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Abstract

Results are presented from a flow-induced vibration experiment conducted in a sheared
current. The site was an historic 1848 mill canal with a width of 58 feet. Variable headgates
allowed a controllable hotizontal shear to be produced. An instrumented cable 1.125 inches in
diameter was deployed horizontally in the flow. Response was measured for a variety of cable
tensions and sheared flow profiles.

A method for predicting the response of cables in sheared flow is introduced, which includes
the effects of correlation length, hydrodynamic damping, lift coefficient with higher order
harmonics, and turbulence. Comparisons are made between predicted and measured response.
The response is shown to contain significant amounts of vibration up to the 8fth harmonic of
the vortex shedding frequency. Hydrodynamic modal damping is shown to have a dramatic
effect on the response, and to decrease with increasing frequency of vibration.

Nomenclature
y(z,1) = cross flow response displacement
m = structural mass per unit length including added mass
RQ"%& = damping force including hydrodynamic damping force
T = tension
fHz,t) = lift force per unit length due to vortex shedding
z = response measureroent point
£ = excitation peoint
T = tension along the cable
k = wave number{= w/C,}
w = excitation frequency
w, = local mean vortex shedding frequency at z = ¢
w, = local mean vortex shedding frequency at z = ¢'
b = one standard deviation of the local mean vortex shedding frequency
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Cy == phase velocity of the cable(= \/g)

L, = the correlation length

L = the cylinder length

i =L./L = coefficient determining the spatial correlation between& and £
8.4, = gpecific gravity

Pu = water density

D = ¢ylinder diameter

5 = Strouhal number

V(z) = flow velocity at z

Vr = reduced velocity

Ve = peak velocity in a linear shear

AVima = turbulence standard deviation

n = mode number

N, = the number of modes excited by the linear sheared flow
We == natural frequency of mode n

Wy = natural frequency closest to the peak shedding frequency
¥, = mode shape

¢ = damping ratio

Chn = hydrodynamic modal damping ratio

Com = structural damping ratio

in = total damping ratio

Ryn = hydrodynamic modal damping constant

B = velocity squared damping coefficient

~ = damping correction for response amplitude

H = damping reduction factor

Criz,t) = local, time varying lift coefficient

ci = mean square lift force coefficient

Cra = coefficient of the 2nd harmonic

Crs = coefficient of the 3rd harmonic

Splz,w) = the displacement response spectrum at location z

Stety (€, € ,w) = the lift force spectrum

G(z/§) = the Creen’s function due to excitation at the location z = €
G*(z/€) = conjugate of the Green’s function due to excitation

at the location z = §

1 Introduction

The prediction of the fow-induced vibration response of long, cylindrical structures de-
ployed in sheared flows is & problem of considerable practical importance. The applications
vary from extremely long cables that exhibit the dynamic behavior of systems of infinite length,
Kim et al 5], to relatively short and stiff risers or pilings which respond to vortex shedding
in only a few of the lowest natural modes of vibration. The authors have recently concluded
4 series of field tests using a 58-foot long, 1 1 /8 inch diameter rubber hose, strengthened with
longitudinal kevlar strands. The cable had a specific gravity with a flooded interior of 1.34.
The cable was deployed in a controllable sheared flow. By varying the tension of the cable,
dynamical properties of a wide variety of cylinders could be simulated. At high tensions,
only a few of the lowest modes were excited, thus simulating the behavior of a short, nearly
rigid riser. At very low tensions, the behavior of a rubber hose with many responding modes
was observed. A response prediction model, based on the Green's function solution for the
response of a cable to random excitation, was used in conjunction with a lift force cross spec-
trum model. The lift force cross specirum model and the Green’s function solution are both
presented in detail in the paper. A description of the experiment is presented first, followed




by the response prediction model, and concluding with a comparison between measured and
predicted response data, for a variety of combinations of shear profiles and cable tensions.

2 Shear Flow Experiments

2.1 Experiment Design

Experiments were conducted during the summer of 1986. A complete description, including
many figures, may be found in References [2] and [12]. The test site was a mill canal, built
in 1848 in Lawrence, Massachusetts, A dam diverts the water from the Merrimack River
into the canal. The flow is controlled by four submerged gates, which are spaced at equal
horizontal intervals beneath a gate house at the head of the canal. By controlling the various
gate openings a sheared flow can be developed horizontally across the width of the canal,
which is approximately 3§ feet. The average depth of the canal is ten feet and the average
flow rate for the experiments was from 200 to 750 cubic feet per second.

The test cable location was approximately 250 feet downstream of the gate house. The
cable was tensioned horizontally across the width of the canal about one foot under the surface,
as shown in Figure 1. Heavy steel pipe supports transferred the cable loads to the walls of the
canal. Tension was applied to the cable via a system of pulleys and a hand- operated winch.
For a given winch position the cable had essentially constant arc length. The tension then
varied slowly with mean drag force on the cabie. Tension was measured with a tension cell
connected in series between the cable and winch.
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Figure 1 - Cable Deployment

