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THE DYNAMICS OF SLACK MARINE CABLES

1. IXNTRODUCTION

Cables are employed in a wide variety of marine and offshore
operations. Common examples include moorings, power supply,
salvage operations and umbilicals. Most of the computer models
developed to date assume that the tension in the cable elements
is above a threshold level such that the vibrational behavior of
the cable is essentially that of a taut string. For many appli-
cations iﬁ.:%ich catenary effects are iImportant, and umbilical
applications where the cable tension mavy be required to be small,
a significant amount of cable slack may be realized. Examples of
slack cable applications include deep water moorings, horizontal
cable segments between vertical legs of a cable array. the down-
stream vertical leg of a multiple-leg cable array, and guy lines
of deep water guyed towers and semi-submersible platforms.
Design analysis of cable structures suech as these using conven-

tional taut cable techniques could lead to incorrect conclusions

and to Inappropriate selection of the required cables.




The purpose of this report is to discuss the present state-
of-the-art for the analysis and modelling of slack marine cahles.
A summary 1s given of the linear theory for the vibration of
horizontal and inclined slack cables and the important differ-
ences between the two cases are pointed out. Examples are given
of the numerical results which can be obtainéd with available
codes for computing the dynamics of slack cables with and without
attached arrays of discrete masses.

Finally, recommendations are made for the further develop-
ment of suitable slack cable computer codes for use in engineer-
ing practice. The approach to the problem is expecteﬁ to be
analogous to that taken in developing and verifying experimen-
tally a computer code for predicting the vibration response of
taut marine cables with attached discrete masses (Sergev and

e

Iwan, 1980: Griffin and Vandiver, 1983: Iwan and Jones, 1984).

2. RELATED INVESTIGATIONS

The taut cable or wire was one of the first structural
systems to be studied, as early as the eighteenth century. In
most engineering applications cables exhibit finite sag to some
degree. This led Rohrs (1851) and then Routh (1868) to develop
solutions for the dynamics of an inextensible chain suspended
between two points at the same elevation. Later, Saxon and Cahn
(1953) developed an asymptotic solution for the inewxtensihle

chain which was in good agreement



with the derivation of Pugsley (1949) and experimental data. An
excellent historical discussion of the problem 1s given by Irvine
(1981).

The earliest solutions of the inelastic chain problem were
not able to reproduce the reéults for a taut cable,. Several
investig;tors showed that the inclusion of elasticity effects can
join the taut wire and fnelastic chain regimes and provide solu-
tions for intermediate conditions: for example, Soler (1970) and
Simpson (1966). 1t was Irvine and Caughey (1974) who provided an
extensive study of the linear cable dynamics and offered a clear
physical understanding of the phenomenon. Their solutioﬁ Tepro-
duced both the inelastic chain and the taut wire results for a
cable suspended between two points at the same elevation. An
intermediate range was found, for sag—-to—-span ratios below 1:8,
over whichmtﬂzwnatural frequencies of the symmetric cable modes,
i.e. symmetric relative to a vertical line passing through the
cable midpoint, were between those of a taut cable and an inex-
tensible cable. A fundamental parameter was identified which
governed the extensible cable dynamics and accounted for both
elésticity and the equilibrium geometry of the cable.

Scon after the work reported by Irvine and Caughey, several
additional numerical and analytical studies were made of the
slack cable dynamics. Numerical computations of the cable
natural frequencies and mode shapes using a discretized cable

model were reported by West, Geschwindner and Suhoski {1975).




Somewhat later Henghold, Russell and Morgan (1977) followed with
a finite-element numerlcal model for a cabie in three dimensions.
The computations by West et al were limited to a cable with ends
at the same elevation, while the results reported by Henghold et
al applied to the more general case of boeth horizontal and
inclined) cable spans. Both of these numerical studies were
limited to the lower cable modes because of the relatively small
number of cable segments that were employed. West, Suhoskl and
Geschwindner (1984) recently have applied their method to the
dynamics of the suspension bridge. Many features of the slack
cable dynamics, including the frequency crossover described below
for the horizontal cable, were observed for the case of the
suspension bridge under certain conditions.

A finite-element model for the dynamics of sagged cables was
developed by Gambhir and Batchelor (1978). Both two-dimensional
and three-dimensional computer codes were dJdeveloped using curved
and straight finite elements for the general case of a cable with
end points at different elevations. A comparison was made with
the numerical results of West el al (1975) and the previous work
of Saxon and Cahn (1953) and of Pugsley (1949). Good agreement
was found overall and the finite element method showed excellent
covergence characteristics relative to other numerical
approaches.

A more recent numerical study of the dynamics of slack

cables with and without attached masses wWas conducted by



Rosenthal (1981). This approach 1is based upon Stodola's method
for the dynamics, which 1is a successive ap#roximation approach to
computing the natural frequencies and mode shapes of the cable.
One example based upon a relatively small number of ten cable
integration intervals caused inaccuracles to appear in the
higher*méde natural frequencies. The computations were made for
the purpose of comparing with the results of Henghold et al who
used fourteen elements. However, it also was shown that large
numbers of integration intervals (up to 60) could be used
conveniently. This was necessary when numerous masses were
attached to the cable and/or the higher mode frequencies were
required. |

Ramberg and Griffin (1977) measured the natural frequencies
of taut and slack marine cables in air and in water and obtained
good agreeﬁégg‘with predictions based upon the linear theory of
Irvine and Caughey. Soon after, Irvine: (1978) extended his
linear theory to the more general case of an inclined slack
cable. Ramberg and Bartholomew (1982) again obtalned good agree-
ment between their measured natural frequencies of ineclined
ca?les and those predicred using Irvine's linear theory.
However, as discussed below, Irvine's theory for the horizon;al
cable cannot be extended to inclined cables except under special
circumstances.

