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ABSTRACT
Flow-induced vibration takes on many forms, only one
of which is the phenomenon known as lockin. Case studies
from 13 years of field and laboratory experiments are used
to evaluate the criteria for the prediction of the various
behaviors, from lockin to infinite cable response, with an
emphasis on cylinders with large L/D ratios. The most
useful and relevant dimensionless parameters are
identified. The shear parameter and reduced damping are
shown to be not very useful. Hydrodynamic damping is
shown to be very important in regulating the dynamic
behavior in sheared flows. The number of excited modes,
the fractional variation in flow velocity over the cylinder
length and the ratio of the half power bandwidth to the
modal separation are shown to be especially important in
determining response characteristics. Comparisons between
predicted and measured response for cables in sheared flows

are presented.

NOMENCLATURE
yix,t) = cross flow response displacement
m = structural mass per unit length including

added mass

tension

response measurement point

wave number = w/C

vibration frequency

local mean vortex shedding frequency
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phase velocity of the cable (={T/m)

the cylinder length

specific gravity

water density

cylinder diameter

Strouhal number

flow velocity at x

reduced velocity

peak velocity in a linear shear
turbulence standard deviation

the number of modes excited by the linear
sheared flow

natural frequency of mode n

natural freguency closest to the peak
shedding frequency

damping ratio for mode n

hydrodynamic modal damping ratio
structural damping ratio

velocity squared damping coefficient
damping correction for response amplitude
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OBSERVATIONS FROM FIELD AND LABORATORY EXPERIMENTS

By the mid 1970s a great deal of laboratory scale
research had been completed by many investigators on fixed
and moving cylinders in fluid flows. Concepts such as
lockin, correlation length, and drag coefficient dependence
on response amplitude were quite well developed. Strumming
on long cables was a phenomena with centuries of
observational history. Missing at the time were
systematic experiments on long flexible cylinders which
could rationally extend the observations made in laboratory
scale tests to field applications of much larger scale.

The Early Castine Experiments

In the summers of 1975 and 1976 the author conducted
experiments in a tidal flow at Castine, Maine. Most of the
eylinders tested were synthetic and wire rope cables 75
feet in length with diameters varying from 1/4 to 5/8ths of
an inch. Flow velocity was quite uniform from 1/2 to 2 1/2
feet per second. The typical vibration response was single
mode lockin with response amplitudes of *1 diameter at the
antinodes. At certain flow velocities there were
occcurrences of a random vibration response which was named




non-lockin behavior, Vandiver & Mazel, 1976 [16]. The
Reynolds number range for these tests was from 800 to
10,000, Under these conditions the cables aiways vibrated.

An unusual observation was made, which still makes a
significant point. On one occasion a wire rope .280 inches
in diameter and 900 feet in length was stretched across the
tidal basin from 2 points of land. The submerged portion
of the cable was approximately 500 feet long and was
exposed to flow which varied approximately 20% along the
length. The response of the cable was essentially single
mode lockin, at approximately the 50th mode. Response
amplitudes of 1/2 to 1 diameter were observed. The
significance of this experiment is that under favorable
flow conditions lockin can happen at very high mode
numbers. However, under different conditions the same
cable can behave dynamically as if it is of infinite
length. A purpose of this paper is to discuss the
dimensionless parameters which govern this variation in
behavior.

Another important lesson from these early tests was
concluded from the test of several strumming suppression
fairings. These fairings had constructions which varied
from bristle brushes to a single row of plastic grass, 3 to
5 diameters in length, stitched into the covering of the
cable. These strumming suppression devices have commonly
been called hairy fairings. Each type of fairing tested in
these early experiments exhibited a threshold speed above
which the cable would begin to vibrate. In later flow
visualization experiments conducted in the laboratory this
speed appeared to coincide with the speed at which the
fluid forces were able to bend the individual hairs back
into the wake where they were of inadequate size to act as
splitter plates, Pham, 1876 [7].

Castine, 1981
With these early learning experiences behind us,




another much more ambitious experiment was conducted in the
summer of 1981 at the same site at Castine, Maine. The
experiment lasted 6 weeks and involved 8 pecple in the
field with the research vessel Edgerton from the MIT Sea
Grant Program. The experimental setup is shown in Figure 1.
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Figure 1. Castine Experiment, 1981

Two test cylinders were used in the experiments. The
first was a cable 75 feet in length, 1 1/4 inches in
diameter, containing 7 biaxial pairs of accelerometers. In
the experiments tension, acceleration, current and drag
coefficient were measured. This cable was also pulled
inside of a 1 5/8th inch diameter steel pipe for use as the
second test cylinder. The pipe was used to observe the
flow-induced vibration of a cylinder with bending rigidity
and tension. Properties of the test cylinders are given in
Table 1.

The primary objiectives of this field experiment were
to (1) measure mean drag coefficients under field
conditions and compare them to the very high values
observed under laboratory conditions, (2) determine the
differences in behavior of cables versus pipes with bending
stiffrness, and (3) test cable behavior with attached
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lumped masses.

The behavior with lumped masses is

reported in Griffin & vandiver, 1984 [5].

TABLE 1 - MECHANICAL PROPERTIES AND DIMENSIONS OF TEST

CYLINDERS

Cable Specifications

Length:

Diameter:

Weight per foot in air:
Specific Gravity:

Pipe Specifications

Length:
Outside diameter:
Inside diameter:

Weight per foot in air
including weight of the
internal cable:

Weight per foot
including cable and
trapped water:

Specific gravity of pipe
with cable and trapped
water:

Measured bending
gtiffness, EI:

75.0 £ .1 feet

1.25 £ 0.02 inches
0.7704 pounds per foot
1.408

75.0 = 0.02 feet
1.631 + .003 inches
1.493 + 003 inches

2.001 pounds per foot

2.236 pounds per foot

2.40

(3.016 =
inches?

.05) x 10¢% pound

The field measurements of drag coefficients are
presented in Figures 2 and 3 from Vandiver, 1983 [11].
Figure 2 shows the drag coefficient for the pipe measured

over a periocd of 2 1/2 hours.
data.
B8.55 seconds of cobservation.

