropriately modify the grarmar s0
that it can. SPEAKTEST is called after BRACKET 1is omnletv. 1t receives’ .
cketed sentence, the main pro-

from BRACKET a HAM conceptual structure, & brack
position and the topic of the sentence. As In the SPEAY program SPEANTZOT
aettempts to find some path through its network which will express a proposi-
tion attached to the topic. If it succeeds no modifications are made to the
petwork.  If it cannot, = new path is built through the network to 1ncornora+e
the sentence.



The best way to undersitand the operatica of § it go
through one examvle. lf: twrﬂet languaze 1t was g n to is illusitrated
in Table Y. This is a very simple language, pasically GRAIMARYL of Teble 1. It
nas a smaller facab‘lr“v to make it more tractable. The reason {or choosing
this language is that it is of Just suflicient complexity to illustrate LAG's
acquisition mechanisms. In addition, LAS has leerned GRAMMARZ, elso given in
Table 1. ' .

Figure 11 illustrates LAS's handling o tnhe first two senteuces that ’
come in. The first sentence is Sauars triangle above., This sentence is
returned by BRACKET as (G174 (G115 GLLO squre) (G1:8 G149 triangle) zhove).
G174 refers to the main propositio : n ent to LEARITIORE. Siace

EN
L
this is LAS's first sentence of the langua?~ the START network will, of course,
coupletely fail to parse the sentence. It has no grammar
A

yet. Therefore,
it induces the top-level START network in rigure 11. listing of the nzact
arc information induced is given below the graphical illustration in Figure 11.
Since the first two elements aiter G174 in the bracketed sentence are them-
selves bracketed, the first two arcs in the network will be pushes to sub-
nefworks., T ird erc contains a condition on the word above, The restric-

ass A199. This class was
tence and only contains the word avove at this point.
d a path through the START netvori, T, SPEAKTEST checks ths
to see whether they can handis the bracieted subsipres-
i by a recursive cail to SPIa
a

& <
P -
cnce., Mis 1is acco.:a ishe
o A
2

tion made 1s that
r

o
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o
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+
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+
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ct
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ct

TeST.

pIadsal

PRAXTEST is called, taking as argurzants ths netvoryx AL95,
) and Lhe Lopic 0115. In onotiuorh 8105 the word class
ain square, and in network AL9T the word class AZ21 con

= two subnetworks should be the same in e Tinal grammar

Taes s
s not prepared to risk such a genzralization at this point.

Tote in this example how the bracketing provided by BRACEET complately
specified the embedding of networks. The senlence provided by BRACKET was
(G17lh (G115 G116 square) (G1L8 GLLY trianzle) evove). The first elewent GL7h
was the main proposition. The second element (G115 G116 square€) was a bracketed
subexpression indicating a’ subnetwork should te created. Similarly, the third
expression indicated a subnetwork. Tne lzst element above was a single word
end so could be hendled by = memory coundition in the main network.

The second seantence is triangle sauare right-of. This is transformed by
BRACKET.to (G315 (GR46 G2LT triangle) (G233 Cooh square) right-of). Bacause
of the narrow one-member word classes this sentence cannot be handled by the
current grammar. However, SPEAKTEST dces not add new network arcs to handie
the sentence. Rather, it expands word class 2199 to include right-of, word
class A211 to include triengie, and word class Q92l To include square. The
grammar is nov at such a stege that LAS could speax or understand tha sentenc
triangle sauare ebove or sguare unare rizht-of and other sentences which it

gl e
had not studied. Thus, al irst generalizations have been made. LAS
can produce and unders uanl novel sentienc

This illustrates the type of generalizations that are made within the
SPEAXTEST program. or instance, sicder 2 generalization that srose when
SPEAKTEST decided to use the existing neivork struchire to incorporate triangle,

s>
es8
-
b
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Anderson

the first word of the second sentence. This involved (o) using the same subnet-
work 4195 that had been crested f 24 {b) expanding the word class A211
to include trianzle_ Both decisions rested on semantie criteria. The network
Al95 was creatad to analyze a descriptinn of a node attached *o the main propo-
sition by the relastion S. Trianzl a desorivtion of the node G246 which is
ted by S to the mein proposition. OCn thz basis of this identlity ol semantic
tion, IAS assigns the parsing of trianziz to the network 4195  Within the
network the word class A211 contalns words whiich are predicates of the sub-
5 node. Trizngle has this semantic function and 1s therefore added to the

In mal Lng these generalizatlous, 5Pz
sbout the nature of natural language. This sumg es Co
P

Condition 5. Wo*ds or phrases with identical semantic functions at identical
points in a network behave 1dent1cally syntaztically. Tnis is the assumption
of semantic-indu ed equivalence of syntax. It is another way in winlich senantic
information facilitates gremmar induction. It clearly need not be true of an
arbitrary language. For instance, decisicns made in the subject noun phrause
might in theory condition syntactic decisicns made in the object noun phrases.
LAS, because of its heuristics in SPEAKTEST for generalization, would not be

eble to learn such a language.

tes LAS's networ: remnar atfter two more sentences have

\

;.)

Figure 12 illu
come in. oencences nd 4 Llivolve Liss = i
treats these as syntactic variants of above and right-of which differ in their
assignment of their noun phrase arguments to the logical categories subject and
object. Therefore, LAS creates sn alternative branch through its START network
to accommodete this possibility.
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Figure 13 illustrates the course of L: S's learning. Altogether ILAS will

will have to make three extra

e

be presented 1l sentences. Subseguently,

generalizations to czpture the entire targss l anguage. Plotved on the abscissa
is this learning history and along the crdinate we have the natural logarithm
of the number of sentences which the grezwsr can handie. This is a finite

ianguage, unlike GRAMMARZ, and therefore tze number of sentences in the language
will elways be finite. As can be seen frca Figure 13, by the fourth sentence
IAS's grammar is adequate to handle 16 sentences.