Five feet upstream of the test cable, a simple traversing mechanism was constructed to
carry a Neil Brown Instruments DRCM-2, two-axis acoustic current meter. The transducer
was located about one foot under water and was oriented so that the instantaneous velocity
was resolved into two components in the horizontal plane. The velocity was measured at two
samples per second. The absolute accuracy of the device is better than 0.1 feet per second.
The effective accuracy was less because drag forces prevented the current meter from hanging
vertically. This would cause the measured values to be as much as 5 percent less than actual.
The data shown have not been corrected for this error. It has no impact on the conclusiona
of this paper. The 58-foot long test cable is shown in Figure 2. It consisted of a 1.125 inch
rubber hose with a 0.5 inch inside diameter. Seven 0,18 inch diameter braided kevlar cables
were carried inside of the hose. Each kevlar cable had seven conductors inside of it. Three
kevlar cables were used solely as load carrying members. Each one had an 800-pound breaking
strength. Three cables were used to carry accelerometer signals and power, and one cable was

used as a spare,




Six biaxial pairs of force balance accelerometers were placed on the centerline of the cable
at locations shown in the figure. Each biaxial pair was 0.5 inches in diameter and 3 inches
long. Space was created for the kevlar cables to pass around the accelerometers at these
locations, with no change in the outside diameter of the hose. The accelerometers, tension
cell, an? current meter were the same as used in previous experiments conducted at Castine,
Maine {10},

The iiz accelerometer outputs, tension, and current data were carried via 3 multi-conductor
cable from the test cable to the gatehouse, where a Digital Equipment MINC-23 data acquisi-
tion computer was located. Fourteen data channels were digitized onto floppy disks at a data
rate of 50 Hz per channel for low velocity tests and 60 Hz per channel for high velocity tests.
A test run at 50 Hz acquired 4.8 minutes of data. A real time spectrum analyzer was used as
an aid in determining the sampling rate necessary to guarantee no loss of important data and
to prevent aliasing. Antialiasing filtars were also used.
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Figure 2 - Test Cable Construction
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Figure 3 - Measured Current Profiles
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2.2 Sheared Current Profiles

The current profiles were measured prior to response tests. The meter was traversed from
one wall to the other in steps of 4 feet. At each location four minutes of data were taken.
Mean and rms current values were determined for each location. During a vibration test, the
current meter was stationed at one reference location, ten feet from the north wall. This was
approximately the location of the maximum velocity in the shear profiles used.

The results of three different profiles are presented in this paper. They are shown in Figure
3. They are designated shear flow profile 1, 2, and 3 t(SFI"I, etc.). SFP3 was the steepest
shear with a peak flow velocity at times exceeding 4 feet per second and a minimum fow

velocity of -0.5 feet per second. The minus indicates reverse flow. SFP1 was made as close to
uniform as possible by careful positioning of the gates. SFP2 ranged from 2 feet per second
down to zero in a nearly linear profile. The flow was at all times highly turbulent. The rms
turbulence level was from 10 to 20 percent of the maximum current in the profile. The time
scale of the turbulence was up to several seconds in length. The lowest turbulence frequencies
were associated with large eddies, up to 10 feet in diameter which were carried downstream
from the gatehouse. Depending on the mean fiow speed, these eddies took many seconds to
pass the cable.

An important conclusion is that the turbulence did not alter greatly the vibration of the
cable when compared in a subjective way to other experimental results, such as Castine, Maine
{liﬂ. The turbulence does make the vibration response have a broader frequency bandwidth,
and was able to prevent pure, constant amplitude single mode lockin from occuring, even with
the nearly uniform profile, SFP1.

3 A Response Prediction Model
3.1 Background

The vortex-induced vibrations of long-tensioned cylinders in uniform flow can be predicted
reasonably well on the basis of experimental data. Examples are Sarpkaya 1979{8], Blevins
1977(1], and Griffin and Ramberg 1982{3]. A few attempts without experimental confirmation
have been made to predict the response in a sheared flow. The prediction method used by
Wang et al{14] was based on the superposition of a few lightly damped resonant modes, and
the Patrikalakis and Chryssostomidis approach(6] uses hydrodynamic coefficients measured
on oscillating cylinders in uniform fiow. Neither approach was confirmed by experiments, and
consequently are lacking in several important respects.

First, hydrodynamic modal damping is typically quite large under shear flow conditions{12].
As a consequence, mode superposition methods must include many non-resonant modes to
correctly model spatial attenuation. Second, broad band vibration response dramatically
reduces the coherence between cylinder motion and the dynamic properties of the wake directly
behind it as shown in Shargel[9]. As a consequence, hydrodynamic coefficients measured on
simusoidally cscillating cylinders are inappropriate. Third, the lift force spectra must include
significant energy at several higher order harmonics of the vortex shedding frequencies to
adequately account for the high frequency cylinder response. Fourth, in mode superposition
models, non-resonant modes are required to correctly obtain the spatial attenuation. Many
modes may be required to obtain the correct solution. If the Green’s function is available,
it gives more accurate results with less computational effort because it is equivalent to a
superposition of an infinity of modes. .

The prediction of the response of a flexible cylinder to vortex shedding may be thought of
as consisting of four major components: an excitation medel, a structural model, a damping
model, and a solution technique. All four components are addressed in the paper. A response
prediction method is proposed for the vortex-induced vibration of long, tensioned cylinders in
sheared flow, based on the Green’s function approach.

3.2 A Proposed Linear Random Vibration Model of Exciting Force

and Structural Response

The vortex shedding process excites the cable through a complex interaction, in which
the motion affects the exciting forces in a poorly understood feedback mechanism. This is




especially important under single mode lockin conditions, for which the correlation between
the vortex shedding process and the cylinder motion may be very high. However, under
sheared flow, non-lockin conditions the correlation between cylinder motion and lift forces
is very low and a simple non-feedback, random process model of the exciting forces can be
succesafully used to appraximate the correct response. This is the approach used here.