The data is moving average

Every data point in the plot is a sliding average of
Also shown in the figure are

the flow velocity and the rms vibration amplitude observed
in the cross flow vibration direction and the in-~line
vibration direction at one locatioh;on the cylinder.

In the figure the drag coefficient exhibits periods of
high plateaus adiacent to pericds of relatively low drag

coefficient.

The plateaus are at times of lockin with
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individual modes which are indicated in the figure; for
example, 2nd and 3rd mode. At these times the natural
frequency of the cylinder in that mode coincided with the
vortex shedding frequency. The valleys in drag
coefficient occurred at times when the flow velocity was
such that wake synchronization could not occur. Vibration
still occurred but with lower amplitudes and with wider
vibration bandwidth than occurred during single mode
lockin. Under lockin conditions the drag coefficients were
greater than two times the value of a similar rigid
cylinder at the same Reynclds number.

Figure 3 is also a 2 1/2 hour record, but for the
cable, not the pipe. Again very high drag coefficients are
observed. However, there is one remarkable difference
between this data and the data shown for the pipe in Figure
2. There are no obvious plateaus and valleys in the drag
coefficient. There are no clear demarcations between
periods of leckin and non-lockin behavior. One of the
objectives of the experiment was to determine differences
in behavior between the pipe and the cable. That there is
a difference is obvious from these two figures. However,
the explanation which is given below, did not become
evident until a few years later.

The Importance of Mass Ratio (m/pb?)

The mass ratio is a measure of the mass per unit
length of the cylinder (m) compared to the mass per unit
length of the displaced fluid, {npD2/4). Some authors
include the added mass in the mass per unit length. This
should be avoided because the added mass is not constant,
as will be discussed below. Cylinders in air tend to have
very large mass ratios and cylinders in water tend to have
mass ratios between about 1 and 3 except for solid or thick
walled metal cylinders which have higher mass ratios.

Figure 4, reproduced from Chung, 1587 [2}, shows data
from a variety of sources. Response amplitude is plotted




versus reduced velocity for a variety of cylinders with
different mass ratios. The reduced velocity, Vi, in this
figure is based on the natural freguency with an added mass
coefficient of zero. The data for a mass ratio of 0.78 is
for first mode vibration of a 120 mm diameter, 9.3%3 m long
aluminum pipe in water [19]. The 1.77 mass ratio data is
1st mode vibration of a flexible tube in water [18].
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Figure 4. RMS Displacement versus Reduced Velocity
for Various Mass Ratios; from [2].

The remarkable conclusion that one can draw from this
figure is that low mass ratio cylinders have a much broader
lockin range than high mass ratio ones when expressed in
reduced velocity terms. I believe that this is due to the
fact that the added mass coefficient decreases with
increasing reduced velocity over the lockin range. There
ie driven cylinder data by Sarpkaya, 1977[8], to support
this concept. His data reveals added mass coefficients
which are much larger than 1 for reduced velocities less
than 5, dropping to added mass coefficients of
approximately -0.5 for reduced velocities above about 5.5.
This observation is true for a wide range of vibration




amplitudes. The result is that as the flow velocity
increases the added mass decreases allowing the natural
frequency to rise. This allows the lockin region to shift
upward in flow speed as the speed increases.

This effect is less for high mass ratio cylinders than
for low mass ratio ones, because the added mass is a lower
percentage of the total mass per unit length. Equation 1
gives an expression for the natural frequencies of a beam
under tension showing the effect of the added mass
coefficient. For cables, the EI term is neglected.
English units are indicated, but any other consistent set
may be used in the formula.

wo = [(nn/L)2T/m + (nn/L)4EI/m]1/2 (1)

where: L length, feer

T = tension, 1lbs

m = mass/ft, slugs including added mass
EI = bending rigidity, lb-ft2

n = mode number

This formula was used to evaluate the effect of added
mass coefficient on the lockin bandwidth for the cylinders
tested at Castine in 1981. Natural frequencies of the pipe
and cable for added mass coefficients of 0.0 and 1.0 are
given in Figure 5. The frequency axis is also scaled in
the flow velocity, which would yield that frequency for a
Strouhal number of .17.

The pipe had a specific gravity of 2.4, and a typical
tension of 700 pounds. As the added mass coefficient for
the pipe is varied from 1 to zero the natural frequency
rises by only 15%. The consequence for the pipe was that
the regions of lockin did not overlap for the low modes
which were excited in these experiments. There were flow
velocities which were between the lockin regions of
adjacent modes. At these velocities the pipe exhibited
non-lockin behavior, with characteristically lower response
amplitudes and broader response spectra.

For the cable the specific gravity was 1.41, and a




typical tension was 400 pounds. The increase in natural
frequency, caused by a variation in the added mass
coefficient from 1 down to zero, is approximately 31%,
causing the natural frequencies to overlap above the second
mode. The additional lockin bandwidth of about 20%, which
results from the usual fluid structure interaction, caused
the lockin bands of the cable at Castine to overlap at all
flow velocities. In other words the lockin region of the
2nd mode overlapped that of the 3rd mode and the 4th mode
etc. Therefore the cable in the Castine tests was capable
of lockin at all flow speeds.

When two or more modes are within the lockin range,
one usually dominates. The mechanism which determines
which modes dominate is not well understood. The %00 foot
long wire rope tested in 1975 had at least ten modes
simultaneously capable of lockin. Somehow, one was able to
dominate.

Mass ratio was the most significant source of
difference in the behavior of the cable and the pipe at
Castine. Broad lockin bandwidths such as those shown in
Figure 4 are to be expected under ideal conditions for low
mass ratio cylinders. However, there are many mechanisms
for real ocean structures, which may prevent lockin. One
of the more important ones is discussed below.

