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Abstract

This paper outlines the mathematical and
carputational basis of a procedure for identifying
the dynamic behavior of linear structural systems
from measurements of transient responses to
specified pulses. The dynamic behavior of such
systems is fully characterized by dynamic Green's
functiong, which can be reconstructed by decanvolution
from response measurements. The deconvolution
involves the solution of an ill-posed integral
equation and can be performed by considering an
associated Cauchy problem for a partial differential
equation in which the measured response is used to
define the initial condition., The explosive growth
of errors due to contamination of the respomse by
noise is prevented by regularizing the problem so
as to minimize a Tikhonov functional. It is shown
that infinitely divisible pulses, which include as a
particular case the inverse Gaussian pulse, have
properties which make it possible to perform
cantinuous deconvolutions and to cbtain bounds on
errors Induced by noise. The effectiveness of the
proposed algorithm for reconstructing Green's
functions is demonstrated in examples involving
dispersive and nondispersive menbers, and a dispersive.
structural network that may be representative of a
large space structure. !

Nomenclature

wave propagation velocity (Bg. 29)
coefficients in Eq. 24

response to pulse excitation !
response cantaminated by noise '
filtered: response data i
berding stiffness .

dynamic Green's function !
Green's function with error due to noise
shear stiffness ‘
Heaviside unit step function !
torsional stiffness j
length :
positive integer .
bending moment i
mass of hub '
noise
pulse i
8 variable in Laplace transform damain
t time i
T torsional moment ;
A4 shear force
w

x

=y ~§;d%an an'”u"c;:_um

deflection
gpace coordinate ’ !
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{¥} state variable vector

8 parameter defining noise distribution
Dirac delta function

€ positive constant (Eq. 13)

¢ argument in solution of wave equation
n constant defining hysteretic damping

9 angular deformation due to torsion

A eigenvalues

u constant (Eq. 14)

I3 parameter in Fourier transform space
pA mass of beam per unit length

pI mass marent of inertia per umit length
y mass mnent of inertia about member axis
o parameter in inverse Gaussian pulse

T time parameter (Eq. 1)

¥ angular deformation due to bending

w regularization parameter (Eq. 15)

Introduction

It has been pointed cut that operating criteria
governing automated functions of large space
structures, such as directional orientation and
figure maint e, can be net only with distributed
active controls', For the comtrols to be effective,
accurate information on the dynamic response of the
structure must be available. This is also true of
other flexible structures subjected to active
controls (e.g., robot arms with noncollocated
actuators and sensorsz). The identification of
dynamic properties is therefore essential in such
applications., ’

. Owing to the difficulties of earthbound dynamic
testing and to the possibility that mechanical
properties will c e in flight as a result of
envirommental effects”, it is desirable to test the
structure dynamically in service (on orbit). Dynamic
testing can be performed by exciting the structure
harmonically over a range of frequencies, and
recovering the natural frequencies of vibration and
the modal damping parameters froam the analysis of
the correspanding set of steady state responses.
However, under service conditions this method might
be impractical; it is desirable to extract the
dynamic information being sought in one fell swoop.
Since the dynamic Green's function fully characterizes
dynamic behavior, this can be done by exciting the
structure with an appropriate pulse and extracting
the dynamic Green's function of interest from the
corresponding transient response.

: This paper summarizes recent and current work
performed at the National Bureau of Standards
concerning mathematical and computational aspects
of such a procedure. Reconstructing the dynamic
Green's function fram the measured respomse to a



pulse entails the solution of an ill-posed
integral equation in the presence of noise. We first
describe briefly the mathematical basis of an
algorithm for cbtaining such a solution. To check
jts effectiveness, we apply the algorithm to noisy
synthetic response data for structures whose exact
dynamic Green's functions are known. These structures
include a dispersive medium consisting of a Timoshenko
beam, a poendispersive medium consisting of a slider
with elastic deformations due to shear strain, and a
network consisting of torsicnal members and Timoshenko
beams. It is shown that the proposed algorithm
results in reconstructed dynamic Green's functions
that, for practical purposes, closely approximate
their exact counterparts. .