LAS's grammar afier the next five sentences is illustrated in Figure 1L,
g
These are LAS's first encounters wita two word noun phrases All five sentences

involve the relations right-of and above and therefore re in the elaboration
of the A195 and Al19T7 sub-networks. Considsr the first sentence, sguare red
triangle blus above, walch is retrieved by BERACKET as (C329 {C270 €271 sguare
{C270 C272 red)) (C333 C30Lk triangle (C302 €305 blue) above) C270}., Consider
the parsing of the first noun phrase ote that the adjective (C270 co72 red)
is embedded within the larger noun ,n¢ase. Tnis is an exanple of the right
embedding which BRACIET always imposes on a sentence. This Vlll ause SPEAX

C‘

5 c
TEST to create & push to an exmbadded network within its Al95 subnetwork. As
can be seen in Figure 1k, the existing arc centaining the A?Li word class

is kept to handle square. Two alternative arcs are gdded--one with a push to
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Figure 15 illustrates a more consarv vative way that LAS might have made
this generalization. Instead of network (2), it might have set up network (v).
In petwork {b) & nev word class X has besn set up to record Just those words
i i en adjective., letworks {(c) and (d) illustrate how
~ and does lead 1o overgeneralization in natural language.
ike The bov, A doz, the foot, eta. He would set
ept any articie Tollowed by any roun. Suppose, he
would be represented in LES as Tha + boy + 's.”
tion LAS would construct the networx illustra ted in

incorporated the generalization that foots is the
3 ia

phuraliostioh OF L. ToLs :::t 2f morpherico g%nﬂrﬂi*VQt am nf conrse.

a notorious overgeneralization in child language (e.g., Ervin, 190&) VWnat

is distinctive 2% such morphemic rules is that there are 2 number of alterna-~
tives end no sem ¢ vasls to choose betwaen them. Because of its principle

of sementi quivalence of syntax, LAS will overgenerelize in those

! e
situations. Apparently, children ere operating under a similar rule.

LAS needs o be endowed with a mechanism to allow it to recover from such
ocvergenaeralizations. Therefore, one of inhe futurs additions to LAS wiil have
to be a RECOVER program. Consider ho~ it would work witnh this pluralization
example. Suppose LEARMMORE recelves the sentence The feat are above the
triansie. In attempting to analjze the sentence in SPEAXTEST, the plural

M L

oots will be generated but will mismetch the sentence. RECOVER has as its
unction to note such mismatches. Since it is possible that there are two
alternste ways of expressing plurality, REZCOVER cannot assuze its gramvar is
wrong. Rather it will interrupt the 1nfo* ation flow and chack the accepta-
bility of The Toois are sbove the triangle. That is, RECOVER will explicitly
seek negative information. Upecn lear ning the expression is ungrammatical
RECOVER will take foot out of the word cless that is pluralized by 's,

1 . . . . . .
To sccoaplish this I would have to put within IAS some mechanlsm that will
segment words into their morpnemss.
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SOLSTE00

Every bit as much as LAS, a child logically needs negative Ilnformation to
rocover from overgeneralizations. The interesiing quesstion 1is where the negative
information comes from in the case of th2 child. Parents do correct the cnild
in such &vious morphemic overgeneralizations {Brown, 1973). Even today I
find myself corrected (not by ny paren: ) for my failures to properly pluralize
esnteric words. The child may also use staibistical evidence [or a negative con-
clusion. In some manner he may notice thai the morphexic Torm foois is neaver
used by the aduli end so concludethat it is wrong. Horaing (1009} has formalized
an slgorithm for detecting such overgenzralizations by assigning pro abilitlaa

to rules.

3

Figure 16 illustrates LAS's treatnent
training saquences. Thes2 involve somas U word noun phrases an i
sion of the noun phras2s on the branch of the stert network for RS rela
As can be seen from Figure 13, at the point of

ol ]
H N

~ the 1Lth centence LAS has anded
its grammar to the point where it will handle 616 sentences of the target lan-
guage. Actually the grammar has produced some overgensralizations-—-it will
accept a total of 750 sentences. LAS has encountered phrases like snuare,
square small, square red, and square red small. From this erperience, LAS
haos 8@“8;&11&9& to the conclusion that the sentences of the lenguage consist

of a shaps, followed optionally by either a size or color, followed optionally
. Thus the induced grammar includes phrases like squares small cmall

size words were found to be acceptzble in both second and third posi-
tions. Interastingly, this mistake will not cause LAS any problems. It will

phrase like square small sriall beceuse it will never have a to-
{AM structure with.two smalls modifying an obﬂevv. it will never

T 50 and thus UNDERSTAND con not moke any mistakes. This is
how an over-general grawmar can be successfully constrained
of semantic acceptadllity.

e nice etam

The proolen of learning to seguence noun modifiers has turned out to be
a source of unexpacted difficulty. In part, the ordering of modifiers is
governed by pragmatic factors, For instance one is likely to say small red

c
square when referring to one of many red squares, bul red szmall sguare when
referring to one of many small squares.. Differences like thess could be
conurolled by ordering of links in the i memory structure.

GEEZRALIZE |

After teking in 1l sentsnces LAS has built up 2 partizl network grammar
that serves to generate many more sentences than those it originally encountered.
However, note that LAS has constructed four copies of a noun phrase grazmar.

One would like it to recognize that thosa graﬁ” rs are the same. The failure
to do so with respect to this simple artificisl language only emounts to an
inelegance. Howesver, the identification of identical networks is critical %o
inducing languages Mluh recursive rules.
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Y- T G [ " A O e - -
Additions to LAS s grammar ateer S

ok . 5 - -
sudying:

10 . SQUARE BLUE SUALL TRIANGLE RIGHT-GF
11 ’ T‘))E:\I\G :, P D b” Y 'r-'\ ?LKJL In 1_:1 J
15 . TRIANGLE SUALL SHUARE RED SWALL BELOW
13 . SQUARE BLUS TRIANCLE BLUE LiRGE ‘
1L . SQUARE RED LARGE TRIANGLE RED Li
Lot = 4 2
chgy—£CR0 5, pyy 3202 > STCP
\ NTL |
- 25TOP
& 8593 D1095 |
Bg66 D111 8~ STOP
\\ NIL
5ST0P
55580 01023
B564 S-D1044 5-ST0P
’ K NIL
5.STOP
Ioioks £13
p1023-522022 —>=E1394 1768 - s70p
NTL
\ S.STOP
: ED1117 E88L
D1095 > E9OL- ST OP
: NIL
2 STOP
D714
D692 5, STOP
& £ oLy
D1095—SDLLL7 2 STOP D123~ DLORS . STOP
E
£881L —E-E905 = STOP 51368—2EL390 e STOP
D714 = small
D10Lk5 = red,blue,small
D1117 = blue,red
£905 = small,large
E1395 = large
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Anderson .

