The following is a true copy of my notes, Yolume III, labelled "Summaries" which were recorded during the interval 1951-1956 while I was in the Lederberg laboratory in the Department of Genetics at the University of Wisconsin in Madison.

The notes were entered in intervals with some pagination and represent various types of summaries, speculatioons, etc. I have numbered them sequentially in the upper right hand corner from page 1 to page 253 for convenience.

There are a number of irradiation experiments (UV) plotted which have never been published. I remember communicating some of them to E. Kellenberger who may have giventhem to Werner Arber since I believe there are some similar experiments in Arber's doctoral dissertation. There are also some drafts of my own dissertation.

Items of possible interest are the handwritten notes of J. Lederberg (4/10/54) labelled "Remaining Questions" on pages 90-92; the typing bill for my disseration, page 155; a status report of the Lederberg lab for 1953, pages 161-195; some notes of JL on putting the stock book on keysort cards, page 197; a matrix by JL for transduction mapping, page 201; and an index to Volume II of my notes, pages 202-206.

This Volume is a hodge-podge and doesn't represent any temporal order - I believe page 253 is really ahead of page 1 which was a preliminary report leading to my dissertation.

M. L. Morse

Webb-Waring Lung Institute University of Colorado Health Sciences Center Denver, CO, 80262 November 20,1986. Summaries

Research

M. L. Morse Genetics

(1)

Materials and Methods

The principal cultures used are listed in table 1. In summary they represent three distinct mutations which lead to the loss of ability to ferment galactose (Lederberg, E., 1950). The Gal₁- and Gal₄- stocks are the result of a single mutation to (-7 in each case, while the Gal₂- stocks represent two independent mutations to (-) whose identity is based upon the observation that no(+) recombinants have been observed in more than 11,000 prototrophic recombinants from crosses between them and upon the synonymous behavior of the stocks in transduction experiments. These three loci are closely linked to one another as indicated by the data in table 2, but the order of the loci is not specified.

In addition, each of these loci is known (Lderbberg, E. and Lderbberg, J., 1953) to be closely linked to the Lp or latent phage locus of E. coli K-12. Three alleles are known to exist at the Lp locus; (1) Lp+, overtly lysogenic and showing evidence of free phage in cross brushes with Lp^S forms, and resistant to lysis by free lambda phage, (2) Lp^r, not overtly lysogenic and showing the presence of free phage in cross brushes with Lp^S forms, but resistant to lysis by free lambda phage, (3) Lp^S, not lysogenic, and being lysed or lysogenized by free phage.

More extensive delineation of the interrelationship of these loci has not been feasible until recently and it is hoped that with the aid of a new method of distinguishing the minus recombinants that mapping of this region may be accomplished.

Another locus which has a direct bearing upon the problem is the locus contolling resistance to lambda-2, the lytic mutant of lambda. This locus, Lp₂.

has an epistatic effect upon events controlled by Lp (Lederberg, E. and Lederberg, J., 1953). Thus a change from Lp₂⁸ (lambda-2 sensitive) to Lp₂^r, (lambda-2 resistant) results in a loss by the cell of the ability to adsorb lambda as well as lambda-2. Sensitivity to lambda by a cell therefore can be masked by the presence of the rallele of Lp₂. The Lp₂ locus is not closely is not elosely linked to either Lp or to any of the galactose loci in question.

Methods of cultivation and media used were as detailed in Lederberg, J. (1950). Liquid cultuivations were in penassay broth medium, with or without added aeration, solid media used were of EMB base, either with or without added sugar, or for crosses, a synthetic form of EMB, EMS was used.

High titzered lysates of cultures were prepared after the method of Weigle and Delbrück (195) by inducing lysis of penassay grown cells by means of irradiation with small doses of ultraviolet. The UV was admistered to saline x suspensions of the cells and the cells subsequently diluted with 2X penassay broth and incubated wigh aeration until maximal clearing was obtained.

Lytically grown lambda was obtained by infecting the sensitive cells by exposures to lambda prepared by the Lwoff technique, discarding the supermetants after the adsorptions and resuspending the sedimented cells in mutrient saline broth. The NSB suspensions were then incubated with aeration until maximal clearing was obtained.

Table I

List of pertinent cultures

Culture	Genotype	
K-12	F Lp ₁ Lp ₂	
W518	F'M Lac Galu Lp1 *Lp2 s	
W750	F'M Lac1 Gal1 Lp1 Lp2	
W811	FM Lac Gal Lpl Lpl E2	
W902	FTLTh Gal Lp1 Lp2	
W1210	FT Lac Gal Lpt Lp2	
w1436	FTTThTLac1 Gal4 Ip1 SLp2 S	,
W1924	F'M Lac1 Gal4 Lp1 Lp2 5	
W2175	F [†] gal ₂ ⁻ Lp ₁ [†] Lp ₂ ⁸	
W2281	FTM Lac1 Gal2 Lp1 SLp2 S	
W2342	F ⁺ Lac ₁ -Gal ₂ -Lp ₁ ⁺ Lp ₂ ⁸	
w2373	F Hist Leuc Gal Lpl SLp2 S	

Table 2

Recombination between the Galactose Negatives

Cross			m Number of rophic Recombinants	Percent (+) Recombinants		
F ^{+ G} al ₁ -	X	F-Gal ₂ - (() * () (() * () (1) 1500 2) 6517 3 505 3603 11620	0.13 0.06 <u>0.027</u> 0.06		
F+ Gal4-	X	F-Gal ₁ -	4588	0.13		
F+ Gal4-	x	F Gal2-	2654 13 1345	0.23		

varied amounts of Results

When high titered lysates of wild type cultures are mixed with Gal₁-.

Oal₂- and Gal_{ij}- cells and plated on FMB galactose medium, results such as those
in figure in are obtained. Since each of these mutations to gal- is capable
of reverse mutation the data shown in figure 1 have been corrected for the
number of reversions by subtravting this number as determined from control
platings with no added lysate. Figure 1 shows that with increasing amounts
of added lysate there is a linear increase in the number of galactose
fermenting papillae per plate. In addition, figure 1 indicates that lambda
sensitive cultures appear to be more capable of showing the effect of added
lysate than lysogenic cultures or cultures carrying a non-plaque-forming
type of lambda.

when lysates of gal- cultures are mixed with the various gal- cells and plated upon galactose medium results similar to those shown in table 3 are obtained. Each of the lysates of the gal- is capable of evoking galactose fermenting papillae upon plates spread with the other gal- cell types but not with plates spread with cells of its own type. The ability to include gal+ clones in other gal- but not with cells of type corresponds to the differentiation of these gal- mutations by recombinational analysis. Evidence complementing this is shown in table 4 which shows that the ability to evoke papillae with cells of type is restored by reverse mutation. Presumably phenotypic reversions can be of two types, reverse mutation at the mutated locus, and mutation at a second locus whose action minics the action of the first gene. Reversions of this second class should not be able to evoke papillae from cells of type. Such reversions as the latter have not as yet been investigated.

Table 3
Interaction of Gal1-, Gal2- and Gal4-

	Titer	(x10 ¹⁰) -	Gal ₁ -	Gal ₂ -	Lysates Gal ₄ - 1.7	Wild Type	
Cells							
Gall- Lp+	(1) (2)	2* 2	2	176*	43 -	4 05	
Gal ₂ - Lp ⁺	(1) (2)	14 20	52 -	11 10	43 -	- 356	
Gal ₄ - Lp ⁺	(1) (2) (3)	89 50 47	85 -	202	- - 50	- 417 394	

^{*} Number of papillae per plate, 0.1 ml lysate plated. Between 108 and 109 cells plated

Table 4
Restoration by Reverse Mutation of the Ability to
Transduce Previously Nontransducible Loci

Locus (all Lp+)	Reversion	None	Addition Reversion Lysate	
Gal _l -	Gal ₁ + #1	0	648 [*]	
Gal ₂ -	Gal ₂₊ # 1 Gal ₂ # 2	10 6	96 552	
Gal ₄ ≇	Gal ₄₊ # 5 Gal ₄₊ # 8	39 2 5	204 291	

^{*} Number of papillae per plate, 0.1 ml lysate plated Between 10° and 10' cells plated.

Examination of the other characteristics of the cells transduced to gal (+) by lysate exposure has uniformly shown no changes in any of them with the exception of the induction of lysogenicity in the lambda sensitive forms. Direct attempts to transduce other factors have been uniformly negative. A summary of the avilable data is given in table 5. In connection with the negative results in attempts to transduce xylose and lactose loci it should be noted that both xylose and lactose containing media have some selective value for galactose for muting clones.

Transduction in K-12 thus far has been found to be limited to several galactose loci closely linked to the latent phage locus. Lp. These loci include Gal₁, Gal₂, Gal₃, Gal₄, Gal₆, and possibly several more that have not as yet been classified. The experiments reported here will concern only Gal₁, Gal₂ and Gal₄ although some observations on Gal₃ and Gal₆ have been made. Not all loci controlling galactose fermentation are transducible. One occurring in W2312 will be mentioned later, and another induced by copper treatment by Helen Byers has been found.

The transductions described above have been effected by means of lysates perpared by the Lwoff technique of inducing lysis with a small dose of ultraviclet. Lysates prepared by lytic growth of the phage on a sensitive culture apparently have no transducing activity and have lost the transducing activity included in the inoculum. The inability of this type of lysate to transduce is demonstrated by the results given in table 6.

The necessity for lambda adsorption for transduction is illustrated by the results given in table 7. When the various gal- are found coupled with the <u>r</u> allele of Lp₂, a combination which is incapable of adsorbing either lambda or lambda-2, transductions are not observed. The presence of this allele of Lp₂ does

not interfer in the capacity of a culture to give rise to gransducing lysates $\frac{f_{YANS}duc_1b/c}{f_{YANS}duc_1b/c}$ and the transducibility of a gal- locus found coupled with Lp_2^T is demonstrable when a suitable cross is made and a gal- Lp_2^S recombinant obtained.

Recovery of the transducing activity of a lysate by the method of mixing lysate and cells on plates appears to be good in the case of lysacgenic cultures, the variation being less than two-fold over a thousand-fold change in the number of cells plated (figure 2). This is not the case when the added cells are lambda sensitive, the variation being in this case two or three-fold greater over a similar range of cell concentrations. It should be noted again that the lambda sensitive cultures give approximately ten-fold or more transductions at any cell density, and that **Mat_the relationship of the activities on the two types of cells is not known. The ratio of number of transductions to phage content of the lysates approximates 10-7 for lysagenic assay cells, about 10-6 for sensitive cells, ***matrix:**matrix:**

Alternatively to mixing cells and lysate on plates the transducing activity of the lysates may be adsorbed upon cells and the cells then plated out on agar. Table 8 gives some indication of the adsorption of the transducing activity and also some indication of the adsorption of the phage under the same conditions.

Table Market of the Lp2 Locus on Transducibility

Galactose Locus	No Addition	Wild Type Lysate	
Gal ₁ - Lp ₁ + Lp ₂ * Gal ₁ - Lp ₁ + Lp ₂ *	1 *	426 * 2	
Gal ₂ - Lp ₁ + Lp ₂ * Gal ₂ - Lp ₁ + Lp ₂ *	20 14	356 14	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	89 5 0	296 57	

^{*} Numbers of papillae per plate, 0.1 ml lysase plated Between 10⁸ an 10 cells plated.

Table #5
Other Loci tested but not found Transducible

Locus	Mumber of Experiments	ultures Involved
Lacı	4	W112
(ser or glyc)	1 .	W1678
Leuc	3	W1736, W1436
Methionine	4	58-161, W811, W1821, W518
Xylose	3	W1821
s	1	W518
Prol	7	W1692, W1920, W206 2
Mal	i	W2071

Mal, (20128) > 28

a enough rece

1.1.

Stanford

Table R6 Action of Lytically Grown lambda in Transduction

Experiment	Culture	No Addition	Lytic Lambda Lysate(2.4 x 1010 lambda/ ml)
228	W750	3*	2*
	W 518	9	8
	W2175	7	8
239	W750	2	0
* *	W518	13	8
	W2175	6	2
254	W750		3**
	W518	•	6**
	W2281	-	9**
	W2373	• •	6**
	W811	-	39**

* Numbers of papillae per plate, 0.1 ml lysate plated. 10 -10 cells plated.

** these papillae picked and streaked out, all found stable.

hybiothy grown & as forlows. WEII gary & adsorbed on with Egol + in two exposures. Contributed and insuspended in NSB. Acrahad 4.5 hours with acrahin. Control hube contaked of books exposed cells.

Table 8
Adsorption of the Transducing Activity from Lysates

Adsorbing Cells		Phage Titer	Cell Titer	. 1st	Ađa.	Percent . 2nd A		3rd A	d a
		X 10 ⁹	X 10 ⁹		Trans.	Phage	Trans.	Phage	Trans.
Gal ₄ - Lp ^s	(1)	2.5	0.71	60	7 9	50	41	16	46
	(2)	3.9	0.55	52	33	-	-	-	-
Gal ₄ - Lp ⁺	(1)	14	c. 10	-	7 9				
	(2)	18	16	-	72	-	56	. •	0.0
	(3)	14	c. 10	-	97	-	-	· •	. =
Gal2- Lp+		18	6	-	35	-	33	-	0.0
Gall- Lp+		18	6.5	-	45	. •	100	-	0.0

The supernatant from the first adsorption was decanted and an equivalent volume of fresh lysate added. Similarly for the third adsorption. Assays were made of the amount of material remaining in the supernatants. Titers given are for the phage-lysate adsorbing mixture. In the experiments involving Galq- LpJ assay of the sediment was wade in Some instances. Total recovery in these cases was more than 100% - presumably due to the fact that total activity was undevestimated by the use of two few assay cells.

Some of the papillae evoked by lysate exposure have a property which distinguishes tham at once from spontaneous reversions. That is, they are unstable for galactose fermentation and segregate (-) cells over many single colony transfers. The mature frequency of unstable transductions and the nature of the segregants will be taken up in a later section, it is necessary to mention them now in order to consider the realtionship between the transducing agent and the phage lambda. It is also necessary at this time to mention some special cultures encountered during the analysis of the segregants mentioned above. These special cultures are notable for the fact that they give rise to lysates by the Lwoff technique in which the ratio of transduction activity to lambda plaque forming activity is much closer to unity than is found in the usual cultures of K-12. These cultures will also be considered in a later section and it will suffice to say here that exposure of a population of gal- cells to one of these lysates can result in the transduction of several percent of the cells to gal+.

The data in table 9 indicates that when lamia sensitive cells are transduced the resultant cells and their gal- segregants have for the most part become lysogenized. When Lp1^r forms are transduced they also may become lysogenized, but much less frequently than sensitives. However, these results may be misleading since the platings involve large quantities of pange and it cannot be certain that lysogenization was not prior or subsequent to transduction.

When the transductions are made with the special lysates mentioned above, Besults such as those shown in table 10 are obtained. Under conditions where one percent have been of the cells are transduced to gal+ the transductions have become lysogenized, the same or Lp1^r, while the gal- cells in this environment have remained lambda sensitive.

Table 9
Correlation of Lysogenization with Transduction

Locus transduced and Lp1 genotype	Lysate source	Tran Mumber	Percent Lp	Segn Number	Percent Lp.
Gal _l - Lp _l s	wild	23	87	1	100
	gal2-	24	75	7	100
	gal ₂ -	12	58	0	- .
	gal ₄ -	22	77	9	100
Gal ₂ - Lp ₁ ⁸	wild	13	85	13	85
•	gal ₁ -	20	95	20	95
	gal ₄ -	23	100	23	100
	wild	18	100	-	
•	wild	 '	-	28	50
	gal _l -	- .	•	44	86
	gal4-	-	-	40	83
Gal ₄ - Lp ₁ s	wild	-	••	18	100
	gal2-	-		19	100
•	gal _x -	-	-	45	100
Gal#- Lp1	wild	-		29	3.1
	gal ₂ -	-	-	18	5.5
Cotals		154	86	267	89

Table 10 Correlation of Transduction with Lysogenicity Using Lysates Giving a High Frequency of Transduction

Cells	Post	Number of Colonies Observed						
Exposed to	Exposure Cell Titer	Gal-	Gal+	Gal- partially lysed	Total			
Broth	4.1 x 10 ⁹	3280	0	0	3280			
HFT lysate	3.5×10^9	2801	31(1.1%)	54	2886			

* titer = 1.2×10 9 / plaques per ml.

Table 10a

Examination of Colonies after HFT Lysate Exposure Numbers of Colonies of Each Class
Lp Lp^r Number of Colony Lp 8 Type Colonies Examined 31 0 0 Gal-31 3 0 23 26 Gal+

The occurrence of stable transductions among the various combinations of transductions possible is indicated by the data shown in table 11. With but six exceptions the difference between expected and observed fequency of stable gal (+) on the transduction plates is sufficiently great not to require statistical treatment. In setting out this data it has been assumed that the only source of stable (+) on the plates is from spontaneous reversions and that the use of a no lysate addition plate as an indicator of the number of spontaneous is adequate in this sense. It is notable that transductions involving gal, and gal, are nearly all stable and it will be remebered that lysates of these cultures have less papillae promoting activity upon one another than, other cultures. These two loci are readily distinguishable by crossing test and by use of the HFT lysates mentioned above. In the other combinations of transductions possible stable transductions occur, varying in frequency from less than one percent to more than 50 percent.

The segregants from the unstable transductions acn be classified for locus by three separate methods: (1) by the lysate by which they are not transdiction (transduction test), (2) by that locus which cannot be transduced to (+) via a lysate (lysate test), (3) by allelism test in crossing (crossing test).

In classifying the segregants it will be convenient to refer to the origin of the locus by specific terms. Example transdictions by homotypic will be designated the locus of the cell transdictioned to (+), by heterotypic will be designated the (-) locus (if any) of the transducing lysate, and by homoheterotypic will be designated cultures with the loci of both transduced cell and transducing lysate.

Since the order of segregation from a transiduced cell can not be specified without micromanipulative means the analysis of segregants from a single transduction in its absence is without great significance. However, the data in table 12 indicate that a single transduction can give rise to all three types of segregants, homotypic, heterotypic, and homo-heterotypic,

Table Fransductions

Çell Genotype XXX					hmber an	San	Stable ce of]	e Tra	nsduoti	<u>∿n8</u>	
~	Wild		Gal _l -			Ge?	2-	-	Gal		
	Exp't		Exp't		~		_	•	Exp't		State told
Gall - Lpla	1/33	14	••	•••	1/11	11	0/56	20	1/30	29	74 (11) 130
150 Lp1+	1/46	2 -	••	_	-	-	1/92	0 -		-	-2 (P) 138
274 Lp1+	1/143	42		-	1/84	4	•••	-	12/27	27	73(59) 254
Gal ₂ -Lp ₁ s	0/46	15	0/214	27		***	~	-	0/98	4	मीमा ३२६
2 ¹ 12p ₁ +	17/248	21 -	14/83	61	~			<u> </u>	14/79	52	135(90) 410
'2,p1+	4/23	6 -	2/65	0 -	-	-	~	-	5/56	0 -	4-(-5) 14 4
Gal ₄ - Lp ₁ s	19/835	383	29/72	72	11/472	20	4/128	21	-	-	496(432)1507
Lp1+	41/573	133	51/96	96	-	-	-			-	2 29 (137) 6 6 9
$\mathbf{Lp_1}^{\mathbf{r}}$	31/320	127	•••		31/238	50	-	-	-	-	177(115)5 58

Exp't = number of stable expected = no. papillae control
no. papillae lysate plate

Chs. = number of stable observed = No. stable observed

No. stable observed | X no. papillae Transd.
no. pap. in sample

Note: A number of different lysates were employed. In the case of Gal2- lysates, the first column represents lysates of W902, the second column, W1210. In the case of the Gal1- Lp1 cells, the first is W750, the second W2343, a prototroph derived from W750

Table 12 Segregants from a Single Transduction, tested by Transduction Test.

The sequential order of the segregants is unknown										
Cell	Lysate	. 01	assification of S	egregants						
Genetype	Source	Homotypic	Heterotypic	Homo-heterotypic						
Gal ₄ -	Gal ₂ -	17	2	. 1						
	•			•						

oecurred

but it can not be stated that the segragitions in any sequence or if sequential. The analysis of single segregants from a large number of transductions was undertaken to clarify this process. In the initial experiments the transduction tests were performed by mixing a portion of lysate from a culture of specific locus and the culture to be tested upon EMB galactose medium, but after the discovery of the HFT lysates test for allele was by cross brush with lysates of this property upon the same medium.

The results of a large number of tests of segregants by transduction test is given in table 13 and a summary of the cultures in this table which were also tested by lysate test is given in table 14. The agreement between the two tests was complete, that is, a culture classified by the first method as galu- was also classified by as this locus by the second test. A summary of the segregants which were tested by all three methods of determination is given in table 15. Agreement between the crossing test and the other two tests was also complete. Some indication of the distribution of the segregant types, as judged by transduction test, can be obtained from the distribution data given in table 16.

With regard to the crossing data given in table 15 it will be noted that no crossing data for gal₁— segregants is reported or crosses of heterotypic segregants from gal₁ transductions by gal₁— testers. This is because a suitable stock is not yet available. W2373, a hist—leuc—gal₁— made by transducting W1765 to gal₁— has not been found sufficiently fertile in crosses with meth—stocks to warrant its use. A new T-L-B₁— (also Het) gal₁— also made by transduction to (-) may prove suitable. It should be noted that the number of prototrophic recombinants given in table 15 is probably low by as much as 25 percent since in many instances only the smallest plates with the smallest number of prototrophic recombinants were counted in many experiments involving many replicate plates.

13

Table

Nature of	Type of Segregant					
Criginal Transduction	Homotypic*	Heberotypi c**	Homo-heterotypic***	Total		
Wild type on Gal-	169	0	0	169		
Gal- on Gal-	240 (85,4)	37(13.2)	4(1,4)	281		
. •	802(91.0) 407	37 (8.2)	4 (0,88)	450		

* having the gal- locus of the transunduced cell

** having the Gal-locus of the transducing lysate

*** having the Gal-loci of both transinduced cell and transducing lysate.

Table 4

Analysis of Segregants by Lysate Test. Summary. Agreement bytween

	Lysate Tests s	ind Transduction	Tests was 'omplete	
Nature of the Original Transduction	Homotypic	Heterotypic	Homo-heterotypic	Total
Wild type on Gal-	21	0	o	21
Gal- on Gal-	39	156 19	0	5 8
	<u> </u>	16 19	0	78

Table :5
Summary of the Analysis of Segregants by Transduction test, Lysate test
and by Crossing test.

Original	Number	an of	d by Crossing	(000)	legatfice	ki on hy		
	Number of Segregants		Transduction	Classification by Lysate Crossing test				
Transduction			test	test	I Homotypic		X Heterot	vot e
		<u></u>			No. (+)	Tot. Prot	No. (+)	Tot. Brot
		e (3)	0.1.	0-3	•	000/	2	2102
Gal ₂ x Ga	Tit-TD.	5 (1)	Gal4-	Gal4-	0	2786	3 2	3183
		(2)		H	0	2675		3471
		(3)	#	#	0	3485	23	5342
		(4)	Ħ		0	5952	1	1665
		(5)	•	2	0	5000	1	891
	•	2 (1)	Gal ₂ -	Gal ₂ -	7	3102	0	1988
		(2)	* ~	# ~	10	4364	0	1187
	- .	h /2 \	0	0.1		36304		1390
Gal2 Gal	t-rb_	4 (1)	Gal ₄ -	Gal ₄ -	0	16104	3	1389
	•	(2)	. #	# #	0	573 0	1	164
		(3)		*	0	3358	ō	202
		(4)	н	2	0	12848	1	171
	HFT	3 (1)	Gal ₂ -	Gal2-	1	11200	0	827
		(2)	# ~	#	6	10608	0	718
		(3)	Ħ		3	5000	0	409
Wild -x Gal	_LĐ ^s	4 (1)	Gal ₂ -	Gal ₂ -	. 0	7805		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, — <u>r</u>	(2)	H	Ħ	0	4992	•	
•		(2) (3)	n	Ħ	Ö	106		
		(4)	#	t	. •	4552		
Wildx Gal	_T.n+	4(1)	Gal ₂ -	Gal2-	0	4070		
WIII A GAL	,—up	(2)	11	#	Ŏ	5384		
		(30	т п	#	ŏ	2072		
		(4)	n	#	Ŏ	6988		
						·		
Wildx Gal	-Lps	4 (1)	Gal ₄ -	Gal ₄ -	0	896		
=	,	(2)	* ~	# -	0	918		
		(3)	Ħ	×	0	1134		
		(4)	11	Ħ	0	863		

Table H

Distribution of the Segregant Types by Transduction Assay

Trans	1nduced		Sour	ce of Lysake		
cell		Wild type	Gal _l -	Gal ₂ -(¥902)	Gal ₂ -(W12	10) Gal ₄ -
Gal _l -	Lp1 + (W2343)	18 Gal	· ·	18 Gal ₁ -, 5 Gal ₂ -	-	no seg. found
	Lp ₁ +(W750)	16 Gal ₁ -	·	18 Gal,-, 1 Gal2-	18 Gal,-,	3Gal3- no seg.
	Lpl 8	9 Gal ₁ -	-	1 Gal ₁ -	6 Gal ₁ -,	1Gal ₂ - 1 Gal ₁
 Gal ₂	Lp1 [*] (W2175)	20 Gal2-	14 Gal ₂ - 3 Gal ₁ - 2 Gal ₁ -Gal ₂ -		•	8 Gal ₂ - 7 Gal ₄ -
	Lp]*(W1210)	15 Gal ₂ -	19 Gal2- 2 Gal2-	60		-
	Lp ₁ ⁸	16 Gal ₂ -	20 Gal2-	24		21 Gal ₂ - 1 Gal ₄ - 1 Gal ₂ -Gal ₄ -
	Lp ₁ +	20 Gal _{l,} -	nsf	16 Galu- 3 Galu-	•	
	Tb ¹ a	13 Gal4-	nsf	18 Gal ₄ - 3Gal ₂ -	17 Gal _{/4} - 2 Gal ₂ -	
	Lp ₁ r —	29 Gal ₁₄ -	nsf	15 Gal ₄ - 3 Gal ₂ -	-	-

nsf = no segregahts found

Cultures giving lysases with the HFT property have been prepared for each of the gal- loci which have been given consideration to date. These cultures have the common property that each is derived from the transduction of a gal- culture by a lysate of gal -. It is not known whether the transductions themselves of this type are capable of giving rise saty to HFT lysates or not, but the HFT stocks thus far obtained have been segregants from such transductions. Whether the transductions of gala- by other cultures gives rise to HFT segregants is not known, but one instance in which the transduction of gal2-by gal1- resulted in an unstable (+) which had HFT property KAKATSKE has been encountered. Some idea of the frequency with which the HFT occur can be obtained from the following. In the case of transductions of gal₁- by gal₂-, out of 28 gal₁- segregants examined 4 had this property and of the heterotypic gal,-, one out of five examined was HFT. In the case of transductions of galu- by gal2-, of 31 galu- segremments tested one was HFT, while of the three heterotypic gal, - tested one was HFT. In the above tests segregants which had been purified through several single colony isolations were used. Since the HFT cultures segregate NFT lines it is possible that the above estimatious are low.

Attempts to obtain (+) cultures with HFT property by reversion of (-) have been unsuces aful in the limited attempts made thus far. This too may be in part due to the fact that the HFT cultures segregate NFT lines since it was not known at the time of examination that this was the case and the NFT reversions obtained could well have been from NFT components of the culture. The conversions of a HFT culture FEXEX to NFT is fairly rapid and the HFT cultures are easily lost. On one occasion it was noted a culture which had been on stock slant only a few weeks had changed such that of ten colonies tested 4 were found to be NFT. The NFT cultures which rank are derived from RFT lines have not been investigated except in instance. In addition to NFT property (or possibly no activity at all) the segregants were in one case and the segregant which they were desired and in the other investible gal (+).

In one case (and the negative results in the other cases can possibly be explained

by the contamination of the HFT cultures with NFT cells) KAINEX gal (+) reversions of an HFT culture were found to be unstable for gal(+) and segregated (-) which were of the same (-) type as the reverted locus. The examination of more HFT cultures to to determine the relationship between duplication of certain loci and HFT property and is in progress.

The lysates of the HFT stocks which have been prepared thus far have not had high phage titers although they have been prepared in a manner which gives high titered lysates in NFT stocks. Whether this indicates a lower yield per bacterium of plaque forming particles or different conditions for induction is not known at the present. Preliminary experiments to determine the yield of HFT particles per bacterium are regarded with reservation since the purity of the culture with regard to NFT cells was not known.

The HFT lysates have been used principally for allelsem tests. Transductions can also be made via these lysates and the resultants studied. This has not been carried very far. The data in table 16 indicate that transductions by HFT hysates are not appreciably different from those of NFT lysates as regards occurrence of stable transductions and distribution of segregants.

The HFT lysates can be used for transduction from gal(+) to gal(-) and have proved of value in creating new stocks. Table 18 lists some of the information available on the stocks transduced to (-). Since the completion of the table gal₁-and gal₂- Lp^S T⁻L⁻B₁⁻ Het have been prepared. The (-) stocks prepared thus far have been made starting with Lp^S cultures. The resultant cultures may be Lp^S, Lp⁺ or Lp^T. In general the procedure has been to mix HFT lysate and cells on FMB(0) and incubate for 12-18 hours and then to streak out the growth and search for gal (-). On other occasions examination of single colonies from cell populations exposed to HFT lysate has been used.

Table 15
Transduction by HFT Lysates. Distribution of the Segregants by
Transduction Assay

	Transduction of the state of th	n Assay		
Transinduced		HFT Lysate	0-1	
Cell Genotype	Gal _l -		Gal _{li} -	
Gal _l - Lp _l +	-	10*Gal ₁ - 2 Gal ₂ - 1 Gal ₁ - Gal ₂ -	9 Gal _l -	
Gal ₂ - Lp ₁ ⁺	6 Gal ₁ - 3 Gal ₂ - 1 Gal ₂ - Gal ₁ -	-	8 Gal ₂ - 4 Gal ₄ -	
Galu- Lol+	not done	15 Gal4-		

Out of a total of 18 transductions (or transductions and spontaneous papillae) analyzed. The difference between the number of segregants reported and 18 represents the number of stable papillae observed.

Table 17
Transductions to Inability to Ferment Galactose

Culture &	Lp	Galactose	"esultant	
Transduced	Genotype	Locus Transduced	Lp ₁ Genotype	Comment
W1485	Lps	Gal2	Lp ⁺ or r	8 distinct (-) obtained from single colonies
			7	2 distinct (-) obtained
		Gal _l -	+ <u>and</u> r	2 distinct (-) obtained
w1673	Lps	Gal ₂ -	+ <u>or</u> r	-
w1765	Lp ⁸	Gal _l -	8	**************************************
W2252	Lp ^s	Gal _l -	r?	2 distinct (-) obtained
		Gal ₂ -	r	2 distinct (-) obtained
	†			

Separate mention of the cultures that were classified as double (-) by transduction test must be made partially because the results are more incomplete and partially because they may offer some additional information upon the transduction phenomenon. Four such (--) have been obtained, three of the gal₁-gal₂- type and one of the gal₂-gal₄- type. The evidence that such not cultures are (--) is that they are transduced meither by homotypic mor heterotypic lysates but are transduced by wild type or some other gal (-).