Cylinder motions in the flow are a non-linearly correlated combination of cross-flow and
in-line components. The correlation is due to a common source of excitation (the vortices}
and not primarily due to mechanical coupling in the structure. The cross-low response is
typically much greater than the in-line response. The approach taken in this research is to
compute the cross-flow response first, ignoring any influence of the in-line motion. If in-line
motion is desired, then relationships discovered by Jong and Vandiver{13] may be used to
predict it, after the cross-flow results are obtained.

Based on the preceding assumptions and arguments, a linear random vibration model
is presented to predict the cross-flow vibration response of a tensioned cylinder to vortex
shedding in a sheared Sow.

In a linear one-dimensional continuous systern, the displacement response gpectrum at a
location may be specified by the following integral equation:

L L ¥ ¥ ¥
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where
Splz,w) = the displacement response spectrum at location z
Stet (€,¢',w) = the lift force spectrum
G{z/§) = the Green’s function due to excitation at the location z = {
G*{(z/€) = conjugate of the Green’s function due to excitation

at the location z = §

The mean square value of the response displacement at a location is obtained by integrating
the displacement spectrum in the frequency domain.

Eig (e )lus = [ Snlew)do @

The Green’s function of the system includes the structural modelling information as well
as the hydrodynamic damping description. The lift force spectrum model inciudes all aspects
of the hydrodynamic exciting forces. The solution technique used is a straightforward discrete

numerical integration of equations (1) and (2).

3.3 G ¥ E Ii £ El .E Q ] !

The forced vibration of a finite cable with constant tension and uniformly distributed mass
‘n a sheared flow can be described by an equation of motion.

F*y(z,t) dylz, t) 3y*(z,t) _
m—ga TR T /Y )
where
y(z,t) = cross-flow response displacement

il

m structural mass per unit length including added mass
RQ%%Q = damping force including hydrodynamic damping force
T = tension

flz,t) = lift force per unit length due to vortex-shedding

Fixed end boundary conditions are specified at x=0,L where L is the length of the cable.

In equation (3}, f{z,t) is varying in space and time. In order to get a solution for such
conditions, the solutions to particular loadings in space and in time must be derived first. The
response of the system at x to a anit harmonic force acting at a single point { is called the




G::ee:;’at function. The extension to general loading in space is posaible using the superposition
principle.
The Green’s function, G(z/§), for the cable with damping is given by:

1 sin{k-+tk¢)z sin(k+ik¢)(L—
penlbbleslendll=t o<a<g
Glz/8) = y

1 sin{k+ik¢) € sin(k+ik¢)(L-z)
T (k+ike) sin(k-:{f@) S (f<z< L)

where
r = regponse measurement point
£ = excitation point
T = tension along the cable
k = wave number(= w/C,)
w = excitation frequency
Cp, = phase velocity of the cable(= \/:%)

The response of the cable y(z,¢} to a unit harmonic force acting at £ is thus:
y(z, 1) = G{z/E)e ™ (5)

The general forms of sin{z + iy) in equation (4) can be expressed in terms of their real and
imaginary parts. Alternative forms of the Green’s function and their derivations may be found
in Chung, 1987{2].

When the exciting frequency is the same as the natural frequency of mode n, then it is
interesting to investigate the resonant behavior of the Green’s function for two extreme cazes.
One is the case when the resonant mode, n , and the damping ratio, ¢ , have small values so
that the value of n¢ satisfies the condition:

n¢ <02 or nre=c¢kL <08 (6}

Then, the first order approximation of the Green’s function is given by:

1 sin M= gjp 2L
G(x/f) = T L "’”‘mS' & (7)
FA

which is the same result one would obtain from normal mode superposition using only the
response of the one resonant mode.

Another extrere is the case when the resonant mode number, n , has a larger value, the
excitation point, £ , and the response measurement point, z , are far from the end boundaries
of the cable, and the damping ratio, ¢, is less than 1. When these conditions are satisfied and

the following condition iz {rue
ne®»l or nag=c¢kL>r (8)
then the Green’s function is given by:

ieék(ngég_kgf‘f—'x}

&(z/2) i oensd ©)
Ig =
jeik{z~E) g—ke(z-§)
2Tk (§ <z <L)

which is the same as the Green’s function of an infinite cable, in which waves are damped out
travelling from one end to the other.

Figure 4{A) shows an harmonic exciting force at the midpoint of a string at the natural
frequency of the fifth mode. Figure 4{B) is a plot of the magnitude squared of the Green’s
function to that input when the modal damping ratio of the fifth mode is 1%. The Green’s




function is an exact solution, equivalent to summing an infinite number of gormal modes.
However, in this case, a calculation of the response of the fifth mode contribution only would
have appeared essentially the same. This response is typical of a "gshort” lightly damped cable.

For this case n¢ = 0.05{ckL = 0.057). '
Figure 4(C) is the response of the same string, excited by a unit force at the natural
9.9 and ¢kL = 9.97}. This

frequency of the 99th mode, with a modal damping of 10% (n¢ = 4
response is charac ion at the mid-point is never

teristic of an infinite cable response. Excitati : ¢
felt at the ends. To get the right answer by mode superposition would have required well in
excess of 100 modal contributions.
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Figure 4 - The Green’s Function for Three Cases of Damping and Mode Number

Figure 4(D) is for excitation at the ninth mode natural frequency with a damping of 10%
gng ;3.9 and ¢kL = 0.9%). Some vibration energy reaches the ends, but it is substantially
amped.
The critical parameter to determine whether the cable acts like infinite cable or not is the
product n¢ where n is the mode number of the highest resonantly excited mode in the system.
Three cases have been described here. In terms of this parameter they are

n ¢ n¢ nre = ¢kl
5 0.01 0.05 0.06%

9 0.10 0.9 0.9x

99 0.10 9.9 9.9x




When n¢ is less than 0.2 then it is "short” in the dynamic sense used here and single mode
resonant response will dominate the total response. Between 0.2 and 3 significant attenuation
occurs over the length of the cable, but an infinite cable response model is not adequate,
However, normal mode superposition may be used except that one may need from 2n to 3n
terms because non-resonant modal contributions are essential in the correct solution. When
n¢ exceeds 3, then, except when excited near an end, the cable can be considered to behave
dynamically as if it were infinite in length. When excited near an end, a semi-infinite model
may be used. For n¢ > 3 , mode superposition models are not very useful, because a large
number of modes are required.