We note that research is alsoc being canducted
at the National Bureau of Standards on experimental
aspects of the procedure described earlier. Currently
work is proceeding on the development of a space-
rated actuator capable of producing mathematically
specified short mechanical pulses to be used for
dynamic system identification purposes. ;

Inverse Gaussian Pulse Prcbes and Deconvolution of
Response ;

i

The excitation, denoted by p(t), must be a
smooth causal pulse of short duration which - to
an appropriate scale —- satisfies the relation

fp(r)dr = 1

We may refer to pl(t) as a probability density
function.

The response to the pulse plt),
¢
b(t} =fp(t -1)g{r)dr 0 <t oo (2)

o

will be in general a highly distorted imasge of the
Creen's function g(t), with the high frequency
carpcenents amoothed out, (This will be illustrated
by examples presented in the sequel.) The practical
problem is to reconstruct the dynamic Green's
-function g(t) from the measured noisy response
by (t), since the respcnse b(t) that would have been
recorded in the absence of noise is unknown. Little
is known about such problems in general. However,
when the pf(t) is infinitely divisible (i.e., for
each integer fm, p{t) is the mfold camwolution of
another probability density defined on the positive
axis), such prcblems have been intensively stug gd
recently, both mathematically and canputationally™’

We first assume that the response is not
contaminated by noise. To cbtain g(t) fram Eq. 2 we
consider the Cauchy problem for the following linear
partial differential equatiom in x, t:

du
= - ¥ 1) 109427 B
X

x>0, t£t> 0 (3)

u(x,0) 0, x>0 i

u(0,t) = gl(t) t >0,

the Fourier transform of the causal signal f(t)
being defined as ;

XAHCHE
|
Founer transformation of the first of Eqgs. 3 yields

Bn ordinary differential equation in U(x,f) whose
solution, by virtue of the third of Egs. 3, is

L Beue) = ARFBENFTE) (s)
ﬁe take the inverse Fourier transform of Eq. 5 m

which we set x = 1. The comwolution theorem then
yields C

— f f(t)e‘ift at (4)

t

u(1 t) = fp(t —r)g(r)dr (6)
(

FranEqs 2 and 6 it follows that we can cbtain g(t)
by integrating Eq. 3 from x = 1 to x = 0 and using
b(t) as initial data on x = 1. :

We now comsider the important particular case
in which the kermel is the inverse Gaussian pulse

oH(t) 2
plo,t) = —==zz— exp(- o “/4t) 7
Jired <

h manent pulse equal to 0.0lp(s,t) N m, wit:ha2 =
0.04 secords, is represented in Fig. 1.

NEVTON METERS
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TIME (SECONDS)
Fig. 1 Inverse Gaussiah Pulse
The laplace transform of Eq. 7 is
Lipls, t)] = expl -081/2), Res>0 (8)
Therefore

P(Ulct) * P(Uz:t) = P(Ul +¢2:t) (9)

blandwecanwriteﬁq.z in the form

b(t) = plo,t) * g(t)

= pt-2, v) * -2, 01T ag(t)
m m

(10}

The step by step marching procedure of the Cauchy
prcblem correspards to solving Eq. 10 by successively
vemoving the narrow comvolution factors p{e/m, t)
fram its right-hand side. We refer to this procedure,
which allows the monitoring of the unamoothing
process fram u{l, t) = b(t) to u(0, t) = g{t} as
continuous deconvolution,

. As indicated previously, in practice the
response data are contaminated by noise, so that



instead of Eq. 2 we have
t :
by (t) z.[p“’t -7lgelridr 0 <t <oo  (11)
0 .

where g (7) is an estimate of the Green's function
as affected by errors due to the unknown noise

n(t) = by (t) - b(t) (12)
whose norm is assumed to satisfy
Srrwae ¢e2 13)

0
We also assume that there exists a positive constant
# such that :

t 1
fgz(t)dt <u?
0

(14)
The ratio

«<1 (15) .
u H

is the root mean square of the noise-to-signal ratio
in by (t).