All of these recent studies suggested the existence of a

frequency crossover phenomenon which appears in the transitional




regime where neither the inextensible cable results nor the taut
cable results are appropriate by themselves. At the apparent
frequency crossover three modes of the cable have the same
natural frequency. These modes include a symmetric in~plane
mode, an antisymmetric in-plane mode and an out-of-plane or sway
mode. The symmetric modes contain an even number of nodal points
along the cable while the anti-symmetric modes contain an odd
number of nodes.

The problem of the inclined cable has been investigated most
recently by Triantafyllou and Bliek (1983) and by Triantafyllou
(1984). The analysis 1is based on a WKB-type asymptotic goiution
for the cable dynamies. For the special case of a horizontal
cable the method reduces to all of the previous known solutions
déscribed above. However, there are some important differences
in the case of an Inclined cable. Two distinct physical
mechanisms of vibration were identified. These correspond to the
transverse and longitudinal or elastic waves in the case of the
taut cable. As the curvature (sag) of the cable increases, modes
develop which are hybrid in character (neither symmetric nor
aniisymmetric). This phenomenon is characterized by a shift of
the natural frequency of a symmetric mode toward the natural
frequéncy of an antisymmetric mode, but no crossover occurs.
Instead the two modes become distinct again and the eigenvalues
of the symmetric mode lie on the continuation of the elgenvalues

of the antisymmetric mode (from before the hybrid modes occurred)



and vice versa. However, only the mode shape variation Iis
changed. The natural frequencies for the inclined cable computed
by Triantafyllou and Bliek were virtually identical to those

given by Irvine (1981).

3. THE LINEAR THEORY FOR A HORIZONTAL SLACK CABLE

The vibrations of taut cables are described appropriately by
the classical taut string equations. This approach neglects the
cable's bending stiffness and finite-amplitude vibration effects,
but it 1is accurate to within 2-4 percent for many cables over a
wide range of conditions. As the tension is relaxed.'a cable
eventually assumes the configuration shown in Fig. 1. H is the
horizontal component of tension at the supports and each vertical
component V 1is equal to half ot the total cable weight. The
iimiting sagwig;span ratio s/ + (O is accompanied by H= T since
the cable weight becomes a negligible fraction of the tension.
At .the other extreme, when s$/% becomes large, V is comparable to
or larger than H and the cable assumes a classical catenary
shape. The natural vibrations of catenaries are known for s/& >
1:1.0, but until recently they could not be reconciled with the
taut strimg theory as the ratio of sag-to-span vanished. This
diffiéulty was overcome by Irvinme and Caughey (1974) and some
others preceding them by including the extensional behavior of

the cable 1in the theory for horizontal cables. The comparable

theoretical development for an inclined cable has been studied by
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Irvine (1978, 1981) and by Triantafyilqu and Bliek (1983),
Triantafyllou (1984b), and Bliek (1984).

A summary 1s given here of Irvine and Caughev's development
for a cable with end points at the same elevation, and the

results applicable to marine cables are discussed. The equilib-

rium shape of an inextensible cable is given by

mgl? [ x %~ €
-2 - (D) ¥
for d/2 < 1:8 and where d = mg£2/BH is the midspan sag. As we
shall see later in the report, this is a special case of the
general extensible cable dynamiecs problenm. The length of this

cable is

2

(5% .

wico

L= (1 +

so that if three of the quantities mg, H, d, £ and L are known
then the other two can be found. However, owing to stretch, the
sag and length of a real cable are greater than the inextensible
values while the horizontal component of tension of the stretched

cable 1is less. If this new sag is s while the new horizontal

component of tension is (H - AH), then equilibrium dictates that

g8 - d H#* (2)




where H* = A H/H . Compatibility of the «cable displacement

requires, in addition, that

3 34 A
(1 - H*)® = 5 (2H* - H¥) (3
24
where
2 _ (mgk 2 £ - d 2 L
A () HL, 64 (1) 7% (4)
EA) (E& )
and
% 2. 3/2 2 ‘
d
L= [ 1+ (D)) ax =~ 1(1+8(H) (5)

The quantity EA is the product of the elastic modulus and the
cfoss—sectional area of the cable, while L., the "virtual” cable
length, essenzgally is the stretched cable length correct to the
order of the linear theory approximation. As noted by Irvine and
Caughey, the dimensionless variable A? is the fundamental
parameter of the extensible cable because it accounts for both
the elasticity and equilibrium geometry of the cable. In the
suhsequent notation H will be taken to mean the horizontal
component of tension in the extengible cable profile, i.e. the
measufed tension.

In the study of natural vibrations, the equations of motion

can be linearized about the equilibrium configuration. Then the



out-of~plane motions are decoupled to first order and the remain-
ing in-plane modes fall intoc two classes. In the first class
there were thought to be no first-order tension fluctuations
induced at the supports; only the second class was thought to
induce such fluctuations. The two cases were characterized
respectively by mode shape symmetry and antisymmetry about the
cable midpoint. The antisymmetric motions of the sagging cable
have the same frequency equation as the taut string, but the
symmetric modes obey a different eigenvalue equation. This means
that the classical equation for a taut cable 1s valid for 0 <
s/& < 1:8 if n is even, whereas the symmetric mode fre&uencies

are given by

3
tan [%&) = E% - ﬁ; [ﬁ%) s (6)

§
¥
P

where

(7)

The result simplifies to the taut cable equation in the 1limit
/% = 0 when mgl << H in Eq. (4). In that case A% approaches

zero and equation (4) reduces to

1im [tan -J = - w (8)
s/ + 0
and

(Sz)k‘-— (2k - 1) T, k= 1,2,3... (9)



or

£ = B v %,nodd. (10)

A graphical solution to Eq. (6) is presented in Fig. 2 for

several values of the parameter A%. The arfows indicate the
values of %£ which correspond to the natural frequencies of a
taut string. For small A% the symmetrie¢e mode frequencies
approach those of a taut string. As A2 increases, the first

symmetric mode frequency increases toward the first antisymmetric
frequency. They coincide for A2 = 4%2 and thereafter tﬁe first
symmetric mode frequencyls greater than the higher antisymmetric
frequencies. At still larger values of 2 these freguency

crogsovers occur at the higher symmetric modes.