Lysates of these (--) cultures have been found to have little transducing activity regardless of the gal (-) tester used with but one exception. Whether this implies a failure of the phage particles to pick up a fragment of cell chromosome or whether the resultant thansduction is not phenotypically (+) through some interaction among the genes concerned is not known. The exceptional case resulted in the recovery of each of the (-) making up the (--) maximum and individually and not conjunctively. The homotypic locals transduced with this lysate was not recovered among the segregants.

As might be expected the (--) are more stable on galactose medium and have seldom been seen to revert. \$\frac{1}{2}\$

Some experiments of interest have been performed with one of the

(--) obtained. It was infortunately a prototroph and the results obtained with must

it mix also be repeated and extended with auxotrphic strains.

Although this (--) was not transduced by sitter, lysates of wither

(-) singly it was transduced to a lesser extent (where a solid layer of papillae by a mixture of the two with a (-) would have been obtained, less than 100 papillae were found). In this was case it taken that the cells transduced to (+) had received two phage particles with the addition of two (+) alleles in separate pieces.

The cell that was transduced to (+) may be represented as follows:

and the resultant transduction as follows:

In this case the extra (-) added in the segments are inferred from the results with transductions of single (-) in which the heterotypic locus is recovered among the segregants. Same Segregation from this transduction in the absence of crossing over or exchange between chromosome and segments can result in three types of (-) segregants.

which would be classified as (--), (2-) and (1-) presumably. With exchange between segments and the chromsome segregants with the (+) alleles would be found in the chromsome and subsequent segregation would yield (in addition to the types 2 and 3 above with the (+) transposed) the following types:

An additional type can be obtained if there be exchanges between segments. The order of frequency of exchange and segregation of the above types is unknown but on anamony with the simple transfections the first these mentioned would be expected most frequently, that is, loss of a segment is more frequent than exchange and loss of a segment. (This in turn is dependent upon the independence of exchange and loss) Examination of 24 separate segregants from one such transduction gave the following distribution of segregants by transduction test: 13 (--), 6 (1-) and 5 (2-). Since over 50 percent of the segregants were (--) it appears that when loss of a segment occurrs it is more likely to involve loss of both segments. The (1-) and (2-) found could be of two types, 2,4 and 3,5 above respectively. These types can be distinguished by means

of analysis of (+) reversions. In cases 2 and 3 the reversions will be unstable and segregate, and in cases 4 and 5 they will be stable for galactose. Reversions were examined for their stability from each of the (-) obtained. All the (1⁻) were gave stable reversions and therefore were presumably of the $--2^+-1^--1$ type. Of the (2⁻) examined all but one gave stable reversions and therefore the two types— $-2^--1^+-1^+$ and $--2^--1^--1^+$ were indicated with the most frequent being the former.

Examination of the time (2-) culture giving the unstable reversions showed that it make did segregate (--) cells but as yet it has not been established that it segregates (2-) of the following type ---2--1+--+.

The reversions of this the type 2 (2-) can be of two types and they should (perhaps) be distinguishable in turn by the segregants that they yield.

Reversion of the form ---2 ---1 ---* should be expected to segregate (--)

predominately and reversions of the form ---2 ---- should be expected to segregate (1-) predominately.

Reversions of the type 2 (2") appear to be of two types. From one type

33 segregants were obtained, of which 32 were (--), the remaining one a (2"). The
other type gave almost equivalent amounts of (2") and (--) and no (1") thus far.
The failure to recover (1") types from the exx reverted cultures is disturbing
but this may be related to elimination of the fall locus in crosses. Presumably
crosses between ---2"--1"----* and ----2*-1"----* should yield a larger number of
-2"--1"+==
(+) than crosses between (1") and (2") of normal constitution when there is
successful transfer of the segment through the zygote, these (+) in addition would
be unstable for galactose. The culture used unfortunately is a prototroph and
unless successful crosses between it and a Hfr strain can be accomplished the problem
can not be attack from this aspect. (Successful transmission of the segment through
the zygote was observed in some early experiments not related to the above.)

Examination of another (--) has begun. In this case Gal2 and Gal4are involved and a crossable stock has been selected. There has been another complication in this case. That is when the culture was first isolated, and also in the case of a repeat test, it was not found to be transduced by either (2-) or (4-) lyssates. Inseveral additional tests it has also reactive in this manner. In the instances where it was attempted to obtain transductions by mixtures of the two lysates it was found that the culture was transduced, to a lesser extent, by lysates of (2). The ximp xiest axwar axes transcensus it was thought. to explain this incongruent result by postulating that reversions had occurred during the growth of the culture and that in effect the culture consisted of (-) and (4-) contaminants. On this assumption the transductions of the culture would in effect be of the form (2") ---x (4") and the resultant transductions would be expected to segregate (4^-) predominately. This was not the case, of the six segregants examined (from six separate transductions) 3 were (2-), 2 were (-) and only one was (4-). This does not rule the explanation and but requires a frequency great ment of exchange between segment and chromosome for compatibility.

Examination of this culture had progressed to the stage of isolating a (4-) segregant that gave unstable reversions as well as a xxxix type which did not, at the time of writing.

Hot all of the Gal- cultures studied have been found transducible alt though the most frequently occurring (-) after ultraviolet radiation appear to be of this type. Three different occurrence, of non-transducible gal- have been found. Two of these were induced by ultraviolet, and the third by copper exposure (H. Beyers). One of the ultraviolet mutants has been examined to some extent. The results are given in table 18. It appears that this (-) is not transduced by any of the lysates and futher that lysates of it in turn transduced all known transducible loci, but Gal₂ with lowered frequency.

Table 18
Analysis of a Non-transducible Galactose Locus in W2312
by Transduction Assay

Experim	ent				e Additions		
		None		HFT Lysates		re	•
			Gal;-	Gal ₂ -	Gal ₄ -	Wild Type	
206	(1)	0*	0*	0*	0	-	
	(2)	0	0	-	•	0	
220	(1)	o	0	0	0	-	
	(2)	0	0**	0**)**	0	

* number of papillae per plate

		Activity	of Lysates of W2312 on Selected	Galactose Loci	
Galactose Locus		None	Plate Addition W2312 Lysate		· ·
Gall- Lp+		4*	37*		
_ 2- Lp+	(220)	8	7		
	(221)	19	28**		
Gal4- Lp+		17	74		
Gal ₆ - Lp ⁸		3	121		

* mumbers of papillae per plate

Table 15

Selected Galactose		s of W2312 with Selected Galactose I	
Gal ₂ - F	Gal+	Total Prototrophic Recombinants 2112	0.05
Gal ₄ - F ⁺	1	198	0.5

^{**} NFT (normal frequency of transduction) lysates used in these cases

^{** 12/12} examined were found to be stable Gal+

For the purpose of collecting new gal- and for observing the occurrence of transducible loci two separate experiments were performed. Gal- mutations were induced in W1673 (glyc or ser) prol and W1765 hist leuc by means of ultraviolet. Table 19 gives a summary of these experiments. Recourrences of both Gal- and Gal- were found as well as a number of new loci and possibly several (-). No recurrences of Gal- were observed.

The effect of ultraviolet radiation on the transducing activity of lysates has been investigated in three experiments. The first two experiments were concerned with NFT lysates, the last with an HFT lysate. The effect of ultraviolat upon NFT lysates is shown in figure 2. With increasing dose of ultraviolet there is a linear increase in the activity of the lysates on Lp+ or Lpr assay cells until a survivial of the plaque-forming tither has become reduced about 1073. Thereafter there is a gradual decease in transduction activity with increasing dose. On Lp. there is a slight increase in transducing activity and then a gradual decrease. The maximum reached by the lysates on Lp or Lp cells is about four times the maximum reached on Lps cells. In performing this experiment about 168 Lps assay cells were used, since figure 1 indicates that this number of cells may indicate only about it one-third to one-fourth the number of transductions actually present the Lps assay is probably that much low. This then would suggest that the absolute number of transductions is approximated upon ps cells when a sufficient number of cells are used and that the action of ultraviolet is to increase the assay on Lpt or Lpr cells to the level of the absolute number present. In connection with this it should be noted that survival of the transductions were at Lps is still about 0.5 even at the extreme doses used. From the above it is suggested that the action of investee of ultraviolet is neveral fold. First and most rapid is the destruction of plaque forming activity of Lps cells. Secondly, to destroy that property of the phage which causes them to be excluded by lysogenic cells, and thirdly to destroy

most of data...

Table

Transduction Assay of Some Galactose Negative Mutanas

Induced by Means of Ultraviolet

Culture	Mutant	uucea by		ced by HFT	Possible PENNELL
Treated	Designation	Gal _l -	GET ₂ -	Gal ₄ -	Genotype
W1673 Lp ⁸	W2310	0	+	0	Gal _l -Gal ₄ -
	₩23 1 1	0	+	o	н »
	W2322	0	O	0	nontransducible
	W2313	+	0	+	Gal ₂ -
	W2314	+	. +	+	Gal _x -
	W2315	+	+	+	Gal_x-
	W2316	0	+	+	Gal _l -
	W2317	0	• +	0	Gal _l -Gal ₄ -
	W2318	0	0	0	nontransducible
1765 Lp ⁸	238-2	0	0	0	nontransducible
	28845	+	+	+	Gal _x -
	238–6	0	+	+	Gal _l -
	238-8	+	+	+	Gal_x-
	238-10	+	+	+	Gal
	238-11	0	+	0	Gal _l -Gal ₄ -
	238-12	+	0	+	Gal ₂ -
	23 8– 13	+	0	+	Gal ₂ -

the transducing activity itself, perhaps by destroying the adsorption of the phage particles.

The effect of ultraviolet on HFT lysates is similar to that of UV on NFT lysates. The increase in transducing activity with dose in this case is not as great as with NFT lysates. A maximum is reached that is approximately equivalent to the plaque titer of the lysate which suggests that plaque and transducing particles may be the same but that appearance of a particle as a plaque excludes its appearance as a transduction. Platings for plaque formation on EMB galactose have not indicated that one particle can function in both capacities but the appearance of a plaque might be obscured by papillae formation. The sum of the activities (maximal) of the lysate on the two assay loci is 2-3 times the plaque ******* titer, which may be an indication that the activities are confined to a single particle. The occurrence of transductions with Lpr genotype has been noted with this lysate, and the equivalence of plaque and transduction titer might not be expected on the assumption that in these cases the effect was accomplished by a defective phage particle which would not give as well as to rise to plaques ax lysogenization. (This would require that Lpr genetypes were the result of such defective particles rather than of a defective act of lysogenization.)

EUGENE DIETZGEN CO. MADE IN U. S. A.

ND. 340-LSIO DIETZGEN GRAPH PAPER SEMI-LOGARITHMIC S CYCLES X 10 DIVISIONS PER INCH

Crude 35 Data Reput 415F Oud Thesis

	Interestra of	the Gal-	36
Cues Goldhu Gol;		millar/plate - 0. mel	byate plated wid:
(val, - (1) 2 - hp+ (2) 2 2	176	43	405 (2)
(gal) (1) 14 52 Ly+ (2) 20 -	10	43	356
(3) 50 85 (3) 50	202		290 417 394 (→ 17)
(3) 47 /-	-= 8×10 ⁷ 4.9×11.10 = 3×1	17 X 10 PP 4 X 1	14×19-

John June 9. 92

,						,		•		•	(34)
		•					rote	جائم	. Sulv		
		· .	Ju.			fre. 2	<u> </u>		= fuer =	WI821	
we.	W150	W2319	W 2343	wau							
(ml, w250	2230	10	%	17/2	11/2 42	148/0	197		19,14,34,7%	2	
(1505-7W2314	25/21	,	·	428					128/29		
				84			-		14/185.13		
W2373				4		•	350		30/1		
(Trans											mt
W2175	57 77 58 59 15 7	19	16/4	700/	45,8		10		43/14,51/5 24/3,50/13,35 73/4 51/3		wed
W 1210	1192								78/4 51/3		u
WZZM	3645								98%		ahrig
V1924	1/3/33			234/							
Con 335	20/10- 85/ 91 50/51			247/44	やしと				50/47	51/47	
W1136	28/17			%		The second secon			27/12	13/12	
W518	40/ 19/ 18/ 13/4 13/4	3,	32	155/29 42		109	124		2 ² / ₁₇ 1 8c/ ₁₆₃ , 17/ ₄₁		
WISTR	7.7		1				1;		18/10		
W1436	14/24				··· · · !		<u> </u>		7/10	and the second s	
811 buypul						fuctor!	<u> </u>		18/23	-	
i Cu	uhu.		hu a	ايس.	bi	iled KA)	-	MIZ)	i	word 37 moral 19 l 21	1 26c - 20,
h	11736		1	7	-	22		335		I htm:	2,386
<u>ب</u>	1662		· ·	- -		19		311	hea	thu A hlin =	a,z x Id ⁹
W	ક્ષા			-		l.c.		535			•.
· v	1821					30		581			
W	750		. (2_	,	0		469			
₹• • v	v 518			-	-	4	:	2112			
<u></u>	11424					२१ ००.८	± ± 4€.	129 Sec. of 1985			·

	p 133,1	35)	
INA on effect	ho	per elas on o. Inl	Tita
Ly out	Galy 4p3	Galy tp+	
weld unbeated Ont or preated	998		
galy reversion unhald		201,204.	6.1 × (09
DNA ou traled	-	296	6.0 × 109

			(
Effect of Cp2	quele m tro	oud.		
Aule Sout.	Lp++p.	/ hpithpin]	M
Gw, - 1	426	2/,		91,99
Gal 4- 17.17	316	14/14/		100
Cols-				
Goly- 50	296	57		92, 99
		+-/-	+	

Ochin of Lyouts of (+) Rev

TI	Cueture	w and	+ auture	<u>+m</u>	
84	w1736	12	wfu	19/	· / / .
93	W 758	2	wtu :	144	
nra	4518	41	Wfu #1	don't handance 811	which
		-41	11 2		
133	wn8	30	way #5	883 L	
134	whi	3 ['] 4	whits-	204 MA -	
135	weu	25	whu#5	201, 296	
		25	#{F	241	
151	su pursuph	23		—15· —2·	
		1)	#5	214 461 (austrin Graff) 319	
		r,	#1		
240	W 750	o	W 750	148 -	· ·
·	w2175	10	W 2175#1	96	Unevel
240	40	L	11 # 2	222	u 1
	W 752	Ø	NH1 #5	146	1 Je garage
240	W (3 °	,	wn1 #8	153	
·					
		•	Tall.	4	

Restrohi by Reyers Matahin of the Modely

form,	Rucian Illing	f of tilm.	Nevern Grati
Guz- (1p+)	Go1,+ *1	O	648
(~2 (4)	Colit #1	10	91
	Curter /	6	552
(mly - (+11)	God yt #5/	31	20₹
	Couyt #8	25	29/

Transduction of Lp + Lp + 4p*

12 Cuchins 1 haurd array

12 Lotte + 2112/4

2- 1112/4

2- 1112/4

2- 212/89

140 NST8 2- 1152/29

WHI 2- 147/44

527 231 gown of AFT & bihi found. at labore) Nosay court 944 254 UN 50 228 w 518 w 2373 W811 239 WID w sing.

els	73) admhed	2	industri adorbe
CHAR!	400	1 wo to tall	\umathcal{u}	50
WSIF	124	52		67.5
		21		7
M 5175 M 750 M FM	285 ? 276 ?			

	· .	
Rilaturship of the fals (199) (2,0)	hose	43
minimum		
Galix galz - 21500 2 20.1	+) Reformations	
bal, -x galz - 1600 2 2 20.1	3 - 200	. ol .13
Gel, x goly- 4584	3 210	.24
Tolix goly 2654	2 174,175	
20.00		
Gol, K gulz		16/14
Gold x Joe 5 (2021) 34000		19 160
\(\left\)		स्थानुस्थिते । अस्ति स्थानुस्थानुस्थानुस्थानुस्थानुस्थानुस्थानुस्थानुस्थानुस्थानुस्थानुस्थानुस्थानुस्थानुस्थान स्थानुस्थानुस्थानुस्थानुस्थानुस्थानुस्थानुस्थानुस्थानुस्थानुस्थानुस्थानुस्थानुस्थानुस्थानुस्थानुस्थानुस्थानुस्
Correlate of transduction with grageweety	Net 1	
Acres som	1700	
WSI8	146	
soly-tps Solz		2.37
8054-102 801X-(845) 55 1000	147	23/2016
WS18 (C(1)) 23	153	
grey-to wed 29 5. 12 5. 12	216	ار ا
6019-10 002 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		13 127211
(ul - 10) wid 9 (16) 44 (44)	229 A	
W2281 Sal, - 23(21) Wh 95 (72)	227 B	
81. (81)	229C	
wied 18 19	250	
W2373 8084 22 77 88	249 B	
80h - (1109) 12 58	249 C	
wid 23	241 D	

2	1 The O	cumance	of Stab	le Tran	es duetro	s				·
hopint Cels	K-1		God-	W750	Stable Gychel	WG02 Observed	Galz- Stable Zpak		Galg- U	
God- 250	143	42				3.5	1/24°	10	12/27 au	27 stable
Gali-	- 17/ 248	20.7 X= 6.87	14/83	61-1			7/48		1/1	_52.]
.Gal3	wit de	<u> </u>	2/88	stable	5/ 34	34 d stable			_12/	48.7 possibly 51
Galy- Lps	19/835	383	29/ 72 au	72 * stable?			does	dine		
Goly Lp+	573	133	· 	96 *		30.6	ut d	ine 7 80?		
6094- Hr	3// 320	12.7	2.8 31	not * Aine We stable?	238	49.6 X= 12.7	wot	dme		
		t Beren some og i militaren sært e d	e Estimate est est est est est est est est est e			karan i pameene	y ostinudes Lates.	1 he		
	Eplana	The traction of the second	newhold f	m Two	defferent	egennen	J			
e in agricultura e entre a procesa de la com-	blerque	d = m.	papelae tran	that plate	sport 1	eversuis uns + sp. s	- eveneni			
	6 b served	an epok e nemna ona	. stable o	ray ge spaar ja ji serri aay ri seqadee	Francisco Constitution	and the second second second second	d plote (=	Sp. serers.		
			y deter		1	Contes out , O	hehvi uzle Cr	loui_		

Stable hansductionis - Revisid

(fl

		dys als	Galy
Cus	Wild 1412 Streeted Observed	Gal, - Gal? - War Franks Franks Franks Franks Franks Franks Franks Franks Franks	
12343hp	143 42	1/84/3.5	12/7 27
23734° W750	1/33 14 /3	- y 1 % 19.	5 30 28.7
(m) - W2175 pt	17/ 20.7	83 61.1	14 52.1
W 1210 4		2/15 (o) /	1/31 O
w2281 hp	15,2	214 26.7	%F 3.9
W218/27	13 383	1 19.7 472 21.	4
w84 bp+	41/673 133	5 V9 6 /16 /147	
41924 Cp	3/370 127	2 /- 31 49.6 -	
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1
	Stale	experted = # pap could - sport + hours d.	
	Porc	- to a band dut	
•		you sample # pap in Sample	

hature of the Segregants

(A	da:	it around used as		Missorias ada	To peni agitaay	nj vitaa adr	EL MICH AST
Cus	wid	God, -	wanz	Typoten 2 U1210	. 1	1- 1- WOU	
W2342	17 gol;-		18 god;		I no seg	regards four	J
1,8,1			18081-		1 9	lol,-	
130 p	ال عمار		18 god; -	18 gul, - 3 800 y	no sego	yant found.	
W2175'	20 7002-	14 god; - 3 god; - 2 god; - god; -		E	850l2 - 750l4 -		
W12108	15 600-	19 50°2 2 foli-		T	22 pol-		
WL281 1p3	11 8002	do folz-	-/		21 falz- 15 aly 15 alz- 5 aly		
W 518	13 204 -	no seg found	185044- 356,-	17 8024-			
J SNI	20 3014-	no sey found	14 july -				
nged tp ^a	29 844	no say forend 1	155014-				· · · · · · · · · · · · · · · · · · ·
	155	8	Transl. Lyate Wild Sol	16 9/ 240 (285 4 0 9 (0.91	1 dan typi 0 4) 37 (0.134)	Herry - Netur 4 (0,014) 4 (0,0088)	169 281 450

Train duil

		2.5×173		
# culs he papellai	Tuel .	X 10-9	In pepellar	(49)
7 J 7 1 25 04 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ه در کار در	0.59	0.4 £10 3	
7 X 10 2 2 1 2 80 2 1 7 80 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.14 XIO 34		= 0 5° 10 10 11 11 11 11 11 11 11 11 11 11 11	
30人的	0.29 (10	5.7	0.61 K10	
1.72×10 8 11.30	0.57 K 16	11.0	1.5 X 10-3	
8.75 x 10 ?	0.11 × 10-7		1.72 × 10	
STATE OF THE STATE	6:23 × (1)			
	17.46 XIV	HHAME	877,XW	
	1 0 7/ XIU	17	9.7×(0	
5.5 × 186 509	0, 18 X 10			
	apraha to	majorit		
- The state of the	cel our			
Fra modenti	0,34 - 0,36 XI	0-3		3.6
Ruck extrapolation	= 2780-2980 p	ep / 0.1 w	*	10
26 x10 1 105 1	27800 + 298 cm = 2.88×105	1	10	61
	2		00'	
equined flished fitter	2.7×10 b	exion I ha	and by	3
	wet	TKIOTE E	1 348	110
				3,40

Nonhauduuble Gal, - W2312 HFT Lybrate NFT Galy -206 (1) Ó 20 (1) * = NFT lysate active of Lysake of Westi on Minin Cal- auchur. Klumbers og Papellaie W2312 bysalo ho Aldrha. 37 Court ht 74 17 Gali- Lps 121 # 12/10 examind found stable + W2312 With Kunin Gas -2(0.05)2

Table F

		Adon	phi of	me Trac	-dury	abruh;	(50)
alsyphing Culs.	Phose titu	Cul	Phone Ca		Zie	Octon jon	Muse	Urrich. Trans
W&Ngo-G	-18 x1010	2.Kió°		72%	and the experience	162		0
w7sroges,-tet	18: X 18	652169		452,		110%	_	ð
W2175got2- bp+	1.8 ×10'0	4.0 X10		372	-	332	-	Ú
0		•		79 2)	50	41	16	4 6
(1) Ex 2008 15m	3.91109	siskio ^r	52	33		· · · · · · · · · · · · · · · · · · ·	:	
W84 ore that	1.41010	-10 P	on an exercise of the second	79	e e <u>an</u> eses en en			
- v 1736 304 - 4p+	14×1010 C	, [8]		77 *				

Table 10 Names Coloni Bacanol Port Expression Cue titu 4.1×109 32 Po 31(1.12) 3.58109 HFT hypoti Examenday of Colores often AFF Experies.

31 3/ 3 23 (al (+)

Transduction un 2. coli K-n Progress Report Aug 1953 September

M.L.Mors

1.	References
----	------------

	· · · · · · · · · · · · · · · · · · ·) Sour	<u>.</u>		:
Recipionit	K-12 Gal +	W 750	W 9 02 Gal,-	W223f Galz-	W&11 Galy -
Gal, - protringle	Especiment 10 M Mage 190		Comment wast N 190 1928, 1920	dene un progress 221	does not
Galz- W2175 (prohityph)	Exerciment out possible page 191	Esperiment Tombe page 206 209		done in progress 222	Experiment and U to ye 207
Galz - Wzza7 (puth tryth	dine	4a8208	page 205		fogi268
Golg- W518	Esperiment of Q Pose 200D	dresitgo? page 189	Experiment of R 191 198	doesn't go ?	
Coly- Lpt Wall	Experiment of	duesitgo? ruga 185	Experiment 57	doesn't go? 222	
Goly- Hpr W1924	Pose 216	bosut go?	Experiment W 6/	ut dan	

W750 by the country of the country o			Ly	salis	
W750 bp + Company Complete Sept and Complete		K-1/2	wzsb	902	W 8(1)
W1765 gg. Do demplote W1765 gg. 1990 to carpete works to see and complete W1765 gg. 1990 to carpete works to see and complete w176 to see and complete w1761 fg. 1900 to complete w1761 fg. 1900 to see and complete w1761 fg. 1900 fg. 19	. Name of the control	V oils +		by 903 1 p 230	Rout so?
W1216 for 247 A 247 C 247 B W1216 for Sen panel complete proposed	W1373 W176580-	79.		by 1210, 249B cer and complete by 902 249c	cey and complete
W2342 Sept in 1924 to 1926 W2342 Sept in 1924 to 1924	W1210 lpt	247 A + seg and couple	• • • • • • • • • • • • • • • • • • •		247B +
WITT THE IGH COMPLET CONTROL C	MSSBIPS	(p233 Say since complete	cay and complete		e 234c +
W318-43 Or 200 down to 191 Seguence complete Seguence complete Seguence complete Ly and about took Ly and about took W192446 Seguence complete W19246 Seguence complete Ly and complete W19246 Seguence complete Ly and complete Ly and complete W19246 Seguence complete Ly and complete Ly 207 Consepted Seguence complete Ly 500 Ly 100 L	- 11811 Lpt		1	1210(la) -	
WIGHT Sept of the dent go? WITT Sept of 196 compute the compute that it is a compute the	wstr	0, 201	doent go?	\$ 1210 p. 242 + Seganse complete (6 90 , 198 (2) +	
W2342 S4+M 1924 Park 208 W2342 S4+M 1924 Park Complete W2342	w19246		. *	by 912 6 213 (Fat) Sep mad compute	ages with the second of the se
	wurs		Rose 204		A 207
	WZ34z (w750(1 th)	Sey and complete		· · · · · · · · · · · · · · · · · · ·	hor du

3.	Stuhia of t	m Se	veg ant	anoly	ci					
Recipient	K-12	taren, lumanan zarrara arramon anyan arramon anyan arramon anyan arramon anyan arramon anyan arramon anyan arr	_Gol;-	W750	Juce Joalz	Wqoz	6 alz - U	J223F	Gara- W	811
Ge1,-	17 17,7 8,2,- 4/4 gel,- 4/4 gel,- (Inc	omplete)			5/5 galz-,	S gal, - G/4 gal, - M gal, (weamle	desa b) un pro	ė	Stabl	le θ) ?
6-dl2-	20 20/20 galz = 4/4 galz = 4/4 galz = (i	incomplete)	19 14 gelz-, 3ze in complete in complete	1 - (250); (dou	9		done m pro		16 7 8 goli, # go un consplit	A Control
- ઉત્તરેરુ -	due		_stable	(+)	8 rable	(4)				·(t) ?
(7284- Lps	13 13/13 Soly 4/4 July 4/4 Goly (m	(complete)	81013	k(+)	21 18 caly - 1 16/16 caly - 4/4 caly - 602 - in	complete	tul i) an			
Gely- Lpt	20 21/30 galy- in conjulti in complete		Shah	Le(4)	19 16 galy 33 15/15 galy - 144 galy (com 808 2 - vin	Nz- , golz viczyle putc) , omplete	te dina	. jo		
Let an annual control of the second of the s	19 19/21 goly incomplete manyete		s had.	((((((((((18 15 80 4 - , 3	802-	urt dm			
	<u>E</u>	floudi	^		No (-) reg	regants				
		•		17goli =	"alleb" = "alle"	from duct g donor lying erro wat	te test	- whodias	cell is not less" carmed yeste of se	be trausa.
				1,81		me segre				

Jy myans fra a . Fe myle to undited Cal and Uponta secretary mandion with the additioner that paint is not properly and the builty and about ering todis and your shift of the er are not believed and are the fact that fact they give rise to lymites by the Leaff technique in which the restell of transduction to all the state of the state o Ectivity to landing plaque foreign sual cultures of K-12. These coltures will alter be alcoused to No. on 2 to belix Galt 190 (F-) 2218 X 1655 (F+) FA) (rd, x Get (F) 0.66 96-1 P+ God, Y-10 750 x Ba(+(F-) 480 149 Y10 -71 F# bely by x F+ Gal+ 0 143 574 0.52 F+ baly by x F- Galt 1178

427

29

3.5

3.8

F- Galy Lps x F+ Gal+ (Lps)

F+ (my 4) x F- (m)

JIK

1673

Transduchin	Number Scyregants	Clampedin Ivanstuckin	Clampachii Lynta	13m	Class whypic hard pud	y oalu by (town Crusid	nomuj orah	39
a d -x grly-	4 (1) (2) (1) (4)	Joe4 -	804-	0 0	896 918 1134 863		that	- Links
5002 -× 5002 -	\$ (1) &) (3) (1)	8w2-		o a O	1027	-		
fuly x ful-	2 (1) (2)	grez-	found grand	0	117			
	l (1)	galy-	galy-			3	120	1) 540

						lan Committee
	Transduction	Number Segregant	Classificatur.	Clampahii.	Clessification	Linth Leter Agni
	galge -x gal + hps	5 (1) (2)	804-	80dy - 750	1) true protegue 0 2786 0 2675	(+) foul property 3 3183 2 3471
		(3) (4) (5)	4,		34 65	23 5342 1 1665 1 891
		2. (1)	80°L-	Swi-	7 3102	o 1988
		(2)	8002-	80 ₁ -	10 4364	0 1187
	Solz -x Joly 1	p+ 4 (1)	Sol4	Suly	0 16164	3. 0 13.59
		(4) (4)	•	•	0 3358	0. 242 1 17/
`		3 (1)	Y	Sul 2-	1 11200	0 (01 718 0 510
		(3)			5000	o 272
	wild -x gol;-	4 (1)	gut, -	80°l, -	, 4re	
	Civit	(3) (4)	••		o 529 o 391	
-	Wild -x 802- (225)	\$ 4 (1)		8002-	7805	
		(1) (4)			o 4552	<u> </u>
_	2175	(1) (2) (3)	••	8002	 4071 5384 1072 	
		(4)	•	••	0 69 88	

ីផ្ន

		you Horay		
Vahen of Original Transluction		Heterhyue.		Tobe
wild type on gel, -	21/2		. .	21
gel, - m gel, -	39/39	()		5\$
	60	11.		76

89-2 (750)

19

	Occurence of H	ET X-			
Recip. Cul	(<u>K-a</u>	Gol - W750	Source Gaz-W2175	Gal, - W223+	Galy- W811
Gol,-	o/4 HET		1/5 gal HFT 2/4 gal, - HFT 1/2/24 gal,	borts due	Stable(+).
Gal ₁ =	0/4 AFF	urt dine // unitable (+) HFT		two due	due
Gal ₃	brt dm	unt due stable(+)	ust due Stable (1)		wt dm
Golf Lps	0/4 HFT	ut am Stable(t)?	%16 guly HFT gatz- not done	but-	
Galy-Lpt	urt due	out due stable(4)?	15 faly HFT 8002- not done3	done	
Galy Ho	au	hut dure stable(+)?	nt du	unt and	
	Previonsky	- unslable (t)	5m 518tk-12 750 t 1821 1436t K-12	(got; hourd by gold-	I teamined and with found HFT
			youte found HF		

Mine (2)

19 Tyri Cues

241 (1) HET (2) Listing cen com (3700 F)

19 (3) HET (4) duction with frequently will 6

19 constitution with frequently will 6

1944 APT (5)

1947

HFT (+) ductions

Numbers

177

holyste 0

HFT lipset 72

1708

4.0

223

les lipset

HFT lipset

171

171

1708

1708

1708

171

1708

1708

(do)

Est	Page		hyp	Description	(
· · · · ·	212	1, 10, 17, 18 x 1436		FUEKIL	
JQ	205	46.8, 10 × 1826	complete Sign	SIDERIZ	
247A	<u>-</u>	4, 13, 22, 23 x 9 v 7	9 (- 01)	1210t K12	
248	-	1,7,9,11 × -	? - 0	710 t K12	٠.
2490	- ·	4, 1, 12 12 -	_? ' <-	1765 pl till 1	
2 33	•	13 × 91	2F + 3,7,13,16	1210 t 700 OK	
247 C	- · · · · · · · · · · · · · · · · · · ·	11, 13, 22, 24 × 9	02	(1,100)	
236 B	-	4,6,21 4902		12H 6 750 04	
10	196	complete	complete	21757 KIZ	-
M	192A	2,14,15,174-	? amplete	2342 (750p, tien)	
N	192 B	2 - complete 1 - confuse	CVMP	750pr t 902 pl	
Τ	209	ac	w	21757750 81	
230	-	230-5 × 102	23 Arris	250 t 902 64	
243		3,6,7 × 90		75011210	
249B		10, 13, 20,21 × -		176570g-t 1210	
249 C	_	12 x - 2	12	1765 god, t 902	
S	202	14 soly x 1426 (mylite 4 amplite	81t 902 871	
242	_	5, 8, 9, 20 x 1436		_ 57821210 de	
P.	198	(4 Gely- x 1436 collep	et)	- 518 t 902	
		2 60 L X 902 CM	white 14 17		
	213	(1,4,14,17,11 X)	902	19244 902 05	
X 249A		6× —?	416 *	1765pd, + Esy	
247 B	<u> </u>	1. F. 14, 1 F. X	902 4 1, 8, 14, 1F	1210 t MI &	
216 (~	6, 10, 147 × 902	- Andrews	3 2281 tall 81,	/
u	201	1,3,7,13 x		4756 84	
			•		1 %

```
anspira / = 3 1-4
   Gal mulant induced
of jacher derignation bours (y kuma)
                -2 (2310) hourd by 2, unt by 1,4 = Double? / /
206 W1673
              -4 (231)
      B-206
               -5 (2312) mt .... 1,2,4 mn handauble ? ($\infty \text{$\mathbb{E}\sqrt{1}\rightarrow{\text{$\sigma}}{\text{$\sigma}}$} \cdots \text{$\left(2313)$} \cdots \cdots \text{$\left(1,2)\text{$\sigma}$}
               -6(2313) .... 1,4 ....
                                        -7 (2314) " " 1,2,4
                                        m143 -
               -8 6312)
                          .... 2,4 way 1 - 1-?"
              -9 (2316)
                                  2 mt 5, 1,4 = double?
              .10 (2317) "
                          not hand by 1, 2, 4 - un housdwalle:
          -11 (2318)
          2312 x 81) -> H/84
      W2312 not hand by 1,2,4 892(1),16/2
                                  1,2/4, K12
              mode 1+ - grate
                    hand. 1, 4, 6 possibly wet got 2
      -W2318 ut hand by 1,2,4 (HFT)
                    0+/20%
       42118
       42312 grate of does not trained 2175 but others.
                           one of 2 type (-) Blancable only 17 prote (+) oblamed
725
       W2312 X 1615 F- (with prolum as all) = 3/11
```

(Fal - mutants memod

61765

101765

238

2 W2645 wt t/ 4-,1-,2 um hand. ?

5 W2646 + by and www? V

6 W2647 + by and but 1 1-? V

8 W2648 + by rec new? V

10 W2649

11 W2650 wt t by 1-,4
12 W2651 wt t by 2
2- v

13 W2650 wt t by 2
2- v

14 W2650 wt t by 2
2- v

15 W2650 wt t by 2
2- v

16 W2650 wt t by 2
2- v

17 W2650 wt t by 2
2- v

237A -10 = 750 tNlb

but t by NI6, NI (Reproted), prosibly by SIS contain Lp.5

Lysute apparently didn't transdure 2175, 750

Crossed with 802 off/1656

209-18 21752750

unt to by NI, MIL, described but by 1612

hyputa fried to t 750, 2175 (297), 2070
printly 84, 518 weally. - have gain all Jules.

