EDMS 4.1 Note

How EDMS models gates with AERMOD

How EDMS models gates with AERMOD depends upon the number of points chosen from the drop-down list in the gates dialog box used to represent the gate. The user may choose "1" or "3" to "20" points, inclusive. If "1" is chosen, the gate will be modeled as a VOLUME source centered on the one specified point. If "3" to "20" points is chosen, the gate will be modeled as an AREA source that is a polygon with the specified points for vertices.

EDMS *Reference Manual* Supplement -Model Changes between EDMS 4.05 and EDMS 4.1-September 30, 2002

<u>General</u>

General	
Change	Effect
<u>Right-Click Popup Menus</u> In version 4.1, popup menus activated by "right- clicking" the mouse are implemented in most dialog boxes. For example, in the Operational Profiles dialog box, right-clicking in the list of profiles creates a popup menu with the options: Add New, Delete, Duplicate and Select All.	The user can more easily perform dialog box functions.
<u>Duplication</u> In version 4.1, users can duplicate items in a list in most dialog boxes. For example, in the Operational Profiles dialog box, clicking the "Duplicate" button duplicates each selected item in the list and adds it to the study.	The user can more easily create items in the study.
<u>Multiple-Selection Editing</u> In version 4.1, users can select more than one item simultaneously in a list in most dialog boxes and proceed to make appropriate editions to all those selected. For example, in the Aircraft dialog box, the user can set the taxi and queue time simultaneously for several selected aircraft.	The user can more easily edit items in the study.

Study Setup

Change	Effect
GSE Modeling Basis Previously, users modeled GSE emissions by basing GSE operations on aircraft LTO cycles. In version 4.1, users can alternatively select "Population Based" to specify a GSE population whose operations are entered independently of aircraft. Any specified population is meant to be inclusive of <u>all</u> GSE operations. However, users can also select "LTO based" to base <u>all</u> GSE operations on aircraft as in prior versions of EDMS. LTO based and population based GSE data are maintained by EDMS separately. Switching between one basis to the other will <u>not</u> delete or transfer any data.	Users are given a new option when modeling GSE.

Study Year Previously, users did not specify this parameter. In version 4.1, users must specify a study year for which the airport is being modeled. Because of forecasted changes in GSE technology and the impact on GSE emission factors, this parameter is used in determining applicable emission factors. Study year also applies to the MOBILE5a scenario year for determining on-road vehicle emission factors.	Users must specify the year for which the airport is being modeled.
Vehicle Fleet Year Previously, the vehicle fleet year was used to determine on-road vehicle emission factors, however in version 4.1, "Study Year" has replaced this parameter.	Users set the MOBILE5a scenario year with the Study Year parameter.

Operational Profiles

Change	Effect
<u>Combined Three-tabbed Dialog Box</u> Previously, the user had to switch between three separate dialog boxes. In version 4.1, the three separate dialog boxes are grouped into a single three-tabbed dialog box. The user needs to only click on a tab to view and edit an operational profile of a particular type.	The user can more easily switch between all of the operational profiles.
<u>Deletion</u> Previously, deleting an operational profile that was in use would not result in any warning. In version 4.1, the user is warned when attempting to delete a profile that is in use and prompted to change any uses to "DEFAULT". The "DEFAULT" profiles may not be deleted, however.	Both used and unused operational profiles may be safely deleted.
Name Changing Previously, operational profiles could not have their names changed. In version 4.1, name changing is allowed with the exception of the "DEFAULT" profiles.	The user more easily manages the naming of operational profiles.

Aircraft Operations & Assignments

Change	Effect
<u>Aircraft-Engine Combination Tree</u> Previously, the user chose an aircraft-engine combination to add to a study by selecting an aircraft from a list box followed by selecting an engine from a separate combo box below. In version 4.1, the two box controls are replaced by a tree control that has a "branch" for each aircraft type and whose nodes expand to reveal the available engines as "leaves."	The user needs only to make one selection when selecting an aircraft-engine combination to add, and therefore the interface is easier to use.
<u>Bold Default Engines</u> Previously, default aircraft engines were labeled only as "Default," requiring the user to look up the engine name in a separate table. In version 4.1, default engines are labeled by their names with bold text to signify them.	The user can determine the engine that is used by default without looking in a separate table.
<u>Aircraft-Engine Tree Right-Click Popup Menu</u> Right-clicking on any engine produces a menu with the options to add the selected aircraft-engine combination to the study, or alternatively, view emissions or default times in mode before adding it to the study. This also applies to user-created aircraft and system aircraft that have a designated default engine.	The user can more easily review emissions and default times in mode information for a particular aircraft-engine combination prior to including it in a study.
<u>"Switch Eng" Button</u> Previously, once an aircraft was added to a study, the user could not change its assigned engine. In version 4.1, the assigned engine can be exchanged for another engine appropriate for the airframe by selecting a single aircraft in the study and either clicking the "Switch Eng" button, double-clicking the engine name, or right-clicking on the selection and choosing the "Switch Eng" option.	The user can more easily change engine assignments within a study.
<u>Running Total</u> Previously, the user had to add up each aircraft's LTOs and Touch and Gos manually to verify that the correct total amount had been entered. EDMS 4.1 includes a running total of annual LTOs and Touch and Gos for all aircraft in the status bar (the bottom of the EDMS window).	The user can quickly see how many LTOs and Touch and Gos have been specified.
Takeoff Weight Previously, the user chose a takeoff weight from a combo box on the Times In Mode tab. In version 4.1, the same functionality in the interface has been replaced with a continuous slider control.	During a multiple-selection of aircraft in a study, the user can simultaneously set the aircraft's takeoff weights to the maximum, the minimum or somewhere midway.

Approach Angle Previously, only approach angles appropriate for the selected airframe would appear in the approach angle combo box. When "5 degrees if applicable" appears, it means that some but not all of the aircraft selected can have an approach angle of 5 degrees. When this is chosen, EDMS assigns an approach angle of 5 degrees to all aircraft for which such an angle is appropriate and 3 degrees to all those for which it is not.	The user need not look to see if 5 degrees is available for every aircraft in the study, and therefore aircraft setup is less time consuming for the user. Moreover, during a multiple-selection of aircraft in a study, the user can simultaneously set the aircraft's approach angle to either the minimum or maximum allowed.
<u>APU Assignment</u> Previously, users could accidentally assign more than one APU to an aircraft. In version 4.1, the user selects a single APU to assign to an aircraft from a combo box and enters the respective operating time per LTO cycle in the edit box below. As with engines, default APUs are denoted in bold	The user is now prevented from accidentally assigning more than one APU to an aircraft.
Gate Assignment Previously, users could not unassign an aircraft from a gate. In version 4.1, the user can select "- NONE-" from the gate combo box to specify that an aircraft is not assigned to any gate and therefore cannot have its GSE emissions considered in a dispersion analysis.	The user is given greater freedom in aircraft gate assignment.

<u>GSE</u>

Change	Effect
GSE Operating Parameters Previously, users could not specify the load factor or brake horsepower of a particular GSE; these elements were an internal component of the model. With the phasing-in of the NONROAD draft model emission factors in version 4.1 (see below), the user can specify an assigned GSE's fuel, operating time per cycle, brake horsepower and load factor. All four of these factors are used in determining a GSE's contribution to airport emissions. GSE Assignment appears in the aircraft dialog box if GSE are being modeled on an LTO basis.	The user is given greater freedom in modeling GSE emissions.
<u>GSE Emission Factors</u> New emission factors for Ground Support Equipment have been provided by EPA based on the NONROAD draft model. The fleet average grams per horsepower-hour emission indices are provided for four fuel types (gasoline, diesel, CNG, and LPG) and study years 1990 to 2020.	GSE emission factors are expanded, updated, and more consistent with EPA's NONROAD draft model.

GSE Population Dialog Box

Previously, users could only model GSE emissions by assigning GSE to aircraft. In version 4.1, users can specify a GSE population whose operations are entered independently of aircraft by using the GSE Population dialog box. The menu option for this dialog box is enabled only when the user has chosen "Population Based" as the GSE Modeling Basis in the Study Setup dialog box. Users are given greater flexibility when modeling GSE.

Parking Lots & Roadways

Change	Effect
<u>System Emission Factors</u> Previously, users went to a separate sub-screen to enter ground access vehicle emission factors if it was necessary to override the EDMS defaults. In this version, the emissions factors are included and editable within the dialog boxes. By using the check box marked "Use System Default Values", the user can restore edited values to system defaults. If the factors are manually edited, the box becomes unchecked.	The user is given both an indicator of whether or not default system emissions factors are being used and a means to restore altered factors to original default values.
<u>Nudge (Parking Lots only)</u> By clicking on the nudge arrow controls, the user can "nudge" an entire parking lot or just the selected points of a lot in the desired direction.	The user can more easily position a parking lot.

Stationary Sources

Change	Effect
System Emissions Factors Previously, users were unable to restore manually edited emissions factors to original system default values. In this version, by using the check box marked "Use System Default Values", the user can restore edited values to system defaults. If the factors are manually edited, the box becomes unchecked.	The user is given a means to restore altered factors to original default values.
<u>Units of Measure</u> Previously, users were required to operate in units of metric tons when the "Other" category had been selected. In this version, the user can select more appropriate units by clicking on the radio button for "Metric Tons", "Kiloliters" or "Thousands of Cubic	The user is given the ability to work in units more appropriate to a source modeled as category "Other".

