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Abstract

A method is proposed for the prediction of
the flow induced vibration regponse of flexible
cylinders such ms cables, pipes, and risers, in a
sheared flow. The significance of material and
bydrodynamic scurces of damping is discussed. The
reduced damping or response parameter plays s key
role in response prediction. However, the
dependence of the response parameter and therefore
the response amplitude on the ratio of cylinder
mags per unit length to the displaced fiuid mass
Per unit length ig shown to be widely
misunderstood. Under lockin conditions, damping is
important in determining response amplitude, but
cylinder mass per unit length is not.

Irtroduction

Flexible cylinders, such as wcables, drill
pipe, and marine risers, often exhibit an harmoni c
flow induced vibration response known as lockin.
Under uniform flow conditions, lockin hes been
extensively studied and empirical responsgs
prediction techniques are often adequate.

However, real ocean applications often require
response prediction under non-uniform {sheared)
flow conditions. Very long cylinders with closely
spaced natursl frequencias rarely exhibit lockin
behavier and frequently behave as infinite strings
{1}. For shorter eylinders, with well separated
natural freguencies, lockin with one mods is
pogsible, even in the presence of shear. However,
in such cases, response amplitude is very
difficult to prediet and 1% is often difficult to
deternine which mode, if any, will deominate %he
response. In this peper, a method Por predieting
loekin in & sheared flow is propoged. The method
makes extensive use of the conceprt of the response
rarameier or reduced damping, as it is sometimes
called.

A very common uisconception regarding the
response parameter is pointed out, The TesponEes
parameter is shown to be primsrily a function of
damping and is specifically not a funotion of the
cylinder mass per unit length.

Heferences and figure

Normal Mode Model of Lockin Vibrations

A pipe or cable under temsion has, from an
aralytical view, an infinity of naturel modes.
When the cylinder is deployed with its
longitudinal axis norssl to an incident uniform
flow, vibration is caused by the shedding of
vortices in the wake of the ecylinder. The voriex
shedding process generates both fluetuating 114
end dreg forces on the cylinder. Under the
correct circumstances, described extensively in
the litersture, (2,3} a phenomenz known as lockin
may oceeur. Lockin ias charscterized by the
synchronization of the wake with either the
crose-flow (1ift direction) oscillatione or with
the in-line {(drag direction) vibrations. This
paper focuses on cross-flow lockin only, in which
one croas flow mode dominates the response. At
lockin in & uniform flow the 1ift forces are
coherent over the entire iength of the cylinder.
A normal mode solution to the pertial differential
equation of motion may be obtained, and ie briefly
reviewsed below.

Consider a beam or gtring under tension with
fized ends se defined in Figure 1. Let the
vortex-induced cross-flow displacement be given by

Ia ey o

i

iz, t;

where the %,{x} sre the mode shapes and the g, {t}
sre the modhl smplitudes. Uging the method o
rnoreal mode superposition, and agguning
insigrificant damping related intermedal coupling,
& set of independsnt equetions of motion are
cbtained, one for each mode. These equations ars
of the form:

)

This equation is sizply that of & linear, single
degree of fresdon nags-epring-dashpet systen
excited by a force ﬁi{tj¥ known as the modsl
exciting force for mide 1. There existe ome such
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equivalent cseillator for each mode of interest,

Mi’ k., and XK, are known respectively as the modal .

ziss, damping and stiffness. The ratic of K, to L {11:

vields the undamped netural frequency for the

mode. i

ﬁLi;*f = 2{3;“ 123
> i
,u}' = ‘fKif'Hi {33
- Thersfore, the responss megnitude is

%i and ﬁi are given by the follewing eguations: ol = iiéi 1 -
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where mi{x) and r(x) are the mags per unit length

and equivalent linear demping cosfficlent per unit
length. m(x) ineludes the added msss of fluid and
r(%) has units of foree per unit veloeity per unit

length.
The damping ratic for mede i 1s glven by
R

i

= (6

i Tw, M, (el
1 4

If one specifies an harmonic input and sssumes an
harmenic output of the following forms

&7

#
P
]

N, (£}
i

(3)

then & solution for the magnitude of the response
per unit input force and the phase between the
force and the response may be directly obteined.

iq /
gL 1/K,
1 P fot ) m i
ENii E EHiew)é I , - 12 (3}
(1) 20 =7
W T4
i
2~.a;,w
3 = tan { T {10}
(1- === 3

hg(&; is known as the frequency'functicr or the
responee amplitude cperator {(RAC).

4t resonmance, the frequsney of the external

cx&i tation is egual to one of the neiural

frequenciss of the system, indicaled here as o,
Tf the corresponding medel damping ratic is exall
then the response of this mede will dowlinate the
response of all other non-resonant medes. Thig is
the case under cross~-flow lockin conditions in a
unifors flow. Therefors, 1t is appropriate to
model the cross-flow, resenant lockin response in
terms of the normal mode equivelent single degree
of freedom syctem reviewed gbove.

4% resonance, the mugnitude and phase of the
regponge reduce Lo

The term Ni/K is the siatic deflection of the
oscillator in response to a constant force N, and
the ters 1/27, is the dynamic amplification Factor
due teo the rsSonance. Invoking the definition of
the damping reaiio, Gy from Equation &, this
response expression fan be rewritten as:

H =n L 1
g R {14)

This expression will be of considerable use in the
next section, on the interpretation of the
response parameter. Henceforth, all discussion
will pertain to the response of a single mode.

Understanding the Response Parametler, SG =z Ju
21

Due to & natursl evelution in the
understanding of the factors which determine
lockin response behaviocr, over the years this
eritical parameter has been expressed in many
forms, reviewed below.

Response parameter:

2
g = ] T =
55 gs/u 2”St ks £15)
Structurel damping ratio:
65 Ri
53 T T e
: Fii
Maggs ratios
r-az
R (17
g7 °5
143 + m
Reduced damping!
Zmés 4?mi$
k= = 1148

-
i)

La 1s the damping ratic due to structursl
dissipation of energy only, and dees not include
hydrodynamic sources of damping. is the
asgociated legarithmic decrement. 3 is
proportioral %o the r&?*c of the displaced fluild
magse per unit length “/4 to the mass {including

sdded mase) per unit length of the ecylinder, m.
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For cylinders that do not have s constant masa
per unit lengih, the m in these sequations is
replaced with an equivalent uniform mass per unit
length m ., n iz ths equivalent constant mass per
unit length wBich would yield the same modal mass
from Equation 4 as the sctual variable mass per

unit length m{x}. Therefore
S
2{;“.: XigX
moow T s 1203
& i >
Yoo ixidx

For the remainder of this peaper, & constant mass
per unit length w shall be assumed, to simplify
the analysis.