As an example consider A2 = 3672. The antisymmetric mode
gL i .
values of ) are gilven by 2 s n o= 2,4,6, etc. as before while

the first four symmetric mode solutions are indicated by the
encircled intersections in Fig. 2. The lowest two symmetric mode
frequencies have crossed over and 1lie above the lowest two
antisymmetric frequencies. The frequencies of the third sym-
metric and antisymmetric modes are equal (crossover is occuring)
whilelthe fourth symmetric mode frequency is quite close to the n
= 7 frequency of a string. For the modes higher than n = 7 the
natural frequencies are essentially those of the taut string.

The catenary effects progress into the higher modes as X2



increases, but for finite A? some wunaffected modes remain.
Returning to the first symmetric mode freﬁuency of the example,
there is little difference between X% = 36%% and A2 = go that
the first mnode 1is nearly inextensible. For A% + o | Eq. (6)

reduces to
tan (E%) = (ﬁ&) {11)

which is also plotted in Fig. 2. With this frequency equation
the symmetric natural frequencles are again well ordered and
alternate with antisymmetric frequencies, but there is a shift of
between .93 w7 and = in these symmetric mode frequencies with
respect to the taut string symmetric mode frequencies.

The mode shapes of a horizontal slack cable are affected by
the apparentw;requency crossover in a complex wmanner. A sym~
metric mode must possess an even number of nodes. Thus the node
shape acquires two additional nodes in crossing over, and alters
its overall form while preserving symmetry. The transition 1is
smooth as shown in Fig. 3 which 1s adapted from a related numer-
ical sinmulation by West, Geschwindner and Suhoski (1975). A
dashed line which <corresponds to the example A2 = 36w2.is
included in Fig. 3{(a). The related but more complex case of an
inclined slack cable 1is considered later in the report.

This section has summarized the linear solution derived by

Irvine and Caughey (1974) for the dynamics of slack cables with



Figure 2 -~ Graphical solutions to Eq. (6) for the lowest
symmetric~mode mnatural frequencies of a flat-sag cable, from
Ramberg and Griffin (1977). The effects of cable sag and exten-
sion are included in the parameter A% (see Eq. (4)). For

A2 + @ the cable is inextensible, and for A%Z = 0 the cable is
taut.
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sag-to-span ratios of 1:8 or less. This 1s a special case of the
more genevral asymptotiec operturbation solution for the linear
dynamics of taut and slack cables derived by Triantafyllou

(1984b), and discussed further by Bliek (1984).

4. THE ONSET OF CATENARY EFFECTS
An expression for the "ecritical” tension corresponding to
the onset of catenary behavior in a horizontal cable can be

obtained from Eq. {(4). The result is

2/3 1/3 .
" - (DR (B2 e | (12)
a

crit lcrit

By requiring the cable frequency to be within 5 percent of the

taut string value, an approximation consistent with the accuracy

of the string equation, one obtains

2
Acrit

it

1.26 (13)

Since d » g for typical cables when A2 is small, Eq. (5) becomes

Lo =& {1 + 8 (s/2)%) < 92/8 . (14)
The onset of slack effects occurs near the limit of s/8 + 0, so
that a slightly conservative estimate is established by Le = £ to

obrain



B, = 0.93(w2rayl/3 | (15)

where W = mgi is the total weight of the cable to the accuracy of
the linear theory. The corresponding critical sag is

s 0.134 () ¢ . (16)

erit EA

It shduld be emphasized that this c¢riterion applies to the
initiation of catenary effects in only the symmetriec modes, since
the antisymmetric modes are unaffected for s/ < 1:8 and B > W.

Furthermore, at H = H + the only affected mode will be the n =

cri

1 mode. 1f one is interested in the onset of slack effects in

the higher symmetric modes, then the expression becomes

1/3
W EA
crit [~;; ) (17a)
T n
i 4 ol
Aﬂ = a—"; taﬁ', ¢ = 0.525 n v, n = 1,3,5, ete. (17b)

Experimental results are discussed later in this report and in a
previous related paper and report which deal with marine cable
applications; see Ramberg and Griffin (1977), Griffin et al

(1981).

S. THE INCLINED SLACK CABLE
The linear theory just described has proven to be a valuable

tool in the analysis of wmarine cable vibrations. A shortcoming



of the original analysis of JIrvine and Caughey was a restriction
to horizontal cables or, more precisely, to cables with supports
at the same elevation. One simple way to extend this linear
theory to cables with inclined chords is to view the cable in a
coerdinate system inclined with the cable (Irvine, 1978). in
order to retain symmetry about the cable midpoint, an essential
feature of the linear analysis, one must ignore the effect of the
chordwise component of gravity. Essentially it is assumed that
the static configuration of the cable is parabolic. The problem
then reduces to the previous analysis except that the weight per
unit length 1is given by w = mg cos & where 68 is the chord
inclination angle from the horizontal. The analysis of Irvine
'and Caughey (1974, 1978) for the parabolic cable (horizontal and
inclined) was continued more recently by Veletsos and Darbre
(1983). o

According to the linear theory, the horizontal (or

chordwise) component of tension H is constant along the cable,
H = mg cos 622 /8s . (18)

It should be noted that & now is the horizontal component of the
distance (chord) between the cable supports. However, the
chordwise component of gravity produces a change in H from one

end to the other of an inclined cable by an increment AH given by



A = mg 2 sin 8 . (19)

Thus the modified linear analysis for inclinded slack cables is

subject to

- 4H
e = g << 1
or
€ = 8 s tan 8/¢ << 1 . (20)

This condition places rather stringent limits. on the sag~to-span
ratio as the chord inclination angle steepens.