<u>Gates</u>

Change	Effect
<u>Area Sources</u> Previously, users could specify only one (x, y) point for each gate. In turn, gates were modeled in AERMOD as volume sources centered on the given points. In version 4.1, the user can specify a polygonal area with at most 20 vertices to represent a gate.	Because users frequently use an EDMS gate to model a large group of physical gates, users may continue to do so more accurately by employing EDMS gates that are area sources.
<u>Height</u> Previously, the release height of gate emissions was set by EDMS at 1.5 meters. In EDMS 4.1, the user can set the release height for each gate in the study individually.	The user is given greater freedom in modeling gate dispersion.
Nudge By clicking on the nudge arrow controls, the user can "nudge" an entire gate or just the selected points of a gate in the desired direction.	The user can more easily position a gate.

<u>Taxiways</u>

Change	Effect
Default Values Previously, all aircraft were assumed to taxi at a speed of 30 mph. In this version, the user can set either the time the assigned aircraft spends on the taxiway or the speed of the aircraft on the taxiway. Editing either one adjusts the other such that the product of the time and speed agrees with the taxiway's length. These values may be overridden in any particular aircraft assignment to the taxiway.	The user is given greater freedom modeling aircraft taxi speed by being able to adjust the default speed along the taxiway and the speed of individual aircraft along the taxiway.

Runways

Change	Effect
<u>Naming</u> Previously, users were allowed to name runway ends using any combination of 3 characters. In version 4.1, users choose from a drop down list of standard runway names.	The user enters conforming runway end names.

Configurations

Change	Effect
<u>Circular Wind Angle Range Control</u> In version 4.1, there is a new circular control that provides the user with both a graphic representation of wind angle range and a means of editing the range. The user can click and drag either the start or end of the range to increase or decrease the size of the range. The user can also reposition the range by clicking and dragging anywhere else in the circle.	The user can more easily edit and understand the wind angle ranges.

Dispersion

Change	Effect
Aircraft Release Height & Initial Dispersion <u>Coefficient</u> Previously, the release height and the initial vertical dispersion coefficient were based on best available information and good engineering judgment. Based on results of an aircraft plume behavior study performed using LIght Detection And Ranging (LIDAR) aircraft plume behavior can be more accurately characterized through revised model defaults for release height and the initial vertical dispersion coefficient. More information on the results of the LIDAR study is provided in the report prepared by the U.S. DOT's Volpe National Transportation Systems Center for FAA titled "Preliminary Report: The Use of LIDAR to Characterize Aircraft Initial Plume Characteristics."	
Previously, the release height was airframe dependent and set to the average engine centerline height. In EDMS 4.1, the release height as been set to 12 meters for all aircraft types. This is meant to compensate for plume rise in buoyant jet and turboprop exhaust, since the LIDAR study concluded that significant plume rise occurs and was not being accounted for.	A release height for aircraft that accounts for plume rise is included.
Previously, all aircraft sources were given an initial vertical dispersion coefficient of 3 meters. In EDMS 4.1, this coefficient, σ_{z0} , is set to 3.8 meters for all aircraft based on results of the LIDAR analysis. It is a measure of how dispersed exhaust is at its origin location.	The initial vertical dispersion coefficient for aircraft sources is more accurate because it is based upon recent LIDAR measurements of actual jet exhaust.

<u>Vertically Stacked Area Sources</u> Previously, a fleet average weighted on annual number of operations of aircraft release height was used to generate release heights for taxiways, queues and runways. In this version, the fleet average is weighted on annual emissions per aircraft. Moreover, the initial vertical dispersion coefficient, σ_{z0} , has been made dependent on the release height as demonstrated in the white paper "The Approximation of Vertically Stacked Area Sources with a Single Area Source in AERMOD", prepared by CSSI, Inc. for FAA and available on the EDMS website.	Initial dispersion coefficients and release height are used more accurately in modeling aircraft sources.
<u>Combined Four-tabbed Receptors Dialog Box</u> Previously, the user had to switch between two separate dialog boxes in order to see all of the receptors in a study. In EDMS 4.1, the user needs to only click on a tab to view and edit a receptor of a particular type.	The user can more easily switch between all of the different types of receptors.
<u>Generate AERMOD Input Files</u> Previously, each time a user chose the "Generate AERMOD Input Files" menu option, a great deal of time was spent constructing the AERMOD source data table. In version 4.1, this is done only when the table is in need of an update.	The user spends less time on average when generating AERMOD input files.
<u>Generate AERMOD Input Files</u> The user can select "Tabulation of all values for every period in a text (.txt) file" in the Output Reporting box to create a list of concentrations for further post processing.	The user can quickly view the raw concentration results.
Generate AERMOD Input Files A progress dialog box is displayed to give the user some indication of the status of the input file generation as well as disk space remaining.	The user can quickly see the AERMOD Input File generation progress.
<u>Run AERMOD</u> Previously, the user was forced to keep the DOS window from which AERMOD was running active or experience significantly lengthened runtimes. In version 4.1, the user can continue to work on the study during processing or even choose to exit from EDMS. If EDMS is still running when AERMOD finishes processing, the user is given notice as to whether or not the processing was successful.	The user may edit an EDMS study while running AERMOD without incurring a significant runtime penalty.

View

Change	Effect
<u>Airport</u> Previously, receptors, taxiways, queues, training fires and stationary sources were not labeled. In version 4.1, these items are all individually labeled. The user can also move the sources using the mouse.	The airport view is more clearly labeled and the sources are now interactive.
<u>Airport Wallpaper</u> Previously, this feature did not exist. In version 4.1, users may select "Modify Wallpaper" to select a bitmap file to display in the Airport View upon which the airport coordinates can be laid out. The user must specify the scale of the bitmap and which pixel in the bitmap is to represent the origin of the airport.	The user can set airport coordinates more accurately by referring to the wallpaper.
<u>General Conformity Rule</u> Previously, users were not able to view the General Conformity Rule de minimis thresholds from within EDMS. In version 4.1, the user may select this option and be referred to the appropriate page in the online help.	The user can more quickly refer to and view the General Conformity Rule de minimis thresholds.
Emissions Inventory & System Tables Previously, a static fixed-width font spreadsheet displayed the queried values. In this version, the values are displayed in the selected system font in a spreadsheet that allows dynamic column resizing and rearrangement. The column titles also remain at the top of the view during vertical scrolling. As before, these tables can also be printed.	Viewing the emissions inventory and the system tables has been enhanced.

Reports

Change	Effect		
Print Emissions Report(s) & Print All Model Inputs In this version, both of these reports have been enhanced for easier readability and now include page numbers.	The reports are now easier to read.		

Add/Create Aircraft

Change	Effect
<u>Times In Mode</u> In version 4.1, the user can set a user-created aircraft to have the same default times in mode as a system aircraft by choosing an aircraft-engine combination in the Flight Profile box and checking the "Use times in mode of specified aircraft-engine combination" check box. The EPA default times in mode can be used as well, based on the category of the aircraft.	The user can more easily make a user-created aircraft emulate a system aircraft or quickly apply the EPA default times in mode for emissions inventory purposes.
Engine Emissions Data Source In version 4.1, the user can set a user-created aircraft to have the same emission factors as a system aircraft in the Engine Emissions Data Source box by selecting "System Tables" and choosing an aircraft-engine combination.	The user can more easily make a user-created aircraft emulate a system aircraft.
<u>ICAO Format</u> Previously, emission factors were entered as kilograms per hour. In version 4.1, the user specifies emission indices (grams of pollutant emitted per kilogram of fuel burned) and fuel flow (kilograms per second).	The engine emission factors for user-created aircraft are put into the same format as the ICAO databank's engine emission factors.

Add/Create GSE

Change	Effect	
<u>Annual Operating Time</u> In version 4.1, the user can specify a default annual operating time for a particular user-created GSE. This value is used when adding a user-created GSE to a study's GSE airport population.	The format of the user-created GSE data screen allows for an annual operating time to be entered for use in population based GSE calculations.	
Emission Factors Data Source In version 4.1, the user can set a user-created GSE to have the same emission factors as a system GSE in the Emission Factors Data Source box by selecting "System Tables" and choosing a GSE type and year.	The user can more easily make a user-created GSE emulate a system GSE.	
Power Rating, Load Factor, and Emission Factors With the phasing-in of the NONROAD draft model in version 4.1, the user can specify a power rating and load factor for each user-created GSE. For each GSE, fuel burned and pollutant, the user also can enter user-specified emission factors (that are different from the NONROAD draft model emission factors) in units of grams per brake horsepower per hour.	The format of the user-created GSE data more closely resembles the format found in the NONROAD draft model.	

Utilities

Change	Effect
<u>Add/Create APU</u> Previously, the user created GSE and APU were co- located in the same dialog box. In version 4.1, there is a separate dialog box for user created APUs. This new APU dialog box is similar to the previous Add/Create GSE dialog box, and will allow users to copy in emission factors from system APUs.	The user creates APUs separately from GSE, and can more easily make a user-created APU emulate a system APU.
<u>Import Study</u> Previously, the user imported items in various dialog boxes throughout EDMS. In 4.1, EDMS is enhanced to allow all EDMS inputs to be entered via a comma-delimited text file. The user has the option to only import the desired portions of the file. A detailed description of the import format is provided in the online help documentation. This import capability also enables parts or complete copies of other EDMS studies to be imported.	The user can more easily transfer data into a study.
Export Study In version 4.1, the user can export all or any part of a study along with user-created Aircraft, GSE and APUs to a comma delimited text file. This file can be reloaded into EDMS using the Import option.	When used in conjunction with the Import Study wizard, the user can more easily merge studies or parts of studies.