NP -+ the NOUL.
1
> the ADJ 1 NP
s nOrT
P, ~» S
1 2
»~ ADJ,. iI?
2 2
N, - Hould
2 3
> ADJ_ WP
3 3
AT NAITT
2 > NOUW
3 L
That is, there are four networks, NP, NP, NPg, and NPB whose structure is in-
dicated by the ebove rawrita rules. It Is assumed thalt LAS nas oan experienced
threes consecutive adjectives and therefore SPEAKTZST has only cresated three
embeddings. The critical inductive step for LAS is to recogniza L2, = IP,.
This requires recogzaizing the identity of the word classes uUUu2 and HOUHS and
the word cizssss ADJ, and ADJ This will be done on the criterion of thé
amavint ~® ~varian of werds inTithe two classes. It also resulres recognition
that network Thus, to identify two neilworks may requlre that two
other networks iTi=ad. The network HPB is only a subneitworx of HPQ.
So in the recursive identification of networks, GSN ALIZE will have to accept
a2 subnetwork ralation batween one network like NP2 hich contaiﬁ another like
NP3. The assunption is that with sufficient experience the embedded network
would become Tilled out to be the same as the emueddlng netvork., After NP1 °
has been identified with NP2 HAM will have a new network structure where NP¥
represents the amalgamation of NP1, NP2, and NP3.
the NCUN

e -

NP -

liote that new word ciasses NOUN* and ADJ* have been
the word classes KOUNZ2,

first fourteer
As a conseguance,

ceurred in the START network (see Figure 12).
with and replaced network BSok.
Al195 throughout the START network.
It now handles all the sentences of
more sentences than the grammar that was constru

in FPigure 17.

sencencas.

the ADJ NP¥

JHOSIEY

ADJ¥ NP#*

ENERALIZE was called to ruminate over the
GENERALIZE

network A195

NOUW3, NOUNL and of the

created 2s the union of

classes ADJ2, ADJ3, respectively.

networks generated after the

succeeded in identifying A195 with Al97.
replaced network Al19T at the positicn where it
Similarly, _56/ wz3s identified
Finally, BS56 was identified with and replaced
The final effective grammar is illustrated
the gremzer, 1t handles

cted after the fourteenth.
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- B568 >y
START | N ele
d
B_, . /
00 PAL96 »-A19877 £ 4199
) . 28593 D I
B366- S D111 i ~..STOP
NIL
> STOP
£D1117 .. E
D1095 > EQO 4 88y o STOP
NIL .
~2=ST0P
& 905
E88L< o STOP
8568 = nelow,roft-of
A199 = above,rignt-or
B593 = square,triangle

D1117 = blue,rad,large,small
£905 = large,snall
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sentonce. This is because the roun-phrase network BS56 has been expanded to
incorporate all possible noun purases. Defore the generalizations, nona of
ne ne'wo~hs~~8934 B565, AlQ;, or Aloz,yare complete. The network B565H ba-
plet
b

Q S riow has a grammar adsju
] There are LwWo najor assumptic
e en sentence and referent which peorni
first is the =zssumphtion of the correspondesnce betwesen
he language and the semantic structure. This is
cr1u$cnl to nRAC 5T's identif cation of the surface structure of the seatence
wnich is, in turn, critical to the proner emb dding of parsing networks.
Second, there is the assumption of a semantics-induced equivalence of syntax.
This played a eritical role both in the ﬂenerallzatlon of SPEAXTZEST and of
GENERALIZE. It was noted with respect to pluralization that such generalize-
tions can be in error and that children also tend to make such errors. However,
I would want to argue that, on. the whole, natural language is not perverse.
Therefore, most of those generalizations will turn out to be good decisions.
Cleariy, for languages to De learnable there must be some set of generaliza-
tions which are usually safe. The only question is whether LAS hes captured
the safe generalizations. ’

The importance of semantics to Culld lenguage learnlﬁg has been suggested
in various ways recently by many theoreticians (e.g., Bloom, 1970; Bowerman,
1973; Brown, 1973; Schlesinger, 1971; and Sinclair-de Zwert, 1973), but thnere

has been little oifered in the way of concrete elgorithms to make explicit
tne contriputicn oi semantics. LAS. L is a 7irst small step Lo making thi g
contribution explicit.

Conclusion

This concludes the explanation of the algorithms to be used by LAS.1 for
language induction. In many ways the task Taced by LAS. 1 is overly simplistic
end its elgorithms are probebly too efficient and free from information-pro-
cessing limitations. Therefore, the acquisition benhavior of LAS. 1 doss not
nirror in most respects that of the child. Later versions of this progrem will
ettendt a more realistic simulation. Nonetheless, I think LAS.1 is a signifi-
cent step forward. The following are the significant countributions embodied
so far in LAS. 1. '

1. The transition network formalism has been interfaced with a set of
simple and psychologically realistic long te“m menory overations.
In this way we have bridled the unlimited Turing-computable power of
the augmented transition network

2. A single grammaticel formalism has been created for generation and
" wnderstanding. Thus, LAS only needs to induce one set of grammatical
rules.