The Effect of Cylinder Motion on Lockin

In the late 70s a likely lockin prevention mechanism,
which had not been previously studied was irregular motion
of the cylinder. A laboratory experiment was conducted to
test the hypothesis that the introduction of a small degree
of random cylinder motion, while maintaining a mean
frequency most favorable to lockin, could in fact prevent
wake synchronization and, hence, lockin from gccurring. A
set of driven cylinder experiments were conducted on a
rigid cylinder one half inch in diameter and 20 inches long
in the MIT Ocean Engineering Department's circulating
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water tunnel. The cylinder was driven in cross flow
vibration by an electromagnetic shaker. The cylinder
vibration amplitude and spectral shape were varied in a
controlled fashion. The spectral shape varied from
sinusoidal to random with narrow to broad band
characteristics. Flow velocity and hence reduced velocity
were systematically varied. Cylinder motion and drag force
were measured. Wake velocity components were measured with
a laser doppler anemometer.

Under sinusoidal lockin conditions near unity
coherence was observed between wake velocity measurements
and cylinder motion. However when the cylinder motion was
changed to a narrow band random process with a center
frequency the same as would usually result in lockin, the
coherence between cylinder motion and wake velocity dropped
[Figures 6 and 7]. Even broader band cylinder vibration
reduced the coherence to near zero. The mean drag
coefficient was also measured. The disruption in the
lockin process by random moticns of the cylinder caused 50%
reductions in drag coefficient, Shargel 1980 [9].

An important conclusion to be drawn from these
experiments is that lockin is a rather fragile phenomenocn
which can be reduced or prevented by irregular cylinder
motions. In more recent experiments at a test site in
Lawrence, Massachusetts, high levels of turbulence (10 to
20%) were also found to prevent lockin from occurring.
These experiments will be described later.

These conclusions have considerable importance when
one considers the response prediction problem in sheared
flow. Vibration, generated at one location, may propagate
to another, where the flow is different, and prevent
lockin. Therefore, the shear itself becomes the mechanism
which prevents lockin. Several dimensionless parameters
must be understood in order to predict whether or not
lockin will occur, as illustrated below.
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Sheared Flow Experiments in the Arctic and St. Croix

In 1982 a controversy developed regarding the correct
drag coefficient to use for very long mooring cables
exposed to realistic sheared ocean currents. Was it

necessary as a design precaution to use drag coefficients
measured under lockin conditions or were the reduced drag
coefficients seen in the presence of random vibration more
appropriate? In a sheared current, would lockin ever
occur?

In 1983 two experiments were conducted on long, small
diameter cables with the purpose of resolving the
controversy. A shakedown experiment was first conducted on
a vertical cable hung through the ice in the Arctic. 8ix
months later a much more elaborate experiment was conducted
from a United States Navy barge at St. Croix in the U.S.
Virgin Islands. A braided Kevlar cable 0.16 inches in
diameter was hung vertically at lengths up to 2000 feet
under tensions of approximately 20 pounds. A 0.094 inch
Kevlar cable was also tested at lengths up to 9000 feet.
The current varied from a maximum of about 1.1 feet per
second at the surface to a minimum of approximately 0.1
feet per second at depth, with substantial variations in
between. Lockin never occurred. Broad band random
vibration did occur as can be seen in Figures 8 and 9.
Accelerometer measurements made as little as 275 feet apart
were uncorrelated as shown in Figure 10. The cables
responded to the vortex shedding as if they were of
infinite length; Kim, Vandiver & Holler, 1985[6].

Drag ccefficients were deduced from top tension and
angle measurements to be approximately 1.5. The
corresponding rigid cylinder value in the Reynolds number
range of 200 to 2000 is about 1.2. High drag coefficients,
typical of lockin conditions, were never observed. Rms
response amplitudes of 1/4 to 1/2 a diameter were observed.
For these particular cables and shear conditions, the
controversy was resolved. To generalize the observations
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requires the specification of appropriate dimensionless
parameters, which can be used to predict the extreme
variations of response: from single mode lockin seen in
the Castine experiments to the broad band infinite cable
behavior characteristic of the St. Croix experiments.

In the author's opinion the two most useful parameters
for predicting the occurrence of lockin are the number of
natural modes contained in the bandwidth of vortex shedding
frequencies; hereafter referred to as N, and the
dimensionless shear fraction, AV/Vyax. IR some
circumstances the turbulence level and damping may also be
large enough to prevent lockin.

SHEAR FRACTION AND THE NUMBER OF EXCITED MODES CONTROL
-~ LOCKIN

Lockin occurs if and only if the separation of the
natural frequencies of the cylinder is large compared to
the bandwidth of vortex induced forces and large compared
to the damping determined half power modal bandwidth. The
separation between natural frequencies depends primarily
upon the mechanical properties of the system such as mass
per unit length, stiffness, tension, and length. The
bandwidth of the exciting forces depends on the local
vortex shedding phenomena, the shear fraction, (AV/Vuax )y
and the turbulence level (Vgus/Vmax)-

One measure of the likelihood of lockin is then given
by the ratio between the excitation bandwidth due to
current shear and the separation in frequency between
natural modes. This ratio is in fact the number of natural
frequencies contained within the excitation bandwidth, and
is here defined as Ny [Kim, Vandiver & Holler 198587.

The excitation bandwidth, 4Af, due to shear can be
estimated using a Strouhal number of approximately 0.17 and
the variation in the velocity over the total length of the

cylinder, 4V, yielding:

i7




Af = §,-AV/D (2)

For the constant tension string the separation in natural
frequencies is the first natural frequency, yielding the
following expression for Ny, the number nodes in the shear.

Ng = Af/E, = 8, +aV/(£,'D) ‘ (3)

1f this number is large, lockin will not occur. If it
is small, lockin is likely to occur. Three experimental
examples are discussed here: the 950 foot long cable
tested at St. Croix, the short cable tested at Castine,
Maine in 1981, and the 900 foot long wire rope mentioned
earlier.

St. Croix

The velocity variation at St. Croix was essentially
1.0 feet/second. The modal density (1/f,) at a tension of
21 pounds was 10.6 modes per Hz. Letting St = 0.17, N, is
found to be 135 (For 8,=.2, N,=158). Lockin was never
observed. Infinite cable behavior was observed.