Laplace transformation of Eq. 11 yields o

exp(-081/2)G, (s) = B(s) + N(s) (16)
where the notation F(s) is used for the Laplace
transform of f£(t). On the other hand ;

i

expl-0s1/2)G(s) = B(s) (17)

It can then be shown by using the Schwarz inequality’
that

Gg;(s) - G(s) \}2Re s
% > |e/%] (e

2 (18)
. IGe(s)I » :
i.e., for large values of s the noise can result'
in enormous relative errors in Gg(s). Therefore,
using the measured response by (t) as initial data on’
X = 1 can cause the solution to be drowned in
spurious oscillations to the extent of rendering it
‘useless for practical purposes. This is illustrated
in the following section for. the case of the

Timoshenko beam.

It is therefore necessary to regularize the:
solution by appropriately filtering the data. It is,
shown in® that, to cbtain the approximation to g(t)’
that minim.izgs the Tikhonov functional associated
with Eq. 11 '7, it is mecessary to replace the
Fourier transform of the initial dats on x = 1,
B, (5), by the filtered data !

- 136)]2 By ()
bnf(i) = ~ 2 2 -
1B} 12 + (wer/2m)

(19) !

The choice of w in Eq. 19 is determined by information
on the approximate ncise level inherent in the:
measurements being performed, and on information of
experimental or analytic origin on the appreximate
time dependence of the dynamic Green's functienm. '
Numerjcal experimentation using interactive graphics-
is then quite effective in locating the optimal
value of w. ‘

.

The property of infinite divisibility allows;

the calculation of error bounds for the d}gxamic
Creen's functions being reconstructed (see®'® for
details).
i

B i

i 2pplications | '

: The purpose of the applicatioms presented in
this section is to demonstrate the effectiveness of
the proposed algorithm for recomstructing dynamic
Green's functicns from noisy responses to infinitely
divisible pulses. We confine ourselves in this paper
to inverse Gaussian pulses (Eq. 7) which, as seen in
Fig. 1, are unimodal. A rich variety of infinitely
divisible pulses can be constructed>, which can be
useful for modeling distortions, superimposed small
oscillations, deviations from a prescribed shape,
and other perturbations due to the instrumentation.
Applications of the theory of multimodal pulses to
the structural dynamics identification prdblem will
be presented in a forthcoming paper.

The noisy response b_{(t) is constructed as
follows. We first calculal%e the dynamic Green's
function g(t) for the member or system being
considered. We then use Eq. 2 to calculate the
response b(t). The response b_(t) is created
synthetically by adding noise, n(é), to b(t). For
any given t, the noise {perturbation) n(t) is a
randam number drawn from a uniform distribution in
the range + 8b(t), For example, if f= 0.01, we
refer to the perturbation as *1% noise".

. Given the noisy response bn(t), we reconstruct
the dynamic Green's function by using the algorithm
based on the solution of the regularized Cauchy
problem associated vgith Eq. 11. Details of the
algorithm are given in°, :

Simply Supported Timoshenko Beam.

‘ Dynamic Green's Function. We seek the dynamic
Green's function for the slope at x = of the
Timoshenko beam with the loading and support
conditions shmg) in Fig. 2. The equations of motion
qf the beam are :

av 32w oM 8%
& pA ez, wewm =V &Pl e (20)
- ax at ax at?
v)ith the canstitutive relatioms
. - aw
Comem AL, v Sy 1)
ax Ox
The state variable vector is defined as
{vh= {-wv. M viT (22)

Fourier transformation of Egs. 20-21 yields

6(t)

N
=

=D
A
/4
-

Fig. 2 Simply Supported Timoshenko Beam
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0 1 0 -1/GA;

0 0 1/E1 0

$ (23)
0 -pt? 0 1 ¥ ;
pA2 0 0 0 :
The general solution for v igli®
V = Bjcoshiryx/8) + Agsinh(vx/l) + Aycos (ngx/8)
+ A4sin (XzX/e) (24)1
(£ Ay and 1 ix, are the eigenvalues of the matrix in
Eq. 53; note that A4 and A, are functions of ¢ .} The
general solutions }or the other camponents of the
state vector follow immediately fram the Fourier
transforms of Egs. 20 and 21, i