Another way of thinking of the quantity n¢ is that 2n¢ is the number of modes contained
within the haif power bandwidth of mode n, for a constant tension uniform cylinder.

3.4 Hydrodynamic Damping Model

The practical, but approximate, hydrodynamic damping model used here iz developed
in detail in Reference[12]. A brief summary is presented here. At any specific location an
instantaneous drag force per unit length may be defined as the force in the direction of the
instantaneous relative fluid flow. The fluid velocity relative to the cable is the vector sum of
the free stream velocity V(z) and the negative of the local cross- flow cable velocity giz,t).
The in-line cable velocity (z,t) is assumed small and is neglected (it could be included if a
more precise estimate was required). If one assumes the drag force to be proportional to the
relative velocity squared, then the magnitude of the drag force takes the form given below.

| Folz,t) 1= épwcpn(vz +4Y) (10)
Let,
B = “;“pﬁ,CDI)

The component of the drag force in the y direction is by simple trigonometry given by

Fy(z,t) = —Bi/V? + ¢ (11)

The damping force in equation {11) is a non-linear function of y. It is helpful to find a linear
equivalent damping constant R(z) per unit length such that:

Demping force = —R(z)y (12)

An estimate can be obtained for a linear equivalent damping constant R (z) for sinusoidal
oscillations, if the requirement is imposed that the equivalent linear system dissipate the same
energy per cycle as the non-linear one. In other words, it is required that

1 T .2 1 T .2 P
R dt = BtV + g2dt i3
T/; (z)y t Tja; ¥ ¥ ( )

where T' iz one period of oscillation.

For values of §*(z,1) < Z—g—zm the linear equivalent damping takes the following appraximate
form.

R(z) = BVil+ gﬁ-’% = ~BV{z) {14)
ST gyw
where 5 4t
f1 ¥,
7:;1-&*%*%5 1.0<y<1.2

R(x) is only weakly dependent on g, and satisfactory results may be obtained by choos-
ing an average value of § for the entire cable. This allows the parameter v to be fixed for the
entire cable. For all examples shown here, 4 = 1.0. For cylinders which are excited in their
low modes, the individual modal damping ratios are of interest. Equations (11} to (14} are
still valid. However, the hydrodynamic modal damping constant, B, for mode n must be
computed as follows




L
Ran= ja R(z)¥3(z)dz (15)

For constant tension uniform cables with pinned ends the mode shapes are given by

¥n(z) = sin{"T7) (16)
Assuming a shear velocity which increases from zero linearly to a maximum value ¥,
V(z) = Voz/L (17)
and .
R{z) = vBV,z/L {18)

where 4 may be varied from 1.0 to 1.2 to account for the effect of § on R{z), and V, is the
maximum or peak velocity in the flow. This discussion will proceed by first assuming that
the damping acts over the entire cylinder. This will vield an upper bound on the modal
damping constant. Substituting the expression for R(:c{ in equation (18) into equation (15}
and conducting the integral over the entire length yields for Ry the following,

Ryq =BV, L/4 (19)

The modal damping ratio is:
Chn = Rh.a/’ %nMn (26)

where M, is the modal mass, mL/2 , and w, is the predicted natural frequency in water
including added mass effects. This reduces to

= ‘YP.;CBDV,, - 'YGI}VE(Wp/wn}

8w,m  4r*(s.g.+C,) (1)

S'i,n

where the reduced velocity Vg is defined as Vp = ;?;%. w,, is the natural frequency which most -

clogely corresponds to the peak fow velocity V, with a reduced velocity of 5. Equation (21}
may be used to estimate the hydrodynamic damping of any cable of finite length, constant
tension, and constant diameter, in a linearly varying sheared flow of the type defined in
equation (17). For the specific tests described in this paper, let

Ve = 5, C,=10 and sg.=134

then
thn = 0.067Cp (wy Jwa) (22)

The damping is independent of mode number for the peak excited mode (wp, = wa}, and
therefore ¢y = 0.067Cp - Recall the parameter ~ accounts for the increase in the damping
constant due to the cylinders own motion and varies from 1 to about 1.2. Therefore, for a
mean drag coefficient Cp = 1.0, the predicted maximum hydrodynamic damping ratio of the
highest excited mode is from 6 to 39. All lower modes are larger by the ratio w, [wn-

The expression in equation (18} for R) ., assumes that for any given mode, energy is lost
to the fluid at all points on the cable. This contradicts the idea that there are regions of the
cable where due to the coincidence of the vortex shedding frequency and a natural frequency
substantial power flows into the cable and that less hydrodynamic modal damping should be
included from such regions {Vandiver 1983/11], Wang et al 1086[14}}. For the general sheared
flow case, a more precise model of the hydrodynamic modal damping constant for ;m:de n
may be obtained by reducing the range of the integral in equation (15). If, from equation (15)
we define the maximum modal damping as,

Rammes = [ R(2)¥A(a)d (29

then Han, 28 corrected, can be expressed as

Rh,n = HRk,n‘mt

10




and
_ TR V()W) + [f, 0, V() ¥h(z)de

JEViz)¥i(z)dz

where H < 1 for all circumstances and X, is the location most favorable for a resonant condi-
tion to exist between the vortex shedding process and mode n. L, is the correlation length, or
separation distance that causes the correlation between the lift forces at two locations to drop
below a specified value. The correlation length is defined more precisely later in this paper.
For now it is sufficient to say that a portion of cylinder 2L, in length is the region into which
most of the power will flow for mode n. Outside of this region will account for the dominant
source of hydrodynamic damping for mode n.