209-19 similarly to 778

236 C. W2350

178 = 2175t 750

1. The hausduction

Gal, Gal, - 0 0 + (>1

Parposed Generalype

2. The Sequerants (not possible to destrigate het pour losse)
That I aprilie sheated in Gal and (-) classified by Transduction:

Transduct by

		i valid ancies	7	
	Only HFT fol;	Only HFT golz	Neithier	Total
Namber	5	10	17	32
(purposed)	Gwr -	6M,-	fal,- frule-	<u></u>
Shechwally	112			
	+-	ore		
Namber of Cultures fraud Givrag Cal + unstable Reversiones	D	đ	·	
Possible Neursun Structure		-+ 2		

typet type I seates of galactors negative culturappir luinted the - 120) the Parious galactose negative cell results similar to those show in toble 4 are sutained. With the possible exception of the interactions of Chil and Calify each of the Workes to fergenting papillae upon platell foread with non-homologous negative cells. With the usual lysates lelf Call interactions are erratic some-The north times giving significant differences between control and lysate added plates, sometimes not. This interaction will be dealt with in more (4) detail in a later section, it will be sufficient to state here that such interaction does not produce clones that are phenotypically (). - , lad The differentiation by lysate interaction corresponds to the differentiation of these loci by recombinational analysis. citcu restores the chility of ligates of a galactose I negabive culture to evoke papillae from cells of its own type (table 5). at the mutated locus, and mutation at a second locus whoseraction minics the action of the first game. Reversions of this second class

Examination of the other characteristics of the cells transduced to ability to ferdent wild the exception of the with the exception of the with the exception of the induction of

1ysogenicity in the lambda sensitive forms.

1yogenicity in the lambda sensitive forms.

20 25 26 25 27 17 27 11 2

able a Condation between tyng. + Trands. State of anumber of loci selected at random for their 249 A ability to be transduced by lambda lycates gave negative reulfs (kerd)e ·249 B 3). The tests for transflossibility attorists on markets were perforded 2496 by adding lysatelte cells on minimator discuss the their on fers within 249 D merkers on MB medium with the appropriate sugar, and the test for transduction of streptos cin recisionce by growing and cells below lysate for 2 hours and then plating ou streptomy con y crtaining-midjum.

The lysares used in the fasts for the transduction, paper trophic play and fermentation markers were of wild type K-12 cells, the lysate in

the case of the streptomycln experiment from a maintainsians streptomycia resistent culture. An additional test for transduction of prolling independence with lytically prepared laubia also gave negative results. -flat with boots are university the feliand Galy- cells and plated on IMB galactose medicus, distinct increases

in the number of galactose fermenting papillae are observed (table 4).

The number of galactose fermenting clones is proportional to the amount of lysate added (figure 1). Since each of these mutations to inability to ferment galactose is capable of reverse mutation the data must be corrected in each case. This has been done for the date in figure 1 by subtracting the number of spontaneous reversions as determined from control platingd with no added lysate. In addition to indicating proportionality. the data in figure 1 indicate that the cells show the effect as irrespective of the Lp goontype of the cell, and that lambda sensitive cells are more capable of showing the effect of added lysate than lysogenic cultures.

hyvats of Unstable Galactrie (+)

Thus of the property of galactose negative cultures are mixing with thought the property of galactose negative cells results estation to those shown in the property of the prosection of the property of the prosection of the property of th

of the highest sough arong of fromducher actually

33 14 11 11 11 Sto 20 20 29 74 54/150

Stable Brown x transluctions surger takes

2 × 25

x (1) 🛱 + S O € ×3(4) 1210 hyale b S 100 lyane ပ 2 (Set) () Lyrate · ×6 (2) (1210) mate 201. \$ į مر (1)(8)(0) = cust 2175 (2)(7)(9) = cust 1212 2/ 1210 cut 1 x 7(4) (3)(6) (11) - Grate 1210 ×8(2) 2175 (cust) (4/5) (12)(17)(14)= by 902 4, 9 (1) 1200 (with + 23

4 2	727 0 1000 (000)		,		25
W	x10(8) 2175 (cut)	9	7	0	16
S 4	2 11 (A) 1210 Market	17	2	٥	19
į,	* (1 (6) 902 (19shb)	35	5	1	41
+ 4	2, (1) (420) (hy. ca)	16	3	0	19
R 4	2 (14) (902) Byich	15	3	٥	18

Segregant analyn va hyrate ochin

(33)

Perpi	h. 1	iand.		Sana	nt.	
ouk.		mali	Idu ymi	auryric	Washinger	Total
gal, -	+	+	5	0		5 /.
V	+ 1(1)2175	+	4	0		4
9002	(2) ni	+	4	0		4
C ~		+ .	4	0		4
galy-	1	+	4	o	t in the	4
Gu,-	+	(Le - /a) =	m 4 ox	5		9
1		(4) n		3		3
Gue,-	3	Caly-	0	1		1
Gue Z	+ (5) 2175	fall -	0	۲		7. 14
	+ (4) 2175	Galy	4	o		7
	(7) 1210	•	0			9
Gal y	C	(-v (8) (w 902)) (6	3		19
Ψ		(9) 1210	0	l		19 1 1F
	+	(10) 902		3		79 79

in make it was don't from the detail detailed to be the detailed to be the detailed to be the detailed to be the detailed to the detailed to be th

September for fraise to fine the state of the second of th

Table 14

Colactre negative cultures garnis hyla frequency of hans duchin by soles

			Timed	Notine ?	NET	Nature 9
Calhur	Galace 10 rocio	ne leep	Yeste	(ball) terescie	Sejujant	Coe (+) reversion NFT Jey.
	(1) fal;	_	Car -	smobble	Gel,-	stable
	H) Gae,-		2- Gali-(+)	1 5	Gel, - Gel-	A
241-14	(t) Geo.	Gal,	Gel 2		Gre-	stable
	(+) Geol 2 -	and,	Gel 2-		0,-6-02-	were "observed
		ael-	Rooz-		Gal, -Galz-	unesolo served 634
1928-16	(+) G+02-	1		1.1.	Gal-	Habee
257-2	A Golz-	bol-	Gelz-		George	Hable
	(+) Galz-	Geg-	Gas -	watable		
153-1	(5) Gal 2-	Cae4-	Eymer	unstable	Galz-	
			meet	, a	Galz-	Stable
100 1	241-19 (2) C=0	III	Gal it of	al ₂ ~	Gal <u>3</u> -	Galgmot stud ied
		Galzhort-	<u> و و و و و و و و و و و و و و و و و و و</u>	112- "		и
202-18	(+) Galy-	Gely-	130 GEL 2 GE	JS_ A. Ame	Call -	
2478-1	A Gali	or Graphics	og Galy Ja	777-	Gal ₁ -,	
	250-4 XEXXX	Gal ₁ -(§)	Gell- Ge	12 unscabla		stable "
		lecus	cell ly	sate reversio	gerses en	ant reversion of LTT sec.
• •	Culture	V	_	ned. Galactos		Garactose (+)
		TERROR	T AT WATER	CONTON PLACE		1 1
				<u>l'tures giving</u> duction lysate		267
		\sim	Table	\ \frac{1}{1})	270

12 I The homewhite

282 bely-by we expend to HFT HARAM

golf
hyste both 0 408 2

control 0 440 0

The perpetuling colonies quie mied (+), (-) and populating colonie:

(b) sheated out 2+ pure (+) colonie pulled and sheated

(5) of he 24 colonis - 6 were found stable gold)

dervis from from the Ct) total against HFT I and HFT 4
baly - bal, - baly - Partial Tranships

6 5 2 4 tours

au course lambde renstant

ny

200 I the handuhi

Cae, - Lys all healed with HFT foly particles

(+) (+) (+) pup celone und

(5) hyrain plane 0 316 2 36

II (the perpetation ordered should out - Each gave (+), (-), page (+)

(B) Chy 1 - 24 gal (1) are should out - 11 were statele goet) (-1 tated against HFT i and HFT 4" are lambda pout.

Galg- Galy- Cost- Galy- Parities

() Corenj 2 - 48 pre (+1 · pulmer and should not - 23 (?) were shake (4)

Gel, - Gol, - Gol, - Cal, - rupllating (-)

.. 1.5

Table 16

. 5	Malf and -, are retained for ploser study.	
Yeard	The gal, - fary Interaction	
. 0	About 650 cultures have been tested in this wey, each from a separate	
1 the	here duchus	
Phape	individuel, xixxaxxxxi of reduction to the staff of herry scondin	
culs	Gal (+) Gal (-) Papilloting Gal-	
	Public Health Laboratory, to Dr. C. r. Miller and 1232 bountoff, and	
P. a -	brith 1 Comment of the state of	
buly-	especially to R. S: Benham and his staff of the University of Chicago for	
	HTT Gel,- 0 408 2	
.•.	supplying the larger part of these cultures.) About 25 cf them have shown	
Gal,-	signs of recombination with WG-1; at least 20 of them almost certainly.	
	2 16 of the matter we at the part of them stands to the partition.	
	HAT GARY- Original made 2	€ 34
	Polyauxotroph mutants are now available only ger WG-1 though -4, and have	1
10 - EDG	ne osah	dins
2 4	amulatur gragolochiemierahierenegung and finn galochie gentue	
(50	wear in Maniteating processive vegicino of others of manite-artain	
· 0		
1.	Clarification of the Wi-i tertile etraine conform to the detroition hulus Galy - Gal, - Galy - Galy	
lleup	duling of the Will lertile strains conform to the decemberion	The Gal -
cul	mysle Goly- Gal- Gal, Galy- Papulun	7
	4 of E. coli or possibly of farageing intermediates, although a considerable	
Ji.	2	
Galy- b.	number of aerogeneo-type, cellobiose-fermenting cultures have been include	
	10	
	in the tests. A variety of sociatic antigen serotypes are included in	
مرالمه		
	we will the stip of the second of the formentation of lactor of the formentation of lactor	
930	OUGHT TO ROLLS HACTER OF THE VEHICLE THE TENTH OF THE TEN	
		•
>	and of cuorose, and particularly in patterns of sensitivity to phage 2, incl	
	send to antibiotics produced by various other coli strains, colicins. WG-2	
ry	produces a colicin setive on most of the othere. It appears likely that man	
_	ℓ'	

potentially compatible ochbinstions may fail oring to the suppression of WG-1

by a colicin produced by the other parent.

omelialum malimbe he great majority of the prototrophe, were qui- Kyl-; htm Ger, a vergoodil tunder of the other combined him have been In one comparision of the Salmonells and E. coli systems, Davis' filtration experiment was dupliented. A U-tube with a sintered glass start the two compartments last elistic mas filled with broth and inocurated with fill and \$22 respectivelt. rom time to time, the breth was flushed back and forth cetteen time compartments

broth was saturated, the cells from each comju jalachen permentation. Sej rejants, by alternating suction, Whyn

Antendendre and the ted separately on minimal agar. It was repeatedly

found that prototrophs appeared from the 22% waithurm; but not grom (tip 2A culture.

Control experiments in which only one compartment was inoculated verified

the integrity of the filter.

This experiment appeared to show that a filtrable agent (FA) was pro-

duced by 2a that reacted with 22A to produce prototrophs. However, filtrates

prepared directly from 2A were inactive. The paradox was revolved when it

was found that the addition of a 22% filtrate, or of a lysate of 2h cultiveted-

from a lysogenic phage secreted by 22A, provoked the formation of FA by 2A.

FA, then, is not a normal component of 2A, but is produced under the stimulus

of a latent phage. We have not succeeded in extracting significant FA activity

from 2A cells heat-killed, dried, or autolysed under conditions which do not

destroy FA activity.

May	Gate	an oy cels	Kenes	I de Golo
1766	94 1 750	811, 2050, 750,	2175 (42/43)(420) U	6+) (2/2) (1/24)

ורן	8421	518	4 % of out (+)
1239	lysate s	taility	
211	2178750	ei,	gelid som
Summ.	- Shuf 214	before -	say SISTILIZE not autini

```
W2070 (= fal. -?) derived from W1673 by UV.
Page
         - nyn: (hume gol- Astania, one retained)
          hand by (+)
126
                             KIZ (25') = 1560
          pap. chul - 7/2 sportamen (+) 1/4 1/4
137
                          3/4 Grace (1612) (+) ans/61.
        to sd. test
                       m add
                                  st # -- 4 (+) mn. 1751
                          ל טעד
                                  1256 ____5/6 (+) mind
                          902 )
                                  175 -- 0/F (t) milher.
                           Su h
      tred. by TIB, TIP) to recover (--) of the T.
                                              = appart (+) unoth
        bysates unt outro TIFE 5/1
```

saymants bother apparently, sqreyonts found

Shocks of 2070 At made

Stabilly of Learnsductions by reversion bysales

(gy)

134 SIE SUJETS 7/5 stable transduction - 291

Comprese 25

R

R

Correlation of ip Change & 2281 t K 12 2361 P The action of lat ne transductions described than far have been effected means of lymnics prepared by the ultraviolet induction technique. Tyrates fit to counting some some some of the continue appeared the country of the countr have an branefacily Apotiving and have lost the transducting activity tacluded in the incoulum (table 8). It has also not been possibly to detect transductions M 15 1c lembla of a maline logis examined up 9. In connection with the action of Dester it should be apted 10. that culture filtrates of lambde sensitive cultures Mave no transfincing RMS

The transfersed cells

Examination of the other characteristics of the sells transformed

to ability to forment galactone has uniformly whown no changes in any of them with the exception of the industries of typesensistic in the inciden neutrical transport to a local the uneutrical feature of some of the the galactosp fermenting clones is their installigher misetoco fermentation, and agree toughly for in renotion.

```
and delails
              811611 × 1436
                               73(+)
                                at least 20/F3 showed morace which on state!
                                    are later shown unstable
                                86 t) 1840 (-) ~
             5184112× 1436
                                5/20 showed musaies on stk-1
                                      are " were must in strk 2
                                                                    5184142
 101
        51841612 X 436
                                        65 C) V
                                0 (+)
                                                                         (50 et)
                                 27(+) 2(-)
                                                                    1924412
        Sut K12 x 1436
                                                                                 1944
                                                                        27(4)
                               shown unstable (107)
                                           1520
lie
                                16(H)
       1924+1612 x 1436
                                11(+)
   be lysopenic in
                  hat knid
                                = 30 purh picked at random found nonlys. 575 1436?
1 2580t1612 X 518
```

A		HFT-	historical -	Why +" in	t found HFT?	
los	hyrati	Amay Cus		ligiate lile		(4A)
45	750± 1821	81)	2470 pg/he	6.5×119	., ,	,
Late 10/9/52	,	sit	9630+/ml	••	10 4 /ml	1/06/
142	578 t892-1	s e	man composition	?		
11/26/52	PUE892		us pap. at	•		
	51 ft 842 -1 pu t 812 -1	2050	spid sman	? 4.	rate forme steels	
143	98t892-1	2050	Solid smean	?)	E1.8×1193/me)	ر المسال
	St+ 192-2		soul "	7 4	all legisla brical	ne)
· .	Ju + 1977 - 1 1911 + 1992 - 2	• • • • • • • • • • • • • • • • • • •	184 paper	? <i>)</i>	all legals laters in penancy (10 curlor . 100 267 (10 mare pepular . Speces	my high)
157	51+t892->(-)29 gre z-	201.0	seid one	7	, .	
	518 try2 -1	r	, , , , , , , , , , , , , , , , , , ,	7		
	1436 61412 - 1	11	227/12			
	bedries by					
115,0,6	5787842 - 1 (su	0 Slb 2050, 217	5 solid	rma. 1.8	xir9 (p 166)	
	1 (578 tar -> 50, f	SF, 7,10,20	so) — wt	fruen. 1.6 		·
	DI 6750 phot	id as unstab	lı –			
119 04	1 6750 titu	. > 1010		_		
1706 04	C750 (1-13)	\$0518 2º	*/L7	1		

:

		(-)	1 June		Ы (ο Δ
Cultur	Recipient each	hyate	Yartype	Seg mya	A 16	NFT Secondary Regulant	shudney Iter
	gaz-	801-	2-110	2-	12/12	1-2-	2-1-2-1+
2346	sul,-	gao _r -	2+1- 2-++	r~ ;	4/5-	1- (The w. shalle)	
241-14	ξυ ⁴ .−	gol ₂	2+1-	2	12/12	2 (1/2 state)	
241-17	•	1 *	••	H.	12/2.	1-2- (-)	2+1+

$$2464-15$$
 $84,802 \left(\frac{80}{1}\right)^{-1}$ $\frac{1-2^{-1}}{4-2^{+1}}$ 2^{-1} -1^{-2}

Segregation from 4-2+ 45 transformated cell (518+ NG)

SIST NG 89

	Remaining questions.	4/10/54.	
1			(NO)
_	Relatiniship of paisduction + lipoge	empton.	
	-x deploids. hpt/4pt from t/s	5/s. (Go	
	Madred A. La.		
	Marlord A; Lp.	, W O	
<u> </u>	Hesio: constant = 3	: UV d alsage	helit is
	The second secon		
<u> </u>	0 + 11 + ma		
(<u>)</u>	Position effect (B)		
		(6.NL)	
\odot			4
.	Association of fragment & chranosome.	deploids; cross	we behavior
		<u> </u>	0
	of various Calt fearesduction types. 512	e of fragment	Bellevior
	of various Calt feared when types. Six from == - Ceossover + regregates Other transducible losi; other phages.	ns precheneous.	
<u>s</u>	Other transducible losi; other phages.		
<u> </u>	Cytology of 2, Lp+Hft.	7.	
		How	
1)	byte 1! (Especially when grown on	= types!)	
€	How many had types; magging (one	0.12)	
<u> </u>			

More 4/10/54 Study absorption with multiplicity < 1. Heater cells? 14th Table 8 Oscuss baf, -x Coly behavior. Table 9: Any Lp, Clarify headings. Cexplein Obs column 12 Total: homo/helerotype + dest homogeneity. Ift: Inductive behavior! (basis now studie) Table 18. again verify bal types p.12 PP 2: maning? Double. Papillae è mijedphoge 2 c2? Fig 2. Or 4V improves Survival. Effect of excess 4v'd incomp. It Vacance in output of Nft.

S 24-> 1-keltype / 69)

12-> 4 should hil

12-> 4 should hil

13? deelighange + segmentum independent? Having

"segregations" may be automathe.

What's us it less?

statuted adyracis. 2-1-2-1-2+1+ 2+1+ are the 2 segrepants now por hemizygous? Suppose fragment is terminal. Anly 1 worder type fearble! 1.E. 1-2+ recombinant would be a pagment. Why no reversions of type 2+1-? These shouldgive mostly the 2 Ttype. Wiremogh tested?

	Table 1	<u>(47)</u>
•	Principal alhus	
Wiscown Strok 1		
W 518	F+M-Lac, Galy-LpS	
W750	F+M-Lae, Gal, Lp+	en e
w.811	F+M- Loe, - Galy- Lp+	
wgor	F-TLB-MAR- Galz-4+.	
W 1210	F+ M-Loc- balz- & Lpt	
000 35N	F+ T-L-B, day- Goly- Lps Sa.	
W1924		
W2175 W2279	F+ M- Loe, Gdy - Ly K F+ Gods- Lp+ F+ M- Lou, Gd, - Ly	
W 2281	F+ M- Galz- Lps	
·	<u> </u>	
Genoty	jui symbols reper to the following the	master'
	of the following che	1 Fant
•	· MIT/LB, whit total refulingails	ful yethermi
	impatibility obahis, F;	
	Juhitemal requitements of M, neturnais	, T, threonine;
·	L, Levine; B, thiamin;	
· · · · · · · · · · · · · · · · · · · ·	Fernentahui Reachui; Lacz, Lactore vegatrie	· Gal-, galentose
	herature. Mal - maltine vegative.	, , , ,

regulare; Mal -, malton vegation; gal-, galentre negation; bloge shehrs; to l'ambéta sensohre; tot, lambéta lysiquie; top, lambéta possbant, but not overly lysiquie.

Dry Rendance, 5th, sheptrony and verbant.

	Tabl	e 3 (Ex pansui)	Fa	eurs h hausdone
Marlin	Rein Culm	<u> </u>	29	
toe	W112 (4,2)		71	(d8)
	11 (bp?)		F (
	11 (Lp. R)	· N	94 7	
	ال (لوم)	<u></u>	94)	
Servi a flye	W1628	11	76	
· Lew.	W173L	t v	75	
	w1736	(1)	78	
<u></u>	w 1476	(W928) (W931) W2046, W1954	113	
Methorini	58-161	K12 (Midlated)	82	
	w811	Kis (mod.) (g)	m) 83 (286)	(Madded also to get B+)
	W1821	142	85	·
	W 51 8	HFT 892(mix)	180	(m Bgal, replicato DO)
- , ylne	V1821	K12 (uv.	83	
V	WIEZI	Kı~	81	
		w811	81	
	WIFZI	1412	130	an and the second of the secon
Streptmyan	พรห	W184	95	-
Poline	w2062	1412	104 (?)	
	w20.6~	1<12:	105	
	W2062	1415.	106	
	W1692	1412	96	
	w1920	Kizi (prohingh)	.96	
	wroln	(prototype) (prototype) HFT 2	720	
	· · · · · · · · · · · · · · · · · · ·	HFT 4- (protops) Heterojeuste.		• • • • • • • • • • • • • • • • • • • •
	W2062	lytic & (from M-	227	
	•			

•

Table 3 ((ant)

				(QQ)	
Marle	Perio Cut	Down	Page		
Maly-	W>07/	K12(?/	uq · ·		
May -	w2347 , w2331	HF12-	19 · · · · · · · · · · · · · · · · · · ·		
•	w 23 67				
F.†	1321	HFT 2	294		

Frequency of Unabable Fromduction-

Reij	(+)	(-	2 -	4 ⁻
The 9	41		0/11 0	%29 (0)
	23/24 (94)	-	23/24 (14)	°/17 (0)
•	17/24 (71)	_	24/24 (199)	-
2- 45 (2281)	218/48 (5°)	13/14 (88)		647 (89)
Lp+ (1)(2.75)	22/24 (92)	19/64 (79)	~	M24 (7)
	16/24 (67)	21/24 (88)		22/24 (22)
4 45	13/24 (54)	172 (0)	21/24 (8+)	
L, t	10/24 (83)	6 /92 (0)	19/24 (79)	
c _r a	29/48 (60)		10/24 (67)	_
Galg =	hpi 6/8 1210,2201 about	10 (2773) S = 56/102 of 47/go) = 59% + 98/120 = 81 % n = 29/49 = 60%	1 stor 484th 609	har

67 484.0

Cavalli - Ent

Shaud segrejahni

(101)

A 1,3 is may lamozygen (-) provide a muyle consorer. I destype god- must be god - in the under to delect dylandy for love by reversion test

This methodology should also give I behad regregation to HAT (in A, 1,3 is 14FT, once there seems to be no other sample way to so some homogygone (-)). Since HAT we solve 10-202 the letters must pure this out select.

To ordan allohypi HFT 1,3 1,4

(s s n R () f ; it it () y = 4 - 4 - 4 -

3 R S R - S R S R | S R

Deg 51- 5-- 5(--) 5--

hunder

S + L

1,3,4

S R R

1'-+

4'+
-+-

	ld	ustype S =				F)
<u>(</u>	102 (J 2 / 3) 4 -	him ne (D Shaus	<u></u>	21.73 2.74 2.74	
3 3	++ 55 n r + +			+ - s «	+ - + - R S R R + - + +	
			Phenotype	()	(+) (+)	
			Szynyaul	-	both purbably hus for stable (+) became	-9
			Gonneut	not from (4)	selecture action of fal	
		bors or (2		+	+ - + - + - + - + - + - + - + - + - + -	
			. Chemitzne	b) .	(e) (e)	
			Segregant. Comment	— w+ ~ (1)	G alm A	
c.o outside the		hun dis junchan		1,3 , f	2 3 4	
‡ F	R S R R + - + +	Commer (•	\$ +	å 8 ¢ + - +	
(hendypa # (+) #	≠ () (-)		Phendyre	<i>‡</i> (+) ?	()	
			Segregant		postobable (4)	

(4) 2,3 (+) applica (-)

Trdu of segregations
1. simple loss greeding idea 5

Qdistype S = 4 Crossover 1 Strands. 1,3 Placertype (+) amphi S Examing (-) regregant from (+) would be overlighed since out from (4) Comment couldn't give parente (-) Comores D (+) Theretype (+) ampli s Segregant s done Comment is above shouls Non de junchini Cruman (1) phonerhypee (c) # (t) Comme (1)

beneal Comment.

1. Principle regregants from (+) are ideo by as observed . The exceptional out observed case, anabolise the passage into one cue of cross over members.

Sagragans

Tople nuter coloris un dispuncher. (+)(3)

alle

apparently state of

GENETIC TRANSDUCTION IN ESCHERICHIA COLI

By '

MELVIN LAURANCE MORSE

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Degree of PHILOSOPHY

UNIVERSITY OF WISCONSIN

1955

```
TABLE OF CONTENTS
Introduction -
Materials and methods
Experimental results
        General observations on tarnsduction
           Observations on galactose negative cultures—1

1. Bectivity of lysates of wild type smile cultures—2

2. Behavior of lysates of galactose negative media culture—7

3. Behavior of lysates of reverted galactose negative wells cultures—9
            Considerations of the method of assay of transducing activity-3
            The necessity of lambda adsorption for transduction - ?
            <u>aattabatatt tilkabaatttattettikatatabatttabttettikatettaat</u>
            The activity of lytic lambda - 9
            The transformed vells transduction clones-9
            ancidence of lysogenicity in the transduction clones derived
                from Lp8 recipient cells -\o
           Existence of transductions stable for galactose fermentation-
            The segregants from the unstable transductions - 12
           Galactose negative cultures giving lysates with HFT property-/5
           Experiments with lysates giving a high frauency of transduction-17
           The relationship of lysogenization to transduction - 18
           The interaction of Gal, and Gal, (Position effect)-19
           The action of HFT lysates on lambda-2 resistant cultures - 20
           Crossing behavior of the transduction clones - 21
           Galactose negative cultures that are not transformed by lysates - 2 2
Discussion - 24
Summary - 30
Bibliography - 3
Figures
Tables
```

INTRODUCTION

Exchanges of genetic material between bacterial cells can be classified into two main categories (Lederberg, J., 1954). The first category is exemplified by the recombinational process found in Escherichia coli K-12 by Tatum and Lederberg (1947). This form of gentic change includes a syngamic process, that is, the conjunction of large blocks of genetic material, and there is evidence of linkage groups, linearity of geness, and requirement for intact cells (Lederberg, J., et al., 1951, Lederberg, J., 1954).

where one of the participating cells is not found in intact form, but whose genetic material is presented as a solution or suspension of particles much smaller than the cell.

This category has been given the general title of transduction (Zinder and Lederberg, 1952, Lederberg, 1954), and is readily subdivided into two classes on the basis of sub of transduction:

the vector of recombination. The first class is exemplified by the pneumococce transformation system, (Austrian, 1952), where the genetic changes are brought about by means of purified preparations of desoxyribonucleic acid. In the second subclass the genetic changes are mediated by bacterial virules or bacteriophages. Zinder and Lederberg, 1952, Particle Properties of transduction usually results in monofactorial gentic changes, although dual changes have been noted (Stocker, Zinder and Lederberg, 1953, Hotchkiss, 1954).