Triantafyllou (1984b) Triantafyllou and Bliek (1983), and
Bliek (1984) have developed asymptotic analytical solutions based
upon perturbation theory for the linear dynamics of taut and

sagged incliﬁed cables. It was found from the analysis that the

most important parameter governing the cable dynamics was

2
0s) = - Bal (1 - RO (21)
EA 02 (S)
0
d¢,(8)
where ao = —Fg the local curvature, and M is the virtual

(physical + added) mass of the cable. The parameter Q represents
the interaction between and relative importance of elasticity and
curvature effects for the inclined cable. The linear theory
developed by Irvine and Caughey (1974, 1978) for horizontal and

inclined cables represents the special case Q = constant. This



is the parabolic cable approximation, or @y = constant together
with the condition that the ratio of cable welght to tension,
mgi/Hl, is small. The solution obtained by Triantafyllou
consists of slow and fast varying terms with respect to the
distance along the cable. When Q(8) becomes zero at some point
along the cable, the slowly varying solution is of exponential
form up to the Q@ = 0 point and gsinusoidal beyond 1it. This
transition corresponds to a change from inextensible <cable
dynamics (exponential; curvature important) to taut cable
dynamics (sinusoidal: elasticity {mportant). Over some length of
the cable there will be in general a combination of the two types
of behavior.

A frequency crossover never occurs in the case of the
inclined cable. Tnstead the modes are hybrid in form over the
transition rgzge from the inextensible to the taut cable. They
are a mixture of symmetric and antisymmetric modes as shown by
Triantafyllou (1984b). There is virtually no difference in the
natural frequencies computed by the methods developed by
Triantafyllou and by Irvine (1978), as shown in Table 1, but the
hybrid mode shapes are unique in form as shown here in an exanmple
given below.

. The governing parameter 22 for the inclined cable is given
by (see Irvine, 1978)
H. L

2 . (mgtcoshy? T1vel
kl “{ Hi ) 2’1/( EA )1 <22)



TABLE 1

Natural Frequencies of Taut and Slack Inclined Cables
(from Triantafyllou, 1984b)

“9 Wy @q © g ws
Triantafyllou, 1984b 2.15 2.21 3.38 4.37 5.48
Irvine, 1978 2.17 2.20 3.39 4.39 5.51

Cable Properties:

Length {unstretched ), L = 330m
Cross section, A = 7.07 (10”%) m
Young's modulus, E = 15 (1010) N/m?
Mass per unit length, m = 5.56 kg/m

2

Weight per unit length (in water), w = 47.6 N/m

Added mass coefficient = 0.128

Water Depth, D = 130m

Horizontal force on top = 76,300 N
4_wyension on top, T = 86,660 N
muInclination angle, ¢a = 23.46° .

Curvature at the midpoint, al = 5.24 10

Nondimensional Quantities:

La, = 0.173 = 1.73 ¢

Ta ~ 3
*ﬁ"x=-“8o17 (10 ) = 0.817 ¢
w%nL

2 . n? 162 = 1.62 n? fe?



where H, = H/icost8, .= £/cosd and Loy = Lefcose. There 1is a

1
direct relationship between the parameters A2 and Q. This 1is
readily shown for a shallow-sag horizontal cable as was done by
Triantafyllou. When the natural frequencles of an Inclined cable
(properties given by Triantafyllou, 1984b) are plotted against
A2, the results are as shown in Fig. 4. There 1is no c¢rossover
bit instead the two mnatural frequency curves pass close together.
The transitions of the first two modes for 6§ = 607 and mgL/Hl =
0.15 are shown in Fig. 5. Well below the transition the mode
shapes are those of a taut cable. Then the symmetric and anti-
symmettric modes become hybrid modes. Above the transition:
region, the lower hybrid mode which originated from the symmetric
mode becomes antisymmetric, and the other hybrid mode is trans-
formed into EE# first symmetric mode of an inextensible cable.
The extent of the transition region 1s dependent on the elastic
strain Hl/EA. As noted by Bliek, previous investigators, e.g.
Irvine (1978), Henghold et al (1977), as a practical matter were
unable to observe the hybrid mode behavior because of the small
transition region which was produced by the cable parameters in
those studies.

-The critical total tension H; can be defined for an inclined

slack cabdble in much the same way as was done for a cable with

supports at the same elevation. For the inclined cable.
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Figure 4 - The first two natural frequencies of an Inclined slack
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Figure 5 - The transition with increasing X% of the first two
natural modes of an inclined slack cable in air, for 6 = 600

and mgL/H1 = 0.15 as in Figure 4: from Triantafyllou (1984b).



£
2 ne 2 EA
Ay o= { = cos?8 )} El[H 3 1, (23)
1 I7el
and if the assumption once again is made that Le}” 22, then
2
ngk
P Ly (EA) os2p .
1 H H
1 1
This equation can be rearranged into the form
2
H? = —% [mgﬁz) EA coslf (23a)
A
1
which beconmes #,
cos 8
st
L
» FA- I 2 1/3
Hy= 0.93 (cos?8/ [WIEA) (24)

since W = mgfﬁg is the total cable weight to the accuracy of the

linear theory and again A2 1.26 for the lowest symmetric (n=1)

1

cable mode. The antisymmetric modes are unaffected as before for

The onset of slack effects in the higher

2
i,n’

A major finding of the studies by Triantafyllou and Bliek

s/ < 1:8 and H1> wl.

cables can be estimated by using Eq. (17b) to compute A

(1983, 1984, 1984b) is that the dynamic tension in the cable 1isg
increased greatly over the hybrid mode transition range.
Previously, dynamic tension effects were thought to be minimal

for the antisymmetric modes, so that from a practical standpoint



fatigue and fallure effects were only important for the symmetric
modes.