For the linear sheared flow cases described in this paper, the correlation length coefficient,
!, , is defined by:

(24)

H

L 1
Lo 58 o el
I =N, (23)
where
L, = the correlation length
L = the cylinder length
N, = the number of modes excited by the linear sheared flow

In other words, 2L, is the distance on the cable which separates the locations at which the
nth and n+1 natural frequency coincide with the mean vortex shedding frequency. For very
long cables in a sheared flow for which N, will be very large, then the ratio of the power-in
region for each mode to total cylinder length, 2L,/ , will be very small and H = 1.
For lower values of N, the hydrodynamic modal damping ratio is obtained by estimating
the value of H numerically:
Rh 5, mas
= H ey nmas = H—" 8
Shn fk. NG 2(&!” Mn (2 )
The total damping ratio for the nth mode is the sum of hydrodynamic modal damping and
structural damping for the nth mode:

$n = San t Can (27)

3.5 Lift Force Spectrum Model

The excitation force per unit length in a sheared flow can be modelled as a spatially
distributed random excitation {Kennedy 1979[4}):

i
f(z,t) = 2pu DVHz)Cp(z, 1) (28)
where 2
Pw = water density
D = cylinder diameter

V({z) = flow velocity at z
Cr(z, tk= local, time varying lift coefficient
If we assume that the local lift coefficient Cy(z,t} is a random variable having the char-

acteristics of being zero mean, Gaussian and time stationary-ergodic, then we can completely
characterize the local lift coefficient by the space-time correlation function or its power spec-
trum. The lift force coefficient spectral model in a sheared flow should have a bandlimited
spectrum centered on the dominant local vortex shedding frequency. This local spectrum
should be correlated to that at neighboring locations by a spatial correlation function.

3.8 The Fraqueucy Dependent Part of the Lift Coefficient

At any particular location, the peak frequency of the lift force coefficient spectrum corre-
sponds to the local shedding frequency, w,{z} :

il




w,(x) = 228,V (z}/D (29)

Adopting a Gaussian description for the frequency dependent portion of the local lift force
coefficient spectrum, the functional form appears as:

g‘(w“wt)zf*bs {3{))
where
w = excitation frequency (rad/sec)
w, = local mean vortex shedding frequency (rad/sec)
b - one standard deviation of the local mean vortex shedding frequency

However, experience has shown that higher harmonics appear in the response in both de-
terministic (lockin) and random response conditions. To account for this the model used
here includes higher harmonic terms. Therefore the final form of the proposed local lift force
coefficient spectrum is proportional to:

c%(gwfw—w.)’/w _?CL,:G—(W-%,?/;(:&)? + GL‘acw{w—&n*PM{sb)’ 40 (31)

where
Cps = coefficient of the 2nd harmonic
Cps = coefficient of the 3rd harmonic
C} = mean square lift coefficient

The bandwidths of higher harmonics are assumed to increase in proportion to the center
frequency.

3.7 Correlation Length Model

Ramberg and Griffin measured wake velocity signals behind vibrating flexible cables [7]
and showed that under single mode lockin conditions the spatial cross-correlation coefficient
between any two locations in the wake approached unity, being limited only by turbulence.
However, in a sheared flow several modes can be excited simultaneously by the flow and
the correlation length should be short and confined to regions in which the vortex shedding
frequency closely corresponds to a resonant natural frequency of the cable. For the purposes
of this paper the spatial cross- correlation of the lift force spectrum is probabilistically defined
as a Caussian random process with the correlation length corresponding to the standard
deviation.

An alternative mathematical definition of the correlation length is given by Blevins {1] as
a simple decaying exponential function. That form could also be used in place of the Gaussian

one used here.

3.8 Lift Coefficient Spectrum

Combining these bandwidth and correlation length models leads to the following form of the
lift coefficient spectrum.

; c? ¢ ; o
S{;L(E,f,w} e bv%;{t'(“"‘wtlaf‘p,%gﬁ'ze'{wm?w-)afi(ﬁ)a_?,CL'SC fw o, )2 /4{38)4 _{_‘_'}

+ U K
x{erlomua i claza_{wzw‘.z’;am)* 5 Opge WA Ly

xe~E=E P10 o sqniG(z/6)G (2/€)] (32)




where

C?! = mean square lift force coefficient

w, = local mean vortex shedding frequency at z = §

w, = local mean vortex shedding frequency at z = ¢

b = one standard deviation of the local mean vortex shedding frequency

Cra = coefficient of the 2nd harmonic
Crs = coefficient of the 3rd harmonic .
1, =L./L = coefficient determining the spatial correlation between { and ¢

The bandwidth of the excitation spectrum may depend on the turbulence of incident flow or
it may depend on the motion of the cylinder and unsteady fluctuations in the vortex formation
process. In a very low turbulence flow the lift force bandwidth on a stationary cylinder is very
narrow. If the turbulence level is high {as it was at Lawrence) then we may expect the
excitation bandwidth to depend on it, as estimated below. If one standard deviation of the
local mean flow velocity due to turbulence is AVim,, then the standard deviation of the local
mean vortex shedding frequency in the lift force spectrum, b is given by:

b= 278 AV, /D = Awrme {33)

For the Lawrence experiments the turbulence was 10 to 20% of the maximum current in the
profile, and therefore dominated the bandwidth estimate.