The frequency of occurrence of these exchange processes among the various genera of bacteria is not known. Genetic recombination of the E. coli

K-12 type has been observed in about 50 additional strains of E. coli of over ions Similar to that to that to that to that to proceed the coli of that to proceed the coli of that the processes among the various general of the E. coli of over ions Similar to that the processes among the various general of the E. coli

Note that the coli of the E. coli of over ions Similar to that the processes among the various general of the E. coli of over ions Similar to the colin of the E. coli of over ions Similar to the colin of the E. coli of over ions Similar to the colin of the E. coli of over ions Similar to the E. coli of over ions Similar

(Alexander and Leidy, 1951), <u>Jeisseria menigitidis</u> (Alexander and Redman, 1952), and <u>Escherichia coli</u> (Boivan, 1947). While strains of <u>E. coli</u> are reported to show syngamy and transduction, <u>Estrical</u>

Boivin's culture has been lost and farther studies with it are impossible. Attempts to transfer genetic material via desoxyribonnoleic Ladever, 1., 1947 acid preparations in <u>E. coli</u> K-12 have been unsucessful. (Atchly, 1951).

In <u>Salmonella</u>, Zinder and Lederberg (1952) demonstrated phage mediated transductions but failed to show the occurrence of syngamic recombination.

Thus, of the three forms of recombination considered, no one culture has previously been observed to exhibit more than one of the exchange processes.

It is the purpose of this thesis to describe a limited system of transduction in <u>E. coli</u> mediated by the lysogenic phage of strain K-12, lambda. The occurrence within the same sgrain of syngamic recombination and of phage mediated transduction promises to improve our understanding of both processes.

MATERIALS A.D METHODS

The principal cultures used are listed in table 1. In summary they represent mutations at three distinct loci which lead to the less of ability to ferment galactose. Such mutations have been obtained by irradiating galactose positive cultures on an indicator medium. EMB galactose agar. The different loci have been distinguished by intercrossing the various stocks and finding galactose positive recombinants in certain crosses (Lederberg, E. 1950). The Gal, - and Galu- stocks are the result of a single mutation to (-) in each case, while Gal, - stocks represent two independent mutations to (-) whose identity is based upon the observation that no galactose positive recombinants have been observed in more than 11,000 prototrophic recombinants from crosses between them, and upon the synonymous behavior of the stocks in transduction experiments. These three loci are closely linked to one another as indicated by the data in table 2, but the order of the loci is not specified.

Lederberg, 1953) to be closely linked to Lp, (latent phage)
locus of E. coli K-12. Three alleles are known to exist at the Lp locuse (1) Lp overtly lysogenic (showing evidence of free phage in cross brushes with Lps forms) and resistant to lysis by free lambda phage.

(2) Lpr not overtly lysogenic (2) Lpr not overtly lysogenic (3) Lps not lysogenic, and page lysed or lysogenized by free lambda phage, (3) Lps not lysogenic, and page lysed or lysogenized by free lambda.

At least two other loci affect the interaction of lambda with E. coli E-12. and are scored by resistance to lambda-2, the lytic mutant of lambda. One of these shows a coincidence change in maltose fermentation. Both mutations result in a loss by the cell of ability either to admits lambda or lambda-2 regardless of the state at the Lp locus.

Methods and media were as detailed in Lederberg, J. (1950).

Liquid cultures were in penassay broth, with or without aeration; solid media were of EMB base, either with or without added sugar, or Disco nutrient agar with 0.5 percent maCl. For crosses, a synthetic form of EMB, EMS, was used.

High titered lambda phage lysates were prepared by two methods. The first and most commenty used was that of Weigle and Delbrück(1951) in which induction by ultraviolet radiation (UV) is used. The UV was administered to penassay grown cells resuspended in saline at a density of about 10⁹ per ml. After irradiation the cells were diluted with double strength penassay broth and incubated at 370 with aeration until maximal clearing was obtained. If Lytic lambda was prepared by infacting lambda sensitive cells with UV-induced lambda; the infected cells were resuspended in nutrient saline broth. These suspensions were then incubated at 370 with aeration until maximal clearing was obtained. Lysates prepared by UV induction had titers in excess of 10¹⁰ per ml, whereas the lysates prepared by the other method had slightly lower titers. Unless otherwise specified, the lambda used in the following experiments was obtained by UV induction of lysogenic bacteria.

Crosses were performed by mixing & saline suspensions of penassay grown cells either before plating on the EMS synthetic medium (usually with added galactose) or directly upon the plates

Tests of cultures for phage reaction were by the cross brush method in which the culture is streaked across either phage or phage sensitive cells to ascertain whether or not it carrying phage or sensitive to phage (Lederberg, Res and Lederberg, 1953).

Transduction assays were made in the case of the normal, from frequency of transduction the by adding 0.1 ml of lysate to the appropriate cells on EMB galactose agar and incubating the plate for 48 hours. A separate plate with no lysate added served as an extinate of the amount of spontaneous reversion occurring, or the lysate was spread only upon one-half of the plate. With the lysates giving a high frequency of transduction, the lysate was cross brushed served on the cells, as the lysate was cross brushed served on the cells, as the lysate was cross brushed served.

EXPERIMENTAL RESULTS

General Observations on Kansduction

Tests for a number of loci selected at random for ability to be transduced to the tests for transduction of the auxotrophic markers were performed by adding lysate to cells on minimal medium, the tests on fermentation markers on EMB medium with the appropriate sugar. His was performed the test for transduction of streptomycin resistance, by growing the

6- addition

Clactose negative cultures unable to ferment an additional regard carbohydrate such as lactose, xylose, and arabinose (E. Lederberg, unpublished) will give apparent transductions when plated with phage on media containing these substances. Such apparent transductions are not for the fermentation of the carbohydrate in the medium, but for galactose fermentation, since after purification, the transductions clones are found only galactose positive. Media containing these substances have some selective action on galactose fermenting clones.

in the number of galactose fermenting papillae are observed (table 4). The number of galactose fermenting clones is proportional to the amount of lysate added (figure 1). Since each of these mutations to inability to ferment galactose is capable of reverse mutation the data must be corrected, in each case. This has been done for the data in figure 1 by subtracting the number of spontaneous reversions as determined from control platings with no added lysate. In addition to indicating proportionality, the data in figure 1 indicate that the cells show the effect irrespective of the Lp genotype of the cell, and that

lambda sensitive cells are more capable of showing the effect of added

lysate than lysogenac cultures.

Colleges

2. Lysates of galactose negative colleges.

when lysates of galactose negative cultures are mixed with the various galactose negative cells results similar to those shown in table 4 are obtained. With the possible exception of the interactions of Gal₁ and Gal₄, each of the lysates is capable of evoking galactose fermenting papillae upon plates spread with non-homologous negative cells. With the usual lysates Gal₁, Gal₄ interactions are erratic, sometimes giving significant differences between control and lysate added plates, sometimes not. This interaction will be dealt with in more detail in a later section, it will be sufficient to state here that such interaction does not produce clones that are phenotypically to of these loci.

The differentiation does not produce clones that are phenotypically to the differentiation by lysate interaction corresponds to the differentiation decided by recombinational analysis.

Activity.

3. Expected of Lysates of reverted galactose negative cultures.

The same and the s

Reverse mutation restores the ability of lysates of a galactose

ည်မှုတွင် မြေသော သည်။ မေသည် ကြာလူတွင် ကြာလေးသည့် သို့ အသည် အတောင်းသည် အားမှာ အမြေသောကျွန်းများများပြီး အသည်မျာ ကြာရေလည်းနေသည့် သည်နေသည်များနှင့်နေသည် အသည်းအနေတွင် သည်။ သည် သည်သည် သည် သည်တွင်းနေသည် သည် တွင်းသော အသည် မြေသည်

Mimic reversals should be able to evoke papillae from cells of the original mutant type only in the improbable event that they are located in the restricted genetic segment that appears to be capable of genetic transduction.

ඉහා වර්ගය වූ වියාජිතාවී විශාලයිකට වුනව සාජවරණීමලිල්ල ලැබු ක කිලපාරයින් බිඩ් වරුගේ වේනවල්ල කික්වීම් කි

production of the transducing activity of a lysate by the method satisfication of mixing lysate and cells on the plates appears to be and in the case of lysogenic cultures, the variation being less than two-fold over a thousand-fold change in the number of cells plated. Cell concentrations

OPTIMAL

between 5 X 10⁷ and 5 X 10⁸ appear to give maximum detection of lysate activity. When the assay cells are lambda sensitive the variation is two to three fold greater over the thousand-fold range of cell values from 10⁶ to 10⁹, with increasing assay values as the number of cells increases. Since the ration of phage particles to transducing particles in a lysate is very large the interaction between lysate and sensitive cells is complex, and the with the great probability that the inactive phage particles say influence the expression of the transducing particles. The ratio of transductions to phage content of the lysates varies, approximating 10⁻⁷ for lysogenic assay cells, about 10⁻⁶ for sensitive cells, that is, about a ten-fold difference in efficiency.

The necessity of lambda adsorption for transduction

The necessity for lambda adsorption for transduction is illustrated by the results given in table . When the various galactose negative cultures are lambda-2 resistant, a combination which is incapable of adsorbing either lambda or lambda-2, transductions are not obtained. The ability to transform a galactose negative locus found coupled with lambda-2 resistance is demonstrable when a suitable out cross is made and the galactose negative lambda-2 sensitive recombinant obtained. Lambda-2 resistance does not effect the ability of a lysogenic culture to give rise to phage and transducing particles after UV induction.

activity The mailton of lytic lambda.

The transductions described thus far have been effected by means of lysates prepared by the ultraviolet induction technique.

Lysates prepared by lytic growth of the phage on a sensitive culture apparently have no transducing activity and have lost the transducing activity included in the starting the phage incoulum (table 8).

The transduction clones

with the exception of the Lp locus in the case of lambda sensitive cells, no changes have been observed in any of the other genetic characteristics of the transformed cells. Many of the galactose fermenting clones produced by transduction are different from the spontaneous reversions in their instability for galactose fermentation and in some cases for lambda reaction. That is, they continue to segregate galactose negative clones in the course of many serial isolations. In addition, in the case of the transductions with Lp^T reaction there is segregation for lambda sensitivity with segregation for galactose fermentation. Lysates from unstable transduction clones also differ from lysates of galactose reversions: in the former the ratio of transductions to plaques is much closer to unitys (table 8).

Lysates of the cultures unstable for galactose fermentation when prepared in the manner of the other cultures

have lower phage titers. The reason for this is not known but the production of phage in these lysates is being studied further. With the exceptions of transductions formed with wild type lysates, the transduction titer of these lysates is dependent on the genotype of the assay culture.

When portions of these lysates are cross brushed on galactose negative cultures the intersection of the streaks is converted principally to galactose positive growth because of the high frequency of transduction (HFT). The problem of the HFT lysates will be dealt with in more detail in a later section.

Incidence of clrsogentaty in the transduction clones derived from Lps

When NFT lysates are used in transductions to Lp⁸ recipient cells, about 90 percent of the resultant transduction clones are lysogenic (Lp⁺) or Lp^r. There is some slight evidence for lambda sensitive transductions, but these putative transductions have been found stable for galactose fermenattion and it has not been possible to distinguish them from spontaneous reversions except by their frequency of occurrence.

When Lp^r cultures are treated with lysates a small fraction (3-5 percent) of the segregants from the resultant transductions are lysogenic whereas it had not been possible to lysogenize Lp^r cultures with previous methods (Lederberg and Ledspherg, 1953).

The high incidence of lysogenicity in the transduction clones may be misleading owing to the excess of phage, and it cannot be ascertained whether lysogenization took place before, concomitant with, or after transduction by the NFT phage. In the section on HFT lysates the resultionship between transduction and lysogenization will be shown more clearly.

The segregants from the transductions with Lp* reaction are Lp*, while the segregants from the Lp* transductions are Lp* and Lp*.

In speaking of the Lp^r reaction it should be noted that the classification of Lp^r is more subject to quantitative considerations than the other alleles of Lp. The two cultures (W1924,W1027) derived from sources other than transduction that showed no plaque forming phage in cross brushes with sensitive cultures gave plaque forming phage after induction with ultraviolet radiation. The amount of phage was greatly reduced over that obtained from Lp⁺ cultures under similar conditions. These two cultures were obtained after separate procedures, one from an ultraviolet irradiated Lp⁺ culture, the other from an Lp³ culture treated with lambda (E. Lederberg, unpublished). Both were stable as regards their lambda reactions. The Lp^r clones observed after transduction have not given plaque forming phage after U.V. exposure, but differ from those which have given phage, by instability at the Lp locus

Whether the bransductions with Lp reaction are the results of heterogeneity among the phage particles, the cells, or as the results of a defective"

act of lysogenization is not known, but presumably the problem could be investigated by statistical means.

Existence of transductions stable for galactose fermentation.

conditions is not the case.

The evidence for the occurrence of stable transductions is the increased number of stable galactose positive clones found on lysate plates with the expectation of plates and that expectation of a change in favoring spontaneous reversions for finding that most of them are also selective conditions, the fact that heated lysates (560 for 30 minutes), in the fact that heate

The non-fermenting segregants from the unstable transduction clones can be classified for the negative alleles that they carry by three separate methods: (1) by testing the segregants against lysates of known galactose negative cultures, (2) by testing known galactose negative cultures against lysates of the segregants, (3) by crosses with known galactose negative types. In classifying the segregants it will be convenient to fefer to the Light Carry Law parental source of the negative allele or alleles by generalized designations. By idiotype is meant the genotype of the recipient cell parent, by allotype the genotype of the donor source of the transducing lysate. Amphitypic will designate cultures which at some loci are idiotypic and at others are allotypic. Unstable or segregaing stocks, as will appear, are heterogenotes and the underlying state is described as heterogenic to distinguish it from temploid heterozygosis for antire genomes.

For further analysis it will ultimately be desirably to construct single cell pedigrees. The following observations on cellow ALE MADE isolations, with due regard to the complexities of colonial formation.

Various segregants were tested by one of the three possible three methods, and some cases (table 10) by all methods. Tables 12 and 12 make proposed the the Relative profession and a second present summaries of the analysis as transduction recipients and as Description of the management of the second of the control of the transduction donors. The pattern of segregation in the various transde anno esta per la l'artica managió e e e la merce de antica de la laterata da anciente antica e la compe duction experiments can be obtained from table 11. Gal1- segregants have not been tested in crossing experiments because no suitable stock is available. of for this purpose and purpose the file flucture was a

Christians and exist existing for the color, is se-

is, a culture classified by the first method was Galu- was also classified as this with by the other two tests.

Consecute believes the three netacts of testing and opposite . The

STREET MENT OF STREET STREET

Three segregants obtained were classified as amphitypic in tests against lysates of known cultures. Two were Gali- Gali-, and one was Gal, - Galh -. The former were prototrophic and it was not possible to examine their behavior in crosses. The Gal2- Gal4- culture is crossable but has not been tested kenempulation as yet.

Because of the Gal, - Gal, interaction it is not pessible to test any of the amphitypic segregants using only the three, so far considered. Attempts were made to analyse the amphitypes further by the action of their lysates on an additional locus, Galg-. Lysates of the two Galg-Galgwere plated with cells of a Gal6- culture. Both lyeates had little action in producing papillae . (This perhaps might have been expected since white have questionable activity Gali- Record Amend Amend Amend on Gal6-). Several unstable galactose fermenting clones were obtained from each interaction, however, and a number of segregants were tested. Of 16 segregants from the transductions by the lysate of one apphitypic culture, 15 were Gal,-, and one was classified as Gal1- Gal2-. From the action of the lysate of the second amphitypic culture five Gal, - and two Gal, - segregants were obtained. Although both lyses

negative alleles

transmitted Gal₁- and Gal₂-, confirming the existence of these will in the parental cultures, the failure to recover the idiotypis Gal₆- locus among the segregants is disturbing. INTERESTRICTION OF Its behavior.

[Apuble to parental cultures, the failure to recover the idiotypis Gal₆- locus among the segregants is disturbing. INTERESTRICTION OF Its behavior.

[Apuble to parental cultures, the failure to recover the idiotypis Gal₆- locus among the segregants is disturbing. In the parental cultures, the failure to recover the idiotypis Gal₆- locus among the segregants is disturbing. Its lateral parental cultures, the failure to recover the idiotypis Gal₆- locus among the segregants is disturbing. Its lateral parental cultures, the failure to recover the idiotypis Gal₆- locus among the segregants is disturbing. Its lateral parental cultures, the failure to recover the idiotypis Gal₆- locus among the segregants is disturbing. Its lateral parental cultures, the failure to recover the idiotypis Gal₆- locus among the segregants is disturbing. Its lateral parental cultures, the failure to recover the idiotypis Gal₆- locus among the segregants are cultured to the failure to recover the idiotypis Gal₆- locus among the segregants are cultured to the failure to recover the idiotypis Gal₆- locus among the segregants are cultured to the failure to recover the idiotypis Gal₆- locus among the segregants are cultured to the failure to recover the idiotypis Gal₆- locus among the segregants are cultured to the failure to recover the idiotypis Gal₆- locus among the segregants are cultured to the failure to recover the idiotypis Gal₆- locus among the segregants are cultured to the failure to recover the idiotypis Gal₆- locus among the segregants are cultured to the failure to recover the idiotypis Gal₆- locus among the segregants are cultured to the segregant that the segregant that

type by the action of a missingle pure lysate, they are positive closes are often type by the action of a missingle pure lysate, they are positive closes are often purity and the from the from the from the from the from the been investigated but the greatly reduced number of transductions produced young by the mixed lysate is expected on the assumption of independent interaction between the cells and each of the transducing activities.

The transductions produced by the action of mixed lysates on amphitypic segregants appear to be less stable than transductions of cultures make negative at a single galactose locus. In addition they give rise to "intermediate" segregants in which only one of the two transducing activities has been lost from the make clone. These "intermediate" segregants in turn give rise to personants from which both transducing activities have been lost.

Galactose negative culpires giving lysates with HFT property.

Under the section on transformed cells ith was noted that in lysates of the unstable galactose positive clones the ratio of transduction titer to the plague titer was gates, high, to the plague titer was gates, high, to the course of examining war not the more first found to give HFT lysates. In the course of examining war egants from a lysates transduction by means of lysates of them, several exceptional maintains were encountered.

ŒUs .

of transduction. The spinish the second of t

these exceptional cultures and no different from the other segregants.

That is, they reacted in tests againstly sates in the same manner as HTT pulminance of secretary through the segregants, and they have been segregants and they have been segregants.

Accordingly to the same manner as HTT problems to the same manner as HTT pulminance of th

for this property and unstable on rare encasions for galactose which confine Regarding the latter instability. HTT cultures which were negative at a single locus segregated NTT segregants that were negative at this locus and seem that were negative at all additional locus as well. In most instances, however, the NTT segregants were of the same negative AT THE SAME of the parent galactose negative HTT culture.

The galactose positive reversions of the HFT cultures that have been studied are still capable of giving HFT lysates, but are unstable for galactose fermentation. The galactose negative segregants from the reverted HFT cultures are HFT, are either negative at the same locus as the original negative HFT segregant, or negative at this locus and negative which proved to the oviqual at an additional locus, one, which was the idiotypic locus in the formation

(16)

of the transduction clone. The galactose positive reversions of these segregants are stable.

A characteristic HFT culture has been obtained for each galactose meet negative as well as for wild type. These cultures were isolated initially by making lysates of random segregants from heterogenic transductions and assaying the lysates on the appropriate cells. This method is laborious and inefficient. To assist in the isolation a more rapid method was devised. Random segregants colonies were picked to small volumes of water or broth and a samples of each suspension were then spotted on an EMB galactose plate spread with cells suitable for the detection of the HFT culture desired. The plate mparked was given a small dose of UV (about 10-20 seconds at 50 cm from a Sterilamp) and incubated for 24 hours. At the end of this time HFT cultures were usually detected by the raised welt of galactose positive growth where lambda produced by the induction and lysis of the HFT culture had transformed bacteria of the background film of growth.

The incidence of HFT galactose negative minimum cultures is not high. Of 67 segregants tested, 7 were found to be capable of HFT lysates. The true frequency might be higher than this, since the segregants were examined and there was opportunity to pick AFT segregants from originally HFT clones.

Cultures that giving HFT lysates that are pure for a particular galactose negative allele are suitable for allele in tests of unknown galactose negative cultures by the cross brush method.

Experiments with lysates giving a high frequency of transduction

Although the HFT lysates have not yet been obtained with phage titers comparable to MFT lysates the titers have been sufficient for transforming a large fraction of a cell population exposed to them. The largest fraction of transformation observed thus far has been 12.5 percent of exposed cells, but in most experiments the fraction has been between 1 and 5 percent.

The use of HFT lysates has permitted the study of several problems not attackable with MFT lysates. One of these is the relationship of transduction to lysogenization with the phage lambda. Another problem is that of the interaction of Gal₁ and Gal₄. Both of these problems will be dealt with in the next sections. With MFT lysates, transduction was experimentally feasible at I only whan a galactose phenotype is generated that can be selected from a galactose negative background.

HFT lysates, permit the detection of galactose negative segregants from transductions clones derived from galactose positive recipient cells.

Transductions in this sense have facilitated further studies of the interaction of the galactose loci with the Lp locus.

The relationship of lysogenization to transduction

By exposing cultures of Lps cells to HFT lysates, diluting, and then plating on galactose medium to obtain isolated colonies it is possible to study the behavior of individual cells with regard to their transduction and lysogenisation activities. Table 1 shows the results of an experiment in which 1.1 percent of a cell population was transformed after exposure to a HFT lysate. The second portion of table 1 gives the phage reactions of the galactose positive (transductions) and galactose negative colonies derived from cells exposed to the HFT lysate. All of the transductions were lysogenised or converted to the Lps state while the non-transformed colonies were either phage sensitive or contaminated with phage.

carries

could be argued

These results suggest that lambda 🕿 the transducing activity.

However, under the experimental conditions employed it is pressible that the transductions are the results of the action of two entities. The would first, which acts upon the cells and makes them "potential" transductions, and the second, lambda, which in the process of lysogenizing the cells, so many phage contacts to result in would sometimes & see & Aconverts them to actual transductions. In order for transductions to he (43 of 3%) cheered at all under this hypethesis, the "potentiating" agent would have present in about to be the order of ten-fold in excess of lambda. He might be ergued that because (in table the experiment berecorded in table 1) only about one third of the lambda cell contacts become transductions that the ratio of the "potentiating" agent to humble was not high. This would not necessarily so eince this ratio (-transductions/_total-lambda_contacts) could merely be ab indication of the efficiency of lambda's conversion of petentiality to actuality.) The observation of linear moof number of transductions to amount of HFT lysate at high dilution (10-5-10-6) makes the intervention and factor in addition lambda highly improbable. as to make this hypothesis

untenable

At these dilist dilutions the probability that a single cell would encounter both activities would be approximately the square of the dilution (10 10 10 12). Lambda most certainly must be the vector of transduction.

The interaction of Gal and Gal, (Positive effect).

interaction of Gal₁-and Gal₄- cells with HFT Gal₄- and Gal₁- lysates respectively. The results from one set of interactions is shown in table 15. After a preliminary period for the adsorption of the transducing activities the cultures were centrifuged, the superhatant lysate discarded and the cells resuspended in broth. The cells were then diluted and plated on EMB gives galactose medium. No galactose positive colonies were observed on the substitute factories plates made from control unexposed cells or from lysate treated cells. After 24 hours incubation at 37C two raised, slightly orange fink colonies were observed in each experiment on the plates from cells exposed to lysate. These colonies were slightly larger than the other galactors negative calculus and after 24 hours developed

(20)

(30)

a roughened papillate surface. On straking out they gave rise to positive colonies, negative colonies that remained negative, and to papillating galactose negative colonies.

In each experiment a number of galactose positive colonies derived from the papillating negative colonies were trutted picked and streaked out twice for purification purposes. From the second streaking galactose negative segregants were obtained and classified with regard to negative allele. In each experiment idiotypic and allotypic segregants were observed and in one experiment amphitypic segregants were found. The amphitypic (Gal₁-Gal₄-) segregants were transformed to wild type phenotype by lysates of wild type cells, and a lysate of the amphitype formed galactose positive transduction clones when applied to Gal₂-recipient cells.

The failure to realize a wild type phenotype when the positive trans—
alleles are in a transposition, and its realization in the cis-position constitutes a positional effect for these loci. The

The action of HFT lysates on lambda-2 resistant cultures

In the previous discussion, NFT lysates were stated not to transduce lambda-2 resistant recipient cells. HFT lysates, on the other hand, do transduce lambda-2 resistant cells, but at a low frequency (one per 16⁶ transducing particles). This is presumably caused by the primar potency of HFT lysates, which helps to uncover any residual interaction of transducing phage and lambda-2 resistant bacteria, regardless of which element had varied. Such variation might then be either phenotypic (expressivity) or genotypic (mutation) wither in virus or bacterium.

The interaction of HFT lysates with lambda-2 resistant cells is illustrated by the following observations. Some mutations to lambda-2 resistance are accompanied by a coincident change to immbda inability to ferment maltose (E. Lederberg, unpublished). Reversions to ability to ferent maltose is accompanied by reversion to lambda-2 sensitivity and vice versa. These two phenotypic effects have never been separated in crosses and it is presumed that they are the result of a single mutation.

The transductions of a galactose negative, maltose negative lambda-2 resistant, lambda sensitive culture obtained by the action of an HFT lysate are of two types. Maltose positive and lambda-2 sensitive, ese and maltose negative and lambda-2 resistant. The first of these types types represents the detection by the HFT lysate of reverse mutation of the locus in the recipient cells controlling lambda-2 resistance.

The second type of transduction in about 95 percent of the cases is stable for galactose fermentation. Study of the transformability of galactose negative segregants from the unstable transductions clones found showed them not to be susceptibilities.

(37)

negative lambda-2 resistant culture. In these cases, at least, there has not been a mutational change in the recipient cell to a **EXEC** greater aptitude for transformation.

lambda-2 resistant transductions have been found Lp⁸, the remainder Lp^r.

The Lp^r forms may be stable or segregating for galactose, but all segregating clones are Lp^r. Segregation for galactose fermentation is usually accompanied by segregation at Lp. Presumably in the cases there has been variation in the transducing particles, although it is possible that in the transductions ending in Lp⁸ clones that an agent distinct from lambda is operating.

Transduction closes the content of the unstable galactose positive cultures.

In previous sections it was noted that transduction clones

Since

gave HFT lysates after UV induction. If spontaneously produced phage is

similar to phage produced by the induction technic it might be expected

that in crosses between transduction clones and galactose negative cultures,

or between HFT galactose negative cultures and non-allelic galactose

There are several observations which suggest that transduction occur does not play an important part in such process. The first observation, lation which minimises the several part in such process. The first observation, lation which minimises the several part in such process. The first observation, lation which minimises the several part in a cross between an HFT allotypic segregant and an idiotypic tester, 11,200 prototrophs were examined before a galactose positive recombinant was ancountered. A second observation is from the comparison of a cross between a lysogenic unstable transduction.

(capable of giving HFT lysates) and a lp galactose negative culture, with a cross between an lp transduction (incapable of giving HFT lysates) and have several part of galactose positive colonies in the cross between the lysogenic transduction and the sensitive, Apparently transduction does not confuse in any important way, the results of crosses.

The transmission of galactose heterogenicity in cosses is greatly influneced by the F FAMIFIEF polarity of the cross (table 1). When an unritable heterogenic F culture is crossed with a non-allelic galactose negative Lp⁸ F culture, unstable galactose positive prototrophs are rare. When the unstable culture is F, and crossed with a non-allelic E galactose negative T Lp⁸ F culture, most of the prototrophs are galactose positive and unstable. Some of the galactose negative prototrophs in these crosses can be explained by galactose negative segregants in the unstable Exgalactose positive parent clone.

calactose negative cultures that are not transformed by lysates.

which in addition gives an interaction with Gal - such that the heterozygous combination is not phenotypically galactose positive. AP Unvesolved

technical difficulty seems a more likely explanation.

The study of the galactore negative cultures not transformed by lysates has been partly hindered by difficulty in discerning which cultures were truly "negative" and which cultures were merely "slow positive", so not galactore positive transductions are not readily selected.

24

DI SCUSSION

The xeex results presented above can be placed in an orderly fashion by the following scheme. When lysogenic cells are exposed to ultraviolet radiation and the prophage is induced to form mature phage, on rare occasions a fragment of the bacterial chromosome is included within a phage particle. When this particle injects its genetic material into another bacterial cell, the fragment is also injected and if the recipient bacterial cell has the proper genetic constitution the presence of this extra genic material is made obvious. The fragment remains within the bacterial cells that survive, and its multiplication and distribution among the daughter cells closely but not completely parallels the multiplication and distribution of the other genetic material in the cell.

The allotypic fragment usually persists at cell division, so that segregating clones can be maintained indefinitely in mass culture. At least two additional events are inferred: (1) diploid crossing over leading to reorganized digenotes. Since these may be heterogenic or homogenic, a few strand (or more) stage is implied. (2) segregation occurs leading to stable haplogenote, the state typical of E. coli. The fate of the fragment is unknown. Crossover haplogenotes (amphitypes) have also been isolated and may represent either a third process, or the first two in sequence (cf Pontecorvo, 1954). Since heterogenotes give HFT lysates, the fragment or a replica of it, is assumed to have a high probability of incorporation in the phage obtained by UV induction. The low yields suggest a burst of one phage particle, a reversal of transduction.

From this description it is evident that the genetic transfer is intimately associated with the process of lysogenization and lysogenicity. Concerning the process of lysogenization in K-12 little is known beyond the fact that cell and phage interact, there is a period of indecision, and the

(35)

infected bacterium either dies or generates a clone containing lysogenized cells. Once lysogenicity is established the capacity to produce phage behaves as a nulcear gene that is closely linked with a number of loci controlling galactose fermentation.

The firm step in the scheme is the inclusion of a fragment of the within a phage particle. In Salmonella the fragment is a random section of the cells genetic material, but in <u>E. coli</u> K-12, it is a quite specific, for only a restricted group of loci are transduced by lambda. Again in contrast to Salmonella, "lytic" lambda is incompetative in transduction. This may reflect an inherent difference between lytic and UV induced phage.

In the establishment of lysogenicity the genetic material of lambda enters the cell and adsociates itself in some way with a specific region of the bacterial genome. In the induction process it is presumably emerges from its place and starts to multiply. Transduction could be accounted for by some latitude in the separation of the galactose loci from the prophage linked to them, and their common inclusion in some mature phage particles. The close genetic proximity of the galactose loci would suggest their increased liklihood of inclusion, but there is no closely necessity that linked genes be also spatially close to one another.

There are two types, of culture in which transducing particles are formed and it is legitimate to ask whether the two are different phenomena or the merely quantitaively different aspects of a single phenomenon. The evidence for a unitary process is negative in nature. That is, no difference have been noted between HFT lysates and HFT lysates, except possibly the higher incidence of transductions with Lp reaction with the former. This exception, if it be one, could itself be explained on the basis of quantitative differences between the two lysates.