Figures 6, 7 and 8 depict the behavior of the frequencies
corresponding to the lowest eighteen modes for a suspended cable
possessing the physical properties defined in Table 1. Figures 6
to 8 refer respectively to suspension inclinations of B = 00
(horizontal), 30% and 60%. The results shown there independently
confirm the findings of Bliek (1984) and a Triantfyllou (1984B)
that in a strict sense, frequency crossover of the im-plane modes
occurs only for the specilal case of horizontally suspended cables
(Fig. 6), whereas nonzero inclinations lead to a glancing
(hybrid) behavior of the frequency plots (Figs. 7 and 8). These
computations employed the method developed by Rosenthal (1981)
which was described earlier in the report.

In eaéﬂm;f the figures the horizontal axis depicts the sag-
to-length ratio which ranges from near =zero for taut cables to
slightly over one~half for a completely slack or doubled-up cable
whose end positions are made to coincide ("slightly over one-
half"” because of the stretch induced by the cable's weight). All
inplane mode curves (which coincide with out-of-plane mode curves
over certaln ranges) are shown as solid lines. NDashed lines
depict ranges over which only out-of-plane modes exist. The
chord~to-length ratios corresponding to these sag-to-length

ratios are also indicated and range from slightly greater than

one for a tautly stretched cable to zero for the doubled-up case.
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Figure 6 ~ Natural frequencies for a horizontal (6=0) extensible

cable in air as a function of the ratio of cable sag to length,
s/L. Cable properties as in Table 1.



The vertical scale denotes the frequency w of all the
depicted modes in radians per second. Both the horizontal
(sag/length) and vertical scales are logarithmic to show the full
ranges of values. Except for very large sag and for the cross-
over effects (or the comparable hybrid mode transition for the
inclined cases), these logarithmic frequency plots all exhibit a
distinet downward slope equal to =-1/2. This 1is because the
frequency is approximately proportional to the square root of the
horizontal tension component Hy, while the tension itself 1is
approximately proportional to the sag.

Since the horizontally-suspended cable is a limiting special
case of suspension at an arbitrary angle of inclination, the
following discussion will be limited to the behavior of frequency
with sag as shown in Fig. 8, the case of 6 = 60° inclination.
In this fig&ég we focus our attentlion respectively on the lowest
out~of~plane and the lowest in-plane modes, since higher pairs of
such modes possess characterigtics which are similar to those of
the lowest pair.

We note that the lowest out-of-plane mode has a frequency
which is remarkably linear with sag, even out to the maximum sag
of slightly over one-half. This mode is the only one which
exhibits this high degree of linearity. The corresponding in-
plane frequency at the low-~sag end begins to rise above the out-—
of-plane value and initially continues to exhibit an essentially

symmetric mode shape. This 1s the well-known lowest resonance of




a taut string. As 1ts frequency rises towards the frequency of
the second out-of-plane mode, however, if loses 1its symmetry,
becoming "hybrid" as Bliek and Triantfyllou termed it.

As its frequency glances from the second in-plane mode
frequency (touching it in the horizontal case), 1t then remains
only sightly below the second out-of-plane mode, becoming
decidely anti-symmetric with increasing sag. For higher values
of sag, the first in-plane mode then lowers 1its frequency away
from the second out-of~plane value, and finally returns to where
the lowest pair again has two identical frequencies, which cor-
respond to the pailr of orthogonal pendulum modes at maximum sag,
i.e. a cable folded back along its length. The figure shows the
corresponding behavior for all of the nine pairs of out-of~plane
and in-plane modes which were computed as part of this study.

Bliek (1984) has compared results from the perturbation
theory (Triantafyllou, 1984) with a finite-difference solution
for the linear cable dynamics. An explicit centered-difference
scheme was selected to solve the problem by means of a transfer
matrix formulation. From the numerical simulation, which can be
considered as "exact”, predictions of the dynamie tension, angle
of inclination, and tangential and normal displacements can be

obtained. The mnatural frequencies are dependent upon threae

parameters:
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in air as a function of the ratio of cable sag
Cable properties as in Table 1, legend as in



o the inclination angle, Ba;

o the non-dimensional weight, mgL/Hl-

o and, the elastic strain, Hi/EA.
Here HI i the tension component H/cos 8a . The latter two can
be combined as shown aarliér into the single fundamental
paramete;l Az that characterizes the cable dynamics. As noted
earlier, A2 is proportional to the ratio of the elastic stiffness
to the catenary stiffness.

Some typical examples of the results obtained for an exten-
sible cable imn air by Bliek are shown 1in Figs. 9 to 11. A value
of (H;/EA)"! = 400 was employed in the calculations. This is
representative of a steel cable where the ratio of the elastic,
or longitudinal, and transverse wave speeds {is cel/ctr = 20. The
numerical results were obtained with a centered difference schene
using 100 intégration intervals over the length of the cable.

The natural frequencies of the firet two symmetric and
an;isymmetric transverse modes are plotted in non-dimensional
form as a function of mgL}Hl for a horizontal cable (8 = 0 ) and
for an inclined cable ( 6 = 30°). The modal crossover is clearly
shewn for the horizontal cable im Fig. 9 and the perturbation
theory and numerical results are in overall good agreement. When
the cable 1is inclined at & = 30% there no longer is a frequency
crossover, but rather the hybrid mode transition as shown in
Fig. 10. The symmetric modes are transformed into antisymmetric

modes and vice versa as shown earlier in Fig. 5. Again there is
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Figure 9 - Natural frequencies for the first two symmetric and
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of the non-dimensional welght parameter, mgL/ﬁlz from Bliek
(1984). Horizontal cable, 8 = 0°, (H,/EA)"L! = 400.
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good agreement between the perturbation solution and the numer-—
ical simulation. The natural frequencies‘for the first pailr of
modes are shown on an expanded scale in Fig. 11. Thig enlarge-
ment demonstrates very clearly that no crossover exists. This
hybrid modal transition now has been demonstrated conclusively by
applying the perturbation solution {(Triantafyllou, 1984b: Bliek,
(1984) and by means of independent numerical simulations by Bliek
and the present writers.