Given the lift coefficient spectrum as defined in equation (32) the lift force spectrum can
he written as:

Sf;!‘a (5; gfw) = [‘;‘Pwvg(f)p}a[épwvz(ft)Discg(f: £'$w) (34)
where

Sy, Iy (€, € ,w)= lift force spectrum

V(&) = flow velocity at z = £
1463 — flow velocity at z = &
Po = water density

D = eylinder diameter

Sc, (6,6 ,w) = lift force coefficient spectrum

This model is used to predict the response observed in the Lawrence experiments.

4 Comparison of Predicted and Measured Response

The dynamic response characteristics of the test cable in sheared flows showed strong
dependence on the velocity profile and the tension of the test cable. The tensions used in the
prediction of response was the mean tension measured by the tension cell for a fixed position
of the winch. Three different velocity profiles were emphasized in this research. They are
shown in Figure 3 and are designated sheared flow profile 1, 2, and 3 {(SFP1, etc.). For each
sheared flow case, response with high and low tension was evaluated. The description for each
test condition is summarized in Table 1. In the table each test condition is revealed by a
number letter combination. For example, Test {1-H) represents the test carried out under the
SFP1 profile and high tension, and Test (2-L) represents the test carried out under the SFP2
profile and low tension.

A few examples from this data set have been selected for this paper. The details of several
others may be found in Reference 2].

4.1 Important Non-dimensional Parameters

The Reynolds numbers for all test conditions were in the subcritical region so that differ-
ences in Reynolds numbers between tests did not make significant differences in the dynamic
response characteristics of the test cable. Reynolds numbers for each test are given in Table
2.
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Table 1: Summary of the Experimental Test Conditions

Teat condition | Teat (1-H) | Test (1-L) | Test (2-H) | Teat (2-L) | Test (3-H) ' Test (3-L)
Sheared Almost Almost Slightly Slightly Highly Highly
flow Unpiform | Uniform | Sheared Sheared Sheared Shearsd
profile SFP1 SFP1 SFP2 SFP2 SFP3 SFP3
Flow velocity
(ft/0ec)
min. 1.0 1.0 1] 0 -0.5 -0.5
max. 1.8 18 2.0 2.0 36 38
Vortex shedding
frequency (Hz)”
min. 18 1.8 0 0 0 4]
_nax. 29 2.9 38 38 8.5 8.5
Tenaion
(Lbs) 318 9 349 82 344 145
1st natural
frequency {Hz)
in air 1.16 0.84 1.32 0.51 1.21 0.78
in water"® 0.88 0.48 0.92 0.38 0.91 0.59

+Vortex shedding frequencies were calculated from equ
ssAn sdded mass cosfficient of 1.0 was used in the calc

ation: [, = 5;V/ D, where S; = 0.17.
ulation of the fundamental natural frequency

in water.
Table 2: Dimensionless Parameters
[ “Test condition | Test (1-H) | Test {1-L) | Test (2-H) | Test (2-L) | Test (3-H) | Test (3-L)
| Flow profile SFP1 SFP1 SFpP2 SFP2 SFP3 SFP3
Tension (Ihe) 218 28 349 62 344 145
Max. R, (10%) 1.4 14 1.7 1.7 3.1 3.1
Max. mode
number 3.3 8.0 39 9.5 7.1 110
f c.m/ f 1
Min. mode
number 2.0 38 i 1 1 1
fomin/ 2

The specific gravity of the test cable was 1.34. The test cable is a relatively low density
structure. The lockin range expressed in reduced velocity terms is much broader for low density
cylinders than for high density ones as discussed in Vandiver [11}. The cross-flow lockin of
this test cable in a uniform flow would be expected to occur in the range of 3.5 < Y <o

L

The most significant dimensionless parameter variations in these tests were in the maxi-
mum responding mode number, the number of modes participating in the response, and the
damping. The cable tension determined the variation in modal separation or inversely the
modal density. For a given modal density the amount of shear in the flow speed determined
the number of excited modes and the frequency of the highest responding mode. The num-
ber of excited modes and the highest excited mode number are far more useful and provide
more physical insight to the importance of the shear profile, than does the often used shear
parameter. The damping had very large variation due to hydrodynamic effects.

For the six cases described here the values of nondimensional parameters for the test con-
ditions are summarized in Table 2. The effective damping in water was estimated by two
separate means, one experimental and one analytical. These are described in some detail
in Reference {12]. The experimental determination was obtained by striking the cable im-
pulsively with a pole and measuring the decay of the resulting pulse as it passed successive
accelerometers. In that test the cable was also vibrating in response to the approximate uni-
form profile. The analytical estimation of hydrodynamic damping was obtained by assuming

a drag coefficient and then calculating the damping force on the cable as presented in Section
3.4.
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In air transient decay tests of the first few modes of the cable were conducted. For the
tension ranges later used in water the structural damping was about 0.3%, which is negligible
compared to the hydrodynamic losses experienced by the cable in sheared flow.