3. - Two important ways were identified in which a semantic referent helps
grammar induction. These were stated as the graph deformation condi-
tion and the semantics-—induced equivalence of syntax conditions.
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L, Algorithms have besn devaloped adequate to learn nabural langusges
(=] o] =
with & simple semantices,

_ The gereral mode of developing the program LAS is as Tollows: A lanzunge
Jearning situatlion is snoed 4 by a set of conditions. ZIn LAS. 3 1t was
specified thot ILAS already w the meaning of the words zad that it ba given,
as inpubt, sentences with H epresentations of their meaning. Ths semzntic
donain was specifii=d to be t conssituted by geometric shzpes. Cnce a2 set
of conditions is specified set of goals is specified. In LAS. 1 thers was
only one real goal: tTo le eny natural-like language thzt descridad the
domain. Once & set of goa 5 specified a plan of attack is sketchad out.
However, the problem is suw hat the details of that plan only evolve as we
ettenpt to implezent € a computer program. Indead many interesting

roblems and i initially anticipated in LAS. 1 were discoverad
in attempting This is part of utility of computer simulation

in theoretical

The LAS. in & task domain which wa

s sir
means idenzticzl, natural language learning sitvation. Its benavior
was similar to % learning & lenguage, bub zzain by no means iden-
tical. In :tre nxm ¥ I propose to create a progrzm LA3. 2 which comes
considerably closar to si ing naturel language learning. It has a more

elaborate set of goals than did LAS. 1:

1. The program will incorporate realistic assumpticns ebout short-term
memory limitations and left-to-right sentence processing.

2. The progrem will learn the meanings of words,
prog g

3. The prograzm should use sementic and contextual redundancy to partially
replace explicitly provided HAM-encaoding of pictures.

L, The program should handle sentences in a more complex sexaniic domain.

5. The prozram should be elzborated to handle such things es quastioas
and conmzands as well as declarative sentences.

The general nethods for achieving these goals in the LAS. 2 program will
be sketched out in the provosal section. Also in that section I will propose
some experiments to evaluate the LAS program. Wnile it is true that the task
faced by LAS. 1 is not really natural language learning, it still is a learning
task at which hurzan subjects apparently can succeed, The experizent§ will de-
termine whether humans have the same difficuities in such tasks as does LAS

and whether they make the same generalizations. However, I regard thes
iments as of secondary importanca relative to progranm cavelopament
irportant to further articulate our understanding of what algorit
quate for natural language learning.
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It is probadly insvitable that the g : be asked as to whethsr it
is really necessary to expend the res to construct a computer
program, Could not the model just be twally?  The rEﬂsﬁn Wiy
this is not possible has to do with the any theory that addresses
the details of natural language. There i v to test the preadictions
of tha theory or to assure tnat 1t is int istent. The experience
with large transformational grammars hand- naturzl languoge is thet
they have hidden inconsistencies. These were only exposed by trylag to simu-
late the gra:mars on & computer (e.g., Friedmzn, 1971). Consider the descrip-
tion given of LAS. 1 in the preceding section: Although lacking in-many details,
it was complex and lengthy. Could the reader estzblish for himself from this
description whether the model is really internally consistent? A cozputer
progran provides a proof of the consistency and a means of determining the

are to de:elon exnl1 it

a
model's behavior. The stated goals of this project
algorithms for natural languege leerning, stecil
these algorithms, and evaluate empirically the psych loglcal VlaOllluj of
these elgorithms. Without the use of coup uter sizmulation none of these goals

TR0

conld be achieved.

C. M=thods of Proceadure

First I will describe the proposed extension of the IAS program. Then I

cribe some exparimental tests. In reading the specific extensions pro-
posed for LAS, the reader should keep in mind that they have ‘as their intent
achieviug the goals set forth in the preceding section.

The Semantic Domain

The first matier to scitle upon in the new progrem is soxze gexarntic igmenin,
The 1AL, 1 worhi of ahaves, troreriizss, snd gaczasrie relzticns Iz Soz Iopavnr-
ished ror further work. The rollowing is oprcposed as a sugzgestion altihcuzgh
there is nothing critical sbout its exact Torm. - It 1s critical, however, that
some senmantic domain be chosen., It is only wnen there is a spacified domzin
that an explicit geal for success in the progran can pe speciflied. The progran
n

will be regarded as successful if it can learn any natural la
this domain.

I have chosen to look et a world close to that of a young child although
there is perhaps nothing sacred about this demzin. This world is set fortn in
Teble 5. There are three people in this world. 1In addition to these there are
four categories of objects--locations, containers, supporters, and toys.

These objects can have four types of properties--number, color, size, and quali-
ty. Thus, LAS will have to deal seriously with problems of sequencing adjec—
tives. It will also have to deal with number as a property of objscts. The
objects permit a much richer variety of relations than in the world of LAS. 1.
This will provide a demsanding test for the learning of complex multi-argumeat
relations. There can be sentences like Mommy traded Daddy the car for a ball.
In this world, peonle, containers, suDDo*uv-a,and toys can be in locations,
People can change their location and that of toys. People and toys can be on
supporters, toys can be ia containers. Peonle can possess toys, containers,

and supporters.
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Q

ategories in the World of LAS. 2

PEOPLE LOCATIONS COMNTATHERS

Yormy badroon box

Daddy kitchen closet

LAS den dresser bed

TOYS NUMBERS, COLORS SIZIS CLALITIZES
dodly ona red big dirty
car two blue medium pratiy
balil threa green small shiny

Thus the 4if eat catezories of objects enter differently into different tyzes
of relations. This fact will prove important to tre predictive parsing facili-
ties thet I will want to introduce into LAS. 2.
Left-t--Tizht Processing

Childraen leazrn language auditorily. Thus, their induction algorithms must
precess incoming matericl in a left-to-right manner., The current LEARINORD
progran does not 4o this. BRACKET completely processas the sentence beafore
SPEAKTEST even begins to work on it. Clearly, BRACKET and SPZAKTEST stould be
integrated so that the beginning of the sentence is bracketed and considered
by SPEAKTEST before the end ol thes sentence is considered by either. Intro-
dueing this left-to-right processing is e preliminary to dintroducing short-

term memory limitations into the induction situation.

Figure 18 illustrates in highly schematic form the left-to-right a2lgorithn
oposed for LEARMMORE. Words are considered as they comez in Ircz the sentence.