The boundary conditions are i

w=03 M=0,015(t) N atx=0 (25)
we0y M=0 at x = |
The slope at x = § is
aw -1
el o [Agh g coshng + Aor; “ednhiy
- Agxzzcosxz + A4>‘2251n>‘2] (26);
It follows fram the boundary conditions that
PYR - @n
1 A2 ‘
A= ;E;;— [- Az(COSh):l = COB),)
vy izf;’i’iz-
1
By = - By —-1e
Aptanh,
pBg2p3

fl

M (02 +2,2)E1

The dynamic Green's function being sought is the
inverse Fourier transfomm of Eg. 26, ’

Calculations were performed assuming the
following values for the parcineters of the beam: p2
= 0.425 kg/m, pI = 2.78 x 10~
sgn¢) Ne“, GA; = 0.711(1 + igsgnt) N, P = 1 o
7= 0.01. (These values were calculated in
attenpt to cbtain an equivalent Timoshenko rotating
beam whose response would match the measured
response of a flexible rcbot am®.) The calculated
dynamic Green's function is shown in Fig. 3a for 0 <
t < 2 s. It is noted that the Timosherko beam, whose
motion is governed by a fourth order partial
differential equaticm, is a dispersive medium, ;

Numerical Reconstruction of Dynamic Green's
Runction From Noisy Regponse. The slope at x =1
due to an inverse Gaussian pulse with ¢ = 0,2 51/2
(Fig. 1) acting at x = 0 is cbtained fram Eq. 2 and

kgm, EX = 0.555(1 + ip

is shown in Fig. 3b. The respcamse is seen to be a
distorted image of the dynamic Green's function
(Fig. 3a), with high frequency cawponents asmoothed
out. We add 0.5% noise to the response at each of
720 equidistant points in the interval [0, 2] s.

Direct recomstruction of the Green's function
fram noisy data is shown in Fig. 3c. Note the stxong
amplification, typical of ill-posed prcblems, of the
small amount of noise in the data. The regularized
recanstruction with w = 2,5 x 10'3, shown in Fig.
3e, is a great improvement over the direct
recanstruction. Note, however, that sharp features
in the early part of the response have been rounded
by the reconstruction algorithm., Figure 3f shows the
errors in the reconstruction (i.e., the differences
between the original and the reconstructed Green's
function). The largest errors occur in the early
part of the signal and are due to the minute
rounding menticned above.

Recall that dynamic Green's functions are used
to calculate the respanse to physically realizable
(i.e., smooth) loadings by comvoluticm, as in Eq. 2.
The errors in the recanstructed Green's function
will cause errors in the calculated response.
However, owing to the averaging action of the
integration process, these errors will be considerably
smaller than those affecting the reconstructed
Green's function. To illustrate the favorable effect
of integration, we consider the slope of the beam at
x = ¢ due to the step mament 0.01H(t). Figures 3d
and 3h show the step response calculated by convolution
of the step function with the kernel consisting of
the original and the reconstructed Green's
function, respectively. The agreement between the
two responses is much closer than is the case for
the correspanding Green's functions. This is also
seen in Fig. 3g, which shows the errors in the
regularized step response. The naximum absolute
error occurs near the middle of the interval and is
of the order of 0.1% of the correspording ordinate

of the response.

ﬁechanical Slider With Deformatioms Due To Shear
Stress. : '

; Dynamic Green's Function. The equations of
motion and the congtitutive relations for this
menber, depicted in Fig. 4, are

oV 9% aw v
oA -—== 3
ax at ax GA

— = —= e (28)

8

|6ct

Fig. 4 Mechanical Slider



"go that , in the displacement at x = { . The dynamic Green's
' function of the acceleration at x = /7, derived

. #ram Eq. 32 in which the appropriate expressions for

e (29) £({) were used, is shown in Fig. 6a for m, = 0.225

at? 92 kg, pA = 0.425 kg/m, and GAg = 0.711 N. The Green's
; functions for the velocity and displacement at x =
. @ © 1/7 are shown in Figs. 6b and 6c, respectively.
a® = ————- i : . .
pA '

| Numerical Reconstruction of Dynamic Green's
The boundary conditions are i Function From Noisy Response. The acceleration
¢ respomse at x = f 57 due to an inverse Gaussian pulse