Castine

H

L 75 feet T 350 lbs

D 1.25 inches 1/f%, 1.0 modes/Hz
The maximum current at Castine was approximately 2.5
ft/sec. A spatial variation of approximately * 3% of the
flow speed was measured over the length of the test
section. This yields a AV of approximately 0.15 ft/sec.
The rms turbulence level was also very low.

For this case, N, = 0.25 or .3 mcdes, depending on 8.
peing taken at .17 or .2. As a consequence, lockin was
frequently observed at Castine. It happened whenever the
mean flow velocity resulted in a shedding frequency which
coincided closely with a natural frequency. Non-lockin
response did occur when the mean shedding frequency fell

H
il
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outside the lockin bandwidth of any one natural freguency.
As discussed earlier, this clearly happened for the pipe,
but rarely for the 1.25" cable. At these times three or
four modes were present in the cross-flow response. The
in-line response would at the same time have several modes
participating in the response; Vandiver & Jong, 1987 [15].
Under lockin conditions, the excitation bandwidth is very
narrow. Under non-lockin conditions, even with very
uniform flow the excitation bandwidth broadens
substantially, and the lift force spectrum is best
characterized as a random process.

Note that Ny approaches zero as the incoming flow
becomes uniform. When Ng¢ is less than one, the possibility
to excite a single natural mode of the cable is very high
and single mode lockin is very likely. Alternatively if Ng
is very large, there is nc chance to have lockin response,
as more than one mode is always involved in the response.
For the St. Croix test N, was greater than 100, and lockin
never occurred.

Between these extremes the prediction of lockin is not
so clear. The .280 inch diameter, 900 foot long wire rope
mentioned earlier is a good example. The relevant
parameters were

TABLE 2: CASTINE LONG WIRE ROPE

Vuax = 1.3 ft/sec AV = .25 ft/sec
= 350 1lbs. L = 900 feet

D = 280 inches m = ,00211 slugs/ft in air
Zs = .001, structural modal damping ratioc

1/£, = 5.24 modes/Hz (using C, = 1.0)

The relevant dimensionless groups are:

Ng = 9.9 modes, AV/Vuax = .2%.1, Vaus/Vuax € .03
ng, 2 X 50 x .001 = .1

i u

ratio of the half power bandwidth to modal
' separation.

In this case lockin occurred; one mode at a time
dominated, even though approximately ten modes were

i9




simultaneously capable of lockin. The circumstances were
such that no factor intervened to prevent lockin. The
turbulence level was too low to interfere. The structural
damping was too low to cause overlap between modes as
indicated by the parameter 2n:_.

The shear fraction was the pivotal parameter in this
case. The shear fraction of approximately 20% was smaller
than the lockin bandwidth for this cable, thus allowing
lockin to occur over the entire length of the cable. At
this point in time the upper bound on shear fraction which
still allows lockin is not known. It is certainly related
to the maximum lockin bandwidth. The maximum lockin
pandwidth is probably close to that which one would measure
in a driven oscillating cylinder experiment at the same
Reynolds number and vibration amplitude. For sinusocidal
cross~-flow oscillation at subcritical Reynolds numbers and
amplitudes of 0.5 to 1.0 diameters, the lockin range
corresponds to reduced velocities of approximately 5.0 to
6.5, a range of about 20% of the maximum. This suggests
t+hat had the shear been much greater in the experiment,
lockin would not have occurred. In fact a review of the
raw data indicates that about half of the time lockin did
not occur.

Griffin, 1985 [4], has suggested that the lockin
bandwidth might be as large as 70% of the natural
frequency, based on data which, as of the writing of this
paper, the author d4id not have available to evaluate.
Griffin also introduces a parameter which serves the same
purpose as N, .

An important subtle point should be noted with regard
to lockin bandwidth. As discussed earlier, a low mass
ratio cable is capable of sustaining lockin over an
extended range of reduced velocity in a time varying
uniform flow, because changes in added mass with reduced
velocity can cause large changes in the natural frequency.
Under uniform flow lockin conditions the added mass

20




coefficient changes simultaneously over the entire
cylinder in response to a variation in flow speed. Under
lockin conditions in a sheared flow, the added mass will
vary along the span of the cylinder in relation to the
local reduced velocity. The natural frequency is a
function of the modal added mass which is a weighted
average of the sectional added mass along the entire length
of the cable. Under sheared conditions the modal added
mass will vary much less than the local added mass.
Therefore the natural frequency will not vary nearly as
much as in the uniform flow case. The lockin band will be
increased by only small amounts due to adjustments in the
natural frequency. Therefore the appropriate shear lockin
bandwidth may be comparable to that observed in similar
driven cylinder experiments, typically about 20% to 30%.

Stansby, 1876 {10], has sh;wn greater lockin
bandwidths in shears on driven cylinders with L/D's of 8
and 16. 1In his experiment the shear fraction was
approximately 33%, and in one scenario lockin cccurred over
the entire length. However, his results show that the
extent of the lockin region in a sheared flow on a driven
cylinder is very amplitude dependent, and is related to the
formation of a single coherent vortex cell in the wake.

The presence of vibration nodes on a cable and the
spatially varying amplitudes, suggest that such long lockin
regions will not occur on realistic flexible structures
with large L/D and high mode number.

When lockin occurs with one of the lowest modes of the
structure, it may happen without requiring the wake to
synchronize over the entire structure. This is a very
typical occurrence on cantilevers, which may exhibit very
large tip deflections under lockin conditions. Often with
such cylinders there are regions which are not locked in
and act as hydrodynamic damping regions. Although vortex
shedding is happening in these non-locked-in regions, the
frequency of the resulting lift force does not correspond
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to any other system natural frequency, and the resulting
response amplitudes are not sufficient at these frequencies
to disrupt the lockin process. For long cables and risers,
which respond at higher mode numbers, this 1s not as likely
to oeocour, because non-lockin regions will generate lift
forces which coincide with other system natural
frequencies, and will prevent pure lockin response from
occurring. Therefore, for long cylinders it is unlikely
that lockin will occur when the shear fraction exceeds 20
to 30% and two or modes are included in the excitation
bandwidth.