D is the eylinder diameter, assumed constant,
and S, is the Strouhal rumber given by

£.0
S 0= - t

.
< U

b
ot

where £ ia the vortex shedding frequency and U is
the fref stream fluid velocity. At leckin the
natural frequency and the vortex shedding
frequency are sssumed to be equal.

2= (223
8

& i
Over many years the variety of these evolved forms
has led to confusion and misinterpretation of the
significance of the various terms which form the
response parameler SG’

=W

e 27?StU,/D

The most serious misinterpretation ia the
implieation that lockin resporise amplitude depends
o the mess ratio, u. It has been generally
believed that very dense ¢ylinders respond with
lower amplitudes than low density ones. This is
not trus. It is in fact dependent on fluid
exciting forces and structural damping (not
damping ratic). The mass per unit length of the
cylinder is only important in determining the
ratural frequency. The validity of these
statements can bs demonstrated by eimply drawing
upor Gefinitions, as shown below.

From Fquations 18 and &

47m

Il

g2 5 2% (23

Using the definitions of modal nass, and
effsctive mess per unit length from Fguaticons 4
and 2C ylelds,
{243

:,;l .
For the case of constant damping constant per unit
length, r{x}=r

&

If k. is not m function of m{x) then from Bguation

15 neither is SG'

= ore 2 \
SG = 2 St kﬁ L%
4(25,2@
5. = o {28}
G 2z
S S F T ixidx

R, is the equivalent, linear, structural modal
damping. The actual source of dawping may not in

fael be linear., For most interesting vibration
cages the dampirg is low and for any specific
steady state response appiitude an equivalent
linear damping iz an acceptable approximation.

There is experimentsl confirmation that S,
and henee the predicted respense do not depend”
specifically on the mass ratioc but on the ratic
“g/k. A8 shown, this is because in taking this
ratic the dependence on mass per unit Iength
cancels out. Griffin in reference (7) presents a
plot of response amplitude, 2Y/D, versus reduced
velocity V. =U/f D where £ 35 the natural
frequency,” Thil figure 18 reproduced in figure 4.

Two different cases are shown, one in air and
ene in water. PFor both the ratio ¢ /Hig
approximately constant, However, the damping
ratics and therefore the pees ratios are different
by an order of magnitude. Bothelo has also
obser?e§ this apparent lack of specific dependence
on u (8.

Both Griffin and Boielho have pointed out
ancther interesting fact, which can be sesn in
Figure 4. The in water case has 8 lerger damping
ratio, by & factor of 10, and therefore it has a
much brosder handwidih, than the in a8ir case with
lower damping. The halfpower bandwidth for a
linear csecillator is equal to 27, ., Thus one
would expeet to see a wider region of large
amplitude response in a figure such as 4, for
those cylinders with larger damping ratios. This
author is of the opinien that the congequence of a
higher damping retioc ie to make lockin vibration
of the cylinder less sensitive to local variations
in flow velocity (hence reduced velocity) and
therefore more tolersnt of shear. In other words,
two geometrically similar cables with the same
reduced damping but different damping ratios will
respord differently to a shear. The one with the
higher damping ratioc will likely experience lockin
over & greater portion of its length,

For most engineers 5. hes 1ittle physical
mearing. In the next sectlon, an attempt is gade
to clarify it,

An Interpretation of 5., The Regvnense Farapeter
T

¥o one denies its importance but & common
senpe interpretation is needed for g - Tc develop
one requires s statement of the equ&%ian of motion
for the normal mede exeited at regenance during
lockin. A% lockin the 1ift force per unit length
ir phase with the crose-flow velocity of the
cylirder can be expressed as

T F

1z ;LZE}{L‘ PR

[y &

Fix,t} =
L g
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The wodal exciting force is given by
HofEr o= £ix,0)¥ ixidx
1 i

(=4
[$5]
o

fe3
J

L

F2outnl

5 w. T
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< (x}?iix}dxe* i

L

(29}

Py
[

UYsing the expression in Fguation 29 for the modal
exciting force, the pon-linear feedback mechanisme
which control response amplitude have been
replaced with an egquivalent linear exciting foree
in phase with the veloeity of the cylinder.
Impiicit in this expression are the following
assunptions:

i. The 1ift coefficient C.{x) must be chosen to
yvield the response amplitude which would be
obgerved in sn experiment and can be
estimated from compiled data of SG versus
responge amplltude, Figure 2.

ii. Lockin exisis over the entire ¢ylinder

length.

iii. The medel dasmping on the left hand side

arises from non-hydrodynamic socurces only.

This is because C;(x) is & 1ift coefficient

which reflects the net fliuid dynamic force on

the cylinder. It is in fact the difference
betwsen 1ift force in phase with the velcclity
of the cylinder due to circulation, snd fluid
resistive forces dues to pressure drag and
friction drag opposing the cross-flow
veloeity of the cylinder. In an experimental
genge the net 1ift force is the only
measurable guantity snd is therefore used
here. Under shear conditions, lockin over =z
portion of the length is likely. Outside of
the lockin region fluid drag foreces will have
to be estimated and used to modify the
estimate of R,. This will be addressed in
the section oft response predicton in shearsd
fiow.

iv., ¥iuid forees in phase with the displacement

and acceleraticn alsc exist. They are

assuned to affect only the fluld added nass
of the cylinder and sre included in the

expreasion for the modal =ass, Mi'

Let the integral shown below be defined as

P . where the u refers to the uniform flow case,

L
po= 7

) 130
il -~ is

{wy ¥ {w;dx
i

Recalling Equation 14, an expression for the modal
responee asmplitude at rescnent lockin can be found

Frowm BEquaticn 1 the response megnitude of the
entire cylinder tc the one regonant mode is

(&)
b

fud o=lp 1Y oran
FiRi =y FasY;

which, when expressed as a double ampiltude in
diameters peak to pesk, can he written asz

2! ix%}
EIEE'S! i N
S {34}
B
= {35}
X
ii
Recalling that
wiD
1o (73
S ows, 23

L

and the expression for S, in Equation 26, leads
to:

o » (3]

The maximum response occurs &t the maximum value
of the mode shape and therefore

2y 2O,
max Wi, max
2] Lo,
SG i %i {x}dx
[

Therefore, S, is & dimensionless group which
is &n integral part of the expression one finds
for & prediction of response amplitude, and
therefore an experimentally observed dependence of
response on 5, should not be surprising.