/2 acting at x = { is shown in Fig.

aw ¢ with ¢= 0.5 s
v=0 for —-=0) forx=20 (30): S. The respcnse is seen to be a highly distorted
ax ~ image of the corresponding Green's function (Fig.
32w . 6a). Next 1% noise was added to this response. The
“‘Og'i’="(t)'v forx=¢ . oo
t ,

Note that the motion of the slider is governed
by the wave equation. Unlike the Timoshenko beam the
slider is therefore a nordispersive medium. The 10 1
general solution of Eqg. 29 is . o

w= flat - x) + F(at + x) (31)1 i g;
The first boundary condition yields L ]
w=flat - x) + £lat + x) (32) =107
To cbtain the functional form of £({) [the argtmé 1 _
¢ maybeputequaltoat—xorat+xasrequired],' : -20 T T t T
we note that the second of Egs. 30 is a condensed | ] 1 2 3 k
form of the boundary condition Lo t(s)
m, 32w ow ! Fig. 5 Acceleration Due to Inverse Gaussian Pulse :
—om —mepm = - a? - for x = { (33 : :
pA Ot ax ! dynamic Green's function, reconstructed from the

noisy response to the pulfe using the regularization
parameter w = 1.0 x 107%, is shown in Fig. 6d. The
reconstructed Green's function has less sharp peaks

and the initial conditions

w=20 for t =0 and 0 <x< ! {34) © than its exact counterpart, and it is also affected
- by spurious high-frequency components. Note that the
oOw 1 accuracy of the reconstruction would have been

lim ——~- = - === for x = b inmproved had a sharper pulse been used.

t=+40 at mO . B .
. The reconstructed Green's function of the
As shown for an entirely analogous problem in12, the velocity at x =1 /7 was cbtained by integrating the
first of Egs. 34 inmplies reconstructed Green's function of the acceleraticn
‘ with respect to time, The result is shown in Fig.
aw ow 6ée. The agreement with the exact Green's function of
-0 and ——=0 fort=0; O0<x<P (35) the velocity (Fig. 6b) is much better than for the

ox at accelerations; as indicated earlier, integration
considerably reduces errors due to deconvolution in

Fquations 35, and the first of Egs. 34 for x = 0, the presence of noise. Integration of the reconstructed

yield © velocity (i.e., integrating the reconstructed
| acceleration twice) results in a reconstructed
f(t) =0 ~tcp <t (36) Green's function of the displacement (Fig. 6f) that
. is virtually indistinguishable fram the corresponding
To cbtain the expression of f({) for the interval . exact Green's function (Fig. 6c).

! < ¢ < 32 we use Eq. 33, which provides the
"continuing equation®, the second of Eqgs. 34, and
the conditicn that there is no sudden change in the Structural Network With Torsional Members and

displacement at x ={ . The result is . Timoshenko Beams,
1 PA . fThe hypothetical space structure of Fig.7 consists
£({) = - ~—— [1 - epl - — ({-1)]1] (37)' of four identical torsiomal members (1-2, 1'-2%, 2-
aph Mg 3, 2'-3') and two Timoshenko beams (2-2' and 3-3').
) ;  The mament connections between the torsional mewbers
The expressions of f£({) for successive intervals : and the Timoshenko beams are rigid. The network and

(2x - 1)8< § < 2k + 1)!, where k = 2, 3,..., are its impulsive loadings are symmetrical about the
cbtained recursively using the continuing equatien,: line joining the midpoints of the beams.

the condition of comtinuity of the velocity at x = !

{, and the condition that there is no sudden change:
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Fig. 7

The equation of moticm and the ccnstitutive
equat:lom for the torsicnal mernbers are

aT

ax

2 i
0,8 (39) |
J6y i

——— i

ax

From the first of Egs. 38 it follows that the
general solution for the Fourier transform of the
rotation of in each torsional member is of the form ;

AX v
9lx) = #(0)cos( —-) + T(0) --!--— sin( ——-) (39)
e )‘JGl 9 :
J ’.
SR ]1/239 (40)

JGq

A similar relation is cobtained for T(x) fram the
second of Egs. 38. The general solutiom for the
Fourier transforms of the shear force in each beam
is of the same form as Eq. 24. The general solutions
for the Fourier transforms of the other canponents
of the state vector (—w, ¢ , and M) follow fram Eq.’
24 and the Fourier transforms of Egs. 20 and 21. * !