The production of transducing particles in cultures giving HT lysates has not passed beyond the preliminary stage. The evidence thus most far suggests that a major received of the cells yield transducing particles and that the yield per cell is not large. In regard to the frequency of cells emmitting transducing activity it should be noted that cultures started from a single colony with HTT property may contain as much as by virtue of regretation.

30 percent of cells with NTT property.

The mains of the HFT lysates of segregating hierozygous is galactose positive clones indicates that the fragment preferentially included within the phage particles,

Presumably exchange between fragment and intact chromosome occurs such that instead of giving lysates predominately allotypic in character, idiotypic lysates are obtained. The exchange is sufficiently rare, however, that observation remains objective in nature.

The nature of the association of the fragment with the infective phage particle is not known. Presumably the material is within the phage membrane since it is not attacked by desoxyribonuclease. The availability of lysates in which the most of the phage particles have activity (HFT lysates) or have no activity (NFT lysates) suggests that morphological comparisons might possibly be made via electron microscopy of intact FARES.

The fragment enters the bacterial cell in company with the prophage, by analogy with T2, probably by the injection process (Hershey and Chase, 1952).

The association of the fragment with the prophage in transduction to lysogenic cells cannot be stated in the absence of phage markers, since it is not possible to distinguish between the previously carried and the newly enstered prophage. The carriage of more than a single prophage by cells of <u>E. coli</u> K-12 has been reported by Appleyard (1954) and it is likely that the transductions of lysogenic recipient cells are also carrying more than a single prophage.

In only one instance, from more than 250 segregations studied, has segregation from a transduction of lysogenic cell resulted in a change at Lp. In this case an idiotypic segregant became Lp⁸, and this might have been a spontaneous "mutation".

In the transductions to Lp^S recipient cells the association that these loci are linked.

In the transductions to Lp^S recipient cells the association that these loci are linked.

In considering the relationship of the fragment to the rest of the genome no specific statements can be made with regard to its perpetuity in the heterogenic clone. One would depend upon its possession of a functional centromere, so that it would behave as a small autonomous chromosome, or the fragment would be attached to the homologous chromosome attachment segment, either intersitially or terminally. Either, position presents difficulties for crossing over, and the fragment as a separate chromosome

In the above sections the results have been treated and discussed in ageneral way. It is obvious that the study of this transduction system has only begun and that many experiments and interseting observations will be made before the problem is completely understood. It is proposed to investigate lambda transduction further along the following lines.

- 1. Whether the production of transducing activity in MFT cultures is related to the interaction of radiation and cells, or is the result of a mutational like event in the cell population.
 - 2. The production of transducing particles in HFT lysates.
- 3. The action of radiation on transducing particles and the possibility of inducing mutations.

- 6. Further studies on crossing over between fragment and idiotypic loci using additional markers.
- 7. The relationship between lysogenization and transduction, and between lysogenization and crossing over.
- 8. Estimation of the gene order of the transduced loci and their xel relationship to other mapped loci.
- 9. Study of the biochemical steps controlled by the various loci
 - 4. The detection of other loci within the transduced region.
 - 5. The behavior of the fragment transduced during meiosis.

SUMMARY

A cluster of loci in <u>Escherichia coli</u> K-12 was found previously to control the fermentation of galactose. Lyeogenicity for the temperate bacteriophage, lambda, was also found to be closely linked to these loci in crosses. The phage lambda now has been found to transduce these loci, as can be readily demonstrated by mixing lysates of galactose positive cultures with galactose negative cells on a selective medium, EMB galactose agar.

The transductions

result in clones that are heterogenic, that is, they are diploid for a small region of chromosome. The small fragment of chromosome transduced appears to have a functional centromere, and is perpetuated within the clone even after many single colony isolations, but it may on some occasions be lost. While in the clone at has been found to crossover with its homologous region, on some occasions at least, at a four strand stage. Each of the new phage particles formed in lysates of hetergenotes has a high probability of containing at only a found. but the fragment is the improved carried in the heterogenic clone. A position effect on the expression of two of the transduced loci has been observed. Dineterogenotes of Gall and Gall are not phenotypically galactose positive in the trans positions, but are so, in the cis.

BIBLIOGRAPHY

- Alexander, H. E., and G. Leidy 1951
 Determination of inherited traits of H. influenzae by desoxyribonucleic acid fractions isolated from type specific cells
 J. Exp. Med. 93, 345-359
- Alexander, H. E. and W. Redman 1953

 Transtrumation of type specificity of mening ococci. Change in

 Transtrumation of type specific extracts containing desoxyribonucleic

 heritable type induced by type-specific extracts containing desoxyribonucleic

 acid. J. Expel Med. 91, 797-806
- Ropleyard, R. K. 1954

 Segregation of new lysogenic types during growth of a doubly lysogenic strain derived from Escherichia coli K-12

 Genetics 39, 440-453
- Atchley, W. A. 1951 Cold Spring Harbor Symp. Quant. Biol. XVI, 441 (Discussion of Lederberg et al)
- Austrian, R. 1952

 Bacterial transformation reactions

 Bact. Rev. 16, 31-50
- Boivin, A. 1947

 Directed mutation in colon bacillit by an inducing principle of desoxyribonucleic nature: its meaning for the general biochemistry

 SIXNESSALLY of heredity

 Cold Spring Harbor Symp. Quant. Biol. XII, 7-17
- Hershey, A. D. and M. Chase 1952
 Independent functions of viral protein and nucleic acid in growth of bacteriophage
 J. Gen. Physiol. 36, 39-56
- Hotchkiss, R. D. 1954

 Double marker transformations as evidence of linked factors in desoxyribonucleate transforming agents

 Proc. Nat. Acad. Sci. 40, 55-60
- Genetic control of mutability in the bacterium Escherichia coli Ph. D. theris, University of Wisconsin, Madison, Wisconsin
- Genetic studies of lysogenicity in Escherichia coli Genetics 38, 51-64
- Lederberg, J. 1947

 Genetic recombination in Escherichia coli

 Ph. D. Dissertation, Yale University, New Haven, Conn.
- Lederber, J. 1950

 O'Isolation and characterization of biochemical mutants of bacteria

 Methods in Medical Research 2, 5-22

 The Year Book Publishers, Inc. Chicago, Ill.

(41)

Lederberg, W., E.M.Lederberg, N.D.Zinder and E.R.Lively 1951
Recombinational analysis of bacterial heredity
Cold Spring Harbor Symp. Quant. Biol. XVI, 413-443
Lederberg, J. and E. L. Tatum 1953
Sex in bacteria: genetic studies 1945-1952

Lederberg, J. 1954

Recombinational ,mechanisms in bacteria

J. Cell. Comp. Physiol. Supplement 1954

(Symposium on genetic recombination, ORNL, April, 1954

Pontecorvo, B. 1958
Analysis of metatic recombination in Aspergillus niger

J. Genetics 52, 226-237

Science <u>118</u>, 169-175

Stocker, B.A.D., M.D.Zinder and J. Lederberg 1953

Transduction of flagellar characters in Salmonella
J. Gen. Microb. 2, 410-433

Tatum, E. L. and J. Lederberg 1947

Gene recombination in the bacterium Escherichia coli

J. Bact. 53, 673-684

Weigle, J.J. and M. Delbrück 1951

Mutual exclusion between an infecting phage and a carried phage
J. Bact. 62, 301-318

Zinder, N.P. and J. Lederberg 1952

Genetic exchange in Salmonella

J. Bact. 64, 679-699

Table 16

The transmission of heterogenicity
in crosses

Parental cells		ic recombinants	1
I I	Galactose (+)	Galactose (-)	
Gal2 [±] (1) Gal4- Lp ²	1*	about 6000	
Gal ₄ - Lp ^S Gal ₂ -(2)	541**	99	

- * unstable for galactose fermentation, 6 galactose negative segregants tested were Gala-
- ** 25 of 30 examined were unstable for galactose fermentation. One segregant from each of the 25 was tested, all were Gala-
- (1) control platings showed the ratiox of (+)/(-) in this oulture was 109/57
- (2) control platings showed the ratio of (+)/(-) in this culture was 115/13

Table 1
Principal cultures

F ⁺ M ⁻ Lac ₁ - Gal ₄ - Lp ^s F ⁺ M- Lac ₁ - Gal ₁ - Lp ⁺ F ⁺ M- Lac ₁ - Gal ₄ - Lp ⁺ F- T-L-B ₁ - Nal ₃ - Gal ₂ - Lp ⁺
F M- Lac ₁ - Gal ₄ - Lp
, , , , , , , , , , , , , , , , , , ,
F- T-L-B ₁ - Nal ₂ - Gal ₂ - Lp
1 1 2 -
F M- Lac ₁ - Gal ₂ - Lp +
F T-L-B1- Lac1- Gal4- Lp S ST
F M- Lac ₁ - Gal ₄ - Lp ^r
F Gal2- Lp+
F M-Lac ₁ - Gal ₁ - Lp ⁸
F M- Lac ₁ - Gal ₂ - Lp ⁸

^{*} Genotypic symbols refer to the following characters,

- (1) Compatibility status, F
- (2) Nutritional requirements; M, methionine; T, threonine; L, leucine; B_1 , thiamin
- (3) Fermentation reactions; Lac-, lactose negative; Gal-, galactose negative; Mal-, maltose negative
- (4) Phage reaction; Lp, lambda sensitive; Lp, lambda lysogenic; Lp, lambda resistant, but not overtly lysogenic.
- (5) Drug resistance; S, streptomycin

Table 2

Recombination between the various

Galactose loci

Gross			Minimum Prototr		r of Recombinants		Galactose Recombinants
Fq Gal	X	F	Gal ₂ -	(1)	1500	0.13	V
				(2)	6517	0.06	√
				(3)	3603	0.03	4
					-		
			; ;	:	11620	0.06	-
F ⁺ Gal ₄ -	X	F	Gal ₁ -		4588	0.13	✓
F ⁺ Gal4-	X	F	Gal2-		2654	0.23	

F+ Gal, = W750 F- Gal, = W750 (aeratin phenocopy) F- Gal, = W902 F+ Gal, = W811, W518, W1436

Table 3 Observations on lambda lysate transductions

Ī	ocus	Number of experiments	Cultures involved
<u>1</u>	. Loci not transduced	· · ·	
	Lac ₁	1	W112
	(serine or glycine) 1	W1678
	Leucine	3	W1736,W1436 ^a
,	Methionine	4	58-161,W811,W1821,W518 ^b
	Xylose	3	W1821 ^c
J.	Streptomacin	1	₩518 ^đ
y ^r	Proline	9	w1692,w1920,w2062 ^e
		l(lytic lambda)	W2062 ^f
	Mal ₁	2	W2331,W2347 ^g
	Mal _x	1	W2071
•	Ara	1 .	₩2307 ^h
 2	. Loci transduced		
	Gal _l	-	W750, W2279, W2280, W2373
Star L	Gal ₂	<u>.</u>	W1210,W2175,W2281
<i>(</i> ************************************	Gal ₃	••	W2297
	Gal ₄	-	W518, W811, W1821, W1436, W1924
•	Gal ₆		W2070
	•		

(Footnotes table 3 continued)

f- lytit lambda grown on M- culture

g- lysate of prototrophic HFT Gal - culture h- lysate of prototrophic HFT Gal 2- culture

Table 4

The interaction of lysates and cells of galactose negative cultures

Recipi	.ent		Adas Cysate	Gal ₁ -	Gal ₂ -	Gal ₄ -	Wila
Cells (Lp ⁺)		Plaque titer (x 10 10)		2.4	4.9	1.7	type
Gal ₁ - #	% (1)		2*	-	176	43	-
	(2)		2	2	-	-	405
Gal ₂ -	(1)		14 .	52	11	43	.
	(2)		20	-	10	•	356
Gal ₄ -	(1)		89	••	202	-	-
	(3)	a.	5 0	85	-	-	417
	(3)		47	-	-	50	394

^{*} The no added lysate plate which represents the number of spontaneous reversions occurring on the plate. The remaining figures are the numbers of papillae occurring on the plates per 0.1 ml of lysate added.

Restoration by reverse mutation of the ability to transduce previously non-transducible loci

Recipient.		Lys	sate
cells (Lp)	Reversion	Mone	Reversion
Gal ₁	Gal ₁ + (1)	0	648*
Gal2-	Gal ₂ + (2)	10	96
	Ge12 ⁺ (2)	6	552
Gal ₄ -	Gal4 (5)	39	204
	Gal ₄ (8)	25	291

^{*}number of papillae per plate, 0.1 ml of lysate plated.

The neversity of lambda adorption (48)

Table 6

The necessity of lambda adsorption for transduction

	phenotype **	 •	Plate, allihur
Recipient Cells (Lp+)	MIRA	None	Plate, Adhhn Mild type lysate
Gal ₁ -	8	1	426 *
	r	1	2
Gal2-	8	20	356
	r	14	14
Gal ₄ -	S	89	296
	r	50	57

*Mumber of papillae per plate. 0.1 ml of lysate plated

** s = lambda 2 sensitivi, r = lambda - 2 rouslant. r

from do not adorb extre lambda or lambda - 2

Table polymer of lytically grown lambda

Plate addition Experiment Recipient Lp cells Allele Mone Lytic lambda Placue titer 2.4×10^{10} 2* Gal1-3 228 Gal₂-8 9 9 8 Galu- 2.4×10^{10} Gal1-2 0 239 Gal2-6 2 13 8 Gala-6** 2.4×10^{10} 254 Gal,-Gal₁-3** 9** Gal_-6** Galu-39** Gal4-\$.6 X 109 2** Gal,-0 180 Gal2-2** 1 Gal4-14 10**

*Papillae per plate, o.l ml lysate plated. Lysate prepared by growing Gal_h- lambda (UV induction) on a galactose fermenting culture.
**These papillae picked and streaked on EAB galactose medium and found stable for galactose fermentation.

Table 8

The specific activity of lysates of the transduction clones

Recipient Cell	Transducing lysate Plaque	Titers Transductions on Lp ⁺ s Gal ₁ - Gal ₂ -	assay cells Gal,-	P/T*
Gal ₁ -	wild type 15.8 x 10	$8 2.4 \times 10^6 1.8 \times 10^7$	1.3×10^{7}	32
Gal ₁ -	Gal ₂ - 7.2 x 10	$9 1.2 \times 10^8 1.0 \times 10^6$	-	60
Gal ₁ -	Gal ₂ - ** ? x 10	$6 1.8 \times 10^6 6.3 \times 10^4$	-	
Gal ₂ -	Gal ₁ - 6.2 x 10	3 4.3 x 10 ⁷ 1.5 x 10 ⁸	-	4)
Gal ₄ -	Gal ₁ - I 1.5 x 10	$3 5.0 \times 10^7 7.5 \times 10^7$	7.4×10^{7}	2
Gal4-	Gal < 7.3 x 10	$3 2.5 \times 10^7 2.8 \times 10^5$	-	29

^{*} Ratio of plaques to transductions; the maximum transduction titer observed is used for this estimate. Usual ratio P/T is about 10

^{**} A second isolation.

Table ##

Recip							Ly	setes					
cells		TX				Δ-1		01			0-7		
		T/C*	C C	ग≉ ≉	T/C	<u>Gal</u>	l T	Gal T/C	2 ⁻ C	T	Gal _l , T/C	C	Ţ
Gal,-	Lps	38/1	1	14	-	-	_	11/1	1	11	30/1	1	29
_	Lp ⁺	46/1	1	2			· _	84/1	1	ħ	27/12	12	27
	Lp ⁺	143/1	1	42	-	-	-	92/1	1	0	-	-	-
Gal ₂ -	Lps	46/0	0	15	214/0	0	27	-	-	-	98/0	0	4
	Lp+	248/17	17	21	83/14	14	61	-	_	•	79/14	14	52
	Lp+	23/4	4	6	65/2	2	0	-	-	-	56/5	5	0
Gal ₄ -	Lp ⁸	835/19	19	3 83	72/2 9	29	72	472/11	11	20	-	-	-
	Lp+	573/41	41	133	96 /5 1	51	96	-		-	•••	_	-
	$\mathtt{Lp}^{\mathtt{r}}$	320/31	31	127	-	-	-	238/31	31	50	_	_	-

^{*} Papillae transduction plate/ papillae control plate. T = transduction plate, C = control plate

^{**} Corrected for sample taken, stable obs. X Papillae transd. plate sample size with the exception of the T/C column, numbers given are number of stable galactose fermenting papillae.

Summary of the analysis of segregants by transduction test. Lysate test and by cressing test

Recip. Oulture	Trnsd.		Clas	sifice	tion of	segregant Cross 3	ру	
					otypic			
			1	(+)	Tot. I	Prot. (+)		Prot.
Gal2- Lp8	wild	(1) Gal ₂ -	Gal	0	7805	_	_	
		$\binom{2}{n}^{\frac{n-2}{n}}$	Gal ₂ -	ŏ	4992	-	_	
		(3) #	Ħ	Ö	106		_	
		(4) "	Ħ	Ŏ	4552			
Ga1 - In+	wild	(1)(6)	Go. I	Λ	4070			
Gal ₂ - Lp	MITT	(1)Gal ₂ - (2) #2-	Gal2-	0	5384	_	_	
		(3) #	Ħ	0		_		
		(3) ¥ (4) ¥	ž	0	2072	-	-	
		14)	<u> </u>		6988	**		
Gal ₄ - Lp ^s	wild	(1)Gal4-	Galu-	0	896	-	•••	
•		(2) ^B	H T	0	918	-	-	
		(3) ^B	Ħ	0	1134	**	-	
		(l) #	11	0	863	-		
					_ 4			
Gal4- Lps	Gal2-	(1)Gal4-	Gal ₄ -	0	2786	3	3183	
		(2) *	H T	0	2675	2	3471	
		(3) "	11	0	3485	23	5342	
		(4) ⁿ	it	0	5952	1	1665	•
		(5) [#]	n	0	5000	11	891	
		(1)Gal2-	Gal ₂ -	7	3102	0	1988	
		(2) H ~	# "	10	4364	0	1187	
a_2+	G-7	(2)0-2	0.1	•	7/704	•	3200	
Galu- Lp+	Gal2-	(1)Gal ₄ -	Gal ₄ -	0	16104	3	1389	
		(2) # ·	ĸ	0	5730	1	164	
	•	(3) H (4) H	n H	0	3358	0	202	
				<u> </u>	12848	<u> </u>	<u>171</u>	
		(1)Gal ₂ -	Gal ₂ -	1	11200	0	827	
		(2) " ~ (3) #	r H	6	10608	0	718	
		(3) #		3	5000	0	409	

1. Test of the segregant against the hysates of a known cultures
2. Test if lysate of the segregant against known cultures
3. Test crossing with know cultures

Table 12

The examination of segregants by testing with lysates of known cultures

Recipient	Lp	Trusd.		Segre	gants	
cells	Renotype	lysate	idiotypic	allotypic	amphi typ	ic total
Gal ₁ -	5	vild	9	0	0	9
7	+	-	9 33	o	ō	33
Gal2-			16	0	0	16
·	+ (1) + (2)	2	20	0	0	20
	+ (2)	Y	15	0	0	15
Galu-	8		4631	0	0	4631
•	+		20	0	0	20
Gal ₁ -	8	Galo- (3) ² 6	1	0	7
1	•	Gal ₂ - (4) = 1	ō	Ŏ	i
	: :	Gal ₄ -	1	0	0	1
	•	,	K1 36		0	42
	•	Gal ₂ - (6) _~ 18	6 3	0	21
						
Gal2- 2	n81 · · · · · · · · · · · · · · · · · · ·	Gal _l -	20	0	0	20
	1381	Gal ₄ -	21	1	1	23
	+ (7) 8	Gal ₁ -	19	2	0	21
	(8) ≥		14	2 3	2	19
	(9) {	Galu-	22	1	0	23
	(10)	· ·	9	7	Ö	16
Gol: -	skilk	Gal (1	111 12	2	0	19
Gal ₄ -	PALLA	Gal ₂ - (]	12), 3518	2 53	20	45 21
	+		13), 16	3	0	19
				-		
	r	. (1	14)215	3	0	18

^{(1),(8),(10),} cultures of W2175. (2),(7),(9), cultures of W1210 (3),(6),(11), lysates of W1210. (4),(5),(12),(13),(14) lysates of W902. W902 is the Lp2^r parent of W2175.

Segregants in table 11 whose classification was confirmed by the action of their lysates on known cultures

Recipient	Lp	Trusd.	Segr	egants	· ·
cells	Remotype	lysate	idiotypic	allotypic	total
Gal _l -	+	wild	5	0	5
Gal ₂ -	+ (1)	•	4	0	5
	(2)		4	0	4
Gal ₄ -	8		4	0	4
	+	·	4	0	4
Gal ₁	+	Gal ₂ - (3)	4	5	9
		(4)	0	3	3
Gal ₂ -	G	Gal ₄ -	0	1	1
	+ (5)	Gal ₁ -	0	2	2
	(6)	Gal ₄ -	4	0	4
	(7)		0	1	1
Gal ₄ -	s	Gal ₂ - (8)	16	3	19
		(9)	0	1	1
	+	(10)	15	_3_	18
			60	19	7 9

^{(1),(5),(6),} cultures of W2175. (2),(7), cultures of W1210 (3),(8),(10), lysates of W902. (4),(9), lysates of W1210

Table 18.

Galactose negative cultures giving HFT lysates

ner culture	Recipient cell	Trusd. Lysate	Nature of Gel+ reversions	NFT secrement	Sature of Gal+ reversion NFT seg
Gak ₁ -	Gall-	Gal ₂ -	unstable	Gall-	stable
	Gall- Gal2	-, ^{Gal} l-	unstable	Gall-, Gal	2 stable
	W	Gal2-*	•	Gal Gal2	- • • • • • • • • • • • • • • • • • • •
Gal ₂ -	Gal2-	Gal _l -	unstable	Cal2-	stable
	Gal ₁ -	0al2-	unstable	Gall-Gal2-	none observed
, .	Galg-	Gal2-	unstable	Gall-Gal2-	none observed
	Gal ₁ -	Gal2-	unstable	Gal2-	slaber
	Gal ₁ -	Gal ₂ -	unstable	Gal2-	stable
	Galg-	PANJA*	unstable	Gal ₂ ~	-
	Galu-	申本	unstable	Gal2-	stable
	Gal ₄	_Gal_2			*.a
Gal ₄ -	0a14-	Cal			
	Gal ₂ -	Gal ₄ -	kut dene	Galy-	stable

^{*} Transduction made with a mixture of HFT Gall- and Gal2- lysates.
** These lysates were from a mixture of cultures.

Table 15

Correlation of lysogenicity with transduction using lysates giving a bigh frequency of transduction

Cells Exposed	Post Exposure		hunder of	colonies observed
go sed	cell titer	Gal(-)	G _B 1(+)	Gal(-)partially lysed
Broth	4.1 x 10 ⁹	3280	0	0
HFTlysate*	3.5 x 10 ⁹	2801	31	54
	ion of the col	onies after		
2. Examinat Colony type	ion of the col Number of colonies exam	_	HFT lyeat Mumber of Lp ⁺	
Colony	hunber of	_	Mumber of	colonies

^{*} Lambda plaque titer was 1.2 x 10⁹. One ml of cell suspension was added to one ml of lysate and the mixture incubated at 370 for 10 minutes. The cells were then centrifuged down, the superhatant discarded and the cells resuspended in one ml broth. The suspension was then diluted and plated on FMB galactose medium.

Table 16

The linteraction between Gall- and Gall-

Recipient Lp ⁸ cells	Traed.	Mumber of colonies				
Lp8 cells	HFT lysate	Gal(+)	Gal(-)	Gal(-) papillating		
Gala-	broth Salge	0	465	0		
	Cal ₄ -	0	316	2		
Gal ₄ -	broth	0	440	0		
	oal,-	0	408	2		

	ion of galacto ones found in				
Recipient	Trusd.		Class	ification of s	
Gall-	Galu-	10	2	0	1
Gal ₄ -	Gal ₁	5	6	2	4

COLLEGE Typing COMPANY

MADISON · WISCONSIN

ALpine 5-7497

Planographing Multigraphing Assembling Folding

Letter Service Addressograph Addressing Typing

то: _	Melvin L. Morse	Date: Dec. 27, 1954	
		Your Order No.	
····		Our Invoice No. 1074	
	TERMS: Cash	Job No	

Day	Description of Work	Amount	
	Typing of PhD Thesis in Elite Type:		
	31 Pages Double Spaced @ \$0.30 per page 3 Pages Single Spaced @ \$0.40 per page 16 Pages Tables: 6 hours @ \$1.50 per hour 50 Carbons on Bond Paper @ \$0.06 100 Carbons @ \$0.05	\$9.30 1.20 9.00 3.00 5.00	
	12-29-14	\$27.50	
			(35)

Contin Effect						187-1 X	1476 Servolné
			•			HFT6,7	
	Ry.	<u>Sa</u> .					
(a) Generhyn - 1-4+ 1+4-	Noni_	<u> </u>					
					·		•
(B) 1+4-0	Provi						
	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	
(e) 1-4-0	283 305, 3	12					· · · · · ·
	roquinarios qui que escribi fa e a acompaño de compaño	-	erden omre miner ern av genome ernen er ernen er ernen er er er	nanci el la lacció de la companio d			الماسية ليسبي
			·		· .		ź
(D) 2t	295	135. wii	14 allo	3 aughi	(1-)		
						•	
IF Gel, - buly				<u> </u>			
A 7+1-	307,307	7(7)	4 (1-)	3 (1-7-)			
7+1-		·. ·				·	
		-			 		
B 7+1-0	323						
7-11		•					
© 1 ⁻²⁻ 0	(320)		,			•	
+ +							· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	÷.
(b) 1+7+2-0	(315A)·					····	
							<u> </u>
			energia attracción de la companya de			<u> </u>	

Ū	Confre	M	Sien		,	
	6 6+1-	308		•	•	
			<u> </u>	•		•
•	110		***			
	B 6-17	(323)				
· · · · · · · · · · · · · · · · · · ·	6-1-					•
	© 5-1-0 ++	320				· · · · · · · · · · · · · · · · · · ·
	(b) 6+1/20 6-1-2+	(34)	•			•
	b-1-2+					
,				·		
					· · · · · · · · · · · · · · · · · · ·	
···						
						<u> </u>
					,	•
-						
			.;			
•••						•
				*		•
-						
						•

0: -0	₽									· Cook
Pontrai Effe 1. Theoreti	لم	-	c c + + x-	~ → 4	£ - [c		< c x ++	C C+-+	; = +
1. Suedi	AAC/	Saquejan	x fm- s	righ has	٠١٤٠	Serve				
Tolo	. X			luto!	T.a.:	Alo A	mahi	G.E .(~)		
		-							د 7 ا	tutati
1	_	7-	19	'! 4	1	サ ソ 3	.0	0	ζ,	orden
				19				6		4,6,7,
لا لا	·	L -	16	· ! 6	2	4	0		ç i	
	/\ -			18					4	(me)
						1	0	•	_	inis because Lpa)
		4-	 -	9		•		2	i paevar	·
Cerupleteni !	•				33,	Ξ.		Muzhi		
				—x 8-	0					
<u> </u>	177	- x	-여)	291/0	- 	24	0			
	· · · · · · · · · · · · · · · · · ·			v				······································		
·								···		·
nupletine	6- x	-× 1-								
7.	1-6	-× 8	_	5%		12	4	٥		
		- x (278		20	O	٥	(3 shublet)
Connected	4 -	×× 1 -								,
1	, - u			81/4	1/3	135		+	3	<u> </u>
1.	, ,	—x 1.4			•••	24	,	··_	· · · · · · · · · · · · · · · · · · ·	
•			_		• •	7.*	•	~	_	

	84 F	- 7° f	a con	sheah						
		704-	ر <u>(۲</u> 7)	4 (4-)					f. . f. /	
			M. 3(7)	3 (4-)					+- + -	
							<u>-</u>		·	
310	NFT 6 -x	7- 3	ام/م (مله لرءمتد)) 27	phl+				+ + 1	
			€ F						++	- + - T
3.6	HFT X 7-	Sdel	Unstal	Id.	-	Bripe				(
		17	4	5 1/	0				(2 lmf)	
344	HF17' -x6-								(- 44)	
	+ -x 6.7-			15	0		0	15		
	67 -x 2			18	2	(?)	٥	2]		
			, i.k.					-		
345	1494 _x6	3	14	14	٥		0	AN IT		
	HFT6 -x 4	17	6	3 (8)	1(5)	f (3)	٥	5	(1 lm+)	4
,	ν + -xy6		_		0					
· · · · · · · · · ·	4-6- —x 2-				and an an arrangement of the			and the second of the second		
•				*						
		·			w					

1-2- x-4- Ponti effect 5	ehren 1,4		•
Cron c c c	<u> </u>	د .	
4+ 2 1	1 4	2	•
2- 1- 4	D /	4	
1- 4+ 2	4 2		-
90% (2-) 50% (1-2-) 100% (1-4-	-) 30% (1-2-)B 50%()	902 (2-)	
5% () 56% ()	302 () 502 (4-)		
5% (4-)		5% (4-)	
	10% (2-) 0		
	↑		
C2-4- X-1- 1++			
4- = 14			
302 (1-4-) 904(6-) 50%() 90%(2-) 3 40%(1-4-)	50% (2-4-)	
30% (2-4-) 5% (1-4-) 50% (1-7			
30% () 5% (1-)	2.5% () 0		
10% (2-)	2.5% (1-4-) 3	-	Pi
. 1	1 .		
			\ .
		THE RESERVE OF THE PARTY OF THE	
			•
			•
•		·	

December 1. 1953

Recent studies of recombination in E. coli (17) have led to the discovery of a compatibility mechanism (15), a lysogenic system subject to genetic control (10), and a system of limited transduction by temperate phage (22) comparable to that of Salmonella (28). These three phenomena involve transfer of heritable factors by infection in contrast to bacterial mating which involves the entire genotype. The clarification, differentiation, and interrelationships of these mechanisms were emphasized in this investigation.

I The LYSOGENIC SYSTEM IN E. COLI K-12

The relationship of a temperate phage, λ, to a specific locus, Lp₁ (latent phage) has already been reported (10). In summary, the principal reaction types of bacterial strains are: sensitive (Lp^S), lysogenic (Lp⁺), and the non-lysogenic resistant type, Immune-I (Lp^P). In crosses they behave as a system of multiple alleles, linked most closely with Gal₁. This linkage has been confirmed in a Gal⁺ Lp⁺ x Gal⁻ Lp^S cross in another laboratory (27). In addition, the two factors segregated out of heterozygous diploids in the parental coupling. This evidence points, therefore, to a genic determinant regulating the maintenance of λ provirus.

(1) (lbl)

(2)

From a number of direct and indirect experiments it is known that all these types adsorb λ . A second locus, Lp₂, controls resistance or sensitivity to λ -2, a virulent λ mutant, and is situated in the Mal₁--S region of the chromosome. As Lp₂^T strains cannot adsorb λ , they are therefore not subject to any consequences whose initial reaction requires adsorption; Lp₂ does not interfere with the maintenance of λ previously established in Lp⁺ strains. The genotype Lp^SLp₂^T is consequently indistinguishable from Lp^TLp₂^S types with respect to lytic effect of λ . Cross-reactions of λ with λ -2 antiserum have been observed.