System Tables

Change	Effect
Editions Aircraft engine emission factors were reviewed for accuracy and reformatted to match the ICAO format of breaking emission factors into fuel flow and emission indices. Several engines had their names revised to be more consistent with the existing EDMS engine-naming scheme. Many engines had emission factors revised based on recent updates to the ICAO databank. A list of new and revised engines appears in the attachment to this reference manual supplement.	The format and values of aircraft engine emission factors are more consistent with the ICAO databank. After converting an older study, the user may experience a change in overall aircraft emissions even though the study inputs were not altered.
<u>Additions</u> Previously, there were only 11 system database tables. In version 4.1, there are 14 with the inclusion of 3 new tables: EPA default time in mode based on aircraft category, GSE types and default values and a new separate table for APU emission factors.	

EDMS 4.1 Supplement Attachment

EDMS 4.1 revises the emissions data of 78 aircraft engines. Table 1 is a list of these engines. Tables 2 through 6 provide details into which and how specific values have been revised.

Table 1: A List of Aircraft Engines Revised.			
250B17B	PW123		
6-285-B	PW127-A		
AE3007A1	PW2037		
AE3007C	PW2040		
CF6-80E1A4 Low Emis	PW4152		
CF700-2D	PW4168		
CFM56-5B2/2P DAC-II	PW4256		
CFM56-5B3/2P DAC-II	PW4X58		
CFM56-7B24/2 (DAC)	RB211-524G-T		
CJ610-2C	RB211-535E4B		
F100-PW-220	RB401-6		
F101DFE	RDa7		
F404-GE-400	RR SPEY-MK555		
GE90-76B	RR SPEY-MK555-15		
GE90-85B	SPEY MK511		
IO-320-DIAD	T400-CP-400		
IO-360-B	T53-L-11D		
J52-P-408	T53-L-13		
J52-P-8B	T56-A-16		
J57-P-22	T58-GE-16		
J69-25A	T58-GE-5		
J79-GE-10B	T58-GE-8F		
J79-GE-8D	TAY650		
J85-GE-5F	TAY650-15		
JT8D-217	TF30-P-412A		
JT8D-217A	TF30-P-6B(JFT 10)		
JT8D-217C	TF33-P3/5/7		
JT8D-219	TF34-GE-100-100A		
JT9D-70	TF34-GE-400		
O-200	TFE731-2		
O-320	TFE731-3		
PT6A-27	TIO-540-J2B2		
PT6A-45	TPE331-2		
PT6A-45R	TPE331-3		
PT6A-65AR	TRENT-768		
PT6A-65B	TRENT-772		
PW119-B	TRENT-890		
PW120	TSIO-360C		
PW121	TYNE		

EDMS 4.1 revises the fuel flow rate of 48 aircraft engines. Table 2 lists these engines and shows the changes made to fuel flow rate for the affected modes only. The current source of the engine data is also given.

Fuel Flow (Kg/s)				
Engine	Mode	EDMS 4.0	EDMS 4.1	EDMS 4.1 Data Source
250B17B	Approach	0.0107	0.011	AP-42 Table II-1-7
6-285-B	Takeoff	0.0255	0.01928	AP-42 Table II-1-7
	Approach	0.11	0.117	
AE3007A1	Climb Out	0.301	0.319	ICAO Issue 4. Tested 3/3/95 to 5/19/95.
ALSOUTAT	Idle	0.047	0.05	10A0 15500 4. 1 65100 3/3/33 10 3/19/33.
	Takeoff	0.358	0.38	
CF700-2D	Climb Out	0.276	0.2926	AP-42 Table II-1-7
CJ610-2C	Approach	0.1239	0.12915	AP-42 Table II-1-7
F404-GE-400	Approach	0.8259	0.327	AESO Memorandum Report 9734, Rev B, Mar 99
F404-GE-400	Climb Out	1.021	0.7462	(Approach = Straight-in $85\%N2$)
	Approach	0.782	0.763	
GE90-76B	Climb Out	2.332	2.28	ICAO Josue 8 Tested Josuery 2000
GE90-76B	Idle	0.295	0.267	ICAO Issue 8. Tested January 2000.
	Takeoff	2.832	2.781	
	Approach	0.85	0.832	
GE90-85B	Climb Out	2.6	2.55	ICAO Josua 0. Tastad January 2000 incorrecting 2D core
GE90-85B	Idle	0.3	0.282	ICAO Issue 9. Tested January 2000 incorporating 3D aero.
	Takeoff	3.19	3.115	
Ю-320-DIAD	Idle	0.001	0.000989	AP-42 Table II-1-7
Ю-360-В	Idle	0.001	0.00102	AP-42 Table II-1-7
J52-P-408	Climb Out	0.7263	1.018	AESO Report 6-90 p. 17 (normal)
J52-P-8B	Climb Out	0.5455	0.772	AESO Report 6-90 p. 16 (Normal rated)
J69-25A	Climb Out	0.1099	0.1367	Air Force contact: Mark Zimmerhanzel, 24 Apr 00
J79-GE-10B	Takeoff	4.419	1.26	AESO Report 6-90 p. 22 (Intermediate)
	Climb Out	1.194	1.034	AESO Report 6-90 p. 21
J79-GE-8D	Takeoff	4.333	1.191	(Climb out = 90% Nor. Rated, Takeoff = Military)
	Approach	0.3833	0.363	
JT8D-217C	Climb Out	1.078	1.045	ICAO Issue 3. Tested March 1999 with Environmental Kit (E-Kit) Combustor and Fuel Nozzles.
	Takeoff	1.32	1.282	
	Approach	0.6804	0.7371	
JT9D-70	Idle	0.237	0.2268	AP-42 Table II-1-7
O-200	Idle	0.001	0.00104	AP-42 Table II-1-7

Table 2: Aircraft Engine Fuel Flow Revisions.

		Fuel Flo	ow (Kg/s)	
Engine	Mode	EDMS 4.0	EDMS 4.1	EDMS 4.1 Data Source
	Approach	0.0271	0.0245	
PT6A-27	Climb Out	0.0504	0.0455	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000
	Takeoff	0.0535	0.0515	
PT6A-45	Idle	0.0207	0.01	Pratt & Whitney Canada, contact: Kian McCaldon on 16 Nov 96
	Approach	0.0442	0.0471	
	Climb Out	0.0792	0.0844	Derti 9 Militare Orașe de conteste Derejare Orașelea de c. Mar 0000
PT6A-65AR	Idle	0.0229	0.0254	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000
	Takeoff	0.0886	0.0956	
	Approach	0.0408	0.0416	
PT6A-65B	Idle	0.0217	0.0225	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000
	Takeoff	0.0779	0.0787	
	Approach	0.0784	0.0761	
	Climb Out	0.1269	0.1303	Derti 9 Millioner Consider and a Dertiana Constante de la May 0000
PW119-B	Idle	0.0558	0.0542	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000
	Takeoff	0.1481	0.1457	1
PW120	Approach	0.0778	0.06503	Pratt & Whitney Canada, contact: Kian McCaldon on 06 Nov 96
PW121	Approach	0.0836	0.0696	Pratt & Whitney Canada, contact: Kian McCaldon on 06 Nov 96
DIAMOD	Approach	0.0763	0.0746	Derti 9 Militare Orașele erate la Dertina Oraștin de a Marcolog
PW123	Climb Out	0.1361	0.1325	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000
PW127-A	Climb Out	0.1351	0.1377	Pratt & Whitney Canada, contact: Kian McCaldon on 06 Nov 96
	Approach	0.399	0.458	
D\\/2027	Climb Out	1.266	1.307	ICAO Jacua 4. Testad Nevember 1998
PW2037	Idle	0.141	0.152	ICAO Issue 4. Tested November 1998.
	Takeoff	1.538	1.571	
PW2040	ldle	0.155	0.159	ICAO Issue 4. Tested November 1998.
	Approach	0.593	0.613	
PW4152	Idle	0.177	0.203	ICAO C108
	Takeoff	2.177	2.129	
	Approach	0.798	0.809	
PW4168	Climb Out	2.327	2.363	ICAO Issue 7. Tested April 2000 with TALON II combustor.
F W4100	Idle	0.221	0.25	ICAO ISSUE 7. Tested April 2000 With TALON II Combusion.
	Takeoff	2.836	2.884	
RB211-524G-T	Idle	0.0964	0.26	ICAO Issue 2. Tested September 1994.
SPEY MK511	Idle	0.119	0.127	ICAO C138
	Approach	0.018	0.03247	
T400-CP-400	Climb Out	0.0357	0.04578	AESO Memorandum Report 9809
1400-07-400	Idle	0.0174	0.04362	(Idle = Hover, Takeoff = Climbout)
	Takeoff	0.0519	0.04578	1
T53-L-11D	Approach	0.0814	0.028	AESO Report 6-90 p. 28 (Flight Idle)
T53-L-13	Climb Out	0.0813	0.0863	Air Force contact: Mark Zimmerhanzel, 24 Apr 00 (Military)