Two parameters are conspicuocusly missing from the
previous discussion: the shear parameter P and the reduced
damping or stability parameter, Sg;. The shear parameter B
is not particularly useful. It is usually defined as:

(D/Vaege)dv/dx
(D/L)+*AV/Vger, for linear shears (4)

w0
I

i

where Vier is inconsistently defined in the literature.
Letting it be Vy.x for the purposes of this discussion then

B = (D/L)-AV/Vyax (5)

This is just the ratio of the shear fraction, which
separately has usefulness, and L/D, which has little to do
with dynamic response with the exception of L/D values less
than approximately 20 to 30. B can in fact be quite
misleading. The short Castine cable had an L/D of 720 and
a shear fraction of .06 yielding a p = 8.3 x 10-5. The 900
foot long wire rope with 500 feet in the water had an in
water L/D of 21,430 and a shear fraction of 0.2 yielding a
f = 9.3 x 10-¢. In the later case the shear was a much
more important factor, even though B was an order of
magnitude smaller. In the St. Croix experiment the 0.16
inch diameter, 950 foot long cable had a B = 10-5 and yet




had a 135 responding modes. In this case the shear
fraction was .91, and is a much better indicator of the
observed response than J.

Alone the shear parameter or the shear fraction give
no indication as to the dynamics of the cable. That this
is so can be simply proven. Consider a cable with a fixed
L/D exposed to exposed to two different linear shear flows;
one from 0.0 to 2.0 feet per seccnd and one from 0.0 to 4.0
feet per second. Both cases have the same shear fraction,
{(i.e. 100%) and both have the same B, (i.e. D/L)}. Either
representation of the shear needs an additional dynamics
parameter, such as the number of excited modes, N,, to
describe the participation of modes in the response.

The stability parameter has usefulness in predicting
response amplitude under lockin conditions but is not
particularly useful in predicting the occurrence of lockin.
This parameter will be discussed in greater detail in the

next section on damping.

DAMPING CONTROLS CABLE DYNAMIC BEHAVIOR

The structural damping for most marine structures
susceptible to flow-induced vibration is very small and is
not usually the deciding factor in the determination of
whether or not lockin occurs. However, when lockin does
not occur or occurs over only a portion of the structure
then hydrodynamic sources of damping can be large and
become very important in determining dynamic response
behavior. Whether or not a cable responds dynamically as
if it is of infinite length or at the other extreme is
capable of being dominated by a single mode is controlled

by damping.

The Reduced Damping Parameter

Response amplitude prediction under lockin conditions
has long been based on a dimensionless parameter Xnown
variously as the "reduced damping", the "stability
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parameter", or simply the "response parameter”. This is
sometimes written as S; or z,/p. Written out in one of its
common forms it looks like; Griffin & Ramberg, 1982 [3]

Sg = ;S;u = 2nS, 2 (2m8/pD?) (6)
where: & = 2nr,, 2n8, = w,D/V
re = r/{2u,m), and r is the damping per unit length

This parameter is both useful and very often
misinterpreted. As this parameter increases, response
decreases. From equation 6 one can see that S; becomes
large for large values of damping ratioc or for small values
of mass ratio. The common erroneous conclusion is that low
density cables hence ones with small mass ratio are likely
to respond more than high density ones. In fact mass ratio
has little to do with the response amplitude. When one
replaces the Strouhal number, the damping ratio, and the
mass ratio, in equation 6 with their definitions as given
with the equaticn the cylinder mass per unit length drops
out and the following expression for §; results.

S¢ = rwn/(oV?) (7)

S, is essentially the ratio of dissipative forces on
the cable to hydrodynamic exciting forces. It is
essentially a statement of dynamic equilibrium between the
average power injected into the cable by the fluid through
1ift forces and the power dissipated by damping. Such an
equilibrium exists for all cases including shears. One
must however properly account for the hydrodynamic and
structural sources of damping in each case, and must also
properly account for the fluid excitation regions on the
structure. Vandiver, 1985 [12], addresses this topic in

some detail. )

How Long Is Long?
The Green's function of a cable is the response of the




cable to a unit harmonic exciting force at a specified
location. Figure 11 shows the magnitude squared of the
Green's function of a constant tension cable of length L to
a unit harmonic force applied at its center. Figure 11B
shows the response when the excitation frequency is equal
to the natural frequency of the 5th mode and the damping
ratio is 1% of critical damping. The response shown is the
same as a standing wave mode shape for the 5th mode.

Single mode resonant response dominates this case. A
single mode approximation to the total response would be
adequate. In Figure 11C the excitation frequency is equal
to the 99th natural frequency and the damping ratio is 10%.
The Green's function reveals that the vibration never
reaches the cable ends. This is an example of infinite
cable behavior. 1In Figure 11D the natural frequency of the
9th mode is equal to the excitation frequency and the
damping ratio is again 10%. In this case the Green's
function reveals intermediate dynamic behavior. Some
attenuation of the response exists between the point of
excitation and the ends of the cable. Some standing wave
behavior is also exhibited.

The parameter of importance which distinguishes
between single mode dominated resonant behavior and
infinite cable behavior is the product of the mode number,
n, and the damping ratio, r., for that mode. When this
product ng_is less than 0.2, single mode resonant behavior
is dominant. When this parameter is greater than
approximately 3 infinite cable behavior is the dominant
characteristic. In between 0.2 and 3 mixed behavior
results and significant attenuation is observed between the
point of application of the excitation and the ends of the
cable, but vibration does reach the ends of the cable and
standing wave behavior is observed. :Strictly speaking, the
above discussion applies only to constant tension cables.
However, the general concept also applies to other
cylinders as well. Minor modifications to the
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interpretation of the parameter ngnare all that would be
required.

The problem for the designer is to estimate both the
mode number, n, and the damping ratia,qa. The mode number,
n, is easy. One gets it by comparing the natural
frequencies of the cable to the vortex shedding frequencies
in the shear. The damping ratio for a given mode however
is not so obvious. Does one use structural damping or does
one include the hydrodynamic sources of damping? This was
a very controversial point in the mid to late 13970s.
Ultimately most researchers, including the author, agreed
that the structural non-hydrodynamic sources were the only
important ones. When considering response in sheared
flows that conclusion is completely false. The flaw is
that in the 1970s our thinking was narrowly focused on
lockin. Shear flow phenomena was not being seriously
considered. Lockin over the entire structure was the focus
of most discussions. Under such lockin conditions the
important damping is the structural damping.