Griffin (0,4) has complled and published data
relating 8. to observed response. These data are
given in Figure 2 and represent the results of
peny different types of experimenis, lncluding
cantilevers, spring mcunted cylinders, piveted
eylinders and cableg., The horiszontel axis is &

g
G
and the vertical axis is
1
5 . 3
2y 4._‘4
i
A i - 4
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where z aq (%) dx i. The modal reaponse amplitude for sach muet be
Lo the same and therefore from Bquatien 14
e (39}

i
W b

el
ATy (xpdx
a giring or a beam with pinned ends
tension have mode shapes which are

For example,
and constant

given by
s . LATX
?izxz = sin {(Fo7 {40y
and I1 = 374 {41}

Other values for I, corresponding to different
nede shapes are given in Refarence 4,88 15 a table
identifying the source of the data usged in Figure

.

The factor I Tf‘/éim was used in an attempt
to reduce the scafter in %fatting response data
for meny different iypes of structurss versus S..
That this was the sppropriate factor ic use to
accomodate various mode shapes was based on the
assuaption that the wake oscillator model
correctly predicts response. Implicit in the wake
cscillator model are perticular assumpticns
regarding the spatial variation of C (x), f7his
author ie of the opinion that such mddels are only
approximetions and that much of the secatter in the
date is due to the fact that the corrsction factor
has substantial error for some types of mode
shapes,

It should sleoc be noted that only very little
of the data shown in Figure 2 is derived from
cebles end beams under tension such as risers and
casing stringe, which have esgentially ginusoidal
zode shepes. In the last few years a large amount
of experimental data have been zccumuleted on such
cylinders, and should be compiled in & separate

lot of 2
Factore aul¥as 1175 S0 ¥ithout correction
imax
A Proposed Eguivalent Response Farameter for
Sheared Flow: 8

—GE

Under sheared flow conditions lockin Bay
cecur over & limited portion of the eylinder
defined by the range X, to X,. For sections of
the cylinder outside o} this“rarge Iockin does not
cccur and energy iz lest due to hydrodynamic
damping. In the analysis to follow 1t is sssumed
that only cne mode has significant regponse, and
even though exciting forces do exist outside of
the lockin region they are not st ihe natural
frequency and cause inaignificant response, The
method proposed is intended to be used te evaluate
several possible vibration modes, ane at a time,
to determine which if any is likely to dominate
the response.

A substential detatase exists, which
tabulstes observed responss versus the response
rarameter, SG’ but for uniform Plows only. The
approach propessd here iakes advantage of this
existing databsse by providing an estimate of the
response parameter of an squivalent cylinder in =
uniforn fiow, whick would behave the same as the
cylinder in the sheared flow. In order to be
equivalent, both the cylinder in the sheared Tlow
end bthe equivalent cylinder in the uniforz flow
mugt have the following charscteriptics.

where the subscripts e and s refer to the

equivalent and sheared cases respectively.
ii. The sxciting force over the region X, to X,
mist be the same for both cases. Outside 5F
this region the forces contributing to lockin
are assumed 1o be zerc for the sheared cage,
and appropriate %o that of g fully locked in
eylinder in the equivelent case. The
equivaient cylinder experiences lockin over
its entire length and therefore additional
power is fed into the resonant mods cutside
of the region X, %5 x,. In order for the
response amplitude to“stay constant the modal
demping in the equivelent cylinder must be
inereased, so as to dissipate the grester
injected power.

Zolving for the eguivalent damping

= (43)

The
directly

equivalent response parameter is obtained
from Equation 26.

GE < 5

vhere

{46)

r
g s

ie i M,
L1

and m_ ig defined in Equstion 20.
oblain & detailed expression of R

It remains to
in terms of

48

By, and Nia/xis' From Equation and item {ii)
a%ove,'
! B
N, /N, = ER. 147
Sie’ Vie ¥
s
:
and from Equation %
B, = [ {r (x} + ¢ (x03¥% " Ladu 18]
is & < *
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whers rsix} and 7, {x) are the structural and
hydrodynamic damy?ng constants per unlt length,

respectively. For the sake of example, let r {2}
and r, (x) be constant everywhere except in the
region x, to %, whare r, {x; the hydrodymanie
damping ls required to ge zero. ig leads to
: boa
4 = (p byr oyl ¥ Axiax
18 =3 ”13 3
X -
R T £33
- 1
i
Perhaps the most convenient form in which to
express S g 18 in terms of the Sﬁ for the sctusl
eylinder %n a unifers flow.
Therefore from Fouatioms 26, 43, and 44
Rie Eau Ris
= g B e {503
e = o ® a0 P R, ’
is & i

whers the subscript u has been added to clarifly
which quantities come from a uniform flow case end

which are due %o the sheared conditions. This
expression reduces to x,
ST Tixydx
PJ r rH X, i
" __‘_“r 2 3 £ (513
Ssp TEF VY YOTT Sy ot

g = 3

Both the quantity in brackets and the ratio Pu/Ps
zuet always be greaster than or equal to cone.

Therefore S, is alwsys greater than or equal to
SGu’ Hote that in the limit as the sheared flow
bécomes uniform, SGE squals SGu' as exXpected.

To proceed farther requires knowledge of
cLéx}, the 11ift coefficient. As an instructive
e¥ample, but admittedly without experimental
justifications, let CL(x) be proporticnal to the
zode shape ?i(x).

= ks (52}
CL(X) Cr i(x) }
Then the expression for Pu/Pa in Equation 47
gimplifies greatly and
7 ?.2(x}dx
roon b r,
S = [+ =5 = - = 8, (53)
GE . x2 5 rg G
S SRR E'3 -+
X i

Continuing the exasmple, assume that the second
zode of & cable with the mode shape

SEX

N 2 SR
¥2gx} = Rl

iz execited over cne fourth of ite lengih; x3=G to
& A e el T
szLfé, as shown in Figure 3. In that case,

If the diptributed demping per unit length has
equal hydrodynamic snd meterisl componentis, then
S&E = 7SSu (58}
in this perticulsr example, the cylinder in s
sheared flow, with the top quarter of its length

" fs
H3 ()

experiencing lockln in the second mode, would
respend at the same amplitude as the same cylindsr
in a uniform flow but with a responee parsmeter
seven fimes as great.