4.2 Implementation of the Response Prediction Model

A computer program was written to implement the response prediction method described
earlier. Damping estimates were based on the hydrodynamic damping model presented earlier.
The lift force spectrum was calculated at numerous discrete points in space and frequency.
Using the estimated damping values and the lift force spectrum model, the displacement
response spectrum at location z was obtained numerically:

L IA ; , .
Spp(z.wn) = [Gdefu d'Spes, (6, €, )G 2/ O)G" (2/€)

J AP .. NP
= (;)}Zzsfgfea (zf.?suﬁ)a(z/’)(; (x/j) (35)
LA =3 S )
where
Sw(z,wn) = the displacement response spectrum
at location z and w = wy
Aw = resolution in frequency domain
n, = number of segments in the span L
Lin, resolution in space

i

lift force spectrum
o & f o ik -
at§=% £ =2 andw=w ‘
the Green’s function at z excited at § = &
conjugate of the Green’s function at z excited at f’ = f;l‘.-

S.fdgn ('.’ I wk)

i

G(=/§)
G*(z/€)

H

The acceleration spectrum is calculated from the displacement spectrum as shown below.
iz, we) = wiySyy(z,wi) (36)

In order to confirm the validity of the present response prediction model for the non-
lockin case, sample runs were made for four different test conditions and were compared with
the experimental results. The values of input parameters used to determine hydrodynamic
damping and hydrodynamic lift force are summarized in Table 3. Linear sheared flow profiles
which closely approximated the experimental profiles were nsed in the prediction. Cp, C,,
and Cy were chosen to give good agreement with Test(2-H) and then kept at those values
for all other cases. Resolution in space was 0.02L and resolution in frequency was 0.2Hz in
the numerical calculation for all test conditions. All of the important ocutputs including the
predicted and measured rms displacement are summarized in Table 4.

The measured acceleration spectra were averaged 14 times with record lengths of 1024
data points. The sampling frequencies were 50 Hz for Test(2-H) and Test(2-L)and 60 Hz for
Test{3-H} and Test{3-L}.

A comparison between predicted and measured response for two extreme cases will be
shown. One is the high tension and low shear case (Test(2-H)) and the other is the low
tension and high shear case(Test(3-L}). ) ) )

The results for Test (2-H)(the slightly sheared flow, SFP2, and high te;usmn} are si}ownl in
Figures 5 to Figure 8. The predicted acceleration spectra at the two locations, z = L/8 (high
flow velocity region) and z = 13L/18 (low flow region}, in Figure 5 do not show much spatxg.l
attenuation of the response. As discussed in section 3.3, n¢, is an important parametier in
determining the cable’s behavior. When n¢, is less than 0.2, single mode resonant response
may dominate the total response. For Test (2-H) ng, = 0.18, and is therefore on the borderiine
in behavior. In this case the response was not lockin. The predmted.reault shows quite good
agreement with the experimental results as shown in Figure 6 to Figure 8. Figure 8 shows
the rms displacement response as a cumulative integral of the spectrum from hag}x to low
frequency. This reverse integration was done intentionally so as not to have to pick & low
frequency cut off as a point to begin the integration.




Table 3: Summary of the model input parameters

Test condition Test (2-H) | Test (2-L) | Test (3-H) | Test (3-L)
Flow profile SFP2 SFP2 SFP3 SFP3
Flow velocity(ft/sec)
min. 0 0 g 0
max. 2.00 2.0 3.5 3.5
One standard deviation
of turbulence( ft/sec) 0.25 0.25 0.4 0.4
Tension (lbs) 349 62 344 145
Structural damping ratio 0.003 0.003 0.003 0.003
Drag force coeff. Cp 1.0 1.0 1.0 1.0
4t 1.0 1.0 1.0 1.0
Added maass coeff. C, 1.0 1.0 1.0 1.0
Correlation length coeff, IJ* 0.125 0.08 0.07 0.08
 Mean square lift coeff. C} 831 631 631 631
Coefl. of higher harmonics
Crs 0.1 0.04 0.04 0.04
Crs 0.15 0.06 0.06 0.06
Cra 0.0025 0.001 0.001 0.001
Cus 0.025 0.01 0.01 0.01

* .~ is the parameter which accounts for the effect of the response amplitude on the hydrody-
namic damping. v = 1 neglecta the response amplitude effect on the hydrodynamic damping.

This gives a lower bound estimate of damping for any assumed Cp.

** [, = ;;i-:- for each case

Table 4: Summary of the Predicted and Measured Response

Test condition Test (2-H) | Test (2-L) | Test (3-H) @ Test (3-L)
Flow profile SFP2 SFP2 SFP3 SFP3
Flow velocity(ft/see)
min. 0 0 0 0
max. 2.00 2.0 3.5 3.5
Tension (lbs) 349 62 344 145
Calculated first
natural freq.(Hz) 0.92 0.39 0.91 0.59
Standard deviation of
excitation spectrum(H z} 1.07 1.07 1.71 1.71
Peak mode number
excited by the flow, n 4 9 7 11
Estimated damping ratio
for the peak mode, ¢, 0.046 0.056 0.058 0.064
i 0.18 0.50 0.41 0.70
Rms displ. at z = L/8{in}
predicted 0.39 0.55 0.62 0.52
measured’ 0.57 0.43 0.51 6.50
Rms displ. at z = 13L/16(in)
predicted 0.54 0.38 0.37 0.34
measured’ 0.53 0.46 0.39 0.41

* Low frequency cut-off for integration of acceleration spectra to get rms dispacement was 1.0

Hz.
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Figure 5 - Predicted Acceleration Spectra at L/8 and 13L/16 for
Test{2-H)(slightly sheared fiow, SFP2, and T=349 lbs}
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In Test (2-H)} only 4 modes {1 through 4} were excited by the first harmonic of the lift
force spectrum. The predicted damping for the first to the fourth modes was 24%, 13%, 6.8%,

i

frequency( H z)
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and 4.6%. for Test{2-H)(slightly sheared flow, SFP2, and T=349 lbs)