Under non-lockin shear flow conditions hydrodynamic
damping must be considered, as it is often many times
greater than the structural damping. This will be
discussed in the next section.

Under unusual conditions lockin may occur but not over
the entire structure. In these cases hydrodynamic damping
from the non-lockin regions should be included in the
damping, when computing nf, or for that matter the reduced

damping. Sg.

Damping Estimation

The practical, but approximate, hydrodynamic damping
model used here is developed in detail in vandiver and
Chung, 1987 [13]. A brief summary is presented here. At
any specific location an instantaneous drag force per unit
length may be defined as the force in the direction of the
ingtantaneous relative fluid flow, as shown in Figure 12.
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The fluid velocity relative to the cable is the vector sum
of the free stream velocity V{(x) and the negative of the
local cross-flow cable velocity &(x,t). The in-line cable
velocity i(x,t) is assumed small and is neglected (it could
be included if a more precise estimate was required). If
one assumes the drag force to be proporticnal to the
relative velocity squared, then the magnitude of the drag
force takes the form given below.

Fo(X,t) = 4pCo+D-{V? + y?} (8)

Letting, B = $,C,+D, the component of the drag force
in the y direction is by simple trigonometry given by:

F,(x,t) = -B-y{Vi+y?}i (9)

The damping force in eguation (9) is a non-linear
function of &. It is helpful to find a linear egquivalent
damping constant r{x) per unit length which dissipates the
same energy per cycle as the non-linear one. This
derivation is done explicitly in Vandiver and Chung, 1987
[13]). Only the final result is presented here.

r(x) = YBV(x) (10)

v is a correction factor which accounts for the effect of
&(x,t) on the damping. 1If 9 is small compared to V(x) then
Yy = 1.0, vy falls in the range of 1.0 to 1.2 for most non-
lockin flow induced vibration situations.

In order to calculate ri{x) for a specific mode, a
shear profile must be specified. For the purpcse of
example, consider a lin%ar shear profile given by

V(Xx) = Vyax x/L (11)
If «, is the natural frequency of a constant tension cable
which most closely corresponds to the vortex shedding




frequency at the velocity, Vu.x, then the damping ratio
from hydrodynamic sources for any natural frequency u,,
less than or equal to «, is approximately given by:

thon = ¥CoValwg/uw,)/{4n*(5.6.4C, )} (12)

where V, is assumed to be around 5, $.G6. is the specific
gravity of the cable and C, is the assumed added mass
coefficient.

This is a rather remarkable conclusion. In a linear
sheared flow, under non-lockin conditions, many modes
respond. The cne with the lowest hydrodynamic damping is
the one with the highest natural frequency w,. All other
modes have higher damping by the ratio wy/w,. TO get a
feeling for the magnitude of the hydrodynamic damping, let
y = 1.0, 8.6. = 1.34, ¢, = 1.0, anch = 1.0. These
correspond to the experimental results from the Lawrence
experiments, to be presented later. With these values the
highest excited mode has a damping of about 6%. This is
very large compared to typical structural damping ratios of
0.1 to 0.3%.

Under actual shear flow conditions, each excited mode
will have a region of the cable where the local vortex
shedding frequency and the natural frequency coincide as
depicted in Figure 13. 1In these regions net power flows
into the cable in that mode. These regions should be
excluded in the calculation of hydrodynamic damping. This
would cause a corresponding reduction in the damping ratio
predicted by Equaticn 12.

The specification of this power in and damping
exclusion range, is at the present very uncertain. It is
discussed in Brooks 1987 [1], Wang et al, 1985 [17], and
Vandiver and Chung, 1987 [13]. It is arguably dependent on
the correlation length of the exciting forces, the half
power bandwidth of the mode under consideration, and the
distance on the cable which separates the points of
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coincidence of the shedding frequency and two adjacent
natural frequencies. The author has used the last criteria
with some success; Vandiver and Chung, 1988 [14].

Regardless of the selected criterion, if the power in
region for a particular mode is small compared to the total
cable length, this correction to the damping ratic is
unnecessary. This is the case when the number of
responding modes exceeds about 10.

The damping model described above may also be extended
to cables which respond as if of infinite length. The
derivation may be found in Vandiver and Chung, 1987 [13].
The result is described briefly below.

The linear equivalent damping ratio on an infinite
cable is given by

rn =¥5C, we/{2n*{8.G.+C, Ju} (13)

where w is the frequency of a wave travelling in the cable
and w, is the local vortex shedding frequency.

If one wished to predict the attenuation between two
points on a cable, separated by a distance L, the correct
expression would be

*ChkL -Qth/C
y(x+L}/y{x) = e = e (14)

where k is the wave number, C is the wave propagation
velocity, and « is the vibration frequency of interest.
For a fixed distance L, over which the shedding frequency
varies a small amount so that the average shedding
frequency can be used in equation 13, then by substitution
for ihin equation 14, an expression for attenuation between
the two points is arrived at which is independent of w, the
vibration frequency, vandiver and Chung, 1987 [13].

A verification of these damping models was
accomplished in a field experiment in a sheared flow
conducted in the summer of 1986, reported on below.
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THE SHEARED FLOW EXPERIMENTS AT LAWRENCE, 1586

Experiments were conducted during the summer of 1986.
A complete description, including many figures, may be
found in References Chung, 1487 [2], and vandiver and
Chung, 1987 [13]. The test site was a mill canal, built in
1848 in Lawrence, Massachusetts. A dam diverts the water
from the Merrimack River into the canal. The flow is
controlled by four submerged gates, which are spaced at
equal horizontal intervals beneath a gate house at the head
of the canal. By controlling the various gate openings a
sheared flow can be developed horizontally across the width
of the canal, which is approximately 58 feet. The average
depth of the canal is ten feet and the average flow rate
for the experiments was from 200 to 750 cubic feet per
second.