Cenclusicons and Recommendetions

If only one mode hag & natural frequeney
excitable by a sheared flow, then & worst cese
prediction is given by the method described abeve.
Howsver, if two or more modes are potential
candidates for resorant lockin excitation then the
sguivalent response parapeter for each shouid be
computed. The mode with the lowest SGE is the
most likely lockin candidete. If two or mere
podes have low SﬂE values, multimodel non-lockin
response or bea%gng between modes may be cobserved.

The accurste responss prediction of flexible
cylinders in shearsd flows regquires much more
experimental date. Areas of particular weainess
are: i. the current stete of knowledge of the
hydrodynamic damping on the non-locked in reglone
of 8 cylinder; ii. the form of C)(x} for both
uniform end sheared cases; iii. tThe means of
estinating the extent of locked~in regions in
sheared flows; iv. the dependence of the locked~
in region on damping ratio and bandwidth..

tne model for predicting the locked~in reglon
hag been offered in the literature (5,8).
Experimental observation is needed,

Nomepelature

Gy (2} 1ift coefficient

D eylinder diameter

vortex shedding frequency {(Hz)
frequency response function or RAC
s mode shape correction factor

Ki modal stiffness

Xy reduced damping

L length of flexible cyiinder

Mi modal mass

m,m{x) constant and variable mass per unit
length

L constant m equivalent to a variable
m{ %)

Nﬁ modal force

Rie equivalent system modsl force

ﬁis modal force for sheared casse

?u, PB integrals in uniform flow and shearsed
cages

qi(t) modal amplitude

Ri modael dawping constant

RiaRiS R: in equivalent and shesred cases

S regponse parameter

SG 5 & for uniform flow rared

Cu’ GE g Po¥ AniEerm e
W QUL VA LE

St Strouhal number

U free siresm velocity

¥ reduced velocity

X longitudinsl coordinate

Ko 4 X, range of lockin

y}x,%},y{x} cross flow response amplitude

Y nax maximus value of y{x)

is logarithmic deerement for structural
dampling

Ly nodal damping ratic

iy structural modal damping ratlo

Lig equivalent o,

o frequency (réddians/sec)

naturel frequsncy
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g shedding frequency i
¢ density of water .
i mags retio
by Fhase angle
§i{x} mode shape
¥4 pax maximum value of the mode ghape 5
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ABSTRACT

Lateral vibrations of cylindrical structures caused by vortex shedding in a vertically-
sheared cross flow are analyzed. In contrast to the uniform cross flow case, shear flow
can excite more than one modal frequency at a time. Thus, the net response of the
structure is a superposition of several vibration modes. The amplitude of each mode is
determined by a balance between energy fed into the structure over a “locked-on” region of
the structure and energy dissipated by fluid damping over the remainder of the structure.

A solution method based on random vibration analysis is developed that gses an
empirically-derived lift coefficient and correlation length models. The technique is capable

of handling both uniform and sheared (depth-varying) current profiles.
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Good quantitative agreement is found between the present method and the very lim-
jted field data available for shear flows, although it is concluded that the shear conditions
in the tests were not sufficiently strong to validate the theory conclusively. The results
show how using uniform-flow approximations to treat shear flow cases can significantly

over-predict vibration amplitudes caused by vortex shedding.

INTRODUCTION

Vorte»sheéding&nduced oscillation of such marine structures as risers, piles, OTEC cold .

water pipes, and ocean-mining lift pipes, is an important fluid-structure interaction phe. . ..

nomenon because it can lead to accelerated fatigue and increased hydrodynamic loads.
Structural damage and even destructive failures can sometimes result.

While a great deal of attention has been focused on this problem, most of the previous
work has been devoted, by expediency, to structures in uniform cross lows. The subject has
been reviewed recently by King |1}, Sarpkaya [2], and Griffin [3,4]. When the approaching

free stream is not uniform, one is tempted fo use a uniform-flow approximation based, say,

on the maximum or average cross-flow velocity. This approach is valid only when the flow ..

- ~variation over the length of the structure is small and when the frequency of any unsteady
flow component is small in comparison with the vortex-shedding frequency and the modal
frequencies of the structure.

In general, neither of these conditions is satisfied for very long cylindrical structures
operating in a typical ocean environment where wind and geostrophic currents cause the
cross flow to be both oscillatory and sheared. Fundamental questions concerning the effects
of unsteadiness and nonuniformity in the approaching free stream on the formation and
shedding of vortices, and on the resulting structural response, remain unanswered.

The purpose of the present work is to investigate the effects of shear in the oncoming
flow. Specifically, the cross-flow velocity is assumed to be time-invariant and unidirectional
with a magnitude that decreases monotonically with distance below the ocean free surface
{see Fig. 1).

A solution technique is developed that is based on the random vibration analysis of
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Blevins & Burton [5] (also see Blevins [6]), who investigated flow-induced oscillations in
uniform flow. Their method is extended to handle sheared flows as well. The empirically-
derived dependence of lift coefficient and correlation length on cylinder amplitude that is
part of their analysis is retained. In addition, the present method makes use of the labo-
ratory observations of vortex shedding in shear flows by Mair & Stansby [7] and Stansby
[8], which indicate that, despite the continuous spauwise variation in cross flow veloe-
ity, vortices are shed in “cells.” The shedding frequency jumps discontinucusly across cell
boundaries. |

Based on these observations, the following features of vortex-shedding respouse of .

cylindrical structures in shear flow are postulated:

¢ The structure is divided into vortex-shedding cells. Over each cell the vortex-
shedding frequency is locked onto one of the modal frequencies of the structure.

The frequency jumps in a stepwise fashion from cell to cell.

& More than one modal frequency of the structure is excited since the frequency
of vortex-shedding and the associated lift, or cross-stream force, vary along the
length of the pipe.

¢ Cell boundaries are determined by consideration of the “lock-on® phenomenon
which establishes definite limits on the amount by which the local shedding fre-
quency can deviate from the so-called “patural shedding frequency” one would

obtain by using the Strouhal number and the local cross-flow velocity.

o For each structural mode excited there is an active region where energy is fed
into the structure, and a passive region (the remainder of the pipe) where energy
is dissipated, primarily by fluid damping.

o The amplitude of each mode is determined by a balance between energy gained

and enmergy lost for that mode.

o The total structural response is obtained as a sum-of-squares superposition of all

of the vibration modes excited.