New Data on Immune-1: The status of the various isolates of immune-1 strains has been reported, and the interpretation of their constitution with respect to prophage had been reserved pending evidence of a "cryptolysogenic" phage that normally fails to mature to give rise to lytic virus. The segregation pattern of Gal⁺Lp⁺/Gal_R⁻Lp^T diploids, also heterozygous for Mtl and Mal₁ (table 7) is identical with similar Lp⁺/Lp^S results. The hypothesis that Lp^T types may carry a non-reproducing prophage is supported by experiments in which a low titer of \(\lambda \text{was recovered by U-V induction of at least one (22). Lp^T types are also subject to transduction, and the results of these studies will be deferred to that section.

Incidental Variant Types: No new evidence bearing on the problem on the "semilysogenic" strain (10) can be presented. Tests to determine whether host-modified \(\lambda\) was carried (section III) were negative.

An intermediate host reaction, semiresistant to both λ and λ -2, comparable to the one in <u>Shigella paradysenteriae</u> (26) and the V_1^p allele of K-12 (11) has been clarified. Standard λ suspensions have a reduced efficiency of plating (eop) on this mutant such that the plaques produced are reduced in size and number, and also show a reduced efficiency of transduction. The mutants have been successfully lysogenized, but are still semiresistant to λ -2. The protocols for crosses which establish a mutation at a new Lp₃ locus not linked to Lp₂-Mal or Lp₁ - Gal, and conferring partial resistance to λ , are presented in table 13.

Mechanism of infection; Mutation and Selection vs. Induction: Breeding experiments and diploid segregations reveal only the chromosomal determinant of lysogenicity. The facility of the change Lp^S to Lp⁺ encourages the possibility that Adirectly induces (rather than selects) Lp⁺ among the numerous survivors of exposure to phage. The following types of evidence would be useful in elucidating the primary infection process:

(1) identification of a "prelysogenic" genotype in the absence of phage

an apparent immune-1 that would be converted to a stable lysogenic after treatment with \(\). (2) a careful study of the dynamics of infection, including the isolation of clonal pedigrees of single cells exposed to \(\) which engender lysogenics. A pure lysogenic pedigree would favor the induction hypothesis.

Attempts to identify the prelysogenic genotype in K-12, and hybrids of K-12 and other crossable lines have been unsuccessful. Preliminary experiments of the infection process (10) have disclosed lysogenic colonies contaminated with sensitive cells and free phage long after initial contact with \(\lambda\). These mixed clones have since been confirmed in K-12 (18) and Salmonella (14,21,238). The possibility that spontaneous alteration of the bacteria predisposing to a lysogenic decision plays some role in the recovery of lysogenics is thus not yet excluded. However, the simplest conception remains that the genetic elements of the phage are directly incorporated in, or attached to the bacterial chromosome as we have been able to find no indication of an extra-nuclear inheritance of lysogenicity.

The Effect of & and F on Crossing Behavior: The presence of & in one, both, or neither of the parents of a cross does not influence the yield of recombinants. As noted earlier (8) sensitives were not eliminated

as lethal phonotypes, but the progeny of lysegenic x sensitive included both parental types, and no others, in ratios dependent on the selected auxotroph markers. On the other hand, the compatibility factor (F) determines not only the yield but also the segregation pattern of many overtly unselected markers. Prototrophs are recovered only when at least one parent is F; F also seems to direct the elimination of certain chromosomal segments after the formation of the hybrid zygote (15,23). The important distinctions of F and λ are summarized in table 1. These are emphasized to mitigate any confusion that might arise from the suggestions that have been recorded elsewhere that A may play a direct role in sexual recombination as well as to emphasize the distinction between the & controlled transduction of restricted genetic factors and the F-controlled sexual recombination. The independent transmission of these factors was demonstrated by the recovery of (1) F'Lp's cells on the one hand, and F Lp on the other, from mixtures of genetically labelled F"LpS and F'Lpt, and similarly, (2) LptF" (but no LpSF+ or LptF+) as survivors from F-Lps exposed to \-containing filtrates from F+Lp+ cultures.

(6)

II TRANSDUCTION

Cell-free filtrates derived from suitable Salmonella strains were capable of transferring unit genetic factors to a competent recipient (28). A wide range of independent markers has been equally subject to transduction. Additional analysis has shown that the temperate phage of the donor strain is the vector of the genetic material (16,25). Attempts to detect transduction in K-12 among the survivors in the turbid centers of & plaques were negative (10); but by using high-titer lysates obtained by U-V induction (20), a successful transduction was achieved (22). Two striking contrasts with the Salmonella system were demonstrated: (1) the restriction to a single genetic character, galactose fermentation, and (2) a striking instability manifested by mosaic Gal*/Gal colonies after transduction despite repeated single colony purification on EMB galactose agar. The incidence of persistent instability, rarely if ever encountered in Salmonella (14), varies with the recipient strain.

Confourding of Transduction with Recombination ?: The conditions required for transduction are generally precluded in crossing experiments.

Moreover, the unstable mosaic Gal*/Gal* colony characteristic of transduction has not been so far recovered among recombinant progeny. A

more careful inquiry into the effect of λ and Gal segregation was necessary however, in view of the transduction phenomenon, since it may provide an alternative interpretation of the Gal-Lp cosegregation ratios currently satisfied by a linkage explanation. Crosses of genetically related parents differing only in the presence or absence of λ were therefore studied. Table 2 demonstrates no significant deviation in the yield of Gal recombinants where parents vary only for the Lp marker.

Is Transduction a Selection Artefact?: Interaction of genetic factors on reverse mutation of entirely independent loci have been reported before (15). An analysis of the Gal- segregation from the unstable transduction, the allelic transduction, reported below, as well as many other types of evidence (22) rule out the interpretation that the transduction is a selection artefact. The most convincing evidence, however, has been the development of specific Gal transductions in Gal recipient strains by means of \(\) with extraordinary high frequency of transduction (22), when the \(\) donor was Gal.

Transduction and F-transfer: Just as lysogenization is independent of the conversion of F into F strains, the transduction mediated by λ is unrelated to the F status of either the recipient or the donor cells.

(8) (8)

ever, recombination of two nonallelic Gal mutants can be indirectly demonstrated by transduction. Lysates from Lp+Gal+F were completely functional in introducing the Gal+ factor to Gal+F cells. Similarly, nonallelism of two Gal+F strains can be established by the formation of Gal+ in transduction experiments whereas the sexual sterility of the cross would block cell recombination in toto.

Crosses of a strain characterized by its enhanced fertility, Hfr,

(15) displayed a linkage of the Hfr trait to Gal (12). These data were

verified (table 3) for Gal². Despite this linkage, efforts to transport the Hfr and Gal⁴ factors simultaneously into Gal²F²Lp⁵ recipient

cells via Aprepared from Hfr bacteria were unsuccessful. The conversion

of F² to F² by Afiltrates from F³ strains was examined by crossing the

Gal⁴ transduction with F² tester strains and was likewise unsuccessful.

The competence of Ain transduction therefore continues to be confined to the Gal cluster.

The Concurrence of Transduction and Lysogenization: Observations on the E. coli system, as in Salmonella, are consistent with the hypothesis that the vector of transduction consists of temperate phage. As a rule,

the transductions isolated from Gal-Lps bacteris exposed to A are consistently pure, stable lysogenics, despite the persistent instability of the Gal trait; the ensuing Gal- segragants are also lysogenic. Lysogenization occurs very much more frequently than transduction, but the correlation of the two remained to be explored as evidence bearing on the hypothesis. In the first experiment (table 4 , part A) transductions were picked as Gal papillae and streaked out on EMB galactose agar. A single Gal" (representing non-transinduced cells) and a single Gal+ (the successful transduction) were each tested for lysogenicity on an appropriate Lp sindicator. In experiment B, marked Gal Lp cells in the approximate proportions expected from transduction were introduced with the Gal and the mixed culture on EMB galactose plates. With the assumption that both LpS strains would adsorb and be equally affected by & a disparity in lysogenizations of the two ensuing Gal+ classes was looked for. Whereas all of the transduction Gal* were lysogenized, only up to 70% of the artifically inserted Gal* or of the original Gal* had been infected. Both parts of the experiment show a distinct correlation of lysogenization with transduction; the incidence of lysogenization is almost higher in these than in the control bacteria on the same plates.

Segregation of lysogenic sensitive has not so far been observed (up to 500 tests) from these simultaneously transduced and lysogenized recipients. This evidence argues that Lis the passive vector of genetic material from its source strain. This material is injected to the bacterium by the phage. In Salmonella the transduced genetic factors seem to undergo an immediate substitution for the homologues in the recipient bacterium, if they are successful at all. In E. coli K-12, however, an intermediate stage is perceived where one can detect simultaneously the presence of the original recipient and the new transduced genetic factors in the same cells by virtue of their subsequent segregation. The relationship between this replacement of genetic material and the conversion of virulent linto its prophage stage ("reduction" 6) has not yet been completely worked out. As will be described below, however, these processes have been separated and are therefore not mutually dependent.

Lysogenization of Immune-1 in Transduction Experiments: When immune-1 strains such as W-1027 and W-192h are exposed to A, no evidence of their lysogenization is ordinarily perceived. However, under conditions where transductions can be selectively isolated about 5% of these altered bacteria

(11)

are also found to have been lysogenized. Repeated serial segregation of the resulting transductions showed that in some cases, lysogenicity failed to segregate. In others, lysogenicity and Gal segregate together. while in a single instance a lysogenic Gal segregant was found which contimued to segregate Lpr colonies. Sometimes a very weak lysogenicity is observed ("one-plaque types" in cross-brush tests), which is completely lost after a few transfers. Some of these atypical cases are presented in table 5, and suggest the following alternative interpretations: (1) Lp cells are genetically lysogenic but carry a modified prophage. These cells are generally resistant to infection with &. However, & may be exceptionally introduced simultaneously with the Gal+ fragment and there may displace the avirulent form of the prophage, or when Lp segregation is observed, both prophages persist together for the time being. (2) The Lp is a "null" allele. In transduction, Lp+ and Gal' factors are introduced, but the lysogenic/immune segregation occurs when Gal segregates. This hypothesis can not account easily for the Gal Lp*/ types except by devising a complicated scheme involving crossingover. (3) Immunes may or may not be genetically lysogenic. The production of Lp signifies the occurrence of a double transduction at two loci, Gal and Lp. (a) ordinarily these linked factors would tend

to be lost as a block in the ensuing segregation, or (b) a linked transduction does not operate. By a two-step process, two effective particles
have penetrated; one fragment carries Gal⁺, the other Lp⁺. Independent
segregation is permitted and a mechanism requiring the breakage of a 2factor linked fragment as in (2) is not called for.

In any event, special assumptions must be made on the avidity of the Lp^S locus for pro-\(\lambda\) to account for the failure of transductions to Lp^S to segregate Lp⁺/Lp^S along with Gal⁺/Gal⁻. However, the Lp^r may only block the propagation of \(\lambda\) or its reduction to pro-\(\lambda\).

Hypothesis (1) accounts for the occurrence of immunes which can be induced by U-V (22). The recovery of unstable Lp^+ transductions in non-transinduced Gal- would tend to support hypothesis 3. The most decisive elucidation of whether transduction displaces a mutant phage particle with a wild type λ or whether a normal Lp^+ allele is substituted for a mutant or null host Lp^T gene would be provided by experiments with genetically distinguishable λ preparations. $\operatorname{Lp}^T/\operatorname{Lp}^S$ transductions were prominent with irrediated λ , tending to support hypothesis 2.

Irradiation effects: Quantitative assays of transducing potentiality of phage preparation are necessarily based on plaque counts. The survival

after various treatments of plaque-producing particles and transducing particles are not identical either in Salmonella (28) or K-12 (22). In fact, it is known from both studies that transducing power may be increased at some intermediate dosages. A comparison of the effects of U-V and X-radiation is given in table 6. A U-V dose reducing plaque assay from $1/2 \times 10^{20}$ to 16.9×10^5 per ml yielded 170 transductions from an initial titer of 103 / ml. A comparable X-ray dose was found to be between 150,000 and 200,000 r. No recognizable transductions were recovered at the latter exposure. Two viewpoints are indicated: (1) the lytic and transducing principles in A are separable by their independent survival, and (2) avirulent & particles are produced but they are damaged only to the extent of virulence for the host cell. Conclusive evidence favoring one or the other views of Lp , however, is not yet at hand. A decisive chemical and genetic separation of the transducing material from the virus particle has not yet been experimentally achieved, whether or not it is at all theoretically possible.

GENETIC DEFINITION OF THE GAL LOCI

Recombination: Attention was focused on galactose nonfermenting mutants because of the coincidence of the first recognized \(\lambda\)-sensitive

mutant in Gal^{**}_{ll} (W-518), and the subsequent observation of linked segregation of Lp and Gal_{ll} (10). Gal^{**} mutants have been isolated directly by inspection of surviving colonies after U-V treatment on EMB galactose agar and also as non-papillating variants of Lac^{**} mutabile recovered on EMB lactose agar plates. Interaction of Gal^{**} and Gal^{†*} on the phenotypic expression and reverse mutation of Lac₁ and Lac₇ alleles have been described (9). Recombination analysis provided the evidence for a cluster of four linked Gal loci (7). Gal₁ and Gal₁, show a very low order of crossovers. Preliminary data could only differentiate them on the basis of behavior in Het crosses; Lp and Gal₁ are both hemizygous, while Gal₁, Gal₁, heterozygous diploids are readily obtained (table 7).

Transduction: Transduction tests reinforce standard allelism tests (table 8), and in fact have tentatively identified several new loci, now awaiting confirmation by recombination analysis. Whether the relative yield of Gal* transductions is proportional to the map distance between Lp and the Gal locus is in question. The results of large-scale allelism tests made available to date by new techniques to facilitate crossing are summarized in table 9.

75

The instability characteristic of the Gal* transduction results in the mosaic colony already noted and deserves further comment. Despite passage through a large number of serial single colonies, Galsegregants are almost always thrown off. In transductions from Gal+, i.e. Gal - _x Gal , these Gal segregants have been identified as alleles of the locus of the original recipient strain, both by crossing and further transduction tests. No other kinds of Gal have been recovered. On the other hand, if the donor is a non-allelic Gal", both donor and recipient Gal appear among the segregants from the Gal transduction (22). For example, Gal2 -x Gall gives galactose-fermenting intermediates, presumably of the constitution Gal2 Galh Gal2 Galh . The segregants in all these tests are identified by (1) crossing experiments with Gal, and Gal, testers, (2) deriving & and subjecting the testers to its action, and (3) applying Afrom Gal, Gal, Gal, etc. The Gal, Galli, a crossover type, has not been conclusively and consistently established. This double mutant would be identified as one which is subject to transduction by A from Gal and from any Gal other than Gal2 or Gal1, and would yield no Gal* recombinants in crosses with Gal2 and Gal, testers.

Diploid studies: The preceding evidence points to a chromosomal localization of the Lp lysogenicity determinant closely linked to a series of Gal loci. Evidence for the segregation of a prophage linked to the Gal_{li} locus ruled out the possibility of a random distribution of cytoplasmic particles in cells carrying \(\lambda(10)\). These observations have since been extended to Gal₂ and Gal_{li} hybrids (all heterozygous Lp⁺/s), and also Gal_{li} Lp⁺/Gal_{li} Lp⁺ diploids (table 10). A study of such diploids segregating out distinguishable \(\lambda\) types is in preparation. Preliminary evidence also has been obtained elsewhere from crosses with lysogenic parents, one carrying a mutant \(\lambda\) (or one "doubly lysogenic") the other doubly sensitive, which yielded Gal/Lp progeny in parental couplings (1).

The mutational independence of Gal and Lp was also examined in the doubly homozygous diploid. Comparable experiments with the closely-Lac₁ and V₆ loci have already been reported. Lac⁺ reversions were selected in Lac⁻V₆^r/Lac⁻V₆^g diploids. The resulting doubly heterozygous diploids were of two types: Lac⁺V₆^r/Lac⁻V₆^g and Lac⁻V₆^r/Lac⁺V₆^g, and with equal frequency (11).

A double homozygote Gal2 LpS/Gal2 LpS, also segregating a few other markers, (and unfortunately also Lp2) was prepared by stepwise exposure of

the double heterozygote to U-V (14) and the isolation of suitable "reorganized" diploids. The resulting diploid, H-331 was infected with . Several Gal, Lp /Gal, Lps isolations, A to G, were then allowed to papillate on EMS galactose agar. Independently occurring Gal were selected, and the segregation pattern of Lp and Gal, of the resulting double heterozygotes was tested. The incidence of mutation to Gal+ on the Lp+ chromosome (coupling phase, or cis configuration) was compared with that on the LpS chromosome (repulsion phase, or transconfiguration). The analysis included a single Gal and a single Gal segregant from a large number of diploids, (pair analysis) and the examination of many segregants from a single mass diploid culture (random analysis). From diploid B, 5 cis configurations and 6 trans configurations (table 11) were scored. The conclusion from this evidence/is that the condition of the Lp locus, whether lysogenic or sensitive, has no significant bearing on which one of the 2 Gal- alleles will mutate to Gal+. (These preliminary data will be expanded, and also extended to a corresponding study of diploids first made heterozygous Gal_Tp8/Gal_+Tp8, and then infected with).)

(18)

The above studies provide two kinds of Lp*/Lp3; Gal*/Gal diploids: coupled on the one hand with Gal (cis) and on the other, with Gal (trans) If the activity of from "trans" bacteria is confined to non Gal2 recipient cells, a chromosomal but not nuclear limitation to Aspecificity is indicated. All Gal." including Gal, is expected to respond to cis . A difference in A from these diploids which are phenotypically identical, and genetically identical except for the arrangement of component parts established a "position effect." So far, only & from the trans-type diploid has been prepared. Table shows that while Gal, (Gal, Gal, Gal,) cells are subject to transduction, only rare $\operatorname{Gal}_2^{\dagger}$ transductions were recovered. The development of an adequate diploid culture to satisfy the mutritional prerequisites for U-V induction in K-12 (3,5) and an intermediate growth period necessarily permits some selection for haploid segregants. The yield of λ obtained very probably includes a limited portion derived from Gal, Tp and Gal., Tp haploids. The latter crossover types may account for those transductions which were found. The data so far allow the tentative conclusion of a position effect hypothesis and strengthen the concept of an intimate relationship of and Gal at a specific action site on the chromosome. Transductions of the double homozygote H-331 and lysogenic

derivatives has apparently been obtained. The analysis is complicated by the fact that diploid-haploid instability can be confounded with trans-duction instability.

COMPARATIVE GENETICS OF Lp AND Gal IN OTHER LINES

Among the independently isolated crossable strains of E. coli (12) the wild type of three lines (28,47, and 51) were sensitive to A carried by line 1. A fourth, line 31, threw off rough variants which were all A sensitive. These strains occurred in nature as F but could be altered to F by growth with K-12 or suitable derivatives. So far, at least one Gal mutant is subject to transduction. Preliminary intra-line-17 crosses established an Lp locus like that of K-12, and a Cal-Lp linkage. Very little mapping work has been completed among these strain, and the emphasis so far in these studies has been the genetic behavior of A in outcrosses with K-12.

Sensitives of each line are readily lysogenized by K-12 Åbut
these lysogenics show a reduction of eop on K-12 sensitive indicators.

This system is entirely analogous to host modification demonstrated for
T2 (19) and Å produced by strain C (2). The terminology established
for these systems will be used to describe the properties of our strains.

Thus lines 28,31, and h? can be designated as * lysogenic or * sensitive.

Line 1 sensitives are more resistant to * than to type \(\Lambda \). \(\Lambda \) can be

introduced at low rates into \(\Lambda \) sensitive hosts, but normal rather than

\(\Lambda \) is recovered. Similarly, normal \(\Lambda \) is converted to \(\Lambda \) after a single

passage in \(\Lambda \) sensitive hosts. The four phenotypes are readily distinguishable in cross-brush tests as follows:

Reaction with:							
Туре	A-sens. C bacteria	∧*-sens. B bacteria	人	\ *			
nic A	÷	÷	R	R			
ive B	**	ide .	s	s			
ive C	448		s	R			
nie D	•	*	R	R			
	nic A ive B ive C	Type bacteria ive B -	Type becteria bacteria ive C	A-sens. A*-sens. C B Type becteria bacteria A ive B - S ive C - S			

*/- = lysogenic or not; R/S = resistant or sensitive

Two major hypotheses can be tested by intercrossing these types:

I Lp controls all reactions: the types A-D are determined at a single locus.

II Lp controls lysogenicity/ sensitivity; another locus, Mp, controls resistance or sensitivity to *.

- (a) Both λ and λ * are fixed at Lp in phenotypes A and D.
- (b) his fixed at Lp in type A; h* is fixed at Mp in type D.

The consequences of these hypotheses are shown in table 12. The critical crosses for I and II are A x B and C x D. The only decisive cross for II a vs. II b is A x D. II b would be favored by the recovery of sensitive recombinants as well as a novel genotype whose phenotypic effects are unpredictable. Since there is a possibility that Lp and Mp are closely linked a large sample of progeny many be required. One must bear in mind, in reviewing these intercross data that the prototrophs represent recombination of as yet unmapped mutritional factors. In addition, chromosome and other irregularities correlated with interstrain hybrids have not been analysed.

in lines 47 and 31 have been used as recipients, for A produced by line

1, 28, 31, and 47. A reduction in the effectiveness of transduction to

line 1 recipients is parallel with the reduced effectiveness of lysogenization. In general no important differences with the K-12 mechanism

have been demonstrated. Hypothesis II b is doubtful.so far. The differentiation of the A* of different lines is still to be tested. A

single intercross shows no genetic difference so far.

In preparing this report, it has been necessary to make numerous references to the unpublished work carried on in this laboratory by Professor J. Lederberg, Mr. M. L. Morse, and others, under other auspices. These are cited by number to the bibliography.

Table 1

Characteristics of F (compatibility factor) and 人(virus)

خسمت	Criterion	F status	人 (effects)
(1)	Yield of recombinants	Decisive	None
(2)	Type of recombinants	Decisive	None
(3)	Transmission to recombinants	100%	Segregated according to linkage with selected mutritional markers; behaves as a genetic locus.
(4)	Transmission by infection	Rapid and fixed	Results in mixed clones (3).
(5)	Cell-free preparations	Not yet accomplished	Easily filtered.
(6)	Effect of antiserum	Slight if any	Blocks adsorption
(7)	Role in Gal* transduction	None	Decisive

Table 2

The Effect of Aon 5 Gal Progeny

M"Cal" parent	T-L-Th-Ga	1 ⁺ parent immune
lysogenic	8,0	7.1
imme	. 6.3	6.3
sensitive	6.7	10.1

Table 3

Linkage of Gal, Lp, and Hfr

BM Har

W-1895 x W-2308 W-Coetec and Maltips Hz Vola

Part A:	Genotypes	rec	overedl	Total
	Gal	<u>Гр</u>	<u>F</u>	
	4 .	4	.	14 *
	•	8	444	29 *
	+	8	*	5
	g.a	-	**	Õ
	*	8	46	<u> </u>
·	w	4	*	Ö

Part B: 2 x 2 contingencies

	Gal*	Gal"	Total	£.	F	Total
F* F	20* 9	0 31.*	20 40			
Lps	15*	0	15	13*	5	18
Lps	11	29*	40	6	33**	39
Lac*	26::	5	3 <u>1</u>	22*	9	31.
	4	26*	30	7	27*	34
Λ^{J}_{L}	1*	9	7.0	1.*	9	20
	28	21≉	49	23	20*	43
Xyl2 [†]	9*	30%	10	7*	2	9
Xyl2	20		50	16	7#	23

^{*} Parental combination

¹ Selected as Gal* and Gal* prototrophs.

Table 4 Lysogenization in Transduced and Nontransduced Lp⁵

Part	Aŧ	Cal*	and	Gal	from	single	papillae
							I F

Gal ⁺ /Gal ⁻ Pair type	Number		Gal" Lp8	Gal- Lp+
Lp ⁺ /Lp ⁺	13	Gal ⁺ Lp ⁸	2	3
Lp ⁺ /Lp ³	15			
Lp^{6}/Lp^{+}	3	Gal ⁺ Lp ⁺	17	13
${ m \Gammab_8}/{ m \Gammab_8}$	2			
${ t Lp_{f r}}/{ t Lp_{f s}}$	2			
% Gal+ sensit % Gal- sensit	ive 15.2 ive 47.2			

to another med Part B: Lysogenization of transduced and inserted Gal*

Av. No. Ca	1 recovered	x		
Control	Treated*	Types in mixture	No. tested	% lysogenic
109	92	Gal*Lac* (inserts)	46	68.5
11:00	432		40	72.5
106.5	41.9	Gal Lac (transductions)	103	100.
•	Control 109	109 92 11## 432	Control Treated* Types in mixture 109 92 Gal*Lac* (inserts) 11** 432 Gal*Lac* (original)	Control Treated* Types in mixture No. tested 109 92 Gal*Lac* (inserts) 46 1144 432 Gal*Lac* (original) 40

^{# 205} X

Spontaneous reversions per 10⁸ inoculum

*** 10⁸ Gal-Lac- and 109 Gal-Lac+.

Table 5

Transductions to Gall Immune-I: Segregation Patterns

Exp. 385: Strain 1924: 27 Gal

Exp. 431: Strain 2110: 38 Gal+: 28 non, 1 semi (#23), and 9 lys

Segregation patterns of lys

all Gal* lys, all Gal non: 2 all Gal* lys, all Gal lys: 5 all Gal* lys, Gal lys and non 2 both Gal* and Gal non: #23

Table 6
Survival and Transduction with Irradiated λ

		X-	ray ² (x 10 ³ r)		
	No phage	Untreated phage	U-V1	50	1.00	150	200
Av. plaques/ml x 10 ⁵	O	127,000	16.9	41,667	3,975	377	100
% survival	' 490	100	0.013	32.8	3.13	0.297	0.008
Lp ^S bacteria	Mariel Complete Address of the Complete	and and the state of the state					
No. Gal papillae	20	1,000	170	250	85	30	30
g ti n	0.5	100	34	25	17	6	6
Lpr bacteria	and not a de themselves to consider	No. Standsonton, W. L. Mar Stan Providence Service and	Developed and the best of the section of the sectio		a Charlet Andrewsky, colonistic and carries		
No. Gal* papillae	39	60	. •	135	115	31 .	20
g n n	65	100		225	191.7	5.2	3.3

²⁰ minutes, sterilamp

^{2 103} r/min. at 250 K.V., courtesy A. Novick, Radiobiology Inst., U. of Chicago.

Table 7
Segregation of Gal, Lp,... diploids

A. H-324 Segregation of Lp2, B1, not tabulated.

B. H-325 Segregation of V6, Mt1, Lp2, B1 not tabulated.

				3			 vaoute	
Gal ₂ -	Gal ₂ +	Lp	Mal.	Xyl.	M	T,L	Gal _l -	Gal _l ÷
1	47	4	-}-	÷	de la compa	**	1.	49
0	1	÷	÷	44	-		0	0
0	1	4	. *	÷	*	+	2	0
0	0	+	4	+	a.j.u		0	1
1	0 .	+	-}-	*	+	+	0	0
2	0	4.	÷	p++	÷	+	0	0
25	О	3	74-	147	÷	+	13	0
9	1	. 8	÷		6:00	6 5	13	1
3	0 .	s	** :			44	0	0
6	0	5	*	+		+	7	0
1	0	ន	**	+	+	+	0	0
5	0	ន	4.	*	-}-	+	3	0
0	0	s	au	49	-	+	12	0
50	50	amentanda adirenteles Landy Agr	Total	. tesi	æd		51	51.

Table 8

Allelic Specificity of the Gal - \(\) Transduction at the Gal 1, Gal 2, and Gal 4 loci.

λ- (donor bacte	ria	R	ecipient cell	8
Gal 1	Gal 2	Gal h	1-2+4+	1+2-4+	1+2+4-
+	4	4	*	+	*
÷	4.	÷ `		. +	+
÷	19dh	+	+	***	*
*	-\$-	-	*	+	
diploids	3 :	and the second and th		alikulah samua kara Ari karatik albuk dari berilaga da sebenjah sebenjah	
+	c y	+ Lp*		≟ (21) *	+ (300)
+	+	+ Lp ⁵	data trans)	E (<i>CL)</i> *	+ (300)*
*	4	⊹ Lp [‡]	(a t a \	NT	
+	***	+ Lp ³	(C15)	No data	

^{*} Gal + papillae per 109 L

Table 9
Summary of Current Allelism Tests

Exp. No.	Gal type	F- parent	F [†] parent	Total** progeny	No. Gal	Maxim.,% Gal+
535* 563*	lx4	W-750 Lp ⁺	V-2234 Lp8	5000 2000	17 15	0.3 0.75
534* 563* 580*	2 x 4	W-1210 Lp+	W-2234 Lp8	2400 1600 6000	25 11 8	0.h 0.68 0.3
535	l1 x 3	W-518 Lp ^S	W-2315 Lp⁺	807	6	0.74
582	4 x 23	W-518 Lps	W-2315 Lps	5000 6700	0 5	o 0.06
583	1 x ?	W-2291 Lp ^s	W-583 Lp*	7603	2	0.026

^{*} All Gal recombinants in these experiments are Lps.

^{**}Estimated total.

Table 10

Behavior of Gal and Lp in Lac +/- Diploids

					Paren	ts				Diploid	progeny
Type of cross	•	F (1	F (T L Th)		Lacl Lach		Call	Gall	Lp	Gal.	Lp
1. Het diploids	(a)(Het)	+	-	+	± =	+	+	+	† 8	+/	+/· or -/· ½/ 5/
	(b)(Het)	+	+	+	÷ ~	+	+	+ +	+	+/° or -/°	not segregating
2. Lacl- x Lac _{li} -	(a)	63 +	-	+	*	+	+	+	`+ 6	Mostly +/•	Mostly +/. 2/
	(b)	.} ⊶	+	.j.	. ••.	-	÷ +	* -	÷ 8	Mostly -/•	Mostly s/. 2/
3. Haploid x auxo- trophic diploid	(a)	<u>.</u> 4/	/ =/ o +	+/-	+/-	-/+ +	+	+/•	+/°	Gal+ Lp+ / Gal-Lps	(linked) 3/
	(b)	seme,	, except	M- p	arent	is Lp ^r	•			Gal+ Lp+ / Gal-Lp*	(linked)

^{1/} In Met crosses, Lp does not segregate. Cal 1 and Gal 4, two closely linked loci also differ: Gal 4 segregates, but Gal 1 does not.

^{2/} Diploids resulting from delayed disjunction revealed by heterozygotes of two Lac pseudoalleles show no segregation of Gal or Lp. Reversal of F status reverses the polarity of the Gal, Lp segregation.

^{3/} The only successful demonstration of heterozygosity of Gal and Lp.

^{1/} Acration phenocopy.

^{5/ +/.} indicates purity for +, whether hemizygous or homozygous.