		Fuel Flo	w (Kg/s)	
Engine	Mode	EDMS 4.0	EDMS 4.1	EDMS 4.1 Data Source
T56-A-16	Approach	0.252	0.105	AESO Report 6-90 p. 29
130-A-10	Takeoff	0.2802	0.2691	(Approach = Flight Idle, Takeoff = 100%)
	Approach	0.0828	0.063	
T58-GE-16	Climb Out	0.0983	0.089	AESO Memorandum Report 9820, Rev C, Jan 01
130-GE-10	Idle	0.0189	0.047	(Idle = Taxi Out)
	Takeoff	0.1288	0.089	
T58-GE-5	Climb Out	0.0954	0.103	Air Force contact: Mark Zimmerhanzel, 24 Apr 00
150-GE-5	Takeoff	0.1034	0.112	(Climb out = Int Mil)
T58-GE-8F	Approach	0.0792	0.0732	AESO Report 6-90 p. 30
130-62-01	Climb Out	0.0733	0.079	(Climb out = Cruise)
TAY650	Approach	0.2545	0.25	ICAO ADD2/C52
141050	Takeoff	0.8758	0.86	
	Approach	0.3273	0.3648	
TF30-P-412A	Climb Out	0.9316	0.8883	AESO Memorandum Report 9901, Rev A, Jan 99
1F30-F-412A	Idle	0.1259	0.116	(Approach = Straight-in 87%RPM)
	Takeoff	5.0399	6.023	
	Approach	0.1633	0.1443	
TF34-GE-400	Climb Out	0.4783	0.3068	AESO Memorandum Report 9914, Jan 99 (Approach = Straight-in Approach 85%N2)
	Idle	0.0576	0.0611	
TIO-540-J2B2	Idle	0.0032	0.003158	AP-42 Table II-1-7
	Approach	0.8	0.81	
TRENT-768	Idle	0.26	0.27	ICAO ADD2/C50. Tested September 1994 with improved traverse combustor.
	Takeoff	2.94	2.97	
	Approach	0.84	0.85	
TRENT-772	Idle	0.27	0.28	ICAO ADD2/C51. Tested September 1994 with improved traverse combustor.
	Takeoff	3.15	3.2	
TRENT-890	Approach	1.03	1	ICAO ADD1/C37
117511-090	Takeoff	3.87	3.91	
TSIO-360C	ldle	0.0014	0.00145	AP-42 Table II-1-7

EDMS 4.1 revises the CO emissions indices (and therefore effectively revises the CO emissions factors) of 50 aircraft engines. Table 3 lists these engines and shows the effective changes made to CO emissions factors for affected modes only. The current source of the engine data is also given.

		CO (K	g/hour)	
Engine	Mode	EDMS 4.0	EDMS 4.1	Data Source
AE3007A1	Idle	3.893292	4.0374	ICAO Issue 4. Tested 3/3/95 to 5/19/95.
CF6-80E1A4 Low Emis	Takeoff	0.20908	0.418176	ICAO Issue 2. Tested 1/13 to 3/16/1996 with low emissions combustor.
CF700-2D	Climb Out	26.8272	26.334	AP-42 Table II-1-7
CFM56-5B2/2P DAC-II	ldle	10.0152	16.614	ICAO Issue 2. Tested September 1996 with DAC-II combustor.
CFM56-5B3/2P DAC-II	Climb Out	6.624	5.382	ICAO Issue 2. Tested September 1996 with DAC-II combustor.
F404-GE-400	Approach	3.24083	5.214996	AESO Memorandum Report 9734, Rev B, Mar 99
1404-GL-400	Climb Out	3.85938	3.2504472	(Approach = Straight-in 85%N2)
	Approach	16.32816	4.339944	
GE90-76B	Climb Out	1.09138	1.2312	ICAO Issue 8.
GE30-70D	ldle	42.8517	15.052392	Tested January 2000.
	Takeoff	0.91756	1.201392	
GE90-85B	Approach	77.571	3.89376	
	Climb Out	1.1232	1.1934	ICAO Issue 9.
	ldle	40.8564	14.31432	Tested January 2000 incorporating 3D aero.
	Takeoff	0.91872	1.34568	
Ю-320-DIAD	Takeoff	8.03045	49.56336	AP-42 Table II-1-7
J52-P-408	Climb Out	8.31468	7.14636	AESO Report 6-90 p. 17 (normal)
J52-P-8B	Climb Out	5.8914	2.417904	AESO Report 6-90 p. 16 (Normal rated)
J57-P-22	Climb Out	6.82409	6.747624	AP-42 Table II-1-8
JJ7-F-22	Takeoff	6.82409	6.747624	
J69-25A	Climb Out	15.12928	16.166142	Air Force contact: Mark Zimmerhanzel, 24 Apr 00
J79-GE-10B	Takeoff	231.6263	7.2576	AESO Report 6-90 p. 22 (Intermediate)
J79-GE-8D	Climb Out	8.89769	11.390544	AESO Report 6-90 p. 21
J79-GE-0D	Takeoff	206.6841	8.875332	(Climb out = 90% Nor. Rated, Takeoff = Military)
	Approach	5.7541	4.8847752	
JT8D-217	Climb Out	4.77338	1.823976	ICAO Issue 3. Tested March 1999 with Environmental Kit (E-Kit)
JT00-217	ldle	6.0604	7.5619152	Combustor and Fuel Nozzles.
	Takeoff	3.8016	1.99584	
	Approach	5.7541	4.8847752	
JT8D-217A	Climb Out	4.77338	1.823976	ICAO Issue 3. Tested March 1999 with Environmental Kit (E-Kit)
JIOD-21/A	ldle	6.0604	7.5619152	Combustor and Fuel Nozzles.
	Takeoff	3.8016	1.99584	

 Table 3: Effective Aircraft Engine CO Emissions Factors Revisions.

		CO (K	g/hour)		
Engine	Mode	EDMS 4.0	EDMS 4.1	Data Source	
	Approach	5.7541	4.952772		
	Climb Out	4.77338	1.84338	ICAO Issue 3. Tested March 1999 with Environmental Kit (E-Kit)	
JT8D-217C	ldle	6.0604	8.823348	Combustor and Fuel Nozzles.	
	Takeoff	3.8016	1.938384		
	Approach	5.59267	4.9056084		
	Climb Out	4.6872	1.79676	ICAO Issue 3. Tested March 1999 with Environmental Kit (E-Kit)	
JT8D-219	ldle	6.1109	8.3172096	Combustor and Fuel Nozzles.	
	Takeoff	3.55831	2.047248		
	Approach	4.16405	3.449628		
JT9D-70	Climb Out	1.43971	2.174472	AP-42 Table II-1-7	
	Idle	45.2196	27.76032		
	Approach	2.273148	0.32634		
	Climb Out	0.217728	0.1638	Pratt & Whitney Canada,	
PT6A-27	Idle	3.3408	0.902016	contact: Domingo Sepulveda, c. May 2000	
	Takeoff	0.1926	0.16686		
	Approach	0.648014	0.706752		
	Climb Out	0.224139	0.53208	Pratt & Whitney Canada,	
PT6A-45R	Idle	1.53648	1.892736	contact: Domingo Sepulveda, c. May 2000	
	Takeoff	0.197356	0.697176		
	Approach	3.27713	2.746872		
	Climb Out	1.453561	1.06344	Pratt & Whitney Canada,	
PT6A-65AR	Idle	5.313996	4.828032	contact: Domingo Sepulveda, c. May 2000	
	Takeoff	0.957312	0.653904		
	Approach	3.200414	3.129984		
	Climb Out	1.620403	1.55916	Pratt & Whitney Canada,	
PT6A-65B	ldle	5.160672	5.103	contact: Domingo Sepulveda, c. May 2000	
	Takeoff	1.318068	1.246608		
	Approach	1.072649	1.013652		
	Climb Out	0.959288	0.891252	Pratt & Whitney Canada,	
PW119-B	Idle	1.667603	1.580472	contact: Domingo Sepulveda, c. May 2000	
	Takeoff	1.119712	0.996588		
	Approach	1.043237	0.966816		
DIAMON	Climb Out	0.980091	0.9063	Pratt & Whitney Canada,	
PW123	ldle	1.63458	1.520892	contact: Domingo Sepulveda, c. May 2000	
	Takeoff	1.074096	1.016424		
	Approach	3.30372	3.21516		
	Climb Out	1.86862	1.599768		
PW2037	ldle	11.72556	12.235392	ICAO Issue 4. Tested November 1998.	
	Takeoff	2.21472	1.866348		