RMORE, as in UNDERSTAND, tries to find a path through its network grammar
o parse the sentence. The difference between LEARIMORE and ULDZZEST
+that LEARIMORE hes available to it a HAM conceptual structure to ena
vetter evaluate various parsing options. Suppose LEARIMORE is at sor
procassing the sentence. It will also be at some point in a parsin
Let us consider how it would process the next word. At box 2 1
in the word. At box 3 it would set 1 to the various grammat
at that node in the network. DBoxes E.through T are concernsa
wiaether any of these options can handle the current word. B
there are any options left. Box 5 sets a to the first optiaon and re
the remaining options. Box 6 checks whether the word would be parse
and box T considers whether thes action associated with that zre corr
a HAM structure. If a passes the tests in 6 and T, LEARINMORZ advances to con-
sidering the next word. Othervise it tries another arc. If it exhausts all the
sres, it will call BUILDPATH (box 8) to build a new arc fronm the curreat node.
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Yy consulting tnea inform&tlon in the sema

liote that certain se
will not be handled by this system.
square thal is above the triangle 1s rigat—of the scuas
words it would not be clear which square i : {
object or the subject of thes right-of relation. Thus, bui
© L

*

)
an appropriate ection to tha path. In e
the referent of square was resolved by let

- - - R ~eussuanl -
dealing with it., Presumably, however, chi
from such sentences.

tznce come in belfors
culty learning

In this system it Hlll not be assumed thabt LAS knows the meaning of the
words, Rather this will be something that LAS wlll have to learn from the
pairing of sentences with conceptions. First let's discuss the learning of
wvords whose reference 1s o simple concept or object e.g., boX or mommy, and
postpone discussion of couplex relational terms like trads. Logically, the
task of lexicalization is guite simple and it would not require complex alg
rithms to sucecsad. For instence, consider this °‘go ithm: LAS is given a
sentence with n, words and a conceptualization it describes with oy concepts.
Store with esach wor El concepts. The next sentence that comes has 29
words and its conc tion consists oL:Q<1mcepts If a word in tnis sen—~
tence is new, stor the mo concepis. If the word is o1d, store with
it the intersection of the concepts previously stored with it aznd the new mp
concepts. Eventually, ignoring problems of polysemy, & word will becoms pared
down to zero or one concepts. Those with zero concepts are function words
end those with one concept have that concept as their meaning.

')

Of course, this algorithm will run into troudble if LAS does not always
onceptualize 211 the concepts referred to by the sentenes., This can b=
recmedied by having the algorithm wait for a sequence of disconiirming vieces
of evidence before rejecting a. hypothesized meaning. Incidentally, subjects
behave just this way in concept attainment situations (see Bruner, Goodnow &
Austin, 1965), not tekingz negative evidence as having its full logical force
about the meaning of the word.

H o0

The basic problem with this algoritha is that it makes unreasonable assuap-
tions about the information processing capacities of humans. In pilot research
of my own, I have found that adult subjects can learn the meanings simultane-
ously of a nuamber of words in a sentence. However, they do suffer difficulties
when there is high ambiguity about what a word means. Presumezbly, children
would have even greater difficulties exirﬂnting word meanings from complex Sen-
tences. Broen {1972) and Ferguson, Peizer, & Weeks (1973) report that new iter
of vocabulary seemed to be introducad thro"~h use in set sentence frames such
as Where's ..., Here comes ..., There's ... known as deitic phrases. The noun

tends to be heavily stressed and rep» ated. The parent frequently points to help
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reduce possible ambigully of re

Presursbly, later ia lexic:
more conoke? santence frames, D
the grammaticzl structure of th

tions, I propose the follovwing
; ~

with the rec=p o , ¥

word is read in, LEARIMORE will make a guess asout its meaning using knowledges

about context and gbout the word's position in the grammar., It will commit

‘this guess to zewory and stick with the guess ualess later disconfirmed. Thae

program will cnly hazard a guess in circumstances of low uncertainty. Thus,

it will only gu=ss iT it can otherwise parse the gr ure in which
»d

.

the word appears. It will not guess if the word is prec

other words it does not know. Thus, the progrem, much as t
il o contrasts between grammatical pattern and a

current sentence. Thus, il e program knows the grammatical rule 12 - determiner

adjective noun. - and encounters the phrase the click box it will suppose that

glick refers to some property of the box.

R LTl
Thus, the program will have to acquire its initial vocabulary by means of
simple fremes, as do young children, With this initial vocebulary information,

it can begin uO learn grammatical rules. Once in possession of gr&unaulcal
rules, it will no longsr nead simple frames io learn new lexical items.

One interesting question is how function words are ever identified as non-
meani g—he&l"if‘.:’ in this schemet Presumably this is done on the vasis of fa_i_ling
to obtaln a constant corr

elation betwsen the word and any semantic Ieaturs.  Yniis
how many mistaken esses had been associated with a word,;
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could be d=tecte

Coucebt Identification and Relation Words

So far I have assumed that all concerts are constructed before langusge

ecquisition takss place and that the only problen is to link up these concepts

this is very unrealistic. Consider the verb give in the sen-
[=~3

with words. But

tence ives the dolly to Daddy. The z=e arlrg of give is something like

to do g icn causes one to ceas2 to possess an object a2nd someons eise

t6 bez s s the ovject. IL seems very 1mnla sible that & child ccnes

into a ze learning situation with such a concept ready made., What probably -
happens is that he sees Mormy pushing the doll io Daddy or Momzy handing the

ball to baty. With these experiences he hears sentences like Momxmy gives the

dolly to Daddy or Mommy gives the ball to baby. From these exemples he induces
the appropriate meaning of give. Concept attainment in these situations can bde
achieved by using the sort of concept 1d:nt'ficablon used by Winston (1970) for
inducing geometric concepts. That 1s, each use i gi ired with

17

8]

of the word give is pai:

e EAM network structure given the meanlnﬂ of the sentenca. VWinston's heuristics
ellow us to extract what these network structures paired with gi"e have in con-
mon. The concept give, as verb, is then attached to the commen structure.