The test cable location was approximately 250 feet
downstream of the gate house. The cable was tensioned
horizontally across the width of the canal about one toot
under the surface, as shown in Figure 14. Heavy steel pipe
supports transferred the cable loads to the walls of the
canal. Tension was applied to the cable via a system of
pulleys and a hand-operated winch. For a given winch
position the cable had essentially constant arc length.

The tension then varied slowly with mean drag force on the
cable. Tension was measured with a tension cell connected
in series between the cable and winch.

Five feet upstream of the test cable, a simple
traversing mechanism was constructed to carry a Neil Brown
Instruments DRCM-2, two-axis acoustic current meter. The
transducer was located about one foot under water and was
oriented so that the instantaneous velocity was resolved
intoc two components in the horizontal plane. The velocity
was measured at two samples per second.

The 58-foot long test cable is shown in Figure 15. It
consisted of a 1.125 inch rubber hose with a 0.5 inch
inside diameter. Seven 0.16 inch diameter braided kevlar
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cables were carried inside of the hose. Each kevlar cable
had seven conductors inside of it. Three kevlar cables
were used solely as load carrying members, three cables
were used to carry accelerometer signals and power, and one
cable was used as a spare.

Six biaxial pairs of force balance accelerometers were
placed on the centerline of the cable at locations shown in
the figure. Each biaxial pair was 0.5 inches in diameter
and 3 inches long. Space was created for the kevlar cables
to pass around the accelerometers at these locations, with
no change in the outside diameter of the hose. The
accelerometers, tension cell, and current meter were the
same as used in previous experiments conducted at Castine,
Maine.

The 12 accelerometer ocutputs, tension, and current
data were carried via a multi-conductor cable from the test
cable to the gatehouse, where a Digital Equipment MINC-23
data acquisition computer was located. Fourteen data
channels were digitized and stored on floppy disks.

Sheared Current Profiles

The current profiles were measured prior to response
tests. The results of three different profiles are shown
in Figure 16. They are designated shear flow profile 1, 2,
and 3 (SFPl, etc.). SFP3 was the steepest shear with a
peak flow velocity at times exceeding 4 feet per second
and a minimum flow velocity of -0.5 feet per second. The
minus indicates reverse flow. 8FP2, a milder shear, ranged
from 2 feet per second down to zero in a nearly linear
profile. SFP1 was made as close tc uniform as possible by
careful positioning of the gates.

For all profiles the flow was highly turbulent. The
mms turbulence level was from 10 to 20 percent of the
maximum current in the profile. The time scale of the
turbulence was up to several seconds in length, and was
associated with large eddies, which were carried
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downstream from the gatehouse.

An important conclusion is that the turbulence was
able to prevent pure, constant amplitude single mode lockin
from occurring, even with the nearly uniform profile, SFPL.

EXPERIMENTAL OBSERVATIONS OF DAMPING

The structural damping measured by free vibration
decay tests in air for the test cable in this experiment
was about 0.3% of critical for the fregquency ranges and
tensions later experienced in the water.

Response at Low Tension in a Highly Sheared Flow

Figure 17 is a sample time history of the response of
the test cable in the highly sheared flow, for which
AV/Vuax was 1.125. Simultaneous sample time histories of
cross-flow acceleration are given for all six measurement
locations. It is quite obvious that the high velocity
locations had higher response than the low velocity
regions. In this case the rms displacement was 0.3
diameters at x=13L/16 and 0.% diameters at x=L/8. The
tension was 151 pounds and the natural modes were 0.6 Hz
apart. The peak vortex shedding frequency corresponded to
about the 10th natural frequency. Enough modes are
involved in the response that variation in mode shape is
not a particularly important factor when comparing the rms
response of one location to another.

The observed attenuation would require that the
highest excited mode have from 4% to 6% damping, which is
consistent with the prediction made earlier in this paper.
To conclusively demonstrate this requires the use of a
prediction model, which includes the effects of current
shear and hydrodynamic damping. Such a model is proposed
and used in Chung, 1987 [2], and Vandiver and Chung, 1988
[14]. Comparisons between measured and predicted response
for the shear flow experiments at Lawrence are presented.

One example is given here.

35




Figure 18 is a comparison between the predicted and
measured acceleration response spectrum of the cable at x =
13L/16. The cable was exposed to the intermediate shear
profile (SFP2). The predictive model includes the effects
of shear, turbulence, hydrodynamic damping, correlation
length, and higher order harmonics of the vortex shedding
frequencies.

z?pulse Response Under High Tension in a Turbulent Uniform
Flow

With large hydrodynamic damping the vibration excited
at one location is attenuated as it travels through the
cable to distant points. This was confirmed by an
independent measurement. Under steady state flow-induced
vibration conditions, the cable was struck impulsively with
a wooden pole, «t a location near one end, The impulse
generated, propagated through the cable. Figure 19 shows
the simultaneous time histories at all six accelerometer
locations. The impulse can be seen to travel from one
location to the next with a travel time delay and an
attenuation due to damping. By independently examining the
spectrum of each accelerometer time history it was possible
to estimate the frequency content of the impulse and the
effective damping coefficient. The cable tension was 450
pounds, the current was approximately uniform (SFP1).

The cable VIV response was dominated by third mode response
at a natural frequency of 3.0 Hz. The impulse had most of
its energy in the 15 to 24 Hz range.

By assuming an exponential decay with distance
traveled, it was possible to estimate the effective damping
by comparing the magnitudes of the acceleration response
spectra in the 15 to 24 Hz band. Figure 20 is an example.
Two spectra are shown. The locations were separated by
19.3 feet. If one assumes that the ratios of the two
spectra are exponentially related and in proportion to the
square of Equation 14, then it is possible to estimate the
effective damping. Choosing a typical frequency of £=18
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Hz, and noting that w=2nf, L = 19.3 feet, C = 120
feet/sec, and the ratio of the spectra is approximately six
to one, results in an estimate of ¢ = 0.049 or 4.9%. Many
similar calculations were performed between different
locations and for different impulse events. The results
fell into a range of 4 to 6% damping, Vandiver & Chung,
1987 [13].