		CO (K	g/hour)	
Engine	Mode	EDMS 4.0	EDMS 4.1	Data Source
	Approach	3.5496	2.535552	
D W2040	Climb Out	2.08512	2.13282	ICAO Insue A. Tested Neuromber 1000
PW2040	Idle	14.0058	11.41938	ICAO Issue 4. Tested November 1998.
	Takeoff	2.53584	2.018304	
	Approach	2.32693	5.053572	
	Climb Out	1.09242	3.979656	104.0 0100
PW4152	ldle	8.13067	17.298036	ICAO C108
	Takeoff	0.94046	3.8322	
	Approach	5.0274	6.98976	
	Climb Out	6.19913	1.70136	1040 Januar Z. Tradad Andil 2000 with TAL ON U. anathurster
PW4168	ldle	18.70456	14.31	ICAO Issue 7. Tested April 2000 with TALON II combustor.
	Takeoff	7.35091	1.03824	
	Approach	4.35708	9.06984	
	Climb Out	3.80264	2.15892	
PW4X58	ldle	21.53174	18.54576	ICAO Issue 6. Tested November 1999 with TALON II combustor.
	Takeoff	3.93149	1.79712	
	Approach	2.079	4.8114	
	Climb Out	3.564	1.53504	
RB211-535E4B	ldle	8.04384	12.47616	ICAO Issue 5. Tested May 1999 with phase 5 combustor.
	Takeoff	7.03872	2.45916	
	Approach	2.94372	4.598568	
	Climb Out	1.49184	4.440384	ICAO Issue 2. Tested in 1987 with Transply IIF combustors with
RR SPEY-MK555	ldle	10.12608	10.8137664	standard fuel pump.
	Takeoff	0.7938	4.07484	
	Approach	20.38932	2.65212	
	Climb Out	5.38402	1.646568	104.0 0100
SPEY MK511	ldle	41.96606	14.525244	ICAO C138
	Takeoff	5.79272	0.384912	
	Approach	1.99198	0.67329792	
T400-CP-400	Climb Out	0.33889	0.14503104	AESO Memorandum Report 9809
1400-CP-400	Idle	1.86412	0.15860232	(Idle = Hover, Takeoff = Climb out)
	Takeoff	0.14016	0.14503104	
T53-L-11D	Approach	2.00245	3.809232	AESO Report 6-90 p. 28 (Flight Idle)
TE2 40	Climb Out	1.99825	1.0376712	Air Force contact: Mark Zimmerhanzel, 24 Apr 00
T53-L-13	Takeoff	1.03778	1.204434	(Climb out = Military)
T56-A-16	Approach	0.38102	1.71612	AESO Report 6-90 p. 29 (Flight Idle)
	Approach	4.34004	5.68134	
T58-GE-16	ldle	9.50723	7.53786	AESO Memorandum Report 9820, Rev C, Jan 01 (Idle = Taxi Out)
	Takeoff	3.58425	3.851208	
T58-GE-5	Takeoff	3.47825	3.278016	Air Force contact: Mark Zimmerhanzel, 24 Apr 00

		CO (K	g/hour)	
Engine	Mode	EDMS 4.0	EDMS 4.1	Data Source
T58-GE-8F	Approach	4.02875	4.5536256	AESO Report 6-90 p. 30
130-GE-01	Climb Out	4.55985	4.018572	(Climb out = Cruise)
	Approach	5.9553	1.584	
TAY650	Climb Out	5.1588	1.22688	ICAO ADD2/C52
141050	ldle	14.50426	9.65952	
	Takeoff	5.3599	2.13624	
	Approach	17.90986	8.5625856	
TF30-P-412A	Climb Out	7.0429	4.4130744	AESO Memorandum Report 9901, Rev A, Jan 99
1F30-F-412A	ldle	30.91097	23.180976	(Approach = Straight-in 87%RPM)
	Takeoff	272.1546	233.523756	
	Approach	8.8182	7.324668	
TF34-GE-400	Climb Out	4.30449	7.620912	AESO Memorandum Report 9914, Jan 99
1F34-GE-400	Idle	15.88378	20.0119608	(Straight-in Approach 85%N2)
	Takeoff	4.30449	10.26018	
TFE731-3	Climb Out	1.07136	1.084752	ICAO C002
IFE/31-3	Takeoff	0.891	0.9153	ICAO C002
TPE331-2	Takeoff	0.16524	0.17268552	AP-42 Table II-1-7
	Approach	2.4768	2.97432	
TRENT-768	Climb Out	1.13256	1.3122	ICAO ADD2/C50. Tested September 1994 with improved traverse combustor.
	ldle	9.84672	19.65384	
	Approach	2.35872	2.7234	
TRENT-772	Climb Out	1.3932	1.48608	ICAO ADD2/C51.
IRENI-112	ldle	9.09792	18.08352	Tested September 1994 with improved traverse combustor.
	Takeoff	2.0412	2.304	
	Climb Out	2.10672	2.232	
TRENT-890	ldle	14.5044	14.1156	ICAO ADD1/C37
	Takeoff	3.76164	3.94128	
TYNE	Climb Out	0.59551	0.5855868	AP-42 Table II-1-7
	Takeoff	0.53802	0.5487804	AT-42 I duit II-1-7

EDMS 4.1 revises the HC emissions indices (and therefore effectively revises the HC emissions factors) of 53 aircraft engines. Table 4 lists these engines and shows the effective changes made to HC emissions factors for affected modes only. The current source of the engine data is also given.

		HC (K	g/hour)	
Engine	Mode	EDMS 4.0	EDMS 4.1	Data Source
0500470	Climb Out	0.04104	0.044496	
250B17B	Takeoff	0.03198	0.036072	AP-42 Table II-1-7
	Climb Out	0.335916	0.34452	
AE3007A1	ldle	0.631116	0.558	ICAO Issue 4. Tested 3/3/95 to 5/19/95.
	Takeoff	0.347976	0.35568	
CF700-2D	Climb Out	0.09936	0.10428264	AP-42 Table II-1-7
CFM56-5B2/2P DAC-II	ldle	1.1232	1.2636	ICAO Issue 2. Tested September 1996 with DACII combustor.
CFM56-7B24/2 (DAC)	Approach	0.01802	6.772068	ICAO Issue 2. Tested November 1997.
E404 OF 400	Approach	1.04063	0.635688	AESO Memorandum Report 9734, Rev B, Mar 99
F404-GE-400	Climb Out	1.13944	0.940212	(Approach = Straight-in 85%N2)
	Approach	1.88618	0.164808	
	Climb Out	0.50371	0.24624	ICAO Issue 8. Tested January 2000.
GE90-76B	ldle	3.63204	0.499824	ICAO Issue 8. Tested January 2000.
	Takeoff	0.71366	0.400464	
	Approach	4.6512	0.14976	
	Climb Out	0.6552	0.2754	ICAO logue 0. Tested loguery 2000 incorrecting 2D core
GE90-85B	ldle	3.294	0.466992	ICAO Issue 9. Tested January 2000 incorporating 3D aero.
	Takeoff	0.91872	0.44856	
IO-320-DIAD	ldle	0.12996	0.12853044	AP-42 Table II-1-7
J52-P-408	Climb Out	1.75184	2.235528	AESO Report 6-90 p. 17 (normal)
J52-P-8B	Climb Out	1.139	1.639728	AESO Report 6-90 p. 16 (Normal rated)
J69-25A	Climb Out	0.02768	0.098424	Air Force contact: Mark Zimmerhanzel, 24 Apr 00
J79-GE-10B	Takeoff	8.27237	5.48856	AESO Report 6-90 p. 22 (Intermediate)
J79-GE-8D	Climb Out	0.60177	0.409464	AESO Report 6-90 p. 21
373-OL-OD	Takeoff	14.19491	0.600264	(Climb out = 90% Nor. Rated, Takeoff = Military)
J85-GE-5F	Approach	0.58749	0.597456	AP-42 Table II-1-8
	Approach	2.20781	0	
JT8D-217	Climb Out	1.66874	0	ICAO Issue 3. Tested March 1999 with Environmental Kit (E-Kit)
5100-217	ldle	1.64475	0	Combustor and Fuel Nozzles.
	Takeoff	1.33056	0	
	Approach	2.20781	0	
JT8D-217A	Climb Out	1.66874	0	ICAO Issue 3. Tested March 1999 with Environmental Kit (E-Kit)
JIOUZITA	Idle	1.64475	0	Combustor and Fuel Nozzles.
	Takeoff	1.33056	0	

 Table 4: Effective Aircraft Engine HC Emissions Factors Revisions.

		HC (K	g/hour)	
Engine	Mode	EDMS 4.0	EDMS 4.1	Data Source
	Approach	2.20781	0	
	Climb Out	1.66874	0	ICAO Issue 3. Tested March 1999 with Environmental Kit (E-Kit)
JT8D-217C	Idle	1.64475	0	Combustor and Fuel Nozzles.
	Takeoff	1.33056	0	
	Approach	2.18485	0	
	Climb Out	1.64052	0	ICAO Issue 3. Tested March 1999 with Environmental Kit (E-Kit)
JT8D-219	Idle	1.68376	0	Combustor and Fuel Nozzles.
	Takeoff	1.31609	0	
	Approach	0.73483	1.194102	
	Climb Out	1.43971	1.087236	
JT9D-70	Idle	10.2384	5.552064	AP-42 Table II-1-7
	Takeoff	1.75817	1.318572	
O-320	Approach	0.0004	0.4092624	AP-42 Table II-1-7
DTCA 07	Approach	0.213656	0.01764	Pratt & Whitney Canada,
PT6A-27	Idle	2.618874	0.062208	contact: Domingo Sepulveda, c. May 2000
PT6A-45R	ldle	0.230472	0.341170326	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000
	Approach	0.524977	0.374719334	Pratt & Whitney Canada,
PT6A-65AR	Idle	1.760364	1.439925437	contact: Domingo Sepulveda, c. May 2000
	Approach	0.55787	0.523792346	· · · · · · · · · · · · · · · · · · ·
	Climb Out	0	0.063431635	Pratt & Whitney Canada, contact: Domingo Sepulveda,
PT6A-65B	Idle	1.720224	1.670687508	c. May 2000
	Takeoff	0	0.032711103	
	Approach	0.30164	0.181368	
D W0007	Climb Out	0.27345	0.094104	ICAO Incurs 4. Tested Neuromber 1000
PW2037	Idle	1.14718	1.050624	ICAO Issue 4. Tested November 1998.
	Takeoff	0.27684	0.113112	
	Approach	0.31946	0.17856	
D M/2040	Climb Out	0.18244	0.10404	ICAO Jacus 4. Tested Neuersher 1000
PW2040	Idle	1.2555	0.94446	ICAO Issue 4. Tested November 1998.
	Takeoff	0.16483	0.063072	
	Approach	0.32022	0.286884	
D W4450	Climb Out	1.02816	0.064188	104.0 0100
PW4152	Idle	0.47152	1.636992	ICAO C108
	Takeoff	1.01884	0.229932	
	Approach	0.43092	0	
	Climb Out	0.33508	0	
PW4168	Idle	2.61752	0.18	ICAO Issue 7. Tested April 2000 with TALON II combustor.
	Takeoff	0.30628	0	