Table 11

Segregation Patterns of Gal * Reversions in Gal 2 Lp* Diploids

Diploid number	Total	Ge	ı,	Ga	ı.	Ge	J.	Ge	1-	Ge	1+	Gal	•	Inferred type of
numoer	segre- gants	Lp*	Lps	Lp ⁺	Lpg	r^{5}	Lp28	Lp2r	Lp2s	Mal ⁺	Mal-	Mal ⁺	Mal-	diploid
A 1	161	76	6	3	76	45	0	39	0	l.	53	17	36	cis
B 1 B 2 B 3	121 73 76	2 0 61	170 170 28	60 41 1	1. O 10	52 32 65	8 7 0	60 91 57	0 5	38 33 65	22 7 0	61 33 11	0 0 18	trans trans cis
Cl	48	1	23	24	0	23	1	24	0	9	15	24	· ·· O	trans
E 1 E 2 E 3	60 21, 23	30 0 12	0 12 0	3 12 0	27 0 11	26 12 12	0 9	ટી _! 12 11	6 0 0	30 6 12	0 6 0	16 12 3	14 0 8	cis trans cis
F 1 F 2 F 3 F 4	66 40 23 18	32 20 12 11	1 0 0 0	2 1 0 1	31 19 11 6	31 20 12 10	2 0 0 1	30 20 10 0	3 0 1 7	32 20 12 11	1 0 0 0	27 7 3 7	12 13 8 0	cis cis cis cis

Table 12

Genetic Determination of Host Modification: line 1 lines 28, 31, 47

gas, k., y 200-centra an de regal y arthur de produce de produce de particular de particular de particular de					Geno	types	Under			
		Hypothesi: Lp locus : alleles		Hypoth	esis d at	IIa Lp,		fixed a	thesis IIb at Lp in line 1, in other lines	
Phenotypes	Symbol	Lp		Lp		Мр		L	. =	
lysogenic sensitive*	A B	₽	•	÷		r s		•	r s s	
sensitive	C	ទ		8		r		8		
lysogenic*	D	+3	•	+		8			+	
АХВ		None		(, D				C, D	
BXC		None		1	Vone				None	
CXD		None		1	A, B				A, B	
AXD		None		1	Vone			B and Lp [†] Mp [†]		
EXPIL. RESULTS	: Line	s crossed		Type	A	В	С	D	Gal char.	
Expt. No.	3	. x 28	A	Gal x B	0	46	1	0	*	
419				- -	18	0	0	0	•	
			C	Gal x D	0	8	0 18	34 3	· +	
l <u>1</u> 18	1	x 31	A	Gal x B	3	43	26	1	No record	
1,20		-	A	Gal- x B	4	22	28	12	Gal+ only	
423			A	Gal- x B	8	2	1	37	+	
				_	0	1	0	0	•	
423					28	1	3	0	(and 28 Lp2 ^r) B or C	
1:1:14	allandari v Paritalis (1977 - 1984)		U .	Gal x D	2	2	19	0	mostly Gal	
502		·	В	Gal" x C	0	15 13	13 68	0	+	
143	31	x 31		BRA	0	26	0	1		
468	1	× 47	A :	x B Gal-	51	0	0	6	+	
ピクマ			A	Gal x B	4	0 2 7 0	0 2 1	6 3 9 2	-	
527					μī		ō	2	••	
528			В :	x C Gal-	0	13 8	17 24	0	+	
529			<u>c</u> c	Bal™ x D	3 2	2 2	2 28	21. 0	- + -	
523			<u>A</u> (8 37	0	0	52 19	+	

F parent underlined.

Table 13

Genetic Control of the Semiresistant Phenotypes:

Nonlysogenic (W-2147) and Lysogenic (W-2172)

Part A	H	ypoth alle		I t Lp ₂	:				A 3r		ypothesi us, Lp3,		nvol ve d:
Phen	otype	e symi	bol	Lpl	Lp2	Exa	ample		Lp	L	Lp ₂	L	93
	A B C D E F			÷ + + = = = = = = = = = = = = = = = = =	s r p s r	Immune W-2172 Type a Immune	lysogeni 2-2 lyso 2 mutent sensitive 2-2 7 mutent	ge ni.c e	* + * 5 8		8 r 8 r 8	8 8 1 8	3 3 3
apperor appylish	ВжСк		Yic	-		E, C pr		. This is the Property of the Control of the Contro		B, F,	E, C,		
,	Resu	lts:		В	x F	N	o, of P	rogeny		C	x E		
		A	В	C	D	E	F	A	В	C	D	E	F
Mal÷		55	1	1	1	0	1	22	2	1	26	0	1
Mal"		0	58	0	0	1	0	0	0	0	0	59	Ö
Part	II	Link	agə	of Lp	3 to L	p _l Cal	and Lp ₂	Mal :					٠
Par	rents			Mal	* Lpls	Mai	l* Lp ₁ *	Maj	Lp ₁ s		Mal Lp	+	
F Mal	· x	B Mal			4		56		1		58	•	
C Mal	. x	E Mal	-		27		25		59		0		
				Mal	Lp2 ⁵	Ma:	l ⁺ Lp ₂ r	Mal	- Lp28	1	Mal Lp	ā	
F Mal	* x 1	B Mal	••		59		1		0		59		
C Mal	* x 1	E Mal	~		51		2		0		59		
	•			Mal	Lp38	Mal	L+ Lp3p	Mal	- Lp3	1	ial" Lpa	p	
F Mal					57		3		59		0		
C Mal	x I	Mal'			50		2		50		0		
C Gal	* x I	Gal	*	Gal.	Lp1 * 60	Ga1	o Lpls	Gal	o Lpl+	C	al- Lps 28		nd Allendo de Alexan antiliqui ò
	•			Gal.	Lp38	Gal	* L _{P3} p	Gal	- Lp3s	G	al- Lp3	Þ	
					37		23		37		26		

The above data are consistent with the hypothesis that an Lp3 locus separable from Lp1 and Lp2 modifies the reaction to λ -1 and λ -2. This locus is not linked to Lp1-Gal or Lp2-Mal.

- 1. Appleyard, R. K. 195h Segregation of lambda lysogenicity during bacterial recombination in E. coli K12. Cold Spring Harbor Symp. Quant. Biol. 19. In Press.
- 2. Bertani, G. and J. J. Weigle. 1953 Host controlled variations in bacterial viruses. J. Bact. 65: 17.3-121.
- 3. Borek, E. 1952 Factors controlling aptitude and phage development in a lysogenic Escherichio coli K-12. Bichim. et Biophys. Acta 8: 211-215.
- 4. Cavalli-Sforza, L. L. and J. L. Jinks. 1953 Observations on the genetic and mating system of 1. coli K-12. Abstr. 9th International Congress of Genetics, Bellagio.
- 5. Gots, J. S. and G. R. Hunt, Jr. 1953 Amino acid requirements for the maturation of bacteriophage in lysogenic Escherichia coli. J. Bact. 66: 353-361.
- 6. Jacob, F., A. Lweff, A. Siminovitch and E. Wollman. 1953 Definitions de quelques termes relatifs a la lysogenie. Ann. Inst. Pasteur 84: 222-224.
- 7. Lederberg, E. M. 1950 Genetic control of mutability in the bacterium Escherichia coli. Ph.D. Thesis, University of Wisconsin.
- 8. Lederberg, E. M. 1951 Lysogenicity in E. coli K-12. Genetics 36: 560 (abstract).
- 9. Lederberg, E. M. 1952 Allelic relationships and reverse mutation in Escherichia coli. Genetics 37: 469-483.
- 10. Lederberg, E. M. and J. Lederberg. 1953 Genetic studies of lysogenicity in Escherichia coli. Genetics 38: 51-64.
- 11. Lederberg, J. 1951 Cenetic studies with bacteria. In: Genetics in the 20th Century. MacMillan: New York. pp. 263-289.
- 12. Lederberg, J. 1952 Cell genetics and hereditary symbiosis. Physiol. Rev. 32: 402-430.
- lk Lederberg, J. Unpublished.
- 15 Lederberg, J., L. L. Cavalli, and E. M. Lederberg, 1952. Sex compatibility in Escherichia coli. Genetics 37: 720-730.

REFERENCES continued

- 16. Lederberg, J. and P. R. Edwards. 1953 Serotypic recombination in Salmonella.

 J. Immunol. 71: 232-240.
- 17. Lederberg, J., E. M. Lederberg, N. D. Zinder, and E. R. Lively. 1951

 Recombination analysis of bacterial heredity. Cold Spring Harbor Symp.

 Quant. Biol. 16: 413-433.
- 18. Lieb, M. 1953 The establishment of lysogenicity in Escherichia coli.

 J. Bact. 65:642-651.
- 19. Luria, S. E. and M. L. Human. 1952 A non-hereditary, host-induced variation of bacterial viruses. J. Bact. 64: 557-569.
- 20. Luoff, A., L. Siminovitch, and N. Kjeldgaard. 1950 Induction de production de phage dans une bacterie lysogene. Ann. Inst. Pasteur 79: 815-858.
- 21. Kaplan, A. S. and A. Lwoff. 1953 Factors affecting the lysogenization of Salmonella typhimurium. VI Int'l Congress of Microbiology II:203.

 Abstract No. 545.
- 22. Morse, M. L. Unpublished.
- 23A. Nelson, T. C. and J. Lederberg. Unpublished.
- 23B. Parry, W. R. and J. Edwards. 1953 The induction of lysogenesis in Salmonella typhimurium. J. Gen. Microbiol. 9: 3h2-3h9.
- 24. Skaar, F. D. Unpublished.
- 25. Stocker, B. A. D., N. D. Zinder, and J. Lederberg. 1953 Transduction of flagellar characters in Salmonella. J. Gen. Microbiol. (In press).
- 26. Wahl, R. and L. Blum-Emerique. 1952 Les bacte ies semi-resistantes au bacteriophage. Ann. Inst. Pacteur 82: 29-43.
- 27. Wollman, E. 1953 Sur le determinisme genetique de la lysogenie. Ann. Inst. Pasteur 84: 281-293.
- 28. Zinder, N. D. and J. Lederberg. 1952 Genetic exchange in Salmonella.

 J. Bact. 64: 679-699.

ND. 340-LS12 DIETZGEN GRAPH PAPER SEMI-LOGARITHMIC S CYCLES X 12 DIVISIONS PER INCH Keysort cards carry 68 bits. The following scheme is tentatively suggested for organizing the stockbook. Further suggestions urgently requested.

Stock number and series (3 digits only)							
Line: (1; 2-10; 11-20; 21-40; 41;) and E. coli not wg; Not E. coli;;							
Event	and agency:				3		
"Mutation"	spontaneous, sporad. spont; selected UV X-rays or other mutagen	Not "mut segreg.	tation": new isolate or orrecombinant (sex or - Infection (F or lambda. "Cure" " " "	-x)			
Kind o	of locus changed:				3		
Not indicated Lp1 orx Gal (by transduction) F		auxotroph fermentation Sm Other resistance					
Genoty	pe: 1 bit each for:				•		
M, (T,L) Other aux: Hfr; F Het Heterogenot any suppres	Ara, Stl, Glu, Suc, Cell, Rh, X AA, Vit, Pur, etc. e or heterozygote sor	4 2 2 10 2 3 2 1	S (incl Sd) Other resist. (lv fut) Fla misc. lyophil who entered	2 2 5 64 1 3			
any temps Lp or other V ₁ V ₆ V _x Lp	phage	1 3 5 35	· · · · · · · · · · · · · · · · · · ·	68			

Incidence of Homogenotes

Rie	End	EL.	N. Tund
341	2 -	4-	17 (done evely 24FT 2 / 3×17=52 /
	4-	2-	5 (about 9 am) 0 AFT/9 x 5 - 45
311	2 -	6-	30 (punje og) 1HFT 6./30 (m tato 1 2)
307	7-	2-	5 (6 mg from coch) 14FTT/30 (m talls 2 2)
295	2_	1-4-	152 (ouigle seg) only 14 tetes 11/14 (us boils gotters)
29 3	2~	4	5 (oup. Day) HETZ/11 2HET 2/1 0/11 LHFTZ/ 7HET 4/ 0/16)
291	8-	4-	3 (ag. aeg) / %2 / 0/8 /
248	ι-	+	4 single 0/4
247 B	8	4	1 single 1/1 HFT 4"
247 A	8	+	4 sugle 0/4
2 43	}	8	3 snga 0/3
242	4	8	1 5w/c 0/1
24/	<u> -</u>	2	24 suger - done aganst 1-,2- 24572-/24
2366	8	4	1 single 0/1
212	4	+-	4 snigh 0/4
209	٠.	1	2 6/2
205	4	+	3 11 0/3
202	4	. ኒ	18 " 14FT 2" / 18
198	7	2	16 '' 0/16
196	2		
1928		2	9 " (HFT2-/91)
1921	<u> </u>	_	:

Page	F+	F-	(+)	Hul	<u>%</u> +
-1 K3 200	, · · · · · · · · · · · · · · · · · · ·	t16, - 629; lp+ (2238)	<u>.</u>	ca. Hero	0.13 V
-1 x2 214 (1)	M- Gel, - 4pt (713)	TU; = (ne - 4+ (us))	4	1957	0.2 V
-1x2 (a)		· · · · · · · · · · · · · · · · · · ·	4	ca. 6517	0.06 /
- 14x2	H- Fely- up+ (MI)	TB = Gal - 4 (uri)	0	1039	0 - V
8x2 (1)		(225) = Gra - Gpt (225))3	ca 6840	0.04 /
		••		ca 9640	o
812			0	ca. 1872	o. /
-1X2 199	M- Gu, - 4+ (500)	1. B, = Gae, - y+		a 1500	0.13 V
~1X4 210	M- Gal, - 4 (750)	TUB, GOLY-LOS F+ (14)		4588	0.13
-1X2 240	M- God, - bp+ (750)	TUB, Geog- 45 per (225		3606	0.03 V
~ 7×4 171	M- Geof 4 (578)	ns, 620, 4,+ (912		1289	0.38 V
- 2x4 171a	" h+ (su)	14			6.8 1
C 2x4 174		Λ		200	0.0 i/
+ 2×4 175			1	358	0.28 V
Francis 337	M- G204- Lp+ (1402)	TO GOLLI FT	7	3771	0.15
(+)	1957 0.2	. 2,	χψ	(t) Wha	e Gr
(2) 4	1957 0.2 en 6517 0.00			0 103	
(3) 2	Ca 1500 0.13			5 12!	
(4)	3leb 0,0	A STANLEY CO. A CONTRACT OF STANLEY OF STANLEY CO. STANLEY CO.		0 7	06 0.
	Ave 8/13680 0.		a a tree properties the tree	0 3	w 0,
		3 2		1 3	5F 0,2F
1,3 (1)		13°2 4x	· v		771 0118
1x4 (1) 6		+ mai	1-1.	<u></u>	
)	(2) 0 in 9 640	0		
·		(1) 0 2 1872			· · · · · · · · · · · · · · · · · · ·

MATRIX TO TEST TRANSDUCTION MAP SEQUENCES

	Sequence operators	Codes fo (Opera		ltiple on done			
3-point test	3						
	123		ъ				·
	132 213		C				
	21.3		æ				
h-point test	;						
•	123lı	ъ	c	ac	ъс	bd	
	1243	ъ	đ	ad	bd	bc	••
	1324	c	ъ	ab	bc	cd	
	1342	c	ď	ad	cd	ъс	
	1423	đ	ъ	ab	bd	cd	Mha camalada dahla asa ba
	1432	đ	c	ac	cd	bđ	The complete table can be generated as the permuta-
	21.34	a	c	bc	ac	ad	tions of (a'b, cd') where a'b=bb, be, bd, and bb=b.
	2243	a	đ	рđ	ad	ac	
	2314	c	а	ab	ac	cd	
	2413	đ	а	ab	ad	cd	
	3124	a	ъ	ъс	ďs	ad	•.,
	3214	ď	a	ac	ab	bď	

Instructions:

- 1. Write down the donor genotype (differential markers only) in any arbitrary sequence, e.g., W- X+ Y+ Z-.
- Group the experimental results into the rare and frequent classes.
- 3. Code these classes as transformations of the donor genotype. The code "a" means "reverse the sign of the first locus written", "b" the same for the second, etc. Thus, (ad)(W-X+Y+Z-) would be W+X+Y+Z+.
- 4. The table gives the codes for the multiple exchange classes (mec) corresponding to each sequence. Those models are excluded where frequently found types are included in the mec codes, and vice versa.
- 5. The sequence codes can be translated into maps by writing the donor genotype as W X Y Z and transposing accordingly. Thus, 2314 would be the map XYWZ.
- 6. For the reciprocal transduction, superimpose the operation abcd, so that, e.g., ac becomes bd; c becomes abd in the mec codes.

J. Lederberg

Index to S	one Topics ni Vol. II
Suby of	Pages
to huig of homogeneste 21	9, 270, 299, 339
Ostabbidge Peal - 150 home gents	300
madechi of HET shock - other dri in house	. rejur? 219
mahahi g p R	219a 224 413 386
Proline duction with HFT	مود
5ª ductur	221
HFT adonythui, I'd and adongt-	723, 291
volt Peressii,	240,210
hoe of the Gre- as alle totas	251
Strue.) from ther	211,340
Search for HTT	230, 241, 257, 293, 335, 34/
Tobug HET, NFT, News on the.	270
Teshing HTT ly sales.	271,282,284,286,535
Symboneries by	271
Penney of pront. 1/2 -7 Lps Mal Malt	273, 275, 278, 171
The and Grey-	292 292A
Travel of Ft, Ma-, Mel-	294, 298
Trast. with 12	295
Coming on he give diploids for other loss	29/
Malany HFT by adding exogent	28
Vm-transjom. Gal-	206, 220, 221, 222
by/hr hasd?	21~, 2013
NFT ceels cloudly distributes?	301 314
	,

Unument phage

	Q Company
Subject	Pages
HFT duetins	278,
2-x 4- colony cham.	223,241, 254, 257, 259, 268,276
r-x 4-	274, 282
4	289
. 1- +7- 2 +7-	30r, 307, 327
$+ - \times 2^{-}/2$	305 307
Y-x 7-	307A
1x6-	308 , 323
1x 2-	330
Trustichne & pt/s	227, 241, 244, 343, 346
Ponter opet seve 4, 6,7	342
2x1-,2x4-,1x2-	310
2x/-	353
Gal X Sul+	241,244,264,276
4 -x 2 -	353
1x4-4ph	31,7
Inus. og 4 %	287, 371.
Somatri armaj over P.E. Lituyende.	354
HFT & malulus	232,277, 281, 300, 306, 352, 368, 384
Early & sog. in trod class	353 , 357

Saubjuch	logs 204
à alsaphe ofts.	225, 226, 223, 291
Trush de X	296, 324, 333, 240
Lagu plate memod	211
For IL tex of TCN dipura	298
Entre Induen.	325
Segmainis	
t -x 8.	227A, 233, 23(A, 247A
1× 8	229 B, 234, 236 B, 282
4x 8-	227°, 235°, 236°, 247°
8×4	242
8 x 1 -	2\$3,249B
1-2x 6-	241
17,2° -× 1°2°	246, 246A, 276, 261, 263
4 -x 1	24F, 249D
4	249A 303, 2F2, 285, 329, 331
Z-XI-	2496
2-, 4x 4-8-	255
From Lp//p	262, 287, 288, 292, 298
1 ⁻ → →-8 ⁻	Fh2 ,309
4- ×/2·	272,310
1-2X 8-	275, 2107
7x 1-4-	312
4-17	3/3
1-7x 8-	3/1-

放大

	P _o
Subject.	Page
Coursing (out - X Couls - (Strylus)	219a
Golx- X Grey-	221
lunbrasf. Col - x Galy-	206, 222
. K GW2-	212
" X Gret	225 226
Gal & ful,	240
EMLLYZ GREX GREY-	250A 250B
Col- x bul, -	255
bog- x bre+	217
Gez- x Galt	2,13-
Het Gre- strokes	26f
Hetergents x Gre-	279, 348
My Gary X Het Fre, -	284 ·
192451434	287 CONTINUED
Galz-	221,222,232,239,289
Lyho \	127, 221, 231, 254, 250
HFF à - lyhi gunth	2 3 9
Linearity	224, 227, 231, 230 C, 252, 253 286, 337, 338
UV HFT	346
Do unchur y me bre-fermer bae !	749
Efket Jun dentelij	227
Muchpluty epils	312,323,328
Squyahu Pute	351, 357A, 356

9

Crossiq Cent.	Page.
lum hps ho solar bt	294
Golf-F+ X Golf-F- and reap F	333,337
Guy-4' x Guet 4pt	333
· · · · · · · · · · · · · · · · · · ·	
<u>Cort</u>	
Segvzahun 7x 1-6-	3/9
4x 1-6-	319
4 -x 3-7-	320
+ -x 1-6-	3 20
1-6x2-	327
6 × ×7-	323 , 343 , 344
6- ×1-	323
7-x1-	327
4-x1-7- 6-x1-2-	376 , 336
4-x1-6-7-x1-6-	J 27
1-×1.7-	33~
+ -x1-7-, 6-7x2-	344
4-x-x 6-	347- 341
4-6-~x 2-,	346,

Positia Effect

(203)	
Contract of the second	

Cupo Exo Stol Enles Exo Comphi P.E.								
	Cuso	Exo	Stor 19	Ine.	Ex.	hughi P.	<u>E</u> .	Page
						.		
	4		7/24	10 (6)	1 (1)	2(1)	<u> </u>	F-K-
	Γ4 - <u>.</u>	+	./24	24	0	0	0	
	8-	Ĭ + -	?	135	14	3	0	
e server se	1-	6	16/22	2 2	4	٥	0	
	6	1-	5/24	.	<u>L</u>	3	۷	
	16-	+	3/23	20		0_	•	
	8 -	1-6-	?	12	4	O	0	
	1-	7	19/21 32/2	4(4)	3 4	0 3	0.7	
	7	1-	4/21	7	4	3	3	
						0		- · · · · · · · · · · · · · · · · · · ·
	8-	17-	0/30	29	(. 0	U	<u> </u>
•								
	ψ		17/23	3	1		0	
	46-	+	%16	16	0	•	٩	
	2.	46	?	52	0	۷	0	
			15/21				•	
and the second second	7-	6	7/13	5		2	4	
	67-	+						
	2	57	3/24	18	2_	1	<u>ه</u>	
						•		

Meinson summan		
Page Endo	Eto Total Comment	
3/es of	+ 8 etter que	360-2 (Gel 10-Coly
363B Htst	4	W2868
7/1	10 10 depart between	unde
368 - 2 -	1 26 (-abd 20-26)	total = 77 W2869
291 -8 -	2 2 dippent	354-1 354-2
-8-		
- · · -	3 dypener	nterozense
- 4 -	37	
		rent helingendes
		J

The state of the s

							·	• .			2	עיע.	Sp. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
· · · · · · · · · · · · · · · · · · ·	4ª	(ام ا	4+		lp+	. p	+	Son Let	Sy +	you	Lps.	POT
	373-1	37	13-2	373-3		<u> 373 Y</u>	375	<u>-13</u>	15-2	3753	375-4	3753	375%
bp+	5 01	otou.	25	15		21	34		9 1	10	0		15
	15 0	M	1	. 0		O	1	<u>ڊ</u>	7-11	v	24		2/2
Lot_		a ^L Seu	3	2-		4 3			8400	6	0	0	5 2
	u 8	M	1 .	O		O			~	v	0	0	2 0
		ا بعد و ا	Ø.	3		0	0_		0	0	0	ð	6 6
	u 4		加多维尔	, 0		0	_ 0_) ·	2	0	7.4	0
	21		LABA 64	20		2 <i>f</i>	36	#7	7	22	24	24	24
			36					Sul					
						C.,	لنعسفل	Samme					
							hore I	<u> </u>	7.5	•			
Cm.V.	7 100	Ь	90	60	20)	75	60	125	1000	100	120		
	3774	373-2	577-3	371-4	375-1	375-2	375-3	375-4	325-5	J256	375-7	/ · · · · · · · · · · · · · · · · · · ·	
Gret	67,500		int.	4p+	Say byt	Seq.	Seg Lpt	inese.	unseg	seq 13+	igt /		
Lot	1	+ 26	15	21	35	11	124	24	0	17	22		
1 In	17 \	4	2.	3	ı	6/2	8	0	0	7	2	•	-
Ln's	4	6	5	0	0	٥	24	0	24	0	0		
	21	36	22	24	36	19	24	et	zf	24	24		
	4		-	-	6/	-	1/2		<u>-</u> -	12/3	1/3	· .	
[-													

.

(ly)			~	o Segmans		
Sykgenste	Eule Exo.	4	Indo	460	Brughi	The
3.5B	1-4- 2-	,	ii .	2	,	13
364	4- 2-		13*	7*	0	20
	# 3/ Eto lu	nojudes	29	. 8	0	37
	/	***************************************	42	15	٥	57
362 su, 346	2914 4-5 /ZR	<u>3</u>		<u> </u>	3 R	51
359 B (W	(h) 2- 7-	79-	{7	0	0	73
		427	_	0	0	6}
		2 3	{ 5	0		۲}
			3	4	o	7
			΄.	. <i>I</i> .	0	7
			5	<u> </u>	o	6
		27	{ 6	0	1 .	7}
		₹	1	O	0	
• 14. 1						
		·				
					-	
AMERICAN AND THE STATE OF THE S	1					
•				•		
		nga pangangan and significant states that the second special states are special states as the second states are special states are special states as the second states are special states are sp				• • • • • • • • • • • • • • • • • • • •
				•		

E. IXX

(211

Red	F	Eudo	ho	Hel.	546	Ende	EL	Ampli	P.E.	
(285-1) 348	+	<u> </u>	S	+#	12/24	12	0	0	0	
3 (4-1	-	4-	S	F/S	18/22	3	0	0	1	
(285-2) 331	+	A -	S	P/3	13/22	6	<u> </u>	0	1	
368-1	-	1	S	+	9/15	3	2_	<u>o</u>	<u> </u>	
			•		52/83	(063) 21	7	\wedge	3	

211 1 - 11-		11/01	1	1.	1	3 _		
366-1 F- 4- s	<u> </u>	11/24	ه				- -	
329 F+ 4- S	+	7/24	10	į.	2	2_	·	
360-2 F+ 4- 12	RAN	12/24	4	4	3_	1		
366-2 F- 4- S	P /s	6/20	3	4	2	2		
360-3 F+ 4- R	afy	9/19		3	3_	. 3		
	· /	45/11/1	(0.41) 2	+ 13	il_	10	<u></u>	
								•

 $\begin{array}{c|c}
A & A & A \\
b & B & B
\end{array}$ $\begin{array}{c|c}
A & A & A & A \\
B & B & B & B
\end{array}$

-x 2341. Ry; 21 Gul 2

	(213)
Kerisi Shily	
Les Cre- → Gut	257
2341 45/43 -> 45 + 4p	2+7
1 pr/cps 8/8 neversion sog	
1 kg 5 6/6 reversions met sag	
257c-6 4-2+4-1/4+2-4°	292
3 2- y' (renerted) - (1) hor on;	
12 2-/2- Lp/ys (angle) - 1/2 2007.	
257c6 ' 5 a-4 (timersin) - 10 5 clive of 3/2 revains seg	298
257c-6 { 1 3-4pl (2/2 leversur mustable)	2924
17 2-60 /3/2 wassin we hadde	
of 2-12 of 2-12 5/5 reversion unstable)	
285-2 1+4-401/1-4+40x	303
(4) ++ 4? - of 17 balt oblined	
$9 \lambda^{R}$ were also seq	
3 hs were hot say	
2279 x HFr 6-	323
64 1- > 1 Galb - 4 - > 1/2 cut servin she	
> 1 God 6 - 42 -> 1/6 Gold Neversus while	
	. •

				214
Remouni - Other	Ivei - Dijlvidg			
2341 61/2	2-/1-	•		288
to per	if diplody for V	has occurred. V	3/V/ would be	
J. Augustus	if depends for V, Others V, I fun	2741, if diplo	ely for V, sell	
	21 V, P. Alanin	: 20 were 4p	R 14	2.5
		V		
202-16)				241
241-14 Loc Gal	r/Godr - last "	re found state	<i>د</i> .	
241-19)		V		
241-14) Ang	unent smilar h	2341 V, " above	. Selechie J	3 000
201-1614) 12 01	und fut be just	be - 110	0 741-14	· · · · · ·
	- Wat-	- HFT 2- Blo	20t - 1641	
			200 1 141	•
2307X— HF12-				309
	600, xyl- ana	Get, -/cre, -	Iw was	lue-
2580 X Gry-	(NFI)			341
Goe-fre Xye-an	> 1 HFT 2- Aband -,	reservini Blaned 4	16 Gee+" say	
			6 Routh dil was	7
			6 3 xet" " "	(
		. 6/	6 out " "	· .
				· · · · · · · · · · · · · · · · · · ·

.

		Se6 (117.0)	(215)
to how ha	us I	3800	
Ende Eto	+/ sul 4 4 4+		Por
4- 2-	39/1312 7		223
	7/256		
4- 1-	_ 1 0		24/
4- 2-	3/2101 3 23		224
4- 2-	7142 1 1		257
	26 1870 7 high mull	•	259
and the second s	108/1279	·	
The state of the s	117/suls)		
	8/140 1/426		268
····	18/199	<u></u>	271
	10/215		278
4- 1-	2/52 1 1.		274
	2/408	· · · · · · · · · · · · · · · · · · ·	282
1- 4-	2/356 !!!		285
(I -	3/267		301
R2- 1-	18/428		370
7- 6-	9/423 1 1		342
4-6-	3/295- 1 1		342
4- 2-	4/1331 (370)		
	9/150 (31c)		
2-1-	BUANT (17C) -	<u>.</u>	
	3/817 (70c)		
4- 2-	(370)		
<u>.</u>	5/161 (30c)		350

Exa

Homogenette Summary

<u> </u>	Homogenete	Oh sewahu.		ધ
[2-	518 × 892 mix	(123)		VES
	DI -x 20:	10 x-10 (157) name shi c 00	1, 902, 2050 = solid sumon (161) 01	The (164)
:	01-x 118-3 solde (165) 11-2275 (165b) 01 @ 902	, 402, 2050 - sulid suma (161) 01 1 , 692, 1436 (166) 2050 - KD1 , 750 -	× D1 (167)
			70) DIXAOZ (172,174) DI 30	
	7 (0		SEXX LOE WELL ALANGUAL	
	Dione step, sugle bust	(158) : 495201 - Gov 124 (140)	71 -x1924 (2.0x117/m) (143) 01 vs a	whiteman (197)(149)
7				
	D4) GRAPISHAL (168) 5	175. 14x 902 (172,174) or Gets	(179) DY-KSIF HET (181)	
rex proper	My (NI) God - (1928) NI	1 GING HET (1928) NIX412 (50)	(1973) NIX 2251500 mp) (1920) 2	ree+ "un HF7-X BII ("GIC)
- 02×	NHX 1415 - Guy- (203) 2644 the (363) Loss (219	ı)	
				· · · · · · · · · · · · · · · · · · ·
		2		
$\overline{}$	7			
~ (() () ()	(17) : - (1672) (2)	-115- (1679) 13 4 Cal, Cho (165)	B) N7 X22515 P mA) (142 C) GOALF Run	us (s)
20 x	, ,	LHET (1710) N/X Goz 3 r ((11)	D) N(XCC) 14 MH) (1450 / Walt m	HIT-XXI (142C)
	3 Greet HM (2011)	,		
(2	ALSO KNOWN	AS [2342]		
2 Drewing		m Cal a Cool . a	eg Grate (142C) NIG LET in 172	_
y you	NIG -X1924 (3 X10 /m2) (201) HIL-K 1633 -> Car = (102432)	(203) 140 coloni HFT (214) NI6	-x 1252 (2341) (244)
	12/2 Cze 42 m. str (227)	-		
			vivini na nama a vivini mona na kananahar sadan na ili ili ili ili ili ili ili ili ili il	
	•			

/ 1 0	WN AS [202-16]	•		
(2) (S16) 902 -x811 G	42- (302) x 1436,9	oz (202) Lock sho	e (290) teter Ho	- (294)
	· sty Mar huderw			·
• •				
		· contract the second relative and relative		
	<u> </u>			
(SIS) 402-1811 G	4-(202) AFT / Cre, Co	4 - 64 - MT FU, 1924 (214)	
	•	•		
			·	
ALSO KNOW	N AS 2346			
(NA-+) 902-x 750	4- (23c) NA.4-X 1761	(2+1) -x 2252(234F)	(244) 45 Get Ruthe	(267) 8/8 Gen
shu (270)		•		
		· · · · · · · · · · · · · · · · · · ·		
			·	<u> </u>
2	₹/0			·
	1,622 (241) call tested			
tre+R styl (274)	L (298) Lock in	el Spremen d HE	7 (299) tooks HFT	(299) ousky (30
2- 12 (302) UV M	not. Met dair. A (316)	· junh & hat -	340) AFTyula/cel (35	2) HFT Lying (368
241-19 902-x7	50, Get - (241) Hoch. les	he HFT (274) 12/10 6	Wiff mythal (270) LET a	12-(270)
(291) have ship		· · · · · · · · · · · · · · · · · · ·		
- Lac styl				
	<u> </u>			
	,			
	one step (376)			

46 cout austre

HET 7 (309-1) 2742 - 2307 (302) Ma [1/(304)	111 1 (359) (368	A) (3190)
HFT 7 (309-1) 2742 -x 2307 (302) Maniel (309) YF GREF Mushel (76313) UV mad (364) LFT as	7- (390) 0/7 Gast	P LFT (390)
	-	
(6- (311-2) 2070)+ -x 2175 (311) 2/2 Gret in (365B) LEFTER 6- (763B)	% sq (390)
		0 – /
	•	
2 (341-9) 811-x 2580 (375') 4/6 Grest with (341))	
	<u> </u>	
27 (241-12) 84-x2580 (335)		
		-
2- (364 A 1) 2342 - x 518 (364) /2 Greet world (364)		
1 1 (301) 10 GLCF (11)11/1 (301)		
[2] (36+B2) 23+2-x518 (364) 1/2 Greet uno me (364) 1/2	I con it and find i	
(2) (3010) 2110 -2310 (2) 12 VILLY WILLIAM (30) 1/4	, we say = (we (set)	
	•	
		•

Observations on Homogenski cultures.