The results in Figs. 9 to 11 show the overall good agreement
between the two solution approaches. However, at large inclina-
tion angles (& ~ 600) and the wvery high wvalues of the mnon-
dimensional weight mgL/HI the perturbation solution diverges from
the numerical simulation (Bliek, 1984). The agreement between
the two approaches improves at the higher cable modes where the
change in cable tension becomes smaller over a wavelength of the

vibration.

6. SLACK CABLES WITH ATTACHED MASSES

All of the results discussed thus far have been limited to
horizontal and dinclined bare cables. However, there are many
marine applications where cables have arrays of instrumentation
modules, weights and bucyancy elements artached to them. Ehe
computer code NATFREQ was developed at the California Institute

of Technology for the Naval Civil Engineering Laboratery to

provide a means for predicting the natural frequencies, mode



mass term affects only the transverse motions of the cable (in-
plane and out-of-plane) and not the longitudinal or tangential
motions. Thus 1in order to derive a complete dynamic analysis of
a slack cable in water the natural frequencies of the transverse
modes must be corrected for the added mass effect of the fluid.
The elastic or tangential modes need not be corrected for the
fluid inertia or added mass. The mass of attached discrete
elements such as the cylindrical lumps discussed in the previous
section also must be corrected for the fluid inertia effect.
The dimensionless added mass coefficient Cam is defined by

m

EKM = 1 + Cam/S (26) -
A

where my is the virtual (physical + added) mass in water, my 1s
the mass in éir, and S is the specific gravity of the cable or
attached member. For a taut cable the natural frequencies in the

two media follow the relation

1/2
“ (m_‘i> 27
“w MA
Then the added mass coefficient is given by
" 2
A -
Cam = § ; 1. (28)



and Capg can be derived from measurements of the natural
frequencies in air and in water. Ramberg and Griffinm (1977) have
reported extensive measurements of the added mass of marine
jcables by this wmethod for the case of taut cables. Less
extensive measurements by Ramberg and Griffin of the natural
frequencies of slack marine cables in the two media suggested
that the added mass contribution was the same for slack and taut
cables when the static effect of buoyancy on Az was properly
accounted for in the crossover or hybrid response regime. In
most instances 1t is reasonable to assume that Cam = 1; that is,
the added mass 1s equal to the volume of fluid displaced by the

cable or attached mass.

Hydrodynamic Drag An important consequence of the resonant

cross flow oscillations of structures and cables due to wvortex

shedding is an amplification of the mean in-line drag force (or
equivalently the drag force coefficient CD); The drag amplifi-
cation measured prior to 1980 under a variety of conditions has
been reported by Griffin et al (1981). More recent and extensive
measurements of the drag on cables and cylinders in water are
discussed by Vandiver (1983), Griffin and Vandiver (1983) and
Griffin (1985). From all of these discussions it is clear that
vortex—excited vibrations of c¢ables and cylinders in water can

cause amplifications in the hydrodynamiec drag of up to 250

percent.



Two crucial elements in the accurate prediction of the
hydrodynamic drag on a vibrating cable are accurate estimates of
the natural frequencies and the mode shapes associated with the
vibrations. The frequency must be known in order to determine
whether the Strouhal frequency of vortex shedding will lock-on or
resonate with one or several of the natural frequencies of the
cable. The mode shape must be known in order to determine the
vortex~exciﬁed strumming pattern along the cable. Then the local
cross flow displacement amplitude distribution lengthwise along
the cable can be used to predict the overall hydrodynamic drag
from the local drag amplification.

The NATFREQ computer code described by Sergev and Iwan
(1980) by @Griffin and Vandiver (1983) has the capability to
predict the strumming drag on a taut cable with or without
attached masé;s. In order to make a comparable strumming
assessment for a slack cable configuration, the natural
frequencies and mode shapes alsoe must be known with some
accuracy. The methods described by Triantafyllou (1984), Bliek
(1984), and in this report can be applied to the case of a bhare
cable. For a slack cable with attached masses, the SLACKI and/or
SLACKZ computer codes can be used to predict the in-plane natural
freqhencies and mode shapes which are influenced by the cable
strumming. The results discussed in the previous section clearly
show that for slack cables, accurate predictions are limited to

the lowest cable modes. Otherwise only a rough approximation is



possible. This 1s in contrast to the NATFREQ code, for which
Sergev and JIwan give an example showing the computed 167nd mode

for a 4700 m (15400 ft) long taut cable with 380 attached masses.

8. SUMMARY

Conclusions. The linear theory for the dynamics of

horizontal cables with sag-to-span ratios of 1:8 or less can be
described by the linear solution derived by Irvine and Caughey
(1974). This is a special case of the more general perturbation
solution for the linear dynamics of taut and slack cables derived
by Triantafyllou (1984b) and Bliek (1984). The dynamics of
horizontal slack cables are characterized by a frequency
"crossover” behavior. This modal crossover 1is a complex
phenomenon whereby three modes of the cable have the same natural
frequency. Ifﬁese modes include a symmetric in-plane mode, an
antisymmetric in-plane mode and an out-of-plane or sway mode.

A frequency crossover mnever occurs In the case of the
inclined cable. Instead the modes are hybrid in form over the
transition range from the taut to the inextensible cable
behavior. These natural modes are a mixture of symmetriec and
antisymmetric modes as shown by Triantafyllou (1984b) and in this
repoft. There are virtually no differences in the natural
frequencies computed by the methods of Triantafyllou and Irvine

(1978), but the mode shapes of the inclined slack cable are

unique in form as the natural frequencies pass close together but



never cross over. BSeveral examples of both the crossover and the
hybrid mode behavior are given in this report.