For this sort of algorithm to succeed, LAS nmust be set to rebard certain con-
figurations of propositioms, interlinked by causal terms, as being associated -
with & single relationgl term in the languzge. )

9
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auses e
nesig
thie Dehavior of LA3S. 1 and a c¢kzild 13 that
a1 ces.  In econtrast, a2t Tirst the child
tenc The child's esarly spesch has been
Z 3 telerraphic That is, children sp2zk in two and thrae
word utterances. To condense messages. into such short utlteraznces it appears
that children have onmitited most function words and subordinate constructions.
Onz explanation of the origin of telegraphic speech which is appsaling {rom the
point of view of LAS is the following: Suppose that LAS did not receive as laput
to its induction routins complete sentences, bulb rather selegrapilc sentences.
Taen, 1t would cuite nazturally induce a telegraphic gracmar. It seexs reasonabdle
to suppose that a2 child cannot hold in immesdiate memory thne fotal ssntence he
has heard but ratier o r £ ncz. If so, then his
induction elgorithms as their basic
data. Let's ce2il th
Bvidznoe Tor cnild imitation of adult
soeecn. It is 30 » thsa=n t£ha ohiid's nun
productions are a & Fraser, 1954). Blas-
dell and Jeasen { =t those words which are
stressed and thos ons. The semantically
important words i choles (1969, 1970)
found that childr 2y sesmantic roles or
unxnowWn meanings. iking is f ol zre just the variadles
which control wha : rench sentence--a language
I ¥now quite impe serial

to 1 ntc LAS througin an aspect
of LEARNMORE called R e JINSY: n Wwill sinulate the variables
of stress, meeningiulness, and serial position in oroviding LAS with a deplete
version of the sentence. The locus of the effect of E~DEAR
boxes b and 8 in the flowchart of Figure 2. Basically it will not sass all
vords onto BUILDPATH. Rather some words will " "

slip from consciousness’ after
failing to be parsed. It will tend to omit words when: {a) they zre unstressed,
(b) their meaning is not ¥mown, (c) a critical nurver of new words in ths
sentence nave already been passed to BUILDPATH. I suspact this critical number
is something like one or two.

W

&

Factors (n) and {b) would generate the effects of stress and meaningfulness.
Factor (c¢) would yield good memory for the first words of ¥

t
good mewmory children do shovw ir last words
term acoustic menory.



ing feature of BADEAR i as the gramze , LAS
receive wore of i Thus, its iong and imita-
‘a3 doss a2 child! 4 be providing an explicit nechanism
asted by Braine (1 (1973, and others. Inducing a
cenerata ssntences intereding problenm. How 15 1t that
abandon its rul ting talegraphic soveech? Ulerely
sarnad rules Ior uwller sentences, 1t does not follow
des are wrong. AT zga pernits multinle means Tor
expressing the same thouzhis. Pe: n nmechanisus should be locorporated
that will strengthen some grammatb 5 relative to others., Rulss to be
strengthenad would be thossz that successTully ussd by ULDIESTAND and
that could suczessfully he used o We mignt think that the =rcs out of
a node in a parsiag network are o 2 stack to reflect their reletive
utilities. Subjects would try rules on the top of a stzck first. Inelfective
rules 1ike the originel ones for t threse word utterances would descend
to the boititon of the stack and so unavailable. This strength mecnanisn
is the sate as used to order links in the HAM memory model. This is =z different
way to bring nezative infcormetion to bear in grarmer induction than that pro-
posed for RICOVER. That is, rather than seeking explicii disconfirzation of rules,
the rules are gradually weakened ouht of existence as nore adequate rules take
over the roles the 0ld rules used to occudy in sentence.understanding and
generaticn.
Gremmzr Ovoimization

.
Wi

th the following form:

START

NP

N2

This grazmar requires considerable backup 1f the sentence does. not have an RA

relation.

As suggested earl

ier it would be more efficient if LAS were given the
L]

power to trensform the grammar into the following form:

NP

Given that there are se
in parsing, it is critical t
for optimizing the grapmar.

E

nore eliilc

ient, would be another form of

STOF
ERA

g ———— 0

ERB
STOP

rious time problems (see introduction of proposal)

hat methods be incorporated in the learning program
The merging of arcs, besides making the grammar

generalization. It could be used to

further nerge and build up word classes.
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Turther Use of Semantics in Langsuage Acgulsition

Al Y - s P 1 “ ER s .
Lo further ways that semantics con be used %o ald languz
1 - l 1 .

Another use of semantics would be to lessen LAS's reliance on explicitly
given semantic interpretatlons of sentences. It should sometimes be able to
gu=2ss these inbtarpretations. For instance, suppose & sentence caze In with the
words ball, box and in. Because of the conceptuzl constraints betveen these,

IAS should be able to guess their connection., This use of concepiual constrzints
in the semantic domain could also be used by UNIDERSTAND to permit predictive
parsing along the model of the Schank's (1972) systea. Tnait is, as an alternate
to understanding a sentence by use of symtactic information, it 1is possible to
loock For conceptual constraints to predict what the interpretation of the sen-
tence showld bpe. Tals prediction can then be checked for syntactic correctness
by use of the network gramzar. It would be profitable to try to place a pre-
dictive par:zing system like Schank's within the rigors of the Yioods!' network

4 P B -
ITOormallsnms,

enting the meaning
conveyed by a declarative sentence. However, languags has other purposes than
just to communicate meanings from one speaker to another. Consider commands
ernd questions. For instance, consider tha sentence Put the dolly
Currently, UNDERSTAND night retrieve the sentence's meaning as Sveake
2
h

21

he box.
requasts

i |

@)

T LAS that it oubt the dolly in the box. Tais is the declarativ
ce. Howaver, in addition LAS showld evoke an actlon &
least take an ection to decide whether to comply. Thi
21 meaning of the sentence. The procedural meaning of decl t

5 is very simple: store this sentence. This is already assuzed in
eatment of the sentence. However, the procedural meanings underlying
pes of sentences are more complex. A large partd of the success of