Table 8

l'homo queste		assic 0		FT Segregant	
Phristype Derived from:	Fraction balt Reversion; Segregating	<u> </u>	Phonohype	Freeha of Get Reversions Segrega	hug
Gal, - WY 1-24/1-2-	-			6/4	
hot.			- .	0/6	- 1
with with	4/5		he,-	0/8	. 0
Gar - 9931 2-4+/2+4-	4/4		belz-		
Agr. ryk	₹3	· · · · · · · · · · · · · · · · · · ·	· fue,-	<u> - 1 - 1 - 1 - 1 </u>	
1 13-2 D	<i>4</i> ₃		he,-		
293-11A	3/4		Guz-		
311 ^A	4/6		-	<u> </u>	
1387 1-2+/1+2-	12/12		bal-bal-	ume obstamis	. ②
24/rt	12/12	<u>.</u>	bal,	0/12	. 3
34149	12/12		621,- 601,-	wone obtained	•
257-2	_		6-12-	o/ (minimum)	
257 .44 257 .44	_	•	64 ₂ -	°/1 (minimum)	
D1 2+4+/2-4+	10/18		URL2- (pr.)		
p4	- -		-	0/2 (minimu=)	Paragraph grant day to the St.
مه ^{کو} ال	<u> </u>		-		
m ¹²			-		
	2/2		-	_	
3THB2	42		64z-	<u> </u>	
Galy - 518 4-2+/4+2-			· <u>-</u>	-	
2418-1 8-4+ / 4-8+	_		baly-	O/L (minimum)	
2-4+/2+ 4-				· ·	
	(1) 1/6	•	·	· _	
	(e) 1/ ₆			_	

			· ·		•		
							(223)
		3) 74 4) 1/1				<u>.</u>	
	·	9 3/4	••				· · · · · · · · · · · · · · · · · · ·
- 11/2	£1+/2+6-	2/2		621, -		- 0/3	
500 5 00 9 1	1-72-7+	2/8		6027-		- 0/7	•
					·		
relitedy	8-1+4+/8+1-4-			·.			
			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
			•		•	•	
						· ·	
							<u> </u>
					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
		<u> </u>		· · · · · · · · · · · · · · · · · · ·		• ·	
			·		·		
	·			·			
	•			· · · · · · · · · · · · · · · · · · ·			
							<u>.</u>
		•					
-							
•					•		
					· .		· ·
_				·		·	
			•	g may mag Parasan a san a			, -
<u> </u>						•	
							•
			; 		-		
					`		

Table 5

The frequency of transductions unstable for galactose fermentation

Recipient cells	Gal (+)	Gal _l -	Lysates Gal ₂ -	Gal _{/i} -
Gal _l - Lp ^s	\ 9/2 2(41)	-	0/11(0)	0/29(0)
Lp ⁺ (1)	23/24(96)	-	23/24(96)	0/27(0)
Lp ⁺ (2)	17/24(71)	-	24/24(100)	<u>-</u>
Gal ₂ - Lp ^s	28/48(58)	63/72(88) -	64/72(89)
Lp ⁺ (1)	22/24(92)	19/24(79) -	16/24(67)
Lp ⁺ (2)	16/24(67)	21/24(88) -	22/24(92)
Gal _ų - Lp ^s	13/24(54)	0/72(0)	21/24(88)	-
Lp ⁺	20/24(83)	0/96(0)	19/24(79)	•
$\mathtt{rb}_{\mathtt{r}}$	29/48(60)	-	18/24(67)	-

The figures shown are the fraction of cultures unstable for galactose fermentation. Percentages are shown in parenthesis.

487 unilable

We | 4876

Locus
alughe and Mother - the pruhi occupied by a few in a chimosom, with
regard to eto linea order.
· Woodugh (31) a sense of allo morphie fortus (the printice they
occupy is (true "locus");
· Sunot, D, 10 (217) the term locus is used both to pudicate the breaker
of a few on a chromosome mayo and also he designate The
und, variants of which are allela."
· Calitanda (11) "The name of a mutant and its symbole represent
the lower name and he loves symbol respectively."
(15) "The chumosoms Theory of headily shits that the gener
are situated at deprive loui un leven order on the Masmosomes."
- hujet (90) 'The find position of a fene on it charmone!
· Coli (217) "the pruhim on a charmonime occupied by a gene or any
· Reley (17) In other words, on each homodoyous channosome Thou
ba gene at a justicean place or locus
. Malmus (161) prohim occupied by a few in a chromosome.
. Shukum + Bearle (94) every gene recepie a find he in a disomesione
such a positivi is known as a locus"
· Jennings (166) The proches of a gene on the map or in the
chimisom is known as it locus."

Jegngarmee Beleaven 3 Persons of my and by Segregants

(22)

	Segrent	No	Number Found			
	where Number	Per Segrent	Number tound	Segretaling.		_
287 (al2-	- fr g	8"	8			- -
Golz-	45 1	6	0			
272 6002	bpk 12				-	
Galz-	•		Ø			<u>. </u>
Grey-	•	<u> </u>	0			
298A G263-		2	2			
- hy-			3			
Gelz-		j	0			
298 Gul, -		2	10			
323 balb	- 1p2 1	Ġ	1			
	- 4ps 1		0		· · · · · · · · · · · · · · · · · · ·	
					-	
Hetergente, 28	7. Gaz- 45/	Cal + LpR		-		
292,29	7, falz- 45/ 24, bez+ fre-45	1/ Gez-Gely+	4			
	3, Gre, + Gre, - 4, 5				•	

pile Cenerus Soc. Mich State La. Sept. 1915

fragment of the chromosome.

Cis-trans position effects in transduction heterogenotes of Escherichia coli --- The phage lambda can transduce a fragment which includes a cluster of genes for galactose fermentation. Most of the transformed clones are "diploid" or heterogenotic for the transduced genes. Many combinations of non-allelic Galmutants give galactose positive heterogenotes as readily as Gal+/Gal-. However, some combinations of Gal-gave smaller and delayed yields of positive clones. Further analysis disclosed a cis-trans position effect between ceratin loci. For example, while the cis ++/-- heterogenotes fomed by timeneduction from Gal1+ Gal1+ to Gall-Galu- are positive, the trans +- + heterogenotes from the transduction from Gal,-Gal,+ to Gal,+Gal,- are phonotypically galactose negative. In the negative clones, positive heterogenotes are later formed by crossing over in occasional cells. Further segregation results in all possible haploid combinations, +-, -+, ++, and --. The delayed yields that were observed initially are based on these secondary events. At Reciprocal transductions have given identical phenotypes, so that in heterogenotes the genes in the fragment are functionally equivelent to the hometogous genes in the chromosome. The galactose positive phenotype thus requires that + alleles be in adjacent positions either in the

SME

d. Transduction to Lps recipients

with LFT lambda result in lysogeny of the clone. Nearly all of these lysogenizations are Lp⁺, but ***ELE* rarely a clone EE with Lp^r phenotype results. With HFT lambda there is a higher frequency of the Lp^r type, a result which may only be owing to the lower chances of secodary infection with HFT lysates. Of 58 syngenotes isolated as sings colonies, 13 (22 percent) were of Lp^r phenotype. These syngenotes were made with different lysates preparations, and there is no indication, as yet, of an association of Lp^r clone formation with either a locus or a lysate preparation.

The Lp^r clones described previously are carriers of a defective prophage (Appleyard, 1954), but HIES plaque-forming lambda, in small quantities, may be obtained from them after irradiation with ultraviolet. The Lp^r clones obtained IIIMM with HFT lambda have not given lambda after UV treatment, and differ from previously described Lp^r cultures in segregating for Lp, yielding Lp^S. Thus they appear to be syngenotes of the form al Lp^S//Gal Lp^r. Segregation yields Gal-Lp^S, or Gal Lp^S/haploid segregants. No non-segregating Lp^r clones have been observed. This last observation suggests that the lambda defects in these cases is with lysogenization as well as with production of plaque-forming particles.

SME

237

Obvious segregation at Lp was not observed when Gal+ segregated from Lps recipients, and it was not possible with these syngenotes to relate the function of the prophage to the genetic material. Lpr _//Lps heterogenous permit study of this relationship. If the chromosomal fragment is independent of the Lp genotype, Lp segregant cultures may be homogenotic. Gal+ reversions of segre ants from Lp / Lp syngenotes were examined for their segregational behavior. Under condition as with where the reversion test indicated 23/23 Ip segregants to have been homogenotes. 10/11 Lp stregants were found haploid(table 10). Although it is not possible to determine, adequacy of the data, the indicateon is that the Lp allele has a centremeric function, that Lp probably does not, and that the Lp allele cannot so function. Failure to obtain segregation of the Lp allele in transductions to LpS recipients may only be an indication that the heterogenotes studied are not the primary product of lambda-sensitive cell interaction.

Table | 0

Segregational behavior of Gal+ reversions of Lp and Lp segregants

Experiment	Segre	gant	Number	of	Number reversions
	Phenotype	Number	Reversions	per se	gregant found segregating
2 87	Gal ₂ Lpr	1	8		8
	Gal_ Lp 8	1	6		0
292	Gal2 Lpr	12	1		11
	Gal2 Lps	3	1		0
	Gal ₄ Lp ^s	1	1		0
292A	Gal2 Lpr	1	2		2
	Gal_ Lpr	3	. 1		3
	Gal_ Lps	5	1		0
298	Gal2 Lpr	5	2		10
323	Galf Lpr	1	. 6		1
	Gal Lps	1	2		0 · .

Hrerogenotes. 287; Gal₂ Lp⁸ //Gal₂ Lp^r
292,292A,298; Gal₂ Gal₄ Lp⁸ //Gal₂ Gal₄ Lp^r
323; Gal₆ al₁ Lp⁸ // Gal₆ Gal₁ Lp⁸

05 01 Mil of HYC Lysate Plated

MILLIMETER

10 10: 1 1 Ī :::1::: H. H. 1 ٤ ---HH :::**:**:::: 111 39

Sur- cul Hay 2" - Elsen YFT 2"

			(39)
			(2)
- ² 42	412		
285	103		
288	117		
433 1904 -361	85		•
76/ /239	113	(,	
471	70 (08	93/177 93 840 837	
827 189 - 40 = 739	74	73 \$ 40	
649	94	170	
	70	183	
45	7.7	177	
399 400 34	9 8431		
27 31 47 39	93		
47 39 135 40	co = 6.18		
135 40 100 co xx 42	O. Com		
and the state of t		10 /24	
그 생각되다 살다면 되었다. 나는 사람들은 하루 그리는 사람들이 되었다. 그는 그는 그 그 그 그 그 그 그를 가는 것이다.		73 27	
그 등록한 한국 실험실수 있는 그리는 그리는 회사를 받고 화활을 받아서 본지를 받아 되었다.			
191 140	20 24 116 =		
123 (12/138 / (12) 16 260	<u> </u>		
16 260			-
		· · · · · · · · · · · · · · · · · · ·	
410 16	317 8	/), co. 18
14	1.3		113 27
16 [21 22	66	0.9
18		78.	9889.0
28	121	106	
5/81/	87	76	
16 [08:2]	101	98 117	
	V	447 89	

detw. frieder

A JACK

- Eff Begu	iRice B.S	Travel. partide	Effl Leigh	% Gue Gadhani
412 10	0' ca. 25	(.9	(80'	C (. 0
410 9	0' ca. 17	1.3	(fo'	40. 0
399 9	10! en. 20	1.2	120 1	52
397 8	51 a. 30	0.9	125	152
392 . 4.	85'	2.0	150	<u> </u>
				-
HFT 400 9	10' ca 13	0.6	150	40.

(Time - 5 hours) Jun Page 354 (39) P.E. Liturgenter 342E2 6-0. | we = 0.71 Cuehue web.: 106 Gut No gowh Gze + 6 3 10 size: 7000,-34 5.1. roy. the (+) poul 1406 3000 1000 1. 3 × 10-4 5144 4 3000 5-3 X10-5 1544 6728 2 4.0 × 10-4 5 3084 2266 5925 3.0 X10-x 4 150 (4415 ca John CA 4000 8728 Sin 2266 2245 748

	sage 354
Curring one (3,25 kms.)	0
Het ann Reup	
4- 6-	
Med. 5.8/0.1m2	
Cushins wet. No grunt No Ge	et set
0 17	3
Von dez. closes Dy. Class	
7.660 (+) My E.	timate Freq. Photo
160 2 1004	4 x 10-4
6PP 1 185	
640 1 1249	1.4×10-4
392	
640 Using mel method, cline size 1200	
728 a \$ 2.3/ en \$ 7 2.8×10	4
644	
1192	
491 Total coes = 16778	= 838/clme
61.4	
1096 a= 2.3 log 1 =	(2.3) log 1.2 (2.3) (0.08)
592 838 70	8,38×10 ² 8.38×10 ²
720	
12lb	= 0.18 1.Fx1v ⁻¹ 8.38x10 ² 8.38x10 ²)
616	
490	(2.2×10 ⁴)

These experiment widicale washing technique not

adeguati Elopue fine = 4.66 lines. Oal + By Gre+ 0.602/294 (858) 0.602/2520 +/-/ Htal = 1/7/265 Tous Gret+ 858 345 (weshed) ca 600 ca 300 ue zvi ca bor 0 0.38 log 1-33 - 0.38 (0.124)= 0.0 47 549. 54 9 10+/3/201 mult. = 0.34 mon from in feet but Total Cult Cre ca 500 346 a= 2.3 log 714 0 a = 0,38 lug 1.2 1 37 9. 0 = 0.38 (0.079) = 0,030 ca 800 ca 300 = 3.0×162 208 he prette Because of the facture of the on B gal altempted with respecting. Due. 5.5 hours. +/-/+rml = 0/27/173 Ton No bet 42 314 71 0 2 - 0 221 226 O 9 ٥ 51 0

Defective	Gal- Segregants					
Heterogenote Number	Lambda Sensitive	Lambda Defective				
292	5/1	36				
323	4	2				
331	6	0				
336	12	0				
343	5	1				
346	5	1				
365	20	1 ,				
368	· 3	o				
374	9	0				
382	1 1*	1				
1:15A	16	1				
1,20	16	2				
420A	_2	77				
Totals	143	149				

.

The state of the s

Expt. 316 2/1/54

Procedure: Ultraviolet irradiation of HFT 2-, lysate diluted 1-100 in D(M), 0.1 ml. sample removed and added to 10 ml. Penassay. HFT 2- stock = 241-14, mol- derivative. Distance from lamp, 50 cm.

UV Dose in Seconds

Trasd. x 10 ³ on:	0	<u>15</u>	30	15	<u>60</u>	<u>75</u>	90	105	120	135	150	<u> 165</u>	180
Gal IpS W2279	2.5	5.1	7.5	10.5	17.3	22.7	21.8	23.4	24.9	18.1	16.0	16.0	14.5
0ell_lp ⁺ W750	6.7	14.0	18.h	29.3	43.4	63.8	71.1	53.6	95.8	79.1	69.9	71.7	58.9
Plaques x 10 ³	155	151	172	66	28	39	Ŋı	17	12	4.5	3.0	2.3	1.4
Fraction Surviving	1.0	0.97	1,1	о.µз	0_18	0.25	0.09	0.11	0.077	0.029	0.019	0.015	0.009

Table 2

Analysis of Transduction on Gall LpS Recipient

TEV.

UV Dose in Seconds

	<u>o</u>	<u>15</u>	<u>30</u>	<u>45</u>	<u>60</u>	<u>75</u>	<u>90</u>	120 to 180
No. of Trnsd. Tested	1	18	18	18	18	18	18	18
No. Seg.	0	6	1	0	ı	1	1	O
% Seg.	O	33	6.0	0	6	6	6	0
Lp Gene Types of LpS	Segregati	ng Gal+	•	-	-	Ann	••	· <u>-</u>
Lp ⁺	_	 *	***	, 	_		*	-
Lp ^R	-	6,	1	**	R	R	R R	
Lp Gene Types of	Non-Segre	gating Gal 7	. + 14	17	16	16		
Ip ⁺	•	2	0	0	0	1	17	-
LpR	-	3	2	ı	1	0	0	-
% LpS	-	<i>5</i> 8	88	94	94	94	100	· ·

建3/2/2017/

Lysate deluted D(M) 1-100 --- 0.1me samples to broth

						,						(22,79)	(750)
Page 3	46 -	Le	lute	d	HFT	lysa	te (241-1	4 mal	-ノ -	x Ga	1-405	Cap	4+
•						,							_	
Sport Dose	10	15	م ق	1 	5 60	75	90	105	120	131	15	165	180	
1-10 7 3 4ps	25	51	75	10	173	227	2/8	234	247	181	160	160	145	
X103 titar/me to 0.1me Reason	VI 25	5.1	77	10.	.ء / راد. و مراز	12.7 (21.8	234	24.9	18.1	16.0	16.0	14.1	
of 1-100 be = X10 go-0,	1	15	22	25	22	17	24	37	3/	2.0	_	_		Igum?
Maguex 103	ł	1	í	l	28	1		17	12	4.5	3.0	2.3	1.4	
	1.5 1.5				plagues,									
10 richtfight	,	1 .	ir		,	18		18	18	17	18	18	18/	
No. Evale	,	33%	6.0%		17	17	17	ام ا	17	IP	10	1-/1	8	-
Gal stable	R	2+ 75 3 R	145 21	175 1 R	165 16	, ,	175		PHA	Har 10	BANK		, >	
Jo Vy Vo	=0	0.5r) F75	0.94	0.94	94 10	0							•
- x103 4pt)	6.7	140	18.4	29.3	43.4 6	3.8 71.	1 53,	6 95.1	F)79.1	69.9	71.7	58.9		
7	2	7.3	11.7	-2.b	36.7 57	7.1 64	.4 46.	9 8%.1	12.4	63. 2	65.0	D, 2		

23 ×

Teel	mie . 6	litute	/ 10 a	net 1	Ofry 1	y V au	0.	Ine 60	eded b	Dul
		A			<u>r</u>	m- 40				
	Bar.	Polishi	0	___	2		· · · · · · · · · · · · · · · · · · ·	<u> </u>		
Trans	4 / 2580	2×10 ⁷ 5	235	707			-			
	12710	2×10	23	3.5 176	4.2 213	4.5 227		J.2 161	1324	
purpuid out.		/X105	1.8	2.8 280	7.8 977		_		- " 	
prewarmed pluts.	/2715	1×105	330	588 588	6.5	_	-			
	1750	1 X 10 3	21	2.7 273 252	517 496	573	864	950 -9	5,1 809	
	/ 2307	1-20	5	6	- 2	- 2	生	3	.3	
NAS	n /2580	1×106	4.4 44	18.3	34.7 347	54.5 545	68.9	53.2 532	38.1 38/	
	/2341	12106	3.5 35		-		25,3 253		-	
		· Are Lpi	5.6 1.8	12.2,4.1	20.5.68					

0.32 5.7 7

584

12915 105 1650

Tehni Tegus duch 245- us 24s-us The sheales of the lest two Sport present

12715 Ri dech No.

4	· / /		<i>t</i>					
		7 Trans		1		ware ar Salar resultan		
	/ 2	580 Lpt	24 2	-4				
		<u>چ</u>	18	19				week of a sound of a s
		47	6 .	5			ntert o	به مو _{وس} همه مور
	\$ p.	terestui)	9.8	, [1	10 harry 10	
		150 - LIFO	Endo Lp+	F. a., 1.4	Cit	VExo hpa	A	Andi LOR
	Nature of		3	Endo for	LKO FP /	رعرس	O Starter	
<u>ئ</u>	7	-)	<u> </u>	 	 -		0
- 2		2	6 lula	\		0	-) 0
Sa = Tendo	Χ	3	5 lule	U	0	0	<u>ی</u>	(0
56 = 6 ensin	<u>a</u>	4.	7	0	o (0	d	/
ie: Lenar I	anglia a	ى [*] ،	7	Ð	0	0 /	٥	•
	b	6.	6	0 1	0	0	٥	6
,	5	7.	6	0	0	٥	o ·	0
	a	8.	7	0	0 (0	0	0
	F	9.	6	101	C	U	ل	(0
	*	10.	6		0	0	0) 0
→	*	11	5 lak	O	1	0	0	,
→ >	j.	12	6 /w/c	0	0	0	0	0
	L	13.	6	0	<i>l</i>	0	10	0
`	a	14.	7	U	O	0	O	1.0
	۵	15.	5	0	O	(0	0	0
	b	16.	6	0	ں	(0) 0	0
	و	רו.	<u></u> (0	0	0	1	0
•	6 .	l 8 -	[7]	ی	0	(0	6	10
ETO 106					/			

Summar	y - Mul	yn: 1 Th	aus due hii.	<u> </u>			
Dos.	0		<u></u>	3	4	5	6
Cal - Los Please. %	0						
Lp+	216	71	0	0	4	o	6
4ºR	78.46	91.	14	8	8	0	o
Lps .	0	2,6	86	92	F8	100	100
40+46pa	100	98	1+	8	12	0	0
To seq.	94 #	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	14	+	9	0	0
% but seq.	K D	7 5	86 No	96	91	100	100

****				Tab	le				
Ey	6t.31	6	2/1/5	4					
Pro	cedun:	samples	removed	and a	sacd to	10me P.	diluted enassay	HFT. 2-	D(m),0.1 stock =
		24/-14	, wol-	derivati	1. Distan	ce from	lamp, 5	Ocu.	
Tras Axes X 10	84. 84 c	2 15	30 45	1 Dose in	90 105 90 105	120 135	三 120 112	180	
Gol-1	•	S 5.1	7.5 10.5	17.3 22.7	21.8 23.4	24.9 18.1	16.0 /6.0	14.5	• •
(m),		14.0	18.4 29.3	43,4 63.8	71.1 53.6	95.8 79.1	69.9 71.7	58.9	F (100 (100 (100 (100 (100 (100 (100 (10
	res XIO #	137	7 12 66	H 39	14 17	IL KI	3.0 2.3	1.4	· · · · · · · · · · · · · · · · · · ·
Fraction -> Sur	living (10	0.97	j.j •.43			0.077 0.02	1 0.019 0.015	0.009	
An	alysii ol	f Trans	duchan	on Gali	Lps Reci	prent.			
			'u	U Dose	m Secon	es .	2		
No. o	_	<u>o</u> .	15	30	45	60	75	90 \$	180 40 180
Truid.	.tcsted.								18
4/0	5- ₩	1	18	· 8	18-	18	. 18 .1	18	**
	Sey! kg 1	0	33	6.0	o	1 6	6	6	0
			aling G	ol +	1				•
	無	•							
	کم کے ش	_		· ·	_	_			_
	4	_				p 1	 R 111	-	_
; , , , , , , , , , , , , , , , , , , ,	7			•		<i>R</i> 1;	R 11	<i>R</i>	
4	Genstyp	us of	Non Seg.	regating.	Galt				
	40		7	164	17	16	16 .	17	_
	4p+		2	0	0	0	1	0	
	4º R	_	3	2	(0	0	
%,	45	-	58	88	94	94	94	100	_

Procedure: Ulhavisht irradiation of HFT 7", undiluted lysate in Penassay.

Distance = 50 cm. Irradiation in petri lish, 15 me volume, 10 me samples removed at varying time. HFT 7 stock = w 3067

Assays (1) Plagues on B go	l an Wzgis	, W2790		3			
Dose	→ 0	, 1	2	, o	. 4	. 5	
10 plaques /me lys	ote 16.5	(1 8	9.I	8.7	 5.7	0.3>	0.14
Frachai survivin				0.53	0.35	0.019	
2 Transduction on					a.		
Recipient Cushen Delului				3	4	. 5	۵, (
Crez 7 W 2580 (1) 107		14.0		_		_	
(2) 107	4.4	18.3	34.7	54.5	68.9	53.2	38.1
Gez-Lp w2915 107	, 3. 3	5.9	6.5				_
W2790 (1) 107		2.8	9.8	_			,
(2) 107		3.5	4.2	4.5	-	3.2	, 2.7
602 4 W2341 107	3.5	. —	-	:	25.3	-	
Gui-Lp+ W750 105	0.2	2.7	5.2	5.9	8.9	9. 5	8.1
Galy-Let W2307 1-20	5	6	-2®	~2	2	3	э З

The values given have been corrected for spontaneous reversions of the indicator entiture. In the assays on W2307 figures given are papillae on lysate addition plate - spontaneous reversions papillae. None of these papillae were checked for Galactore stability.

		و المستقدم و	Tabel	, 3					
	ausduction to				del		!		
	Dove -	<u>o</u>	. 1	. 2	3	. 4	5	6	
1	% 4°	22	, 7 ,	0		. 4	۰	G	
į	% 4ª	78	91	14	. 8	8	0	. 0	
,	% 45	0	2	86	92	84	100	/00	
; ;	%4+4°	100	98	. 14	. 8	12-	. 0	0	

		-			 ;	
^		Ta	Ale 4		 •	
A Tran	squetrons to Galz	Lp+ Rec	ripient W2580 Dose (mir)		•	
		0	. 4	•		
en en en ekkelen en en skriver en en ekkelen en en ekkelen en ekkelen en ekkelen en ekkelen en ekkelen en ekkel Ekkelen ekkelen ekkel	Muber tested	24	24	4		
	No. ۲-	24	24			
	No. seq.	18	19			
	No. Not. Sea	6	5			•
	No. Sp. Rev. in Sample	9.8	1			

(B) Analysis of the transductions produced with lambda irradicated 4 minutes, surved = 2.0×10⁻¹. If different transductions analysed, about 7 segregants time each tested for by generally and Gul artele.

Number of transduction	Ende	squotic	Exogen	hi	Amephi hypic		
to Howing seg pattern	Lp+	hr.	Lp+	1ºr	4+	Lp "	
5	7	0	0	0	•	0	
4	6	0	o .	0	. 0	0	
2	6	O	0	o	,	o	
1	5	0	0	ø	0	0	
, I	6	0	/	0	0	0	
/	3	0	/ *	σ	0	0	
/	5 W	o	o	o	0	0	
/	6	/ **	0	0	0	0	
•	5-W	0	1	0	0	٥	
/	6 W	0	o	0	0	0	

We one of these segregants gave slight lysis of 40 fester * this seq. gare slight lysis of the fester. Strenked out and 10 colonies retested. All found Lot

were performed on a pure costing from the 1st she alway from the transduction plate, which was also streaked on B fol to observe segregation for galacterse few montats

Table 3

EXAT 359 - 359A - 359B

8/17/55

Analysis of the transductions. Fromed with UV'd lysate. At This time a number of spontaneous reversions of the cudicators were examined and found statole for galactose fermentation and unchanged for lambda reaction. Lower Lp generally were determined from tests against both lambda + a lambda femilia sensitive excepts culture. Those kests

(A) Transductions to Gal- hps W2790 (s= segregating, us = wet segregating)

uU	Dax->	0	. <u>L</u>	2	. <u>2</u>	<u> </u>	5	<u>~</u>
. trust examined		24	24	23	24	24	24	24
No: Lps	-7	, 9 us	3 ns	22 ns	22 ns	22 us	24 m	24 nr
· hp+		©3 s	. Inc	. 0		1705	0	
ı		2 E	. 15	•			r -	
·· LpR	->	125	185	Is	, 13	ي ا	. •	, 0
	_		lns		n.s	1 n 1		
Sportaneous r	eversions	9.6	1.7	1.4	vagligilla			>
present in san		}			•			
present in san	uple _	J						

Transduction to Gal- 4 W2915

	MN Dore	0	1	2	3	+	5
No.	examined -	36	34	47			
	No. Lps	0	38 m	38m.			
	" Let			o .			
	•	2 ns					
	" hpa	28 s	31 5	8 5			
			lus	lus.			

CARE A Totals to Goo, - Ly' Recipients

UNDORE	>	1	2	3	. 4	. ~	6
Sagregating	49	SI	10	1	2	o	6
unt segretating	2	4	60	23	22	24	24
% Seg	94	93	14	. 4	9	0	0
% ut seg.	6	7	86	96	91	100	10-0

.

M.L. Morse

Program Regart

253

Introduction

The transfer of genetic material between bacterial cells by temperate bacterhages has been shown for certain Salmonella and for Corynebacterium decembrate. In each of these cases the transduction of genetic factors simply has be demonstrated. This mechanism of gentic recombination is in contrast with the complete squal mechanism of recombination in which the whole genetic materia of the cellparticipates at one time. The study of these two mechanisms and thei interrelatorship is difficult in biological systems in which only one has been fund to oprate. The present report summarizes a study of E. coli K-12 where the independen occurrence of sexual recombination (Tatum and Lederberg, 1947) and transductie recombination has been demonstrated.