The results obtained in this study have shown that for slack
cables with attached masses only the lowest c¢able modes can be
modelled with reasonable accuracy at the present time. Otherwise
only a rough approximation is possible. This is because of the
relatively small numbers of finite elements and integration
intervals which 1limit the present capabilities of the two codes.
The addition of attached masses to the bare cable affects bhoth
the antisymmetric and symmetric din-plane modes. There 1is a
systematic increase in the natural frequencies of a slack cabdle
as masses are attached to it. For the symmetric modes the
natural frequency may dincrease or decrease, depending upon the
proximity to the <c¢rossover or hybrid regions of the cable
response. .fgis is caused by. the extreme sensitivity of the
symmetric cable modes to small changes In tensieon and sag near
those regions.

Recommendations. The capabilities of existing computer

codes are limited, as mentioned above, to calculating with
accuracy only the lowest cahle natural frequencies and node
shapes. The computations of the higher modes are rough
appfoximations because of the relatively small number of finite
elements oT integration intervals that can be emploved
efficiently on all but the largest computers. In order to make

practical engineering calculations of the dynamics of slack



cables with attached masses, more efficient solution routines and
means to employ the capabilities of existing medium size and
large~scale computing machines must be sought. The approach of
Rosenthal (1981) Dbased upon Stodola's methoed of successive
approximations appears to be the more promising one for the case
of a cable with attached wmasses. Then the need to solve the
large matrix equations inherent in the finite element method is
eliminated, and the computational resources are greatly reduced.

For a bare cable eilther of the approaches described by
Irvine and Caughey (1974), Triantafyllou (1984b) or Bliek (1984),
or some combination of the three, should yield positive
results. Rosenthal's approach also is applicable to the special
case of the bare cable és shown previously and in this report.

The effects of added mass or fluid iIinertia are an important
consideratioﬁwwfor the transverse (in-plane and out-of-plane)
modes of a cable In water. The longitudinal or elastic modes are
unaffected by the added mass of the fluid. Thus any improved and
more “user friendly"” slack cable dynamics computer code should
account for the added mass effect on both the c¢able and any
discrete masses which are attached to it.

Two crucial elements 1in the accurate prediction of the
hydfﬁdynamic drag on a vibrating marine cable are accurate
cgtimates of the natural frequencies and mode shapes of the
vibrations. This and other recent studies have demonstrated the

complexity of the =slack cable dynamics problem. Thus an



assessment of the strumming behavieor of a slack cable and of the
overall hydrodynamic drag presently is 1limited to the lowest
cable modes as described earlier. It is recommended that any
improved slack cable dynamics code also include the capability
ofpredicting the hydrodynamic drag. A similar capability 1is
available in the taut cable dynamics code NATFREQ described by
Sergev and Iwan {1980).
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shapes and drag coefficients for taut cables with large numbers
of attached discrete masses. A basic descfiption of the code and
an operating manual to aid in its use are available- see Sergev
and Iwan (1980), and Iwan and Jones (1984), respectively. An
extensive program of field experiments was conducted to benchmark
the capgﬁilities of the NATFREQ code, and a éomparison of the
code predictions and the results of the experiments has been
given by Griffin and Vandiver (1983, 1984).

In this section of the report a comparison is presented of
two computer codes which have been developed for predicting the
natural frequencies and mode shapes of slack cables with arrays
of discrete masses attached to them. This {is a preliminary
assessment since the capabilities of the codes presently are not
as extensive and well-documented as are those of the taut-cable
code NATFREQ, and the solution algorithms for the slack cable
dynamics are far more complex than are those required for the
anglysis of taut cables.

The two slack cable codes discussed here are called SLACKI]
and SLACK2, respectively. SLACK] 1is essentially the three-
di?ensional cable dynamics code which was developed by Henghold,
Russell and Morgan (1977) and modified later at NRL. The finite
element formulation employed in SLACK! is described in detail by
Henghold and Russell (1976). Three-node elements are employed in
the code which 1s capable of accommodating up to sixty nodes

along the length of the cable. SLACK2 is the most recent version



of the three-dimensional cable dynamics code developed at NRI by
Rosenthal (1981). This latter code uses a modified form of the
method of imaginary reactions described by Skop and O'Hara (1970)
and by Skop and Rosenthal (1982) to obtain the static cable
configuration. Then Stodola's method (sce Thomson, 1965) is used
to calculate the «cable dynamics. Stodola's method is =&
successive approximation approach to computing the natural
frequencies and mode shapes of the cable. The use of Stodola's
method eliminates the need to solve the large matrix equations
which are inherent in the finite element method of computing the
natural frequencies. Up to sixty integration intervalé can be
included over the length of the cable at the present time,
Details of the computational scheme are given by Rosenthal
(1981). Both computer codes are capable of predicting the out-~
of-plane andﬂgn-plane components of the cable dynamic response.
The present discussion is limited to the transverse component of
the response since the longitudinal, or elastic, component occurs
at higher frequencies and is smaller by an order-of-magnitude.
The cable configurations chosen for the comparison and
demonstration are slack cable analogues to the taut cable field
test set-up which was employed in the NATFREQ code validation.
At tﬁe test site a 22.9m (75 ft) lomg by 3.2 cm (1.2% 4n)
diameter taut cable was emploved, so that for the pregent
computations the chord length was set equal to & = 22.9 n

(75 ft). The attached masses were cylindrical lumps of PVC into




which lead inserts could be put in order to change the physical
mass from "light™” (m = 2 kg or 4.4 1b,) to."heavy" {(m = 4.5 kg or
10 1bm). In the computations discussed below the eylindrical
masses are treated as point concentrated loads. This approxi-
mation also is made in the NATFREQ taut cable code. Complete
descriptibns of the cable, the attached masses, and the test set-—
up and instrumentation are given by McGlothlin (1982) and by
Griffin and Vandiver (1983). The two configurations chosen for
the computations are shown in Fig. 12. The first consists of two
evenly-spaced heavy masses. The second consists of five evenly-
spaced masses -- two light cylinders and three heavy c¢ylinders.
The cable had a mass per unit length m = 1.14 kg/m (0.77 1b,/fc)
in air and an elastic stiffness EA = 8.9 x 10°N (2x10° 1b).