There are altogether 16 unknown coefficients
{(two for each torsicmal member and four for each
beam). The 16 requisite boundary conditions are the
following: torques at joints 1 and 1' are equal to
unity, ii.e., to the Fourier transform of the applied
torques {2 conditions); sum of torsional and bending
mements at joints 2, 2',3, 3'are zero (4 conditious);
shear forces at the ends of the beams are zero,
since torsional menbers are assumed not to be
cepable of transmitting shear force (4 conditioms);
rotations of collinear torsicnal mermbers at joints 2
and 2' are equal (2 conditions)s rotations of
torsional members and slopes of beams at joints 2,
2', 3, 3' are equal (4 conditions). Note that it is
possible in this case to take advantage of symretry,
which allows the reduction of the muber of mﬂmams
to twelve. Once the unknown coefficients are

Structural Network ({ = 195 m)

determined as finctions of the frequency parameter,
the Green's function being sought is obtained by
inverse Fourier transformation of the quantity of
interest (e.g., rotation, slcpe, moment).

. Calculations were performed for, the following
values of the network parameters (seen, PP. 13—20)

pA = 2,39 kg/m; pT = 11.8 kg m, EI = 1,77 x 10° (1 +
insgnt) N ! =195 m n = 0.001, The Green's
function for the slope at joint 3 of beam 3-3' due
to the maments impulses of Fig. 7 is shown in Fig.
8a. The disturbances consisting of the mament
impulses at joints 1 and 1' propagate to joint 3
partly through the beams 3-3' and 2-2', which are
dispersive, That is, the various frequency carponents
of the disturbances, whichwere originally synthesized
in a sharp signal, travel at different speeds and
arrive at joint 3 at different times. The dispersion
bf the higher frequency coanponents is evident in
Fig. 8a. A similar dispersion occurs in .the case of
the Creen's function shown in Fig. 3a. The higher
the damping, the faster the high frequency camponents
are emoothed out, This is seen by corparing the Green's
functions for the slope of the beam at joint 2,
calculated by assuming the hysteretic damping to be
0.1% cn the cne hand (Fig. 8a), and 1% on the other
{Fig. 9). Finally, note the cantrast between the
Green's functions of Figs. 3a, 8a, and 9, which are
typical of dlspersive media, and the Green's
functions for the nondispersive mechanical sllder
(Figs. 4a, b, c).

Numerical Recanstruction of Dynamic Green's Function
Fram Noisy Response. Figure 8b shows the  response
cbtained by convolving the Green's function of f}g
8a and an inverse Gaussian pulse with ¢ = 0.2 8%/ €.
The drastic smoothing out of the sharp features of
the Green's functiom is evident. The noisy response
was canstructed by edding 18 noise to the response
of Fig. Gb.
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The regularized reconstruction of dynamic
Green's function, using « = 1.75 x 1077, is shown
in Fig. 8d. Much of the detailed structure of the
Creen's function has been preserved, although a few
discrepancies can be detected. However, the errors
inherent in Fig. 8d are of little consequence when
the reconstructed Green's function is used as a tool
for predicting the response to a given' smooth
function £(t). Indeed, as pointed out earlier, small

pointwise errors tend to be averaged out by the
corvolution process. As an exanple, the recomstructed

step response (Fig. Bf) cbtained by convolution of

the unit step function with the reconstructed
8d ie virtually:
indistinguishable fram the exact step response (Fig.:

Green's function of Fig.

8c). It is noted that if the errors in the

reconstructed Green's functions are large —— as may’
{direct):
the convolution process may not:

be the case in an unregularized
reconstruction -
be sufficiently effective in averaging them out.

Fig. 10 View of Successive Partial Deconvolutions for Structural Network,

To illustrate the importance of selecting the
cptimal value of the regularizing parameter, we shgw
in Fig. Be a recomstruction in whichw = 1.5 x 1074,
Because this value is too large, it causes the
smoothing cut of legitimate high-frequency carponents
of the signal. .