These features have been incorporated into a math model and computer code that calcu-
lates structural response amplitude and bending stress as a function of spanwise location
for long cylindrical structures exposed to arbitrary current profiles.

Comparisons show that the present technique agrees well with a data correlation of
both field and laboratory test data for the case of uniform flow. Results are generated
showing the vortex-shedding-induced response of typical 500 to 5000 ft production and
drilling risers operating in sheared currents that range from nearly zero to those that can
be expected in the Gulf Stream. ‘These data clearly show that use of typical uniform-
flow approximations to sheared current profiles can significantly over-predict the effects of
vortex shedding.

Comparison is also made between the present predictions and test data for a model
pile in shear fiow. Good agreement is found for the maximum pile response, although the
velocity range for excitation is under-predicted. It is concluded the test conditions were

not suitable to verify the effect of shear flow conclusively.

VORTEX SHEDDING FORCES

In the range of cross-flow velocities-and diameters of practical interest, flow past a cylindri-
cal body is characterized by the alternate shedding of vortices forming a “Karman vortex
street” in the wake of the structure. The vortex shedding generates periodic, or quasi-
periodic, lift and drag forces. The lift-force frequency is the same as the frequency of
one complete cycle of the vortex shedding. The unsteady drag frequency has twice this
frequency. The drag force is an order of magnitude smaller than the lift force.

Although the cylinder is a two-dimensional shape, the flow past it is three-dimensional
because vortex shedding is not fully correlated along the span. A measure of the average
length over which the shedding is correlated is the correlation length, £,. For stationary
cylinders, ¢, = 2.5D to 5D.

A nondimensional parameter that governs the flow regime is the Reynolds number,
Re = VD /v, where V is the cross-flow velocity {which may be depth-dependent), D is

the structure outer diameter, and v is the kinematic viscosity of seawater. For stationary
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cylinders, the vortex-shedding frequency, /s, is nearly proportional to V in the suberitical
Re-regime, 2% 10% < Re < 3 x 10°. Therefore the reduced frequency, or Strouhal number
S, given by

S=f.DJV (1)

is pearly constant, § =~ 0.20, in this Re range. In the critical Re-regime, 3 x 10° <
Re < 3.5 x 10%, the viscous boundary layer becomes turbulent upstream of the separation
points and the wake is more disorganized. Strouhal numbers from 0.20 to 0.40 have been
reported by Jones, et al[9]. For Re > 3.5x10°, the turbulent vortex street is re-established
[6], and S = 0.30.

If the cylinder is part of a lightly-damped structure, and if the shedding frequency, f,,
is near a modal frequency of the structure, f, , lateral oscillations may occur. Parameters
that govern the susceptibility of a structure to vortex-shedding-induced oscillations are the

reduced velocity, V,, , and the reduced damping, 6,,,, given by
Vi =V/f.D (2)

and

brn = dr¢om[pD? (3)

Here m is the mass per unit length of the cylinder (including internal fluid mass and the
added mass of the surrounding seawater), ¢, is the damping coefficient of the nth vibration
mode, and p is the seawater density. The subscripts n mean that these parameters are
associated with the nth mode.

For lightly damped structures {6rn < 10), oscillations can occur in a range of 4.5 <
Vin < 10.0, with a peak response at about V,, = 7.25.

Lateral oscillations of a cylinder at, or near, the “natural” shedding frequency, f, =
SV /D, iucrease the vortex strength, the lift and drag forces, and the correlation length.
In addition, the vortex shedding frequency may lock onto a structural vibration frequency.

All of these effects are found to depend on the lateral vibration amplitude, Ay.
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The lift coefficient, Cp = f«/%p‘”D, where L is the unsteady lift force per unit
length of the cylinder, is found to increase from about 0.4 at A, /D = 0 to about 0.5
at A,/D = 0.4, and then decreases to zero at A, /D = 1.5. The lift force referred to is
that component of the force in-phase with the transverse cylinder velocity. The correlation
length increases rapidly from about 3.5D to 40D as A, /D increases from zero to 0.1 in

JUE——

the subcritical case, and from 2.5D ‘to 10D for the supercritical case.

SOLUTION METHOD

The solution method is an extension of the random vibration approach developed by
Blevins & Burton [5] for the uniform-current case.

As a typical eylindrical marine structure, we consider the riser configuration shown in
Fig. 1, with the top of the riser at z = 0, the mean waterline at z = h, and the bottom
of the riser at z = L. The current V' (z} is directed along the positive z-axis. Unsteady
lift forces attributable to vortex shedding cause the structure to oscillate in the cross-flow

direction, or the Zy-direction.

Random Vibration Analysis

The mean-square displacement of the structure is given by
Vit =) _a{tjvr(2)+ A (4)

where ¥, (z) is the nth mode shape function of the structure, A is a small error caused

by cross-correlation, and

oc

F0=[ Flold)ds )
0

is the mean-square Lagrangian coefficient evaluated by integrating the following power

spectral density {PSD}:

LI ) () F(w[L(2)L(2')) dz d2’
S .
Zo(iw)] [ mlz)ez(2) 2]

Here Z,(iw) is the impedance of the nth mode

Z,(iw) = —w? + 2icawuwn, + wi (7)
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“n is the nth modal frequency (rad/sec), and ¢, is the damping coefficient of the nth

mode.
The cross-correlation PSD function is assumed to have the form
ny 1
Fle/LEU) =5
x {%pvg(z)c,;(z)exp{——(l ~w/we)? /2B @)

X §0V3(')CL( ) expl=(1 - w/u))? [2B7)
X exp|=2z ~ 2'|/tc] sgu(vn (2)vn (')}

where B is the vortex shedding frequency bandwidth and w, is the shedding frequency (a
function of z). Asmentioned in the Introduction, the shedding frequency is assumed to lock
onto the modal frequency w, over a certain region of the cylinder, z, mi, < 2 < 2, ‘maz -
which will be denoted by R, . The method of allocating lock-on regions is described below.,
If the vortex shedding bandwidth, B, is comparable in width to the response band-

width of the oscillator, ¢, , it is possible to show that the maximum response amplitude of

A PUp, maz) / / ...,Qiz..z 1/t
z) ;: dzd:
(D ) ( donuy i (9)

f(z) = V() v (2)| K1 Ky Cp(2)

mode n is

The constant K, is a function of the bandwidth of the oscillator: Ky relates the root-
mean-square (RMS) amplitude to the maximum amplitude. The constants K, and K,

and the lift coefficient €7 have been found empirically by Blevins & Burton [5] to satisfy

- An ',s{’n(z) An z tn {:) ?
K\ K,Cr(z xﬂ*{r—b(‘-——)(w 4o =2 RiARER
e L( ) D Yr,maz D Yn,maz (10)
a=1035 b=060 ¢=-0.92

For the correlation length, the same authors propose

100(A. /D)
t.)D = 5»-1»& (4. /D) for A, /D <05 (11)
o for A, /D > 05




Since both Cy and I, depend on A, /D, Eq. (8) must be solved iteratively for the unknown
amplitude, 4,/D.