		HC (K	g/hour)	
Engine	Mode	EDMS 4.0	EDMS 4.1	Data Source
	Approach	0.3591	0	
	Climb Out	0.64573	0	ICAO Issue 6. Tested November 1999 with TALON II combustor
PW4X58	Idle	3.28957	1.29744	ICAO Issue 6. Tested November 1999 with TALON II compusion
	Takeoff	0.71481	0	
	Approach	0.0594	0.099	
RB211-535E4B	Idle	0.19152	0.09576	ICAO Issue 5. Tested May 1999 with phase 5 combustor.
	Takeoff	0.07488	0.52164	
DD-7	Approach	0.00087	0.879336	EBA 420.02.000 Table 5.4
RDa7	Takeoff	0.06408	0.6408	EPA 420-92-009 Table 5-4
	Approach	0.23072	0.262548	
	Climb Out	0.31968	0.469656	ICAO Issue 2. Tested in 1987 with Transply IIF combustors with
RR SPEY-MK555	Idle	0.64281	1.1834064	standard fuel pump.
	Takeoff	0.76734	0.3969	
	Approach	7.26181	0.180144	
	Climb Out	3.44995	0.313632	
SPEY MK511	Idle	24.30313	1.687068	ICAO C138
	Takeoff	3.13639	0.288684	
	Approach	0.56107	0.03272976	
T400-CP-400	Climb Out	0.0231	0.02142504	AESO Memorandum Report 9809 (Idle = Hover)
1400 01 400	Idle	0.65225	0.02041416	
T53-L-11D	Approach	0.16711	1.367856	AESO Report 6-90 p. 28 (Flight Idle)
TTO I 1 O	Climb Out	0.19309	0.093204	Air Force contact: Mark Zimmerhanzel, 24 Apr 00
T53-L-13	Takeoff	0.09321	0.1001088	(Climb out = Military)
	Approach	0.15422	0.3591	
	Climb Out	0.16139	0.1409184	AESO Report 6-90 p. 29
T56-A-16	Idle	7.43541	5.229432	(Approach = Flight Idle, Climb out = Military, Idle = L/S Gr. Idle, Takeoff = 100%)
	Takeoff	0.16139	0.1162512	
	Approach	0.11327	1.154412	
	Climb Out	0.22294	0.410112	AESO Memorandum Report 9820, Rev C, Jan 01
T58-GE-16	ldle	2.78352	2.027016	(Idle = Taxi Out)
	Takeoff	0.61205	0.410112	
	Climb Out	0.48072	1.086444	Air Force contact: Mark Zimmerhanzel, 24 Apr 00 (Int Mil)
T58-GE-5	Takeoff	1.09114	0.298368	Air Force contact: Mark Zimmerhanzel, 24 Apr 00
TE0.05.05	Approach	0.22809	0.2951424	AESO Report 6-90 p. 30
T58-GE-8F	Climb Out	0.29554	0.22752	(Climb out = Cruise)
	Approach	0.82458	0.099	
TAX/252	Climb Out	1.03176	0.56232	
TAY650	Idle	1.4161	0.53136	ICAO ADD2/C52
	Takeoff	1.26115	0.34056	

		HC (Kg	g/hour)	
Engine	Mode	EDMS 4.0	EDMS 4.1	Data Source
	Approach	1.31967	3.808512	
TF30-P-412A	Climb Out	0.30183	2.878092	AESO Memorandum Report 9901, Rev A, Jan 99
11 30-1-412A	ldle	17.42255	15.225696	(Approach = Straight-in 87%RPM)
	Takeoff	18.14364	5.203872	
TF33-P3/5/7	Climb Out	1.29922	1.328688	AP-42 Table II-1-8
11 33-1 3/3/1	Takeoff	1.39829	1.35756	
TF34-GE-100-100A	Idle	4.21277	4.09058316	Air Force contact: Mark Zimmerhanzel, 24 Apr 00
TF34-GE-400	Approach	0.36448	0.9662328	
	Climb Out	0.72315	0.6737328	AESO Memorandum Report 9914, Jan 99
	ldle	3.22237	3.827304	(Approach = Straight-in Approach 85%N2)
	Takeoff	0.72315	0.793224	
TEE731-2	Climb Out	0.0811	0.0797184	ICAO C001, engine name in EPA 420-92-009
TFE731-2	Takeoff	0.08137	0.084132	
TFE731-3	Climb Out	0.04687	0.0482112	ICAO C002
11 2731-5	Takeoff	0.0486	0.05022	
TIO-540-J2B2	Approach	0.00059	0.603	AP-42 Table II-1-7
	Approach	2.4192	0.02916	
TRENT-768	Climb Out	3.31056	0.08748	ICAO ADD2/C50. Tested September 1994 with improved traverse
	Idle	1.01088	1.83708	combustor.
	Takeoff	2.646	0	
	Approach	2.44944	0.0306	
TRENT-772	Climb Out	3.2508	0	ICAO ADD2/C51. Tested September 1994 with improved traverse
	Idle	0.94284	1.47168	combustor.
	Takeoff	3.7422	0	
TRENT-890	Idle	0.7992	0.756	ICAO ADD1/C37
TSIO-360C	Approach	0.31351	0.304524	AP-42 Table II-1-7

EDMS 4.1 revises the NOx emissions indices (and therefore effectively revises the NOx emissions factors) of 58 aircraft engines. Table 5 lists these engines and shows the effective changes made to NOx emissions factors for affected modes only. The current source of the engine data is also given.

			g/hour)	NOX Emissions Factors Revisions.
Engine	Mode	EDMS 4.0	EDMS 4.1	Data Source
250B17B	Approach	0.0859	0.08712	AP-42 Table II-1-7
2000110	Idle	0.04078	0.02844	
	Approach	2.76804	3.041064	
AE3007A1	Climb Out	17.413452	19.339056	ICAO Issue 4. Tested 3/3/95 to 5/19/95.
	Takeoff	24.255216	27.05904	
CF700-2D	Climb Out	4.37184	4.529448	AP-42 Table II-1-7
CI 700-2D	Idle	0.18792	0.185832	
F100-PW-220	Approach	21.80786	21.49641	Air Force contact: Mark Zimmerhanzel, 24 Apr 00
F101DFE	Climb Out	75.73997	89.9659728	AESO Report 6-90 p. 07 (15083 lbs thrust)
E404 OF 400	Approach	44.00395	6.41574	AESO Memorandum Report 9734, Rev B, Mar 99
F404-GE-400	Climb Out	92.4781	34.25058	(Approach = Straight-in 85%N2)
	Approach	35.69674	41.449212	
	Climb Out	297.10613	260.76816	
GE90-76B	ldle	6.24456	5.421168	ICAO Issue 8. Tested January 2000.
	Takeoff	457.35667	404.568756	
	Approach	31.518	48.642048	
0500.055	Climb Out	376.9272	332.0406	
GE90-85B	Idle	6.4908	5.949072	ICAO Issue 9. Tested January 2000 incorporating 3D aero.
	Takeoff	597.28284	529.8615	
IO-320-DIAD	Idle	0.00414	0.0035604	AP-42 Table II-1-7
Ю-360-B	ldle	0.00418	0.0044064	AP-42 Table II-1-7
J52-P-408	Climb Out	21.91102	37.710792	AESO Report 6-90 p. 17 (normal)
J52-P-8B	Climb Out	19.83438	33.711696	AESO Report 6-90 p. 16 (Normal rated)
J57-P-22	Approach	2.26525	2.30364	AP-42 Table II-1-8
J69-25A	Climb Out	1.15497	2.2243824	Air Force contact: Mark Zimmerhanzel, 24 Apr 00
J79-GE-10B	Takeoff	71.74688	46.53936	AESO Report 6-90 p. 22 (Intermediate)
_	Climb Out	44.8753	31.491504	AESO Report 6-90 p. 21
J79-GE-8D	Takeoff	73.62634	44.762544	(Climb out = 90% Nor. Rated, Takeoff = Military)
	Approach	1.35921	1.344276	
J85-GE-5F	Idle	0.31838	0.2376	AP-42 Table II-1-8
	Approach	12.55691	10.5698808	
	Climb Out	79.94448	52.546032	ICAO Issue 3. Tested March 1999 with Environmental Kit (E-Kit
JT8D-217	Idle	1.8275	2.2572144	Combustor and Fuel Nozzles.

 Table 5: Effective Aircraft Engine NOx Emissions Factors Revisions.