The results for Test (3-L){the highly sheared flow, SFP3, and low tension)are shown in
Figure 9 to Figure 12. The predicted acceleration spectra at the two locations, z = L/8 and
z = 13L/16, as shown in Figure ¥, reveal a large spatial attenuation of response. The estimated
value of ng, was 0.7, For values of n¢, between 0.2 and 3, significant spatial attenuation occurs
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Figure 6 - Predicted and Measured Acceleration Spectra at [./8
for Test(2-H){slightly sheared flow, SFP2, and T=349 lbs)




over the length of the cable. The predicted results for test (3-L do not match as well as for
test (2-H). The measured spectra are smoother and lack the predicted peaks and valleys. This
is most likely due to large space and time variations in the fow velocity during the 4 minute
data acquisition period. The prediction modet assumed a stationary- ergodic excitation. The
large actual variations in flow speed would tend to smear out the response spectrum measured
at any one location. These non-stationary variations in flow conditions were worst in the
highly sheared case.
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Figure 7 - Predicted and Measured Acceleration Spectra at 13L/16
for Test(2-H)(slightly sheared flow, SFP2, and T=349 ibs)
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Figure 8 - Predicted and Measured Integrated Displacement Spectra at L/8 and
13L/16 for Test{2-H) (slightly sheared flow, SFP2, and T=349 ibs)
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Figare 9 - Predicted Acceleration Spectra at L/8 and 13L/16 for Test(3-L)
(highly sheared flow, SFP3, and T=145 lbs)
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Figure 12 - Predicted and Measured Integrated Displacement spectra at L/8
and 13L/16 for Test{3-L){highly sheared flow, SFP3, and T=145 lbs}
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4.3 Parametric Study in C?, Cp, AV,ms, L. and AV,

A parametric study was undertaken to investigate the sensitivity of the predicted response
due to variation in the mean square lift coefficient, C} , drag coefficient, Cp, variation in the
standard deviation of turbulence, AV, , spatial correlation length coefficient, I, , and varia-
tion in the maximum flow velocity of the sheared flow profile, V... Parametric studies were
made for Test (3-L){highly sheared flow, SFP3, and low tension) by varying one parameter
and keeping the other parameters fixed. The values of input parameters used to carry out the
sensitivity analysis, and the values of predicted rms displacement at x = L/8 are summarized
in Table 5. More detail may be found in Reference [2].

Table 5: Prediction Model Sensitivity to Various Parameters

Input
parameter | C]  yo, | Cp  Yrms | BVED Yoms L Yrma V_,;;: Yrma
1 0.158 019! 0.5 067 02 046]0025 041] 3.0 0.3
2 318 037 [1.0] 052 [9.4] 0.52 | [0.05] 0.52 (3.5] 0.52
3 [631]* 052 20 041 06 062 01 0591 40 0.59

« The values in | | represent the values used in the prediction which came closest to the
experimental observations.
#% Yum, 18 in inch scale.
%% AV, is in ft/sec scale
% % 4% Vi, is in ft/sec scale

One additional sensitivity analysis emphasizing the higher order lift terms is best illustrated
by Figure 13 which shows the predicted response with and without the higher order lift
terms. Although small, the higher harmonics are important for acceleration prediction, such
as for cables supporting acoustic transducers. The higher harmonics are not important in rms
displacement response prediction.
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Figure 13 - Predicted Acceleration Spectra at L/8 for Test(3-L)
With and Without the Higher Order Lift Terms
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5 Summary and Conclusions

Field experiments were conducted to investigate the dynamic response characteristics of
a tensioned cable in sheared flows. The tests were conducted under realistic field conditions
‘::;‘l: a length to diameter ratio of approximately 600. Uniform to highly sheared flows were

ieved.

A response prediction method has been proposed for the non- lockin, vortex-induced vi-
bration of a tensioned cylinder in sheared flow based on a Green’s function approach. Hydro-
dynamic damping and fift force excitation models have been proposed based on linear random
vibration theory. Response predictions have been compared to experimental observations.

Some of the more important findings are:

1. With the exception of pure, single mode lockin, hydrodynamic modal damping plays
an important role in determining Sow-induced vibration response. In these experiments
hydrodynamic damping was 10 to 100 times larger than structural damping. For a given
shear, the highest excited modes have the least damping.

2. The product ng,, determines whether the cylinder behaves like a infinite cable or not.
When this parameter exceeds 3, then infinite length behavior takes over. When it is
less than 0.2, single modes may dominate the response. Though quantitative differences
will exist, this conclusion is extendible to cylinders with bending stiffness and situations
with spatially varying tension.

3. The mode superposition method requires many modes when n¢, exceeds about 0.2, ’In
such cases non-resonant modal contributions are substantial and account for the spatial

attenuation.

4. The number of modes excited by the shear and the highest excited mode are more useful
as dimensionless parameters than shear steepness, or the shear parameter,

5.1 Suggestions for Further Research

As an immediate extension of this work, it is suggested that the response prediction model
be extended to cylindrical structures other than uniform cables with constant tension. Non
uniform tension, diameter, and bending stiffness need all be considered. Correlation length
models need further development and more research needs to be conducted to understand
hydrodynamic damping mechanisms. The higher order lift coefficients used here were chosen
to give good agreement between predicted and observed response. More research needs to be
conducted to quantify their values.
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