Once the amplitude of each mode is determined in this manner the total response
amplitude A{z) is given by a sum-of-squares superposition:
1/2

P23y .

n

Allocation of Lock-On Regions
Observations of lightly damped cylindrical structures in uniform cross flow indicate that
the vortex shedding frequency will lock on a structural natural frequency over the reduced

velocity range

45<V,, €10 (13)

with a peak response at about Vy, = 7.25. If one applies these results to a sheared current

profile. then the range of current velocities over which the structure will be excited by a
shedding frequency f, is given by

V(z) 2 "fﬂ.,min = 45]!.,1.0
(14)

V(z) € Va,maz =100/, D
with a peak excitation at Vy peax = 7.25f, D. For a given current profile these inequalities
determine the lock-on range for the nth mode (see Fig. 2J.

The mode allocation scheme is as follows: Starting at the upper end of the structure
where the currept velocity is the highest, the mode with V), ;.. closest to the upper
current velocity is selected for the upper cell. Its upper boundary is z = h, while the
lower boundary corresponds to that depth at which V), yun = V(2). The mode excited
at the next cell is the bighest mode with a value of V) p.qx that is less than V1, .n
corresponding to the lower limit of the upper cell. The lower limit for this cell is again
found at the location where the current velocity equals V;, .4, for this mode. This process

is continued down the entire length until all portions of the structure have been allocated.
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Depending oun the spacing of the modal frequencies of the structure, and the particular
current profile, some portions of the cylinder may not be excited by any of the modal
frequencies. As currently structured, the mode allocation scheme does not allow one cell
to incur into another, por does it allow gaps between adjacent cells. In this respect, it
appears that the allocation scheme is conservative in that the highest possible mode for
& particular cell is always selected. Several variations of this scheme were tested. All of
them resulted in essentially the same structural respounses.

In reality, the allocation of vortex shedding cells along the structure probably depends
on the time evolution of the flow field, thus making it difficult to choose a single algorithm
that will apph to all cases. This part of the model would obviously benefit the most by

comparison with experimental data.

Flusd Damping

A linearized formulation is used to account for fluid damping over the non-locked-on region
of the structure. This approach is valid as long as the cross-fow velocity is large in
comparison to the lateral cylinder velocity.

The drag force per unit length is given by

-

Fp = ;pDCp[Vg|Vp (15)

where Vg = {('{z), —~By/81) is the relative Alow velocity. For |8y/d1] < V', the component

of Fp in the lateral direction is

d
F, ~ w%pDCDV(z)E?- {16)

In order to estimate an equivalent damping coefficient for the structure, we temporarily
revert to a deterministic formulation. The force acting on the structure is composed of a
vortex-shedding force over the lock-on region R, and the damping force Eq. (16) over the

remainder of the structure L ~ R, , so that the Lift force per unit length is given by

%pDI/"QCLe"““’ forz € R,

Liz, 8) =
2:4) Q_E_" forzel~R,

17
sopcy (17)




Let the displacement y{z,!) be expanded in normal modes as
y(z,8) =) ga(t) ¥ul2) (18)
n

Then the equation of motion for the nth mode is
Gnt2¢wndn + W?;‘lrz

= /OL L(zﬁ'i)t;i'ﬁ{z)dz/ ]: my2(z)dz 19

where the damping coefficient ¢ accounts for internal material dissipation only. After

substituting from Eq. {17) for L(z,t} there results

Grnt2¢nwngn + W’z In

. L 20
" O

where the damping coefficient ¢, is given by

DC Lo |
S‘nmf“}”péw‘l)/L . V#-‘-’-ida"/j; myy, dz (21)

This expression for damping coefficient is used in Eq. {9) to determine the modal amplitude.

Bending Strese

In the deterministic case, pipe bending stress is given by

32
o= LED, Y (22)

I
2 az?

where E is Young's modulus and D, is the OD of the structural pipe (OD of structure
minus twice the buoyancy thickness, if present). The corresponding expression for bending
stress amplitude in the random case is found by using Eq. (12} to evaluate the mean-square
second derivative of the pipe displacement. The final result is

ofz) = %EDDG{Z(%)Q(M)Q}W (23)

Y, maz
where the primes denote differentiation with respect to z.
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RESULTS AND DISCUSSION

A computer program was written to implement the preceding theory. The pregran_; uti-
lizes an existing finite-difference code and eigen-processor that calculate mass and stiffpess
matrices and eigen-modes and frequencies.

In order to compare the results of the present theory with existing methods, a series
of computer runs were made for typical riser configurations. Both drilling and production
risers were studied in water depths of 500, 1500, and 5000 fi. The riser properties are
listed in Table 1.

Comparisons are made between the present theory and a data correlation technique
that was developed specifically for uniform cross flows, although it can be applied to

sheared profiles by using either the average or the maximum of the profile.

Uniform Cross Flow Case a—

For the purpose of checking out the present technique, it was first compared with a data .. —

correlation technique for'the case of uniform cross flow. Iwan & Blevins [10] have shown
that the foﬁowin“g expression for maximum amplitude agrees well with test data for a

variety of cylindrical structures:

A, 0,077, 0.72 J 12
ro 20 gy 072
D~ {6, +19)5? [ T om 1 19)8 (24)

Here &, is the reduced damping {see Eq. (3)) and 7, is a mode shape factor defined by’

K L L 1/2
= Vo [ 20102 | (o)) (25)
’ G Y

This expression applies over a range of reduced velocities given by inequality (13). If
the modal frequency spacing is small enough, more than one mode may be excited for
a particular {uniform) cross flow velocity. Since there are no criteria for deciding which
mode is excited, a range of displacements and bending stresses for all of the modes that
are capable of being excited according to Eq. (13) are presented.