			(g/hour)	
Engine	Mode	EDMS 4.0	EDMS 4.1	Data Source
	Approach	12.55691	10.5698808	4
JT8D-217A	Climb Out	79.94448	52.546032	ICAO Issue 3. Tested March 1999 with Environmental Kit (E-Kit Combustor and Fuel Nozzles.
	Idle	1.8275	2.2572144	Compusion and Fuel Nozzies.
	Takeoff	122.1264	83.35008	
	Approach	12.55691	9.99702	
JT8D-217C	Climb Out	79.94448	48.98124	ICAO Issue 3. Tested March 1999 with Environmental Kit (E-Kit
0100 2110	ldle	1.8275	1.99746	Combustor and Fuel Nozzles.
	Takeoff	122.1264	76.104648	
	Approach	12.54572	10.512018	
JT8D-219	Climb Out	81.2448	53.62938	ICAO Issue 3. Tested March 1999 with Environmental Kit (E-Ki
5100-219	ldle	1.74182	2.0127744	Combustor and Fuel Nozzles.
	Takeoff	131.6088	91.248768	
	Approach	19.10563	21.493836	
	Climb Out	184.28314	175.407408	
JT9D-70	Idle	2.5596	2.612736	AP-42 Table II-1-7
	Takeoff	277.79054	272.50488	
	Approach	0.01313	0.01272348	
O-200	Idle	0.00569	0.0059904	AP-42 Table II-1-7
	Approach	0.816577	0.49392	
	Climb Out	1.27008	1.19574	
PT6A-27	Idle	0.126846	0.222912	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 20
	Takeoff	1.504206	1.40904	
	Approach	0.942566	0.780372	
	Climb Out	2.481538	2.021904	
PT6A-45R	Idle	0.307296	0.26712	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 20
	Takeoff	3.03624	2.485584	
	Approach	0.731786	0.8478	
	Climb Out	1.966583	2.2788	
PT6A-65AR	Idle	0.238554	0.292608	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 20
	Takeoff	2.39328	2.787696	1
	Approach	0.660636	0.688896	
PT6A-65B	Climb Out	1.671041	1.71252	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 20
	Takeoff	1.96308	2.011572	
	Climb Out	6.760699	7.130016	
PW119-B	Idle	1.446595	1.4634	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 20
	Takeoff		8.864388	race control canada, contact. Domingo ocparroad, c. May 20
PW120	_	9.117652 6.29495		Prott & Whitney Canada, contact: Kion McCaldon on 00 New 00
-	Takeoff		6.190992	Pratt & Whitney Canada, contact: Kian McCaldon on 06 Nov 96
PW121	ldle	1.11333	0.949428	Pratt & Whitney Canada, contact: Kian McCaldon on 06 Nov 96

		NOx (K	(g/hour)	
Engine	Mode	EDMS 4.0	EDMS 4.1	Data Source
PW123	Approach Climb Out	2.662999 7.938734	2.712456 7.5843	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000
1 1125	Idle	1.253178	1.3743	
DM (0007	Approach	14.79492	16.108776	
PW2037	Takeoff	172.19448	166.331196	ICAO Issue 4. Tested November 1998.
	Climb Out	142.30944	138.47724	
PW2040	Idle	2.3436	2.501388	ICAO Issue 4. Tested November 1998.
	Takeoff	217.44828	221.004288	
	Climb Out	145.8702	135.43668	
PW4152	Idle	3.12228	3.50784	ICAO C108
	Takeoff	210.82068	193.90932	
	Approach	42.11525	35.24004	
	Climb Out	284.07085	171.83736	
PW4168	ldle	3.30174	4.68	ICAO Issue 7. Tested April 2000 with TALON II combustor.
	Takeoff	432.78494	279.28656	
	Approach	29.3265	26.49348	
	Climb Out	180.94846	129.5352	
PW4X58	ldle	3.05953	3.28176	ICAO Issue 6. Tested November 1999 with TALON II combustor.
	Takeoff	290.48335	202.176	
	Approach	14.553	17.127	
	Climb Out	218.7108	113.9472	
RB211-535E4B	Idle	2.40768	3.13272	ICAO Issue 5. Tested May 1999 with phase 5 combustor.
	Takeoff	407.79648	192.85776	
	Approach	5.41008	4.01778	
	Climb Out	35.1648	27.880488	ICAO Issue 2. Tested in 1987 with Transply IIF combustors with
RR SPEY - MK555	Idle	1.27872	0.7738992	standard fuel pump.
	Takeoff	57.9474	45.85518	
RR SPEY-MK555-15	Idle	0.72639	0.7038	AP-42 Table II-1-7
	Approach	7.97494	7.20576	
	Climb Out	50.12885	45.21528	
SPEY MK511	Idle	0.63403	1.64592	ICAO C138
	Takeoff	74.47331	72.81252	
	Approach	0.19978	0.5026356	
	Climb Out	0.629	0.99214416	AFCO Memorandum Depart 0000
T400-CP-400	Idle	0.19091	0.99214410	AESO Memorandum Report 9809 (Idle = Hover, Takeoff = Climbout)
	Takeoff	1.24837	0.90921328	
T53-L-11D	Approach	1.88517	0.255024	AESO Report 6-90 p. 28 (Flight Idle)
100-1-110	Climb Out	1.88123	1.9697112	
T53-L-13	Takeoff	1.96993	2.42451	Air Force contact: Mark Zimmerhanzel, 24 Apr 00 (Climb out = Military)
		9.0085	2.42451	
T56-A-16	Approach			AESO Report 6-90 p. 29 (Approach = Flight Idle, Takeoff = 100%)
	Takeoff	10.54112	9.9685404	

		NOx (P	(g/hour)		
Engine	Mode	EDMS 4.0	EDMS 4.1	Data Source	
	Approach	2.34887	0.82782		
T58-GE-16	Climb Out Idle	3.35124	1.464228	AESO Memorandum Report 9820, Rev C, Jan 01 (Idle = Taxi Out)	
	Takeoff	0.20616 5.37869	0.49914		
	Climb Out	2.20102	2.510316	Air Force contact: Mark Zimmerhanzel, 24 Apr 00	
T58-GE-5	Takeoff	2.52117	2.951424	(Climb out = Int Mil)	
	Approach	1.33436	1.1779344	AESO Report 6-90 p. 30	
T58-GE-8F	Climb Out	1.17954	1.330992	(Climb out = Cruise)	
	Approach	4.21452	4.734		
	Climb Out	42.5601	33.07464		
TAY650	ldle	0.7295	1.08	ICAO ADD2/C52	
	Takeoff	62.42702	50.9292		
	Approach	8.34222	9.5738112		
	Climb Out	55.87364	62.678448	AESO Memorandum Report 9901, Rev A, Jan 99	
TF30-P-412A	ldle	1.08778	1.344672	(Approach = Straight-in 87%RPM)	
	Takeoff	122.46957	103.860612		
TF30-P-6B(JFT 10)	ldle	0.40934	0.31248	AP-42 Table II-1-8	
TF33-P3/5/7	ldle	0.70222	0.69336	AP-42 Table II-1-8	
	Approach	4.53843	2.1142836		
	Climb Out	9.4871	6.6158352	AESO Memorandum Report 9914, Jan 99	
TF34-GE-400	ldle	0.27164	0.3717324	(Approach = Straight-in Approach 85%N2)	
	Takeoff	9.4871	12.950244		
TIO-540-J2B2	Climb Out	0.02229	0.02180142	AP-42 Table II-1-7	
	ldle	0.12212	0.1238328		
TPE331-2	Climb Out	2.20567	0.002214828	AP-42 Table II-1-7	
	Takeoff	2.572	0.002580192		
	Approach	29.7792	29.18916		
	Climb Out	261.44712	215.72568	ICAO ADD2/C50. Tested September 1994 with improved traverse	
TRENT-768	Idle	5.2416	4.39344	combustor.	
	Takeoff	413.94024	334.125		
	Approach	32.29632	31.518		
	Climb Out	303.34608	245.57472	ICAO ADD2/C51. Tested September 1994 with improved traverse	
TRENT-772	ldle	5.57928	4.74768	combustor.	
	Takeoff	494.424	396.0576		
	Climb Out	367.23456	371.628	ICAO ADD1/C37	
TRENT-890	ldle	5.6808	5.7564		
	Takeoff	628.47252	643.2732		
	Approach	0.10449	12.485484	AP-42 Table II-1-7	
	Climb Out	0.1944	19.62		
TSIO-360C	Idle	0.00963	1.40418		
	Takeoff	0.1639	29.69568		

EDMS 4.1 revises the SOx emissions indices (and therefore effectively revises the SOx emissions factors) of 8 aircraft engines. Table 6 lists these engines and shows the effective changes made to SOx emissions factors for affected modes only. An index of 1 pertains to the sulfur content of commercial jet fuel, 0.54 to military jet fuel and 0.11 to piston engine fuel. The IO-320-DIAD and O-320 are both piston engines and were revised accordingly. For the other engines, it was determined that they function commercially more frequently than they do militarily, and therefore they too were revised accordingly.

	SOx El (g/Kg)		
Engine	EDMS 4.0	EDMS 4.1	
AE3007C	0.54	1	
CF700-2D	0.54	1	
CJ610-2C	0.54	1	
IO-320-DIAD	0.54	0.11	
O-320	0.54	0.11	
PW4256	0.54	1	
RB401-6	0.54	1	
TAY650-15	0.54	1	

 Table 6: Aircraft Engine SOx Emissions Indices Revisions.