; For the case n = 0.01, Fig. 10 shows a view of
12 successive steps (see Eq. 10) in the recanstruction
process that proceeds fram the response to the pulse
(first trace in foregrourd) to the Green's function
being sought (last trace in background). Such
diagrams, interpreted in the light of error bounds
developed in°, can be bhelpful in attempts to
determine whether certain high-frequency canponents
of a reconstructed Green's functicnbelong legitimately
to the signal or are spurious additions due to noise.
‘ Additional details on various gspects of the
work presented here are available int .

1; Conclusicns

: A mathematical and computational capability
exists that would enable the reliable experimental
determination of dynamic Green's functions for
structures. The method is based on propagating
specific types of pulses leading to a tractable
geccnvolution problem in the presence of noise.

+

| Acknowledgments

; This work was spconsored by the Directorate of
2ercspace Sciemces, Air Force Office of Scientific
Research. Dr. Anthomy K. Amos served as the project
menitor: The Minerals Management Service, U.S.
Department of the Interior (Charles E. Smith,

Research Program Manager) alsc provided pertial
support.

n= 0.01



-

in

2.

References i

Ashley, H., “Same Considerations on Earthbound !
Dynamic Testing of Large Space Structures”, :
Paper 86-0908, 27th Structures, Structural :
Dynamics, and Materials Conference, Part 2, |
San Antonio, Texas, May 19- 21, 1986, American
Institute of Aeronmautics and Astronautics, New !
York, N.Y., pp. 362-373.

Cannon, R. H. Jr., and Schmitz, E., "Initial
Experiments on the End-Point Control of a
Flexible One-Link Rcbot,™ The Internatiomal
Journal of Robotics Research, Vol. 3, No. 3,
Fall 1984, pp. 62-75.

Crawley, E. F., and de Luis, J., "Use of
Piezoelectric Actuators as Elements of
Intelligent Systems," AIAA Journal, Vol. 25,

- Oct. 1987, pp. 1373-1385.

8.

10.

11.

12,

13.

Carasso. A. S., and Hsu, N, N., "Probe Waveforms
and Decorvolution in the Experimental
Determination of Elastic Green's Functioms,”

SIAM Journal on Applied Mathematics, Vol. 45,
No. 3, June, 1985, pp. 369-382,

Carasso, A. S., "Infinitely Divisible Pulses, |
Continuous Deconvolution, and the !
Characterization of Linear Time Invariant j
Systems,™ SIAM Journal on Applied Matl’:aratics, 3
Vol. 47, No. 4, Aug. 1987, pp. 892-927. :

Franklin, J. N., ®On Tikhonov's Method for Ill-
Posed Problems,® Mathematics of Carputation,
Vol. 28, 1974, pp. 889-907.

Frarklin, J. J., "Minimm Principles for I11- !
Posed Prcblems,” SIAM Journal on Mathematical |

_Analxs:.s, Vol. 8, 1978, pp. 638-650

Carasso, A, S., and Hsu, N, N.,, "L*® Errors :ln‘
Partial Deconvolution of the Inverse Gaussian
Pulse," SIAM Journal on Applied Mathematics,
Vvol. 45, No. 6, Dec., 1985, pp. 1029-1038.

Hurty, W. C., and Rubinstein, M, F., mg_a_ngcs of
Structures, Prentice-Hall, Englewood C11f£s,
N.J., 1964,’p. 88. !
Pestel, E. C., and leckie, F. A., Matrix
Methods in Elastamechanics, McGraw-Hill, New
York, 1963, p. 133,

von Flotow, A. H., "Disturbance Propagation in |
Structural Networks; Control of Large Space '
Structures,™ Ph. D. Dissertation, Department of
2Aeronautics and Astromautics, Stanford :
University, June 1984,

Iove, A, E, H., A Treatise on the Mathematjcal

Theory of Elasticity, 4th ed. Dover, New York, :
1544, p. 435. :

Carasso, 2. S., and Simiu, E., "Identification
of Dynamic Green's Functions in Structural '
Networks,® paper submitted for possible
publication to the AIAR Journal.