's system is that it.was adequately eble to deal with the procedural
of various sentences' semantics. It is important that LAS begin to
these too. :
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is would mean, in terms of LAS's network grammars, i
ns that can be stored. Currently, the only actiong
e cr eclar
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a
i creation of pieces of HAM structure, i.e., decls:
1 have to store other internal actions that spe
larative knowledge. These will include commands
or obey the order. HAMY already has cowmmands that dire
but executing orders would be something new. As part c
working on methods for incorporating procedural knowledge into a neivor
tem., It is unclear yet what success I will have here.
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7t is interesti lzngunage winese semantics
ere procedural. These Consider for instance

tha diflerence betweea the ticle~—the red pall versus
a red ball. The former iladl a listener knows. Thus fhe

Iistener's response to the e to search his memory for

the referent of the noun phrasz In contrashy, ths listenerts responge ta an
nlefinite noun phrase ahould be fo construct = new reprasentation for it. Tnis

e : HAL stem by wnetner a call

PRI -

Winograd has argued convineingly that tne semantics of pronouns aund ctner
ndexicals should be represenied by procedures to determine their referents

i .
This 15 p riicularly true for terms 1lilke you wrose meaning is totally relative
to speaker and context. Since the referent ol you completely changes with
speaher a cnild would be lost if he tried to associate 1ts meaning with some
HAM memory -node. He must be pracared to treat it as having as meaning a pro-

cedure for determining the referent.

Provided that LAS has the facilities for revresenting and evaluating pro-

cedures, thare seem no difficulties in learning those aspacts of language
which ere heavily embued with procedural sezaniics. Languzge learning will con-
tinue to arise from pairing sentences witn s=zantic interpretations. However,
serantic interpratetions will now contain e procedural as well as a declarativa
asp=ct. Again lenguage lesrning will consist of learning mappings between sen-
tences end the now-enriched semantic representations.

Experimentation

As stated before, I do not think that exgarimental research should yet be
the prinecipal focus of the project. There is still much further research that
»

3

nesids to be done in the way of specifying slgorithms that are capadble of language
induction. Nonetheless, in parallel with this research, I would like to perform
experimsnts to get some initial assessments of the viebility of the proposed
2lgorithms. Tue type of information relevant to evaluating LAS is only acquired
by lookinz at artifical lenguages. With thes2 artificial languages it is possible
to test IAS's predictions about language learnability and generalization.
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Critiei

For ethical reasons it is nol possible to expose young children, just
ing T

learni their first language, to an artificial language which LAS had identi-
fied azs degenerate and probably not learnadls. This means that all experimen-

tetion with artificisl languages must be dons on older children already well-
established in the i Tirst language or on adulis.’ Conseguently, the first lan-
guage ray be mediating zcquisition of the second

language. There is eviden
(see Le nnenbarg, 1967) that there is & critical initial period during w“‘ch
languages can be legrneu much more succaessfully than in later years. Lennenberg

speculates that there is a physiological basis for this critical period. Thus
oneg might wonder whether the same processes ar eing studied with older sub-
Jects es in the young chiid. Personally, I also doubt that the mech'n*sms of
language-ecquisition are the entirely sams with the young child in first language
learning as with the older subject in second leangnage learning. However, 1t does



Qthar criticis=s (e.g., those of Slodbia, 1971; Miller, 1967) of stulies
of artificial laznguege learning focus on t fact that thesa languagss are A
artificial e is zh mplicated © artificial labora-
tory lang T ire; 2« functlions; the
ehild's o g as ch. However,
these critic 5 t la int of l=bo Yy exdarind ation whiecn is
to icolate and study signirficant agpects of a complex natural phenozena. Another
criticisn of the past artificial lenguages studles (e.z., those siudies of
Braine, 16630; Milier, 1947; Reber, 1989) is that they lack a semantic referent.
Clearlv this mekes an enormous diffe“e“”@ to the sort of algnrithms a subject
can eaploy. The criticzl heuristics used by LAS would be useless wWithoub seman-
tics. lMoes d (1972, 1972} have shown thzt the existeace of a
seman e effect apJLage scguisition. Except for comtrol
condi imants volve & semaniic refereni.

tion T= e i
tence a2nd the M ¢ That truct s
preserve the original connectivily of concepts. In Section A5 we describad
languages which violeted this assumpiion. Consider tae "ollow’ng language:
S » NP NP relation
NP > noun {Color) (adjective) (clause)
CLAUSE » te NP re‘ution
 NOUY -+ square, circle, triangle, diamond
Color + red, blus
Size -+ small, large
Relation — abovv, below, right-of, left-ol
This is an exvanded version of GRAMMARL described in Table 1. (The element te

serves the I'ﬁCuiOn of a relative pronoun like that.) An example of a sentence
this language is Sguare red te triangle big zbove circle blue small right-of.
experinent I will do compares tTour conditions of learning for this languege

EE

1. No refarence. Here subjects simply study strinzs of the language trying to
infer their grammatical structure.

2. Bad semantics. Here a picture of the sentence's referent will be presanted
alon with the sentences. However, the re¢&*i013hip between the sentence’s
semantic referent and the surface structure will violate LAS's constraints.
Tne edjective associated wth the ith noun phrase will modify the (n + 1 - it
shapz in tne sentence (vhe*e n is the numder of nouvn phreses). For example,
the adjectives assoclated with the Tirst noun phrase will zodify the last
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are and triangle. 0 aporoprinte

is glven in Filuure l9a.

3. Good semantics. Here the adjective in
noun in thet phrase.. Relations will r
the surface structure. Ths appropriate
in this case is glven in Figure 12b, LA
this picture if it cowld guess the main

L, Good semantics olus main ovroposition. The picture in this condition will
ba the same as in 3 bubt the two shapss in the main proposition will be
highlighted. In this condition LAS would be guarantieed of successfully
bracketing ths sentence because the main proposition is given.