EDMS 4.1 added 117 new aircraft engines to its database. Table 6 lists these and the data source. Some of these engines are new in name only and contain previously incorporated data, but have been renamed to increase the consistency of the EDMS engine-naming scheme. The new data sources are:

- ICAO Issues 3 through 9
- AESO memorandum reports
- Allison contact: Nader Rizk, 9 Jun 00
- Air Force contact: Mark Zimmerhanzel, 24 Apr 00
- Honeywell, RAP:TJK:0133:09801, 18 Sep 01
- Pratt & Whitney Canada,

5 July 01 and contact: Domingo Sepulveda, c. May 2000

	Table 7: New Aircraft Engines in EDMIS 4.1.
Engine Name	Data Source
AE3007A1/1	ICAO Issue 4. Tested 3/3/95 to 5/19/95.
AE3007A1/2	ICAO Issue 4. Tested 3/3/95 to 5/19/95.
AE3007A1/3	Allison contact: Nader Rizk, 9 Jun 00
AE3007C1	ICAO Issue 9. Tested April 1995.
BR700-710A1-10 GulfV	ICAO Issue 4. Tested October 1996 for Gulfstream V application.
BR700-715A1-30 newFl	ICAO Issue 3. Tested June 1999 with improved fuel injector.
BR700-715B1-30 newFl	ICAO Issue 3. Tested June 1999 with improved fuel injector.
BR700-715C1-30 newFl	ICAO Issue 3. Tested June 1999 with improved fuel injector.
CF34-3B	ICAO Issue 8. Tested March 1991.
CF6-45A2 non-LEFN	ICAO C023
CF6-50C non-LEFN	ICAO C024. LEFN = Low Emissions Fuel Nozzle.
CF6-50C1 non-LEFN	ICAO C025. LEFN = Low Emissions Fuel Nozzle.
CF6-50C2 non-LEFN	ICAO C025. LEFN = Low Emissions Fuel Nozzle.
CF6-50C2R non-LEFN	ICAO C026. LEFN = Low Emissions Fuel Nozzle.
CF6-50E2 (non-LEFN)	ICAO C027. LEFN = Low Emissions Fuel Nozzle.
CF6-80C2A1 old comb	ICAO C032
CF6-80C2A2 (revised)	ICAO C034. Tested June 1985.
CF6-80C2A2 old comb	ICAO C033. Certification data was superseded by revised data on page C034.
CF6-80C2A3 (revised)	ICAO C036. Tested June 1985.
CF6-80C2A3 old comb	ICAO C035. Certification data was superseded by revised data on page C036.
CF6-80C2A5 (revised)	ICAO C038. Tested June 1985.
CF6-80C2A5 old comb	ICAO C037. Certification data was superseded by revised data on page C038.
CF6-80C2A8 old comb	ICAO C039
CF6-80C2B1 old comb	ICAO C040
CF6-80C2B1F old comb	ICAO C041. Certification data was superseded by revised data on page C042.
CF6-80C2B1F revised	ICAO C042. Tested June 1985.
CF6-80C2B2 old comb	ICAO C043
CF6-80C2B2F old comb	ICAO C044
CF6-80C2B4 old comb	ICAO C045
CF6-80C2B4F old comb	ICAO C046
CF6-80C2B6 old comb	ICAO C047
CF6-80C2B6F old comb	ICAO C048
CF6-80C2B7F old comb	ICA O ADD1/C27
CF6-80C2D1F old comb	ICAO C049
CF6-80E1A1 old comb	ICAO C050
CF6-80E1A2 old comb	ICAO C051
CF6-80E1A3	ICAO Issue 8. Tested January 1995.
CFM56-3-B4	EPA 420-92-009 Table 5-4
F100-PW-100 (w/AB)	Air Force contact: Mark Zimmerhanzel, 24 Apr 00
F100-PW-200 (w/AB)	Air Force contact: Mark Zimmerhanzel, 24 Apr 00

Table 7: New Aircraft Engines in EDMS 4.1.

Engine Name	Data Source
F100-PW-220 (w/AB)	Air Force contact: Mark Zimmerhanzel, 24 Apr 00
F100-PW-229 (w/AB)	Air Force contact: Mark Zimmerhanzel, 24 Apr 00
F101-GE-102 (w/AB)	Air Force contact: Mark Zimmerhanzel, 24 Apr 00
F110-GE-100 (w/AB)	Air Force contact: Mark Zimmerhanzel, 24 Apr 00
F110-GE-129 (w/AB)	Air Force contact: Mark Zimmerhanzel, 24 Apr 00
F110-GE-400	AESO Memorandum Report 9813 (Straight-in approach 90%RPM)
F118-GE-100	Air Force contact: Mark Zimmerhanzel, 24 Apr 00
F402-RR-406A	AESO Memorandum Report 9913 (conventional straight-in 62%RPM)
F402-RR-408	AESO Memorandum Report 2000-12, Apr 00 (conventional straight-in 70%RPM)
GE90-76B (DAC I)	ICAO ADD1/C25. Tested July 1995 with DACI combustor.
GE90-76B w/ 3D Aero	ICAO Issue 9. Tested January 2000 incorporating 3D aero.
GE90-77B	ICAO Issue 9. Tested January 2000 incorporating 3D aero.
GE90-85B (DAC I)	ICAO ADD1/C26
GE90-90B	ICAO Issue 9. Tested January 2000 incorporating 3D aero.
GE90-94B	ICAO Issue 9. Tested January 2000 incorporating 3D aero.
J52-P-6B	AESO Report 6-90 p. 15
J57-P-10	AESO Report 6-90 p. 18 (75% Thrust)
J57-P-420	AESO Report 6-90 p. 19
J57-P-420 (w/AB)	AESO Report 6-90 p. 19
J65-W-20	AP-42 Table II-1-8
J65-W-5F	AESO Report 6-90 p. 20 (7450 rpm)
J79-GE-10B (w/AB)	AESO Report 6-90 p. 22 (30% thrust)
J79-GE-8D (w/AB)	AESO Report 6-90 p. 21 (75% rpm)
J85-GE-2	AESO Report 6-90 p. 23 (30% normal rated power)
J85-GE-5H (w/AB)	Air Force contact: Mark Zimmerhanzel, 24 Apr 00
JT8D-217 (old comb)	ICAO C081
JT8D-219 old comb	ICAO C082
NK-8-2U w/o NOx data	ICAO C060, 14 Jun 90
PT6A-114	Pratt & Whitney Canada, 5 July 01
PT6A-20	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000
PT6A-28	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000
PT6A-34	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000
PT6A-36	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000
PT6A-45A	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000
PT6A-60, -60A, -60AG	Pratt & Whitney Canada, 5 July 01
PT6A-65R	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000
PT6A-67D	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000
PW118A	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000
PW118B	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000 Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000
PW119-C	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000 Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000
PW13-C	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000 Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000
PW123C	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000 Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000

Engine Name	Data Source
PW123D	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000
PW123E	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000
PW126A	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000
PW127-C,F,J	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000
PW127E	Pratt & Whitney Canada, contact: Domingo Sepulveda, c. May 2000
PW2037 original data	ICAO C102. Tested August 1983.
PW2040 original data	ICAO C103. Tested August 1983.
PW2041	EPA 420-92-009 Table 5-4
PW4098	ICAO Issue 7. Tested January 1998.
PW4152 (old Comb)	ICAO C107
PW4156	ICAO C110
PW4168 (Floatwall)	ICAO C113. Tested February 1993 with Floatwall combustor.
PW4168A	ICAO Issue 2. Tested February 1993 with Floatwall Combustor.
PW4X58 Phase 3	ICAO C119. Tested January 1993 with phase 3 reduced pressure loss combustor.
PW530	Pratt & Whitney Canada, 5 July 01
RB211-22B new engine	ICAO C124
RB211-524	AP-42 Table II-1-7
RB211-524G original	ICAO C131. Certification data was superseded by revised data on page C132.
RB211-535E4 original	ICAO C135. The original certification data was superseded by revised data on page C136.
RB211-535E4 revised	ICAO C136. This revised data was superseded by new data on page ADD2/C49.
RB211-535E4B old com	ICAO ADD2/C55. Tested April 1991.
SPEY MK511 old Comb	ICAO C137
SPEY MK555 HP F.Pump	ICAO C140, RR report CRR10145, Transply IIF combustors with H.P. fuel pump, Aug 83 to Nov 84
SPEY MK555 original	ICAO C139
T63-A-5A	AESO Report 6-90 p. 32 (Flight Idle)
T64-GE-413	AESO Report 6-90 p. 34 (75% hp)
T64-GE-416	AESO Memorandum Report 9905, Rev A, Mar 99 (same as T64-GE-415)
T64-GE-6B	AESO Report 6-90 p. 33 (75% hp)
T700-GE-401 -401C	AESO Memorandum Report 9709A, Rev A
TF30-P-109 (w/AB)	Air Force contact: Mark Zimmerhanzel, 24 Apr 00
TF30-P-6C	AESO Report 6-90 p. 11 (30% Thrust)
TPE331-8	Honeywell, RAP:TJK:0133:09801, 18 Sep 01
TRENT 556-61	ICAO Issue 9. Tested January 2002 with phase 5 tiled combustor.
TRENT-768 old comb	ICAO ADD1/C32. Out of service. Tested July 1994 with old combustor.
TRENT-772 old comb	ICAO ADD1/C33. Out of service. Tested July 1994 with old combustor.