The earlier prediction for the infinite cable damping
applies in the case of propagation of an impulse.
Substituting for ¢, = 1.0, $.G. = 1.34 and w,/w = 1/6 into
equation 13 yields ¢, = .018y-Cy,. For Cp = 2.0 and vy
1.2, 2, = .043 or 4.3% compared to the 4% to 6% observed.
The response in this case was near lockin and in excess of
0.5 diameters rms, which would justify using the larger
values of v and C,.

H

SUMMARY AND CONCLUSIONS

The design of moorings, ROV tethers, pipelines, and
petroleum drilling and production risers all depend on the
expected magnitude and frequency of vortex-induced
vibration. Lockin usually results in the largest
amplitudes of vibration and the largest mean drag
coefficients, and, therefore is considered in most
situations to be the worst case. Establishing whether or
not it will occur is usually of great concern. This paper
has attempted to reveal those parameters which have
greatest influence over the occurrence of lockin for
flexible cylinders with large L/D, and has provided case
studies to support the conclusions.

The parameters of greatest importance are the shear
fraction, the mass ratioc, the turbulence level, the number
of responding modes, and the ratio of the half power
bandwidth to the modal separation. Furthermore, the
response in sheared flows has been shown to be highly
dependent on the hydrodynamic damping. Hydrodynamic
damping is usually the parameter which determines if the
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cable will be dominated by single modes or will take on the
characteristics of an infinitely lcng cable.

Many conclusions require further refinement, largely
through experimental work. In many cases the critical
parameters are known, but the values which mark the
transition from one type of behavior to another need
refinement. For example, what combination of values of Ng,
the number of potential responding modes, and AV/Vyax, the
shear fraction, are just sufficient to prevent lockin?
These and many other similar problems require experimental
data before they can be resolved.

REFERENCES

1. Brooks, I.H., "A Pragmatic Approach to Vortex-Induced
Vibrations of a Drilling Riser", Proc. 1987 Offshore
Technology Conference, OTC 5522, Houston, May 1937.

2. Chung, T. Y.,"Vortex-Induced Vvibration of Flexible
Cylinders in Sheared Flows', Ph. D. dissertation, MIT
Dept. of Ocean Engineering, May, 1987.

3., Griffin, 0. M. & Ramberg, S. E., "Some Recent Studies
of Vortex Shedding With Applications to Marine Tubulars
and Risers', Journal of Energy Resources Technology, Vol.
104, March 1%982.

4. Griffin, 0. M., "The Effects of Current shear on Vortex
gshedding", Proc. Separated Flow Around Marine structures,
Norwegian Inst. Of Technology, Trondheim, 1985.

5. Griffin, 0.M. and Vandiver J.K., "yortex-Induced
Strumming Vibrations of Marine Cables with Attached
Masses™, Journal of Energy Resources Technology, Vol.
106, Dec. 1984.

§. Kim, Y.H., vandiver, J.K. and Holler, R., "Vortex-
Induced Vibration and Drag Coefficients of Long Cables
subjected to Sheared Flow", Proc. 4th OMAE Symposium ,
Volume One, ASME, Dallas, TX, Feb. 1585, Journal of Energy
Resources Technology, Vol. 108, March 1986.

7. Pham, Thai ¢., "Evaluation of the Performance of
various Strumming Suppression Devices on Marine Cables",
MIT Dept of Ocean Engineering Master's thesis, February

1977.

8. Sarpkaya, T., "Transverse Oscillations of a Circular
Cylinder in Uniform Flow, Part 1", Naval Postgraduate
schocl Report No. NPS-698L77071, July 1977.

40



9. Shargel, Robert, and Vandiver, J.K., "The Drag
Coefficient for a Randomly Oscillating Cylinder in a
Uniform Flow," M.I.T. Dept. of Ocean Engineering Report,
December 1982

10. Stansby, P.K., "The Locking-on of Vortex Shedding Due
to the Cross-stream Vibration of Circular Cylinders in
Uniform and Shear Flows", Journal of Fluid Mechanics, Vol
74, part 4, pp. 641-665, 1976.

11. Vandiver, J.K., '"Drag Coefficients of Long Flexible
Cylinders," Proc. 1983 Offshore Technology Conference,
OTC 4490, Houston, 1983.

12. Vandiver, J.K., "The Predictions of Lockin Vibration
on Flexible Cylinders in a Sheared Flow", Proc. 1985
Offshore Technology Conference, OTC 5006, May 1985,
Houston, TX.

13. vandiver, J.K., & Chung, T.Y., "Hydrodynamic Damping
on Flexible Cylinders in Sheared Flow", Proc. 1987
Offshore Technology Conference, OTC 5524, Houston, May

1987.

14. vandiver, J.K., & Chung, T.Y., "Predicted and Measured
Response of Flexible Cylinders In Sheared Flow", ASME
Wwinter Annual Meeting, Symposium on Vortex-Induced
Vibration", Chicago, Dec. 1988.

15. Vandiver, J.K. and Jong, J.-¥., "The Relationship
Between In-Line and Cross-Flow, Vortex-Induced, Vibration
of Cylinders", Journal of Fluids and Structures, Vol. 1,
1987.

16. Vandiver, J.K., and C.H. Mazel, "A Field Study of
Vortex Excited Vibrations of Marine Cables," Proc. 1876
Offshore Technology Conference, Vol. I, OTC 2451, pp-
701-709, Houston, May 1976.

17. Wang, E., Whitney, D.K., and Nikkel, K.G., "Vortex
Shedding Response of Long Cylindrical Structures in Shear
Flow", Proc. 5th International Symposium on Offshore
Mechanics and Artic Engineering, Tokyo, April 1987.

18. Tsahalis, D. T., "Vortex-Induced Vibrations of a
Flexible Cylinder Near a Plane Boundary Exposed to Steady
and Wave-Induced Currents", Journal of Energy Resources
Technology, Vol. 106, June 1984.

19. Exxon Production Research. Private communication from
Steve Koch.

o
ok