In some ways this experiment is like Moesser and Bregman's. However, here
English words are used so that the subjects do not need to ixduce thsa lanv: ze's
lexicalization as well as its grammar. This corresponds to the situation Taced
by LAS. 1. If English words were repleced by nonsense syllables this would
require & simplification of the language to make induction tractidle. The
predictions of LAS are, of course, that best learning occurs in Condition L,
next best in 3, and failure of any learning in 1 and 2. It would not be sur-
prising tc see subjects perform better in ltrzan in 2 since in they might par-
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The procedure would have subjecﬁs in all conditions study the same sequence
of sentences but vary the accompanying semantic information according to condi-
tion. After & study phase they would be tested for grammaticality judgments
about a set of seniences, some of which violate one of the rules for generation.
Since the syntax of the language is the same in all Tour conditions, the sane
sentences will be grammatical in all four conditions. Even though the syntac-
tie information given during study will be tne same in all conditions, markesd

differences in syntactic knowledge should appear across conditions. The

current plan is to alternate sequences of study trials with ssquences of test

trials, so the subject might study six sentences, with the semantic information

(aporo opriste to his condition, if any). Then he would see six test pairs, one

sentence of each pair violating some syntactic rule. Tor each pair of he would

?ave to-choose the grammatically correct pair. By freaquently aliernating study
d test, it would be possible to carefully nonitor the growth of information

i the condlulou

Many readers may not be surprised by the p“edlctwou of bmbte* learn“"g in
Conditions 3 and 4. Hopefully, the sxgnlfi an

clear. It would show that semantics is important to ’nducuzon of the s:.tacbic
structure of = natural language. However, it would alsc show that semantics

is useless if the relation between the semzntic referent and the syntactic
structure is arbitrary. The surface struciure of the sentence must be a graph-—
deformation of the underlying semantic structure. Failures to eppreciate the
contribution of semantics to language induction and Tailure to understand the
nature of this contribution of semantics to the induction process have bheen
fundamental in the stagnation of attewmpts to understand the algorithms parnitting
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In the exomple of the induction of GRAMGARL we Foun
for LAS5 to detect non-semantic contingencies betwean syn
first noun-vhrase end in the second noun-phrass push

tance, it is possible that a morphenic emdell
second noun phrase may depend on a choice of morp e
t noun phrase. Human subjects should also find
achic convlnzenc1es.

of predictions, besides those concernad with language
learnability, wai 1131 be useful to explore. LAS mekes predictions about
the situations under which humans will tend to generalize rules and vhen humans

There are &no
C W
ich
vill not. Suppcse LAS learned the following gremmar:

ot
g
a1
n
T
}—-' cf

S - VERB NP NP

NP - (PREPP) Ny (ADJ)
PREPP? » PREP Up

Ny - boy, girl, etc.
No = room, bank, etc.
ADJ - tall, nice, etc.
PREP + in, near, etc.
VERB » like, hit, ete.

A typical sentence in this language would be Like in room boy tall girl nice
which means The tall Doy in the room li¥es the nice girl. Tnis languege is
given English terws only to mexe its semziaties clearer. Suppose, in fact, words
in the language wverse *3i_meun¢ng man, jir meaning womawr, f0S meaning boy, and

tuk meaning girl. Suppose the subjsct studies the following pair of sentences:

1. Like das tuk.
2. Like fos Jir.

T0



Taen, it is interesting to consider his judgneats of the scceptanility of
saentences like:

X
JiT.

cas.

involves recalling sentence (1), but
icn: LAS would currentlily make thi
d fos into a single werd class and
suo act sccepted (3) he would be
rrencly predicted by LAS. He has
% or dzs in the seeccond noun slov.
n these positions ca the basis of
in these classas.

Neitner (4) nor (5) need be acceptadle sentences. Tne words
could, for stean tzke a different case inflection when they ap
ferenu °70ts. suld meke (5) uneccepteble. Sentence (k) coul
teble tecau a different morprenic embellishment when pr
It woél% ba %o s2e how lezrnable a language would be T
such wviclztioas potential generalizations.

artificizal
eccepnt

e in room boy tall gird
o s

girl in room boy tall

That is, will rules generalize from the subject poun dharase to the object noun
phrase. As LAS is currently constituted such generalizetions would no? occur

until it had duilt up fairly stable nov1 varases. Again suppose LAS had initially
only encountered simple sentences such es (8):

8. Like boy man

From sentences such as (8) LAS would learn the class of nouns thait ocecurred in
first and second noun phrase slots. Suppose then sentence (9) was studied. On
the basis of it, would seantence (10) be accepted as grarmatical? That is, would
the prepositional phrase in bank generalize to other nouns in the same class as
woman?

9. Like boy in bank woman
10. Like girl in bank man

This would be an example of right generaliz
In contrast, LAS doess perform left geaeralil
LAS would zccept (12).

ation which does not occecur in LAS,
zation, That is, sefter studying (11)

11. Like bOj woman nice
12, Like boy man nice

1L
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to get an appreciation o
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th two purposes, one concerned with psychology and cone
1 intelligence. I think this mixed purpose is frult-
2 cross-fertilization of ideas from two Tields and so
21 stagnavion. Thers is no gusrantee that LAS, in the
conceived, will ever achieve the goal of zn adsguata
acauisition of language. However, a certain outcome

r wnderstanding of the information-processing demands
and of the role of a semantic referent in gremnar in-
> will leara waat is wrong with one explicit set of
Tven thnat would bpe o sigrnificant contribution to the
Topmrab 1 e Jisld rlell in Gaia vul elmusi wolally

nformetion-~-processing theories. I hop2 f course, that the

will be The szme a

The contributions of LAS to the artificiel intelligence field are less
certain and more distant. Nonethelsss, generality in language understanding
systems is an important goal end one for which a learning system approach
seens ideal. It is therefore importent to understand the coatribution language
learning systems can make in this field. It would be a significant advance to
know in detail why & learning system approach was not the answer to language
understanding or at least why LAS was not the right sort of learning systemn.

Of course, if LAS does prove to be the basis for a viable language understanding
system, its contribution to artificial intelligence will also be of considerable
importance.

E. Facilities Availasble

I shall have available the entire facilities of the luman Performance
. . ~ « e s . . . . . —
Center, University of Michigan. My current appointment expires June 30, 1979,

t
ipzl resource will be the
programs. Host of

=2
<
oot
,.‘

ol
but can be extended for one to three years. Iy prin
Michigan Terminal System which supporis a ric ie

the programming will be performed in Michigan LIS? ee Hafner & Wilcox, 197%)
which is o relatively economical and an error~free version of LISP.

T2
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