Comparisons of the data correlation method and the random vibration results are

shown in Tables 2 and 3 for uniform velocity profiles of 4.22 ft/sec (2.5 knots) and 6.76
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ft /[sec (4.0 knots), respectively. The results indicate that the two techniques predict nearly
the same amplitudes with the random vibration amplitudes averaging abcm:t nine percent
below the data correlation displacementé.; The bending stresses obtained By the random
vibration metha& are also in fairly good agreement with the lower range of bending stresses
predicted by the data correlation method. Results for the 1500-ft and 5000-f1 are not
presented for the higher velocity case because this velocity excites modes that are beyond
the computational range of the particular eigen-processor that is presently used to find

mode shapes.

Sheared Croae Flow Case

Results are next presented for the case of sheared cross low which is more typical of the
actual ocean environment.

A detailed illustration of the application of the present random vibration method is
shown in Figs. 3{a})-(b}. In this example a 1500-ft drilling riser is subjected to the sheared
velocity profile shown in Fig. 3(a). The same Figure shows how excited modes are allocated
along the length of the structure. In this cast;'.fgr@cﬁég_ §;§ gxgxt;cgl mth lock-on regions -
denoted by the R's to the right of Fig. 3(a). ”

It should be noted that while each of the three modes is excited only over a subregion
of the structure, the response to the excitation extends over the entire pipe. Fig. 3(b)
shows the mode shapes that are excited by the vortex shedding with the actual amplitudes
that are obtained by solving Eq. {9). The final step is to superimpose the individual modal
responses according to Eq. (12). The result of this sum-of-squares superposition is show
in Fig. 3{c).

The remainder of the shear flow cases are for the two velocity profiles shown in Fig. 4.
Profile 1 is piecewise linear with the highest shear occurring at the water surface, while
profile 2 has uniform shear.

While the data correlation technigue was developed for uniform cross flows, it is
tempting to apply it to shear flows by using an equivalent uniform velocity based either

on the average velocity or the maximum velocity. This idea is tested in the last series of
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results whichk compare the data cor:felation and random vibration methods when both aré
applied to shear flows.

Tables 4 and 5 show such a comparison for current profile 1. The data correlation
results in Table 4 are based on the average current velocity, while those in Table 5 are
based on the maximum velocity. Displacements obtained by the random vibration method
average about forty percent lower than those given by the data correlation method. A
similar trend is found for bending stresses, although now the discrepancy is greater. When
the data correlation method is based on tﬁe average velocity, the agreement with random
vibration technique is fairly close. However, use of the maximum velocity with the data
correlation method clearly over-predicts the bending stress when compared to random
vibration results.

A similar trend is shown in Tables 6 and 7 for current profile 2. Here again use of the
average velocity, rather than the maximum velocity, in the data correlation method, gives

closer agreement with the random vibration results.

Discussion of Cognac Model Tests

Oune of the few instances of shear-flow test data available in the open literature is from
model tests of foundation piles for Shell's Cognac platform (e.g., see Fischer, ef al [11}}.
Vortex shedding effects were of concern here both during “stabbing” of the pile, when the
pile is suspended by cables in a double pendulum configuration, and after installation of
the pile when it behaves like a cantilevered beam. A series of scale model tests were made
of the pile in both uniform and sheared profiles. The shear profile was nearly linear; the
velocity at the bottom was 60% that at the top.

Both the data correlation and random-vibration methods were applied to fird pile
response in the “stabbed” configuration. Figure 5 shows a comparison of these methods
with the experimental data. Here the nondimensional tip amplitude is plotted against the
reduced velocity based op surface velocity, pile diameter, and first modal frequency. The
data correlation technique is seen to over-predict the data by about 20%. Better agreement

is found with the random vibration method, although the predicted range of excitation is
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shifted to lower velocities.

Another test series was run with the cantilevered pile during the driving operation.
An mass was placed at the end of the pile to simulate the hammer. Both smooth and
rough hammers with three different densities were tested; comparisons are made with the
data for a smooth hammer with specific gravity of 1.5. The nondimensional amplitude
versus reduced velocity for this case are shown in Fig. 6.

Fairly good agreement is again found for the maximum response with the random
vibration technique, while the data correlation method over-predicts by 140%. The wide
range of response velocities is not reproduced by the random vibration results; investi~
gations are currently being made of the senmsitivity of the solution to the lift-force and
correlation-length parameters that occur in Egs. 10 and 11.

For the effects of shear flow to be important it is necessary that either the modal
spacing be dense enough, or the shear profile be high enough, to excite more than one
mode. In the present case the ratio of second to first modal frequencies is about 6, while
the current profile only increases by a factor of 1.8 in going from the the bottom to the
top of the pile. This being the case, one would not expect the second mode to be excited
at all under the conditions of the tests. This is confirmed by the results of the random
vibration analysis.

In summary, the Cognac model tests are probably not a critical indicator of the effects
of shear flow on vortex shedding response of structures. Further tests involving structures

with more closely spaced modal frequencies in more highly sheared flows are required.

CONCLUSIONS

A random vibration model and accompanying computer program have been developed to
calculate the response of structures in sheared cross flows. The model predicts that more
than one modal frequency can be excited in shear flows, but that the number of modes
excited and their lock-on ranges depend on the distribution of modal frequencies and on

the particular velocity profile.

Comparisons of the present method with a data correlation technique show good agree-
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ment for the case of uniform cross flow. The data correlation results tend to over-predict
displacements and bending stress for the case of shear flow, although better agreement
is obtained if one bases the reference velocity used in data correlation technique on the
average cross low velocity rather than the maximum velocity.

Further experiments are required to verify the effects of shear flow on vortex shedding

response of structures.