Since the relative capabilities of the two codes were not
known for the case when masses were attached to the cable, a
baseline comparison was made using just the hare cable. Then the
relative accuracies can be compared with the results obtained by
Rosenthal (1981). The present results are given in Table 2 for
the first nine cable modes. Twelve elements and twenty-five
nodes were used for the SLACKl finite element computations while
for the SLACK2 computations by Stodola's method thirty integ;a~
tion intervals were used. These conditions were thought to be
reasonably comparable. The two methods give estimates of the
natural frequencies, in the proper order, which differ by 1less

than five percent for the first nine cable modes. For higher
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Figure 12 -~ Two attached mass/cable configurations employed in

the comparison between the SLACKl and SLACK? computer codes. The
configurations shown are taken from the field test report of
6riffin and Vandiver (1983).



modes the estimated frequencies diverge rapidly due te¢ the
relatively 1limited number of elements Aused. The maxinpum
permissible number of finite elements is dependent on the
magnitude of the relative elastic stiffness AE/mgt , due to the
nature of the governing equations for the natural frequencies and
the matgix manipulation routines that are used in the SLACKI
code.

The static solutions obtained by the two methods for all of
the slack cable configurations are virtually indistinguishable,
both for the bare cable and the cable with attached masses. The
maximum sag-to-length ratios, s/L, obtained by the two approaches
are compared din Tables 2, 3 and 4. These and the comparisons
which follow are for a cable deployed 1in air where added mass
effects are not important. A brief discussion of the effects of
added mass on the natural frequencies of a slack marine cable is
given in the next section of the report.

The natural frequencies obtained for the two cable-attached
mass configurations are compared in Tables 3 and 4. The results
for the cable with two evenly-spaced attached masses are listed
in Table 3 for the first nine natural cable modes. Eighteen
finite elements were employed for the SLACKI computations, while
two cases of fourteen and thirty integration intervals were
employed for SLACKZ2. In each case the sequence of modes was
properly ordered, i.e. out-of-plane, antisymmetric, etc. The

mode order shown 1s typical of relatively large sag-to-length
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ratios to the right of the wmodal crossover or hybrid node
region. For this condition the cable exhibits largely inexten-

2

sible behavior; that 1is, A° is large. For the cable deploved

during the field tests, P 650 for /L = 0.987 and
EA/mgl = 3500.

Itléan be seen from Table 3 that the results obtained with
the two computer codes for the cable with attached masses differ
more than the c¢omparable bare cable results. The out-of-plane
first mode frequency computed using SLACK! is ten percent higher
than the same frequency computed using SLACK?. The soclutions
obtained with the two codes diverge still further until for the
ninth mode the SLACKI-predicted frequency is elghteen percent
higher than the SLACK2 prediction. When the number of integra-
tion intervals 1s reduced by one-half, there is only a three
percent decrease in the SLACK? prediction of the ninth-mode
frequency. It was found in an earlier study (Rosenthal, 1981)
that the SLACKl code predictions tended to overestimate the
higher mode frequencies due to artificial stiffness effects upon
the finite element solution when the number of elements was too
feg. Conversely, the SLACX2 prediction tended to underestimate
the true natural frequencies when too few integration interv;ls
were used. Thus the predicted frequencies are only true
estimates for the lowest cable modes. When the number of finite
elements or integration intervals 1is of the order of the mnmode

number, the predicted frequencies are only rough approximations.
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The natural frequencies for the cable with five attached
masses are compared in Table 4. The modé type and ordering of
both the BSLACK] and SLACKZ-calculated frequencies are correct for
all nine modes. However, the fregquencies predicted by the SLACKI
code again are consistently higher than the corresponding SLACK2
predict;dns. The first out-of-plane mode frequency 1s thirteen
percent higher and this difference increases to eighteen percent
for the eighth symmetric mode. Once again the static solutions
obtained by the two methods are virtually indistinguishable.
There 1is a general Increase 1in the natural frequency of a gilven
mode as the number and mass of the attached bodies are
increased. This is opposite to what is found for an extensible
taut cable. There also is an 1increase in the sag—-to-length
ratio s/L as the attachments on the c¢able are increased in
number . o

The first four in-~plane mode frequencizs for the three cable
configurations discussed here are compared in Table 5. It is
seen from the results that the Increase in frequency 1is
systematic for the antisymmetric modes. For the symmetric modes
th? natural frequency first increases relative to the bare cable
when two equally-spaced masses are attached to the cable. Then
the frequency decreases slightly when the number of attached
masses 1is increased to five. This behavior is caused by the
extreme sensitivity of the symmetric cable modes to small changes

in tension and sag near the crossover or hybrid regions of the
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cable response. The increase 1in static tension caused by the
addition of the attached masses is given in Table 5 for the three
cases.

The shapes of the fourth and eighth symmetric modes for the
cable with five attached masses are plotted in Fig. 13. The
predictions were made with the SLACK2 code. In each case the
vertical scale is normalized by the factor
' 1/2
v = 1] Ww(s)1Pam . (25)

s=0
The integrand is discontinuous at the locations of the individual
attached masses, leading to a Stieltjes integral representation
consisting of a regular integral representing the bare cable and
a sum of discrete mass terms {Rosenthal, 1981). It is ¢clear from
the plotted mode shapes that in general the masses are 1in motion
and do not lie at nodes of the vibration pattern. This is
similar to the findings of Griffin and Vandiver (1983,1984) for

the case of taut marine cables.

7. ADDED MASS AND HYDRODYNAMIC DRAG

Added Mass. The effect of a dense fluid such as water on

the cable dynamics is an important consideration in terms of the
added mass, or fluid inertia, component of the hydrodynamic force
system. The total, or virtual, mass of the cable in water then

is the sum of the physical mass and the added wmass. The added
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Figure 13 - Normalized displacement patterns for the first two
symmetric modes of the slack cable with five attached masses.
Chord-to- length, &£/L = 0.962: elastic stiffness, AE/mgfi = 3500.