NOMENCLATURE

Alz) Riser amplitude

A, Amplitude of the nth mode
B Bandwidth of unsteady lift force
Cp Drag coeflicient

Cr Unsteady lift coefficient

D Outer diameter of cylinder
E Young's modulus

I Modal frequency

Js Shedding frequency
Flw/-) Power spectral density

Fp Drag force

F, Lateral force component

h Waterline location

K, Ky Constants

£, Correlation length

L Cylinder length

L Unsteady lift force

m Cylinder mass per unit length
n Mode number

g Lagrangian coeflicient

B, Lock-on region
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Table 1

RISER PHYSICAL PROPERTIES
WATER DEPTH
PROPERTY . —
500 ft 1500 ft 5000 ft

Drilling Riser

Piper OD (in) 21 21 21

Pipe wall (in} “0.625 0.625 0.625

Buoyancy wall (in) none 42 42

Buoyancy weight (pcf) none 30 3c

Mud weight (lb/gal) 12 12 . 12

wWet weight (lb/ft) 214 10.87 10.97

Top tension (kips) - 480 500 1000
Production Riser =

Pipe OD (in) 8.625 3.625 8.625

Pipe wall (in) 0.625 0.625 0.625

Mud weight (lb/gal} 8.6 8.6 8.6

Wet weight (lb/ft} 60 60 60

Top tension (kips) 100 200 400
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Table 2
COKPARISON OF DATA CORRELATION & RANDON VIBRATION
FOR A UNIPORK CURRENT OF 4.22 PT/SEC

RISER PEAX AMPLITUDE PEAK BENDING STRESS
(£t} {psi}

DATA RANDOM DATA RANDONM

CORRELATIOR | VIBRATION CORRELATION | VIBRATION
300 £t Drilling 2.28 2.09 8575-19102 7813
1500 ft Drilling 4.71 §.28 £841-1913% 4350
5000 ft Drilling .71 £.32 364713662 3924
500 ft Production 1.16 0.96 . BO49-17431 6609
1500 tt Production 1.18 0.97 4647-7131 4748
5000 £t Production 1.27 1.08 4831-107137 4711

Table 3

COMPARISON OF DATA CORRELATION & RANDOM VIBRATION
POR A UNIFORM CURRENT OF 6.76 T/ seC

RISER PEAK AMPLITUDE PEAX BENDING BTRESS
(L) (pai}

DATA RANDOM DATA RANDONM

CORRELATION | VIBRATION CORRELATION |VIBRATION
500 £t Prilling 2.28 2.07 19102-33288 12988
15606 £t Drilling 4.70 4.23 13405-42224 17248
5000 ft Drilling 4.70 4.30 7547-29758 10668
500 £t Production 1.1% .97 12338-30244 12959
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Taple &
COXPARISON OF DATA CGRI!BLATXDﬁ’ & RANDOR VIBRATION
POR SHEAR FLOW CURRENT PROFILE [ B9

RISER PEAR ANPLITUDE PEAK BENDING STRESS
{fe) (psi}
DATA RANDOM DATA RANDOR
CORRELATION | VIBRATION] CORRELATION VIBRATION
s00 ft Drilling 2.27 1.64 2021 1508
1500 ft Drilling 4.68 3.99 508 1198
000 ft Drilling 4.73 2.05 853 338
500 ft Production 1.17 0.57 2011 1242
1500 £t Production 1.20 0.77 §44-1842 1i69
5000 £t Production 1.27 G.75 4831-10737 3271

s yniform flow velocity based on average velocity

Table 5 -
COMPARIEON OF DATA CORRELATION™ & RANDOM VIBRATION
POR SHEAR FLOW CURRENT PROFILE #1

RISER PEAK AMPLITUDE PEAX BENDING ETRESS
{ft) (pai)
DATA RANDOXN DATA RANDON
CORRELATION | VIBRATION | CORRELATION | VIBRATION
500 ft Driliing 2.28 1.64 8575-19102 1508
1560 £t Drilling 4.71 3.99 484319135 1198
5000 £t Drilling &§.71 2.085 447~11662 338
500 £t Production 1.16 0.57 Bo49~-17431 1242
1500 ft Production 1.18 ¢6.17 4647-7131 1169
S000 ft Production 1.27 0.75 4831-10737 3271

* gnifors flow velocity based on maximum velocity




Table §

POR BHEAR PLOW CURRENT PROPILE &2

COMPARISON OF DATA CORRELATION® & RANDOM VIBRATION -

RISER PEAK AMPLITUDE PEAX BENDING STRESS
€39 (psi)

DATA RARDON DATA RANDON

CORRELATION | VIBRATION | CORRELATION | VIBRATION
500 ft Drilling 2.28 1.75 . 8575-19102 12732
1500 £t Drilling 4.70 3.1s 4843191235 12434
5000 tt Drilling 4.72 3.24 Jddb-11862 8038
500 ft Production 1.1¢ 0.72 8049-17433 1076S
1500 ft Production 1.1i8 0.76 4647-7131 594
5000 £t Production 1.27 e.75 4821-10737 3270

Table 7
CONPARISON OF DATA CORRELATION™ & RANDONM VIBRATION
FOR BHEAR FLOW CURRENT PROFILE 42

* Uniform flow velocity based on average velocity

RISER PEAX AMPLITUDE PEAX BENDING STRESS
t£E) (psi}

DATA RANDON DATA RANDOK

CORRELATION | VIBRATION | CORRELATION | VIBRATION
500 £t Drilling 2.28 1.75 19102-33288 12732
1500 ft Drilling €.70 3.15 13405-42224 124
5000 £t Drilling £.70 3.24 7547-29758 8038
500 ft Production 1.19 0.72 12338-30244 10765

* Unifors flow velocity based on maximun velocity
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Fig. I Riser in Sheared Crossflow.

22




VELOCITY RANGE

FOR LOCK ON
OF NTH MODE
r—vm—
v Vv v
MIN PEAK MAX
[-] T o~ Yy
(LY PP S R
T Zn, min
LOCK-ON
REGION
Rn
_L CURRENT PROFILE
Z,. max OF INTEREST =
L b —

Fig. 2 Determination of Lock-on Region for the nth Mode.

A3




PERCENT OF WATER DEPTH

3.2
5.5

1.%
3.3

CURRENT VELOCITY (FT/S5)

Fig. 3a Example of Mode Allocation Scheme.
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Fig. 3c Total Riser Response Envelope.

26




]
10 PROFILE
NO. 1

o
-
&,
w
o
x M0
w
<
x PROFILE
s NO. 2
[#3
L 1
x
w
W
-4
W
a

80

8.0 .0 L .6 5.0

CURRENT SPEED (FT/S}

Fig. 4 Current Profiles Used in Riser Response Calculations.
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Fig. 5 Comparison of Theory and Data for the Bare Pile Model.
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Fig. 6 Comparison of Theory and Data for the Pile Model with Hammer.
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